
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Investigating the Relationship Between Surprisal and Processing in Programming
Languages

Permalink
https://escholarship.org/uc/item/72k728wq

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Dodd, Nicole
Reese, Skyler Jove
Morgan, Emily

Publication Date
2024

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/72k728wq
https://escholarship.org
http://www.cdlib.org/

Investigating the Relationship Between Surprisal and Processing in Programming
Languages

Nicole Dodd (ncdodd@ucdavis.edu)
Department of Linguistics, University of California, Davis, Davis, CA 95616

Skyler Reese (mwreese@ucdavis.edu)

Department of Linguistics, University of California, Davis, Davis, CA 95616

Emily Morgan (eimorgan@ucdavis.edu)
Department of Linguistics, University of California, Davis, Davis, CA 95616

Abstract

This study explores the relationship between predictability, as
measured by surprisal, and processing difficulty in code
comprehension. We investigate whether similar mechanisms
govern the processing of programming and natural languages.
Previous research suggests that programmers prefer and
produce more predictable code, akin to natural language
patterns. We utilize eye-tracking data from the Eye Movements
in Programming (EMIP) dataset to examine the impact of
surprisal on various eye movement measures. Contrary to
expectations based on natural language processing, our results
reveal that surprisal does not significantly influence fixation
metrics. Additionally, regressions in code reading show an
unexpected inverse relationship with surprisal, suggesting that
readers have different reasons for making regressions while
reading code versus natural text. These findings contribute
insights into the unique dynamics of code comprehension and
opens avenues for further research in this domain.

Keywords: language processing; programming languages; eye
tracking and reading; predictive processing

Introduction
An emerging area of interest in the field of language
processing is the processing of programming languages, or
code. Programming has primarily been viewed through the
lens of logic and problem-solving, and the “language”
component is often overlooked. With the increasing
prevalence of programming, including proposals to recognize
programming languages as a type of “foreign language” in
secondary education, researchers have recognized the need to
further explore the cognitive processes involved in reading
and comprehending code (e.g., Fedorenko et al., 2019). A key
question in this discussion has been, are the cognitive
mechanisms recruited while processing programming
languages similar to those used for processing natural
languages?

Comparing Natural and Programming Languages
Natural and programming languages share many similarities
that may entail similar processing mechanisms. For example,
we often use similar language to describe the use of natural
and programming languages: we speak of “reading and
writing” code, there are well-known programming language
“idioms” that can be language-specific, and many languages

have “coding style” guides to maintain writing consistency
by language. Like natural languages, programming languages
are symbolic systems of communication that allow for
creativity in language use. On a concrete level, both natural
and programming languages have lexicons from which they
can draw to build meaningful phrases and are constrained by
the grammatical rules of syntax.

However, there are also intrinsic differences between the
two that may lead to distinct processing mechanisms. For
one, most individuals would agree that programming
languages are decidedly not natural languages. Humans
cannot claim to be “native” speakers of programming
languages, and the use of programming languages is
constrained to very domain-specific environments.
Programming languages also differ from natural languages in
their syntax and lexicon: programming languages have
infinitely large lexicons as programmers can constantly make
up new function and identifier names, but its syntax is far
more limited than that of natural languages.

Existing literature investigating the underlying cognitive
mechanisms of code processing is limited in scope and
provides conflicting evidence. On the one hand, there is some
evidence that programming languages are processed in a
similar manner as natural languages. For example, corpus
studies show that programmers intentionally write
predictable code (Casalnuovo et al., 2019), and behavioral
studies find that predictable code improves comprehension
times (e.g., Casalnuovo et al., 2020a; Hansen et al., 2013),
similar to natural language production and comprehension.
Further, some neuroimaging studies suggest a considerable
overlap in the areas of the brain recruited for natural and
programming language processing (Siegmund et al., 2014;
2017). On the other hand, there is evidence that programming
languages are processed in a distinct manner from natural
languages. For one, programming languages have also been
found to be more cognitively demanding to read and write
than natural languages (Busjahn et al., 2011). Programmers
also read code less-linearly than natural language (Busjahn et
al., 2015); however, this difference in behavior is dependent
on the expertise of the programmer (e.g., advanced
programmers have even less linear reading patterns and are
more likely to skip intermediate words and lines). Other
neuroimaging studies contra those mentioned above also

3485
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

found that distinct areas of the brain are activated while
reading natural versus programming languages (Ivanova et
al., 2020), and that a domain-general system in the brain was
recruited for programming language processing instead.

