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Abstract

Programmable storage

by

Noah Watkins

Storage system solutions have historically been dominated by proprietary offer-

ings designed around a fixed set of common interfaces such as the POSIX file

abstraction. However, as the scalability requirements of applications have grown,

these interfaces and their implementations have not kept pace. This has forced

developers to rely on middleware and external services to address these limita-

tions. These solutions introduce new complexity into the system in the form of

duplicated software and can lead to increased costs and reduced reliability. How-

ever, the recent availability of high-performance open-source storage systems is

allowing developers to explore alternative storage interfaces that directly meet

the needs of applications without the fear of vendor lock-in.

We introduce programmable storage as a means by which existing internal

storage system abstractions can be generalized and reused to support applica-

tions through the creation of domain-specific interfaces. By reusing internal,

code-hardened sub-systems applications can avoid duplicating complex software

and increase reliability, as well as realize application-specific optimizations. We

demonstrate programmable storage by mapping a wide range of common ap-

plication and storage services requirements onto existing abstractions found in

distributed storage systems.

We show that programmable storage introduces real challenges for issues of

portability and maintenance, and that the design space for new storage interfaces

is intractable for non-expert developers. To address this limitation we propose

xiii



that new storage interfaces and services be expressed using a declarative language

that abstracts across the differences in internal storage system interfaces to allow

application developers to create new storage services without becoming storage

system experts. While a declarative approach to building storage interfaces re-

solves many issues, it doesn’t address the implications of developing and evolving

storage interfaces in a real-world system. To address this we propose a set of

abstractions for developing new interfaces that are aligned with existing software

development workflows and source code control systems.
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Chapter 1

Introduction

By all accounts the standardization of storage interfaces such as POSIX file

I/O, and a variety of block-based interfaces, among others, has been a major

success. For instance, the familiar and intuitive hierarchical data model of file

systems has been adapted to serve nearly every type of user across many domains

from desktop applications, to enterprise businesses and all forms of science. In

many ways survivor bias is at play: the adoption of these standards by operating

systems, and throughout the storage industry, has allowed application and sys-

tem developers to avoid vendor lock-in, and encouraged independent innovation

across common interfaces. These standards continue to successfully serve the vast

majority of use cases. However, success in domains such as high-performance

computing (HPC) is a direct function of scalability, and HPC applications have

pushed parallel file systems to their limit. And high-performance computing is

not the only driver of scalability. Cloud-based infrastructure has demanded a level

of scalability from the onset that precluded traditional models of storage such as

file systems from being the primary storage abstraction. As a result, the storage

community has seen new storage systems and interfaces being designed and built

to accommodate new sets of scalability requirements.

1



Until recently, the availability of high-performance storage systems that can

serve the HPC and cloud communities has been restricted to expensive, propri-

etary solutions. But within the last decade, access to these types of storage tech-

nologies have been democratized by open-source systems like Hadoop and Spark

that provide the tools for large-scale data management and storage [121, 124].

Unfortunately, systems like Hadoop serve a narrow use case. Notably absent from

the open-source ecosystem have been high-performance general purpose storage

systems offering the standard interfaces of the day: POSIX files and block devices

for virtual machine hosting. Systems providing these interfaces have remained

largely proprietary. The period we are in now is an interesting time for storage

systems, because a choice exists between proprietary systems, and open-source

alternatives. Developers and companies have taken notice by modifying open sys-

tems to accommodate their application-specific needs, rather than pouring massive

resources into constructing custom solutions or relying on workarounds to limita-

tions encountered in proprietary systems. The result has been the rapid evolution

of storage interfaces towards domain-specific access methods—a new trend, that

in its current form, may become unmanageable.

There are two primary methods by which domain-specific storage interfaces

are created. The first is through layering, often in the form of reusable middle-

ware, that is used to transform one generic interface (e.g. POSIX files) into an

application-specific storage interface (e.g. multi-dimensional array). In many in-

stances middleware provides a natural way for applications in a particular domain

to manage data, and it is common for middleware to exploit the semantics of the

exposed interface to implement optimizations on top of the underlying storage

system. For instance, collective I/O used in HPC systems transforms application-

level workloads into I/O request patterns optimized for an underlying parallel

2



file system [108, 22, 78]. However, the effectiveness of a middleware approach

is limited fundamentally by the underlying storage system. And in the case of

proprietary systems, an inability for organizations to adapt the black-box system

to their needs means that even large expenditures may not be able to provide the

needed level of performance or set of features. As an alternative to an approach

based on layering or middleware, an increase in the number of purpose-built stor-

age systems characterizes recent developments in which a specialized system is

constructed for a particular class of application. For instance distributed object,

key-value, and document-based storage systems have become increasingly common

in cloud-based environments for their ability to scale [73, 40, 19]. Such systems

expose a narrow, but highly optimized interface. But these systems are expensive

to build, require their own maintenance and hardware, and can be slow to arrive

due to the maturity required in order to establish trust in a critical component

like storage.

In contrast to these two approaches, a trend that has recently emerged is the

so-called unified storage architecture which seeks to generalize storage systems,

and expose from a single system, interfaces for a variety of different application

domains. This model can be observed in many proprietary systems that provide

both enterprise file-based storage, as well as block-based storage for private cloud

virtual machines. While unified storage systems offer many benefits such as con-

solidation of resources, they typically provide a fixed set of interfaces that cover

the widest group of users. With the emergence of high-performance, highly mod-

ifiable open-source systems, the unified storage system concept is being pushed

further. Not tied to an immutable set of interfaces, open-source systems are being

modified to support co-designed interfaces on an application-by-application basis

without the fear of vendor lock-in. For instance, the HPC Fast Forward project
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developed a set of array-based interfaces exposed directly from the underlying stor-

age system designed specifically for HPC applications storing simulation data [10].

Today this co-design approach is taking the form of an ad hoc process in large part

because of the narrow optimizations and monolithic designs—typical of storage

systems—that make extensibility difficult. As a result, new interfaces are often

hard-coded into a system, and optimizations make assumptions about the cur-

rent system behavior, resulting in performance tuning and portability challenges.

Despite the apparent power of co-designed interfaces, this is a largely unexplored

paradigm in production storage system development that has for decades enjoyed

a static, standardized interface to rally around.

This thesis explores the benefits and challenges that will emerge as co-designing

applications and storage interfaces becomes commonplace. While such systems

offer obvious benefits such as highly optimized interfaces and cost savings through

consolidation, large unsolved problems immediately present themselves. First,

increasing the number of interfaces and optimization strategies in a single system

introduces additional complexity into already code-hardened critical systems that

raise safety and correctness issues. Second, recombining proven services found

within a storage system to provide new functionality is error-prone process that is

difficult to reason about. Third, failure to bound complexity on critical paths will

reduce the amount of performance that can be extracted from new, low-latency

devices. And finally, a variety of new interfaces sharing a single system create

quality-of-service concerns. Yikes.

1.1 Dissertation overview

The remainder of this chapter provides a detailed overview of the thesis, start-

ing with Section 1.2 that discusses the challenges of programming and building
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Figure 1.1: Application and storage stack that is common today. A storage
system is composed of many internal services and exposes a fixed set of I/O
interfaces. Applications in turn use middleware to map their semantics onto these
interfaces. Applications utilize external services when storage system interfaces
are not sufficient.

storage system interfaces today. Figure 1.1 illustrates the current state of systems

by showing the common architecture of application and storage system software

stacks today. In this architecture applications map their semantics onto a fixed set

of interfaces exposed by a storage system using solutions like middleware libraries.

When an application finds that the interfaces exposed by the storage system are

not sufficient, external services may be used even if they are services that are

otherwise found internally to the storage system.

Section 1.3 describes industry trends that motivate this thesis, and explores the

motivation of programmable storage. Figure 1.2 shows an architectural diagram

of the programmable storage system we investigate in this thesis. As shown, a

programmable storage system exposes generic versions of internal services and

supports domain-specific interfaces instead of forcing applications to use a fixed

set of abstractions. Creating domain-specific interfaces can simplify applications

and improve performance, as we will see throughout this thesis.

Chapter 2 provides an in-depth look at programmable storage, and shows

that despite its benefits, the technique can become intractable for developers to
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Figure 1.2: Illustration of a programmable storage system. Internal sub-systems
are generalized and reused to create new storage interfaces that otherwise may
require external services.

manage. As a result, we propose that declarative specifications be used to build

new storage interfaces that allow the complex optimization space introduced by

programmable storage to be managed by existing techniques found in database

systems.

Chapter 4 and Chapter 5 provide an in-depth examination of how programma-

bility interacts with data interfaces and metadata management, respectively. The

sub-systems explored in these two chapters provide a substrate to build a broad

variety of applications. Finally, Chapter 6 explores the real-world challenges of

interacting with a programmable storage system and proposes that the develop-

ment of new storage interfaces should be tightly integrated into and managed by

the storage system.

1.2 Programming data-centric systems

This section provides an overview of the state of programming data-centric

systems, especially the primary methods by which new system interfaces are de-

signed and built. We use a general interpretation of the term data-centric to
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encompass any system, service, or application that is primarily concerned with

the storage, management, or processing of data. This covers many categories such

as relational database management systems, local and parallel file systems, and

embedded and distributed key-value stores. There is a large and active community

of research related to data management on locally attached devices that provide

low-level storage interfaces such as block-based I/O that includes local files sys-

tems such as XFS, EXT-4, and embedded local database such as RocksDB. The

interfaces exposed by local data management systems often form the basis for

high-level distributed systems which expose a wide variety of interfaces for data

management. In this thesis we are primarily concerned with the storage services

provided by distributed systems and consumed by scalable applications.

We describe three high-level strategies for developing new storage interfaces

that are common today: layering with middleware, purpose-built systems, and

unified storage. Each of these approaches have distinct characteristics, though

they are not mutually exclusive. After we have detailed these three approaches

including some of their shortcomings, we introduce the concept of storage sys-

tem programmability—the focus of this thesis—a fourth approach to developing

interfaces based on system extensibility.

1.2.1 Middleware and layering

The first technique is characterized by layers of abstraction implemented on

top of existing systems. This is a very common and important type of approach.

Existing storage systems such as POSIX file systems provide a robust and hard-

ened substrate for data storage and management. However, applications often

store domain-specific, structured data, forcing applications to marshal their data

models into and out of a system that provides only management of opaque byte
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streams and hierarchical namespaces. Middleware addresses this by providing

common interposition layers exposing access methods aligned to a particular prob-

lem domain.

Middleware layers are used for more than just convenience. They are fre-

quently used to hide details about an underlying system that affect performance.

For instance, MPI-IO is an I/O middleware layer for HPC applications that is

used to transform I/O from many independent processes into an I/O workload

that is tuned for an underlying parallel file system [41]. This technique is called

collective I/O, and is used to aggregate application requests to form large, se-

quential I/O, potentially using storage system specific tuning parameters such

as low-level information like physical data alignment. Unfortunately the POSIX

file system standard does not include any concept of alignment or system-specific

tuning guidance. Instead, every system exposes its own knobs and tuning param-

eters through non-standard interfaces to which applications and middleware must

adapt.

The dependence on maintaining existing low-level interfaces and the length to

which middleware will go can be surprising. Finding the best tuning parameter

values for a combination of application, workload, and storage system can be quite

difficult. For example, machine learning has been applied to I/O stacks in HPC

in order to automatically navigate and tune the configuration space [21]. The

parallel log-structured file system (PLFS) was designed to abstract across the in-

dividual tuning parameters that each low-level storage system provided, and turn

all writes into sequential I/O that tends to perform universally well [22]. The

I/O transformation in PLFS uses a per-process log file that accepts each write.

In affect, PLFS middleware transparently turns one POSIX file I/O workload

generated by an application, into a sharded workload on a different POSIX file
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system with equivalent semantics. However, in exchange low-level metadata ser-

vices become stressed, large indexes are required for accessing data, the file system

namespace becomes polluted, and applications cannot access data without using

the PLFS middleware [83]. While the performance benefits achieved with PLFS

are impressive for many workloads, the drawbacks go beyond simple issues like

namespace pollution. The introduction of additional software layers in an I/O

stack becomes an issue as storage media and networks become more performant,

shifting bottlenecks into the CPU and software itself.

It is also common for distributed applications to require services, such as dis-

tributed coordination. In the case of coordination, the POSIX I/O standard

provides only coarse-grained support for file locking, and the scalability of these

mechanisms will depend on their implementation in the underlying system. As a

result, developers may combine an I/O middleware layer with additional systems

that provide services such as distributed locking, or build custom solutions and

workarounds. This results in added system complexity, maintenance costs, and

challenges related to correctly composing services [14].

1.2.2 Specialized systems

Rather than introducing middleware abstraction layers, the bottom-up ap-

proach to constructing new storage interfaces is to design and implement entirely

new systems. Special-purpose systems can offer a wide variety of data models,

optimize for different types of access patterns, and typically address a narrow use

case or class of application. Building storage stacks from the ground up for a

specialized use case can result in the best performance. For example, GFS [50]

and HDFS [101] were designed specifically to serve MapReduce and Hadoop jobs,

and use techniques like exposing data locality and relaxing POSIX constraints to
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achieve application-specific I/O optimizations. Another example is Boxwood [81],

which experimented with B-trees and chunk stores as storage abstractions to sim-

plify building applications. Examples of specialized storage systems can be nearly

everywhere, and they cover a variety of data models like graphs, documents, and

key-value stores. Many of these systems even offer trade-offs by providing relaxed

or eventual consistency semantics, and may even expose knobs that affect dura-

bility and availability in an effort to provide more control to applications. For

example, both Google and Amazon provide cheaper storage at reduced levels of

redundancy allowing applications to select the best policy for each piece of data.

While special-purpose systems can offer targeted performance and scalabil-

ity improvements, they can introduce inefficiencies in the form of redundancy at

multiple levels. This redundancy can include hardware, especially common with

storage systems, and may result in underutilized resources when not properly

sized for a target workload. Domain expertise is typically required to tune and

administer each system. And redundancy can exist in more abstract forms, such

as across system internals in the form of services (e.g. consensus services or meta-

data management). As we will discuss in Section 1.3, these types of redundancy

increase costs, and introduce risk as a result of additional system complexity.

1.2.3 Unified storage

Unlike systems that expose a single interface (e.g. POSIX files or special-

purpose systems like key-value stores), so-called unified storage systems expose a

multitude of storage interfaces from a single system implementation (e.g. a sys-

tem with POSIX files and virtual block devices). And in contrast to approaches

to building new interfaces that rely on middleware, interfaces in unified storage

systems are natively integrated, allowing them to take advantage of unique opti-
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mization opportunities.

Some common examples of unified storage systems are Ceph, IBM Spectrum

Scale, and NetApp OnTap which all provide some combination of common in-

terfaces such as shared file systems, or block and object interfaces to support

the needs of on-premise cloud deployments. These systems are attractive because

they remove redundancy by supporting multiple interfaces in a single system. The

result is shared hardware, and software sub-systems, as well as the administrative

benefits of a single system to manage.

Unified storage systems are difficult to build. In addition to managing compet-

ing workloads, these systems must also take into account the semantics of a variety

of interfaces, and the optimization strategies that may benefit these interfaces and

the applications using them. When viewed through the lens of the most common

set of applications in deployment today—files, block, and objects—unified storage

systems would appear to be a near general solution, capable of supporting the vast

majority of users. While it is true that these interfaces are used across a large

percentage of use cases, as outlined in Sections 1.2.2 and 1.2.1, the demand for a

broad variety of storage interfaces still exist, as demonstrated by the prevalence

of purpose-built systems.

While unified storage systems have demonstrated that a single system can

successfully support many different storage interfaces, users rely on vendors and

developers with specific storage system expertise to implement new services. Such

barriers to entry can lead developers to regress into the aforementioned approaches

such as constructing middleware or relying on specialized systems.
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1.2.4 Programmable storage

Like unified storage systems, programmable storage seeks to expose many

interfaces from a single system, removing redundancy at many levels. In contrast,

the aim of programmable storage is to expose existing sub-systems as reusable

components that can be used by developers without deep storage system expertise,

to construct new interfaces specially designed for a particular application domain.

For example, consider a distributed application that manages data consistency

by defining versioned views of a data set. This application will likely require an

I/O interface for storing and retrieving data, as well as a mechanism for man-

aging and versioning views of the data. While a distributed storage system may

provide I/O interfaces sufficient for storing this application’s data, interfaces for

view management such as a consensus service are not usually found alongside

standard I/O interfaces. As a result applications depend on external systems to

provide specialized services like consensus, such as systems implementing Paxos,

Raft, or Zab protocols [75, 86, 68]. Crucially, services such as consensus sys-

tems are very common, general building blocks in distributed systems, including

distributed storage systems. A programmable storage system may expose many

internal services to applications to provide an opportunity to avoid relying on ad-

ditional systems. This highlights an important distinction between programmable

storage and software-defined storage (SDS). Application control over a software-

defined storage system is generally restricted to a pre-defined set of tuning and

configuration parameters. An SDS system may be customizable to a large number

of scenarios, but are limited in the scope of semantics they express. In compar-

ison, programmable storage can be complementary by allowing a storage system

to provide application-specific functionality and optimizations that integrate with

the space of SDS configurations.
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As we will show, the utility of exposing internal storage services is not limited

to reducing redundancy, but can also be used to improve performance through

low-level optimization strategies, exposing locality, and exploiting storage system

resources such as CPU and memory.

1.3 Motivation

Several recent trends have motivated the work in this thesis. First, it is of in-

creasing importance that data be safe, secure, and accessible, given its value across

nearly every application domain. Yet, we are seeing rapid innovation in storage

systems that have historically required long periods of time before trust in them

is established. The rapid innovation is being driven by two factors. First, next-

generation hardware has a performance profile that is moving bottlenecks away

from storage devices and into software. Second, applications and services with

high scalability requirements are relying on new storage systems and interfaces to

meet their needs.

Building new storage systems is an expensive, time-consuming, and error-prone

process. Fortunately, the availability of high-performance open-source software is

allowing new techniques and designs to be tested with a higher frequency, and

without starting from scratch. Hardened software components that are commonly

duplicated across many distributed systems are being reused to build new services,

but it is an open question which services and in what form they should be exposed.

1.3.1 Reliability

Storage systems are unique in that they manage data that is often critical to

keep both safe and available. Data durability and accessibility may be critical

13



to business models, such as archiving family photos or providing secure access to

medical records, or for science and national security. For these reasons, it can

often take many years—upwards of a decade—before new storage systems can be

trusted by some users [54]. This means that developers may face many uphill

battles when building new storage interfaces.

Construction of purpose-built systems will inherently duplicate non-trivial ser-

vices that are critical to correct operation. This duplication can range from

high-level services such as a consensus engine for managing cluster metadata,

to low-level software components for correctly managing data on storage media.

Unfortunately each purpose-built system must go through the same process of

hardening their implementation of these services, with the most reliable method

for hardening being a large amount of developers interacting with the code, and

real-world use and deployment. This creates the concern that construction of

more systems will result in an overall decrease in reliability as the total amount

of deployment time for the average system decreases.

Programmability seeks to address this concern by exposing existing, hardened

storage subsystems in a way that applications may reuse them to build new inter-

faces without affecting correctness. This is easier for some subsystems compared

to others. For instance, even though a system could expose a high-level interface

to a service such as an internal implementation of a consensus engine, compos-

ing otherwise correct services does not necessarily result in a composition that

behaves correctly [14].

1.3.2 Hardware trends

The design of storage systems has predominately been centered around block-

based devices such as spinning disks. As a result, both applications and stor-
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age systems have commonly optimized for sequential, block-based I/O patterns

that perform well with spinning disks. Since these devices generally have high-

latency and low-bandwidth performance compared to modern networks, CPUs,

and DRAM, the focus on optimizing for I/O patterns has worked well. However,

next-generation hardware such as non-volatile memory offer finer grained access,

and orders of magnitude better latency and throughput than disks. While this

type of hardware offers a general performance benefit, systems designed for slow

spinning media can often not fully exploit the available performance. The reason

is that bottlenecks have started to shift from storage devices into software where

normally minor concerns such as code path length and the number of context

switches become a central component in achieving performance [72, 107].

In order to fully exploit the performance of these next-generation media, the

entire I/O stack, including access methods, may need to be carefully rethought.

For example, peak performance from many NVMe devices depends on user-level

I/O and networking, and low-level optimizations like CPU affinity and per-thread,

per-cpu data structures. These types of low-level optimizations pose challenges

when designing access methods and rich high-level interfaces that may inherently

require complex code paths. For instance, a typical system may have a direct

path to a physical media location for standard read/write interfaces that is easily

optimized for new media, while complex APIs like those used with key-value

databases necessarily have more complexity. In addition, storage systems may

have arbitrary sets of features like snapshotting, transactions, varied consistency

models, not to mention sub-systems controlling fault-tolerance and recovery. Each

of these interfaces and system features interact to create complexity, parts of which

can be found in critical I/O paths. And because this complexity can be difficult

to manage, many systems have been designed with fixed I/O paths that handle all
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requests no matter the system configuration or interface being used. Thus, it may

be difficult to exploit the semantics of an interface or configuration to perform

optimizations without significant design disruption.

There are two aspects to adapting storage systems to address challenges such

as integrating next-generation media. The first challenge is determining the set

of interfaces and services that storage systems should expose, as well as how

that is achieved. The second aspect arises directly from the evolution of storage

interfaces, and involves the adaptation of applications to use new interfaces. This

thesis is primarily concerned with the first aspect, but we are driven by observing

trends in application development in which applications are taking an increased

role in data management in exchange for access to more flexible, performant, or

scalable interfaces.

1.3.3 Data movement

Systems such as Hadoop MapReduce attempt to schedule computation locally

to where input data is stored [39]. This has historically been an important opti-

mization because the streaming bandwidth of reading data off a number of disks

would quickly surpass the total network capacity. However, rapid innovation in the

performance and capacity of commodity networks is reducing reliance on locality

as an effective optimization in big data applications, and the claim has been made

that the data locality optimization is becoming less important [16]. But there

are other factors—in addition to network data movement—that make locality an

important optimization parameter in the design of storage interfaces and services

such as energy consumption [71], and locality within the storage hierarchy, that

we discuss next.

One example of data movement in the memory hierarchy is the use of intelli-
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Figure 1.3: The time required to scan a 140 GB relational database table de-
pending on local processing in which data is move to the client (client-X), and
remotely on the storage server (server-X). Scan order is important because it af-
fects locality of data within the cache hierarchy.

gent data access methods that help reduce data movement between non-network

resources like disks and memory. Take for instance the problem of one or more

clients scanning a large data set stored remotely in a distributed object storage

system. We assume in this example that the data set is striped across a set of

objects, and that the client is insensitive to the order in which the objects are

read and processed (e.g. full relational table scan). Given that the storage system

must read and return the data requested by the client, it would be advantageous

for the client to request objects according to the locality of data in the memory

hierarchy of the storage server so as to take advantage data already cached. Un-

fortunately storage systems do not typically expose this type of information, and

applications rely on tracking their own locality of reference to approximate this

type of optimization, which increases in difficulty as the number of independent
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storage clients increase, and the complexity (e.g. depth) of the storage hierarchy

increases.

Figure 1.3 shows the costs of scanning such a data set as a function of the

order of objects in the scan. The data set is a 140 GB relational table storing

1 billion rows striped across 10,000 objects. The workload consists of scanning

the entire data set looking for a single row. The client-cold-baseline and

server-cold-baseline cases begin from a cold cache state. In each client-X

case all data is transferred over the network to the client, and in each server-X

case the data scanning is performed locally on the server storing the data using

an application-specific interface discussed further in Section 4.5. The remaining

data points differ by the pattern in which the data is scanned. Each scan is

performed twice: forward-forward, forward-backward, and random-random. The

client-hot-X cases perform similarly because the cost of transferring the entire data

set dominates. However, performing the scan remotely is affected by the ordering.

Since the storage node has slightly less DRAM than the size of the data set, the

pattern of I/O will affect the page eviction process when memory pressure is high.

Indeed, scanning forward-forward results in a much higher execution time than

forward-backward, which is ideal for a basic LRU eviction policy.

Unlike systems such as Hadoop that expose locality information at a high-

level, as we have shown some applications can benefit from detailed information

like memory hierarchy locality. Other forms of low-level locality that benefit ap-

plications include data layout. For instance, multi-dimensional data that is stored

in a byte stream can be poorly aligned, making high-level locality information

difficult to optimize for. Rather, understanding the low-level layout is beneficial

for scheduling I/O [29].
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1.3.4 Open-source software

While storage systems and interfaces have primarily evolved in response to

market demand, recent trends toward application-specific I/O interfaces is driv-

ing out proprietary systems from consideration. Instead, high-performance open-

source storage systems are filling this void by providing a platform for innovation

without the fear of vendor lock-in. These open systems provide a means for

research and development that was difficult to approach in the past. Further-

more, the reusability of software afforded by open systems provides motivation

for exploring new system designs as the costs of recombining and reusing existing

sub-systems can be far less than building new systems from the ground up.

To demonstrate a recent trend towards more application-specific storage sys-

tems we examine the state of programmability in Ceph [118]. Something of a

storage Swiss army knife, Ceph simultaneously supports file, block, and object

interfaces on a single cluster. Ceph’s Reliable Autonomous Distributed Object

Storage (RADOS) system is a cluster of object storage daemons that provide

Ceph with data durability and integrity using replication, erasure-coding, and

scrubbing [119]. Ceph already provides some degree of programmability; the ob-

ject storage daemons support domain-specific code that can manipulate objects

on the server that store the data locally. These “interfaces” are implemented by

composing existing low-level storage abstractions that execute atomically. They

are written in C++ and are statically loaded into the system. For example, an

application might store images in objects and use the CPU resources of the storage

system to remotely compress the image before returning it to a user.

The Ceph community provides empirical evidence that developers are already

beginning to embrace programmable storage. Figure 1.4 shows a dramatic growth

in the production use of domain-specific interfaces in the Ceph community since
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Figure 1.4: RADOS object class usage growth. A class is a functional grouping,
and a method represents a specific interface for interacting with objects.

2010. In the figure, classes are functional groupings of methods on storage objects

(e.g. remotely computing and caching the checksum of an object extent). What

is most remarkable is that this trend contradicts the notion that API changes are

a burden for users. Rather it appears that gaps in existing interfaces are being

addressed through ad hoc approaches to programmability. In fact, Table 1.1

categorizes existing interfaces and we clearly see a trend towards reusable services

like locking, and metadata management.

Category Example #
Logging Geographically distribute replicas 11
Metadata Snapshots in the block device OR 74Management Scan extents for file system repair
Locking Grants clients exclusive access 6
Other Garbage collection, reference counting 4

Table 1.1: A variety of object storage classes exist to expose interfaces to appli-
cations. # is the number of methods that implement these categories.

The takeaway from Figure 1.4 is that programmers are already trying to use

programmability because their needs, whether they be related to performance,
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availability, consistency, convenience, etc., are not satisfied by the existing default

set of interfaces. The popularity of the custom object interface facility of Ceph

could be due to a number of reasons, such as the default algorithms/tunables of

the storage system being insufficient for the application’s performance goals, pro-

grammers wanting the ease of programming with application-specific semantics,

and/or programmers knowing how to manage resources to improve performance.

A solution based on application-specific object interfaces is a way to work around

the traditionally rigid storage APIs because custom object interfaces give pro-

grammers the ability to tell the storage system about their application: if the

application is CPU or I/O bound, if it has locality, if its size has the potential to

overload a single node, etc. Programmers often know what the problem is and

how to solve it, but until the ability to modify object interfaces, they had no way

to express to the storage system how to handle their data.

In general the observation that benefits are found in using programmability

extends beyond the programmability of object interfaces in Ceph. Storage sys-

tems must control all aspects of consistent metadata management, fault-tolerance,

recovery, low-level data management, and networking, among many other sub-

systems commonly found in today’s systems. Each of these components and their

behavior is potentially a point of optimization for an application interface.

1.4 Methodology

The approach that we take towards evaluating the feasibility of constructing

a programmable storage system occurs along three dimensions. These aspects

are illustrated in Figure 1.5. First, we identify high-impact applications and gen-

eral purpose services that can benefit from programmable storage by eliminating

duplication of services or take advantage of domain-specific optimizations. For

21



Figure 1.5: Structure of a programmable storage system. At the top are
application-specific interfaces and services. At the bottom are internal sub-
systems, and the middle represents generalizations of these sub-systems. Top-level
interfaces are built by mapping semantics onto the generalized services.

instance, shown in the figure is CORFU a general purpose high-performance log

that is a useful storage abstraction for a wide range of applications [18]. Second,

we identify existing sub-systems commonly found within a distributed storage

system that can be reused to provide a generic service—that is, not tailored to

its specific need as simply an internal service. Finally, we identify general classes

of services into which each of these reusable components can be placed, and ex-

plore how the internal services can be mapped onto the semantics of a generic

service. This process results in a set of generic reusable services that are useful

for constructing domain-specific interfaces for applications and services.

