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ABSTRACT

The link between low-frequency time-dependent variability and the existence of multiple unstable steady-
state solutions in a reduced gravity quasigeostrophic ocean model for the midlatitude wind-driven circulation
is investigated. It is shown that a sequence of successive symmetry-breaking pitchfork bifurcations lead to
multiple equilibria that differ from each other primarily in the elongation of the recirculation cell, in the amount
of meandering present in the intergyre jet, and in a north–south shift in the eastward jet. The elongation of the
recirculation cells and the meandering of the jet play compensating roles in the establishment of the global
energy and vorticity balance.

The solutions also have distinct energy levels, but general agreement between them and the bumps in a
histogram of the total energy obtained from a 1200-yr time-dependent simulation is not found. Nevertheless, a
substantial fraction of the variance (30%) can be accounted for by four coherent structures that capture the
subspace spanned by four vectors that point from the mean state to four selected fixed points. The steady-state
solution with the most elongated recirculation cells acts most strongly in steering the trajectory of the time-
dependent model in phase space and sets a rough upper bound on the energy of the flow.

1. Introduction

Analyzing sea surface height in regions of the mid-
latitude western boundary currents, Kelly et al. (1996)
found that the dominant mode of variation of the surface
currents was a change in the structure of the recircu-
lation regions. In the 2.5-yr record analyzed, they found
elongation and contraction of the recirculation gyres in
both the Kuroshio Extension and the Gulf Stream, with
a trend toward a shorter recirculation gyre in the At-
lantic. More recently, Qiu (2000) also found similar
variability for the Kuroshio extension system in 7 years
of altimetry data. Both these studies show that in the
state with elongated recirculation cells, the jet extension
has a greater zonal penetration and a more northerly
zonal-mean path and that in the contracted state, the jet
extension follows a more southerly mean path. They
also found that the periods with elongated recirculation
cells have weaker eddy kinetic energy in the upstream
region while periods with more contracted recirculation
cells have higher eddy kinetic energy.

* Current affiliation: Department of Earth System Science, Uni-
versity of California, Irvine, Irvine, California.

Corresponding author address: Dr. François Primeau, Department
of Earth System Science, University of California, Irvine, 220 Row-
land Hall, Irvine, CA 92697-3100.
E-mail: fprimeau@uci.edu

Based on a study of Rhines and Schopp (1991), Kelly
et al. (1996) speculated that the tilt of the zero wind
stress curl line might be responsible for the change in
the elongation of the recirculation cells but found that
on timescales of months, there was no correlation be-
tween the gyre fluctuations and the nonseasonal curl
line tilt, while on longer timescales the observational
record was too short to draw any firm conclusions. An-
other possibility as suggested by Qiu (2000) is that the
variability in the elongation/contraction of the recircu-
lation cells is a manifestation of the intrinsic variability
of the recirculation gyre dynamics and occurs indepen-
dently of changes in the wind stress.

A mode of variability with a spatial structure very
similar to the one identified by Kelly et al. (1996) and
Qiu (2000) exists in nonlinear wind-driven ocean mod-
els forced by steady winds. For example, McCalpin and
Haidvogel (1996) used a reduced gravity quasigeo-
strophic model forced by a steady wind stress to study
the intrinsic variability of the double-gyre wind-driven
ocean circulation. They found that the low-frequency
variability of the model was associated with irregular
transitions between different regimes that could be char-
acterized as having either recirculation cells that were
elongated or contracted. Spall (1996) also found vari-
ability associated with the transition between regimes
with either long or short recirculation gyres, using a
three-layer primitive equation model that was forced by
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a steady deep western boundary inflow in addition to
the steady wind stress.

In the present study we postulate that the existence
of the multiple regimes found by McCalpin and Haid-
vogel and by Spall is due to the existence of multiple
equilibria characterized by flow patterns having recir-
culation gyres that are either elongated or contracted.
Even though the mechanism for the transition between
states might be different between the models of Mc-
Calpin and Haidvogel and of Spall—the first involved
only barotropic instability and the second involved bar-
oclinic instability—the similar nature of the preferred
regimes suggest that the existence of multiple regimes
(as opposed to the transition timescales and frequency
of the associated variability) can be studied with a sim-
ple one-layer quasigeostrophic (QG) model.

Our strategy is to apply Newton’s method to a one-
layer QG ocean model with the same configuration as
used by McCalpin and Haidvogel and investigate the
possible connection between the steady-state solutions
and the multiple regime behavior they identified. Unlike
other bifurcation studies of the double-gyre model,
which have focused on the first bifurcations away from
an antisymmetric stable steady state (e.g., Katsman et
al. 2001, Dijkstra and Katsman 1997), we find it nec-
essary to extend the bifurcation tree past several bifur-
cations in order to find the connection between the fixed
points and the time-dependent behavior of the model.
In general, one cannot expect steady solutions that are
far from the marginal stability curve to have any influ-
ence on the model trajectory, but we show that for the
model configuration studied by McCalpin and Haid-
vogel (1996), solutions that bifurcate away from the
antisymmetric state far down the bifurcation tree have
the strongest influence on the time-dependent flow. Fur-
thermore, there are some important similarities between
the structure of the elongated and contracted recircu-
lation cells observed in the recirculation systems of the
Gulf Stream and Kuroshio Extension systems and the
model’s multiple equilibria. This allows us to study the
global balances of energy and vorticity of the different
flow states in the simple context of a QG model without
the complications of time-dependence.

The plan of the paper is as follows. In section 2 we
present the model formulation and the method of so-
lution as well as the arclength continuation strategy. In
section 3, we present the multiple equilibria and the
global balances of energy and vorticity that allow the
very different steady-state solutions to exist with the
same steady forcing and dissipation. In section 4 we
present the time-dependent solution and investigate the
connection between the fixed point and the behavior of
the model in phase space. In section 5, we present a
linear stability analysis for the steady-state solutions.
Finally in section 6 we present a discussion of the re-
sults.

2. Model formulation and method of solution

We use the same model formulation as McCalpin and
Haidvogel (1996)—the reduced-gravity quasigeostroph-
ic vorticity equation. In terms of the interface height
anomaly, h, it is written as follows

2 2(¹ 2 g )h 1 bht x

g9
2 2 65 2 J(h, ¹ h) 2 r¹ h 2 A ¹ hbf0

f01 curlt, (1)
r g9H0

(refer to Table 1 for a description of the symbols). The
equation describes the time evolution of the interface
anomaly between two immiscible, homogeneous layers
of fluid of slightly different densities. The upper layer
has thickness H 1 h(x, y, t) and the lower layer is
assumed to be infinitely deep and at rest.