This work aims to further investigate similarities and
differences in processing code and natural language by
examining the relationship between predictability and
processing difficulty in code. We are specifically interested
in determining how expectations, as measured by surprisal,
affect processing behaviors in code, and whether surprisal has
a similar effect on processing with code as it does on natural
language.

Predictability and Language Processing
We know that code is more cognitively demanding to process
than natural language (Busjahn et al., 2011). One way that
humans attenuate cognitive difficulty in processing natural
language is by using more predictable language, or language
that is more expected in context. Numerous psycholinguistic
studies have demonstrated that the frequency and
distributional properties of linguistic units, such as words,
phrases, and syntactic structures, substantially influence how
humans process language. For instance, words that are more
frequent and predictable are read faster (e.g., Ehrlich &
Rayner, 1981; Inhoff & Rayner, 1986), and reading syntactic
structures that are more common and more predictable in
context facilitates processing (e.g., Hale, 2001; Levy, 2008).

Probabilistic accounts of language processing have
operationalized this relationship between expectations and
processing difficulty through surprisal, which is the negative
log probability of a word in context. For example, in self-
paced reading tasks, longer reading times are directly
correlated with higher surprisal, or low predictability (e.g., in
the sentence “I took my dog to the …”, “park” would be a
low surprisal option while “circus” would be a higher
surprisal option) (Smith & Levy, 2013). In eye-tracking
studies, this difficulty can present as longer total fixation
times, increased regressive saccades, or both (Frazier &
Rayner, 1982; Staub, 2010).

Researchers once wondered whether programming
languages were more predictable than natural languages and
found that they indeed were. Hindle et al. (2012) set out to
test whether code or natural text was less predictable by
training predictive language models on code and natural text
corpora. They found that language models trained on code
exhibited lower cross-entropy values than those trained on
text. In light of these findings, researchers explored whether
the observed predictability in code resulted from
programmers reducing cognitive load by opting for
predictability amidst multiple options, or was merely a
natural side effect of code's grammatical and syntactic
constraints. Casalnuovo et al. (2019) investigated this
question by conducting a corpus analysis comparing the
predictability of 5 programming languages to 3 natural
languages. To control for code’s limited grammar and syntax,
the authors focused their analyses on open-class words and
compared code corpora to natural language corpora of

technical writing, which warrants repetitive and predictable
language in a similar way as code. They trained various
language models on these corpora and found that
programming languages had consistently smaller entropy
values, and were thus more predictable than natural language,
even when accounting for grammatical and syntactic
constraints. The authors conclude that while some of the
difference in predictability is due to grammatical constraints,
a significant portion must also be due to human preferences
for predictable code.

Casalnuovo et al. (2020b) then decided to explicitly test
programmers’ preferences for predictable code. They
conducted an experiment where programmers were presented
with two versions of an expression and asked to select their
preferred version. One version of the expression was with a
canonical ordering (assumed to be preferred), and the second
was with a non-canonical ordering derived through a
meaning-preserving transformation. For example, the
expression i + 1 can be expressed as either i + 1 or 1 + i and
be meaningfully equivalent; however, i + 1 is the preferred
and more frequent ordering. The authors also trained
language models on these alternations to quantify which
alternation was more predictable (i.e., had lower surprisal).
They found that participants were more likely to choose
variants with lower surprisal ratings as the preferred
alternation, thus supporting their previous conclusion that
humans do prefer, and likely write, predictable code.

Predictable code has also been shown to facilitate code
processing and comprehension, similar to natural language.
For example, Hansen et al. (2013) conducted an eye tracking
study in which programmers were presented with functions
that contained predictable and less predictable alternations
and asked to summarize the purpose of the function. They
found that less predictable code caused longer response times
when determining the purpose of the function. Notably, in
certain cases, this effect declined with experience, such that
programmer experience helped to counteract the effect of
seeing less predictable code. The authors interpreted this to
be due to real-world experience with code that is both
predictable and unpredictable, so expectations from real-
world experience superseded baseline preferences.

Since surprisal has been shown to be strongly correlated
with processing difficulty in natural language, a natural
question would be whether this correlation also exists with
processing difficulty in programming languages. Casalnuovo
et al. (2020a) tested whether surprisal is correlated with code
processing difficulty through a human behavioral study. They
found a significant effect of surprisal on time spent answering
comprehension questions about functions, and a non-
significant trend towards a negative relationship between
surprisal and comprehension question accuracy.