As we will we present, there are cross-cutting issues identified in this thesis

related to the real-world challenges of using a programmable storage system. In

particular, challenges related to the complexity of navigating the design space of

a programmable storage system is addressed by arguing for the use of declarative

programming techniques. Throughout this thesis, when an area of the storage

system is identified as a candidate for reusability, we also construct an argument
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for how the service and its use by an application may be expressed declaratively.

Declarative approaches to building storage interfaces are discussed further in the

next chapter.

1.5 Contributions

The first contribution made by this thesis is a definition for programmable stor-

age as a means to facilitate the re-use and extension of existing, internal storage

system abstractions to enable the creation of domain-specific services and inter-

faces. This is important because it reduces duplication of common services that

result in resource savings and promotes the use of common, code-hardened systems

thereby increasing reliability. Programmable storage is distinct from concepts like

active storage, software-defined storage, and in-storage computing. Both active

storage and in-storage computing refer to the use of storage system resources

(typically the CPU) to execute arbitrary code injected by applications. In ac-

tive storage and in-storage computing, the system typically lacks any context for

injected code and simply acts as a conduit for applications to exploit a hard-

ware resource. In contrast, programmable storage restricts system modifications

to the confines of the generalizations of existing code-hardened services and the

composition of these services in order to build new application-specific interfaces.

Through careful consideration of how services are generalized they can be reused

by applications in ways that are orthogonal to correctness, reducing concerns

that programmability introduces fragility, a common issue with approaches based

purely on code injection. These customizations also go beyond any techniques

related to software-defined storage which are typically limited to the scope of con-

figuration and tuning parameters in storage systems with a fixed set of interfaces

and services.

23



Our second contribution is a systematic exploration of the design space of

programmability in distributed storage systems for building new interfaces and

services. We first examine this in the context of data interfaces and show that a

broad variety of application-specific interfaces and services can be constructed pro-

grammatically without affecting the safety of the underlying system. We explore

this space for applications that manage transactional data, as well as applica-

tions that can be accelerated through the use of internal storage system resources

like CPU, memory, and I/O bandwidth. We show that more abstract interface

properties such as durability can also be programmatically altered to support

application-specific optimizations. In support of these efforts we developed an

API that allows applications to inject dynamic definitions of storage interfaces

using the Lua programming language.

We repeated the process of exploring the design space of programmability for

two other major sub-systems commonly found in distributed storage systems: a

POSIX file system and a consensus service used internally to manage cluster-level

metadata. We introduce the concept of a file type that abstracts naming and

metadata management across applications allowing file names to be associated

with arbitrary metadata controlled by applications and made available to internal

sub-systems in support of programmable customizations. We demonstrate file

types by constructing a specialized network service for a high-performance log that

depends on an application-specific treatment of an in-memory shared resource. In

our prototyping system based on Ceph, we were able to use programmability to

reuse the capabilities feature, used to maintain cache coherency across file system

clients, to mimic the same semantics required by the distributed log service. And

finally we show how a common Paxos based sub-system could be re-used to provide

management of interface definitions used by the programmability infrastructure
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itself.

The third contribution we make is the introduction of declarative storage,

which is the use of declarative specifications in the pursuit of programmable stor-

age system customizations. We show that the power of programmable storage

will also be its downfall without a means to make the design space of interfaces

tractable; the design space is simply too large for non-expert developers to nav-

igate, and the lack of well-defined internal interfaces results in major challenges

supporting portability and even maintaining performance after upgrading system

software. We show that existing declarative programming languages can fully

specify programmable storage interfaces and that when rooted in formal meth-

ods, these languages allow important techniques from the database literature to

be applied in the context of storage systems.

Finally we outline a large and diverse set of future research opportunities.

While we have demonstrated a broadly useful contribution in programmable stor-

age and shown that declarative specifications can address its major shortcomings,

each contribution is accompanied by a broad and deep design space. In each

chapter we explore the potential directions for this work along the dimension spe-

cific to the chapter topic, namely data interfaces, metadata management, and

development processes.
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Chapter 2

Programmable storage

In Sections 1.2.4 and 1.3 we introduced and motivated programmable storage

as an approach to building new storage services. In review, programmable stor-

age seeks to expose generalizations of internal sub-systems found in distributed

storage systems, and defines how these sub-systems can be repurposed to support

the creation of new storage interfaces and services. Existing approaches to build-

ing new data interfaces tend to rely on middleware and external services. They

might depend on the construction of entirely new systems, or introduce fragile

changes in a monolithic architecture. Requiring system expertise, and modifying

complex mission critical systems will invariably increase short-term and long-term

costs. Instead, programmable storage seeks to reduce costs and increase reliability

through reuse.

The conceptual approach of reuse advocated by programmable storage to

building new services and interfaces is nothing new to anyone who has picked up

a book on basic software engineering best practices. Building good abstractions

that promote modularity and reuse are common goals of any project producing

software. But unlike the challenge of building a new system that is modular

from the beginning, a primary goal of programmable storage is to expose exist-
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ing sub-systems that are otherwise hidden behind standardized interfaces. This

is more than an exercise is software maintenance; existing storage systems con-

tain hardened sub-systems that implement mission critical components protecting

data. Leaving these fine-tuned sub-systems unperturbed while allowing new in-

terfaces to be created without sacrificing correctness is an entirely different type

of challenge.

As presented, programmable storage may appear to be merely a set of common

engineering guidelines, combined with domain-specific motivation, and carefully

adapted for an existing environment. Indeed, building a programmable storage

system, or adapting an existing system to support programmability, requires ap-

plying a large amount of system expertise and software engineering discipline. But

as we will see in this chapter, the problem becomes more complex and nuanced

as the realities of a large, dynamic storage system are revealed.

2.1 Overview

This chapter fully motivates and details programmable storage as a new paradigm

for constructing storage abstractions. We use a distributed shared-log service

called CORFU as a driving example and show how storage abstractions such as a

log can be mapped onto existing services found within a storage system [18]. The

CORFU system is not a system we developed; rather CORFU is a real-world use

case storage service that is generally useful, but simple enough to demonstrate

the power of programmability. While the importance of the programmable stor-

age approach will become clear, new sets of challenges will also emerge. We will

show that even when provided access to generalized versions of some common

sub-systems, and armed with significant domain expertise, that an approach to

programmability based on low-level abstractions can be intractable. This will be
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shown through the use of a motivating example in which the design space for

constructing a new storage service is too large to explore without the assistance

of optimization techniques commonly found in database systems.

To address this challenge that emerges with programmable storage, the second

half of this chapter advocates for the use of declarative specifications of storage

interfaces. A declarative specification can act as a bridge between the expression

of new storage services and their implementation in a given system. Crucially they

can be used to hide low-level details that may differ across storage systems as well

as across versions of the same system, and thus reduce the complexity of interface

development and maintenance. We demonstrate these ideas by presenting an

implementation of the distributed shared-log driving example using a declarative

language called Bloom.

2.2 Building a storage service

This thesis makes use of many different example storage services to motivate

various aspects of programmability. The first driving example that will be used

is that of a high-performance distributed shared-log. In this section we introduce

the abstraction and its salient properties, and then demonstrate one aspect of

programmability by using existing components found in the Ceph distributed

storage system to partially replicate the CORFU abstraction. Throughout this

thesis the technique of programmability will be applied in expanded contexts, and

cover all aspects of CORFU.

The driving examples we have chosen for this thesis, including the shared-log

abstraction, have been selected because of their relative simplicity to understand,

as well as their overall usefulness as general purpose storage services.
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2.2.1 Shared-log storage service

The abstraction of a shared-log is shown in Figure 2.1, and consists of a glob-

ally ordered set of immutable entries containing arbitrary data. The entries of

a shared-log are addressable by their position in the log, and new entries are

appended after the last entry, expanding the address space of the log.

The abstraction is called a shared-log because many clients may be concur-

rently reading from and appending entries to the log. And as we will see later,

the log may be physically stored in many different ways within an underlying

storage system. The value of the shared-log abstraction as a storage service is

highlighted by its role as a fundamental building block in file systems, distributed

systems, as well as in several recent research efforts focused on cloud-based data

management [18, 17] and elastic database storage engines [25, 23, 24].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

clients
append

read

Figure 2.1: The shared-log abstraction presents a totally ordered set of entries
addressable by their position in the log. Clients may read and append to the
log in parallel. The physical storage for a log is abstracted away and may be
implemented in many different ways.

In recent years there has been a resurgence in interest in the shared-log abstrac-

tion due to the decreasing cost of storage media that provides high-performance

random I/O (e.g. flash memory). This is due to the observation that data man-

agement systems that use a log-structured format tend to exhibit workloads with

a high amount of random reads which can have significant performance penalties

on media such as spinning disk. In the past, this has made a log-structured ap-
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Figure 2.2: The high-level architecture of CORFU in which high-performance
network counters called sequencers assign globally ordered log positions to clients
that may then dispatch appends using parallel I/O.

proach to certain system designs infeasible, irregardless of the convenience and

power of the abstraction.

While the shared-log abstraction is an important building block in distributed

systems, typical implementations are often based on consensus protocols (e.g.

Paxos [9]) which tend to serialize requests through a primary server. While this

has the advantage of simplifying the assignment of a total ordering, scalability

becomes a challenging property to achieve. Next we will look at the CORFU

protocol which addresses this limitation.

2.2.2 The CORFU protocol

This section introduces CORFU as a driving example for programmability.

The CORFU protocol is an approach to building a high-performance shared-log

interface [18], and was selected as a driving example because it is a powerful,

generally useful real-world system with a protocol that is easy to understand.

The CORFU protocol addresses the bottleneck that some consensus systems

have in which writes are funneled through a single node to enforce a global order-

ing. The issue is addressed in CORFU by decoupling the process of assigning a

total ordering to log entries from the actual I/O required to store the data in the

log. Such an approach allows clients to complete log I/O directly, avoiding any
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centralized I/O proxy that would limit throughput. Note that CORFU is only

one way to build a fast shared-log. Indeed there is an active research area that

is interested in such designs, and it would be worthwhile to examine other ap-

proaches and how their optimization strategies may map onto an existing storage

system.

Figure 2.2 shows the high-level architecture of CORFU in which clients read

and append to the log concurrently, and a process labeled as sequencer (P) assigns

a global ordering of log positions to each client. The key insight in CORFU is that

the assignment of log positions to clients by the sequencer process can be made

very high performance through the use of a volatile network-attached counter

(i.e. an in-memory atomic integer), assigning log positions to clients at rates that

depend only on the network speed of very small packets, typically at 100K-1M

packets per second. The authors of CORFU were able to demonstrate that the

sequencer was not the bottleneck in their system, and were able to saturate a

large cluster of network-attached flash devices. While a complete description of

CORFU is beyond the scope of this thesis, select components will be introduced

as necessary as the application of programmability expands to include more as-

pects of the protocol. For instance, in Figure 2.2 a backup sequencer labeled

sequencer (B) may take the place of a failed primary. This case is handled by the

CORFU protocol, and in Section 4.7 the sequencer and the recovery protocol will

be discussed in more detail.

CORFU storage device

In this section we will examine the storage device interface that the CORFU

protocol depends on, and show how this interface may be instantiated in an exist-

ing system using a variety of techniques with different trade-offs. The application-
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● read(pos)
● write(pos, data)
● trim(pos)
● fill(pos)
● seal(dev)

Figure 2.3: The CORFU device interface is unique. In addition to including an
immutable write-once interface, log positions can be invalidated or trimmed for
garbage collection, and the maximum position can be queried.

specific interface in CORFU makes for an ideal driving example of programma-

bility, but note that a critique of the CORFU interface is beyond the scope of

this thesis; we restrict our concern of CORFU to the replication of its salient

optimization strategies.

Figure 2.3 depicts the CORFU device interface within the general system

architecture. Log clients read and write entries directly to storage devices using the

unique interface shown in the blue box in which a target log position is specified.

There are many differences when compared to traditional block-based storage

interfaces. First, unlike block interfaces such as SATA or NVMe, the log entry

I/O interface in CORFU is write-once, meaning that once a log position has been

written, it cannot be written again in the future. And unlike a block device that

exposes a fixed set of blocks, each storage device in CORFU is expected to expose

a sparse 64-bit address space of log entry positions.

In addition to basic log entry I/O, the interface includes three additional

unique components. The fill and trim interfaces are used to mark a log entry

position as being invalid, or free for garbage collection, respectively. And, even

after filling or trimming an entry, the log position may not be written or read

in the future, further complicating the indexing strategy. Finally, the seal inter-
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face stores an epoch value in the device and returns the maximum log entry that

has been written to. The seal command is used during reconfiguration such as

expanding the set of storage devices, or in response to a failure. The use of an

epoch is to define a particular view of the system state. Every client request to

a storage device is tagged with the epoch value corresponding to the latest view

of the system known to the client. The epoch in each request must be at least as

large as the epoch value currently stored in the device. The system uses the seal

interface to maintain system consistency by coordinating configuration changes to

clients and system state without forcing clients to contact a central authority for

every I/O request. When a client request is rejected by a storage device for having

an out-of-date epoch, the client may refresh its system state from a configuration

authority managed by a traditional consensus system such as Paxos.

In the next few sections we will explore methods by which the CORFU device

interface may be built or emulated in an existing system by mapping the CORFU

interface and semantics onto existing interfaces and services.

2.2.3 Implementation strategies

While the high-level CORFU protocol solves a key challenge that storage, appli-

cation, and distributed system developers may face in achieving high-performance,

the storage device specification expected by the protocol is not implemented in

any commercially available hardware. However, the CORFU device interface need

not be implemented in hardware; software-defined interfaces implemented as mid-

dleware or using an RPC proxy are a possibility. We therefore use the CORFU

interface as a proxy for application-specific interfaces in our exploration of pro-

grammable storage solutions.

In the next few sections three different approaches to building the CORFU
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device interface in software will be explored. The first is based on the common

approach of using middleware, the second approach places intelligence within the

storage device itself, and for the third approach we examine a solution based on

storage programmability that addresses limitations in other approaches.

Middleware approaches

One method for building the CORFU interface is to construct it in software

on top of standard commercial devices as a layer of middleware. This is a very

common approach to dealing with system limitations, or to create new abstrac-

tions, and is common in high-performance computing [55, 48]. This architecture is

illustrated in Figure 2.4 which depicts the CORFU device interface implemented

as middleware between clients and storage devices. In this architecture each client

contains an additional piece of software, or accesses the middleware layer remotely

as a proxy, that implements the CORFU device interface.

Now consider just one aspect of the requirements of this interface, namely the

write-once semantics that make log entries immutable once written. Since the

standard interface for devices such as SATA will always allow a write to proceed,

and do not provide primitives such as compare-and-swap useful for constructing

concurrency control mechanisms, some state must be maintained that records

what positions have been written, and enforce the write-once semantics at a higher

level, above the storage device. This effectively means that every log entry I/O

must access and update authoritative metadata for that log entry. In practice this

will likely look like running a round of consensus for every log entry access, or

contacting an external service managing log entry metadata. The presence of this

shared state, and the serializable guarantees of the CORFU log interface results

in a middleware solution that relies on expensive client-to-client communication
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Figure 2.4: Building storage services as middleware requires introducing external
services such as consensus, and implementing complex data management tasks like
indexing.

for coordination, or external data management services that increase complexity,

and may function as a bottleneck on the fast I/O path.

The immutability property of log entries is only one challenge that is difficult

with a middleware solution. The CORFU device interface allows any log entry

position to be written to any device. This is a property that is used during recon-

figuration, when sections of the log address space may be remapped in response

to a failure, or an expansion of the set of storage devices. Since the address space

of a log in CORFU is the set of 64-bit integers, an efficient index is a necessary

requirement to be able to implement the interface. With a middleware-based so-

lution, such an index must be managed as shared state in order for clients to be

able to map log addresses onto physical devices. Combined with maintaining per-

entry metadata and mechanisms for coordination, entry indexing and remapping

services that are needed at a minimum mean that the complexity of middleware

solution grows quickly.
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Figure 2.5: By moving key data management responsibilities into the storage
device and exposing an application-specific interface, several challenges are solved
that existed in a middleware solution.

Device-local coordination

A core challenge with a middleware-based solution is coordinating clients as

they access log entries. The method proposed by the CORFU authors is to imple-

ment the CORFU I/O interface directly within the storage device. This approach

significantly simplifies the construction of the interface because coordination for

any single log entry has a natural, well-defined single point in the system.

Figure 2.5 depicts an architecture in which the CORFU interface is imple-

mented within the storage device, containing mechanisms for indexing and co-

ordination. While the CORFU authors have proposed a design for an interface

implementation built directly into the device [114], the CORFU authors emulated

the interface using a proxy service that exposed an RPC endpoint emulating the

interface. In this design, coordination and indexing are managed on top of stan-

dard flash devices.

Of course the challenges are not all solved by building storage interfaces di-

rectly into devices. Indexing and metadata management must be implemented

either in the device, or in a host. Ultimately these interfaces become part of a
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larger networked system, with fault-tolerance and reliability challenges that must

be solved. Building such a storage interface from scratch requires significant re-

sources and expertise. As we saw with the middleware approach, many services

must be combined to build such a system resulting in duplication of services within

a larger system context.

2.2.4 Programmability approach

As we saw above, an approach based on middleware poses challenges related

to coordination and indexing. And building an interface directly within a storage

device is a technique unavailable to all but a select few with the necessary expertise

and resources. An approach based on programmability seeks to provide a solution

by allowing developers to reuse existing services that solve similar challenges in a

way that is approachable to those without significant domain knowledge.

Figure 2.6 depicts a generic storage server that is commonly found in dis-

tributed storage systems. While this is a highly simplified view, it serves to

highlight common sub-systems and services that exist in such systems. As shown,

a server manages one or more storage devices that might include devices for both

capacity such as HDDs and latency using flash. A number of internal sub-systems

can be found such as indexing, caching, transaction management, I/O and work

scheduling, compression, and networking, among a host of others. Each server typ-

ically exposes an RPC-like interface for interacting with a block-based or object-

based I/O interface, depending on the system.

As discussed above, the CORFU interface generally requires an indexing ser-

vice, as well as places strict requirements on consistency semantics in order to

make guarantees about the behavior of the system. However, as we just described,

common server designs in distributed storage systems contain a plethora of sub-
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Figure 2.6: Nodes in a distributed storage system typically expose a block-based
or object-based interface, and contain numerous sub-systems used to manage data
on locally attached storage media.

systems including components such as indexing that are also a key component in

building a CORFU storage device interface.

A CORFU storage device interface

We now describe a method by which the CORFU device interface may be

instantiated in an existing storage system by reusing existing components. This

example is not meant to be exhaustive in its coverage of the CORFU features, but

rather to set the context for a discussion about just how large of a design space

exists for building such interfaces in existing systems. To this end, we begin with

a simple implementation strategy.

The prototype that we describe is built on top of a distributed object storage

system, not unlike that which is depicted in Figure 2.6. Object storage systems

typically expose a global, flat address space that can be populated with named

objects containing user data. Throughout this thesis we use Ceph as a prototyping

system, which invariably has its own unique semantics and features.

One simple approach to mapping the log abstraction onto the object storage

system in Ceph is to take advantage of the existing interfaces and semantics. For
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example, the write-once semantics of log entries in CORFU can be emulated by

using the semantics of the existing interface for object creation. In Ceph, object

creation can be made exclusive, similar to using O_CREAT|O_EXCL when creating

a new file in a POSIX file system. By ensuring that all log entry writes are em-

ulated with exclusive object creation, write-once semantics can be achieved by

reusing all of the complex machinery in the storage system to make this func-

tion behave correctly in a distributed environment. When every log position is

mapped to a distinct object, log I/O becomes naturally spread across the cluster,

further offloading tasks such as balancing log I/O across the cluster to increase

I/O parallelism to the storage system itself.

But constructing an interface like the CORFU fill operation is more challeng-

ing. Recall that the semantics of the fill interface are that if the entry has been

written, the request is rejected. Otherwise, the entry is marked as having been

filled, and future reads and writes will be rejected with a status message indicating

that it has been filled. The challenge involved in implementing the fill operation

arises because the semantics of the interface are defined by domain-specific at-

tributes, and predicates on the current state, and cannot be emulated through

mere configuration or composition within the space of existing object interfaces.

To handle this case we advocate that a storage system support the creation of

domain-specific object interfaces. In the case of the CORFU interface this would

mean the construction of new object methods along side methods like read and

write, but designed specifically for the CORFU protocol.

To accomplish this we hook into the existing transaction management sub-

system with the Ceph object storage server. This service is used to implement

all of the native interfaces, and provides a convenient mechanism to build new

interfaces in which existing interfaces can be composed together using standard
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C++ and run in an atomic context. The all or nothing atomic semantics provided

means that it is easy to keep multiple pieces of data consistent. In the context

of CORFU, the fill interface may be implemented by storing a small amount

of metadata in the byte stream portion of an object that encodes information

about the status of the log entry contained in the object, such as if it is filled, or

trimmed. What is interesting is that the entire infrastructure of a full distributed

storage system can wrap some isolated C++ code to reproduce some or all of the

semantics of an entirely different storage system service.

2.3 Design space challenges

The previous section demonstrated some of the benefits of using programma-

bility to implement application-specific I/O interfaces. In particular, it was shown

how services found within Ceph could be reused to build the storage device inter-

face used by the CORFU protocol. However, only a single implementation was

described, and in general there may be many ways to build an implementation

providing the same semantics and optimization strategies. In this section it will

be shown that the size of the design space that contains such interface implemen-

tations is large, and difficult to navigate without automated assistance. These

example implementations are designed to represent approaches that may likely be

considered by someone with a reasonable familiarity with Ceph as a platform for

building new I/O interfaces.

2.3.1 Performance portability

Let us take a step back now from the high-level sketch of an implementation

of the CORFU interface described in the previous section. In reality there are
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many ways to construct interfaces in a system. In order to make this concrete,

consider the Ceph object storage system that we are using as a prototyping vehicle

throughout this thesis. At the bottom of Figure 2.7 we have enumerated just a

few of the different internal storage sub-systems found within the Ceph storage

system.

For example, Ceph may be configured to store objects in a file system, in

an embedded database such as RocksDB or LMDB, or a new sub-system called

Bluestore that is designed to take advantage of HDDs as well as flash media and

NVMe. In addition, there are multiple data management systems contained inter-

nally. Bulk data is often stored using an interface such as a file byte stream that is

optimized for large contiguous chunks of unstructured data. But the system also

allows an arbitrary number of key-value pairs to be associated with each object,

providing an embedded database-like interface in addition to the byte stream in-

terface. These remain the same even when the underlying implementation of the

interfaces change, or different hardware is deployed. These interfaces are discussed

further in the next chapter.

In the previous section the CORFU interface was implemented on the storage

system by storing each log entry in a single, uniquely named object. This type of

partitioning is often referred to as 1-1, and may not be an optimal strategy for

some systems. For example managing a huge number of small objects is not the

most efficient way to store data in Ceph. At the top of Figure 2.7 we highlight

a second form of partitioning labeled striping, in which the log is distributed in

a round-robin fashion across a fixed number of objects. This is referred to as an

N-1 strategy in which multiple log entries are stored in a single object.

Using just two dimensions, low-level I/O sub-system (key-value interface or

bytestream interface for entry storage), and high-level log partitioning strategy,

41



Figure 2.7: Four different strategies for implementing the CORFU interface
are considered along two dimensions: low-level I/O interface and high-level log
partitioning strategy.

we can identify four different candidate implementation strategies of the CORFU

interface in Ceph. We implemented each of these strategies, and we found that

even routine software upgrades can cause performance regressions which mani-

fest as obstacles for adopters of a programmable approach to storage interface

development.

Figure 2.8 shows the append throughput of the four implementations running

on two versions of Ceph, one from 2014 and one from 2016. Each of the four lines

represents a different implementation. The experiments are all using the same

hardware, in which the performance in general can be seen to be significantly

better in the newer version of Ceph from 2016. However, if we consider other

costs such as software maintenance then these results reveal a trade-off.

First, notice that in 2014 (bottom) the top two performing implementations

achieve roughly the same throughput performance, within a few percentage points.

However, they differ in their implementation complexity. For example, more work

is involved in managing round-robin striping across a fixed number of objects.
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Figure 2.8: Append performance of four shared-log implementations on two
versions of Ceph before and after a major release upgrade using the same hardware.

We make the observation that an application developer in 2014 may have made

essentially a random decision between these two implementations. Each exhibit

fairly poor performance, and choosing the simpler implementation for little gain

would be reasonable.

When we repeat the experiments using the same hardware and the same im-

plementation, but with a newer version of Ceph a challenge presents itself. Notice

that the difference in performance between these two implementations in 2016

are, in comparison, significantly different. A developer in 2014 that chose the

blue implementation will be losing out on a lot of throughput after a routine up-

grade. But what is more insidious is that given the large performance increase

after the upgrade, a developer may not even know that a separate implementation

will provide even greater throughput.

This example is about as simple as one can construct, as it ignores tuning

parameters and a vast sea of configuration options. Choosing the best implemen-

tation of a storage interface depends on the timing of development (e.g. system

version); the expertise of programmers and administrators; tuning parameters

and hardware configuration; physical design and the use of internal I/O inter-
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faces; and system-level and application-specific workload characteristics. A direct

consequence of such a large design space is that some choices may quickly become

sub-optimal as aspects of the system change. This forces developers to revise im-

plementations frequently, increasing the risk of introducing bugs that, in the best

case, affect a single application and, in monolithic designs, may cause systemic

data loss.

2.3.2 Complexity

The CORFU use case that we have been examining is a fairly narrow example

in that it depends on a small portion of an otherwise large system. Building an

interface that uses many more internal services, and exploring each implemen-

tation option under different hardware and software configurations would be a

massive undertaking. It is relatively easy to highlight how much additional com-

plexity exists within these systems, and quickly arrive at the observation that this

complexity largely prevents human developers from being able to handle all of

the optimization scenarios, even for static design cases. And given the differences

between storage systems, it is unlikely that anything more than a general imple-

mentation strategy would be portable; in a new system the entire design process

may need to be repeated.

Hardware

Ceph is a software-defined storage system, which means that its features are

primarily derived from software implementations, and as such will run on a large

variety of hardware. Each hardware configuration encompasses specific sets of

performance characteristics and tunables (e.g. I/O scheduler selection, and poli-

cies such as timeouts). For example, Ceph can currently run on a mixture of slow
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spinning disk, SSDs, and NVMe simultaneously, using each device for a different

type of data amenable to the performance and capacity of the device itself.

Ceph has been deployed on an interesting variety of hardware as well. A

recent example is a deployment of 500 network attached Ethernet hard drives

that contain enough local compute and memory resources to host a full Ceph

storage node [26]. At the other end of the spectrum Ceph has been deployed as a

single 65 petabyte cluster across 10,800 storage nodes [27]. But its deployment is

more common on standard commodity hardware in clusters that are smaller than

10,000 nodes.

In our experiments, we tested a variety of hardware and discovered a wide

range of behaviors and performance profiles. While we generally observe expected

improvements on faster devices, choosing the best implementation strategy is de-

pendent on hardware and the strategy by which data is stored. This will continue

to be true as storage systems evolve to support new technologies such as persistent

memories and RDMA networks that may require entirely new storage interfaces

for applications to fully exploit the performance of next-generation hardware.

Software and tunables

The primary source of complexity in large storage systems is, unsurprisingly,

the vast amount of software written to handle challenges like fault-tolerance and

consistency in distributed and heterogeneous environments. In our experiments

we encountered performance portability challenges simply as a result of a routine

software upgrade.

To put the complexity in context, a recent version of Ceph from May 2018 had

approximately 1400 tunable parameters controlling all aspects of the system. This

includes for example 163 parameters controlling different aspects of the metadata
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service including the file system client. Over 160 tunables control various aspects

of the Ceph monitoring, Paxos, authentication, and encryption sub-systems. And

over 500 tunables were found related to the core object storage server daemons

and its various storage backends including sub-systems such as RocksDB and

LevelDB. These parameters are far reaching in scope, controlling sensitive aspects

of performance such as timeouts, threading, and message queueing. This is only

a subset of the parameters, and doesn’t include aspects of networking for which

there are multiple implementations including an asynchronous messaging system

and a messaging system that supports RDMA acceleration.

Evolving hardware, software, and system tunables presents a challenge in op-

timizing systems, even in static cases with fixed workloads as we have seen. Pro-

grammable storage approaches that introduce application-specific interfaces are

sensitive to changes in workloads and the cost models of low-level interfaces which

are subject to change. This greatly increases the design space and set of concerns

that must be addressed by programmers.

