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Abstract

 Background—Machine learning (ML) provides novel opportunities for human behavior 

research and clinical translation, yet its application can have noted pitfalls (Bone et al., 2015). In 

this work, we fastidiously utilize ML to derive autism spectrum disorder (ASD) instrument 

algorithms in an attempt to improve upon widely-used ASD screening and diagnostic tools.

 Methods—The data consisted of Autism Diagnostic Interview-Revised (ADI-R) and Social 

Responsiveness Scale (SRS) scores for 1,264 verbal individuals with ASD and 462 verbal 

individuals with non-ASD developmental or psychiatric disorders (DD), split at age 10. 

Algorithms were created via a robust ML classifier, support vector machine (SVM), while 

targeting best-estimate clinical diagnosis of ASD vs. non-ASD. Parameter settings were tuned in 

multiple levels of cross-validation.

 Results—The created algorithms were more effective (higher performing) than current 

algorithms, were tunable (sensitivity and specificity can be differentially weighted), and were 

more efficient (achieving near-peak performance with five or fewer codes). Results from ML-

based fusion of ADI-R and SRS are reported. We present a screener algorithm for below (above) 

age 10 that reached 89.2% (86.7%) sensitivity and 59.0% (53.4%) specificity with only five 

behavioral codes.
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 Conclusions—ML is useful for creating robust, customizable instrument algorithms. In a 

unique dataset comprised of controls with other difficulties, our findings highlight limitations of 

current caregiver-report instruments and indicate possible avenues for improving ASD screening 

and diagnostic tools.
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Autism; screening; diagnosis; machine learning

 Introduction

New technologies, methods of analysis, and access to larger datasets have set the stage for 

real improvements in the iterative process by which knowledge can influence the ways in 

which we screen, diagnose, and monitor behavior disorders. In the case of autism spectrum 

disorder (ASD; APA, 2013), enormous efforts have been undertaken to better identify and 

understand its wide phenotypic heterogeneity. As our understanding of ASD changes, it 

becomes apparent that new instruments may be necessary for certain clinical and research 

purposes. For example, standardized instrument performance may be substantially reduced 

for challenging populations (i.e., non-ASD disorders that result in secondary impairments in 

social skills; Molloy et al., 2011). In some cases, revising algorithms or selecting particular 

items via better data and/or new computational approaches may be sufficient; but in others, 

it may also be necessary to develop additional behavioral measures. For instance, DSM-5 

introduced certain concepts (e.g., sensory abnormalities) that may not be adequately 

reflected in diagnostic instruments developed for use under DSM-IV (Huerta et al., 2014). 

Another issue is the growing number of children in need of ASD diagnostic assessment for 

clinical purposes (Baio, 2014), as well as increasing interest in ascertaining very large 

numbers of children with ASD for research (e.g., genetics studies; Abrahams and 

Geschwind, 2010). Thus, there is increasing pressure to reduce administration time for 

standardized diagnostic instruments (Lord and Jones, 2012).

For ASD, and behavioral disorders in general, machine learning (ML) can be useful for 

improving instrument performance and generalization to unseen data, as well as for reducing 

the number of codes required by the algorithm. ML is especially applicable to ASD, where 

instruments are validated in reference to a ‘gold-standard’ best-estimate clinical diagnosis 

(BEC). Unlike traditional techniques that use correlation-based statistical analysis or 

handcrafted algorithms, ML classifiers are designed to optimize a desired objective/

constraint function, typically some function of sensitivity and specificity.

Handcrafted algorithms tend to be simple summations and thresholds, but because of the 

prevalence of mobile technologies, reliance on hand-calculation is no longer necessary. 

Further, given the availability of large ASD datasets, it makes sense to approach instrument 

revision and new instrument development by first analyzing existing data. If we can identify 

items or constructs that appear to be optimal at discriminating different groups of children 

with ASD, then we can focus new efforts on developing measures that build upon those 

constructs.1 Importantly, however, results of certain studies seeking to improve ASD 

diagnostic instruments through ML have been largely invalid due to errors in problem 
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formulation and ML utilization (Bone et al., 2015). These issues include: flawed assertion 

that administration time for the Autism Diagnostic Observation Schedule (ADOS; Lord et 

al., 2000) is reduced by minimizing the number of codes used; classification from 

instrument diagnosis rather than BEC; insufficient validation; and lack of generalization of 

results in replication experiments.