Current Study
Previous studies on code processing and comprehension have
demonstrated that humans prefer predictable code
(Casalnuovo et al., 2020b; Casalnuovo et al., 2020a), and
predictable code generally facilitates processing times for

3486

comprehension questions (Hansen et al., 2013); however, no
studies have yet taken a granular look at how difficulty in
code processing presents during incremental, on-line
processing.

Our study takes steps toward filling this gap by identifying
patterns of processing difficulty at the token level and asking
whether surprisal is a significant predictor of these behaviors.
We test our predictions by analyzing an existing eye-tracking
corpus for code, where participants read two medium length
code blocks and completed comprehension tasks. In natural
language, surprisal is a predictor of processing difficulty,
such that high surprisal values for a word would result in
increased processing difficulty. In practice, this manifests as
longer reading times or an increased proportion of regressive
saccades away from the word into an earlier part of the
sentence. We test whether this pattern holds with code by
determining whether surprisal has any significant effect on
processing behaviors while reading code. Further, we test
whether surprisal affects similar reading measures in code as
in natural language – while surprisal affects both early
measures (e.g. first pass duration) and late measures (e.g.
total fixation duration) for natural text, it is possible that the
non-linearity of code would result in less effects on early
processing measures (i.e., first pass) than overall processing
measures. It is important to note that this preliminary analysis
is limited by the nature of the pre-existing dataset; however,
the insights will be a valuable first step toward investigating
the relationship between surprisal and processing in
programming languages.

Methods

Materials and Participants
The Eye Movements in Programming (EMIP) dataset
(Bednarik et al., 2020) includes eye movements for 216
programmers (41 women; mean age: 27, SD = 9) of different
experience levels completing two code reading and
comprehension tasks, each comprising 11-22 lines of code
(Figure 1). Data were collected by eleven research teams
across eight countries. Participants were offered the option to
complete the experiment in Java (~96% of participants
selected), Scala (~2%), or Python (~2%). Prior to the start of
the experiment, participants completed a demographic survey
where they reported their years of expertise in programming
(M = 6.0, SD = 7.9), their level of expertise in programming
(none: 11, low: 45, medium: 120, or high: 40), their years of
experience with the experiment language (e.g., Java) (M =
2.3, SD = 3.3), and their level of expertise with the
experiment language (none: 30, low: 69, medium: 100, or
high: 17). Participants were instructed to read each stimulus
for comprehension and answered a multiple-choice question
about the output of the function. Eye movements were
recorded using a screen-mounted SMI RED250 mobile eye
tracker with a sampling rate of 250 Hz. No head or chin rest

1 http://www.emipws.org/dataset/

was used in order to simulate a naturalistic programming
environment.

We used a filtered and corrected dataset, executed and
published by the original authors, for our analysis (Al Madi
et al., 2021). The corrected dataset includes token-level
fixation information for all Java trials. Tokens were defined
as being split by whitespace, and this definition was set by
the original authors (Figure 1). Fixations that presented a
clear shifting pattern were hand-corrected by one of two
authors, who applied a general offset correction using the
EMIP Toolkit in Python (Al Madi et al., 2021), and trials that
were not fixed by the offset correction were excluded.
Additionally, 15% of the data is not published.1 We further
filtered the dataset to exclude any participants who indicated
that they had “none” programming experience (N = 11). The
final dataset used for our analysis included 253 trials from
147 participants.

Participant Programming Expertise
Participant programming expertise was determined based on
information provided in the demographic questionnaire. Each
participant answered four questions about their programming
expertise, including years of experience and their level of
expertise for both programming in general and the
experiment language. We decided to forgo using the measure
based on years of experience as the distribution of answers
was very broad and skewed (experiment language expertise:
M = 2.3, Mdn = 1.0, SD = 3.3; programming expertise: M =
6.0, Mdn = 3.0, SD = 7.9). When then compared levels of
expertise for general programming versus the experiment
language and noticed a general pattern of participants rating
themselves as less proficient in the experiment language than

Figure 1: Sample stimulus in Java from the EMIP dataset.
Extra spaces were included between tokens to allow for

character-level precision for fixations on punctuation and
operators.

3487

Table 1: Raw averages for each eye tracking metric overall, by class, and by programmer expertise.