The domain of integration is a rectangular basin with
solid walls at x 5 0, x 5 Lx and y 5 0, y 5 Ly. The
flow is forced by a zonal wind stress curl profile,

x]t
curlt 5 2

]y

2p y y 1
5 t sin 2p 1 2 4A 2 , (2)0 s1 2 1 2[ ]L L L 2y y y

where the parameter As controls the north–south asym-
metry of the wind stress curl; for As 5 0, the wind stress
curl profile is antisymmetric about the center of the basin
at y 5 Ly/2.

To conserve mass, we impose the integral constraint
L Ly x

h(x, y) dx dy 5 0 (3)E E
0 0

and no normal flow

=h · t 5 0, (4)

where t is a unit vector tangent to the basin walls.
We also impose no stress,

2¹ h 5 0, (5)

along the basin boundaries. Finally, because of the high-
order viscosity term, one additional boundary condition
is required. For this, we choose

4¹ h 5 0. (6)

a. Nondimensionalization

Most of the results we will present in this paper are
in dimensional variables. We will nevertheless convert
the governing equation into nondimensional form so
that it will be clear how many parameters we can vary
independently, and to make it easier for the reader to
compare the results with those of other studies.
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Table 1. Standard parameter set.

North–south extent of basin
East–west extent of basin
Upper-layer thickness
Latitude of southern basin wall
Coriolis parameter
Differential rotation of the earth
Standard density
Reduced gravity
Rossby radius of deformation
Reciprocal of R2

d

Strength of wind stress control parameter
Parameter controlling the asymmetry in the wind stress profile
Interracial damping coefficient
Biharmonic viscosity coefficient

Ly 5 2800 km
Lx 5 3600 km
H 5 600 m

f0 5 p /6
f0 5 1.4544 3 1024 cos (f0) s21

b 5 2.2829 3 10211 3 cos (f0) m21 s21

r0 5 1.027 3 103 kg m23

g9 5 0.02 m s22

Rd 5 47.636 km
g2 5 (47636)22 m22

t 0 5 0.05 Nm22

As 5 0.05
r 5 1027 s21

Ab 5 8 3 1010 m4 s21

We put Eq. (1) in nondimensional form by introduc-
ing the following scales

Lx(x*, y*) 5 (L x, L y), t* 5 t,x y 2bRd

2p f t L0 0 xh* 5 h, (7)
br g9H L0 y

where time has been nondimensionalized by the time
for long Rossby waves to cross the basin and the thick-
ness h has been nondimensionalized by the east–west
thickness difference obtained from Sverdrup balance.
The nondimensional form of the Eq. (1) is (after drop-
ping the asterisks)

22 2 24 2 2 22 2(a e¹ 2 1)h 5 2J(h, a d ¹ h 1 y) 2 a d ¹ ht I S

26 5 62 a d ¹ h 1 GH (8)

with the nondimensional wind stress curl profile given by

1
G 5 2sin(2py) 1 2 4A y 2 . (9)s1 2[ ]2

We have introduced the following nondimensional pa-
rameters

1/2L 2pt ry 0a [ , d [ , d [ ,I S2 31 2L r Hb L bLx 0 x x

1/5 2A Rb dd [ , e [ ,H 51 2 1 2bL Lx x

(10)

the basin aspect ratio a, the width of the inertial bound-
ary layer dI, the width of the viscous boundary layer
dH, and the width of the frictional Stommel boundary
layer dS. We have also introduced the nondimensional
Laplacian operator

2 2 2 2¹ [ a ] 1 ] .x y (11)

The reference numerical values for the parameters are
given in Table 1.

b. Spatial discretization

The spatial discretization of the model is achieved
via second-order finite difference approximations. Ex-
cept for the stability analysis presented in section 5 a
grid of 181 3 141 points, corresponding to a horizontal
grid spacing of 20 km is used. For the stability analysis,
memory constraints on the available computer allowed
a mesh of only 141 3 121 grid points. To compensate
for the decreased resolution, we introduced a stretched
grid to concentrate the grid points close to the western
boundary and to the jet axis along y 5 Ly/2. We also
varied the stretching to verify that the stability results
are not too sensitively dependent on the resolution. A
cubic mapping of the form form x 5 ai3 1 bi 1 c was
used in both the x and y directions to map the grid points
from computational space to nondimensional physical
space.

c. Steady-state solutions: continuation strategy

To obtain the steady-state solutions, we use an arc-
length continuation algorithm and Newton’s method.
See Seydel (1994) for a practical description of the
method.

To find multiple steady-state solutions at the reference
parameter values, we make use of the symmetry prop-
erty of the quasigeostrophic governing equation,

h(x, y) 5 2h(x, 2y 1 1). (12)

Initially, we keep the wind stress profile exactly anti-
symmetric by setting As 5 0 in Eq. (2) so that any
pitchfork bifurcation structures leading to multiple equi-
libria are not destroyed. [For a discussion of symmetry
breaking pitchfork bifurcations applied to the double-
gyre problem see Jiang et al. (1995) and Cessi and Ierley
(1995)]. Note that for As 5 0, the prescribed wind stress
curl profile also satisfies condition (12). For As ± 0, the
nonsymmetric solution branches that would be con-
nected to the antisymmetric branches at pitchfork bi-
furcation points become disconnected and cannot all be
found by continuously varying one of the parameters.
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FIG. 1. Plot of the maximum transport across the intergyre jet for the antisymmetric solutions
as a function of the biharmonic viscosity coefficient Ab. Also shown is the location of the pitchfork
bifurcation points, labeled PF with subscripts A through H, as well as the location of two saddle
node bifurcation points NPL and NPH. For reference the Sverdrup balance transport is approxi-
mately 40 Sv.

To map out the solution branches into the desired
nonlinear regime, we begin by computing an antisym-
metric solution branch in the viscous regime (dH k dI)
where the solution is essentially linear and therefore
unique. We then gradually decrease the viscosity so that
the solution becomes progressively more nonlinear.
Only once a solution on each of the distinct nonsym-
metric solution branches has been found and followed
to the desired forcing and dissipation parameters, do we
gradually increase As to make the wind-forcing non-
symmetric.

In summary, our continuation strategy is the follow-
ing.

1) Hold As 5 0 fixed and vary Ab to compute the an-
tisymmetric branch from the viscous regime to Ab

5 8 3 1010 m4 s21. Bifurcation points are detected
along the way by monitoring the sign of the deter-
minant of the Jacobian matrix.

2) Hold As 5 0 fixed and vary Ab to continue each of
the pitchfork branches from the value of Ab at their
respective bifurcation point to Ab 5 8 3 1010 m4

s21.
3) Hold Ab 5 8 3 1010 m4 s21 fixed and vary the wind

profile assymetry parameter to continue each branch
to the reference value used by McCalpin and Haid-
vogel (1996), that is, from As 5 0 to As 5 0.05.