In the present study, we attempt to design both more effective (higher performing) and more 

efficient (reduced administrative time) instrument algorithms through the use of ML. We 

focus on two caregiver-report instruments: the Autism Diagnostic Interview-Revised (ADI-

R; Lord, Rutter, and Le Couteur, 1994) and the Social Responsiveness Scale (SRS; 

Constantino and Gruber, 2002). Our work is different from most previous literature in the 

following ways (for extended discussion see Bone et al., 2015). First, our models predict 

BEC (the ‘gold-standard’ diagnosis) rather than instrument diagnosis, based on the 

instrument codes. This approach may actually create more effective algorithms, improving 

the efficacy of current instrument algorithms. Second, we combine items from multiple 

instruments (i.e., ADI-R and SRS). Although all instruments focus on relevant behavioral 

concepts, certain items may ‘work’ better depending on wording and context. For example, 

observational measures may more effectively capture subtleties of nonverbal communication 

compared to caregiver reports whereas parent or teacher reports are crucial in obtaining 

information about peer interactions. Third, we focus on caregiver instruments, for which 

administration time may be dramatically reduced with ML. This is in contrast to works that 

claim to reduce ADOS administration time (Wall et al., 2012a; Kosmicki et al., 2015), which 

is not plausible since ADOS codes are not tied directly to any subtask, and thus the entire 

ADOS is still necessary to administer. We note that ML has been employed with the ADI-R 

(Wall et al., 2012b), but was used to predict ADI-R classification, without certain additional 

methodological considerations included in the present study. Specifically, the fourth 

contribution of this work is to optimize parameter selection in multi-level cross-validation 

and to a priori disregard ADI-R questions that reduce the algorithm’s generalizability. 

Lastly, we work with a challenging dataset that includes many individuals who received non-

ASD developmental disorder BEC (non-ASD). Performance of algorithms from the present 

research should be viewed in light of the difficult nature of the problem, i.e., differentiating 

children with ASD from children with other disorders (as opposed to children with 

neurotypical development) by using solely parental reports to approximate a BEC which was 

made using various sources of information.

 Methods

Existing ADI-R and SRS algorithms consist of three components: initial codes, domain 

knowledge-inspired subdomain totals, and final classification based on an overall total. 

Similarly, our purely data-driven approach performs an importance-weighted summation of 

code scores with a built-in threshold to optimize a desired metric.

1It is worth noting that other recent studies have combined ML with signal processing (which seeks to derive meaningful information 
from signals such as audio and text). Examples include: natural language processing analysis of textual transcriptions from 
comprehensive diagnostic screenings (Goh, Dierderich, Song, and Sung, 2013); computational analysis of ‘atypical’ prosody (Bone et 
al., 2014); and motor abnormality-based ASD classification (Crippa et al., 2015).
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Our experimental approach is illustrated in Figure 1, wherein we create a new mapping from 

ADI-R and SRS behavioral codes to BEC. First, an ML classifier is used to design an 

algorithm that can map Instrument Codes to BEC Diagnoses; this is the training phase. It 

requires a set of data independent from the held out portion of data used for testing 

(evaluation). In testing, a Predicted BEC Diagnosis is derived from Instrument Codes, and 

then compared to the previously known BEC Diagnosis. We use the standard protocol of 

cross-validation to train/test on independent subsets of data.

 Participant information and code preprocessing

The experimental data we use consists of ADI-R and SRS item scores from a large corpus 

previously examined by Bone et al. (2015; referred to as Balanced Independent Dataset). 

The ADI-R is a 93-item interview administered by a trained clinician to a caregiver in two-

to-three hours. For children over four years of age, caregivers are asked about their child’s 

current behaviors (‘ADI-R-Current’), as well as behaviors exhibited in the past (either when 

the child was between the ages of 4–5 years old or ever in the past; ‘ADI-R-Ever’). Since the 

published ADI-R-Ever algorithm produces classifications of Autism and Non-Autism, which 

do not accord with the targeted BEC diagnoses of ASD and Non-ASD, we also evaluate a 

Collaborative Programs of Excellence in Autism (CPEA) classification based on various 

combinations of the ADI-R-Ever sub-domain totals (see Hus and Lord, 2013). The SRS is a 

65-code caregiver or teacher questionnaire that takes approximately 15 minutes to complete; 

all items are based on current behaviors. The corpus that we employ combines data from 

clinical and research assessments.