Metric Overall Open
Class

Closed
Class Punct Low Med High

First fixation duration 117 118 116 115 116 118 125
First pass duration 187 209 170 148 186 187 201
Total fixation duration 443 561 328 235 443 440 461
First pass regressions 0.11 0.09 0.09 0.23 0.11 0.11 0.11
Overall regressions 0.24 0.23 0.16 0.36 0.23 0.25 0.24
Overall skip rate 0.54 0.32 0.41 0.75 0.53 0.54 0.56

in programming overall (experiment language expertise –
none: 30, low: 69, medium: 100, high: 17; programming
expertise – none: 11, low: 45, medium: 120, high: 40). To
avoid over-estimating the expertise of the participants, we
used the level of expertise with the experiment language as
our measure of participant programming expertise in our
analyses.

Token Surprisal and Class
Surprisal values for each token in the stimuli were calculated
using OpenAI’s Codex (Chen et al., 2021). Codex is a GPT-
3 based language model trained on both natural language and
source code and is proficient in over a dozen programming
languages. Due to internal tokenization protocols,
transformer-based models like GPT-3 will often generate
surprisal values for sub-word units. To align surprisal values
generated from Codex to full tokens, we summed surprisal
values within each token to generate a token-level value.

To control for differences in fixations on content (open
class) versus function (closed class and punctuation) tokens,
we assigned each token to one of the three classes. Following
Casalnuovo et al., (2019), we used the type categorization
feature from the Pygments2 syntax highlighting library in
Python to determine the class of each token. Token class was
then used as a main predictor variable in our analyses
described below.

Eye Movement Measures
The corrected EMIP dataset reported fixation durations and
timestamps for individual token-level fixations for each trial.
Using this information, we calculated the following eye
movement measures for our analysis: first fixation duration
(the duration of the first fixation on a token), first pass
duration (the sum of all first pass fixations before leaving a
token for the first time), total fixation duration (the sum of all
fixations on a token), first pass regression (a binary measure
indicating whether the reader’s first pass through a token
ended with a regressive saccade to an earlier part of the
function), overall regression (a binary measure indicating
whether any fixation on a token ended with a regressive
saccade to an earlier part of the function, including first pass
regressions), and overall skip rate (a binary measure
indicating whether a token was not fixated on for the duration

2 https://pygments.org/

of the trial). We chose to exclude certain metrics, such as first
pass skip rates and go-past time, due to non-linear reading
patterns with code (Busjahn et al., 2015).

Analysis and Results
The goal of our analysis was to investigate the relationship
between surprisal and processing difficulty while reading
code. We first calculated summary statistics to observe
overall trends in the data. Raw metrics from the dataset are
reported in Table 1.

The averages from this dataset show overall longer fixation
times and increased regressive saccades compared to
averages from natural text (Rayner, 1998), consistent with
previous work in this area (Busjahn et al., 2011; Busjahn et
al., 2015). Research on reading natural English text reports
an average of 200-400 ms for total fixation durations and 10-
15% rate for proportion of fixations that result in a regressive
saccade (Rayner, 1998). The average total fixation duration
in the EMIP dataset was 443 ms, which is higher than the
averages for natural text, and 24% of fixations resulted in a
regressive saccade, a higher proportion than in natural text.
These data support previous claims that code is more difficult
to process, and thus results in longer total fixation times and
increased regressive saccades (Busjahn et al., 2011).

The averages further show sizable differences by token
class. For example, the average total fixation duration for
open class tokens was 561 ms (SD = 694) but only 328 ms
(SD = 288) for closed class tokens. However, it is important
to note that these averages do not control for token length,
and open class tokens are on average longer than closed class
tokens in this dataset (6.0 and 5.3 characters respectively).
We also see substantially more regressions on open (23%)
than closed class items (16%), but fewer skips on open (32%)
than closed class items (41%).

Previous work has reported differences in eye movement
behavior between novices and experts (e.g., Busjahn et al.,
2015). We hypothesize that this is due to the relative
simplicity of the stimuli used in the experiment and discuss
this in further detail below.