Conclusion

The availability of high-performance open-source storage has prompted devel-

opers to explore new, domain-specific storage interfaces that replace or augment

standardized interfaces like POSIX. As this trend continues to grow, more and

more software will be written with dependencies on custom interfaces that may

have implementations in only one storage system. When these implementations

depend on assumptions about system-specific internal features, portability be-

comes an important challenge. And as we have seen, the performance profile of

internal interfaces can change from routine upgrades.

Despite the benefits, the overhead of maintenance can be a limiting factor. We
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therefore propose that interfaces be built in a way that reduces the overhead of

maintaining interface implementations using techniques drawn from the literature

on declarative languages and database optimization. In the next section we will

explore one potential direction for this research.

2.4 Declarative storage

We believe a better understanding of application and interface semantics ex-

poses a frontier of new and better approaches with fewer maintenance require-

ments than hard-coded and hand-tuned implementations. An ideal solution to

these challenges is an automated system search of implementations—not simply

tuning parameters—based on programmer-produced specifications of storage in-

terfaces in a process independent of optimization strategies, and guaranteed to

not introduce correctness bugs.

Despite the benefits of the approach to building new interfaces, the technique

requires navigation of a complex design space while simultaneously addressing

often orthogonal concerns (e.g. functional correctness, performance, and fault-

tolerance). Worse still, the availability of domain expertise required to build a

performant interface is not a fixed or reliable resource. As a result, interfaces

become sensitive to evolving workloads. This results in burdensome maintenance

overhead when underlying hardware and software changes.

To address these challenges, we advocate for the use of high-level declara-

tive languages (e.g. Datalog) as a means of programming new storage system

interfaces. By specifying the functional behavior of a storage interface once in

a relational (or algebraic) language, optimizers built around cost models can ex-

plore a space of functionally equivalent physical implementations. Much like query

planning and optimization in database systems, this approach will logically dif-

47



ferentiate correctness from performance, and protect higher-level services from

lower-level system changes [95]. However, despite the parallels with database

systems, fundamental differences exist in the optimization design space.

Although powerful, storage interface construction in the way we advocate is a

double-edged sword. The narrowly-defined interfaces dominating systems today

have been a boon to developers by limiting the size of the design space where

applications couple with storage, allowing systems to evolve independently. Pro-

grammable storage lifts the veil on the system and, thereby forces developers of

higher-level services to confront a much broader set of possible designs.

2.4.1 The Bloom language

Current ad hoc approaches to programmable storage restrict use to develop-

ers with distributed programming expertise, knowledge of the intricacies of the

underlying storage system and its performance model, and use hard-coded im-

perative methods. This limits the use of optimizations that can be performed

automatically or derived from static analysis. Based on the challenges we have

demonstrated stemming from the dynamic nature and large design space of pro-

grammable storage, we propose an alternative, declarative programming model

which reduces the learning curve for new users, and allows existing developers to

increase productivity by writing fewer, more portable lines of code.

The model we propose corresponds to a subset of Bloom, a declarative language

for expressing distributed programs as an unordered set of rules [13]. Bloom

rules fully specify program semantics and allow developers to ignore the details

associated with program evaluation. This level of abstraction is attractive for

building storage interfaces whose portability and correctness is critical. We use

Bloom to model the storage system state uniformly as a collection of relations,
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with interfaces expressed as a collection of queries over a request stream that are

filtered, transformed, and combined with other system state.

2.4.2 Declarative CORFU protocol

We can model the storage interface of the CORFU protocol as a query in Bloom

in which the shared-log and metadata are represented by two persistent abstract

collections mapped onto physical storage. Listing 2.1 shows the specification of

state for the CORFU interface. Lines 2 and 3 define the schema of the two

persistent collections that hold the current epoch value, and the log contents.

These collections are mapped onto storage within Ceph but abstract away the

low-level interface (e.g. bytestream vs key-value). That is, neither table definition

imposes restrictions on the internal storage interfaces used, a decision that we saw

can cause challenges when upgrading software which changes the performance

profile of internal interfaces. Lines 5-9 define the input and output interfaces. We

use a generic schema for the input operation to simplify how rules are defined that

apply to all operation types if the CORFU interface. Lines 11-15 define named

collections for each operation type. The scratch type indicates that the data is

not persistent, and only remains in the collection for a single execution time step.

This property can be useful to an optimizer in selecting where data is stored and

how it should be treated. The remaining scratch collections are defined to further

subdivide the operations based on different properties which we’ll describe next.

Initialization is performed in Listing 2.2 which acts as a demux for the op-

eration type and properties. Lines 3-7 show the epoch guard that is applied to

all operations. The guard rejects requests that are tagged with old epoch values,

ensuring that a client generating a request has an up-to-date view of the system.

First the invalid_op collection is defined to include the current operation if its
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1 state do
2 table :epoch , [: epoch ]
3 table :log , [: pos] => [: state , :data]
4
5 interface input , :op ,
6 [: type , :pos , : epoch ] => [: data]
7
8 interface output , :ret ,
9 [: type , :pos , : epoch ] => [: retval ]

10
11 scratch :write_op , op. schema
12 scratch :read_op , op. schema
13 scratch :trim_op , op. schema
14 scratch :fill_op , op. schema
15 scratch :seal_op , op. schema
16
17 # op did or did not pass the epoch guard
18 scratch :valid_op , op. schema
19 scratch : invalid_op , op. schema
20
21 # op ’s position was or was not found in the log
22 scratch :found_op , op. schema
23 scratch : notfound_op , op. schema
24 end

Listing 2.1: Data structures used in the Bloom specification of CORFU.

epoch value is no larger than the stored epoch value in the epoch table. Next the

valid_op collection is defined to be the inverse of invalid_op and is a helper

used to refine other operations later in the dataflow. Finally we handle the case

for all operations tagged with an out-of-date epoch by merging the invalid_op

set into the output ret collection.

Lines 10 and 11 populate the found_op and notfound_op collections that allow

operation behavior to be predicated on if the position associated with a request

is found in the log. Finally the remaining lines in Listing 2.2 populate each of the

specific operation collections.

The process of sealing an object requires installing a new epoch value and

returning the current maximum position written. Listing 2.3 implements the seal

interface by first removing the current epoch value and replacing it with the epoch

value contained in the input operation. Next an aggregate is computed over the

log to find the maximum position written, and this value is returned, typically to
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1 bloom do
2 # epoch guard
3 invalid_op <= (op * epoch ). pairs {|o,e|
4 o. epoch <= e. epoch }
5 valid_op <= op. notin ( invalid_op )
6 ret <= invalid_op {|o|
7 [o.type , o.pos , o.epoch , ’stale ’]}
8
9 # op ’s position found in log

10 found_op <= ( valid_op * log). lefts (pos => pos)
11 notfound_op <= valid_op . notin ( found_op )
12
13 # demux on operation type
14 write_op <= valid_op {|o| o if o.type == ’write ’}
15 read_op <= valid_op {|o| o if o.type == ’read ’}
16 fill_op <= valid_op {|o| o if o.type == ’fill ’}
17 trim_op <= valid_op {|o| o if o.type == ’trim ’}
18 seal_op <= valid_op {|o| o if o.type == ’seal ’}
19 end

Listing 2.2: Initialization steps in the CORFU Bloom specification.

1 bloom :seal do
2 epoch <- ( seal_op * epoch ). rights
3 epoch <+ seal_op { |o| [o. epoch ] }
4 temp : maxpos <= log. group ([] , max(pos))
5 ret <= ( seal_op * maxpos ). pairs do |o, m|
6 [o.type , nil , o.epoch , m. content ]
7 end
8 end

Listing 2.3: CORFU Seal implementation in Bloom.

a client performing a reconfiguration of the system or following the failure of a

sequencer.

Trimming a log entry always succeeds. In Listing 2.4 the <+- operator simul-

taneously removes the log entry with the given position and replaces it with an

entry with its state set to trimmed. In practice the removal of a log entry may

trigger garbage collection, but we model it here as an update for brevity.

The write and fill interfaces are implemented similarly, and are both shown in

Listing 2.5. A valid_write collection is created if the operation position is not

found in the log. A valid_write operation is then merged into log, otherwise a

read only error is returned indicating that the log position was already written to.

The fill operation is identical except the fill state is set on the log entry.
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1 bloom :trim do
2 log <+- trim_op {|o| [o.pos , ’trimmed ’]}
3 ret <= trim_op {|o|
4 [o.type , o.pos , o.epoch , ’ok ’]}
5 end

Listing 2.4: CORFU Trim implementation in Bloom.

1 bloom : write do
2 temp : valid_write <= write_op . notin ( found_op )
3 log <+ valid_write { |o| [o.pos , ’valid ’, o.data ]}
4 ret <= valid_write { |o|
5 [o.type , o.pos , o.epoch , ’ok ’] }
6 ret <= write_op . notin ( valid_write ) {|o|
7 [o.type , o.pos , o.epoch , ’read -only ’] }
8 end
9

10 bloom :fill do
11 temp : valid_fill <= fill_op . notin ( found_op )
12 log <+ valid_fill { |o| [o.pos , ’fill ’] }
13 ret <= valid_fill { |o|
14 [o.type , o.pos , o.epoch , ’ok ’] }
15 ret <= fill_op . notin ( valid_fill ) { |o|
16 [o.type , o.pos , o.epoch , ’read -only ’] }
17 end

Listing 2.5: CORFU Write and Fill implementations in Bloom.

Finally the read interface is shown in Listing 2.6, and structured in a similar

way to the write and fill interfaces. First we create a collection containing a valid

read operation (named ok_read) that is in the log and does not have the filled or

trimmed state set. The data read from the log is returned in the case of a valid

read operation, otherwise an error is returned through the output interface.

This transformation from hard-coded interfaces into declarative specification

permits optimizations and implementation details (e.g. log striping and parti-

tioning) to be discovered and applied transparently by an optimizer. Since the

specification of the interface is invariant across system changes and low-level inter-

faces, an optimizer can automatically render execution decisions and build indexes

using the performance characteristics of specific access methods.

Amazingly, the semantics of the entire storage interface requirements in CORFU

are expressible using only a few Bloom code snippets, not any more complicated

52



1 bloom :read do
2 temp : ok_read <= ( read_op * log). pairs (pos => pos) { |o, l|
3 [o.type , o.pos , o.epoch , l.data] unless
4 [’filled ’, ’trimmed ’]. include ?(l. state ) }
5 ret <= ok_read { |e|
6 [e.type , e.pos , e.epoch , e.data] }
7 ret <= read_op . notin (ok_read , type=>type) do |o|
8 [o.type , o.pos , o.epoch , ’invalid ’]
9 end

10 end

Listing 2.6: CORFU Read implementation in Bloom.

than the example above, which are amenable as input to an optimizer. Beyond

the convenience of writing less code, the entire experience of designing and writ-

ing an interface such as CORFU in a declarative language such as Bloom eases

the process of constructing convincingly correct implementations. Specifically,

the high-level details of the implementation mask distracting issues related to the

physical design and the many other “gotchas” associated with writing low-level

systems software.

2.4.3 Sequencer specification

Our current Bloom specification of CORFU assumes the existence of an ex-

ternal sequencer service to assign log positions. A declarative specification of the

sequencer will be critical to providing portability of the service, since performance

relies on optimizations enabled by volatile memory, fast fail-over, and configura-

tion management of the sequencer depends on an auxiliary service such as Paxos.

Since distributed storage systems internally utilize volatile storage in many forms

(e.g. memory caches and non-replicated data), and tend to use systems like Paxos

for state management, we seek to avoid replicating these features. We will address

this in Sections 4.7 and 5.5.1 in which we examine how components such as the

file system metadata service, as well as the object storage interfaces of the storage

system can be reused to construct a high-performance sequencer.
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2.4.4 Offline optimization

Our discussion about declarative languages and the use of database optimiza-

tion techniques raise many valid concerns. For example, the use of optimization

techniques for query planning in database management systems are typically as-

sumed to be online optimizations that occur for every query executed. Expecting a

distributed storage system to perform query optimization for every I/O operation

raises important performance and feasibility concerns. As discussed above, data

layout and the interfaces used to store data can be have a significant impact on

performance. Frequent changes to data layout, or moving data between interfaces

can represent major challenges to performance management.

System 
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Figure 2.9: New interfaces are installed at longer timescale than that of indi-
vidual I/O operations in a system and can correspond to well-defined system life
cycle events such as hardware or software upgrades.

We address these concerns by observing that the primary performance changes

we observed occurred on well-defined boundaries related to hardware and software

upgrades. These types of changes occur on a timescale that is orders of magnitude

larger than that of individual I/O operations. Therefore our work takes advantage

of the flexibility afforded by offline optimization strategies. This is graphically

shown in Figure 2.9 in which optimization and query planning for declarative

interface specifications are handled between upgrade points as part of the standard

upgrade process, which can be, and often is, planned for and scheduled ahead of
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time. By producing static implementations of interfaces periodically we retain the

benefit for developers of using a declarative language that avoids the pitfalls of

coding to low-level interfaces, while avoiding the challenges associated with online

optimization.

2.5 Conclusion and scope

Storage system programmability is a trend that is emerging quickly, and has

the potential to transform the way data-intensive application are built. By lever-

aging domain-specific interfaces that are tailored to an application, system design

can be a direct reflection of the application semantics rather than a collection

of abstraction layers and external services combined in ad hoc ways. There are

many real-world examples of programmability in use, and we have explored one

powerful use case with the CORFU log abstraction. However, by avoiding the use

of standardized interfaces we can observe that challenges in software maintenance

and performance portability will be a major challenge for gaining adoption. This

is due the extremely large design space that exists for developers of new storage

interfaces using programmability techniques.

The discovery of such a large design space was made at a late stage in devel-

opment of this thesis. However, as discussed in this section, navigating the design

space is a challenge that must be addressed for the success of programmable stor-

age as a paradigm for building new I/O services. We believe, and there is strong

evidence for, the use of declarative languages in expressing I/O services in a way

that allows the existing body of work in compiler and database optimization tech-

niques to be applied.

That said, the scope of this thesis is restricted to demonstrating that a variety

of I/O services can be expressed declaratively in such a way as to support known
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optimization strategies. Throughout the thesis we will show how a declarative

specification may be arrived at for the various use cases that explore, and how

an optimizer may reasonably be able to make important optimization decisions.

This thesis does not address many of the challenges related to designing and

implementing a full language, compiler, and run-time system that will be needed

in a real world system that is integrated into a production distributed storage

system. That is left to future work.
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Chapter 3

Related Work

3.1 Active storage

There has been a wide range of research related to the topic of co-locating

computation with data, generally referred to as active storage. In each instance

the set of target optimizations include exploiting excess parallelism, and reducing

data movement by exploiting computational resources located near target data.

Riedel, et al. [91] introduced the active storage concept by offloading application

functions to on-disk microcontrollers, taking advantage of spare cycles as well as

reducing data sent over the host bus. Addressing concerns over the safety of of-

floading arbitrary functions, the Active Disk project introduced a stream-based

programming model, and further restricted the execution environment by pre-

venting memory allocation and direct initiation of I/O. Extensions to the active

storage concept have used disk-to-disk communication to avoid bus communica-

tion [70], as well integrating additional resources that fall along the I/O path

such as disk array controllers [103]. Recently the active storage concept has been

applied to solid-state devices using customizable firmware and focuses on energy

reduction [110]. Most recently active storage has been revisited in the context of

57



solid-state drives in which resources within the SSD are exploited to perform work

on behalf of client applications. This has been examined in the general context of

how to build such SSD applications [96], as well in the context of database query

acceleration [66, 42].

The use cases of programmability when constructing data interfaces are moti-

vated in a similar way to many techniques like active storage which seek to exploit

remote resources and reduce data movement. The work we have presented make

use of host resources, but could also integrate resources found on disks and media

themselves. We also note that these modes of exploiting programmability are not

our focus, but rather driving examples.

3.1.1 Object-based storage

Du [45] proposed Intelligent Storage for object-based storage devices (OSDs)

which could take advantage of not only low-level resources like on-disk controllers,

but also more powerful host CPUs and larger memory, effectively utilizing more

of the compute center hierarchy. This concept has been applied by extending the

iSCSI standard to attach functions written in Java to object attributes and allow

these functions to be executed remotely [67]. Xie, et al. [123] proposes extensions

to the T10 standard for associating vendor-authored active storage functions with

special “function objects”, and the ability to compose functions remotely. While

Xie, et al. address security concerns by restricting functions to be vendor provided,

Runde, et al. provides security using sandboxing virtualisation technology to allow

arbitrary code to be executed remotely [93].

For example, the state-of-the-art V8 JavaScript runtime has been embedded

into RAMCloud [87] to to provide optimizations such as remote use of CPU re-

sources, as well as optimizations such as remote pointer chasing [125]. The Comet
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system is a distributed key-value storage system designed for extensibility. It in-

cludes the concept of active storage objects which can be programmed to react to

changes in the system [49]. The Comet system is able to customize many aspects

of the system such as replication, and implement functions in which object han-

dlers communicate with each other. The Swift distributed object storage system

supports the concept of a Storlet which is a function that can be attached to

an object and triggered by various life cycle events [90]. Storlets use Docker for

isolation.

The programmability features we have built into Ceph depend on a form of

sandboxing using the Lua programming language. Our consideration of Lua is

functional and meant to ease the process of exploring the design space, rather

than based on a need for absolute security. Existing work on sandboxing can be

applied in our case using other languages when needed. Related conceptually to

our discussion of management of code and interfaces in Chapter 6, Xie, et al. [123]

take steps with their “function objects” for managing code implementing object

interfaces. They use the objects directly, while we propose using cluster-level

metadata services.

Recently storage device manufacturers have been exploring the use of embed-

ding more powerful embedded processors, DRAM, and flash to construct so-called

smart drives, such as the Kinetic drives from Seagate [4]. These drives present a

key-value interface, but also contain higher-level primitives such as moving data

between drives across the network which allow more complex data management

scenarios to be constructed.
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3.1.2 Domain-specific interfaces

Active storage concepts have been applied in several domain-specific contexts.

Uysal, et al. compares the use of active storage for accelerating decision sup-

port databases against other scalable architectures [112]. In [35] Chiu, et al.

simulated an active storage environment with offloaded database operations (e.g.

scan, join) and a 2-D fast Fourier transform using algorithms specifically tailored

for the distributed, active storage environment. Huston, et al. [60] exploited the

properties of search tasks to optimize a programming model for early discard fil-

tering, observing that locking could be simplified due to the read-only nature of

search, objects could be processed in any order, and avoiding persistent state in

the protocol. Lim, et al. [76] applied active storage to build the Active Disk File

System which offloaded core file system functionality (e.g. file lookup operations)

to low-level active components. Recently, Gkantsidis, et al. [51] used static anal-

ysis to automatically extract early discard filters from Hadoop MapReduce jobs

and apply the filtering transparently within cloud storage devices.

Caribou is a distributed storage system that exposes a key-value storage in-

terface and integrates FPGAs and low-level optimized data structured for accel-

erating database query processing [65]. The system uses specific access methods

designed for database queries. Wei, et. al [115] demonstrate how to build a

shared-log interface directly into SSDs in support of high-level domain-specific

interfaces the shared-log CORFU abstraction. Unlike our work, these systems do

not examine how to use existing system components to construct new services in

a distributed system.

More recently, the Department of Energy sponsored FastForward I/O Initiative

has proposed next-generation I/O interfaces that include native support for non-

POSIX byte stream interfaces, as well as multi-dimensional array objects that
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support active storage operations such as data analysis and subsetting.

Both Boxwood and Sinfonia [82, 12] are storage systems that expose building

blocks to application developers. Sinfonia exposes raw memory address spaces,

and allows applications to create new functionality by supporting efficient transac-

tions over storage. Boxwood is a storage system that exposes a set of abstractions

such as distributed trees and hash-tables that can be recombined by applications

to create new functionality while sharing the underlying sub-system implemen-

tations. Both systems expose services at a much lower-level of abstraction than

we have explored in this thesis, and both are new storage systems rather than

exploring the reuse of existing subsystems found in an existing system.

3.1.3 Parallel file systems

Applying active storage concepts to parallel file systems is more challenging

because data may be distributed across many distinct storage resources. In [46],

Felix, et al. introduced an in-kernel interposition layer in Lustre that redirected

operations to a user-space execution engine that provided support for stream-

based data transformations. Piernas, et al. extended the work in [46] to pro-

vide an entirely user-space solution that offered additional flexibility over the

kernel-based version. Striped data was handled transparently by the execution

environment on a node by remotely reading required non-local data, creating an

I/O bottleneck. Piernas, et al. [88] addressed striped, complex file formats such

as netCDF by using knowledge of striping strategy and file layout information

contained in the netCDF header to only perform processing on nodes known to

contain target data. Son, et al. [104] extended the MPI-IO programming model to

include collective operations (e.g. global reduction) over the MPI-IO data model

using server-side collectives implemented in PVFS.
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3.1.4 Performance management

While we did not address performance management in this work, it is a com-

ponent of future work and an important topic to cover when considering how to

construct a programmable storage system. The following work primarily focus on

the placement of functions that use resources which is an important component

of any cost model associated with function shipping.

Limited work has addressed the challenge of performance management in the

context of active storage, and has focused on the problem of function placement.

That is, optimizing the location that a function is executed at (e.g. remote host

vs. local client) for a particular policy. All approaches are similar in that they

rely on a unit of functionality (e.g. a primitive operation or computational kernel)

being flexibly scheduled. Amiri, et al. [15] constructs a graph of application func-

tion dependencies, and utilizes collected run-time statistics to model alternative

function placements. In [122] Wickremesinghe, et al. construct a programming

model specifically designed for I/O efficient algorithms that balance primitive op-

erations specific to the problem space between clients and hosts. In the context of

database systems, Qiao, et al. offload database functionality into an active stor-

age system, and integrate the cost of remote execution into the database query

optimizer to intelligently schedule function placement [89]. In [34], Chen, et al.

introduce the DOSAS system that treats function placement and request ordering

within storage nodes as a binary optimization problem and uses detailed statis-

tics to construct schedules that minimize overall execution time. Chen, et al. [33]

consider the problem of data dependence when scheduling function placement by

predicting the alignment of functions with low-level storage partitions, and by

extension the associated cost of performing remote I/O operations.
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3.2 Storage system extensibility

Several file systems have been proposed that offer alternatives to the standard

interpretation of a file as a single, linear byte-stream. Kots, et al. propose a

file system interface for multi-processors that define access to both bytes and

records, and allow a file to represent a collection of subfiles useful for parallel

applications [74]. Corbett, et al. proposed the Vesta File System for exposing

available parallelism within the storage system to application [37]. A file in Vesta

is defined by two-dimensions, one controlling parallelism by addressing physical

storage partitions, and a second dimension controlling the layout of fixed-size data

elements in each partition. The Galley File System introduced by Nieuwejaar,

et al. is similar in Vesta, but adds a third dimension that allows for multiple,

variable-size subfiles within each physical partition, supporting a wider range of

striping patterns that could be expressed [85]. Finally, Isaila, et al. develop

a language called PITFALLS used in the Clusterfile file system for expressing a

wide range of patterns that define physical partitions and logical views of files

composed of fixed-size records [63].

Several proposals have been put forth to create file systems whose functional-

ity can be extended. The Extensible File System (ELFS) proposed by Karpovich,

et al. is a methodology for constructing interfaces based on the object-oriented

paradigm [69]. Interfaces in ELFS are middleware objects (e.g. 2DArrayFile)

that implement a file format on top of an underlying file system interface. Haines,

et al. [56] introduce the SmartFiles concept that use type definitions expressed

in the DAFT (Data File Types) language, combined with run-time parameters

such as the current process identifier to implement file with domain-specific inter-

faces. Today, SmartFiles closely resemble popular serialization technologies such

as Avro [1], Protocol Buffers [8], and MessagePack [5].
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To address the challenge of exploring changes to core file system functionality

and semantics, Huber, et al. introduced the PPFS file system which is a middle-

ware layer designed to ease the exploration of the I/O system design space [59].

The middleware layer wraps a traditional file system, and allows customization of

different policies such as striping, data partitioning, and caching. Taking extensi-

bility to its near logical extreme, the Hurricane File System defines a file in terms

of a composition of fine-grained building blocks that control functionality such as

data layout, replication, locking, caching, prefetching, and authentication. And

more recently, Grawinkel [53] embedded a Lua interpretor inside pNFS clients to

allow scriptability of file layouts in terms of target storage targets. GlusterFS [3]

translators provide a rich mechanism for adding functionality at different levels of

the file system, the are intended to be used to create long-lived extensions.

Much of the existing work related to extensibility is complementary to what

we present in this thesis. The lessons learned from this work, including especially

the modes by which new extensions are expressed may help define our future in

declaratively specifying new storage interfaces. Finally, systems like Hurricane

which are similarly motivated as our work take the approach of building an en-

tirely new system to demonstrate extensibility rather than examining the state of

existing storage systems as a set of building blocks.

3.3 Software-defined storage

Software-defined storage (SDS) is a term to describe the use of abstractions

found in storage systems that separate the data plane from the control plane

and allow aspects of storage systems to be controlled using configuration settings

and policies. Early work on SDS includes IOFlow [109] that allowed I/O requests

flowing through the system to be identified using a tuple specification consisting of
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I/O request properties, and map these requests to properties such as I/O priority.

The sRoute project [106] extended the work of IOFlow allowing I/O requests

to be flexibly routed within the storage system to control behavior for tenants

such as routing requests to achieve tenant cache isolation. Generally software-

defined storage systems today are used to provide functionality such as resource

provisioning, in contrast to the use of programmability for creating entirely new

functionality.

The CoSS storage system is an HPC storage system that allows applications to

customize its behavior using contracts [44]. A contract declaratively describes the

data model used by an application, as well as views that describe what data will

be stored and what data will later be read. Using information from the contract

the storage system can decide when and where to perform data transformations

and what form data should be stored in. In certain aspects this work is related

to our future goals of declarative storage, and is likely complementary although

as proposed the specifications of CoSS are at a much higher-level of abstraction

providing coarser-grained specializations.

The Crystal storage system is closely related to the work present in this the-

sis [52]. The goal of Crystal is similar which is to reduce or eliminate hard-coded

functionality in the system, and enable to new functionality programmatically,

handling the needs of applications that change over time. Crystal introduces ab-

stractions such as filtering, controllers, and policies and uses a domain-specific

language for expressing composition of these components. This work is comple-

mentary to ours. Crystal allows new application-specific operations to be created

on objects, but Crystal is a storage system built from the ground-up using a vari-

ety of separate systems, rather than examining how their work could be integrated

into an existing storage system by using reusable components.
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The Mochi project is an effort related to the Exacale initiative in the U.S. to

create a platform for building application-specific storage interfaces for HPC use

cases by combining system building blocks [43]. The building blocks that Mochi

uses are low-level, including things like RDMA networking, RPC, threading and

memory models, and embedded databases and virtual machine interpreters. Like

Crystal, Mochi creates a new set of services built from the ground-up or repurposed

from other systems rather than exploring the re-use of sub-systems found within

an existing system. Mochi is highly relevant to our future work with declarative

storage systems. For example, Mochi has been exploring the creation of interfaces

for reusable systems that support composition.
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Chapter 4

Data interfaces

The data interfaces exposed by a storage system are the primary interaction

points with applications and services. Examples of data interfaces include POSIX

files, virtual block devices, and object-based storage. Fundamentally a data in-

terface is a means by which the storage system exposes internal services and

resources. For example, storage systems often provide durability guarantees to

applications writing to POSIX files by transparently replicating data providing

redundancy in case of failure. Storage systems may also reveal details about the

underlying physical system through data interfaces; it is common for object-based

storage systems to map objects onto a single storage device, allowing applications

to reason about I/O parallelism. Storage systems today tend to expose a fixed

set of interfaces that target broad categories of applications, and as such are often

very general in nature. This is useful for storage system developers as the scope

of possible data interfaces is bounded, as well as for developers building high-level

applications and services that can benefit from the portability of data interfaces.

However, applications and data management services have a very rich and diverse

set of storage requirements and domain-specific behaviors. When a limited set

of storage interfaces is available, this results in additional costs associated with
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storage-related development tasks to map between semantics and work around

limitations of existing interfaces.

Programmable storage systems address this by allowing new data interfaces

to be constructed by programmatically combining internal services and resources.

This is useful for building interfaces that provide application-specific semantics,

can simplify application design, and provide unique optimization opportunities.

4.1 Overview

In this chapter we are going to provide a sample of the breadth of applications

that can benefit from programmable data interfaces. However, as we will show,

the current state of building data interfaces is difficult, time consuming, and the

results challenging to maintain and migrate to new systems. Throughout this

section we will highlight these challenges and argue that a declarative approach

to building data interfaces is a viable option for building future programmable

storage systems.

The methodology we use in this chapter is to select a set of applications that

demonstrate broad categories of application needs. For each use case covered in we

show how programmability can be used beneficially, summarize major challenges,

and show how declarative approaches can help resolve these issues. This process

is a systematic exploration of the design space of programmability in distributed

storage systems. We examine interfaces for transactional data management, query

acceleration in database management systems, and structured data management

common in scientific computing. In addition, we show how durability properties of

a storage interface can be used to create domain-specific optimizations, and how

taking advantage of data availability mechanisms, fault-tolerant network services

can be created using data interface programmability.

