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Abstract 

This study explores the relationship between predictability, as 
measured by surprisal, and processing difficulty in code 
comprehension. We investigate whether similar mechanisms 
govern the processing of programming and natural languages. 
Previous research suggests that programmers prefer and 
produce more predictable code, akin to natural language 
patterns. We utilize eye-tracking data from the Eye Movements 
in Programming (EMIP) dataset to examine the impact of 
surprisal on various eye movement measures. Contrary to 
expectations based on natural language processing, our results 
reveal that surprisal does not significantly influence fixation 
metrics. Additionally, regressions in code reading show an 
unexpected inverse relationship with surprisal, suggesting that 
readers have different reasons for making regressions while 
reading code versus natural text. These findings contribute 
insights into the unique dynamics of code comprehension and 
opens avenues for further research in this domain. 

Keywords: language processing; programming languages; eye 
tracking and reading; predictive processing 

Introduction 
An emerging area of interest in the field of language 
processing is the processing of programming languages, or 
code. Programming has primarily been viewed through the 
lens of logic and problem-solving, and the “language” 
component is often overlooked. With the increasing 
prevalence of programming, including proposals to recognize 
programming languages as a type of “foreign language” in 
secondary education, researchers have recognized the need to 
further explore the cognitive processes involved in reading 
and comprehending code (e.g., Fedorenko et al., 2019). A key 
question in this discussion has been, are the cognitive 
mechanisms recruited while processing programming 
languages similar to those used for processing natural 
languages? 

Comparing Natural and Programming Languages 
Natural and programming languages share many similarities 
that may entail similar processing mechanisms. For example, 
we often use similar language to describe the use of natural 
and programming languages: we speak of “reading and 
writing” code, there are well-known programming language 
“idioms” that can be language-specific, and many languages 

have “coding style” guides to maintain writing consistency 
by language. Like natural languages, programming languages 
are symbolic systems of communication that allow for 
creativity in language use. On a concrete level, both natural 
and programming languages have lexicons from which they 
can draw to build meaningful phrases and are constrained by 
the grammatical rules of syntax. 

However, there are also intrinsic differences between the 
two that may lead to distinct processing mechanisms. For 
one, most individuals would agree that programming 
languages are decidedly not natural languages. Humans 
cannot claim to be “native” speakers of programming 
languages, and the use of programming languages is 
constrained to very domain-specific environments. 
Programming languages also differ from natural languages in 
their syntax and lexicon: programming languages have 
infinitely large lexicons as programmers can constantly make 
up new function and identifier names, but its syntax is far 
more limited than that of natural languages. 

Existing literature investigating the underlying cognitive 
mechanisms of code processing is limited in scope and 
provides conflicting evidence. On the one hand, there is some 
evidence that programming languages are processed in a 
similar manner as natural languages. For example, corpus 
studies show that programmers intentionally write 
predictable code (Casalnuovo et al., 2019), and behavioral 
studies find that predictable code improves comprehension 
times (e.g., Casalnuovo et al., 2020a; Hansen et al., 2013), 
similar to natural language production and comprehension. 
Further, some neuroimaging studies suggest a considerable 
overlap in the areas of the brain recruited for natural and 
programming language processing (Siegmund et al., 2014; 
2017). On the other hand, there is evidence that programming 
languages are processed in a distinct manner from natural 
languages. For one, programming languages have also been 
found to be more cognitively demanding to read and write 
than natural languages (Busjahn et al., 2011). Programmers 
also read code less-linearly than natural language (Busjahn et 
al., 2015); however, this difference in behavior is dependent 
on the expertise of the programmer (e.g., advanced 
programmers have even less linear reading patterns and are 
more likely to skip intermediate words and lines). Other 
neuroimaging studies contra those mentioned above also 
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found that distinct areas of the brain are activated while 
reading natural versus programming languages (Ivanova et 
al., 2020), and that a domain-general system in the brain was 
recruited for programming language processing instead.  

This work aims to further investigate similarities and 
differences in processing code and natural language by 
examining the relationship between predictability and 
processing difficulty in code. We are specifically interested 
in determining how expectations, as measured by surprisal, 
affect processing behaviors in code, and whether surprisal has 
a similar effect on processing with code as it does on natural 
language. 