3. Bifurcation structure and multiple equilibria

a. Antisymmetric solutions

If the wind stress curl profile is antisymmetric [i.e.,
As 5 0 in Eq. (2)], at least one antisymmetric solution
branch exists for all parameter values. Figure 1 shows
the maximum transport in the jet for the antisymmetric
solution as a function of the viscosity parameter. All
other parameters except for As are those given in Table
1; that is, we have the following nondimensional pa-
rameters

23a 5 7/9, d 5 5.29 3 10 ,I

23d 5 1.41 3 10 . (13)S

For reference, the transport across the jet corresponding
to Sverdrup balance is 4pt0/(br0a) ø 40 Sv (Sv [ 106

m3 s21). Figure 1 also shows the location of the bifur-
cation points leading to multiple equilibria. The anti-
symmetric solutions at each of these pitchfork bifur-
cation points are shown in Fig. 2. As such, Fig. 2 shows
how the antisymmetric solution changes as the viscosity
is decreased. In this sequence, the recirculation cells,
which are at first confined to a region near the western
wall, expand progressively farther eastward as the vis-
cosity is reduced. There is also an increase in the in-
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FIG. 2. Sequence of equilibrium solutions for decreasing values of the viscosity coefficient. The solutions
correspond to the fixed points at the location of the pitchfork bifurcations points labeled PFA through PFH in Fig. 1.
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tensity of the recirculation cells as the viscosity is re-
duced from 1.5 3 1013 m4 s21, (dH 5 1.66 3 1022),
(corresponding to the location of the transition to the
rapidly increasing transport in Fig. 1) to Ab 5 1.3 3
1012 m4 s21, (dH 5 1.02 3 1022), where the maximum
transport is reached (84 Sv). When this maximum in the
transport is reached, the recirculation cells extend 600
km eastward into the basin interior. A subsequent re-
duction in the viscosity causes the intensity of the re-
circulation cells to decrease but their eastward extent
continues to increase in a monotonic fashion until a
saddle node bifurcation point is reached at Ab 5 6.0 3
109 m4 s21, (dH 5 2.47 3 1023). The low nose point
associated with this bifurcation is labeled NPL in Fig.
1. At this point the recirculation cells extend up to 180
km west of the eastern wall. To continuously follow the
antisymmetric solution, the viscosity must be increased
from the low nose point, NPL, up to the high nose point,
NPH, at Ab 5 7.6 3 109 m4 s21, (dH 5 3.64 3 1023).
The north–south extent of the recirculation cells does
not change much until the jet extends across the entire
basin. Once the jet can no longer expand in the east–
west direction because of the eastern wall, the recir-
culation cells expand in the north–south direction. How-
ever, due to the finite value of the interfacial drag pa-
rameter (dS 5 1.41 3 1023), the limit dH → 0, does not
tend toward basin filling gyres (Ierley and Sheremet
1995; Cessi and Ierley 1995; Primeau 1998a). Instead,
the solution tends to one in which the subtropical gyre
resembles one of the intermediate single gyre solutions
in the sequence computed by Veronis (1966).

b. Nonsymmetric solutions

As the viscosity is decreased beyond each of the
pitchfork bifurcation points labeled PFA through PFH in
Fig. 1, an additional pair of nonsymmetric equilibria
comes into existence. The members of each new pair
are mirror images of each other and are related to each
other through the symmetry condition given in Eq. (12).
The pair of nonsymmetric solutions bifurcating at PFA

are labeled A and A9. The pair bifurcating at PFB are
labeled B and B9, and so on for the other pitchfork
bifurcation points. At each bifurcation point, one of the
eigenmodes of the linearized system has a zero eigen-
value. The eigenmode corresponding to this null eigen-
value captures the essential difference between the bi-
furcating branches. Figure 3 shows contour plots of the
eigenmodes that have a zero eigenvalue at each of the
bifurcation points. The structure of these modes is con-
fined to the region of the basin occupied by the recir-
culation cells (cf. Fig. 2 showing the basic state and
Fig. 3 showing the null eigenmode). Since these modes
are symmetric about the line y 5 ½, they destroy the
antisymmetry of the flow field. The solutions on the
nonsymmetric branches can be distinguished from the
antisymmetric solutions by the meandering of the jet
separating the recirculation cells and by a northward or

southward shift in the mean position of the jet. The
solutions on the successive nonsymmetric branches can,
in turn, be distinguished from each other by the number
of meanders in the jet with the first pitchfork bifurcation
giving rise to a solution with one meander, the second
with two, and so on. The nonsymmetric solutions are
similar to stationary waves. In the intergyre jet, the east-
ward flow is strong enough to arrest the westward prop-
agation of the Rossby wave. As the viscosity is de-
creased the eastward velocity in the jet does not change
much, but the recirculation cells become progressively
more elongated. Once the recirculation gyres become
sufficiently elongated, additional meanders of the sta-
tionary wave can fit between the western wall and the
jet exit region. Each new pitchfork bifurcation corre-
sponds to the destabilization or stabilization of the basic
state to a stationary wave mode with one additional
meander. The stationary wave nature of the resulting
nonsymmetric branch can be seen by superimposing the
null eigenmodes plotted in Fig. 3 onto the corresponding
steady-state solution in Fig. 2. Each eigenmode consists
of an elongated cell situated over the jet axis and two
weaker counterrotating cells on the north an south
flanks. The amplitude of the cell overlaying the jet axis
varies in the downstream direction to produce meanders
in the jet when superimposed on the fixed-point flow
field.

The sequence of bifurcations also has an alternating
pattern in the structure of the null mode relative to the
underlying basic state. The cell overlaying the jet axis
for the first mode at PFA extends past the eastern most
extent of the recirculation cells in the basic state. For
the second mode at PFB, the cell does not quite reach
the eastern end of the recirculation cells. Instead, the
weaker counter rotating cells wrap around the eastern
end so that the cell on the northern flank overlays the
eastern tip of the northern recirculation cell and one on
the southern flank overlays the recirculation cell to the
south. The next mode at PFC has a pattern similar to
the one at PFA and the one at PFD has a pattern similar
to the mode at PFB and so on down the sequence. The
result is that, when the sequence of modes are super-
imposed on the basic state, the nonsymmetric branches
have flow fields for which the northern and southern
recirculation cells alternately wrap around the southern
and northern recirculation cell at their eastern end. In
this way, as the viscosity is decreased and the recir-
culation cells expand eastward, each new bifurcating
branch has a flow field with one additional stationary
meander in the jet extension.

c. Multiple equilibria for the reference parameter
values

In order to make a direct comparison to the simula-
tions of McCalpin and Haidvogel (1996), each solution
branch was traced out using the continuation method



2242 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 3. Sequence of eigenmodes which have a an eigenvalue equal to zero at each of the bifurcation points: (a)
PFA, (b) PFB, (c) PFC, (d) PFD, (e) PFE, (f ) PFF, (g) PFG, and (h) PFH.
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FIG. 4. Interface height anomaly (bottom, C.I. 20 m) for fixed point (a) A9, (b) for B9, (c) for
C9, (d) for D9, and (e) for E9 at the reference parameter values.

from As 5 0 (symmetric wind profile) to As 5 0.05
(assymetric wind profile).