68



First we provide an overview of programmability in Ceph which is our primary

prototyping platform, and then discuss the general challenge of physical design

when building new data interfaces. A primary goal of this chapter is to chart

a course for future work in programmable storage by showing the breadth of

applications that can benefit. Each subsequent section will cover one application

and use case in detail. Each section contains a brief overview and discussion that

relates the findings to declarative storage techniques as discussed in Section 2.4.

4.2 Programmability

4.2.1 Ceph

We utilize the Ceph storage system as a prototyping platform for developing

new data interfaces. Ceph already provides a form of programmability with a

feature called object interface plugins. An object interface is a plugin structured

similarly to that of an RPC in which a developer creates a named function that

exists in and is managed by the storage cluster which clients may remotely in-

voke. In the case of Ceph each remote function defined by a plugin is implicitly

run within the context of a single object specified when the function is called.

In effect, these plugins allow developers to add new interfaces to object-based

storage. For example, using these feature an application developer could create a

new function that remotely computed the MD5 hash of an object and invoke that

method remotely without returning all of the data and computing the hash locally.

Developers of object interfaces express behavior by creating a composition of ex-

isting native interfaces, or other custom object interfaces, and handle serialization

of function input and output. A wide range of native interfaces are available to

developers such as reading and writing to a byte stream, controlling object snap-
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shots and clones, and accessing a sorted key-value database associated with each

object, among others. One of the most powerful features that Ceph exposes is

that the composition of these native interfaces may be transactionally composed

along with application specific logic to create semantically rich interfaces. An

example of this would be an interface that atomically updates a matrix stored

in the byte stream and an index of the matrix stored in the key-value database.

Without the ability to atomically update independent pieces of data, applications

may be forced to use heavyweight, and difficult solutions like two-phase commit

to maintain consistency.

The implementation of Ceph’s object abstraction, although powerful, does

not support programmability in a convenient form. Supporting only C/C++

for object interface developers, Ceph requires distribution of compiled binaries

for the correct architecture, adding a large barrier of entry for developers and

system administrators. Second, having no way to dynamically unload modules,

any changes require a full restart of a storage daemon which may have serious

performance impacts due to the loss of cached data in volatile memory. And

finally, the security limitations of the framework limit the use of object interfaces

to all but those with administrative level access and deep technical expertise.

To address these concerns, we have developed Lua [80] extensions that allow

new object interfaces to be dynamically defined, loaded into the system, and mod-

ified at runtime, resulting in an object storage API with economy of expression,

which at the same time provides the full set of features of the original object

interface implementation. New object interfaces that are expressed in thousands

of lines of code can be implemented in approximately an order of magnitude less

code [49]. While the use of Lua does not prevent deployment of malicious code,

certain types of coding mistakes can be handled gracefully, and access policies are
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used to limit access to trusted users [61]. We note that the use of a language like

Lua allows us to more easily explore the space of programmability, but that the

space is not defined in any way by a particular language.

4.2.2 Other storage systems

We use Ceph as our prototyping storage system. However, many storage sys-

tems contain a similar mix of sub-systems that are discussed at length in this

thesis. For example, the distributed object store called OpenStack Swift [6] pro-

vides erasure-coding, replication, tiering, and durability features like scheduled

data scrubbing. Unlike Ceph, Swift provides an eventual consistency storage

model which expands the design space further when considering the scope of pro-

grammability in Swift.

Swift also contains aspects of programmability. For example, Swift Storlets

are similar to the data interfaces that we will discuss in this chapter [90]. A

Storlet is a function written by an application developer that can be run inside

the storage system. Storlets depend on Docker for sandboxing and to provide an

execution environment. The functions that are written as Storlets are stream-

oriented, and have limited access to services provided by Swift. Unlike Storlets,

as we will see data interfaces in Ceph provide a much richer set of interfaces to

internal services and are not restricted to a stream-based model. Another key

difference is that Swift provides only an object storage API, unlike Ceph which

also has an associated scalable file system. And as we will see in Chapter 5 such

a system is useful for building domain-specific interfaces.

The Hadoop distributed file system (HDFS) is a large-scale storage system

that exposes a POSIX-like file interface to clients [121]. The system provides many

sub-systems for erasure-coding, replication, and control over data co-location. In
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addition, a Paxos-like system called Zookeeper is used to maintain distributed

system-level metadata, and a scalable metadata service provides a hierarchical

namespace to file system clients. Unlike Ceph, HDFS is not an object store

and doesn’t provide features for extending the interface to the low-level block

abstraction that underlies file storage. However, some middleware layers that

implement file formats utilize file system metadata to align application objects to

block boundaries in a similar way that applications align data in an object.

The FastForward DOE project in preparation for Exascale systems produced

a new non-POSIX object storage system called DAOS [77]. The DAOS system is

one component in a larger storage strategy that includes both object-based storage

and a flat namespace, along with a scalable POSIX file system provided by Lustre.

The DAOS object interface allows applications to store both opaque binary blob

data, as well as key-value data. In addition, DAOS provides a domain-specific

interface for storing multi-dimensional data.

Pansas is an object-based storage system that includes a scalable POSIX file

system that uses the underlying object-storage system for storing file data [84].

The Panasas system has a similar architecture to Ceph including object storage

servers, and metadata servers. Pansas includes a Paxos-based cluster management

system that is used to to replicate a configuration database [120].

Summary

Of the systems listed above, Swift Storlets are most similar to the data inter-

faces described in this chapter. However, Swift as well as all of the other systems

above are listed to highlight that storage systems provide a wide array of internal

sub-systems, and that this diversity is not unique to Ceph.

Throughout this thesis we will see how different application semantics are
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mapped onto existing services found within Ceph. However, there is nothing

inherently unique about the particular sub-systems found in Ceph—the mapping

is dependent on both what is available in Ceph and what the application requires.

The same is true of other systems, and each will contain a set of sub-systems that

presents new challenges for mapping application semantics.

This observation further drives the need for declarative storage approaches

described in Section 2.4. A simple reuse of a service in Ceph may be accomplished

using a more complex mapping or an entirely different service found in a separate

system. This challenge is inherently a portability challenge, and is what made

POSIX and other standardized I/O interface popular and successful. Declarative

approaches to programmable storage stand to provide a solution to this challenge,

and will be necessary for the success of programmable storage.

4.3 Physical design

Developers of data management applications and services must often make

important decisions about issues such as data layout that can have an enormous

impact on performance. For example, it is common for database management sys-

tems to physically store relational data optimized for a particular access pattern

that exploits properties of the underlying storage devices, such as storing data

physically organized by rows, or by columns as is common for analytics database

systems [58]. And certain data management operations in high-performance com-

puting attempt to optimize I/O by reading and writing data that is aligned to

physical or logical boundaries, such as storage media or advisory locks. We refer

to the process by which these decisions are made as physical design, and the pro-

cess itself generally covers how resources and interfaces are used and coordinated.

Physical design is not limited to storage system developers; application develop-
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ers often must understand aspects of the storage system to engineer effective and

performant solutions. For example, file systems tend to expose a small number of

configuration and tuning parameters, and offer generic high-level guidance such

as optimizing for sequential I/O. Thus, application developers using a file system

have a limited surface to explore optimizations, which has become a source of sig-

nificant research and engineering to create application and middleware solutions

that are able to perform well on a file abstraction. In contrast, programmable stor-

age systems may expose a much larger scope of building blocks, making it easier

for applications to directly express their desired requirements and semantics, but

at the cost of increasing the size of the design space.

The programmability features found within Ceph expose three different inter-

faces for storing durable data. But as we will see, even with such a small number

of interfaces the size of the design space can become very large. These three inter-

faces will be referred to in the remainder of this section as omap (short for object

map), byte stream, and xattr (short for extended attributes). The byte stream

interface provides a file-like interface for storing a sequence of bytes, and is effi-

cient at storing and accessing large amounts of binary data. The omap interface

provides access to a sorted key-value database that allows developers to associate

arbitrary data with an object, and provides efficient random and range-based ac-

cess methods. Finally, the xattr interface is similar to omap in that it provides

access to sorted key-value pairs associated with an object, but has a different per-

formance profile. As we introduce each category of application in this chapter,

we’ll discuss the use of these interfaces in detail. Note that these three interfaces

provided by Ceph represent the current state of the system. As we discuss later

in this section, it is an open question as to if these interfaces are sufficient, or if

future applications may require or benefit from additional interface primitives.
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Physical design is challenging for a number of reasons. First, the design space—

that is the set of possible ways to build an interface—can often become very large.

And without detailed knowledge of the system implementation, it can be difficult

to reason about how to use existing resources and interfaces to reach a goal. Sec-

ond, the internal interfaces exposed by Ceph and used by interface developers may

be mapped onto a variety of implementations and hardware, potentially altering

the performance profile of a design at runtime, as workload characteristics change,

or at key life cycle events such as software upgrades, resulting in a spectrum of

best design choices that are difficult to codify within a single implementation.

One example of this is the recent introduction of very low latency non-volatile

memories and the implications of that media on interface design. For example,

Ceph imposes a non-trivial overhead in the fundamental use of an interface; that

is, the CPU resource usage involved in executing an operation that traverses a

large code path can be significant if a particular physical design forces a desired

access pattern to invoke primitive methods with a high enough frequency. When

new storage media are introduced with low enough latency, the CPU can then

become a bottleneck itself. In this case a design may want to make use of more

efficient APIs that reduce the number of invocations.

All of these challenges combine to expose a development experience that many

developers may find to be too costly. In the remainder of this chapter we will exam-

ine how programmability can be used beneficially to build real-world applications

that use resources exposed by a storage system in an application-specific manner.

The primary goal is to chart a course for future work in programmability that will

be based on declarative specifications.
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4.4 Transactional data management

In this section we are going to examine one class of application that benefits

from the transactional semantics of data interfaces in Ceph. The driving example

that we have selected is a storage service that exposes a distributed shared-log

interface. We use this driving example in this section to also provide a detailed

account of the current state of building data interfaces, which expands on the

motivational example from Section 2.3.1.

A common challenge in data management is maintaining consistency between

two or more pieces of related data. For example, an index that provides efficient

access to a large dataset along one dimension must be updated when the under-

lying data is changed. If the data and the index become inconsistent then an

application can easily produce incorrect behavior by experiencing a false negative

or positive result when querying for data.

Interfaces like the POSIX file interface provide little to no assistance to ap-

plications that wish to manage data with transactional semantics beyond coarse-

grained solutions like POSIX file locking. This results in solutions found in data

management systems like journaling updates, or multi-version concurrency control

schemes. In many cases these workarounds introduce added or duplicated com-

plexity, and in some instances inefficiencies such as double journaling writes are

created [100]. Object-based storage systems may offer interfaces that can make

certain types of data management simpler. For example, object-based storage sys-

tems often provide an interface for replacing an entire object in a way that readers

do not see intermediate states. While this may be useful as it offers a transaction-

like experience for updates, it forces updates to be coarse-grained and thus benefit

only certain applications; far more flexibility is needed to support general applica-

tions. In contrast, Ceph provides finer-grained access by allowing atomic updates
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to object data stored in any of its interfaces (i.e. omap, bytestream, and xattr), as

well as the limited composition of these interfaces. However, all of these interfaces

provide a fixed set of semantics that attempt to provide low-level primitives for

a common set of application needs. That is, applications often require custom

rules that govern how data is stored, read, and updated. When applications re-

quire higher level semantics, developers must translate between two or more sets

of semantics, often using workarounds to achieve a particular outcome. These

workarounds arise from a semantic gap between system interfaces, and is a source

of difficulty in designing data intensive applications.

In the next section we will examine a simple example of how programmabil-

ity can help to remove or make explicit these semantic translations and result

in designs that are easier to reason about, and would otherwise be difficult or

impossible to implement efficiently.

4.4.1 The CORFU abstraction

We have selected the CORFU log abstraction to demonstrate both the use of

data interfaces for transactional data management, as well as to provide a detailed

account of the current state of interface development in programmable storage

systems. Recall from Section 2.2.2 that CORFU exposes a high-performance dis-

tributed shared-log interface providing strong consistency and a global ordering.

The CORFU system is composed of three distinct pieces: a CORFU-specific stor-

age interface, a high-level abstraction that maps log entries onto storage targets,

and a network-attached counter called a sequencer that is used to assign clients

log positions with high-throughput. Please refer to Section 2.2.2 for more details

on the CORFU system, but we will repeat or introduce any salient aspects of this

system in this in chapter.
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● read(pos)
● write(pos, data)
● trim(pos)
● fill(pos)
● seal(dev)

Object Interface

Figure 4.1: CORFU is mapped onto Ceph by making use of object interfaces
that use programmability to reproduce the requirements of storage devices as
defined by the CORFU protocol (e.g. positional r/w, trim, etc...).

Figure 4.1 shows a high-level architectural view of CORFU in which clients

receive log positions from the sequencer, and dispatch I/O directly to storage de-

vices. When creating a new storage interface like CORFU inside a programmable

system like Ceph, one initial step is to identify the mapping between units of

storage and I/O. The primary unit of storage in Ceph is an object, and Figure 4.1

shows the CORFU-specific object interface that is used in an analogous way to

the custom SSD interfaces used in the original CORFU formulation. In the next

section we will show how programmability is used to design such an interface.

4.4.2 Example design process

This section presents an example process of designing a data interface. We

will be constructing the CORFU storage device interface, and will assume the

role of a developer evaluating Ceph as a platform for implementing such a system.

We assume a basic knowledge of the Ceph and CORFU architecture, as well as

an operational understanding of how to build new object interfaces in Ceph, but

lacking a detailed understanding of the implementation of Ceph and its detailed

performance profile.

First we examine the basic requirements of the CORFU interface that we
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want to replicate using programmability techniques. Then we present a high-level

view of the architecture, and finally present a detailed account of the basic design

process using programmability as it currently exists.

Requirements

One of the primary use cases for the CORFU log abstraction is to simplify the

construction of scalable data management services, such as cloud-based metadata

services, database management systems, and file systems [23, 17, 116]. The type of

log that CORFU exposes is a strongly consistent shared-log that presents a global

ordering to all clients. This type of log is typically implemented with solutions

such as Paxos [75], but achieving high-performance with these solutions is difficult

due to natural bottlenecks in the architecture (e.g. funneling writes through a

single node). The types of systems that CORFU targets such as cloud-scale data

management systems may require both high-throughput and low-latency I/O.

The CORFU abstraction solves one key aspect of providing a high-performance

log through its fundamental architecture which decouples the assignment of log

orderings from I/O. However, an implementation of the CORFU interface must

still make use of hardware capable of delivering high performance. For example,

the original CORFU design mapped log entries onto a cluster of flash devices,

but it is the design of CORFU itself that allows the system to exploit the high-

performance nature of a cluster of fast media.

One requirement of building a CORFU log abstraction using Ceph programma-

bility is that the architecture that provides CORFU with the ability to achieve

high-performance is retained. However, Ceph itself today as a prototyping plat-

form does not provide the same performance as a cluster of network attached

flash devices. By recreating the same optimization techniques, however, we take
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advantage transparently of enhancements to Ceph as they become available. For

example, recently there has been increased interest in running Ceph on flash-only

clusters and work is currently being done to increase the performance of Ceph for

next-generation non-volatile memories. This transparency means that a log can

be configured to be stored on fast devices, or slow devices like spinning media to

optimize for capacity. And as the system is able to more fully exploit the perfor-

mance of new devices, so to will an interface built on Ceph such as the one we

will be exploring.

As a general service, a log can also be used in more traditional modes such as

a write-ahead log. In our discussion with industry, we have found that optimizing

for tail latency and read throughput for large sequential I/O needed for log scans

(as opposed to fine-grained random reads) is an important operational mode [94].

As we will see these metrics can be taken into account during the design process

of data interfaces.

High-level solution

The creators of the CORFU abstraction designed the system to achieve high-

throughput by striping log entries across a cluster of flash devices providing scal-

able I/O through parallelism. A high-level question that must be answered is how

this same parallelism will be achieved in a mapping of the protocol onto Ceph.

Recall from Section 4.4.1 that objects in the Ceph storage system are mapped

onto physical storage devices, and can be used as an approximation of a unit of

I/O parallelism. We use this knowledge of the underlying storage system to arrive

at a high-level design in which log entries are striped across a set of objects (e.g.

using round-robin addressing).

Challenge. Translating optimization techniques onto the target pro-
grammable storage system requires understanding fundamental as-
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pects of its design, such as understanding how I/O may be parallelized.
However, this issue goes deeper; for example, in addition to physical
parallelism in Ceph being achieved through the use of objects as a ba-
sic unit of I/O, logical constraints such as locking also exist. Typical
configurations hide issues such as locking, but designing an interface
with a misconfigured system could produce suboptimal solutions that
become codified.

The data interface expected by the CORFU protocol operates on log entries

addressed by their global log position. This has implications on the design because

the implementation of a data interface must be capable of addressing a wide range

of potential log addresses using techniques such as indexing. The log entries

managed by the CORFU storage device specification places log entries into one of

three states: free, written, and invalid. This means that the data interface must

be able to manage at least 2 bits of metadata per log entry, along with the opaque

log entry data itself. The exact set of metadata required ultimately depends on

the full set of semantics of the interface which may be adjusted by a particular

implementation. For example, CORFU is able to use compact data structures

to represent indexing information by assuming fixed size entries. However, one

useful deviation from the original CORFU design may be to support the storage

of variable length entries. If this is the case, then in addition to basic state

information, per log entry metadata must also include details such as the size of

a particular entry. When these details are important to the design discussion we

will highlight them.

In the remainder of this section we detail a sample process of physical design

for the CORFU interface in Ceph. We will look only at the write interface of

the CORFU storage abstraction that is used for storing new log entries. Other

interfaces such as trim and read present similar design challenges, but as we

will see focusing only on write is more than sufficient to support our claims and

demonstrate storage programmability. In fact, the multiplicative affect on the
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design space of simultaneously attempting to optimize for two interfaces would

result in a discussion that would be difficult to present.

Log entry storage strategy

The current state of building interfaces in programmable storage systems can

require an arduous process of trial and error. This is especially true for developers

that do not have an in-depth knowledge of the performance profiles of the internal

storage interfaces. In this section we will present a window onto the design process

of one interface that highlights the trials that developers are subjected to when

exploring the design space of new storage interfaces.

As discussed in the previous section, Ceph exports three internal storage ser-

vices for building new data interfaces. These three are the bytestream, object

map (omap), and extended attributes (xattr). The CORFU interface that we are

constructing will store persistent log entry data, and must make use of these inter-

faces for data management. In addition to the log entry data, each entry requires

that a small amount of metadata must also be managed. This means that there

are nine possible combinations of storing entry data and metadata using the three

provided storage interfaces.

Challenge. It is an open question if the primitive interfaces pro-
vided by Ceph (e.g. omap, bytestream, xattr) are sufficient for all
applications. They are useful for a broad range of applications, but
other interfaces (e.g. mmap) may offer advantages for certain applica-
tions. In this respect the type of analysis we are performing will never
be finished. Hiding this evolution from interface developers will help
adoption of programmability techniques.

Rather than implementing all nine strategies, it would serve us well to eliminate

some possibilities. To do this we can conduct a simple experiment to examine

the performance profile of writing log entries into each of these interfaces, and

draw conclusions from their relative performance across a range of entry sizes.
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Figure 4.2 shows the throughput in appends per second when writing 128 byte

entries into each of the three storage interfaces over a ten minute window.

Figure 4.2: The throughput in operations per second of writing 128 byte entries
into each of the three storage interface provided natively by Ceph.

The experiment was run using one Ceph storage node configured with a modern

Intel CPU with 20 cores, 120 GB of RAM, and an enterprise grade SSD used as

the backing store for Ceph running with Bluestore. We ran the Ceph monitoring

daemons on a separate node, and generated our workload on the OSD to help

eliminate network jitter from the results. The first immediate conclusion that we

can draw from this graph is that using extended attributes to store entry data is

not viable; in fact the performance degrades over time.

Understanding why the extended attribute interface has this performance pro-

file is not necessary to rule it out as a candidate for storing entry data. However,

understanding its implementation is useful for understanding the conditions in

which it may be used successfully. Extended attributes are serialized by Ceph in

a way that causes them to accumulate in size. Thus even though our experiment

is storing small, 128 byte records, the total accumulated size becomes larger with

each operation. Later in this section we will revisit extended attributes and how
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they can be used effectively.

Figure 4.3: The throughput in operations per second of writing 1KB entries into
each of the three storage interface provided natively by Ceph. As the size of the
entry being stored increases, the variance in performance of the omap interface
also increases.

The second conclusion that we can draw from Figure 4.2 is that the omap

interface provides far better throughput than the bytestream interface when stor-

ing 128 byte entries; nearly a 2x improvement. Without any further experiments,

selecting omap as the storage interface for entry data would provide the highest

log append rate. This trend continues as the entry size increases, as shown in

Figure 4.3 in which 1KB entries are written, where the omap interface continues

to provide better throughput than the bytestream interface. The figure also indi-

cates that the performance of the omap interface exhibits higher variance, which

we will discuss shortly. Also note that the extended attribute interface has been

removed as a storage option after discovering its performance profile, discussed in

the previous experiment.

We repeated this same basic experiment for a wide range of entry sizes, and

summarize the average throughput in Figure 4.4. The x-axis shows the size of

the entries being written, and those labeled X+1 correspond to X+1 bytes (e.g.
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4096 and 4097 bytes). As shown in the figure, the omap interface can provide far

better throughput than the bytestream interface when storing log entries that are

less than 4KB in size. For entry sizes larger than 4KB, the bytestream interface

outperforms the omap interface, except for entry sizes of 4KB+1 bytes, and the

two interfaces perform virtually the same with 8KB+1 sized entries.

The reason that 4KB entry sizes are an exception has to do with both an

implementation detail within Ceph, and a configuration parameter that controls

when I/Os trigger allocation and read-modify-write activity. For example, in our

experiment we have set this parameter to 4KB, and in fact its default value is

16KB, which also varies depending on the type of media being used (e.g. disk

vs SSD). While small writes and unaligned writes (e.g. 4KB+1) achieve better

performance with omap, the overhead of the omap interface begins to dominate

as the entry size increases at which point the bytestream interface provides better

throughput.

Figure 4.4: The throughput in operations per second for storing log entries of
varying size in either the bytestream or omap interfaces.

Unfortunately this example only highlights a portion of the complexity. For

example, the exact cross-over points for performance will depend on both me-
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dia and configuration parameters. For instance this experiment uses a custom

storage backend built specifically for Ceph called Bluestore, which itself depends

on RocksDB. Another common backend used in production runs on top of a file

system like XFS, and uses the kernel buffer cache. Furthermore, recall from Sec-

tion 2.3.2 the unwieldy number of configuration parameters and tunable settings

that exist in Ceph, in addition to the ability to configure the system by swapping

out critical components such as the storage engine with alternative implementa-

tions. Invariably these factors combine to produce a system that can be configured

in multiple ways to produce different performance profiles.

As previously mentioned, other metrics such as tail latency can be an impor-

tant factor when designing an interface like a high-performance log. For each of

the experiments that we ran, we also collected a latency distribution of all I/O

operations. For entry sizes less than 8K, omap provides better median latency by

a factor of 1.2x to 2.2x. However, at the 99th percentile, the bytestream interface

provides better tail latency of between 4x and 11x for entry sizes larger than 1K

bytes. This result turns out to be unsurprising when considering the implementa-

tion of these interfaces. The omap interface is implemented using RocksDB, and

this particular storage engine is well known for not performing well when storing

large values due to write amplification [79]. On the other hand, the bytestream in-

terface can excel at large I/Os because it issues raw I/Os directly to the underlying

block device.

Challenge. Building a new data interface is effectively a multi-
dimensional optimization problem. An implementation strategy is de-
pendent on both the workload characteristics (e.g. the distribution of
I/O sizes), high-level performance goals of the interfaces, as well as the
system configuration and performance profile of primitive interfaces.
Furthermore, optimizing for certain metrics (e.g. tail latency) may
mean making large sacrifices in the performance of other metrics.

Thus far our design process has focused on the bare minimum operation of
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storing log entries, but has been very useful in identifying a high-level performance

profile for the construction of the CORFU domain-specific interface. Next we will

consider how metadata should be treated by our implementation.

Metadata management strategy

As we have seen the bytestream and omap interfaces provide differing perfor-

mance profiles when storing log entries, and the best choice is not always clear.

However, we have yet to consider how metadata should be handled in our im-

plementation. There are three states that each log entry can be in (unwritten,

written, invalid) which thus requires a minimum of two bits to represent. Depend-

ing on the exact implementation semantics (e.g. fixed entry sizes, maximum entry

sizes, dynamic sizes) an implementation may require a small number of additional

bytes to encode information like bytestream offset (if the bytestream interface is

used), and entry length.

For each of the two interfaces, omap and bytestream, we can select between

either as well for metadata storage yielding four design possibilities. We have

omitted consideration for now of extended attributes, and revisit this interface

at the end of this section. We will repeat a similar process to winnow down our

design space. First let us consider the case of storing log entry data using the

omap interface. Based on the results shown in Figure 4.4 we can identify the

conditions under which using omap to store log entries is beneficial, but we must

also take into account the additional metadata storage.

These results show that omap performs well compared to the bytestream in-

terface for entry sizes smaller than 4KB, but when evaluating where to store a

few bytes of metadata per log entry, we can see that even very small writes to

the bytestream (e.g. 1 byte) result in poor performance. Thus, when storing log
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entry data in omap, combining the overhead of metadata storage into omap as

well will offer the best performance. For example, each entry in omap may store

its associated metadata as a prefix on the entry data in the value associated with

an omap entry, provided the total size falls within a range that is optimal for

omap.

However, consider the case of writing an aligned I/O to the bytestream. Using

an approach that combines the metadata with the log entry data (e.g. as a

header) would result in an aligned I/O that is turned into an unaligned I/O,

perhaps altering the decision about which interface to use. For example, when

storing a 4KB log entry one would achieve higher throughput storing the entry

and the metadata in omap compared to writing the 4KB entry plus a metadata

header to the bytestream (as shown by the results of writing 4KB+1 byte entries)

even though a 4KB write to the bytestream outperforms a 4KB write to omap. A

corollary to these results is that padding a small I/O to achieve an aligned write

to avoid using the omap interface can provide performance benefits. Finally, even

though the throughput of an unaligned bytestream write can be worse than using

omap, a strict priority on tail latency may dictate using the bytestream interface

despite the lower throughput.

The final approach to managing metadata that we will examine is one in which

omap is used to store metadata, and the bytestream is used to store log entries.

In this approach every write becomes a write to both the omap data interface

and the bytestream interface, and the atomic execution semantics provided by

Ceph ensure that the two data locations remain consistent. The results of this

approach are shown in Figure 4.5. The first thing to notice is that for log entry

sizes less than 4KB, and the unaligned write of 4KB+1, the hybrid approach

performs poorly compared to using omap because of the lower performance of
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Figure 4.5: The throughput of writing log entries using three strategies: omap,
bytestream, and a hybrid in which log metadata is stored in omap, and log entry
data is stored in the bytestream.

writing small, unaligned entries to the bytestream. This would appear to be an

uninteresting result, except for the following observation: in each of these cases,

the omap interface is already capable of outperforming the bytestream interface

according the cost model that we have observed through experimentation. Thus,

in these cases the unified approach can be adapted to store the entires in omap

which is already being used for metadata when the model suggests a performance

improvement.

Likewise, the same model can be used to encode rules for when to redirect

writes to the bytestream. Thus, a unified approach to managing metadata in this

way allows an adaptive solution, that always outperforms the alternative.

Challenge. Collecting data that exposes a performance model is only
one step in the design process. Acting on this model requires tech-
niques found in database systems that use models and the current
system state to select the best execution strategy. Complex logic re-
quired for an implementation to handle all of these cases (and this
is only a selection) must be written, and ultimately rewritten as as-
sumptions change without a different approach to building interfaces.
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Extended attributes interface

Throughout our discussion of the design process we have ignored the extended

attributes interface after observing that its performance degrades as more data

is written into it. This held for both storing log entry data, as well as per-entry

metadata that grows as more log entries are written (albeit at a slower rate).

The extended attributes interface is nearly identical to omap in that it provides

an interface for storing sorted key-value pairs, but the xattr interface provides very

fast, low-latency read access because the data is always cached in-memory. Data

stored as extended attributes are serialized and stored along with an internal ob-

ject metadata structure that is saved every time the object is updated. Therefore,

we expect the overhead of using the xattr interface to be less than the omap in-

terfaces provided the total size of data managed by the xattr interface falls below

a threshold.