Predictability and Language Processing 
We know that code is more cognitively demanding to process 
than natural language (Busjahn et al., 2011). One way that 
humans attenuate cognitive difficulty in processing natural 
language is by using more predictable language, or language 
that is more expected in context. Numerous psycholinguistic 
studies have demonstrated that the frequency and 
distributional properties of linguistic units, such as words, 
phrases, and syntactic structures, substantially influence how 
humans process language. For instance, words that are more 
frequent and predictable are read faster (e.g., Ehrlich & 
Rayner, 1981; Inhoff & Rayner, 1986), and reading syntactic 
structures that are more common and more predictable in 
context facilitates processing (e.g., Hale, 2001; Levy, 2008).  

Probabilistic accounts of language processing have 
operationalized this relationship between expectations and 
processing difficulty through surprisal, which is the negative 
log probability of a word in context. For example, in self-
paced reading tasks, longer reading times are directly 
correlated with higher surprisal, or low predictability (e.g., in 
the sentence “I took my dog to the …”, “park” would be a 
low surprisal option while “circus” would be a higher 
surprisal option) (Smith & Levy, 2013).  In eye-tracking 
studies, this difficulty can present as longer total fixation 
times, increased regressive saccades, or both (Frazier & 
Rayner, 1982; Staub, 2010). 

Researchers once wondered whether programming 
languages were more predictable than natural languages and 
found that they indeed were. Hindle et al. (2012) set out to 
test whether code or natural text was less predictable by 
training predictive language models on code and natural text 
corpora. They found that language models trained on code 
exhibited lower cross-entropy values than those trained on 
text. In light of these findings, researchers explored whether 
the observed predictability in code resulted from 
programmers reducing cognitive load by opting for 
predictability amidst multiple options, or was merely a 
natural side effect of code's grammatical and syntactic 
constraints. Casalnuovo et al. (2019) investigated this 
question by conducting a corpus analysis comparing the 
predictability of 5 programming languages to 3 natural 
languages. To control for code’s limited grammar and syntax, 
the authors focused their analyses on open-class words and 
compared code corpora to natural language corpora of 

technical writing, which warrants repetitive and predictable 
language in a similar way as code. They trained various 
language models on these corpora and found that 
programming languages had consistently smaller entropy 
values, and were thus more predictable than natural language, 
even when accounting for grammatical and syntactic 
constraints. The authors conclude that while some of the 
difference in predictability is due to grammatical constraints, 
a significant portion must also be due to human preferences 
for predictable code. 

Casalnuovo et al. (2020b) then decided to explicitly test 
programmers’ preferences for predictable code. They 
conducted an experiment where programmers were presented 
with two versions of an expression and asked to select their 
preferred version. One version of the expression was with a 
canonical ordering (assumed to be preferred), and the second 
was with a non-canonical ordering derived through a 
meaning-preserving transformation. For example, the 
expression i + 1 can be expressed as either i + 1 or 1 + i and 
be meaningfully equivalent; however, i + 1 is the preferred 
and more frequent ordering. The authors also trained 
language models on these alternations to quantify which 
alternation was more predictable (i.e., had lower surprisal). 
They found that participants were more likely to choose 
variants with lower surprisal ratings as the preferred 
alternation, thus supporting their previous conclusion that 
humans do prefer, and likely write, predictable code. 

Predictable code has also been shown to facilitate code 
processing and comprehension, similar to natural language. 
For example, Hansen et al. (2013) conducted an eye tracking 
study in which programmers were presented with functions 
that contained predictable and less predictable alternations 
and asked to summarize the purpose of the function. They 
found that less predictable code caused longer response times 
when determining the purpose of the function. Notably, in 
certain cases, this effect declined with experience, such that 
programmer experience helped to counteract the effect of 
seeing less predictable code. The authors interpreted this to 
be due to real-world experience with code that is both 
predictable and unpredictable, so expectations from real-
world experience superseded baseline preferences. 

Since surprisal has been shown to be strongly correlated 
with processing difficulty in natural language, a natural 
question would be whether this correlation also exists with 
processing difficulty in programming languages. Casalnuovo 
et al. (2020a) tested whether surprisal is correlated with code 
processing difficulty through a human behavioral study. They 
found a significant effect of surprisal on time spent answering 
comprehension questions about functions, and a non-
significant trend towards a negative relationship between 
surprisal and comprehension question accuracy. 