We constrained our analyses to verbal individuals (as determined by code 30 of the ADI-R) 

for two reasons. First, the subset of non-verbal individuals was much smaller than that of 

verbal individuals in our sample. Second, the problem of quickly differentiating verbal 

individuals with and without ASD (e.g., for triaging purposes) is arguably more clinically 

relevant since a child who is over four years of age and not yet using phrases likely has 

severe developmental difficulties that require immediate referral. Multiple assessments were 

available for many cases in this corpus; however, only the most recent assessment was 

retained for each case.

All participant data were drawn from an IRB approved data repository. For all analyses, 

individuals over 10 years of age (including 10.0 years of age) are treated separately from 

those below 10 years of age because several ADI-R codes are only asked for children under 

10. Participant age was limited to a minimum of four years, with no maximum age 

restriction; age ranges included 4.0 to 55.1 years. Table 1 contains demographic information 

for our experimental samples. While there were no statistically significant differences for 

age or non-verbal IQ (NVIQ) between groups according to a Mann-Whitney U test, the DD 

sample contained a higher percentage of females (p<0.05). For the Above 10 age group, 

24.6% of participants were adults (i.e., 19 years or older). There was a small, but statistically 

significant difference in the percentage of adults between groups (22.6% in ASD and 30.4% 

in DD; p<0.05). We suspected this to have minimal effects on our results (given the small 

difference and identical questioning between adults and children over 10 years), but because 

it was identified, we included age as a demographic variable in our baseline experiments. 
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The SRS was not given to all participants. This decision depended on clinical protocols 

rather than anything systematic about the populations; for example, some ADI-R data were 

collected prior to the SRS publication.

We avoided using questions from the ADI-R that were more summative in nature (e.g., #86

—Interviewer’s Judgment, which can consider all information obtained during the preceding 

85 questions), increasing the likelihood that our reduced algorithm would translates into a 

useable system. We also excluded codes that were not expected to generalize across clinics, 

suspecting they likely captured idiosyncrasies of the specific clinical research sample (i.e., 

study recruitment strategy versus general diagnostic relevance). For example, children with 

non-ASD diagnoses such as Down syndrome and ADHD who were recruited as part of 

certain research studies would be likely to show symptoms at an earlier or later age than 

children with ASD (i.e., ADI-R 2, Age parents first concern), but this trend would not 

necessarily hold for children with other non-ASD diagnoses who were referred for ASD 

diagnostic evaluations. We also performed novel transformations on ADI-R codes (which 

are composite ordinal/categorical variables that are not initially optimal for ML), the details 

of which are presented in online Appendix S1.

 Machine learning approach

 Cross-validation and performance metric—A primary contribution of this work is 

the use of multi-level cross-validation (CV), which allows for testing an algorithm’s ability 

to generalize within a data set and ensures that algorithm performance is not overstated due 

to ‘data-fitting.’ As illustrated in Figure 2, CV consists of separating a dataset into equal-

sized disjoint partitions that are used iteratively for training and testing such that each 

partition is evaluated once. Additionally, any parameter tuning or feature selection is 

performed in a second (‘nested’) layer of CV on each training set. Our primary layer of CV 

consists of five equally-sized folds, while the secondary layer is a 3-fold CV on the first-

layer training data. For increased reliability of results, we perform 10 runs of CV unless 

otherwise stated.

In accordance with previous work (Bone et al., 2015), we chose unweighted average recall 

(UAR) as our performance metric. UAR is a superior metric to accuracy when data are 

imbalanced, since even an algorithm that simply picks the majority class may obtain high 

accuracy. Researchers typically also refer to other metrics like sensitivity and specificity: 

UAR is the arithmetic mean of sensitivity (recall of ASD class) and specificity (recall of 

non-ASD class), placing equal weight on both. We utilized UAR as a general metric to 

ascertain algorithm capabilities for a specific set of codes. Statistical significance was 

calculated using a conservative t-test for difference of independent proportions with sample 

size N equal to twice the size of the minority class, as presented by Bone et al. (2015).

Eq 1
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 Technical details of classification framework and error tuning—Classification 

was performed using Support Vector Machine (SVM) with linear kernel via the LIBSVM 

toolbox (Chang and Lin, 2011). SVM is a maximum-margin classifier, meaning it aims to 

find the boundary that maximally separates two classes in a high-dimensional feature space. 

This foundation tends to produce robust boundaries (i.e., algorithms) that generalize well to 

unseen data. As such, SVM is presently one of the most popular classifiers. We used linear-

kernel SVM, which has been shown to work very well even when the number of features is 

high relative to the size of the data (e.g., Black et al., 2015). Initial analyses we conducted 

suggested SVM performed better than other considered classifiers, such as logistic 

regression; however, due to space and readability constraints, we only present results for 

linear-kernel SVM.