For As 5 0, the solutions bifurcating at bifurcation
point PFA are labeled A and A9, those bifurcating at PFB

are labeled B and B9 and so on for the other bifurcation
points. The nonsymmetric solutions in which the jet
turns southwards after separating from the western wall
are denoted by the primed letters. Those with the jet
turning northwards at first are denoted by unprimed let-
ters. For As 5 0, the primed and unprimed solutions are
mirror images of each other. For As 5 0.05, this is no
longer the case, but the solutions are still qualitatively
mirror images of each other.

In order to avoid a proliferation of symbols, we retain
the symbol names, A and A9, B, and B9, etc. for the
continuation of the branches from As 5 0 to As 5 0.05.
Unless stated explicitly in the remainder of the article,
a reference to the fixed point A9, for example, will refer

to the fixed point for the reference parameter values
used by McCalpin and Haidvogel (1996) on branch A9.

In Fig. 4, the primed member from each pair of non-
symmetric solutions are contoured. In Fig. 4 we show
only one of the three solutions from branch A9 since the
differences among the solutions are slight rearrange-
ments of the many closed circulation cells. The solution
labeled E9 is the continuation of the antisymmetric
branch from As 5 0 to As 5 0.05. For As . 0, the
assymetry of the wind stress introduces imperfections
in the pitchfork bifurcations such that the part of the
branch which is antisymmetric between PFD and PFE for
As 5 0 connects the D9 and E9 branches without going
through a pitchfork bifurcation point.

To illustrate how the assymetry of the wind profile
destroys the pitchfork bifurcation, Fig. 5 shows a con-
tinuation of each branch as a function of Ab with As 5
0.05 held fixed. The ordinate in Fig. 5 is the sum of the
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FIG. 5. Plot of solution branches as a function of Ab for the asymmetric wind stress profile
(As 5 0.05). The abscissa is the biharmonic vicosity coefficient Ab and the ordinate is the sum
of the interface height anomaly at two points situated 200 km to the north and south of the
zero wind stress curl line, and 160 km to the east of the western wall. The plot shows how the
branches that were connected at the pitchfork bifurcation points for As 5 0.0 become discon-
nected for As 5 0.05.

interface height anomaly, h, at two points 200 km to
the north and south of the zero wind stress curl line and
160 km east of the western wall. Antisymmetric solu-
tions would plot along the zero line. Note that the
branches which were connected at pitchfork bifurcation
points for As 5 0.0 become disconnected for As 5 0.05.

The major differences between the solutions shown
in Fig. 4 is in the eastward extent of the recirculation
cells, and in the amplitude of the meanders in the jet
and in the jet exit region. The solutions, which bifurcate
at progressively smaller values of viscosity, have pro-
gressively more elongated recirculation cells and pro-
gressively less meandering of the streamlines. The dif-
ferences in the degree to which a solution has long
recirculation cells with weak meandering or vice versa
indicates the differences in the way the solutions achieve
global balances of energy and vorticity.

d. Global energy balance

In this section we discuss the differences in the energy
balances of the different steady state solutions. Scott
and Straub (1998) give a discussion of the global energy
balance for symmetric and nonsymmetric steady state
solutions. In addition to having different flow fields,
each equilibrium state has a different energy level. Fig-
ure 6 shows a plot of the total energy, TE, as a function

of the biharmonic viscosity parameter Ab for the case
with antisymmetric wind stress curl. The total energy
is given by the sum of the potential and kinetic energy,

1
2TE 5 r g9 h dx dy0 EE2

1
2 21 r H (u 1 y ) dx dy, (14)0 EE2

in which

g9 ]h g9 ]h
u 5 2 and y 5 (15)

f ]y f ]x0 0

are the geostrophic velocities. Figure 6 also shows the
nonsymmetric branches that have bifurcated at the sym-
metry breaking pitchfork bifurcation points, PFA, PFB,
PFC, and PFD. Since the wind stress curl profile for As

5 0 is exactly antisymmetric, the members of each pair
of nonsymmetric equilibria have the same energy and
thus fall on overlapping curves which are labeled (A
and A9, B and B9, C and C9, and D and D9). The range
between Ab 5 1015 m4 s21 and Ab 5 1013 m4 s21 (dH 5
3.84 3 1022–1.53 3 1022) for which the energy of the
flow remains essentially constant corresponds to the
range of parameters where the flow is essentially linear
with Sverdrup balance everywhere in the interior of the
basin except for the western boundary layer. For Ab near
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FIG. 6. Plot of total energy for As 5 0 as a function of the lateral diffusion parameter Ab. The
dashed vertical line at Ab 5 8 3 1010 m4 s21 gives the value of lateral diffusion used in the time-
dependent simulation. The circles indicate the bifurcation points for the antisymmetric branch. The
branches labeled A&A9, B&B9, C&C9, and D&D9 are for nonsymmetric solutions obtained with an
anti-symmetric wind stress curl.

TABLE 2. Basin-integrated energy balance for each equilibrium.

Solution
(1017J)

Energy level
(109W)

Energy
input by

wind stress
(109W)

Energy
dissipation

by interfacial
drag

(109W)

Energy
dissipation
by lateral
diffusion
(109W)

Linear
A

B

B9
C

2.5507
2.8984
2.8088
2.8537
3.7917

4.5390
4.3582
4.3302
4.3494
4.6751

2.1556
3.5245
3.4719
3.5089
3.7974

2.3869
0.8368
0.8626
0.8438
0.8820

C9
D

D9
E9

3.8917
4.3345
4.2287
4.4679

4.6982
4.9151
4.8585
5.0057

3.8193
4.0246
3.9655
4.1048

0.8822
0.8944
0.8965
0.9047

1013 m4 s21 (dH 5 1.53 3 1022) recirculation cells form
in the region where the western boundary currents from
the subtropical and subpolar gyres meet. As the bihar-
monic diffusivity is further decreased, the total energy
of the antisymmetric branch increases rapidly. This rap-
id increase in energy is accompanied by a rapid increase
in the zonal extent of the recirculation cells. As the
recirculation cells continuously expand in the zonal di-
rection they allow the successive pitchfork bifurcations
to occur. Each pair of new equilibria has an additional
meaner in the part of the jet separating the counter ro-
tating recirculation gyres. In contrast to the antisym-

metric branch, the energy level for the nonsymmetric
branches A and A9, B and B9, C and C9, and D and D9
decreases or remains nearly constant (Fig. 6) as Ab is
decreased.

