UC Irvine

SSOE Research Symposium Dean's Awards

Title

Magnetic Actuators for Haptic Feedback in Virtual Reality Applications

Permalink

https://escholarship.org/uc/item/72k7g09n

Authors

Zhang Jiang, Alexandra Liu, Ziteng Villamor, Rachel et al.

Publication Date

2024-03-15

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Magnetic Actuators for Haptic Feedback in Virtual Reality Applications

Alexandra Zhang Jiang (azhangji@uci.edu), Tony Liu (zitenl1@uci.edu), Rachel Villamor (rvillam1@uci.edu), Derek Cha (dscha1@uci.edu)

Professor Camilo Velez Cuervo, Professor Rainer Doemer

University of California, Irvine

Overview

The Virtual Reality (VR) Haptic Feedback Matrix, abbreviated as the Matrix:

- Provides touch feedback through magnetic actuators.
- Translates in-game interactions into realistic experiences.
- Activates specific magnetic actuators to link VR with reality.
- Applies to recreational and medical fields.

Fig. 1. Magnetic actuators bridges interactions between VR and Reality.

Early Prototype

- Meta Quest: Stationary array of buttons and display.
- Actuator Controller: Solid-state relays toggle each coil independently.

Fig. 2. Early prototype of the Matrix.

Diagram and Model

- The Actuator Controller connects to the Meta Quest wirelessly through TCP.
- Haptix World sends in-game interactions to the Actuator Controller.
- The Actuator Controller translates the in-game interactions into actuator coordinates.
- The Actuator Controller toggles the magnetic actuators to provide haptic feedback.

Fig. 3. Block diagram of system integration.

- A magnetic actuator consists of a coil and a membrane with an embedded magnet.
- Each magnetic actuator produces an oscillating magnetic field, vibrating the magnet and applying pressure on the user's skin.
- The Actuator Mat connects each magnetic actuator to the Actuator Controller.

Fig. 4. Exploded view of the Matrix.

Results

Meta Quest:

- In Haptix World, users can interact with a simulation of the Matrix located on the forearm.
- The right-side virtual hand has a laser pointer that can be used to hover over a coil from a distance.
- The green display indicates which coil is selected.

Fig. 5. 6x4 virtual coil matrix in Haptix World.

Actuator Controller:

- The Actuator Controller PCB uses four h-bridges to output a 200 Hz square wave independently.
- The 6x4 array of coils are assembled on the Actuator Mat, and connected directly to the Actuator Controller.

Fig. 6. The Actuator Controller connected to the Actuator Mat.

Acknowledgements

We would like to extend our gratitude to Meta for the initial funding, UROP for the remaining funding, and Naji Tarabay for the magnetic actuator design.