In order to be able to use such an interface one needs to be able to compactly

represent entry metadata. If we assume a restricted use case with fixed log entry

sizes, then we can make use of a calculated placement strategy and represent log

metadata by using a bitmap that encodes the state of each log entry. Raw bitmaps

can reduce space usage by a factor of 8x, but even storing a modest number (e.g.

10,000) of entries per object, two bitmaps would still require over 2KB of space

that must be decoded, re-serialized, and written for each log write operation.

A class of bitmaps called compressed bitmaps can represent compact bit pat-

terns efficiently using techniques such as run-length encoding. Figure 4.6 shows

the serialized size of a state of the art compressed bitmap [32] of size 10,000 when

the bits are set in a random order. When the bitmap is small a few sparse bits still

enable good run-length compression. As the number of bits grows the sparseness

of the bits degrades the effectiveness of the compression technique. Techniques
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like run-length encoding operate efficiently when there are repeating patterns (e.g.

a long series of set bits). A random workload is thus an adversarial workload that

largely minimizes the benefits of techniques like run-length encoding. After some

period of time a majority of the bits are set, and as larger groups of bits are set,

run-length encoding again becomes effective. While the peak data usage should

be a concern there are two things to consider. First, a nice property of the com-

pressed bitmap is that if an adversarial case occurred, there is the opportunity for

the size to eventually decrease as more log entries are written and the density of

bits that are set increases.

Figure 4.6: Simulated worst-case serialized bitmap size with a random arrival
order of bits being set. 10K bits.

The second things to note is that fortunately, a workload in which all log

appends arrive in a random order is highly unlikely. Consider a log configured

to store 10,000 entries per object, with the log striped across 25 objects. Since

the sequencer in a CORFU implementation makes log assignments sequentially to

clients, in order to even create the conditions for such a worst case arrival order to

occur there would need to be around 250,000 inflight I/Os. A workload pattern

that is more reasonable to expect is one in which the object is filling up primarily

sequentially (the best case for a compressed bitmap), but reorderings occur within
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a bounded window at the frontier of the object append position.

Figure 4.7: Simulated partial arrival order. Arrivals are out of order, but
bounded by a sliding window across the total set of log positions.

We simulated this arrival model by reordering a variable set of bits selected

randomly from the total 10,000 and constrained the reordering to occur with a

small window of 100 bits centered on the selected position. Figure 4.7 shows the

results of this experiment. The x-axis shows the percentage of total bits that are

reordered within their bounded window. For example, when 10% of the bits are

reordered, the median size of the bitmap over the course of the entire experiment

is approximately 25 bytes, a significant improvement in real-world compression

ratio compared to the worst case index size observed for an adversarial case.

We found that even when storing as little as 20 bytes of a simulated index

in the extended attributes interface that there was no real performance bene-

fit. Considering our knowledge of the implementation suggesting there may be

a performance benefit when storing a small amount of data using xattr over a

different interface such as omap, this result is counter-intuitive when considering

the alternatives that stores thousands of individual metadata entries. Without an

extensive analysis or ability to contact experts, usage of extended attributes may

remain fully unexplored as an option for a developer of a new data interface.
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Challenge. Techniques such as utilizing compressed bitmap indexes,
or padding log entry I/O to achieve aligned writes, are engineering
solutions that provide specific optimizations. In a system allowing in-
terfaces to be specified declaratively these engineering techniques must
be generalized and exposed to the optimizer as tools for navigating the
design space based on query semantics and available cost models. In-
tegrating new techniques will be an on-going process.

4.4.3 Summary

We have built many data interfaces, and the process outlined in this section for

constructing the CORFU interface reflects a common process that involves first

collecting basic requirements, and evaluating different high-level approaches to

winnow down the design space. Overtime we have developed intuition about what

works well in different situations, but this intuition is difficult to communicate and

it is subject to immediate invalidation as the system, workload, and configuration

evolves.

However, the benefits of building such interfaces has remained clear. It may

be the case that application developers (ourselves included) can bare the cost of

evaluating designs and arriving at a solution that works well. Unfortunately, as

we saw in Section 2.3.1 even a simple system software upgrade can have dramatic

effects on design decisions. These types of unforeseen events are difficult to account

for, and can have far reaching consequences when interface changes are required.

The design space becomes even more complex if interfaces can benefit from new

primitive services and costs must be weighed with respect to migrating to new

formats and data management strategies that work with existing data.

4.4.4 Declarative approaches

Declarative specifications allow developers to decouple what they want to

achieve from the mechanisms that provide those results. In this section we showed

93



that simple cost models can be built to guide how data interface should behave. By

all accounts the sophistication of state-of-the-art database optimization strategy

covers the necessary requirements of the decisions we have outlined in our evalu-

ation. In Section 2.3.1 we highlighted the use of the Bloom language to encode

the semantics of interfaces such as CORFU that we have explored in this section

as well. The Bloom language in particular is built upon a formal foundation that

allows the full breadth of database optimization research to be applied.

However, database query optimization and planning is not a magic wand, and

is only as good as the cost models and tools that are available. For example, we

showed that small log entries could be padded in order to create an aligned I/O

that performs better. This type of strategy must be taught or made available to

the set of techniques known to the optimizer. Ceph doesn’t expose a bitmap index

interface, but as we saw this can be a useful tool. An approach to programmability

using a declarative specification would need to also be aware of tools such as

indexing strategies like bitmaps that it can make use of. A storage system may

even contain sub-systems that have not yet been exposed for reuse by the system

when producing an execution plan for a declarative specification. For example,

if Ceph used a bitmap index internally this could later be exposed for reuse,

potentially providing additional benefits.

4.5 Computational resources

In this section we will examine how programmability is used to build storage in-

terfaces that expose system resources such as CPU, memory, and I/O bandwidth.

Unlike the previous section that examined how a distributed shared-log interface

benefits from fine-grained transactional data management, in this section we will

look at a large-scale database management use case that utilizes storage system
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resources for accelerating query execution performance by offloading computation

and indexing services to the storage system.

Scalable database services (e.g. cloud-based SaaS offerings) rely on efficient

scalability of both database processing and storage. Ideally each resource may

scale independently, but in practice there are often trade-offs that are made. In

the next section we describe two common techniques for scaling database systems,

both of which have significant limitations when being considered for cloud-based

environments that rely on flexible scaling. These limitations are used as motiva-

tion for the development of a database system architecture called Skyhook [38]

that decouples storage and database processing, allowing each component to scale

independently.

Skyhook was designed from the beginning to exploit storage system pro-

grammability by aligning the logical boundaries of database abstractions (e.g.

relational tables) to low-level object storage abstractions found in common cloud-

based storage systems such as Ceph. This approach supports an architecture in

which offloading common query optimizations such as selection and projection is

simplified because storage and computation are aligned at a fine-grained level.

In Section 4.5.3 we present results of this architecture by showing the benefits of

using programmable storage below a PostgreSQL database node running common

TPC-H queries [105]. We show that the architecture can increase performance

by reducing data transfers, exploiting local CPU and I/O bandwidth within the

storage system, and utilizing internal sub-systems such as indexing.

4.5.1 Background

Figure 4.8a shows the high-level architecture of a standard single-node database

system (e.g. MySQL or PostgreSQL). In this architecture resources local to the
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database node (e.g. CPU and memory) are used by the database system which

has access to attached storage (e.g. SCSI or NFS). Scaling a single-node database

system has many limitations. For instance, a scale-up approach adds additional

resources to the database node, but this has physical limitations, and while scal-

ing out storage can increase capacity and throughput, these are also physically

limited by the network or local bus.
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Network /
Bus

(a)

Database Node
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Figure 4.8: (a) The scalability of single-node database systems are physically
limited. (b) Common scale-out approaches have operational limitations that make
scalability inflexible due to storage affinity and static resource allocation.

The standard approach to horizontally scaling a database system is to use a

massively parallel processing (MPP) architecture in which the resources of many

nodes are tightly coupled to create a unified database system (see Figure 4.8b). A

similar approach referred to as a hybrid-MPP architecture forms a logical database

system by coordinating multiple independent database instances. Both of these

architectures have proven to be scalable approaches to building database systems.

However, there are limitations to these approaches in a cloud-based environment

where flexible scalability is needed.

These limitations arise from common methods by which storage is managed.

First, both system architectures tend to create a strong affinity between a node

and storage that it may address (e.g. only data in a locally attached disk). When a

system grows, shrinks, or otherwise is reconfigured in a way that existing partitions
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are changed, data shuffling occurs and can be a stop-the-world data management

event. This storage affinity also limits the flexibility of utilizing CPU and memory

resources. Because database nodes take ownership of partitions of the database,

processing a partition is limited to a subset of the total compute resources of the

cluster, even when capacity is otherwise available.

Next we discuss the salient features of the Skyhook architecture which address

these limitations, show how Skyhook makes use of programmable storage systems,

and present results from several experiments.

4.5.2 Skyhook

The Skyhook database architecture is an experimental system that seeks to ad-

dress limitations in existing scale-out database systems by decoupling data man-

agement concerns into independently scalable components. Skyhook abandons

storage abstractions such as POSIX files for more flexible object-based storage.

Figure 4.9 shows a high-level view of data organization in Skyhook in which a re-

lational table managed by a database is partitioned into a number of shards that

are stored in objects within a Ceph cluster. Skyhook ensure that these partitions

are constructed below high-level table abstractions managed by a database node,

and as a result, data rebalancing is handled transparently by the storage system,

and only logical repartitioning results in global data shuffling (e.g. sharding a

table on a new key).

While systems such as Ceph provide flexible scale-out storage, it is the use of

the object abstraction and the programmability of the system that allows Sky-

hook to use a single database node to accelerate many common query processing

operations. Critically the object-based abstraction allows Skyhook to precisely

align relational table partitions with the units of I/O and CPU parallelism in
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Figure 4.9: Skyhook stores relational tables by partitioning the table into shards
and storing each shard in an object within the Ceph storage system. This allows
transparent rebalancing to Skyhook.

the storage cluster. This supports a common method for query acceleration: the

use of push-down processing, such as running selection and projection operations

closer to the data.

Push-down processing is a technique found in some database systems that

reduces the amount of data that must be examined and transformed in order

to answer a query. For example, a database executing a query that selects 10%

of the rows in a table by scanning will read and materialize all rows only to

retain a fraction of the total data set size. Push-down processing can be used

to eliminate rows from consideration early on in the process to reduce the total

amount of work, and data transferred. Other forms of push-down processing

include computing aggregates (e.g. sum, mean, max) using resources closer to

the storage. When storage and compute are co-located, push-down processing

can exploit I/O and CPU parallelism for query evaluation such as reading and

processing rows concurrently.

Database systems that use existing storage abstractions such as POSIX files do
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not have a straight forward mechanism for exploiting storage system resources.

Interfaces such as a bytestream only expose read and write interfaces, and the

implementation of these interfaces have no knowledge of the actual structure of the

data being stored (e.g. rows and columns). Some systems layer solutions over the

bytestream interface creating an intermediate abstraction that achieves a similar

result. However, these systems rely upon affinity mappings that create static

resource allocations that are not flexible, and may duplicate common functionality

and services. Other systems like Hadoop address this issue by co-locating distinct

storage and compute systems, and use locality information and resource scheduling

to achieve locality goals.
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* Indexing
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Foreign Data Wrappers
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Figure 4.10: Skyhook is structured as a standard single-node database con-
nected to a scale-out storage cluster such as Ceph. The database node connects
to each storage server through a custom database-specific interface that allows the
database to use storage system resources such as the CPU, and indexing services
to accelerate query performance.

In contrast, Skyhook takes advantage of storage system programmability by

mapping both read and compute nodes in a query plan to objects within the

storage system, and using a custom data interface to implement methods for

query acceleration. Since objects are well-aligned to CPU and I/O resources,

fine-grained resource utilization is far easier to achieve. Figure 4.10 shows the
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interface between the Skyhook database node and the underlying storage system.

Each Ceph OSD exposes a custom object interface through which the database

interacts with table partitions. The interface understands both the structure of the

data, as well as common operators used in queries such as indexing, projection,

and aggregation. Programmability is flexible enough to support more complex

processing operations such as partial aggregates, pattern matching, sampling, or

customized processing such as domain-specific user-defined functions.

4.5.3 Results

We have constructed a storage interface using Ceph programmability features

that allow a database system to push down query operators (e.g. selection and

projection). We use four queries that contain a subset of the common operations

found in the TPC-H benchmark suite. Our data set consists of approximately 140

GB, and contains 1 billion rows. The relational table is partitioned into 10,000

objects each roughly 4 MB in size. We have restricted our experiments to a fixed

set of queries running on a static data set. The scenario reflects a common process

in which a large dataset is loaded in bulk into a database after which queries may

be run against the data set. The queries were evaluated on a Ceph cluster, and we

repeated the experiment using between 1 and 16 OSDs each containing 20 CPU

cores and approximately 120 GB of RAM.

Queries that contain operations that may be run in the storage system are

applied to each of the 10,000 objects and metrics such as runtime and local resource

utilization are collected. Unless otherwise noted, results are the median value of

three runs of an experiment. The database node manages the parallel execution

of these push-down operations using a queue depth of 12 operations per Ceph

storage node. We found that this configuration provided good performance and
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demonstrated the scalability gains of exploiting remote resources.

Data reduction

We demonstrate how the database system can accelerate query execution by

reducing the amount of data that must be returned and processed by the database

node using two queries. The first query simulates a standard selection query that

returns all rows that match a predicate. The equivalent SQL is given by SELECT *

FROM lineitem WHERE extendedprice > 71000, and the query parameters are

selected so that 10% of the rows match. Figure 4.11 shows the result as we vary

the number of storage nodes used. The result labeled client-side is the cost to

return all of the data to the database node and process it locally, while the server-

side result executes the filtering operation inside the storage system and returns

the rows that match.

Figure 4.11: Runtime of a 10% selectivity query executed on a single client
compared to using custom object interfaces and push-down predicate evaluation.

In this experiment the result labeled client-side represents the case in which
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the database node is responsible for fully evaluating the query, and reading the

data stored in the storage cluster remotely. In this configuration the database

node always does the same amount of total work, however the performance im-

proves with more OSDs because of the increased I/O throughput that is available

for scanning the dataset. The result labeled server-side corresponds to a config-

uration that is identical to the client-side configuration except that the filtering

predicate is applied on each OSD to the 10,000 objects. The reduction in runtime

is three-fold: first, like the client-side case the system benefits from increased I/O

throughput. Second, by utilizing the total set of CPUs available in the storage

cluster to perform filtering the amount of data returned to the database node,

and by extension the amount of data transferred over the network is reduced by

90%. And third, the amount of work that must be performed by the database

node itself is reduced to only those rows that match the predicate.

Compute

While reducing the data transferred is a valuable optimization, queries with

simple predicates over primitive types (e.g. numeric comparison) as we saw in

the previous example, do not tax the compute resources. Figure 4.12 shows the

results of running a query that uses a regular expression predicate that also selects

only 10% of the total set of rows. The query is equivalent to the SQL statement

SELECT * FROM lineitem WHERE comment iLIKE ’%uriously%’.

The results are similar to the data reduction experiment in the previous section,

shown in Figure 4.11. In this case the nodes we use (as well as the client node)

are able to absorb the additional cost of evaluating a regular expression.
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Figure 4.12: Runtime of a 10% selectivity regular expression query executed on a
single client compared to using custom object interfaces and push-down predicate
evaluation.

Index acceleration

Finally we highlight the use of internal indexing services found in the stor-

age system for accelerating point queries against the database. Recall that the

dataset we are using is a table with 1 billion rows partitioned into 10,000 ob-

jects. The query we evaluate is a point query with predicates evaluated against

two columns. The equivalent SQL statement is given by SELECT extendedprice

FROM lineitem WHERE orderkey=5 AND linenumber=3. In order to accelerate

this query we have built a data interface that is used to construct a compound in-

dex on the orderkey and linenumber columns. This index is stored in the internal

indexing service provided by the omap indexing interface provided by Ceph.

The compound index maps the attributes of each table row onto the bytestream

within the object, providing the offset of the row associated with the index entry.

This allow a query to avoid scanning the data set in the object by looking up the
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exact row location using an efficient indexing mechanism. This index is built and

maintained on a per-object basis after the initial dataset is bulk loaded into the

system using the omap indexing service interface.

While this indexing strategy provides accelerated point queries for the rows

contained in an object, the set of objects that must be queried (i.e. the set of

objects a row may be found in) is dependent on the data partitioning strategy,

and natural ordering of the rows. For example, if there is no relationship between

the partitioning of data and the columns being queried, then all partitions must

be queried. This is the case for the partitioning and the query that we evaluate.

Figure 4.13 shows the cost of performing the point query using client-side and

server-side scanning, as well as the index accelerated lookup that queries all 10,000

partitions. The results show that the indexing service can provide significant

performance benefits for query execution.

Figure 4.13: The runtime of evaluating a point query over 10,000 objects by
scanning at the client, scanning at the server, and using an index over all rows.

What is fascinating is that by utilizing the full I/O bandwidth and CPU re-
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sources of the cluster, a query operation over 1 billion rows can be accelerated by

taking advantage of the fine-grained data and index partitions managed by the

system even when 10,000 remote operations are invoked.

Index construction

Finally, we evaluate the performance of building the index over the entire

table. The process happens in two steps. First, the raw data is loaded, and then

a second pass is made to build the index. These two steps could be combined,

but we have separated them to help break down the costs involved. Figure 4.14

shows the runtime costs of these steps as we vary the number of objects that the

table is partitioned into, corresponding to larger or smaller table partitions. In

each experiment the dataset size remains constant. The runtime cost of storing the

objects increases as the number of objects increase because the per-object overhead

costs accumulate. These costs consist of overheads such as network round trips,

and the latency involved in establishing an object context on an OSD.

Interestingly the runtime costs of building the index decrease as the table is

partitioned into smaller shards. The reason for this reduction is a result of the

efficiency of inserting key-value pairs into the omap database, and the number of

rows being indexed per object. The implementation of the method that builds

the index inserts all index entries for an object in a single object transaction.

Thus, when the table is partitioned into fewer objects the size of the resulting

transaction is larger. However, the internal implementation of transactions in

Ceph is inefficient for very large omap bulk inserts due to issues such as the

serialization and deserialization of in-memory data structures. A larger number

of objects results in smaller partitions, and thus more fine-grained omap updates

which are more efficient for the system to handle.
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Figure 4.14: The runtime cost of storing and indexing table partitions as a
function of the number of partitions.

This result highlights an inherit challenge in building domain-specific interfaces

of developing with a changing set of primitives and a dynamic cost model. For

example, a developer may reasonably expect that bulk inserting larger partitions

would be more efficient, but internal details negate this assumption. However, an

implementation that handles larger partitions by inserting smaller batches within

the same transaction may outperform the result shown with smaller partitions

because it also avoids the network round trips. While the omap interface in Ceph

was likely not designed with such a use case in mind, the internal optimizations

that could make bulk inserts more efficient would be a reasonable future enhance-

ment. If a developer builds an interface and uses configurations that optimize for

larger numbers of objects, then a more efficient interface may not be easily taken

advantage of because the previous cost model was codified into a static design.

106



4.5.4 Summary

This section examined programmability in the context of a database manage-

ment system. The results show that programmability can be used to build data

interfaces that are viable and useful for applications that can benefit from stor-

age resources like CPU, memory, and indexing services. A generalization of the

challenges presented when developing the log-based data interface in the previous

section also apply to the database management use case, though the exact re-

sources and cost models discovered differ. For example, although we did not walk

through the process in detail, a similar, large design space must be navigated.

When combined with modern distributed storage systems, the pricing of to-

day’s commodity hardware is resulting in storage systems that can be configured

with high core counts, plenty of RAM, and fast local devices. However, today’s

storage interfaces do not expose interfaces that allow these resources to be uti-

lized directly. In this section we showed how a database management system could

make use of programmable storage interfaces to offload query operator execution

(e.g. selection and projection) to achieve performance gains compared to a tradi-

tional architecture in which all data processing happens locally to the database

node.

4.5.5 Declarative approaches

The prototype system we built, Skyhook, is designed to take advantage of a

database-specific storage interface built into Ceph. However, the implementations

that we experiment with are designed assuming a particular storage system con-

figuration and performance profile. As we presented in the previous section, an

implementation that codifies an approach to indexing (e.g. the bulk index update

problem we observed) can perform sub-optimally simply by changing the way
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that data is partitioned. These indirect effects are highly dependent on system

and workload configuration, implementation of interfaces, and design choices of

internal storage sub-systems. For these reasons, any static approach to a data in-

terface will need to be continually updated as the system and assumptions change.

Furthermore, the exact decision about running computations in the storage

cluster versus moving data back to the database system is a specific case of a

more general challenge, and has been covered in related work. While these cost-

based decisions may be relatively simple, building the cost models and a system

for constructing an optimized execution plan has been studied extensively in the

database literature.

The high-level approach to building the interfaces described in this section

using declarative specifications is similar to the cases we have seen before with

the distributed shared-log. A specification should abstract across issues such as

data layout and high-level data distribution and partitioning. However, the set

dimensions to such a cost model may be quite different. For example, a data

interface that may have a high cycles-to-data ratio may result in run-time decisions

that affect where computation is performed depending on the capabilities and

current state of the storage system. Finally, a programmable storage system that

is capable of hosting a variety of interface types may require a unified approach

to generating interfaces. For example, a decision about running a database scan

locally versus remotely may be dependent on the run-time state of the system with

respect to resource consumed by entirely different set of interfaces. Therefore, it

will not be sufficient for these types of decisions to be made in isolation by an

application, rather a high-level approach will be required that can reason across

application interfaces.
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4.6 Structured data management

The scaling requirements of high-performance scientific computing applica-

tions have been a driving force in system innovation. With both structured and

unstructured datasets that push the limits of scale, innovative data management

techniques are always under development to deliver performance from HPC sys-

tems. In this section we look at one specific topic in HPC scalability which is

checkpoint-restart, and how storage system programmability may provide advan-

tages.

4.6.1 Checkpoint-restart

Large-scale, long-running computations rely on parallel file systems to save

periodic checkpoints of application state. A checkpoint represents a globally con-

sistent view of a computation and can be used to restart an application from

a known point, following a failure. Since checkpoints require consistency across

potentially millions of threads, computations are generally suspended during the

checkpoint process. Thus, decreasing the time required to complete a checkpoint

can result in immediate increases in compute efficiency. However, a common I/O

workload in which all processes write a single file (N-1) is notoriously difficult to

optimize due to intra-file serialization.

The Parallel Log-structured File System (PLFS) was developed as a middle-

ware layer to address throughput scalability for N-1 workloads by transparently

decoupling writers, and transforming N-1 workloads into N-N workloads in which

each process writes a dedicated file. In PLFS, each process writes to a dedicated

log-structured file, and avoids the need for finding specific “magic number” tuning

parameters [22]. Since the logical view of the file being written—a single byte-

stream—is no longer explicitly maintained, each write must be recorded in an
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index, and this index must be globally available to all processes when the file is

opened for reading in order to identify the log shard containing a particular byte.

The PLFS middleware is implemented as either a FUSE-based file system, or

as an ADIO plugin to MPI-IO, and is designed to sit directly above a standard

POSIX file system interface. Index and log-structured files are maintained by

PLFS, stored in a special container directory that represents the high-level logical

file, and all index creation and compression is performed above the file system

interface. The scalability of PLFS can be reduced by two primary factors. First,

the size of an index can become very large resulting in increased I/O when writing,

and memory pressure from the index required by each client when reading. And

second, the number of individual log and index files can grow to put pressure on

the underlying file system’s metadata services [83].

Programmability approach

In much the same way that we presented how the CORFU log abstraction and

its optimizations could be replicated in a programmable system, here we show that

a technique for scaling checkpoint-restart workloads is also possible to replicate.

A programmability-based approach to implementing PLFS makes three im-

provements over the middleware-based architecture. First, index creation and

maintenance can be handled transparently by the underlying object storage sys-

tem using a PLFS-specific data interface. Second, metadata load is reduced by

avoiding the creation of multiple files per process—this is a result of using the

underlying object store for naming, rather than solely relying on the file system

metadata management services, and this will be discussed further in Chapter 5.

And third, index consolidation and compression can be performed offline, allowing

the computation to resume as soon as possible. An overview of the architecture
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Figure 4.15: The PLFS abstraction hierarchy. The top-level file view maps
writes to per-process logs that are automatically indexed by low-level active ob-
jects.

is shown in Figure 4.15, where a three level hierarchy is illustrated.

Figure 4.15 illustrates the multi-level design we used to demonstrate a pro-

grammability enhanced implementation of PLFS. The outer abstraction, labeled

logical byte stream, represents a single logical file into which multiple processes

are writing checkpoint data, and is identical to the file view presented by PLFS.

This is analogous to the high-level log abstraction presented in Section 4.4. The

I/O that clients generate against this file is translated by the client transparently

onto underlying object storage that uses a custom data interface.

The core abstraction in PLFS is an auto-indexed, log-structured file that

transforms writes at logical offsets into efficient object append operations. We

constructed a PLFS-specific data interface that is used to implements this ab-

straction, which performs automatic indexing. In its simplest form, clients stripe

data across a set of append-only objects that the application maintains in a dedi-

cated namespace, using a basic naming scheme to preserve the append order (e.g.

O0, O1, . . . ). Writes to logical offsets are translated into writes to objects, and

once objects reach a certain size threshold a new object is allocated to extend a

process’ append sequence.

We constructed a PLFS-specific object interface that acts as a building block
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for the log-structured file abstraction used by PLFS clients, and is responsible

for managing the logical-to-physical mapping using the internal omap indexing

facility. Figure 4.16a illustrates the functionality of the data interface when a

write is received. A position for the write is determined, and the logical-to-physical

mapping is recorded directly in the index. In a similar manner, a logical offset is

read by using the index to form a view over the data contained in the object.

Log Index

new append
free space

append
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rt(
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ff,
 p
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n)

write(loff, len)

(a)

free space

view
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read_index(...)
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Figure 4.16: Data interfaces used by PLFS file abstraction. An index is auto-
matically generated, and logical views can be constructed.

Immediately following the completion of a checkpoint using this design, open-

ing a file for reading can be expensive: the global index is uncompressed and

fragmented across all of the objects composing the entire high-level file. To ad-

dress this issue the data interface may perform compression on the index to reduce

the amount of data returned to clients opening a file.

Index compression by merging. The set of index entries corresponding to

the objects of a process log are compressed using two strategies implemented as

a pipeline, shown in Figure 4.17. The first strategy is merging: A PLFS index

fundamentally consists of a set of 3-tuples (logical offset, physical offset, length)

that map the logical offset of an extent to its physical location. The current version

of PLFS performs basic compression by merging adjacent entries that correspond

to a contiguous logical extent. For example, the index entries for two 100-byte
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Index Compression Pipeline
Raw Index

(logical offset, physical offset, length)

Figure 4.17: Index compression pipeline.

writes at offsets 0 and 100 can be replaced by a single 200-byte index entry at offset

0. This is implemented in PLFS by buffering index file updates, merging when

possible, and periodically flushing the buffer. The first stage of the compression

pipeline we use performs the same merge-based compression, and achieves the

same compression ratio as if PLFS used an infinite buffer. However, in practice

the periodic buffer flushing will introduce only a small amount of inefficiency to

the resulting compression ratio.

Index compression by pattern recognition. The second type of compres-

sion is not performed by the current version of PLFS, and utilizes pattern recog-

nition to identify regularity in the I/O pattern, replacing a series of index entries

by a compact representation when a series of entries matches the pattern. The

pattern that a series of index entries must match is the same as a standard strided

I/O pattern, (logical offset, length, stride, count), plus a starting physical offset.

Thus, the pattern can be expanded using the formula, Ol + i ∗ S, i ∈ [1, count),

where Ol is a starting logical offset, S is a constant stride size, and count is

the number of extents represented by the pattern. Other approaches to pattern

recognition and compression have also been explored in the context of PLFS write

indices [57].

We implemented the log-structured data interface in Ceph using the techniques

described throughout this chapter. Initial micro-benchmarks using a single OSD

show between 11% and 17% throughput overheads for an append workload gener-

ated by the low-level data interface I/O transformation. However, the workload is
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Figure 4.18: Index compression ratios for 82 PLFS traces.

generated by a single client using a closed-loop workload, and thus the source of

the overhead is likely to be latency. Increasing the load and optimizing physical

layout of the index to reduce the number of additional I/Os is expected to reduce

the throughput overhead.

We have performed an analytical evaluation of the reduction factors obtained

using index compression techniques mentioned previously. We used PLFS traces

from a mix of 8 applications and I/O benchmarks using between 8 and 512 pro-

cesses [7]. The reduction factors for both techniques are shown for 82 PLFS traces

in Figure 4.18. For each trace the effect of merging was reported, and the effect of

applying the pattern recognition technique after merging. The two curves show

the distribution of reduction factors obtained by each technique.