The base-form of SVM assumes linear separability in feature space, but this is an unrealistic 

assumption. A tunable regularization parameter is introduced which weights the importance 

of a misclassification; this is the C parameter in LIBSVM. Higher values of C bias the 

algorithm to make fewer misclassifications. This parameter is tuned in a second-layer of 

cross-validation with a grid-search. For the Effective Algorithms experiments the grid-search 

was defined as C ε {10−5,10−4, … 100, 101, 102}, and for the Efficient Algorithms 

experiments the range was reduced to C ε {10−5,10−2,100} due to computational complexity. 

Additionally, LIBSVM allows for differentially weighting the errors that occur for difference 

classes (this is w1 and w2 in LIBSVM; eq. 40 from Chang and Lin, 2011). We first balanced 

errors via the constraint function as described by Rosenberg (2012), in which classes are 

given weights inversely proportional to their priors (i.e., misclassifications of the minority 

class are given higher importance). Specifically, w1 and w2 are defined as:

Eq 2

where N1 and N2 are the counts of samples from class 1 (ASD) and class 2 (non-ASD); v ε 

[0,1] is a tunable parameter for which increasing values put more emphasis on sensitivity 

versus specificity. Effective Algorithms experiments utilized v=0.5 to optimize UAR, while 

the Efficient Algorithms experiments examined v ε {0, 0.05, … 0.95, 1}. In short, v is the 

fraction of importance placed on sensitivity, with the remainder for specificity.

 Feature selection and cross-validation analyses

We identified groups of features that collectively achieved high performance via greedy 

forward-feature selection, which is critical since top performing individual features can be 

highly correlated and contain little complementary information (i.e., collinearity). In greedy 

forward-feature selection, the best performing codes in combination with already-selected 

codes are chosen iteratively. This process must be performed through ‘nested’ CV as in 

Figure 2 in order to get reliable performances. In this case, we had three layers of CV: the 

first (5-fold) for assessing performance generalizability for different numbers of features; the 

second (4-fold) for performing feature selection; and the third (3-fold) for tuning parameters. 

This computationally-intensive approach led to five sets of selected codes per execution. We 

Bone et al. Page 6

J Child Psychol Psychiatry. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



examined patterns in code selection across many iterations (100 runs, or 500-folds). In Table 

5, we present several code selection results, including: training on the entire training dataset; 

optimal forward-feature selection path with a first-order Markov assumption (due to data 

sparsity) from CV; overall most frequently selected codes from CV; and most frequently 

selected subsets of codes from CV. We selected only five codes based on empirical findings 

detailed in the Results section.

In our experiments we also sought to merge ADI-R-Ever, ADI-R-Current, and SRS codes to 

produce the smallest set needed for accurate screening or diagnosis. Given that many of 

these codes are highly correlated, it was difficult to interpret commonalities among code sets 

selected in different folds of CV. As such, we performed hierarchical clustering, wherein 

codes that were similar (have a small distance from one another) were clustered. The 

distance metric is d =1−|ρS|, where ρS is the Spearman’s rank-correlation coefficient. 

Distance between a group and a code is calculated as the average pairwise distance. Since a 

code can actually be composed of several features as detailed in Appendix S1, we began by 

grouping all features from the same code. For practical reasons, discrete variables associated 

with ordinal codes were excluded from clustering. In the Results section, we only report the 

most commonly selected code from a cluster.

Clustering primarily had the intuitive effect of grouping ADI-R-Ever codes with 

corresponding ADI-R-Current codes. Other important groupings are presented in Table 2. 

Group A consists of SRS codes that involve the perception of a child’s social awkwardness 

with other people, particularly peers. ADI-R-52 and ADI-R-54 are also grouped together; 

both involve the child initiating shared experiences.

 Results

 Designing effective algorithms

In order to demonstrate the utility of ML in designing more accurate and consistent 

diagnostic algorithms, we created new algorithms that mapped instrument code scores to 

BEC and compared them to existing instrument classifications. The experiments presented 

in Table 3 display performance (UAR) for predicting BEC diagnosis from various input 

features: a baseline set using demographic variables (NVIQ, age, gender), as well as 

instrument codes, totals, and classifications.