Current Study 
Previous studies on code processing and comprehension have 
demonstrated that humans prefer predictable code 
(Casalnuovo et al., 2020b; Casalnuovo et al., 2020a), and 
predictable code generally facilitates processing times for 
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comprehension questions (Hansen et al., 2013); however, no 
studies have yet taken a granular look at how difficulty in 
code processing presents during incremental, on-line 
processing. 

Our study takes steps toward filling this gap by identifying 
patterns of processing difficulty at the token level and asking 
whether surprisal is a significant predictor of these behaviors. 
We test our predictions by analyzing an existing eye-tracking 
corpus for code, where participants read two medium length 
code blocks and completed comprehension tasks. In natural 
language, surprisal is a predictor of processing difficulty, 
such that high surprisal values for a word would result in 
increased processing difficulty. In practice, this manifests as 
longer reading times or an increased proportion of regressive 
saccades away from the word into an earlier part of the 
sentence. We test whether this pattern holds with code by 
determining whether surprisal has any significant effect on 
processing behaviors while reading code. Further, we test 
whether surprisal affects similar reading measures in code as 
in natural language – while surprisal affects both early 
measures (e.g. first pass duration) and late measures (e.g. 
total fixation duration) for natural text, it is possible that the 
non-linearity of code would result in less effects on early 
processing measures (i.e., first pass) than overall processing 
measures. It is important to note that this preliminary analysis 
is limited by the nature of the pre-existing dataset; however, 
the insights will be a valuable first step toward investigating 
the relationship between surprisal and processing in 
programming languages. 

Methods 

Materials and Participants 
The Eye Movements in Programming (EMIP) dataset 
(Bednarik et al., 2020) includes eye movements for 216 
programmers (41 women; mean age: 27, SD = 9) of different 
experience levels completing two code reading and 
comprehension tasks, each comprising 11-22 lines of code 
(Figure 1). Data were collected by eleven research teams 
across eight countries. Participants were offered the option to 
complete the experiment in Java (~96% of participants 
selected), Scala (~2%), or Python (~2%). Prior to the start of 
the experiment, participants completed a demographic survey 
where they reported their years of expertise in programming 
(M = 6.0, SD = 7.9), their level of expertise in programming 
(none: 11, low: 45, medium: 120, or high: 40), their years of 
experience with the experiment language (e.g., Java) (M = 
2.3, SD = 3.3), and their level of expertise with the 
experiment language (none: 30, low: 69, medium: 100, or 
high: 17). Participants were instructed to read each stimulus 
for comprehension and answered a multiple-choice question 
about the output of the function. Eye movements were 
recorded using a screen-mounted SMI RED250 mobile eye 
tracker with a sampling rate of 250 Hz. No head or chin rest 

 
1 http://www.emipws.org/dataset/  

was used in order to simulate a naturalistic programming 
environment. 

We used a filtered and corrected dataset, executed and 
published by the original authors, for our analysis (Al Madi 
et al., 2021). The corrected dataset includes token-level 
fixation information for all Java trials. Tokens were defined 
as being split by whitespace, and this definition was set by 
the original authors (Figure 1). Fixations that presented a 
clear shifting pattern were hand-corrected by one of two 
authors, who applied a general offset correction using the 
EMIP Toolkit in Python (Al Madi et al., 2021), and trials that 
were not fixed by the offset correction were excluded. 
Additionally, 15% of the data is not published.1  We further 
filtered the dataset to exclude any participants who indicated 
that they had “none” programming experience (N = 11). The 
final dataset used for our analysis included 253 trials from 
147 participants. 

Participant Programming Expertise 
Participant programming expertise was determined based on 
information provided in the demographic questionnaire. Each 
participant answered four questions about their programming 
expertise, including years of experience and their level of 
expertise for both programming in general and the 
experiment language. We decided to forgo using the measure 
based on years of experience as the distribution of answers 
was very broad and skewed (experiment language expertise: 
M = 2.3, Mdn = 1.0, SD = 3.3; programming expertise: M = 
6.0, Mdn = 3.0, SD = 7.9). When then compared levels of 
expertise for general programming versus the experiment 
language and noticed a general pattern of participants rating 
themselves as less proficient in the experiment language than  

Figure 1: Sample stimulus in Java from the EMIP dataset. 
Extra spaces were included between tokens to allow for 

character-level precision for fixations on punctuation and 
operators. 
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Table 1: Raw averages for each eye tracking metric overall, by class, and by programmer expertise. 