There are three interesting modes present in the graph. At the high end

pattern-based compression offers little to no benefit over merging, due to the I/O

patterns that have a high degree of sequentiality per process. At the low-end,

strided workloads with small writes are incompressible by merging, but the I/O

pattern is discovered and pattern-based compression is applied. In the center the

distributions are parallel, indicating workloads with large-scale patterns that can

be detected, and per-process small sequential writes that can be merged.
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4.6.2 Summary

Scientific data, such as the data that may be managed in files stored in PLFS,

is often highly structured. This is an important class of data as it drives increases

in the size and scale of high-performance machines used in research. In this sec-

tion we examined how programmability could be used to emulate one middleware

approach to accelerating I/O for scientific applications, and add additional en-

hancements such as index compression.

Beyond the PLFS use case described in this section, there is a wide range

of future work related to the storage and management of structured data and

interfaces designed specifically for structured data. For example, special purpose

systems such as SciDB use domain-specific optimizations, and expose a declarative

interface for interacting with the system [28]. Other frameworks such as Legion

and Chapel contain detailed information about the structure of data managed

by applications [20, 31], and can make this structural information available to a

storage system. Additionally, services not specific to structured data but which

support the PLFS use case include scheduling offline work such as building and

compressing PLFS index structures that can be completed asynchronously to an

application’s checkpoint process.

4.7 Durability

Of all the properties that characterize storage systems, durability is perhaps

the most prominent and pervasive. The property of durability ensures that data

entrusted to a storage system today may be retrieved in the future. In this

section we use the term durability in the broadest sense of the word, so as to

include properties of storage media like persistence, as well as availability through
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redundancy at both the hardware level and the data level through mechanisms

such as replication, RAID, and failure recovery.

Durability has a direct and non-negligible impact on the performance of appli-

cations and storage systems. For instance, applications that expect writes to be

consistent and durable may be forced to wait until data is synchronously written

to multiple independent storage locations. Even if the underlying storage media

is fast, network and media I/O latencies can accumulate. Other resources like

the CPU are also involved in providing durability, especially for mechanisms like

erasure coding schemes, or data scrubbing techniques.

Applications manage a broad array of data, and not all data need be subject

to the same level of durability. By allowing applications to define the level of

durability required for each piece of data, developers can make trade-offs between

durability and other metrics such as performance and price. For example, Ama-

zon AWS and Google Cloud offer reduced redundancy data storage that allows

developers to trade-off durability (i.e. the likelihood of data loss) for reduced

pricing. In this section we will look at how durability can be adjusted in domain-

specific ways to offer a trade-off for better performance, and how mechanisms that

are used to provide data durability and availability can be repurposed to provide

redundant services required by high-availability applications.

The space of possible configurations directly related to durability can be very

large, covering many different strategies for replication and erasure-coding that

each offer different trade-offs. And the space becomes even larger when considering

different consistency models like eventual consistency. Indirectly, higher-level fea-

tures offered by a system like data snapshots and versioning, and failure-recovery

are all intimately intertwined together with the ability of the storage system to

offer a particular level durability.
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The ability to fully untangle these complex properties to allow them to be

programmatically recombined is beyond the scope of this thesis. We focus instead

on two basic aspects of durability to demonstrate some of the possibilities, and

conclude with a discussion about some additional future directions. We will ex-

amine persistence and availability as two system properties that can be used to

reproduce application-specific optimizations and common service requirements.

4.7.1 Persistence

The persistence model of storage media is a crucial parameter in the design of

a storage system. For example, systems that provide strongly consistent, durable

I/O may synchronously replicate data across persistent media such as disks or

SSDs whose data will survive power interruptions. However, some systems may

temporarily store data on volatile media to offer better performance with reduced

guarantees. Even though non-persistent memories like DRAM are frequently used

in storage systems as very fast media to cache frequently accessed data, or data

that can be easily recovered, storage systems tend to outwardly expose interfaces

that provide only persistent and durable storage of data. Applications with more

diverse needs are expected to provide their own solutions to data caching and

handling of non-persistent state by either implementing a custom solution or using

an existing, specialized storage system such as memcached [47].

Next we will consider the use of programmability to build an equivalent service

to that of the sequencer used in the CORFU high-performance log. This service

depends on both the performance of volatile memories, as well as an application-

specific protocol for recovering the state of a failed sequencer.
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The CORFU sequencer

CORFU utilizes a service called a sequencer that is used to provide a high-

throughput assignment of log positions to clients that are appending to the log.

The sequencer service is able to achieve high-performance because its state is

stored entirely in volatile memory, allowing a lightweight implementation that

is accurately described as a network-attached counter. Implementations of a

CORFU sequencer using UDP can achieve 100K-1M sequence assignments per

second.

In this chapter we have shown how data interface programmability can be

used to support many different aspects of domain-specific storage services. Data

interface programmability can also be used to define object interfaces that behave

like basic RPC services, exactly the type of interface exposed by the CORFU

sequencer. Fundamentally a CORFU sequencer manages a single monotonically

increasing counter representing the current tail of the log, and exposes an interface

for retrieving the current value of this counter, and an interface for incrementing

the counter. By storing the counter state in a Ceph object, data interface pro-

grammability can be used to build the equivalent of a CORFU sequencer service

by relying on the atomicity of data interfaces. As we have seen in previous sec-

tions, one of the first tasks in building such a service is to determine the physical

design and how state will be managed. The existing internal interfaces for man-

aging state in Ceph all force data to be stored durably, such as replicating the

state across nodes in the system.

This limitation is a product of the assumptions made by the storage system

about both the way state is managed, and the common guarantees that client

applications expect. Building a sequencer service interface by storing the state

of the sequencer using durable interfaces will inherently limit the performance of
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the sequencer to the performance of durably storing data (e.g. replicating the

state across multiple nodes). In order to achieve durable I/O performance on the

order of 100K-1M operations per second using replication across nodes, extremely

performant networks and media would be required. Thus we need both volatile

memories like DRAM, as well as a way to manage state without the normal

overheads of mechanisms such as replication.

By foregoing the normal persistence property of media to store state, higher

performance can be achieved. Consider the initial throughput of the object-based

sequencer shown in Figure 4.19. This sequencer is implemented as a custom data

interface in Ceph, but the sequencer does not store state on the underlying persis-

tent media such as a disk—it only uses an in-memory cache for state management.

Compared to a target throughput of 100K-1M sequences per second, the perfor-

mance falls far short. However, there are two aspects to consider. The first is

that this performance is a 2x improvement over storing the data using a persis-

tent interface such as omap. Eliminating the latencies associated even with a

fast SSD as in this case provides a performance improvement, but the underlying

server component of a Ceph OSD, and the underlying network should inherently

be capable of at least an order of magnitude more throughput.

The key to understanding the poor throughput is that systems like Ceph have

been built in the long shadow cast by slow media like spinning disks, and even

SSDs (compared to the performance of today’s networks and CPUs). This has

resulted in systems in which the cost of code path length and context switches

have been dwarfed by the latencies of media. For example, a generic operation

handled by a Ceph OSD must first be picked up by an available worker thread,

and is then subjected to a laundry list of checks and balances. The code path

related to these checks include such things as verifying the state of an operation
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Figure 4.19: A sequencer service implemented as a data interface. Sequencer
service failover is achieved by using the availability features found in the storage
system. Above we have configured the service with 2 replicas such that after 2
failures the service is still functional.

against the state of the OSD along dimensions like consistency requirements, the

state of on-going data recoveries and scrubbing, I/O priorities, permissions and

security, as well as data management features like snapshots, cloning, and tiering.

All of these checks culminate with the construction and life cycle management of

a transaction context that an operation executes within.

Crucially, every client operation is handled by Ceph in this way, even the

operation for our data interface implementing the CORFU sequencer protocol, a

protocol whose state is a single integer that can be stored in volatile memory, and

which in principle could avoid much of the complexity that other operations must

handle. When this knowledge is combined with the understanding that Ceph

enforces a serialization of operations on individual objects, we can begin to see

where the source of reduced throughput for our sequencer interface lives.

Improving this situation is a matter of basic engineering and architecture

changes internal to Ceph. For example, providing a fast path for volatile state
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management can be added that allows the complexity associated with the work

of managing data assumed to be durable to be circumvented. However, consider

this design in the context of the CORFU sequencer. Such a service is inherently a

named endpoint whose name should survive system failures. If state is managed

in volatile RAM, then there is a challenge related to how Ceph will manage failure

and recovery of the service. In the next section we examine availability in this

context, and show how it can be customized to provide fail-over functionality for

services such as a CORFU sequencer.

4.7.2 Availability

The availability of a storage system refers to its ability to continuously operate

even when failures occur. Availability is achieved through both data and hardware

redundancy. For instance, a common replication scheme is to make N copies of

data on N different physical nodes, allowing up to N-1 failures while still providing

access to data. Various configuration parameters effect the exact scenarios in

which data is available and updates are allowed, for instance a system may require

that when failures occur that at least two or more nodes are active to continue to

operate.

Durability and availability are extensively researched topics in the storage

system literature. In this section we focus on one basic, but common form of

availability: N-way replication. This scheme, an option for durability in Ceph,

provides the equivalent of a primary-backup system using N-1 replicas in which

a failure of the primary results in a replica being elected as the new primary. In

this mode, a full copy of an object is maintained and synchronously updated on

all replicas.

In the previous section we discussed how an object storing a counter can be
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programmatically configured to behave as a CORFU sequencer. If we consider

an object in this way to represent a service, then availability mechanisms provide

the equivalent of service recovery, a task often implemented using an external

system such as a quorum of Zookeeper nodes. In this section we discuss using

programmability to achieve CORFU sequencer failover, which is complicated by

the fact that object state is maintained in volatile memory for application-specific

optimizations.

Sequencer availability

There are three challenges in designing a CORFU sequencer using the data

interface programmability offered by Ceph. First, as we have just discussed, an

important optimization technique is achieved by storing the sequencer state in

volatile memory. The non-persistence of the sequencer state also enables opti-

mizations such as eliminating redundancy mechanisms like replication. The re-

maining challenges are related to the sequencer as a service, namely maintaining

the service availability while retaining this key optimization technique.

The second challenge is related to the persistence of the service endpoint name.

An application configured to use a particular sequencer service should be able to

continue to access the service using a persistent name, despite the state of the

sequencer service being stored in volatile memory. And the final challenge is the

initialization of the CORFU sequencer state. Following a failure of a node acting

as the primary for an object configured as a CORFU sequencer, all in-memory

state will be lost, including the state of the sequencer. However, since this state is

not stored redundantly, any replica that is elected as the new primary must take

steps to initialize the sequencer state. We will now look at these two aspects.
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Sequencer service naming

Objects in a system like Ceph contain both application-level data, as well as

internal metadata that tracks numerous pieces of state such as the object name,

and statistics. In order to provide transparent fail over to clients, an object in

Ceph may be accessed with the same name regardless of the node in the system

acting as the primary. Ceph provides transparent fail over and retries on behalf

of a client.

In order to provide service failover for the CORFU sequencer, clients should

be able address the service by the same name after a node has failed and a replica

has been elected. This implies that even though the application-level state of the

sequencer (i.e. the counter) is not replicated, metadata about the object, including

its name, must be replicated in order to provide durability and availability of the

service endpoint itself. The overhead of tasks such as creating a new object context

and replicating this context including metadata like object names is borne when an

object is first created. Following creation of the object context, application-level

volatile state can be managed without additional replication.

Sequencer recovery

Prior to responding to client requests, the in-memory state of a CORFU se-

quencer must be initialized. For a new log, this state can be a constant (e.g. 0

or 1). Initializing the state of a sequencer for a log that has already been created

and been in use requires an application-specific protocol that examines the objects

that store log data. Recall from Section 4.4.1 the CORFU data interface defines

several methods such as read and write, as well as methods such as seal which is

used to determine the maximum log position written. A sequencer state is recov-

ered by computing the maximum log position written across all possible objects
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that may store the tail log entry, and initializing the state to be the computed

maximum. In practice computing the maximum position requires contacting a

subset of the objects (e.g. the objects contained in the latest epoch), and they

may contacted in parallel allowing fast recovery.

Figure 4.19 shows what this looks like in practice. A CORFU sequencer is

constructed as a domain-specific object interface and replicated across three Ceph

OSDs. In the experiment shown a client continuously requests the next log po-

sition from the sequencer service. The graph is annotated to show the following

scenario. Initially the sequencer state is managed by OSD 0, and approximately

50 seconds into the experiment we forcefully shutdown the primary OSD. Within

a few seconds the OSD 1 replica has taken over as the new primary and service

resumes for the client. This process is repeated once more 110 seconds into the ex-

periment at which point OSD 2 takes over after OSD 1 fails. In these experiments

we do not fully recover the sequencer state. This process is application-specific

and can be integrated using a callback mechanism into these recovery routines,

and the CORFU recovery protocol can be run in parallel to object fail over. In

our experiments we use a fixed sequencer state during recovery.

The amount of time required to recover is dependent on many factors. For

example, if a failed OSD manages a large volume of object data, then the object

representing the sequencer service may be treated by the storage system identi-

cally to other objects storing data and recovery may be delayed depending on the

order in which object access is restored. This can be tuned by applications using

the Ceph pool abstraction to map the sequencer object onto dedicated hardware

creating fail-over configurations where the only objects to recover are sequencers

or other objects with a small amount of state. Another aspect of recovery perfor-

mance are timeouts associated with marking OSDs as failed. Ceph includes many
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tunables that can be configured to control how failover behaves.

4.7.3 Summary

Deconstructing services provided by a storage system, such as those provid-

ing storage durability, into its constitute components can reveal general purpose

building blocks that support application-specific data management needs and opti-

mization strategies. In this section we saw how persistence can be applied to data

managed by a system to provide performance enhancements. We also showed

that when data interfaces are thought of as services, that existing availability

features in storage systems can be used to provide the common requirement of

service fail over and recovery using domain-specific recovery rules. By factoring

out the application-specific aspects of service recovery, the existing availability

mechanisms enable applications to create recoverable services and focus only the

application logic.

Even low-level mechanisms such as replication can be used to achieve domain-

specific optimizations. For example, recent work has shown that replicas can be

used to store scientific data, or relational database indexes, each with different

physical designs optimized for a variety of workloads [36, 62]. Understanding

how these optimizations can be integrated into the storage system as application-

specific customizations on existing sub-systems will allow the scope of programma-

bility to fully expand into aspects of the system like durability.

4.7.4 Declarative approaches

Recall from Section 2.4 the declarative specification of the CORFU data in-

terface. Notably absent from that specification was the sequencer component.

Interestingly, the CORFU recovery protocol for sequencer state is also capable
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of being expressed declaratively. The sequencer state is computed from only the

durable state found in objects storing log entries. Therefore the state of the se-

quencer can be thought of as a cached view (i.e. a function) over the durable log

state. This allows a declarative approach to utilize the full breadth of existing

research on view maintenance in database management systems.

4.8 Graph processing

Throughout this chapter we have used the CORFU shared-log abstraction and

other services as motivating examples for the development of programmable data

interfaces. In this section we are going to discuss how programmability can be

applied to problems related to graph processing. Our driving example is a log-

structured database that can benefit from a data interface that understands the

structure of fine-grained metadata stored in the log. And this example is unique

beyond its data model. We will discuss how it is important for data models and

interfaces built with programmability to be composable. In particular, we describe

a database storage engine which stores all the entire database through the CORFU

shared-log abstraction. As we have seen, the maintenance of a relatively basic

abstraction such as a log can be difficult to build and maintain. By composing

interfaces these complexities effectively have a multiplicate affect on the size of

the design space. For this reason, this section also serves to further progress the

argument for declarative programming techniques

The shared-log abstraction has been shown to be a powerful building block for

constructing cloud-scale data management systems [17, 116, 117]. One impor-

tant technique found in log-structured systems is the use of metadata to record

relationships between elements in the log (e.g. back pointers [92]). However, ex-

isting high-performance log implementations expose storage interfaces that use
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opaque data types and passive interfaces, forcing applications to manage and in-

teract with metadata—such as following a pointer—at a coarse granularity. For

example, systems like CORFU provide a scalable log interface but operate at the

granularity of a flash page [18]. This can lead to I/O amplification, and increased

latency for many applications.

One compelling instance of a data management system built on a shared-

log such as CORFU is the Hyder distributed database system [25]. Hyder is a

transactional key-value data store that is structured as a copy-on-write tree, and

stored entirely in a shared-log. In addition to application data, Hyder stores

within the log all of the fine-grained structural information such as tree nodes and

pointers, as well as metadata that is maintained for transaction processing [23, 24].

In Hyder, database nodes function as a partial cache of the tree stored in the log,

and handle cache misses by using metadata to locate and read sub-trees from the

log storage.

Despite Hyder maintaining fine-grained structural metadata, the CORFU stor-

age interface restricts access of log entries to the granularity of a flash page. In

our testing we found that for non-cached point queries this restriction resulted

in increased read amplification, which can be significant when reified, depending

on the size and distribution of key-value pairs in the database. As non-volatile

memories become more widely deployed, their byte-addressability will exacerbate

these inefficiencies unless interfaces are designed for fine-grained, intelligent data

access. However, log abstractions that provide fine-grained access to application-

level data can also result in inefficiencies due to the amount of I/Os required to

traverse data structures and data relationships encoded into the stored data. This

section introduces zqlog, a log abstraction that allows applications that manage

log-structured data to navigate these types of trade-offs.
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To start, consider the process of executing a point query in Hyder which reads

a single key from the database. Since Hyder is structured as a tree, a path exists

from the root (R) to a node containing the target key (K) that must be traversed.

However, the physical organization of the nodes along this path is dependent on

the workload that created the database, and in general these nodes may all be

stored in separate log entries. In order to traverse the fixed path from R to K, the

log entries containing nodes along this path must be read. The read amplification

that we observed was a result of reading log entries that contained additional data

irrelevant to the point query (i.e. other sub-trees). One solution is to create a log

abstraction that allows direct access to individual application-level data elements,

such as single nodes in the tree managed by Hyder. However, we found that for

point queries in Hyder, optimistically caching all nodes in a log entry was an

important optimization for reducing the frequency of log read operations. This

example highlights a fundamental conflict between the need to publish timely

updates to the log, and predicting the I/O pattern of future workloads.

The zqlog interface that we introduce in this section is a shared-log abstraction

that does not force applications to define a fixed physical layout and access plan

for each log append. The interface seeks to allow applications to apply a schema

to each log, and combined with the flexibility afforded by programmable storage

techniques, application-specific queries can be run in the storage system allowing

features such as server-side pointer chasing and intelligent prefetching. We do

not fully develop a specification for applying and using a schema. At the end of

this section we discuss how a schema is important in this work, but leave that to

future work related to declaratively building interfaces. The flexibility provided

by a query interface to a shared-log allows applications to navigate the trade-off

between fine-grained and coarse-grained access for common log-structured data
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management scenarios.

In the remainder of this section we will discuss the problem space of Hyder

running on a shared-log, and how a new interface to the shared-log can benefit

the Hyder application. While we do not develop in this section a fully automated

solution, we do derive a simple cost model that demonstrates the need for an

automated approach to building data interfaces declaratively for this use case.

Background. We assume a system exposing a CORFU-like distributed shared-

log abstraction, which has been covered in detail throughout this chapter. One

aspect of the original CORFU system that is salient to the discussion in this

section is that CORFU maps log entries to coarse-grained flash pages of stor-

age devices. We will argue in this section that this leads to inefficiencies when

managing fine-grained metadata.

Applications make use of the shared-log abstraction in many different ways

that become apparent when examining how applications handle data manage-

ment tasks such as encoding and storing data relationships (e.g. pointers) in the

log. For example, Tango is a system for building cloud-based metadata services

that exposes a multi-stream abstraction on top of a single shared-log [17]. This ab-

straction is used to logically partition updates to Tango services while depending

on the serializability of the underlying log to implement consistent updates across

services. Tango implements this abstraction by using back pointers that thread

together log entries belonging to the same stream. These pointers are collected

into groups, and stored alongside application data, as low-level metadata in each

log entry that is loaded and used during start-up and recovery. Since existing log

implementations provide I/O at the granularity of a log entry, Tango is forced to

load application data—as opposed to only metadata—while reconstructing stream

membership. Next we will examine this issue in a more complex application.
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Figure 4.20: High-level architecture of Hyder in which clients append deltas to
a shared-log, encoding the effects of a transaction. Uncached nodes are paged-in
from log storage.

4.8.1 Motivation: log-structured database

Hyder is a distributed, transactional key-value database stored entirely in a

single shared-log [25, 24, 23]. The system is designed to run on a log that exposes

an opaque I/O interface, but Hyder manages complex data relationships. As we

will see in this section, this can lead to various inefficiencies that motivate the

design of the zqlog interface.

As shown in Figure 4.20, the Hyder database is structured as a copy-on-write

tree, and stored in the log as a sequence of deltas. Deltas are generated by

independent clients executing transactions against their latest cached snapshot of

the database. Each delta records the changes made by a transaction, and contains

a mixture of metadata for structure sharing (i.e. sub-tree pointers), as well as

annotations on tree nodes used to implement efficient transaction concurrency

control. Clients process the log in order, examining each transaction delta for

conflicts. When a transaction is found to have no conflicts it logically commits,

forming a new database snapshot. Critically, log processing and conflict analysis
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Figure 4.21: The number of log entries read to access any node in a test database
consisting of 10K entries, under a variety of scenarios.

are deterministic, so every client makes the same set of commit and abort decisions

independently, and can do so in parallel.

Using a data-sharing architecture, Hyder clients can be viewed as managing

partial caches of the entire database stored in the log. Shown in Figure 4.20, the

tree nodes A, B, C are greyed out indicating their presence in the database, but

absence from client-1 ’s locally cached snapshot. During transaction processing,

sub-trees that are missing from a client’s cached snapshot are paged into memory

on-demand by reading directly from the log. Missing sub-trees are read from

the log using persistent pointers embedded into each tree node that record the

location of the node’s children in the log.

Consider the process of accessing a single key-value entry in Hyder. Starting

from the root of a snapshot, a path exists to the target key that must be examined.

And when a node along the path is not resident in memory, it must be read from

the log in order for the traversal to make progress. For instance in Figure 4.20,

locating node C requires first reading node B into memory from the log.

We explore the costs of this system design by reporting I/O metrics for point

queries executing against a test database constructed by inserting 10K uniformly
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Figure 4.22: The factor increase in total nodes read over nodes required to
satisfy a point query for any key in a database.

distributed random keys. We run all experiments in a database system called

CruzDB [2] that is modeled after Hyder. One important difference between the

two systems is that CruzDB stores transaction deltas that include the effects of

rebalancing, resulting in log entries that generally contain more tree nodes. The

experiment we ran measured the number of entries read from the log in order to

fetch a given entry. We repeated this experiment for every key in the database,

before which the client cache was cleared. Figure 4.21 shows the cumulative

distribution of log reads required to access any key under various scenarios. For

example, the no-cache distribution gives the worst-case number of log entries read,

which occurs when no tree nodes along a path are cached. Intuitively, this is the

distribution of node depths in the database, which is structured as a balanced

binary tree.

In comparison, the inf-cache distribution in Figure 4.21 shows the cost to

access any key in the database provided that when a log entry containing a delta is

read to satisfy a cache miss, all nodes in that delta are optimistically cached. This

reduces the number of log reads because a delta often contains more than one node

along the path to a target key. But this reduction comes with the overhead cost
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of reading entries that may not benefit the current query. Figure 4.22 quantifies

this overhead in CruzDB by plotting the number of nodes optimistically cached,

but never used in support of a given query. In the inf-cache scenario roughly half

of all keys that are accessed cause a logical read amplification of 10x or more.

As we will see in the next section, even fine-grained passive I/O interfaces offer

little in the way of a solution to this dilemma. And so far we have only considered

the simple, constrained case of single key point queries; this issue exists in other

data management operations such as log scans, segment cleaning, and data ex-

pungement. One approach to navigating the trade-offs between fine-grained and

coarse-grained log interfaces is to construct domain-specific log interfaces using

techniques from programmable storage, which we describe next.

4.8.2 Programmable storage approach

To demonstrate how programmable storage can benefit our motivating exam-

ple of a log-structured database system we created three application-specific log

access methods, listed in Table 4.1, along with the standard read log interface.

When the read interface is used by the database system, all of the data at a log po-

sition is unconditionally returned. In this case the database optimistically caches

the contents, resulting in inf-cache case we observed in Figure 4.21. Now con-

sider the application-specific read-node interface that accepts an index parameter

specifying a specific node stored at the log position. This interface supports fine-

grained access to tree nodes, but only returns the exact node requested. Using this

access method for tree traversal corresponds to the no-cache case in Figure 4.21

since no additional nodes contained in a transaction delta are returned to a client

and made available to be optimistically cached.

The remaining two application-specific interfaces listed in Table 4.1 provide
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read(pos) read all data stored at a log position
(standard log interface)

read-node(pos, idx) read a tree node from a log position
read-samp(pos, idx, pct) read a tree node and return pct% random

sample of other nodes
read-path(pos, idx, key) read a tree node and return local nodes along

path to key

Table 4.1: Application-specific log access methods, and a standard log read
interface.

more flexibility. The read-samp interface reads a target node plus a random

sample of co-located tree nodes. The impact of using this interface can be seen in

Figure 4.21, where the distribution labeled read-samp-50p shows the number of log

reads required to access any key in the database when 50% of nodes in a log entry

delta are returned and optimistically cached. Adjusting this sampling rate has an

affect on both the cache hit ratio for point queries, as well as read amplification,

as can be seen by the read-samp-50p distribution shown in Figure 4.22. The final

interface that we tested—read-path—returns a target node like read-node, and

also accepts a key which is used to guide the selection of co-located tree nodes

such that only those along the path to the target key are considered. Creating

semantically rich interfaces like this can be powerful; this interface achieves the

same cost as inf-cache in Figure 4.21, while eliminating read amplification for the

given query.

The three application-specific interfaces that we have presented are far from

a covering set that would benefit our database example, let alone a broad set of

log-structured applications. For example, the semantics of read-samp are that

a uniform sampling of nodes is returned, but this is non-optimal since a given

path to a target key will not intersect with two sides of a tree. Instead, a better

semantic for point queries would be to return a sampling that favors nodes closer
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to the root of a tree delta. In addition to other data management scenarios such

as garbage collection and data expungement, low-level optimizations can be made

by exploiting storage locality, allowing dependencies and relationships that span

co-located log entries to be examined, such as traversing inter-delta tree paths.

4.8.3 Summary

Like previous sections in this chapter, we have shown the benefits of using

domain-specific storage interfaces. In this case we demonstrated how a domain-

specific interface to a log-structured database could be used to perform remote

traversals of a database stored as a copy-on-write tree structure. We showed that

an interface can be developed to control prefetching and reduce read amplification

by using database query parameters to guide the traversal of the tree structure,

and we showed a cost model that demonstrates the trade-offs that can be made.

4.8.4 Declarative approaches

There are several aspects to the log-structured database and corresponding

data interfaces described in this section that are relevant to declarative approaches

to interface development. Perhaps the most interesting aspect is the need to effec-

tively be able to compose domain-specific interfaces. For example in this section

we showed how a log-structured data interface that exposed application-level data

structures and access methods could be used to enhance performance. However,

the data interfaces specific to the example used in this section were added to the

existing CORFU log abstraction. An ad hoc approach to programmability would

thus likely require an approach that duplicated the entire CORFU customizations,

or relied on difficult to maintain interfaces built by punching a hole through many

layers of system software. Instead, we believe a promising direction is utilize lan-
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guages to assist with these challenges. For example, by allowing applications to

apply a schema to a CORFU log, new interfaces could be defined by queries that

replicated the original interfaces as well as interfaces whose queries provide the se-

mantic information required to derive optimizations such as push-down processing

and remote pointer chasing. And as we saw in Section 2.4 additional interfaces

on top of the CORFU abstraction defined in Bloom can be added using a few

snippets of code and optimized together with the entire implementation.

4.9 Conclusion

Previously in Chapter 2 we introduced programmability and argued for the

adoption of declarative approaches to building storage services and interfaces. In

doing so we relied upon only a small set of examples that illustrated basic concepts

and challenges. In this chapter we looked at the applicability of programmability

across a wide variety of application domains. We found that storage systems could

be used to build a variety of basic services that reduce duplication of functionality,

improve performance, and simplify construction of data services.

We examined the use of data interfaces for managing transactional data, and

exposing internal storage system resources like CPU, memory, and data manage-

ment facilities to improve the performance of a database management system.

We saw how by controlling the durability associated with an interface and reusing

basic availability features we could build a high-availability service with domain-

specific optimizations. And finally, we demonstrated how data interfaces could be

beneficial to HPC applications using structured data as well as data models such

as graphs that can benefit from remote traversals of data structures.