Using Instrument Codes as features allows the SVM classifier to find an optimal mapping to 

BEC diagnosis, i.e., a new instrument algorithm. We also analyzed the performance of 

existing Instrument Totals; ADI-R Totals consists of A, B, and C subdomain totals, while 

SRS Totals refers to raw sub-domain and total scores. Instrument Classifications represent 

the established algorithms. For the ADI-R-Ever, we simply found the maximum-likelihood 

mapping from ADI-R classification (Autism or Non-Autism) to BEC (ASD or Non-ASD) – 

this mapping affords a simple solution. The ADI-R-Ever CPEA conventions were designed 

for ASD/Non-ASD decisions. The SRS does not possess a singular diagnostic threshold, 

instead it suggests researchers will ‘use and validate different cut points and screening rates 

based on study-specific requirements’ ([SRS-2 Manual]). We set a threshold on the 

standardized overall SRS total (SRS-T) through CV – for example, the trained thresholds 
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had means of 74.1 and 77.7 for Age 10- and Age 10+, respectively. For children over age 

four years, validated totals and classifications only exist for ADI-R-Ever codes (i.e., ‘most 

abnormal 4–5 or ever’). Therefore, we do not present an ADI-R-Current Classification in 

Table 3; but we do calculate ADI-R-Current Totals (which are then used as features in ML) 

using the same approach as for ADI-R-Ever.

Comparing the proposed algorithms (Codes) vs. existing algorithms (Classification) in Table 

3, we saw a trend across experimental settings in which higher performance was achieved 

with the instrument codes as input features. In other words, we observed a trend in which we 

were able to design new algorithms via ML that superseded the performance of existing 

algorithms, despite the discussed competing factors. This difference only met stringent 

requirements for statistical significance for SRS Age 10-. However, after pooling results 

across age groups for increased statistical power, there was marginal improvement for ADI-

R-Ever (p=0.09, one-tailed) and statistically significant improvement for the SRS (p<0.01, 

one-tailed). Additionally, there was little difference between ADI-R-Ever instrument totals 

and classifications, indicating that existing thresholds are roughly as effective as new ones 

based on existing totals. Performance gains appeared to come from a more optimal 

aggregation of various code scores, based on comparison of the instrument codes 

performance with the instrument totals performance.

In these data, the CPEA classification, which is designed for ASD/Non-ASD decisions, 

performed worse than the existing ADI-R-Ever Algorithm, which is designed for Autism/

Non-Autism decisions. Error analysis revealed that this was because sensitivity and 

specificity were more balanced with the ADI-R-Ever Algorithm (age-pooled results: 76.7% 

UAR, 80.2% sensitivity, 73.3% specificity) than with the CPEA classification (age-pooled 

results: 72.8% UAR, 90.3% sensitivity, 55.3% specificity).

The demographic variables reached performance only slightly above chance (50% UAR; 

p<0.05, one-tailed), likely due to class-differences in gender (see Table 1). All other feature 

types statistically significantly outperform this baseline (p<0.05, one-tailed). ADI-R-Ever 

codes outperformed ADI-R-Current codes by a small margin for Age 10- (1.7% absolute, 

2.2% relative) and a slightly bigger margin for Age 10+ (3.8% absolute, 5.1% relative). 

While it is tempting to compare performance of the ADI-R and SRS in Table 3, the data may 

be dissimilar. Consequently, we performed separate experiments within the sample of 

individuals who received both ADI-R and SRS administrations. Since the SRS assesses 

current behavior, we compared only the ADI-R-Current.

The results in Table 4 suggest that the instrument-fused SVM classifier was able to design a 

more effective instrument algorithm than that available from SRS Classification (p<0.01, 

one-tailed) or ADI-R/SRS Totals (p<0.05, one-tailed) based on age-combined results. In 

both age groupings the order of performance was: ADI-R-C/SRS Codes; ADI-R-C Codes; 

ADI-R-C/SRS Totals; SRS Codes; SRS Classification (no ADI-R-Current Classification 

exists); and Demographics. Pooled results suggested that ADI-R-Current codes were more 

informative than SRS codes (p<0.05, two-tailed; 5.0% absolute, 7.0% relative), and that no 

statistically significant gain occured when fusing SRS codes with ADI-R codes (p=0.21, 

one-tailed; 2.1% absolute, 2.7% relative).
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 Designing efficient algorithms

Optimization of BEC sensitivity and specificity was performed by differentially weighting 

the relative importance of each (Figure 3), i.e., adjusting the parameter v from 0 (all 

weighting on specificity) to 1 (all weighting on sensitivity). Furthermore, we utilized 

forward-feature selection with CV to determine a minimal subset of codes needed from the 

joint set of ADI-R-Ever, ADI-R-Current, and SRS codes (Figures 3 and 4, Tables 5 and 6). 