Metric Overall Open 
Class 

Closed 
Class Punct Low Med High 

First fixation duration 117 118 116 115 116 118 125 
First pass duration 187 209 170 148 186 187 201 
Total fixation duration 443 561 328 235 443 440 461 
First pass regressions 0.11 0.09 0.09 0.23 0.11 0.11 0.11 
Overall regressions 0.24 0.23 0.16 0.36 0.23 0.25 0.24 
Overall skip rate 0.54 0.32 0.41 0.75 0.53 0.54 0.56 

 
in programming overall (experiment language expertise – 
none: 30, low: 69, medium: 100, high: 17; programming 
expertise – none: 11, low: 45, medium: 120, high: 40). To 
avoid over-estimating the expertise of the participants, we 
used the level of expertise with the experiment language as 
our measure of participant programming expertise in our 
analyses. 

Token Surprisal and Class 
Surprisal values for each token in the stimuli were calculated 
using OpenAI’s Codex (Chen et al., 2021). Codex is a GPT-
3 based language model trained on both natural language and 
source code and is proficient in over a dozen programming 
languages. Due to internal tokenization protocols, 
transformer-based models like GPT-3 will often generate 
surprisal values for sub-word units. To align surprisal values 
generated from Codex to full tokens, we summed surprisal 
values within each token to generate a token-level value. 

To control for differences in fixations on content (open 
class) versus function (closed class and punctuation) tokens, 
we assigned each token to one of the three classes. Following 
Casalnuovo et al., (2019), we used the type categorization 
feature from the Pygments2 syntax highlighting library in 
Python to determine the class of each token. Token class was 
then used as a main predictor variable in our analyses 
described below. 

Eye Movement Measures 
The corrected EMIP dataset reported fixation durations and 
timestamps for individual token-level fixations for each trial. 
Using this information, we calculated the following eye 
movement measures for our analysis: first fixation duration 
(the duration of the first fixation on a token), first pass 
duration (the sum of all first pass fixations before leaving a 
token for the first time), total fixation duration (the sum of all 
fixations on a token), first pass regression (a binary measure 
indicating whether the reader’s first pass through a token 
ended with a regressive saccade to an earlier part of the 
function), overall regression (a binary measure indicating 
whether any fixation on a token ended with a regressive 
saccade to an earlier part of the function, including first pass 
regressions), and overall skip rate (a binary measure 
indicating whether a token was not fixated on for the duration 

 
2 https://pygments.org/  

of the trial). We chose to exclude certain metrics, such as first 
pass skip rates and go-past time, due to non-linear reading 
patterns with code (Busjahn et al., 2015). 

Analysis and Results 
The goal of our analysis was to investigate the relationship 
between surprisal and processing difficulty while reading 
code. We first calculated summary statistics to observe 
overall trends in the data. Raw metrics from the dataset are 
reported in Table 1. 

The averages from this dataset show overall longer fixation 
times and increased regressive saccades compared to 
averages from natural text (Rayner, 1998), consistent with 
previous work in this area (Busjahn et al., 2011; Busjahn et 
al., 2015). Research on reading natural English text reports 
an average of 200-400 ms for total fixation durations and 10-
15% rate for proportion of fixations that result in a regressive 
saccade (Rayner, 1998). The average total fixation duration 
in the EMIP dataset was 443 ms, which is higher than the 
averages for natural text, and 24% of fixations resulted in a 
regressive saccade, a higher proportion than in natural text. 
These data support previous claims that code is more difficult 
to process, and thus results in longer total fixation times and 
increased regressive saccades (Busjahn et al., 2011). 

The averages further show sizable differences by token 
class. For example, the average total fixation duration for 
open class tokens was 561 ms (SD = 694) but only 328 ms 
(SD = 288) for closed class tokens. However, it is important 
to note that these averages do not control for token length, 
and open class tokens are on average longer than closed class 
tokens in this dataset (6.0 and 5.3 characters respectively). 
We also see substantially more regressions on open (23%) 
than closed class items (16%), but fewer skips on open (32%) 
than closed class items (41%). 

Previous work has reported differences in eye movement 
behavior between novices and experts (e.g., Busjahn et al., 
2015). We hypothesize that this is due to the relative 
simplicity of the stimuli used in the experiment and discuss 
this in further detail below. 