The difference in the energy level maintained by each
state is due to the fact that both the energy dissipation
and the energy input by the wind stress are functions
of the flow field. The energy input by the wind stress
is given by the correlation between the curl of the wind
stress and the streamfunction field

21 g9
P 5 r 2h= 3 t dx dy. (16)0 EE22 f 0

The energy dissipation due to interfacial drag is given by

21 g9
2D 5 r hr¹ h dx dy, (17)r 0 EE22 f 0

and the energy dissipation due to lateral diffusion is
given by

21 g9
6D 5 r hA ¹ h dx dy. (18)A 0 EE bb 22 f 0

Table 2 lists the basin integrated energy balance for each
solution. There is a 37% difference in the energy level
of equilibrium B, which has the lowest energy and equi-
librium E9, which has the highest energy. The input of
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TABLE 3. Integrated vorticity budget for subtropical gyre.

Solution

Vorticity
input

(1023 s22)

Interfacial
dissipation
(1023 s22)

Lateral
diffusion
(1023 s22)

Advection
(1023 s22)

Linear
A

B

B9
C

22.2300
22.2300
22.2300
22.2300
22.2300

20.5248
20.3411
20.3513
20.3904
20.3138

21.7052
20.8845
20.8603
20.9431
20.9001

20.0000
21.0044
21.0184
20.8965
21.0161

C9
D

D9
E9

22.2300
22.2300
22.2300
22.2300

20.4492
20.3270
20.6193
20.7051

20.9838
20.9087
20.9560
20.9130

20.7970
20.9943
20.6547
20.6120

TABLE 4. Integrated vorticity budget for subpolar gyre.

Solution

Vorticity
input

(1023 s22)

Interfacial
dissipation
(1023 s22)

Lateral
diffusion
(1023 s22)

Advection
(1023 s22)

Linear
A

B

B9
C

2.0177
2.0177
2.0177
2.0177
2.0177

0.4757
0.2879
0.2934
0.3405
0.2471

1.5420
0.7254
0.7058
0.7807
0.7545

0.0000
1.0044
1.0184
0.8965
1.0161

C9
D

D9
E9

2.0177
2.0177
2.0177
2.1077

0.3997
0.2602
0.5653
0.6454

0.8209
0.7632
0.7976
0.7603

0.7970
0.9943
0.6547
0.6120

energy by the wind stress varies by 13% between these
two equilibria. The energy dissipation by interfacial fric-
tion varies by 15% between equilibrium B and equilib-
rium E9 while the energy dissipation by lateral diffusion
varies only by 4.7%. The larger relative difference be-
tween the interfacial dissipation for equilibria B and E9
reflects the fact that equilibrium E9 has a much higher
energy level than equilibrium B. The difference in in-
terfacial friction, however, is not so large as the differ-
ence in the total energy level. Most of the difference in
the energy levels can in fact be attributed to differences
in the potential energy while interfacial dissipation is
proportional to the kinetic energy. For comparison, Ta-
ble 2 also gives the energy balance for the linearized
model. For this solution, lateral diffusion accounts for
more than half the energy dissipation. Since there are
no inertial effects for the linearized model, all stream-
lines pass through the frictional boundary layer. The
absence of inertial effects also prevents recirculation
cells from forming, thereby eliminating important re-
gions where interfacial friction dissipates energy.

GLOBAL VORTICITY BALANCE

In this section we discuss the global vorticity balance
for the different steady-state solutions. Primeau (1998a)
presents a discussion of the global vorticity balance for
symmetric and nonsymmetric solutions. If the stream-
line separating the subpolar from the subtropical gyre
is not coincident with the line of zero wind stress curl,
the circulation can advect negative vorticity into a re-
gion of positive wind stress curl and vice versa. We can
think of this advection of vorticity as an intergyre flux
of vorticity provided we define the gyres to be the re-
gions occupied by the subtropical and subpolar gyres
of the linear Munk-like solution. From this point of
view, the region occupied by the gyres is fixed and,
consequently, the vorticity input by the wind stress curl
is also fixed. Tables 3 and 4 give the gyre integrated
vorticity budget for the subtropical and subpolar gyres
respectively. The advection terms in the vorticity equa-
tion cannot generate any vorticity; they act to only re-
distribute it. Thus any net basin-integrated input of vor-
ticity by the wind must be removed by the explicit fric-

tion terms. For As 5 0.05, the net input of vorticity by
the wind in the subtropical gyre is 22.23 3 1023 s22,
and for the subpolar gyre it is 2.0177 3 1023 s22. The
subtropical gyre receives 5% more vorticity from the
wind than the subpolar gyre.

Tables 3 and 4 show that the intergyre flux of vorticity
is crucial for equilibria A, B, and B9, which are the first
to bifurcate. Since these equilibria are farthest in pa-
rameter space from their bifurcation points, they are the
least antisymmetric. Also, the solutions B9, C9, and D9,
which have a jet that first turns south after separating
from the western wall, have weaker intergyre fluxes of
vorticity than their nearly mirror image counterparts B,
C, and D, which have a jet that first turns north. This
asymmetry is due to the weaker/stronger vorticity input
in the subpolar/subtropical gyre.

The dominant explicit dissipation term in the vorticity
equation is the biharmonic viscosity. It generally be-
comes more important for the more antisymmetric so-
lution, although the relative differences are small com-
pared with the changes in the advection and interfacial
friction terms. The sink of vorticity through lateral dif-
fusion is generally stronger for the unprimed solutions.
This, along with the weaker intergyre flux of vorticity
for the unprimed solutions, increases the importance of
interfacial drag for removing the excess vorticity. To
compensate for the weaker intergyre flux of vorticity,
the more antisymmetric solutions dissipate much more
vorticity through interfacial friction than do the more
nonsymmetric solutions. For example, interfacial fric-
tion is 44% more important for solution E9 than it is for
solution C9. It can also be noticed that for the primed
solutions, interfacial friction is always stronger than for
the unprimed counter parts. This is consistent with the
weaker intergyre vorticity flux and weaker lateral dif-
fusion.