For the Age 10- experiments, we limited our analyses to the ADI-R, as no SRS codes were 

frequently selected in the minimal subset, and no degradation in screener performance when 

using only the ADI-R in that subset; this allowed us to have a higher N for this Age 10- 

experiment.

The receiver operating characteristic (ROC) curves of Figure 3 demonstrate the selective 

tuning of sensitivity and specificity. Performance, which generally improves with number of 

features included, increased exponentially up to approximately five codes and slowed 

thereafter. Age 10- performance was higher than Age 10+ performance, possibly since the 

ADI-R Age 10- dataset is much larger than the ADI-R/SRS Age 10+ dataset. We also note 

that occasionally the All Codes performance dropped below that of the subsets; this can 

happen randomly or due to certain poorly-performing codes.

In order to assess feature selection versus performance more closely, we fixed the value v in 

Figure 4. This allowed us to see an ‘elbow-point’ after which performance gains were small 

for increased complexity (number of codes). We define the elbow-point as the point where 

95% of maximal performance is reached. A reasonable application of this approach is to 

design a screener, where it is more important to prevent Type-II errors than Type-I errors. 

Analysis of the curves in Figure 3 indicated that a weighting of v=0.65 was appropriate. 

Interestingly, with only four codes for Age 10- and three codes for Age 10+, the screener 

algorithms reached 95% maximal performance. This represents a tremendous potential 

reduction in these coding systems.

Next, we examined the codes selected for a screener that used only five codes (which is 

larger than the necessary three or four codes based on results in Figure 4). The most 

commonly selected codes in CV as well as the one set that was selected when training on the 

full data are shown in Table 5, and corresponding code names are presented in Table 6. The 

most important codes are highlighted in Table 5. By convention, highlighted codes are those 

that are (i) among the 10 most frequently selected codes in CV and (ii) were either selected 

in the full data training or through the best forward-feature selection path based on statistical 

analysis of selected codes in CV. The Age 10− ADI-R screener achieved 89.2% sensitivity 

and 59.0% specificity across 500-folds. When analyzing the most commonly selected codes 

across experiments, three codes were selected in 53.2% of folds: ADI-R-Ever 33, 35, and 

50. Other frequently selected codes were ADI-R-Ever 64 and 68 and ADI-R-Current 73.

The Age 10+ ADI-R/SRS screener had similar, but slightly lower performance of 86.7% 

sensitivity and 53.4% specificity. However, code selection appeared less consistent; for 

example, the most commonly selected group of three codes was only selected in 8.2% of 

folds (vs. 53.2% for Age 10−). Overall, the two most selected codes are ADI-R-Current 35 

and SRS-D33. ADI-R-Ever 34, 47, 54, 55, and 59 were selected relatively frequently.
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 Discussion

In the section ‘Designing effective algorithms’, we compared SVM-based instrument 

algorithms to existing ones. Since ML can optimize a desired objective function (e.g., UAR), 

we expected it to outperform existing algorithms. However, there are two principal 

competing factors. First, performance of existing algorithm classifications should be slightly 

inflated since they are often available during the BEC decision-making process. Second, 

while we consider the present data sufficient to draw conclusions, ML approaches generalize 

better given larger amounts of data; this is more of a concern for the Age 10+ experiments.

Our results indicate that ML is a promising tool for creating instrument algorithms. The ML 

algorithm achieved higher performances than existing algorithms for both ADI-R-Ever 

(marginal) and SRS in age-pooled results. We also explored novel ML-fusion of the ADI-R 

and the SRS, finding no statistically significant gain over ADI-R alone (p=0.21, one-tailed). 

In our sample, the ADI-R was likely more utilized for BEC diagnosis than the SRS. The 

ADI-R was generally higher performing across all experiments, including for the age-

combined experiments in Table 4 (p<0.05, two-tailed). Still, this fusion approach can be 

generalized to combining any number of instruments, allowing for fusion of information 

from multiple sources at varying degrees of reliability, all within a framework that is 

objective and can be tuned toward the desired metric. Testing of these approaches in a larger, 

independent sample wherein clinicians are blind to instrument classification could provide 

great insights and lead to translational outcomes.