In a majority of the use cases discussed we encountered a very large design

space and quickly discovered cost models that influenced the physical design or
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runtime decisions. This finding further supports the need for a declarative ap-

proach to building interfaces that removes the burden of on-going maintenance

by application developers that would otherwise benefit from domain-specific in-

terfaces. In each appropriate situation we argued how a declarative approach

to specifying an interface may be derived, but building a full solution that uses

declarative interfaces is left as future work.

Future work

The development of the examples highlighted in this chapter has produced a

tremendous amount of momentum and breath related to future work. First, we

have only touched on a subset of the resources found in a storage system that

would be beneficial to expose as points of customization for applications.

For example, in Section 4.5 we described how relational database tables could

be decomposed into thousands of small objects and queried in parallel. This can be

further improved by reducing the number of network round-trips by implementing

data interfaces at a higher abstraction layer that allows objects to be queried as a

group. This feature makes use of an abstraction called a placement group in Ceph,

which also serves as a mechanism for controlling data co-location that is useful in

many computations such as dealing with ghost data in HPC analysis [64]. Not all

object-based storage systems will necessarily expose such an abstraction, and tak-

ing this into account is important. Other opportunities include scheduling offline

work like data indexing (see Section 4.5 and Section 4.6), and allowing data inter-

faces to handle batches of requests by controlling the queueing dispatch semantics.

In Section 4.7 we discussed how availability mechanisms such as replication and

failover can be used in domain-specific ways to create a high-availability service.

Replication itself is a powerful technique that can be used to create divergent
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copies of data each optimized for specific access patterns [62, 36].

These changes represent potentially significant disruption to the architecture

and use cases of storage systems that already suffer from multi-tenancy issues

such as performance isolation. We would be remiss to not mention that this may

complicate even further the challenges of providing features such as quality-of-

service guarantees. However, these challenges have themselves often been explored

in the context of storage systems offering a relatively narrow set of interfaces and

as such may expose new and interesting challenges.
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Chapter 5

Metadata management

An overwhelming majority of storage systems today are built assuming a

bytestream I/O interface. This has had a profound impact on software archi-

tecture: the inability of applications to explicitly represent domain-specific data

models throughout the storage hierarchy has led to the development of middle-

ware libraries that provide data model abstractions (e.g., HDF5, NetCDF), and

I/O stack extensions that help circumvent scalability bottlenecks (e.g. MPI-IO,

PLFS, IOFSL). While it is common for applications and middleware to influence

the design of each other, any co-design process generally ends at the level of file

interfaces leaving applications to create their own mappings between application-

level data models and a fixed file abstraction. As a result, common tasks such

as metadata management that do not fit into the standard model provided by

file systems are forced to be handled by applications themselves or delegated to

external services.

Throughout this thesis we have examined how components of a storage system

can be exposed in a safe way to be repurposed in order to construct domain-specific

interfaces. We have shown how this can be used to avoid duplication of services

by applications to reduce costs, simplify designs, and increase reliability by using
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code-hardened subsystems already available. In Chapter 4 we examined this topic

in the context of storage system data interfaces, and in this chapter we do the same

for metadata management infrastructure common to many distributed storage sys-

tems. Metadata management is completely pervasive in storage systems, serving

to describe a system and the data it stores at both a high-level and a low-level.

For example, the metadata associated with a POSIX file may describe how that

file is distributed within a cluster and its name relative to other names of resources

in the system. Similarly, metadata exists to describe high-level components of a

system such as the physical nodes that compose a cluster itself, all the way down

to the management of data at rest on physical media. We use the term metadata

management in this section broadly to encompass both system-level metadata,

as well as distributed metadata services for file systems, and the metadata re-

quirements of applications. By exposing metadata services programmatically, an

important tool is discovered for construction of domain-specific interfaces using

programmability techniques.

Virtually all applications rely on some form of external metadata management.

The predominant abstraction for metadata management in large-scale storage sys-

tems is the POSIX file system abstraction which provides interfaces to a number

of important services for building applications. In its simplest form an application

may use the file namespace to attach a name to a basic file resource that it pro-

duces or consumes. Some implementations of the POSIX file abstraction provide

highly scalable naming for high-performance applications that manage millions of

files which can be used to track a large number of application objects. The POSIX

interface also defines semantics for how file resources are to be shared among mul-

tiple processes simultaneously, and implementations of file systems thus contain

important mechanisms for managing shared resources that are used indirectly via
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the POSIX interface. Distributed storage systems also depend on the manage-

ment of metadata that describes high-level aspects of the system such as the set

of nodes in the cluster. In this chapter we will show that the metadata manage-

ment services found in distributed storage system (e.g. distributed file systems

and cluster-level metadata management) serve as useful abstractions for building

application-specific data interfaces.

5.1 Overview

In this chapter we demonstrate how metadata management in a storage can be

used to build domain-specific interfaces by examining two common services. First

we introduce file types that are extensible interfaces on top of the file abstraction.

This allows developers to associate application-level metadata with a file name,

providing an important service that applications tend to implement using custom

solutions or external services. We demonstrate how an implementation of the

CORFU log abstraction can use the file system metadata service to manage log

metadata required to bootstrap a client that accesses the log service. We also

highlight two applications for scientific data management whose metadata differs

significantly from existing file metadata. And when application-level metadata

grows too large it can be stored in a data interface to preserve the scalability of

the file system metadata service. We show that new services can also be created

by reusing internal subsystems found in the file system by building a CORFU log

sequencer using a small amount of metadata associated with a file and existing

mechanisms for managing distributed shared state.

Finally we show how the management of cluster-level metadata can be ex-

tended to include the management of high-level application metadata. We demon-

strate this by reusing an internal consensus engine common in distributed stor-
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age systems to store, manage, and distribute specifications for data interfaces

described in Chapter 4. Although we use this internal subsystem to support

programmability itself, the same mechanism and approach can be used by appli-

cations to manage data at the same level of abstraction when needed.

5.2 File type interface

We introduce a file type abstraction that allows applications to customize

the type of metadata and interfaces associated with names in the file system

hierarchical namespace. No longer are files required to implement a POSIX file

abstraction, but rather files become a means by which naming and integration

with other services, such as cache coherency, can be managed. The file type

interface is both a feature and a performance optimization. It is a feature because

it allows developers to add support for different storage types, such as how to read

new file formats or what consistency semantics to use for a specific subtree in the

hierarchical namespace [97]. It is also a performance optimization because future

programmers can add optimizations for processing specific types of files into the

inode itself.

To demonstrate the benefits to applications of making the file system meta-

data service programmable we focus on three aspects. First, we provide a naming

service that allows the management of application-level metadata using the full

power of a distributed, scalable naming service without forcing applications to

map names to POSIX files. For example, some applications may wish to create

names representing services or data resources accessible through interfaces other

than the standard POSIX file interface methods like read and write. Second,

we outline a method for applications to associate metadata with each name in

a way that maintains the scalability of the metadata service. And finally, we
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show how application-level metadata can be integrated into existing internal sys-

tems for managing cache coherency across clients to build new data services with

application-specific optimizations.

5.3 Name management

The scalability of the POSIX hierarchical namespace has been a constant topic

of research for decades, primarily driven by high-performance computing applica-

tions. The file type interface we introduce allows applications to use this naming

service without requiring that each name in the hierarchy represent a full POSIX

file. While there are other forms of namespace management for file systems that

are non-hierarchical, we focus only on hierarchical systems which are the most

common and have have been the subject of extensive scalability research. The

techniques we develop are applicable to other forms of namespace management.

Applications can make use of the hierarchical namespace to directly repre-

sent many common data management scenarios. For example, in Section 4.5 we

saw how the Skyhook project stores relational table data in objects, and uses a

domain-specific interface to accelerate query evaluation using internal storage sys-

tem resources. Skyhook may manage thousands of relational tables, and requires

a way to manage this space of named data resources. Using file types Skyhook can

represent each table as a file organized in the hierarchy, and inherit existing secu-

rity features already available to users of POSIX files. However, instead of storing

file data, Skyhook associates a small amount of metadata with each file name

that allows it bootstrap the naming of objects that it controls directly through

the Skyhook data interface. Other organization scenarios of data for Skyhook are

also possible such as naming individual table partitions. In the next two sections

we will examine further how this metadata is associated with each file name in
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/apps/skyhook/
   - table1
   - table2
   - table3

/apps/logging/
   - log0
   - log1/
      - stream0
      - stream1

Figure 5.1: On the left is an example organization of file metadata in which a
Skyhook database names individual tables. On the right log0 represents a CORFU
log and log1 represents a CORFU log with sub-streams. Each of these examples
demonstrates how the file namespace can be used to organize application-specific
metadata.

the namespace.

The directory abstraction is also useful for modeling application data rela-

tionships. Figure 5.1 shows a diagram of the file system hierarchy that contains

the name /apps/logging/log0 corresponding to a CORFU log resource. This

file name associates metadata that CORFU clients use to access the log service

managed by the storage system. When a CORFU client accesses such a file it

can extract the domain-specific metadata that is needed to bootstrap itself such

as the names of objects in the storage system and configuration parameters such

as the number of objects that the log is striped across. The name also is used to

represent the sequencer service associated with this log, and we will examine how

a CORFU sequencer is implemented using the metadata service in the following

sections. By managing CORFU metadata in this way, applications may coordi-

nate their access to a log, and discover the sequencer service using the common

file system path interface to the sequencer in the namespace without relying on

a separate service. Notice in Figure 5.1 another log is present in the namespace

as /apps/logging/log1/, and unlike log0, this log is represented as a directory.

The files contained in the directory (e.g. stream0) are streams contained in the

parent log. The stream abstraction is a method for virtualising the log, and is
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described in [17]. This organization is convenient for applications because it di-

rectly represents the logical relationship between a log and the stream contained

in the log, as well as the physical relationship: all stream data is stored together,

and all streams share the same sequencer service as the parent log.

This concept of using application-specific file types has been shown to also

work for HPC checkpoint-restart workloads that make extensive use of the file

system metadata service, as well as for use cases in high energy physics [98] in

which entire namespaces may be represented as a compact pattern where the

pattern is stored as metadata and transferred to clients. This allows clients to

reduce their impact on metadata load by participating in namespace management

with reduced communication requirements.

5.4 Scalability

The scalability of file systems has been the subject of extensive research. This

has largely been driven by scientific applications that require scalable namespaces

that contain large numbers of files per directory, as well as workloads that consist

of a high level of update concurrency to the namespace as well as to single files.

The semantics of the POSIX file abstraction make scalability challenging. For

example, when multiple processes open the same file for writing, distributed file

systems must ensure that processes observe consistent updates which requires

communication and coordination between the metadata services and the cached

data stored by clients. Because of the frequency with which communication takes

place in these scenarios, one approach to scalability is to limit the size of the

data objects being moved across the network. However, abstractions such as a

file inherently grow in size, suggesting that metadata associated with a file (such

as block lists) will also grow. The approach taken in some file systems such as
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Ceph is to use a fixed-size inode structure and embed parameters in the inode

that allow clients to independently map file extents to storage locations. A small,

fixed-size inode also allows Ceph to aggressively load-balance metadata across a

cluster of metadata servers by making it efficient to move inodes around within

the cluster.

Supporting a file type abstraction thus presents a challenge for programma-

bility because applications may associate domain-specific metadata with a name

in the file system namespace. In order to maintain the ability of the system to

scale, the amount of data stored with an inode must remain small. In Ceph an

inode is approximately 1KB in size, including 400 bytes for a directory entry, and

700 bytes for a directory inode. Luckily, many application are able to represent

datasets using a small, fixed amount of metadata. For instance, the CORFU se-

quencer state is represented by a single 64-bit integer, and the CORFU log itself

only requires a naming prefix and the stripe width of the log. When the size of

the metadata grows large, applications may manage metadata by using data in-

terfaces and storing the metadata in objects (see Chapter 4. Rather than placing

a large amount of metadata in an inode, applications may provide a small amount

of metadata that links to the data stored in objects.

The types of metadata used by applications is quite diverse. In the next

two sections we will briefly highlight two applications and the types of metadata

they manage. In the first example we will show how metadata interfaces that

expose locality—common in systems like Hadoop—are insufficient in some cases

and require a more general treatment of locality. In the second example, we look

at a high-performance computing application that can rely on file type interfaces

to manage metadata tracking datasets across storage tiers.
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5.4.1 Example: locality

Systems like Hadoop MapReduce depend on an important optimization that

reduces network data transfers by scheduling computation near the computation’s

data dependencies [121]. At a high-level Hadoop is structured as two separate sys-

tems: a distributed file system, and a separate system that manages computation.

There are two additional components that are used to achieve data locality for

computation. First, the distributed file system exposes a unique file interface

that allows a storage system client to query for the physical locations that store

a file’s data. Using this locality information that is exposed on a per-file basis,

a scheduling component is used to route computations to physical locations that

store dependent data locally.

The data locality interface exposed by Hadoop is specific to the byte stream

data model. For example, the interface returns the physical location of data given

a byte extent of a file. The interface is typically used by requesting the locality

of large extents of the file, and it is up to the computation to interpret the data

in the given extent. In fact, even Ceph provides a similar interface. While useful,

the fixed bytestream-oriented interface does not work well for some applications.

The SciHadoop project is an effort to extend Hadoop for processing scientific

data [29]. The structure of scientific data when stored in files can often pose a

challenge for achieving data locality using a bytestream data model. For example,

a common scientific data model is a multi-dimensional array. However, when

such an array is serialized into a one-dimensional file abstraction a fixed layout

must be chosen (e.g. row-major or column-major orderings). The result is that a

contiguous region of the file at the logical level may be stored at many physical

locations. The locality problem arises because the file system interface cannot map

between application-level data models (e.g. arrays) and file extents. Figure 5.2
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illustrates this challenge and the solution introduced by SciHadoop. The arrow

labeled L represents domain-specific metadata that is used to expand the model

of locality to cover applications that operate on multi-dimensional array data.

INPUT
(Logical)

Partition

PlacementPhysical
Layout

Execution
Plan

Mapper0   Reducer0
Mapper1   Reducer1

       ...                ...

L

1. Partitioning

2. Placement

Figure 5.2: MapReduce processes logical partitions in map tasks and matches
each map task with physical locations to form an execution plan. The line labeled
L is a contribution of SciHadoop which utilizes physical layout knowledge during
partitioning

This example highlights how file type interfaces can be used to manage application-

specific metadata. The metadata that is used to associate logical views of scientific

data with physical extents required to support a locality interface can range from

small and compact, to large. When the metadata is large it can be stored in ob-

jects directly. In both cases an application-specific file interface is used to expose

data locality for an array file-type rather than a one-dimensional byte stream.

Since the locality mapping is performed internally to the storage system rather

than hidden within the application, the array file type interface for locality can

be consumed by other applications without duplicating the mapping rules.

5.4.2 Example: scientific data

In this section we highlight a large-scale use case for application-specific meta-

data management that originates from work scaling high-performance computing

(HPC) and scientific data management.
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Consider the introduction of additional storage tiers to a typical HPC envi-

ronment, where each tier may differ in capacity, bandwidth, and latency. Such an

expanded storage hierarchy presents many opportunities for sophisticated storage

strategies such as hiding latency, intelligently handling low-memory situations,

performing I/O staging, and offloading data-intensive compute tasks. Unfortu-

nately it can be difficult for applications to fully exploit the storage hierarchy

when data must be managed explicitly by application developers.

For example, an application running on a system with a deep storage hierarchy

may integrate knowledge about analysis tasks into its checkpointing strategy by

storing one component of application state (e.g., a field associated with a grid

point) on a fast tier composed of SSDs for a pending visualization workflow, while

the remaining grid fields are placed in a capacity tier for resilience. The data

management challenge involved in this example is difficult to solve. In current

systems, the application would be required to split the data structure into mul-

tiple files, store the data in separate namespaces, and manage consistency and

tier migration. While middleware is capable of performing tasks such as complex

data mapping and sharding, the data management tasks required to track asyn-

chronous updates to application state across a heterogeneous memory and storage

hierarchy while conforming to the consistency requirements of the application are

beyond the scope of current I/O libraries that provide I/O optimizations or flex-

ible data serialization strategies. If such complex data management is embedded

in the structure of an application, migrating to a new system may require invasive

changes to the application that prevent adoption in the first place.

On-going work is examining these data management challenges in the context

of next-generation exascale systems that are currently in development by govern-

ment and industry. For example, by eliminating the POSIX file interface appli-
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cations are managing consistency themselves and are able to achieve important

optimizations such as latency hiding, advanced parallel I/O, and optimizations

that are enabled by handling data with relaxed consistency [113]. However, as

explained, this can be difficult for applications and developers to manage. In this

section we consider the use of the Legion runtime system—one system being used

to tackle these issues [20].

Legion is a data-centric parallel programming system for portable high-performance

applications. Importantly, Legion fully controls an application and manages vir-

tually all of the resources of a cluster on behalf of an application. Legion has

complete knowledge of the execution and data dependencies within applications

that it manages, and can therefore handle complex data management tasks trans-

parently, and optimize operations based on the current state of the system without

changes to the application. Legion supports a logical, distributed data model that

is decoupled from its implementation on memory or storage and provides the abil-

ity to manage the consistency of distributed application state. Legion is unique

in that it is a runtime for applications, taking over control of an entire system

and managing resources on behalf of an application. However, Legion doesn’t

manage persistent resources like file systems and externally named resources. In

its current form, Legion only manage memory and memory-like storage that does

not outlive the execution of an application.

Data Model. Legion introduces and is built upon the concept of logical

regions, an abstraction for describing structured distributed data. Logical regions

are a cross product of an N-dimensional index space and a number of fields (a field

space). Logical regions do not commit to and are distinct from any particular data

layout or placement within memories of the machine. A logical region may have

one or more physical instances, each of which is assigned to a particular memory
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with a specific layout. The data model also supports subdividing the data, either

by picking out subsets of the index space or of the fields. We extend this data

model to persistent storage by allowing the application data model to directly

map to the underlying distributed storage model. This allows applications to

specify parts of a dataset that should be persisted or communicated outside the

applications.

Memory Hierarchy. Legion models all hardware that can be used to store

data as memory (e.g. DRAM and persistent media like disks). The current Legion

implementation [111] involves four kinds of memory in which instances of logical

regions can be held: distributed GASNet memory accessible by all nodes, system

memory on each node, GPU device memory, and zero-copy memory (system mem-

ory mapped into both CPU and GPU’s address spaces). To support persistence,

we have introduced the RADOS memory within the Legion memory hierarchy,

which allows Legion to import RADOS objects into its runtime, unifying memory

and persistent storage with application semantics [113].

The integration of the storage system with the Legion runtime provides op-

portunities to make I/O optimization decisions based on both static and dynamic

system characteristics. Closer integration of the application level data model

and the storage environment allows the runtime to optimize for application spe-

cific data decompositions alongside other system characteristics while insulating

the application from these optimizations. These optimizations include automatic

tiering, sharding, asynchronous I/O, relaxed consistency semantics, and offloading

data-intensive tasks to the storage system, like we saw in Section 4.5.

Not strictly related to metadata management, we refer the reader to [113]

for a discussion on the benefits to using Legion to implement scientific applica-

tions and how Legion can achieve I/O optimizations by handling many aspects of
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Figure 5.3: Legion data model and mapping of an adaptive mesh refinement
application data to distributed and hierarchical storage.

data management itself. The management of applications and application data

dependencies when using Legion is similar to normal shared-memory programs:

typically a file system is used to track all of the resources. Legion too depends on

external services for managing the names of resources. In the remainder of this

section we highlight one example application that we have built with Legion that

demonstrates the breadth of metadata management that Legion applications rely

on, and which the file type abstraction we have proposed can help manage.

Figure 5.3 illustrates our co-design goal by showing how the runtime system

with storage integration could effectively map an adaptive mesh refinement (AMR)

application data structure into a distributed hierarchical storage system. To the

left of the figure is a multi-resolution grid with each vertex associated with three

fields (i.e., F1, F2, and F3). To the right of the figure is the integrated, distributed

multi-layer storage hierarchy (for simplification, the figure only demonstrates disk

and NVRAM tiers on three different nodes).

Regions for AMR applications are often organized at different resolution levels.
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In Figure 5.3, we use green and yellow to label regions in full resolution, and use

other colors for lower-resolution regions. AMR applications are often more inter-

ested in full-resolution regions, which may also come with more frequent accesses.

One predominant I/O optimization for AMR application is placing full-resolution

regions into a low-latency and high-bandwidth storage layer for better I/O per-

formance. However, the resolution distribution depends on input data, which

prevents this optimization from being performed at compile time. Therefore, sup-

porting dynamic data partitioning and data placement at runtime is critical for

AMR application performance.

The colors of the fields and storage tiers also represent an application-specific

mapping from regions to the persistent storage hierarchy. The coloring in Fig-

ure 5.3 demonstrates a possible mapping decision that keeps full-resolution re-

gions (in the top right corner of the grid), as well as field F3 for a subset of

lower-resolution regions (marked in orange) in the NVRAM tier, while all other

regions are stored on the disk tier. This mapping decision can be completely dy-

namic and made by the Legion runtime as a result of an optimization strategy,

such as staging data on the NVRAM for frequent access.

Legion employs a general method for specifying partitions of logical regions

based on colorings that allow for arbitrary data decompositions and layout. A

coloring assigns zero or more colors to each element of a logical region. Based

on the coloring of each element, Legion provides a primitive partition operation

that constructs subregions (partitions) of the elements of each color. As illus-

trated in Figure 5.3, the multi-resolution grid, which is itself a logical region in

the Legion framework, is partitioned into subregions with different colors. The

Legion runtime is able to perform different placement, re-partitioning, and layout

optimizations for the different subregions.
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In Figure 5.3 there are two colorings represented. One coloring is used to

facilitate the distribution of the AMR mesh in memory, and a separate coloring

on the same data structure represents the desired sharding and tiering decisions

that are communicated to the storage system when the data is persisted.

Metadata management

While an extremely powerful system for implementing performance-portable

HPC applications, Legion depends on external services for managing persistent

data and metadata. Storage system programmability can be used to provide

naming and metadata management services from the same storage system that

provides bulk data storage for data input and output to Legion applications.

The adaptive mesh refinement examples explored in this section is an example

of a complex metadata management challenge. Each level of resolution refinement

in the application not only needs to be directly named so that it can be shared

with other applications and used to locate artifacts, but will also have a distinct

set of metadata associated with it. This metadata includes application-specific

information such as grid configuration and coloring information that is specific

to the Legion data model, but also includes low-level details such as storage tiers

that data is stored on. By utilizing file type facility to manage naming and

metadata, the Legion runtime can depend on existing scalable services designed

for persistence, and load-balancing in dynamic applications without resorting to

external systems.

5.5 Shared resources

In addition to providing a scalable namespace, distributed file systems that

implement the POSIX file abstraction often also contain internal services for man-
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aging client sessions such as allowing clients to obtain locks (e.g. file byte ranges),

and capabilities (e.g. to cache file data locally). For instance in Ceph clients and

metadata servers use a cooperative protocol in which clients voluntarily release

resources back to the file system metadata service in order to implement sharing

policies that are controlled by the metadata service.

In Ceph the locking service implements a capability-based system that ex-

presses what data and metadata clients are allowed to access as well as what state

they may cache and modify locally. While designed for the file abstraction, inter-

nal services such as indexing, locking, and caching are all common services that

are useful to a broad spectrum of applications when considered in a more general

form. For example, distributed applications often make use of locking services to

control access to shared resources using external systems like Zookeeper. Next

we examine a concrete example to show how these internal services can be repur-

posed to manage non-POSIX file shared resources by constructing the CORFU

sequencer abstraction.

5.5.1 Example: CORFU sequencer

Recall from Section 4.7 that the CORFU log interface depends on a service

called a sequencer for achieving high-performance. A sequencer service assigns

log positions to clients by reading from a volatile, in-memory counter which can

run at a very high throughput and at low latency. In Section 4.7 we showed

how the durability of object data managed by Ceph could be changed to create

an optimized data interface that implements the CORFU sequencer service. In

this section we show how the file system metadata service can be repurposed to

provide naming, and to implement the sequencer service.

The sequencer resource supports the ability to read() the current tail value
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and get the next() position in the log which also atomically increments the tail

position that can be stored as a single integer. We have implemented the sequencer

service as a file type interface in Ceph. Compared to a solution that uses a

programmable data interface, this approach has the added benefit of allowing the

metadata service to handle naming, by representing each sequencer instance in the

standard file system hierarchical namespace. An implementation of the sequencer

service as we have seen in previous chapters is in large part conceptually simple to

implement correctly; as a centralized service, it is trivial to maintain serialization

over the metadata using an atomic increment operation. The primary challenge in

mapping the sequencer resource to the metadata service is handling serialization

correctly to maintain the global ordering provided by the CORFU protocol since

we are now using a distributed service rather than a centralized one to build the

sequencer interface.

Initially we sought to directly model the sequencer service in Ceph as a non-

exclusive, non-cacheable resource within the metadata service, forcing clients to

perform a round-trip access to the resource physically stored at the authoritative

metadata server for the sequencer inode. This was our intuitive idea of how the

internal protocols for managing shared state would function, providing a mech-

anism for implementing the sequencer semantics in a manner similar to that of

using a centralized service architecture. Interestingly, we found that the capabil-

ity system in Ceph attempts to reduce metadata service load by allowing clients

that open a shared file to temporarily obtain an exclusive cached copy of the

resource, resulting in a round-robin, best-effort batching behavior. The Ceph ca-

pability sub-system issues tokens to clients granting them a temporary capability.

When a single client is accessing the sequencer resource it is able to increment

the sequencer locally, reporting the updated state to the metadata service when
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Figure 5.4: Each dot is an individual request, spread randomly along the y axis.
The default behavior is unpredictable, “delay" lets clients hold the lease longer,
and “quota" gives clients the lease for a number of operations.

its token is revoked. Any competing client cannot query the sequencer until the

metadata service has granted it access and provided it with an up-to-date view of

the sequencer state.

While unexpected, this discovery allowed us to explore an implementation

strategy that we had not previously considered. In particular, for bursty clients,

and clients that can tolerate higher latency, this mode of operation may allow

a system to achieve much higher throughput than a system with a centralized

sequencer service, given that clients can locally increment the state at very high

rates that far exceed any network-based solution. We utilize the programmabil-

ity of the metadata service to define a new policy for handling capabilities that

controls the amount of time that clients are able to locally cache and control

the sequencer resource. This allows an administrator or application more control

beyond the standard best-effort policy that is present in Ceph by default.

The sequencer is implemented using as a new file type such that the sequencer
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Figure 5.5: Throughput of best-effort and 100K quota policies. The best-effort
policy spends more time communicating the capability between clients.

state (a 64-bit integer) is embedded in the inode of a file name. A total ordering

of the sequencer state is imposed by the re-use of the file system capability service

that can be used to grant exclusive access of inode state to clients. The metadata

service is responsible for maintaining exclusivity and granting access. Figure 5.4

(a) shows the behavior of the system in which a best-effort policy is used. The two

colors represent points in time that two clients were able to access the sequencer

resource. The best-effort policy shows a high degree of interleaving between clients

as exclusive access is shared, but the system spends a large portion of time re-

distributing the capability, reducing overall throughput.

In order to control the performance of the system we implement a policy that

(1) restricts the length of time that a client may maintain exclusive access and (2)

limits the number of log positions that a client may generate without yielding to

other clients waiting for access. The behavior of these two modes is illustrated in

Figures 5.4 as (b) delay and (c) quota, respectively. Compared to the best-effort

approach, using a delay-based policy can help tune the system to provide more

balanced progress across clients. And a quota-based system can be tuned based

on the expected burst size of applications that are not sensitive to longer delays

involved in receiving log positions. Other policies such as combining quota and
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Figure 5.6: The latency of acquiring new log positions using a best-effort and
quota-based capability policy. Latency is generally lower with the best-effort
policy because the system attempts to balance the capability across clients based
on time.

delay are also possible.

Figure 5.5 shows the throughput in log position assignments per second using

the best-effort policy and a policy that enforces a 100K position quota. The best-

effort policy is not able to provide throughput as high as the quota-based solution

because the best-effort policy spends more time passing around the capabilities

and this overhead leads directly to reduced throughput. However, as shown in

Figure 5.6 the best-effort policy provides better latency and latency bounds for

clients. The 100K quota experiment has several outliers of nearly 700 milliseconds,

while the median of the best-effort is still lower than the quota-based policy. This

is largely expected as the best-effort policy makes more of an effort to balance the

capability across clients. The exact cause of the outliers is unknown, but may be

caused by forcing the system into states that it does not normally operate in (e.g.

a quota based policy), leading to unexpected behavior.
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Recovery

Recall from Section 4.7 in which a reduced durability data interface was used

to construct a service that implemented the CORFU sequencer interface. Since

the sequencer state was stored in non-persistent DRAM, a failure of an OSD act-

ing as the primary for the service resulted in a CORFU-specific recovery protocol

being run to re-initialize the sequencer state of the OSD elected as the new pri-

mary. A similar but slightly more complex situation exists when the sequencer is

constructed using the metadata capabilities service.