To test the statistical significance of the effect of surprisal
on these metrics, we modeled eye movement measures with
mixed-effects regression models using the brms package in R

3488

(Bürkner, 2018). Linear regressions were fit for fixation
metrics and logistic regressions were fit for binary measures.
We fit individual models for each eye movement metric. The
models included sum-coded fixed effects for Token Class
(open: 1, 0; closed: 0, 1; punctuation: -1, -1), Surprisal
(continuous, centered) and Programming Language Expertise
(high: 1, 0; low: 0, 1; medium: -1, -1), including all possible
interactions. We also included control predictors by Token
Length (continuous) and Regressed In (no: 1, yes: -1),
indicating whether the first fixation on a token was the result
of a regressive saccade from later in the stimulus. We used
the maximal random effects structure justified by the design
(Barr et al., 2013), resulting in random intercepts for Token
ID and Participant, and random slopes by Programming
Language Expertise for Token ID, and by Token Class and
Surprisal and their interaction for Participant. We
additionally used weakly informative priors on the Intercept
and all main fixed effects. We consider the model estimates
as reliable if the credible interval (CrI) does not include 0, or
over 95% of the sampled posterior distribution is over or
under 0 in the predicted direction. Model estimates for
significant main effects and interactions are reported in
Tables 2-3.

Table 2: Significant linear regression model estimates for
fixation metrics.

Model Parameters β CrI
First fixation duration

Class (open) * Expertise (high) -3.58 [-7.29, 0.17]
Class (open) * Expertise (low) 2.01 [-2.65, 79.61]

First pass duration

Class (open) 9.40 [1.29, 17.39]
Class (closed) -9.74 [-19.89, 0.55]

Total fixation duration

Class (open) 37.06 [-5.24, 78.79]
Class (closed) -67.56 [-119.12, -16.39]

First Fixation Duration
We found no significant main effects for first fixation
duration; however, we did find two significant interactions
between Token Class and Programming Language Expertise.
High expertise participants read open class tokens
significantly faster while low expertise participants read open
class tokens significantly slower. There were no significant
main effects or interactions for surprisal.

First Pass
We found significant main effects for Token Class for first
pass reading times, such that open class tokens are read
slower while closed class tokens are read faster. There were
again no significant main effects or interactions for surprisal.

Total Fixation Duration
We also found significant main effects for Token Class for
total fixation durations, such that open class items are read
slower while closed class tokens are read faster. There were
again no significant main effects or interactions for surprisal.

Table 3: Significant logistic regression model estimates for

regression and skip metrics.
Model Parameters β CrI
First pass regression

Class (closed) -0.47 [-0.66, -0.30]
Surprisal -0.09 [-0.15, -0.02]
Class (open) * Expertise (low) -0.07 [-0.16, 0.01]

Overall regression

Class (open) 0.15 [0.04, 0.27]
Class (closed) 0.09 [-0.87, -0.53]
Surprisal 0.03 [-0.16, -0.04]
Class (open) * Expertise (high) 0.11 [0.00, 0.22]
Class (closed) * Expertise (high) -0.21 [-0.41, -0.02]
Class (open) * Expertise (low) -0.06 [-0.14, 0.01]
Class (closed) * Expertise (low) 0.12 [0.01, 0.24]

Overall skip

Class (open) -0.68 [-0.91, -0.45]
Expertise (low) -0.19 [-0.37, -0.02]
Class (closed) * Surprisal 0.18 [0.02, 0.35]
Class (open) * Expertise (high) -0.14 [-0.27, -0.01]
Class (closed) * Expertise (high) 0.31 [0.10, 0.52]
Class (open) * Expertise (low) 0.12 [0.04, 0.21]
Class (closed) * Expertise (low) -0.34 [-0.48, -0.20]
Surprisal * Expertise (high) -0.08 [-0.13, -0.02]
Surprisal * Expertise (low) 0.04 [0.01, 0.08]

First Pass Regressions
We found significant main effects for Token Class and
Surprisal for first pass regressions, as well as a significant
interaction between Token Class and Programming
Language Expertise. Closed class tokens had significantly
fewer first pass regressions, and higher surprisal values
resulted in fewer first pass regressions. Low expertise
participants also made significantly fewer first pass
regressions on open class items.

Overall Regressions
We again found significant main effects for Token Class and
Surprisal for overall regressions, as well as four significant
interactions between Token Class and Programming
Language Expertise. Open class tokens had significantly
more regressions overall while closed class tokens had
significantly fewer regressions overall. Surprisal also showed

3489

a similar trend to first pass regressions, where higher surprisal
values resulted in fewer first pass regressions. Interactions
between Token Class and Programming Language Expertise
showed contrasting patterns: high expertise participants made
more regressions on open class tokens than closed class
tokens, while low expertise participants made fewer
regressions on open class tokens than closed class tokens.