The results of section ‘Designing efficient algorithms’ support our ability to create a 

screening algorithm with reduced interview codes and presumably reduced administration 

time. Future clinical studies could evaluate if coding differences occur when administering 

the reduced set (especially by individuals with less training) and if screener validity 

translates to independent data (e.g., in a general-referral setting). The considerable 

redundancy (in terms of what is most diagnostically relevant) in these instruments may be 

necessary for making a precise diagnosis or for obtaining a complete clinical picture of an 

individual child; however, for screening purposes, eliminating this redundancy is critical. 

Specifically, we created an ADI-R Screener for below 10 years of age that achieved 89.2% 

sensitivity and 59.0% specificity in 500 folds of CV. We also created an ADI-R/SRS 

Screener for above 10 years of age that reached 86.7% sensitivity and 53.4% specificity in 

CV. Given the complexity of these data—which contain many individuals with non-ASD 

developmental disabilities and/or psychiatric disorders who can be confusable with ASD 

individuals on standardized ASD instruments—this performance represents a reasonable 

achievement. Moreover, the results point to current limitations of parental reports in 

distinguishing such difficult cases, the need for more comprehensive work-ups that go 

beyond caregiver reports to yield valid ASD diagnoses, and the potential utility of ML in 

designing customized algorithms for various purposes.

A principal methodological decision revolved around how to design (i.e., select codes for) 

our final proposed screener algorithms. The CV experiments, which subsampled the full data 

for training and testing, serve to estimate how well the ML approach will generalize to 

similar data. Specifically, we were able to observe sensitivity and specificity range across 
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folds as well as how consistently certain codes were selected. We argue that robust 

performance is more important than individual code selection for this task; since many of the 

codes are highly correlated, we can expect that some may be interchanged with little loss in 

performance. Although codes selected in numerous folds do stand out as essential to 

estimating BEC in this data, the appropriate choice of screener items are those selected in 

full-data training, since the procedure through which they have been selected was 

empirically supported by the CV results.

Based on CV experiments for ADI-R below age 10 verbal children, the most important three 

codes were ADI-R-Ever 33, 35, and 50; these codes assess stereotyped language, reciprocal 

conversation, and gaze, respectively. These three codes were reliably selected together in 

53.2% of folds, while the other two selected codes were more variable. (Note that ADI-R-35 

and ADI-R-50 were also selected in the experiments of Wall et al. (2012b), wherein the 

authors predicted ADI-R classification from ADI-R codes; this may indicate these codes are 

also critical to the current ADI-R algorithm.) The proposed below age 10 ADI-R screener 

(consisting only of the five codes from the full-data-training experiment) includes these 

critical codes plus ADI-R-Current-73 (abnormal response to sensory stimuli) and ADI-R-

Ever-34 (Social Verbalization/Chat). ADI-R- Current-73 falls under Restricted and 

Repetitive Behaviors, while social chat augments the other communication-oriented codes.

For the above age 10 ADI-R/SRS screener, code selection was considerably more variable, 

although performance was still consistent. The two most selected codes, ADI-R-Current 35 

(Reciprocal Conversation) and SRS-D33 (socially awkward, even when attempting to be 

polite), were rarely selected together (only 17.6% of folds). SRS-D33 is interesting since it 

probes for a parent’s concern about their child’s social skills. Recall that no SRS codes were 

reliably selected in the Age 10- group; thus, it may be the case that parents of younger 

children tend to be less critical of their child’s social skills and are less likely to use words 

such as ‘awkward’ or ‘odd’ to describe their young child, but that these terms seem more 

appropriate for describing older children and adolescents. The screener algorithm trained on 

the full data included: ADI-R-Ever 34, 47, 58, and 49 and SRS-D33.

 Limitations

Several features of the sample potentially limit generalizability. While this is a relatively 

large sample, participants included individuals between 4 and 55 years, which is a very wide 

age range. Future studies should investigate individual differences using narrower age bands, 

and especially consider differences between adolescents/young adults vs. individuals in 

middle or later adulthood. In addition, due to the small number of nonverbal individuals, we 

were only able to include verbal individuals in our experiments and were therefore not able 

to offer suggestions about how best to reduce or modify parent-report instruments for 

individuals with minimal verbal abilities. Another important feature of this sample is that 

these data represent reports largely from self-referred parents. Algorithms derived from 

these data might perform differently if applied to general population settings where parents 

might not be quite as concerned; particularly with respect to sensitivity, i.e., parents who are 

not seeking autism-specialty clinic evaluations are less likely to be picked up by the 

screener.
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 Implications for future research and clinical translation

ML has the potential to improve certain aspects of instrument design, particularly by 

decreasing redundant behavioral information and fusing multiple instruments. In general, the 

approach of using existing data from these instruments can inform future instrument revision 

and development. Taking a combined approach across multiple instruments may be 

especially informative, in that we can identify different methods of probing similar 

behaviors that are more or less useful.