To test the statistical significance of the effect of surprisal 
on these metrics, we modeled eye movement measures with 
mixed-effects regression models using the brms package in R 
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(Bürkner, 2018). Linear regressions were fit for fixation 
metrics and logistic regressions were fit for binary measures.  
We fit individual models for each eye movement metric. The 
models included sum-coded fixed effects for Token Class 
(open: 1, 0; closed: 0, 1; punctuation: -1, -1), Surprisal 
(continuous, centered) and Programming Language Expertise 
(high: 1, 0; low: 0, 1; medium: -1, -1), including all possible 
interactions. We also included control predictors by Token 
Length (continuous) and Regressed In (no: 1, yes: -1), 
indicating whether the first fixation on a token was the result 
of a regressive saccade from later in the stimulus. We used 
the maximal random effects structure justified by the design 
(Barr et al., 2013), resulting in random intercepts for Token 
ID and Participant, and random slopes by Programming 
Language Expertise for Token ID, and by Token Class and 
Surprisal and their interaction for Participant. We 
additionally used weakly informative priors on the Intercept 
and all main fixed effects. We consider the model estimates 
as reliable if the credible interval (CrI) does not include 0, or 
over 95% of the sampled posterior distribution is over or 
under 0 in the predicted direction. Model estimates for 
significant main effects and interactions are reported in 
Tables 2-3.  
 

Table 2: Significant linear regression model estimates for 
fixation metrics. 

Model Parameters β CrI 
First fixation duration 

  

Class (open) * Expertise (high) -3.58 [-7.29, 0.17] 
Class (open) * Expertise (low) 2.01 [-2.65, 79.61] 

First pass duration 
  

Class (open) 9.40 [1.29, 17.39] 
Class (closed) -9.74 [-19.89, 0.55] 

Total fixation duration 
  

Class (open) 37.06 [-5.24, 78.79] 
Class (closed) -67.56 [-119.12, -16.39] 

 

First Fixation Duration 
We found no significant main effects for first fixation 
duration; however, we did find two significant interactions 
between Token Class and Programming Language Expertise. 
High expertise participants read open class tokens 
significantly faster while low expertise participants read open 
class tokens significantly slower. There were no significant 
main effects or interactions for surprisal. 

First Pass 
We found significant main effects for Token Class for first 
pass reading times, such that open class tokens are read 
slower while closed class tokens are read faster. There were 
again no significant main effects or interactions for surprisal. 

Total Fixation Duration 
We also found significant main effects for Token Class for 
total fixation durations, such that open class items are read 
slower while closed class tokens are read faster. There were 
again no significant main effects or interactions for surprisal.  
 
Table 3: Significant logistic regression model estimates for 

regression and skip metrics. 
Model Parameters    β CrI 
First pass regression 

  

Class (closed) -0.47 [-0.66, -0.30] 
Surprisal -0.09 [-0.15, -0.02] 
Class (open) * Expertise (low) -0.07 [-0.16, 0.01] 

Overall regression 
  

Class (open) 0.15 [0.04, 0.27] 
Class (closed) 0.09 [-0.87, -0.53] 
Surprisal 0.03 [-0.16, -0.04] 
Class (open) * Expertise (high) 0.11 [0.00, 0.22] 
Class (closed) * Expertise (high) -0.21 [-0.41, -0.02] 
Class (open) * Expertise (low) -0.06 [-0.14, 0.01] 
Class (closed) * Expertise (low) 0.12 [0.01, 0.24] 

Overall skip 
  

Class (open) -0.68 [-0.91, -0.45] 
Expertise (low) -0.19 [-0.37, -0.02] 
Class (closed) * Surprisal 0.18 [0.02, 0.35] 
Class (open) * Expertise (high) -0.14 [-0.27, -0.01] 
Class (closed) * Expertise (high) 0.31 [0.10, 0.52] 
Class (open) * Expertise (low) 0.12 [0.04, 0.21] 
Class (closed) * Expertise (low) -0.34 [-0.48, -0.20] 
Surprisal * Expertise (high) -0.08 [-0.13, -0.02] 
Surprisal * Expertise (low) 0.04 [0.01, 0.08] 

 

First Pass Regressions 
We found significant main effects for Token Class and 
Surprisal for first pass regressions, as well as a significant 
interaction between Token Class and Programming 
Language Expertise. Closed class tokens had significantly  
fewer first pass regressions, and higher surprisal values 
resulted in fewer first pass regressions. Low expertise 
participants also made significantly fewer first pass 
regressions on open class items. 