4. Fixed points and time-dependent simulations

In the previous section we have shown the existence
of multiple equilibria whose main difference is the de-
gree of elongation of the recirculation cells. Some of
these equilibria are remarkably similar to the flows av-
eraged within the high, medium, and low energy regimes
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FIG. 7. Time-averaged interface height anomaly field (C.I. 20 m).

identified by McCalpin and Haidvogel (1996) (see their
Fig. 4). Compare, for example, their contour plots for
the streamfunction averaged within the low, medium,
and high energy levels to the fixed points B9, C9, and
E9, respectively, shown in Fig. 4. These show similar
zonal jet penetration as well as a similar meandering
structure. The stability analysis to be presented in sec-
tion 5 shows that all the fixed points are unstable to
small perturbations. Nevertheless, these fixed points
might still act to ‘‘steer’’ the model trajectory in phase
space (Legras and Ghil 1985), in the sense that the mod-
el trajectory will at times follow orbits that are close to
the stable manifolds of the fixed points before being
expelled on orbits that lie close to the fixed point’s un-
stable manifold. If this is the case, the flow field as-
sociated with the fixed point, along with its spectrum
of unstable modes, will be useful in characterizing the
state of the system during certain regimes.

To further investigate this possibility we compute
time-dependent solutions by time-stepping the model.
The no-normal flow boundary condition, Eq. (4), re-
quires that h 5 c(t) on the boundary. To obtain c(t), we
impose the conservation of mass condition, Eq. (3), at
each time step.

If the idea that the model’s fixed points act to steer
the time-dependent trajectory in phase space is correct,
we would expect to see modes of variability associated
with structures in phase space that point away from the
time-mean state and toward the fixed points. To test this
hypothesis, we have conducted a simulation of the cor-
responding time-dependent model with the standard pa-
rameter set given in Table 1 on the unstreched grid with
20-km resolution. The interface height anomaly was
saved at 5-day intervals. In Fig. 7 the time-mean inter-
face height anomaly, , is contoured. It is obtained byh
averaging the field saved over a period of 1200 years
excluding the spinup period. The amount of variability
away from this mean state and toward the fixed points
E9, D9, C9, and B9 (those similar to the time-averaged

flows within the high, medium, and low energy regimes
identified by McCalpin and Haidvogel) was evaluated
by projecting the variability onto a set of four ortho-
normal vectors spanning the directions in phase space
that point away from the mean state and toward the four
primed fixed points. Approximately 30% of the total
variability is captured by the four modes. The amount
is significant considering that the system has 24 882
degrees of freedom. Furthermore, most of the variance
in the interface height anomaly captured by the four
modes, is at low frequencies. Figure 8 shows a plot of
the frequency times power density spectrum for the ba-
sin integrated variance of the interface height anomaly
for the full field and for the field in which the projection
onto the span of the four modes has been removed. The
plot shows a significant part of the variance associated
with periods longer than 1 year project onto the four
modes.

A simple comparison between the energy histogram
and the energy levels of the fixed points does not agree
with the simple idea that existence of fixed points will
be associated with peaks in the energy histogram. Figure
9 shows a histogram of the total energy for the 1500-
yr time series as well as the energy level for each steady-
state solution. Except for the general agreement between
the order of magnitude of the energy levels of the fixed
points and the time dependent trajectory, there is no
clear agreement between the energy levels of the steady
state solutions and the peaks in the histogram near 3.55
3 10117 J (low energy) and 3.95 3 10117 J (medium
energy). Note however, that very little of the distribution
density spreads to energy levels higher than the level
of equilibrium E9. As we will show below most of the
density of high-energy realizations can be attributed to
trajectories which tend toward equilibrium E9 from low-
energy levels.

The high, medium, and low energy regimes define
high-dimensional spherical shells centered on the origin
[h(x, y) 5 0] in phase space. Two points in phase space
which have the same energy will lie on the same shell,
but they need not be close to each other. To determine
if the model trajectory tends toward fixed point E9 dur-
ing high energy events and to quantify in a more ob-
jective manner the similarity between the fixed points
and the time averaged flows within each of the high,
medium and low-energy regimes, we computed the dis-
tance in phase space between a fixed point and the in-
stantaneous model state. The distance dX(t) between a
fixed point X and the model state at time t is given by

1
2 2d (t) 5 r g9 (h(x, y; t) 2 X(x, y)) dx dy (19)X 0 EE2

in which potential energy is used as the norm. Note that
the total energy norm would produce essentially the
same result since the kinetic energy is an order of mag-
nitude smaller than the potential energy.

In Fig. 10, a typical segment of the time series of the
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FIG. 8. Frequency times power density spectrum for the variance of the interface height anomaly
of the total field (upper curve), and for the field in which the part of the variance, which projects
onto four vectors that point from the time-averaged state to the fixed points B9, C9, D9, and E9 has
been removed (lower curve). The dashed lines are 95% confidence intervals.

FIG. 9. Histogram of the total energy distribution for 1500 years: Also marked are the energy
levels for the steady states.
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FIG. 10. Time series of d (t), d (t), and d (t). Also shown is the time series of the total energy,A D E9 9 91

TE(t). The horizontal lines indicate the partition into high-, medium-, and low-energy regimes chosen
by McCalpin and Haidvogel.

TABLE 5. Number of events in which the model stayed in a par-
ticular regime (as defined by the proximity to a fixed point) for periods
of time between 3 and 5 yr, between 5 and 10 yr, and more than 10
yr.

Regime 3–5 yr 5–10 yr .10

RB

RB9

RC

RC9

RD

RD9

RE9

0
0
0
1
0

21
3

0
0
0
0
0
1

11

0
0
0
0
0
0
9

TABLE 6. Number of events in which the model stayed in a par-
ticular regime (as defined by the total energy level) for periods of
time between 3 and 5 yr, 5 and 10 yr, and more than 10 yr.

Regime ,3–5 yr 5–10 yr .10 yr

Low
Medium
High

23
23

3

14
44
11

9
33

9

distances between the model trajectory and the primed
fixed points is shown. During persistent high energy
events, the model trajectory is close to the fixed point
E9, as indicated by the broad minimums of dE9 which
coincide with periods of high total energy. In Fig. 11
we plot the histograms of the distributions of the dis-
tance to the various fixed points. The relative proximity
of the model trajectory to fixed point E9 can be evaluated
by comparing it to the spread of model state in phase
space. The smallness of dE9 during high energy events
compared to the spread of the distribution of dE9 con-
firms that the model trajectory does, in fact, come close
to fixed point E9.