We showed that ML-based instrument algorithms could be selectively tuned depending on 

the relative importance of Type-I and Type-II errors for a given setting. Using this approach, 

we developed screener algorithms that may support large-scale neurobiological studies; 

however, the algorithms should first be tested in independent populations with independent 

coding to ensure appropriate generalization across samples. Additionally, the approach we 

employed for feature selection through many folds of CV (in sufficient data) provides 

empirical information about the most critical codes. We found strong evidence that ADI-R-

Ever 33, 35, and 50 are valuable for below age 10 years for screening. Having identified 

certain constructs that appear to be particularly diagnostically salient, instrument revision 

efforts may focus on those areas of abnormality to maximize sensitivity and specificity.

Future research should also consider designing targeted algorithms for groups of children 

that share similar characteristics which are known to be important when measuring ASD 

symptoms (e.g., age, gender, IQ, language level). However, as mentioned above, it will be 

first necessary to obtain large enough numbers of participants who vary on these 

characteristics so as to ensure sufficient power within the different strata (e.g., nonverbal vs. 

verbal) . Then we can use different item sets identified for the different cells in the 

development or refinement of measures that can better account for these other variables.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• Machine learning (ML) is an emerging tool for clinical translation.

• We carefully utilized an ML classifier to design ADI-R and SRS 

algorithms that targeted BEC, while selectively tuning sensitivity and 

specificity.

• ML-based algorithms met or exceeded performance of existing 

algorithms.

• Screeners were designed that reached near-peak performance with only 

five codes.
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Figure 1. 
Flow diagram of ML-based algorithm development
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Figure 2. 
Illustration of model training, tuning, and testing through ‘nested’ cross-validation (CV) as 

used in the ‘effective algorithms’ section
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Figure 3. 
Receiver operating characteristic plots. The Equal Error Rate (EER) Line indicates the UAR 

optimization point, where sensitivity and specificity are weighted equally. Classifiers should 

perform above the Chance Line, where UAR equals 50%. Note that we plot sensitivity vs. 

specificity in order to aid interpretation relative to UAR
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Figure 4. 
Optimization curves versus number of codes for Age 10- (top) and Age 10+ (bottom) 

screeners. Optimization is biased towards sensitivity (roughly 2:1). An elbow-point at 95% 

of maximum performance is marked for both age groups
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Table 2

List of important groupings from hierarchical clustering. Note that these groupings were identical in Age 10+ 
and 10−

Group Code # ADI-R Code Title or SRS Question

A

SRS_B18 ‘Has difficulty making friends, even when trying his or her best.’

SRS_C29 ‘Is regarded by other children as odd or weird.’

SRS_D33 ‘Is socially awkward, even when he or she is trying to be polite.’

SRS_D37 ‘Has difficulty relating to peers.’

B
ADI_52 Showing and Directing Attention

ADI_54 Seeking to Share Enjoyment with Others
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Table 4

Instrument fusion in joint ADI-R-Current and SRS sample in terms of UAR.

Age 10− Age 10+ Age-Combined

Features

Demographics 57.1 57.2 56.8

SRS Classification 68.9 63.7 67.8

ML Fusion: ADI-R-C/SRS Totals 74.2* 72.9 73.8*

ML: ADI-R-C Codes 78.0 73.9 76.7

ML: SRS Codes 73.0 68.9 71.7

Proposed, ML Fusion: ADI-R-C/SRS Codes 80.0* 76.5 78.8*

Sample N
ASD 389 238 627

DD 178 81 259

*
indicates pairwise-difference between Proposed: Codes and Totals at α=0.05
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Table 6

List of the most frequently selected codes (highlighted) from Table 5

Code # ADI-R Code Title or SRS Question

ADI_33 Stereotyped Utterances and Delayed Echolalia

ADI_34 Social Verbalization/Chat

ADI_35 Reciprocal Conversation (Within Subject’s Level of Language)

ADI_47 Spontaneous Initiation of Actions

ADI_50 Direct Gaze

ADI_54 Seeking to Share Enjoyment with Others

ADI_55 Offering Comfort

ADI_64 Response to Approaches of Other Children

ADI_68 Circumscribed Interests

ADI_73 Abnormal, Idiosyncratic, Negative Response to Specific Sensory Stimulus

SRS_D33 ‘Is socially awkward, even when he or she is trying to be polite.’
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