Skips
We found significant main effects for Token Class and
Programming Language Expertise for overall skips, as well
as multiple significant interactions between Token Class and
Surprisal, Token Class and Programming Language
Expertise, and Surprisal and Programming Language
Expertise. Open class tokens were significantly less likely to
be skipped, and low expertise participants skipped
significantly fewer tokens. While we found no main effects
for Surprisal, there were numerous significant interactions
with surprisal: for one, closed class tokens with higher
surprisal values were more likely to be skipped. Further,
tokens with higher surprisal values were less likely to be
skipped by high expertise participants, but more likely to be
skipped by low expertise participants. Finally, there were
significant interactions between Token Class and
Programming Language Expertise at multiple levels. High
expertise participants made fewer skips on open class tokens
and more skips on closed class tokens, while low expertise
participants made more skips on open class tokens and fewer
skips on closed class tokens.

Discussion
Our analysis takes first steps toward further investigating the
relationship between surprisal and measures of processing
difficulty in code in order to determine possible similarities
or differences between human natural and programming
language processing. We use an existing eye tracking dataset
of participants completing two code comprehension tasks to
complete our analysis. We examined the effect of token class
type, surprisal, and programmer expertise on standard eye
tracking measures, with special attention to measures
typically associated with processing difficulty in natural
language: total fixation durations and proportion of
regressive saccades.

Our results showed no significant effect for surprisal on
any of the fixation metrics gathered; rather, the main
determiner of difference in reading times was token class, and
to some extent, programmer expertise. Open class tokens
were read longer while closed class tokens were read shorter,
suggesting that programmers pay more attention to items like
variable names than repeated, template-like function terms.
This differs from what we would expect to see in natural
language, where high surprisal items would cause
significantly longer total durations.

Conversely, we do find a significant effect for surprisal on
both regression measures; however, the effect is in the
opposite predicted direction as we would see in natural
language. In this dataset, tokens with high surprisal resulted

in significantly fewer first pass and overall regressions away
from the token. One aspect of reading code that we have
previously discussed is that scan paths and fixation patterns
are far less linear in code than in natural text (Busjahn et al.,
2011). It has been hypothesized that regressions occur in
reading natural text in order to re-analyze the previously
processed input upon reading something difficult or
unexpected (Altmann et al., 1992; Rayner, 1998); however,
if code reading is non-linear, it’s possible that regressions are
made for reasons other than due to processing difficulty. It is
also possible that readers need to read a few more progressive
tokens to contextualize the high-surprisal item before
regressing away to read something else. For example, if a
reader encountered “1 + i” instead of the preferred “i + 1”,
they may continue past “1” to read the operator and variable
before regressing away from the whole statement. We leave
the further testing of these possibilities to future research.

Limitations and Future Directions
Our analysis provides a valuable and low-cost first look at the
relationship between surprisal and processing difficulty in
code. Our findings have identified potential key differences
in how surprisal affects natural language versus code and
highlighted methodological considerations for future work in
this area. However, it is important to note that this analysis
has some limitations. Primarily, some of the methodological
choices for the original data collection affected our ability to
conduct a thorough analysis. For one, the stimuli used were
relatively short and straightforward, resulting in little
variation in surprisal values in tokens, and thus made
identifying a strong surprisal effect more difficult.
Experimenters also did not use a head mount to stabilize
participant movements, meaning the precision of the
measurements reported in the data was perhaps not precise
enough to confidently analyze token-level fixations. The
EMIP is the only dataset of its kind to our knowledge, so we
were limited in our ability to use data more specifically suited
to our research question. Future research could use longer and
more difficulty stimuli, providing more variation in surprisal
values, as well as a higher precision eye tracker.

Acknowledgements
This research was supported by the National Science
Foundation CCF (SHF-MEDIUM) Grant to EM [grant
number 2107592].

References
Al Madi, N., Guarnera, D., Sharif, B., & Maletic, J. (2021).

EMIP Toolkit: A Python Library for Customized Post-
processing of the Eye Movements in Programming
Dataset. Eye Tracking Research and Applications
Symposium (ETRA), PartF169257.

Altmann, G. T. M., Garnham, A., & Dennis, Y. (1992).
Avoiding the garden path: Eye movements in context.
Journal of Memory and Language, 31(5), 685–712.