As another characterization we used the distance di-
agnostic to determined the fixed point nearest to the

model trajectory for each time. We partition points, p,
in phase space into regions defined as follows

R (p) 5 {p | d (p) , d (p), X ± Y},X X Y

X, Y ∈ {B, B9, C, C9, D, D9}, (20)

such that points in RX are closer to fixed point X than
to any other fixed point. From this partitioning we found
that, in general, the trajectory is nearest to fixed point
E9 during high and medium energy levels, nearest to
fixed point D9 during low and medium energy levels,
nearest to fixed point C9 during the medium and low
energy levels, and nearest to fixed point B9 during low
energy levels. There is no one-to-one relationship be-
tween the regimes defined by McCalpin and Haidvogel
and the proximity of the model trajectory to the fixed
point. However, if the cross tabulations are restricted to
the most persistent regimes, a simpler picture emerges
for the role of fixed point E9. In Table 5 we give the
number of events for which the model trajectory stayed
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FIG. 11. Histograms showing the distributions of dA9, dB9, dC9, dD9, and dE9.

FIG. 12. Scatterplot of the square of the minimum distance to the
fixed point E9 as a function of the duration time for of each of the
corresponding high energy events listed in Table 6.

within RX for a duration of 3–5 yr, 5–10 yr, and longer
than 10 yr. From this table we can see that only regime
RE9 persists for periods of time greater than 10 yr. For
comparison, Table 6 shows the number of occurrences
of the high, medium and low energy regimes that persist
for lengths of time between 3 and 5 yr, 5 and 10 yr, and
longer than 10 yr. There is an exact correspondence
between events where the model state is in the high-
energy regime and the events when the model is closest
to equilibria E9.

In Fig. 12 we plot the square of the minimum distance
to the fixed point E9 for the 23 persistent high-energy
events listed in Table 6 as a function of the duration
time of the corresponding events. Note that the squared
distance plotted on the ordinate is substantially smaller
than the spread of energy levels in the histogram of Fig.
9. This is not surprising since the high-energy regimes
have weak eddy activity, and it is easy to see that the
streamfunction pattern during those events is very sim-
ilar to the streamfunction pattern for fixed point E9. The
higher levels of eddy activity during the medium and
low energy regimes makes it more difficult to see any
connection between the model trajectory and the lower
energy fixed points. Furthermore, from Fig. 12, we see
that the closer the model trajectory gets to the fixed
point the longer the high-energy event persists. This
behavior is very similar to that of the Lorenz model
(Lorenz 1963) where the amount of time the model
spends spiraling around a particular lobe depends on
how close the trajectory started from the unstable fixed
point at the center of the lobe (Primeau 1998b).

5. Stability analysis

The stability properties of the fixed point solutions
also sheds light on the structure of the model attractor.
To determine the stability of the fixed points, we line-
arize the governing equation about each of the fixed
points and look for modal solutions of the form

h9(x, y, t) 5 F(x, y) exp(st). (21)
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FIG. 13. Unstable part of the spectrum computed from a modal linear stability analysis for each fixed
point. The e-folding time in years is plotted along the abscissa and the frequency in cycles per year is plotted
along the ordinate.

The real part of s gives the growth rate of the mode
and the imaginary part gives the frequency.

The result of the stability analysis is that all the fixed
points we have found are unstable at the standard pa-
rameter set given in Table 1. The spectrum of unstable
eigenmodes is plotted in Fig. 13 for each fixed point.
The higher energy fixed points are generally more stable
than the lower energy ones. Most notably the high-en-

ergy fixed point E9 is unstable to only one oscillatory
mode with a period of 1.8 yr and a long e-folding time
of 2.9 yr. In contrast, the lowest energy regime A9 is
unstable to 12 oscillatory modes and 2 stationary modes.
Its most unstable mode has an e-folding time of only
1.4 months. The modal structures for the low-frequency
modes (period . 1.5 yr) are plotted in Fig. 14, for fixed
point and in Fig. 15 for fixed point E9.A91
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FIG. 14. Unstable eigenmodes for fixed point A9 with a period greater than 1.5 yr. The right column shows the real
part of the mode and the left column shows the imaginary part. The modes are normalized and the contour interval
is 0.2. Contours in shaded areas are negative. (cont.).
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FIG. 14. (Continued)

The stability properties of the fixed points is quali-
tatively consistent with the time-dependent behavior de-
scribed by McCalpin and Haidvogel (1996) in several
ways. The low-energy fixed points have more unstable

modes and higher growth rates consistent with the fact
that the low-energy regime in the time-dependent sim-
ulation has the most eddy variability. In contrast, the
high-energy fixed point E9 has only one unstable ei-
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FIG. 15. Unstable eigenmode for fixed point E9. The right panel shows the real part of the mode and the left panel
shows the imaginary part. The mode is normalized and the contour interval is 0.2. Contours in shaded areas are
negative.

genmode with a weak growth rate and is thus the least
unstable. This is consistent with the time-dependent
simulation that has the least eddy variability during pe-
riods when the state of the system is in the high-energy
regime. The weak growth rate of E’s unstable mode
might also explain the observed persistence of the high-
energy regime.

The patterns (not all shown) associated with the un-
stable eigenmodes of each fixed point are also broadly
consistent with the patterns of time-averaged eddy ki-
netic energy described by McCalpin and Haidvogel
(1996). The unstable eigenmodes associated with A9 and
B9 (not shown) have their amplitudes concentrated in
roughly the same region as that of the strong time-av-
eraged eddy kinetic energy identified for the low-energy
regime. Similarly, the amplitudes of the unstable eigen-
modes associated with C9 and D9 (not shown) are con-
centrated in roughly the same regions where the me-
dium-energy regime has its strong eddy kinetic energy.
The unstable eigenmode associated with E9 has its am-
plitude concentrated along the jet axis in the same way
that the time-averaged eddy kinetic energy is concen-
trated along the jet axis during high energy events.

Dijkstra and Katsman (1997) and Katsman et al.
(2001) have shown in their studies that the low-fre-
quency variability of their double-gyre models can be
traced back to a Hopf bifurcation of the steady flow on
the first branch to bifurcate at a pitchfork bifurcation
(the steady flow equivalent to A9 in the present study).
The mode they identify has an interannual period and
they show that this mode is at the origin of the low-
frequency variability. In the present study, we also find
several unstable oscillatory modes for the fixed point
A9, which have interannual periods. Figure 14 shows
the modal structures for these modes. For the parameter
values used by McCalpin and Haidvogel (1996), the
low-frequency unstable eigenmodes of fixed point A9
have complicated structures with many closed recircu-
lation cells. It would be difficult from these structures
alone to predict that the low-frequency variability would
involve periods with an elongated jet and weak eddy

activity. On the other hand, other fixed points further
down the bifurcation tree have an elongated jet. The
fixed point E9 in particular is unstable to only one weak-
ly growing mode (Fig. 15). It thus appears that the high
energy regime described by McCalpin and Haidvogel
(1996) is associated with the existence of fixed point
E9. The transition from low to high energy regimes
might involve the low-frequency modes of fixed point
A9, but establishing exactly how this happens is beyond
the scope of the present study.