In a centralized version of the sequencer following a failure a new sequencer

is elected and its state initialized from the result of the recovery protocol involv-

ing contacting each log storage target. One interesting aspect of the use of the

capabilities service is that exclusive access to the sequencer state shared resource

is implemented in part by physically moving the authoritative version of the data

to the client. Thus, if a metadata service or a client fails while holding the au-

thoritative version of the sequencer state then the metadata service must initiate

the CORFU sequencer recovery protocol to obtain a new initialization state. The

fact that clients may fail while controlling the authoritative copy of the sequencer

state may have an impact on when such a service is deployed. This is because

the capability subsystem depends on timeout mechanisms to make a decision that

a client has failed and initiate recovery. Thus, a client that is malicious or not

stable can easily reduce the overall performance of the system by preventing the

updated sequencer state from being propagated back to the metadata service.

Future work

The most interesting piece of future work is to fully evaluate the performance

profile that can be achieved by reusing the capabilities system for managing access
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to shared resources. We have shown that different policies can be built that offer

trade-offs, but it is left to future work to determine exactly when a sequencer

that uses a solution that we’ve described in this section should be selected over a

solution using a centralized sequencer. We would also like to apply this technique

in other application domains and for other types of system resources.

5.6 Service metadata

Keeping track of state in a distributed system is an essential part of any

service and a necessary component in order to diagnose and detect failures, when

they occur. Service metadata is high-level information about the daemons in the

system and includes things like cluster membership details, hardware layout (e.g.,

racks, power supplies, etc.), data layout, and daemon state and configuration.

It differs from traditional file system metadata which is fine-grained information

about files that applications control. While distributed file systems may manage

millions of files that are frequently updated by multiple applications, service-level

metadata is generally far less frequently updated and is smaller in volume. A

simple example of service-level metadata is the registry of cluster membership

used by Ceph clients to locate storage nodes; this list must be kept up-to-date on

all clients, and remain consistent.

Currently in Ceph a consistent view of cluster state among server daemons and

clients is critical to provide strong consistency guarantees to clients. Ceph main-

tains cluster state information in per-subsystem data structures called “maps”

that record membership and status information. A Paxos [75] monitoring service

is responsible for integrating state changes into cluster maps, responding to re-

quests from out-of-date clients and synchronizing members of the cluster whenever

there is a change in a map so that they all observe the same system state. As a
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fundamental building block of many system designs, consensus abstractions such

as Paxos are a common technique for maintaining consistent data versions, and

are a useful system to expose.

The default behavior of the monitoring service in Ceph can be seen as a Paxos-

based notification system, similar to the one introduced in [30], allowing clients

to identify when new values (termed epochs in Ceph) are associated to given

maps. Ceph does not expose this service directly, however we have found that

domain-specific services implemented with programmability techniques have ben-

efited from this being exposed as a key-value service designed for managing service

metadata that is built on top of the consensus engine. Since the monitor is in-

tended to be out of the high-performance I/O path, a general guideline is to make

use of this functionality infrequently and to assign small values to maps.

While there are many different data models and update semantics that could

be used for different applications, we have found it to be sufficient to expose ex-

pose a strongly-consistent view of time-varying service metadata as an interface

rather than a hidden internal component. For example, this can be used to store

object interfaces as well as metadata service load balancing policies [99]. The

system provides a generic API for adding arbitrary values to existing subsystem

cluster maps. As a consequence of this, applications can define simple but use-

ful service-specific logic to the strongly-consistent interface, such as authorization

control (only specific clients can write new values) or triggering actions based

on specific values (e.g. sanitize values). Domain-specific interfaces and services

make use of this functionality to register, version, and propagate dynamic code

and configurations (e.g. Lua scripts) for new object interfaces defined in storage

daemons and policies in the metadata load balancer. Using this service guaran-

tees that interface definitions are not only made durable, but are transparently
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Figure 5.7: Cluster-wide interface update latency, excluding the Paxos proposal
cost for committing the service metadata interface.

and consistently propagated throughout the cluster so that clients are properly

synchronized with the latest version of an interface.

5.6.1 Interface propagation

The customization of storage system behavior and instantiation of domain-

specific interfaces using programmability techniques inherently requires that state

related to the interface to be propagated throughout the system. For example,

installation of a new data interface in Ceph requires interface implementations

to be installed on the storage devices in the system. This is true independent of

the path by which the system arrives at a target implementation, such as by an

application directly expressing semantics through executable scripts like Lua, or

through code and execution plan generation using an optimizer and declarative

programming techniques.

In a large cluster with many clients, one concern with programmability is the

latency required to propagate changes throughout the system. This is particularly

of concern for high-availability applications with low-latency requirements. For
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example, a database management system may want to construct an interface cus-

tom tailored to a particular table that it manages, and be able to provide a service

based on the interface to clients interactively. In general this means that a new

interface must be installed on all nodes in the system. To this end we evaluate the

performance of supporting the evolution of interfaces through automatic system-

wide versioning and installation using the service metadata interface discussed in

the previous section.

We demonstrate the feasibility of utilizing the Ceph monitoring sub-system

by evaluating the performance of installing and distributing interface updates.

Figure 5.7 shows the CDF of the latency of interface updates. The interfaces

are Lua scripts embedded in the cluster map and distributed using a peer-to-

peer gossip protocol. The latency is defined as the elapsed time following the

Paxos proposal for an interface update until each object storage daemon makes

the update live (the cost of the Paxos proposal is configurable and is discussed

below). The latency measurements were taken on the nodes running object server

daemons, and thus exclude the client round-trip cost. In each of the experiments

1000 interface updates were observed.

Figure 5.7 shows the lower bound cost for updates in a large cluster. In the

experiment a cluster of 120 object storage daemons (OSDs) using an in-memory

data store were deployed, showing a latency of less than 54 ms with a probability

of 90% and a worst case latency of 194 ms. These costs demonstrate the penalty

of distributing the interface in a large cluster. In practice the costs include, in

addition to cluster-wide propagation of interface updates, the network round-trip

to the interface management service, the Paxos commit protocol itself, and other

factors such as system load. By default Paxos proposals occur periodically with a

1 second interval in order to accumulate updates. In a minimum, realistic quorum
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of 3 monitors using hard drive-based storage, we were able to decrease this interval

to an average of 222 ms.

5.7 Declarative approaches

Our investigation of programmability of metadata management services in

Ceph revealed a number of opportunities to use declarative specification ap-

proaches. In Section 5.3 we showed how the file system namespace could be

used to represent application-level non-file objects and the relationships between

them in the case of streams contained with the CORFU log abstraction. For

this use case, both the structure of the namespace as well as the interface are

application-specific. Declarative specifications that act as rules on how a names-

pace is structured is useful for applications to ensure a consistent behavior. Declar-

ative specifications for interfaces can be handled in the same way that data in-

terfaces are handled. A critical use case of declarative specifications come from

the challenges presented by portability. For example, a system like Ceph provides

two high-level mechanisms for approaching the creation of the CORFU sequencer

service, and the decision may be made by an optimizer according to a particular

cost model and the needs of an application. However, it is not guaranteed that

a non-Ceph storage system will contain the same set of mechanisms, or the same

cost trade-offs. For instance, the Hadoop file system is optimized for single-writer

cases and does not provide full POSIX consistency semantics. Therefore it is un-

likely to have sophisticated capabilities mechanisms internally for managing cache

coherency across clients. A declarative specification can be used to mask these

changes from application developers by finding different mappings for services for

a target storage system.

Each of the use cases we saw in this section will also benefit from using cost
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models to inform behavior and implementation. For example, the size of metadata

associated with an inode will effect scalability and performance depending on

the capabilities of the underlying system, as well as the strategy of metadata

management scaling used in a particular system. In Section 5.5.1 we showed that

there are a variety of policies that can be used to control the performance of

the capabilities-based CORFU sequencer, and the cost model for these policies

must be weighed against each, and against entirely different approaches such as

centralized approaches using data interface (see Section 4.7) which will have a

distinctly different cost model and set of trade-offs.

5.8 Conclusion

It’s not an exaggeration to say that a storage system is inherently a large meta-

data management system. Every piece of data in a storage system exists in support

of managing and securing chunks of application-level data. To that end, storage

systems contain a dizzying array of metadata management facilities to cover a va-

riety of management scenarios both for internal data as well as application-level

metadata. In this chapter we have examined two common metadata management

services found in distributed storage systems and how programmability techniques

can be applied to generalize these services for use by applications to create new

features, and reduce the duplication of services.

The most prominent form of metadata management found in distributed stor-

age systems is a POSIX file system. Such interfaces expose a bytestream interface

to applications that allow them to organize file resources into a hierarchical names-

pace, and rely on the system to provide (in many cases) well-defined semantics

on how data behaves when accessed concurrently. Unfortunately, even though

applications store a very rich variety of data, a file system interface is limited
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to managing only opaque byte streams. This forces applications to map arbi-

trary data models and management needs onto a single interface that may require

complex middleware solutions and challenges in enabling scalability.

To address this we have introduced a file type abstraction that exposes the

underlying scalable namespace for common naming services required by applica-

tions, and allow applications to programmability define new file types that expose

domain-specific interfaces, rather than forcing the use of a POSIX file interface.

The file type interface allows applications to define how new data formats should

be read and written, allow applications to have access to a scalable naming service

without the overhead of also managing files, as well as to take advantage of internal

services that exist in support of the file system in application-specific ways. We

demonstrated this by exposing the locking and capabilities sub-systems used by

the Ceph file system for managing file cache coherency among a set of distributed

clients. In particular we showed how the capability system could be used to create

a new file type that implemented the interface of the CORFU sequencer, allowing

the file system to act as both a service directory as well as the service itself. This

was accomplished by defining the sequencer counter state in the file system inode,

and reusing the capabilities interface to enforce atomic updates on the counter.

The use of the capability system proved to provide a different performance profile

than a traditional centralized system architecture, and in particular it has shown

to be good for clients that have large burst rates.

Finally we examined an internal system in Ceph used to manage cluster-level

metadata that includes things like cluster membership, the physical organization

of hardware (e.g. racks, rooms), as well cluster-level abstractions such as the pool

found in Ceph which is effectively a namespace of data that can be controlled as a

distinct unit of administration from other pools. Systems for managing this type
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of data are often implemented and used internally using a consensus engine such as

Paxos. However, services such as Zookeeper (similar to a Paxos service) are often

deployed alongside storage systems to manage application-level metadata such as

application membership, and locking, leading to duplication of similar services.

We exposed the internal consensus service found in Ceph to support consistent,

cluster-wide distribution and installation of new data interfaces in support of

storage system programmability. We demonstrated this by showing that new data

interface definitions could be propagated through the peer-to-peer distribution

system found in Ceph across 120 servers in less than 300 milliseconds, allowing fast

turn around time for certain applications such as database management systems

that use data interfaces to create data model specific optimizations.
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Chapter 6

Development environment

This thesis has introduced programmable storage as a means by which inter-

nal storage abstractions can be generalized and reused to support the creation

of new application-specific storage interfaces and services. This approach was

demonstrated across several classes of applications using a variety of storage sub-

systems, but programmable storage contained several serious concerns related to

design, software maintenance, and portability of new interfaces. In Section 2.4

we introduced declarative storage which replaced an ad hoc approach to building

interfaces with declarative specifications, and relied on interface implementation

generation using techniques from the database systems community. While an

approach based on declarative specifications can capture the semantics of new

storage interfaces and allow developers to ignore low-level details about internal

interfaces, we have not addressed some real-world concerns related to the devel-

opment experience of a programmable storage system.

The challenge stems of the inherent ability to create storage interfaces, in-

dependent of the method by which they are created (e.g. through a declarative

specification). Storage interfaces and data management systems in general are

inextricably tied to the ability to interpret and access data. This effectively ele-
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vates the criticality of the preservation and management of interfaces in storage

systems to that of data artifacts themselves. However, there are currently no ser-

vices in storage systems for managing the life cycle of application-driven, dynamic

interface development.

Because storage interfaces are often tightly coupled with applications and ser-

vices, a process of co-design implies that data interface development can be closely

related to the development of higher level services. In particular, it is very common

for engineering teams to follow a branch-and-merge source-code management style

using software such as Git or Subversion, in which feature branches are merged

into a production line after some period of insulated feature development and

maturation. While application feature development can often take place using,

for example small-scale deployments on developer desktops, the same is not true

for storage system interface development, where access to distributed resources

and the peculiarities of live data are crucial to feature development and testing

correctness at scale. One option is to allow developers unconstrained access to the

storage system, relying on informal, error prone team guidelines to avoid conflicts

such as naming or data format incompatibilities. Yet another option would be to

maintain a smaller development cluster, but this leads to increased costs and may

not expose the development process to realistic conditions. It would be useful if

a storage system provided a development environment for storage interfaces as

a first class service akin to the isolated development workflows for application

developers using source-code management tools.

6.1 Overview

In the remainder of this chapter we propose a solution based on the concept of a

developer workspace. A workspace represents a unit of isolation within the storage
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system that allows for the independent evolution of interfaces that are dynamically

created by application developers. We argue that due to the nature of interfaces

and their need for preservation, as well as the isolation needs of applications for

security and performance, that workspace and the data interfaces defined within

them, should be fully managed by the storage system. Finally we enumerate

several key areas of work that need to be addressed. These include handling

data isolation between interfaces, creating workflows for application developers to

resolve conflicts, handling the evolution of interfaces including interface version

management, and performance isolation concerns.

6.2 Motivation

We use a generic data analysis application as motivation in this chapter, but

any other examples and use cases described in this thesis would be applicable

as well. The collection and analysis of large-scale read-mostly data such as ac-

cess logs, click streams, and sensor data, as well as scientific simulation output,

require scalable, fault-tolerant storage systems. Figure 6.1 illustrates a typical ar-

chitecture in which data, such as time-ordered logs, are partitioned by attributes

such as time or data source, and stored within objects in a distributed object

store such as Ceph. Shown in the same figure is a production application that

interacts with the stored data objects by remotely reading and producing analysis

results, or searching for activity patterns. This is not unlike previous examples

and use cases described in Chapter 4 in which domain-specific interfaces provide

access to storage system resources to enable features like filtering and push-down

aggregates.

Now consider the following possible mode of development: engineering team(s)

may be developing and testing new features such as new filtering algorithms,
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Figure 6.1: Log data is stored in objects that are batch analyzed while developers
create new features and evolve the system.

and simultaneously evolving a production deployment using standard source-code

management techniques, workflows, and deployment procedures. In the context of

a programmable storage system, an open question is how much of the management

responsibility of data interfaces is placed on applications compared to the storage

system itself.

Throughout this thesis it has been assumed that a storage system is largely

dedicated to one user or application during development. Furthermore, we have

largely made no assumptions about how code or specifications that define new

interfaces are stored and managed. Since applications are developed using source-

code control systems, but no such abstractions exist in the storage system, appli-

cations benefit from explicitly managing storage interfaces. However, as we have

seen, the creation of implementations from declarative specifications is tightly

coupled to the storage system, suggesting that the storage system plays a critical

role in managing interfaces.

Beyond managing interface specifications, there are other reasons for interface

development to be closely integrated with the storage system. Development of

interfaces in practice may depend on the datasets that are present in production

systems, or depend on the nuances of large scale systems for testing. In order
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avoid moving large amounts of data or depending on provisioning hardware for

development clusters, it would be desirable for the storage system to natively sup-

port development processes. In addition to practical issues such as performance

and security isolation, one reason this is difficult is because there is a tight cou-

pling between storage interfaces and applications that require both to be able to

evolve together through a standard software development life cycle. Instead of

applications being fully responsible for interface management and development,

managing the deployment, consistency, and versioning of interfaces, as well as

enforcing isolation between developers and production interfaces, is a task best

handled by the storage system itself as a shared resource and service.

6.2.1 Storage interface evolution

Dynamically created storage interfaces pose a challenge for software develop-

ment because application software may evolve independently from the deployed

storage interfaces, but still require strong version consistency and compatibility

between the application and deployed interfaces. Additionally, recall from Fig-

ure 6.1 that multiple developers with common developer workflows may evolve an

application by first developing and testing features, then integrating the changes

into a production deployment. In order for each developer to work on features

independently, conflicts that result from customized interfaces must be isolated

and managed.

Consider the application life cycle depicted in Figure 6.2. Developers Dev1

and Dev2 are responsible for developing independent, domain-specific interfaces

to individual objects (e.g. arithmetic mean, and minimum, as shown) that will

replace the same per-object operation performed remotely by the analysis appli-

cation. This scenario is analogous to the use of application-specific data interfaces
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Figure 6.2: Developers evolve application software and storage interfaces
through a co-design process.

to accelerate query performance in Skyhook as previously discussed in Section 4.5.

In a multi-developer environment, each developer must now evolve the storage-

level interfaces, as well as change application-level code to take advantage of the

new features, all while ensuring that the application and storage interfaces remain

synchronized. For instance, both developers begin with a base storage interface

exposing the standard byte-oriented interface (ver. A). Each developer evolves

the application and storage interfaces with their respective features (ver. B, C).

Once the features are complete, they are merged to expose the new interfaces to

the production application (ver. D). Two interfaces can conflict if local object re-

sources are not partitioned. For instance, if two interfaces implementing distinct

statistical calculations (e.g. mean vs median) cache their result in a local object

attribute to avoid recomputation, but use the same attribute name (e.g. avg),

data corruption may lead to silent errors and unexpected results. Thus, providing

transparent isolation between interfaces is important in order to avoid the type of

ad hoc coordination among developers that would otherwise be required such as

using naming conventions and other techniques that are prone to user error.
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6.3 Storage development workspace

In order to manage developers in a programmable storage system we propose

adopting abstractions similar to those already in use by developers. Specifically,

we propose an interface developer environment (IDE) for constructing new storage

interfaces that centers around the use of an isolated workspace abstraction that

is well-aligned to common software development workflows, and integrates with

existing approaches to developement using programmability techniques. We don’t

make any assumptions about the mode of programmability, which may be low-level

(e.g. code injection), or high-level using proposed techniques based on declarative

approaches to building storage interfaces (see Section 2.4).

6.3.1 Workspaces

A workspace is an entity managed by the storage system which provides iso-

lation between storage interfaces. Workspaces can be created, destroyed, and

merged through the use of the interface development environment (IDE) service,

illustrated in Figure 6.3a. The IDE service exposes an interface similar to that

of Git or Subversion in which a development branch forms the basic unit of iso-

lation. It is expected that the use of a workspace will resemble a developer’s

working copy in the traditional sense of source-code control systems, providing a

safe environment to construct, test, and refine a line of feature development. The

key difference being that a workspace exists within and is managed entirely by

the storage system for the purpose of developing new storage interfaces.

Isolation. Providing efficient isolation among workspaces is a primary chal-

lenge. In order to avoid expensive data duplication, the system should allow

interfaces to share as much data as possible. For instance, read operations per-

formed by an interface should require no special handling, and be satisfied by
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Figure 6.3: In (a) clients use an IDE service to create workspaces that form a
context within the storage system. In (b) base data is not duplicated, and CoW
provides isolation for interface private data.

base data. However, writes must be carefully handled as to not interfere with

state created by interfaces in other workspaces, or byte stream data associated

with the object. For instance, a data interface that caches computed data using

an internal service such as the omap key-value store must take care not to select

keys that conflict with other interface implementations (e.g. two interface caching

a value named generically as average). As a shared resource managing access by

independent clients, the storage system is in the position to not only enforce this

requirement but also manage it by providing isolation. Efficient techniques for

isolation depend on the type of service. For instance, isolation can be achieved

efficiently using namespace techniques when storing key/value pairs, while copy-

on-write techniques can be used for data transformations on large binary data.

Performance isolation is also an important aspect to consider. Given the large

body of work on performance management and isolation in storage systems, we

expect that existing techniques will be applicable in this context. For example,

many techniques enforce isolation on the basis of a generic abstraction such as a

stream or group of streams. Since a workspace is only a logical grouping resources

and abstractions like streams, existing techniques may be able to be applied. Fully

evaluating existing techniques and their applicability to this context is future
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work. Additionally, a higher level abstraction like a workspace may even enable

new forms of control and isolation.

Partitioning. While logical isolation is important to ensure correctness, an

organization may want to physically partition its storage in such a way that de-

velopment workspaces reside on distinct hardware. The logical workspace entity

should integrate with existing facilities within the storage system for custom data

placement and tiering policies, allowing subsets of data to be placed onto specific

sets of nodes. Workspaces can be linked to these physical partitions through ex-

isting system abstractions (e.g. a pool in Ceph) which ensure that the space of

addressed objects is constrained by the physical partitioning. This is also useful

as a means of forcing isolation through physical partitioning.

6.3.2 Workspace management

Ultimately, interfaces defined within workspaces as part of application develop-

ment will be migrated into a production environment. For instance, the interfaces

defined in separate workspaces shown in Figure 6.2 can be merged into produc-

tion, providing access to the union of the interfaces to applications accessing the

storage system in the context of the production workspace.

There are several issues that may arise when merging workspaces. First, at

a high-level merging changes the visibility of interfaces, and as a result interface

naming conflicts may arise. For instance, two workspaces may define the same

interface. These types of conflicts are largely application-specific and must be han-

dled explicitly by developers. Like source-code management systems, the primary

responsibility of the storage system is to provide feedback to developers about

the changes they are making through the interface development service, and help

manage conflict resolution.
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Interfaces that utilize private data can be merged without low-level conflicts

by migrating the same isolation parameters (e.g. namespacing) used to prevent

conflicts between workspaces. However, for interfaces that perform heavy-weight

data transforms such as using new data layouts, migrating all interfaces to a

use a new layout may be necessary. In order to make format migration easier,

workspace merging should optionally specify a transformation routine that the

system ensures is applied prior to invoking any interface following a merge opera-

tion. Finally, the removal of workspaces will result in lazy deletion of all unmerged

interface state created during the lifetime of the workspace.

6.4 The IDE Service

Interfaces and workspaces are cluster-wide entities that must be managed by

the storage system in the face of cluster failures, expansion, and policy changes.

For instance, the storage system must ensure that a new storage node has the

required interface specifications present before it can service requests from appli-

cations requiring these interfaces. Further, newly registered versions of interfaces

must be propagated to nodes within the system, and properly synchronized with

applications expecting the latest version.

Luckily, existing services within distributed storage systems solve similar prob-

lems. For instance, a core service often found in distributed systems is a highly

available versioned data store commonly implemented using a consensus algo-

rithm, such as Paxos. For instance, Ceph uses monitor services, built upon Paxos,

to manage cluster membership, service discovery, replicated logs, and authentica-

tion. In Section 5.6.1 we showed how this service could be reused to propagate a

consistent view of interface definitions throughout a cluster. That was a specific

instance of programmability being applied to managing cluster-wide metadata. A
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similar approach can be used to create an application-specific management solu-

tion for cluster-wide metadata involving the versioning of interface definitions.

Finally, a mechanism is needed to associate interface versions managed by the

storage system with the versions that applications expect. We are considering

two possible solutions to this problem. First, some source-code control systems

provide the ability to inject external context information into the managed con-

tent (e.g. CVS tags expansion). Extending or exploiting this feature may allow

us to automatically generate version macros used to provide context when clients

access the system. Similarly, systems such as Git allow external repositories to be

seamlessly integrated into existing repositories. By allowing the storage system

to export its own virtual Git repository, we can enable the system to present pre-

viously registered, versioned code automatically into a higher-level project repos-

itory. Providing an easy-to-use and robust integration solution is important for

usability, and utilizing other techniques from RPC stub generation may prove to

be valuable.

6.5 Summary

The technical aspects discussed in this thesis, from ad hoc development of

domain-specific interfaces to declarative specifications to handle issues that arise

from programmability, are only one part of a larger solution that is needed for

adoption of programmability in storage systems. In order to create a system

that is useable real-world challenges related to development, management, and

preservation of interfaces need to be solved.

In this chapter we have proposed that storage systems take a first-class role

in managing these development processes. First, we observe that interfaces are

critical to being able to access and interpret stored data. As such, they must be
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stored and treated as importantly as the data itself. Second, like application de-

velopment storage interface development is an iterative and collaborative process.

We propose that storage system expose a workspace abstraction that is analogous

to the concept of a working copy used in modern software development workflows

in which developers operate in an isolated environment and collaborate to merge

lines of development. Since a workspace for managing storage interfaces necessar-

ily requires the environment of the storage system, exposing an isolated workspace

abstraction will require solutions to many challenges related to data and perfor-

mance isolation, handling conflicts between interfaces, and interface preservation

and versioning.
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Chapter 7

Conclusion

We finish up by discussing what we would like to do in the future, and provide

a short summary of the thesis.

7.1 Future work

The directions opened up for future work are substantial.

7.1.1 Programmable components and applications

We have really only scratched the surface when it comes to exploring how the

internal components of the storage system can be used to support applications

and new storage interfaces. For example, we were able significantly improve the

performance of multi-client workloads of the CORFU log abstraction by allowing

multiple log appends to be handled in the same transaction. The changes required

for this involve domain-specific customizations to the queueing semantics in the

storage server, and are a good candidate for programmability.

Ceph also contains several unique subsystems. The tiering sub-system in Ceph

allow write-back and write-through policies to be attached to objects such that
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data may be cached on a fast tier, with primary storage on a slower tier. Gen-

eralizations of tiering may be very useful to achieve various application-specific

optimizations. For example, the Skyhook driving example described in Section 4.5

could utilize much of the mechanisms in the tiering subsystem to cache relational

table data stored in multiple formats, each optimized for a particular workload.

Another unique subsystem found in Ceph is a publish-subscribe notification sys-

tem that can send messages triggered by actions on objects. These actions and

the object communication mechanisms found in the tiering subsystem may be

combined into various data flows. When combined with application specific data

interfaces, several distributed processing patterns can be realized.

We have greatly benefited from having a large set of driving applications and

data services. There is significant opportunity for a depth-first approach to further

integrating the use cases in this thesis, but we would also like to expand the

set of applications and data interfaces that can benefit. Expanding the set of

applications is also useful for driving the identification of new subsystems that

can be generalized and used to support storage programmability.

7.1.2 Additional systems

Currently developers are accepting Ceph as the primary system for building

new data interfaces. And some of the challenges that we have discussed that mo-

tivated declarative storage are relevant even when restricted to Ceph. However,

without the ability to move between systems, system lock-in in still a fear; even

though the system can be changed, the more that changes rely on the single mal-

leable system the harder it is to migrate. We have highlighted several additional

systems and argued that these systems contains similar mixes of sub-systems.

However, fully exploring this is important future work.
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7.1.3 Declarative storage

The most important aspect of future work, and perhaps the most ambitious, is

continuing the work on declarative storage. Showing that existing interfaces can

be expressed declaratively using languages like Bloom has been important, but

the next step is to show that an implementation of an interface can be generated

automatically. This will require a deep collaboration between the database and

storage system communities.

7.2 Summary

All indications point to a future where developers and organizations are com-

fortable with the development of domain-specific storage interfaces over existing

standardized interfaces like POSIX file I/O. This is a drastic shift from the past,

but the change is taking place right now. Currently this is happening as an ad

hoc process primarily within the Ceph storage system which is widely deployed

across industry. As the capability to build new interfaces is expanded to en-

compass a wider variety of application developers and ultimately other storage

systems, standards and best-practices will emerge. In this thesis we examined

this design space and developed proposals for new ways of building interfaces

based on declarative specifications that address many of the issues and concerns

with existing approaches.

First we motivated programmable storage by differentiating it from other ap-

proaches to building new storage system interfaces. We showed that by exposing

storage system services that applications could avoid duplicating complex services

and simplify system design. We then illustrated how storage programmability

suffers from several real-world challenges including software maintainability and
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portability, as well as a large design space that requires storage system expertise.

These issues motivated the proposal of building storage system interfaces using

declarative languages. By specifying storage interfaces declaratively, the low-level

implementation details that lead to the challenges present in an ad hoc approach

were hidden from developers and could be handled using tools and techniques

from the database systems community such as query execution plan generation

and optimization. We used the CORFU distributed shared-log abstraction as

a driving example and showed how its semantics could be expressed using an

existing declarative language called Bloom.

We then explored a spectrum of internal services present in the Ceph stor-

age system and showed how they could be generalized to support a variety of

applications. We examined the creation of new data interfaces supporting appli-

cations by exposing internal services such as indexing, caching, and durability, as

well exposing resources such as CPU, memory, and I/O bandwidth. We then re-

peated the process with metadata management subsystems, reusing components

of the POSIX file system to implement aspects of the CORFU log abstraction,

and the cluster-level Paxos service for managing interface specifications in sup-

port of programmability itself. Finally we addressed real-world concerns about

the experience of developers interacting with a programmable storage system by

proposing that the storage system expose a first-class workspace abstraction for

isolating developer activity.
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