3490

Barr, D. J. (2013). Random effects structure for testing
interactions in linear mixed-effects models. Frontiers in
Psychology, 4:328.

Bednarik, R., Busjahn, T., Gibaldi, A., Ahadi, A., Bielikova,
M., Crosby, M., Essig, K., Fagerholm, F., Jbara, A., Lister,
R., Orlov, P., Paterson, J., Sharif, B., Sirkiä, T., Stelovsky,
J., Tvarozek, J., Vrzakova, H., & van der Linde, I. (2020).
EMIP: The eye movements in programming dataset.
Science of Computer Programming, 198.

Bürkner, P. C. (2018). Advanced Bayesian multilevel
modeling with the R package brms. R Journal, 10(1), 395–
411.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson,
J. H., Schulte, C., Sharif, B., & Tamm, S. (2015). Eye
Movements in Code Reading: Relaxing the Linear Order.
2015 IEEE 23rd International Conference on Program
Comprehension, 255–265.

Busjahn, T., Schulte, C., & Busjahn, A. (2011). Analysis of
code reading to gain more insight in program
comprehension. Proceedings of the 11th Koli Calling
International Conference on Computing Education
Research, 1–9.

Casalnuovo, C., Devanbu, P., & Morgan, E. (2020a). Does
Surprisal Predict Code Comprehension Difficulty?
Proceedings of the 42nd Annual Meeting of the Cognitive
Science Society, 564–570.

Casalnuovo, C., Lee, K., Wang, H., Devanbu, P., & Morgan,
E. (2020b). Do Programmers Prefer Predictable
Expressions in Code? Cognitive Science, 44(12).

Casalnuovo, C., Sagae, K., & Devanbu, P. (2019). Studying
the Difference Between Natural and Programming
Language Corpora. Empirical Software Engineering, 24,
1823–1868.

Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on
word perception and eye movements during reading.
Journal of Verbal Learning and Verbal Behavior, 20(6),
641–655.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U.
(2019). The Language of Programming: A Cognitive
Perspective. Trends in Cognitive Sciences, 23(7), 525–528.

Frazier, L., & Rayner, K. (1982). Making and correcting
errors during sentence comprehension: Eye movements in
the analysis of structurally ambiguous sentences. Cognitive
Psychology, 14(2), 178–210.

Hale, J. (2001). A probabilistic earley parser as a
psycholinguistic model. Second Meeting of the North
American Chapter of the Association for Computational
Linguistics on Language Technologies 2001- NAACL ’01,
1–8.

Hansen, M., Goldstone, R. L., & Lumsdaine, A. (2013). What
Makes Code Hard to Understand? arXiv Preprint
arXiv:1304.5257.

Hindle, A., Barr, E. T., Gabel, M., Su, Z., & Devanbu, P.
(2012). On the Naturalness of Software. In Proceedings of
the 34th International Conference on Software
Engineering, 59(5), 837–847.

Inhoff, A. W., & Rayner, K. (1986). Parafoveal word
processing during eye fixations in reading: Effects of word
frequency. Perception & Psychophysics, 40(6), 431–439.

Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H.,
Dhamala, R., O’Reilly, U. M., Bers, M. U., & Fedorenko,
E. (2020). Comprehension of computer code relies
primarily on domain-general executive brain regions.
eLife, 9, 1–24.

Levy, R. (2008). Expectation-based syntactic
comprehension. Cognition, 106(3), 1126–1177.

Rayner, K. (1998). Eye Movements in Reading and
Information Processing: 20 Years of Research.
Psychological Bulletin, 124(3).

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann,
A., Leich, T., Saake, G., & Brechmann, A. (2014).
Understanding understanding source code with functional
magnetic resonance imaging. Proceedings of the 36th
International Conference on Software Engineering, 1,
378–389.

Siegmund, J., Peitek, N., Parnin, C., Apel, S., Hofmeister, J.,
Kästner, C., Begel, A., Bethmann, A., & Brechmann, A.
(2017). Measuring neural efficiency of program
comprehension. Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 140–
150.

Smith, N. J., & Levy, R. (2013). The effect of word
predictability on reading time is logarithmic. Cognition,
128(3), 302–319.

Staub, A. (2010). Eye movements and processing difficulty
in object relative clauses. Cognition, 116(1), 71–86.

3491