6. Discussion

The major point of this paper is that unstable steady
solutions can be useful in describing and understanding
the state of ocean models during different dynamical
regimes. We have shown that a reduced-gravity quasi-
geostrophic model admits steady-state solutions that are
very similar to the regimes visited in the time-dependent
model. What is most remarkable is that even fixed points
that appear relatively far down the bifurcation tree cap-
ture the essence of relavent dynamical regimes of the
time-dependent trajectory (e.g., fixed point E9). As was
shown in the stability analysis, the fixed point E9 that
captures the essential global vorticity and energy bal-
ances during the high-energy state is unstable to only
one oscillatory mode with a relatively weak growth rate
despite occuring relatively far down the bifurcation tree.
This explains in part the persistent nature of the weakly
meandering high energy state. In contrast, the low-en-
ergy fixed points which were the first to bifurcate are
unstable to many more modes with larger growth rates.

The multiple equilibria that we find are the result of
a sequence of symmetry-breaking pitchfork bifurcations
the first of which was first identified by Jiang et al.
(1995) and Cessi and Ierley (1995). We suggest that the
symmetry-breaking pitchfork bifurcations can be inter-
preted as a stationary Rossby wave. A westward prop-
agating Rossby wave superimposed on the intergyre jet
can become stationary if its wavelength is such that its
phase speed is equal and opposite to the flow speed. As
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one reduces the dissipation parameters in the model the
recirculation cells expand eastward in order to dissipate
the excess vorticity that is no longer dissipated in the
western boundary layer. As the recirculation elongates
sufficiently to allow an additional meander of the sta-
tionary wave to fit within the region with strong east-
ward flow, a new pitchfork bifurcation occurs and the
new pair of nonsymmetric equilibria has one additional
meander. Previous bifurcation analysis of the double
gyre model used a basin configuration with a larger
north–south than east–west extent and only captured one
symmetry breaking pitchfork bifurcation before the jet
extended completely across the basin (Jiang et al. 1995;
Speich et al. 1995; Cessi and Ierley 1995; Dijkstra and
Katsman 1997; Primeau 1998a). Because of this the
stationary wave nature of the pitchfork bifurcation was
not apparent in these studies. Dijkstra and Katsman
(1997), for example, explain the physical mechanism
that allows the stationary mode to become destabilized
and thus lead to the first pitchfork bifurcation. They do
not address the balances that allow the mode to be sta-
tionary in the presence of advection and background
potential vorticity gradients. For the first few pitchfork
bifurcations, the stationary wave picture is not so clear,
but, as the recirculation cells expand, the balance be-
tween westward wave propagation and eastward advec-
tion becomes more apparent and the pitchfork bifur-
cations identified in previous studies are seen to be the
first in a sequence of stationary waves with progres-
sively more meanders. We hope to investigate in future
work if one can identify the coalescence of oscillatory
modes to form stationary modes that then cross the
imaginary axis to give rise to the pitchfork bifurcations.

The wider basin also shows that the saddle-node bi-
furcation leading to multiple antisymmetric equilibria
first identified by Ierley and Sheremet (1995) and Cessi
and Ierley (1995) occurs at the same parameter value
for which the jet reaches the eastern wall. In the nar-
rower basin studies, this coincidence is not so striking,
and the possibility that the interaction of the jet with
the western wall is responsible for the saddle node bi-
furcation is not made apparent.

Another way in which the wider basin clarifies the
dynamics is that it allows for a transition region with
damped Rossby waves in between the recirculation cells
and the Sverdrup interior. This Rossby wave field is
similar to the solution proposed by Moore (1963) for
the structure of the inertial western boundary layer
where the Sverdrup flow is eastward. As discussed by
Pedlosky (1996), the Moore solution cannot be regarded
as a model of the western boundary layer. It should be
viewed as a distinct dynamical regime for the region
separating the recirculation cells and the Sverdrup in-
terior. Before the present study, the stationary wave field
had only been observed in a model with no-slip bound-
ary conditions, because only with such boundary con-
ditions does the recirculation cell remain limited enough
to allow for a zonal Sverdrup interior that can support

stationary Rossby waves. With a wider basin, the sta-
tionary Rossby wave field can exist even with free-slip
boundary conditions.

Finally, we point out some interesting similarities be-
tween the multiple equilibria found in the simple QG
model and the different regimes with elongated and con-
tracted recirculation cells identified by Kelly et al.
(1996) and Qiu (2000) from the altimetry observations
of the Gulf Stream and Kuroshio Extension systems. We
found that the fixed points with elongated recirculation
cells, E9 and D9, (Fig. 4) have weak meandering and a
more deeply penetrating jet extension. Furthermore, in
the time-dependent simulation, we found that when the
model trajectory was closest to these equilibria in phase
space the eddy kinetic energy was generally lower than
at other times in the simulation. A similar type of be-
havior was found in the above mentioned observations
for the elongated state with the more deeply penetrating
jet extension. In contrast the fixed points with the more
contracted recirculation cells (C9, B9, and A9), had stron-
ger meanders and a more weakly penetrating jet exten-
sion. In the time-dependent simulation, flow fields most
similar to these fixed points generally had higher levels
of eddy kinetic energy. This again is similar to the ob-
servations for the state with the contracted recirculation
cell. We also found that the primed fixed points, (A9,
B9, C9, and D9) had a zonal mean jet position that moved
progressively southward as the recirculation cells be-
came more contracted. For the case with nonsymmetric
wind stress (As 5 0.05) the time-dependent flow field
generally remained closer to these fixed points than to
their nearly mirror image counterparts. Consistently we
found that during periods, when the simulated flow had
elongated recirculation cells, the jet extension followed
a more northerly path and conversely, when the recir-
culation cells were contracted, the jet followed a more
southerly path. This also is consistent with the obser-
vations. Presumably, the nonsymmetries of the real flow
(sphericity, ageostrophic effects, slanting coastlines, and
nonsymmetric wind stress patterns, etc.) act to give an
effective asymmetry parameter that is positive. A neg-
ative As would have given the opposite effect, with the
more northerly path associated with the state with the
contracted recirculation cells.

The present study shows clearly how very different
regimes with either elongated or contracted recirculation
cells can achieve energy and vorticity balance without
any change in the forcing wind stress. This suggests that
intrinsic nonlinear dynamics is a viable candidate to
explain the observed low-frequency variability. If the
flow fields associated with this variability can produce
sustained interannual SST anomalies through their ef-
fects on the heat transport divergence and storage, in-
trinsic ocean variability might be a contributing cause
to interannual and decadal climate fluctuations.
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