Overall Regressions 
We again found significant main effects for Token Class and 
Surprisal for overall regressions, as well as four significant 
interactions between Token Class and Programming 
Language Expertise. Open class tokens had significantly 
more regressions overall while closed class tokens had 
significantly fewer regressions overall. Surprisal also showed 
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a similar trend to first pass regressions, where higher surprisal 
values resulted in fewer first pass regressions. Interactions 
between Token Class and Programming Language Expertise 
showed contrasting patterns: high expertise participants made 
more regressions on open class tokens than closed class 
tokens, while low expertise participants made fewer 
regressions on open class tokens than closed class tokens.  

Skips 
We found significant main effects for Token Class and 
Programming Language Expertise for overall skips, as well 
as multiple significant interactions between Token Class and 
Surprisal, Token Class and Programming Language 
Expertise, and Surprisal and Programming Language 
Expertise. Open class tokens were significantly less likely to 
be skipped, and low expertise participants skipped 
significantly fewer tokens. While we found no main effects 
for Surprisal, there were numerous significant interactions 
with surprisal: for one, closed class tokens with higher 
surprisal values were more likely to be skipped. Further, 
tokens with higher surprisal values were less likely to be 
skipped by high expertise participants, but more likely to be 
skipped by low expertise participants. Finally, there were 
significant interactions between Token Class and 
Programming Language Expertise at multiple levels. High 
expertise participants made fewer skips on open class tokens 
and more skips on closed class tokens, while low expertise 
participants made more skips on open class tokens and fewer 
skips on closed class tokens. 

Discussion 
Our analysis takes first steps toward further investigating the 
relationship between surprisal and measures of processing 
difficulty in code in order to determine possible similarities 
or differences between human natural and programming 
language processing. We use an existing eye tracking dataset 
of participants completing two code comprehension tasks to 
complete our analysis. We examined the effect of token class 
type, surprisal, and programmer expertise on standard eye 
tracking measures, with special attention to measures 
typically associated with processing difficulty in natural 
language: total fixation durations and proportion of 
regressive saccades.   

Our results showed no significant effect for surprisal on 
any of the fixation metrics gathered; rather, the main 
determiner of difference in reading times was token class, and 
to some extent, programmer expertise. Open class tokens 
were read longer while closed class tokens were read shorter, 
suggesting that programmers pay more attention to items like 
variable names than repeated, template-like function terms. 
This differs from what we would expect to see in natural 
language, where high surprisal items would cause 
significantly longer total durations.  

Conversely, we do find a significant effect for surprisal on 
both regression measures; however, the effect is in the 
opposite predicted direction as we would see in natural 
language. In this dataset, tokens with high surprisal resulted 

in significantly fewer first pass and overall regressions away 
from the token. One aspect of reading code that we have 
previously discussed is that scan paths and fixation patterns 
are far less linear in code than in natural text (Busjahn et al., 
2011). It has been hypothesized that regressions occur in 
reading natural text in order to re-analyze the previously 
processed input upon reading something difficult or 
unexpected (Altmann et al., 1992; Rayner, 1998); however, 
if code reading is non-linear, it’s possible that regressions are 
made for reasons other than due to processing difficulty. It is 
also possible that readers need to read a few more progressive 
tokens to contextualize the high-surprisal item before 
regressing away to read something else. For example, if a 
reader encountered “1 + i” instead of the preferred “i + 1”, 
they may continue past “1” to read the operator and variable 
before regressing away from the whole statement. We leave 
the further testing of these possibilities to future research. 

Limitations and Future Directions 
Our analysis provides a valuable and low-cost first look at the 
relationship between surprisal and processing difficulty in 
code. Our findings have identified potential key differences 
in how surprisal affects natural language versus code and 
highlighted methodological considerations for future work in 
this area. However, it is important to note that this analysis 
has some limitations. Primarily, some of the methodological 
choices for the original data collection affected our ability to 
conduct a thorough analysis. For one, the stimuli used were 
relatively short and straightforward, resulting in little 
variation in surprisal values in tokens, and thus made 
identifying a strong surprisal effect more difficult. 
Experimenters also did not use a head mount to stabilize 
participant movements, meaning the precision of the 
measurements reported in the data was perhaps not precise 
enough to confidently analyze token-level fixations. The 
EMIP is the only dataset of its kind to our knowledge, so we 
were limited in our ability to use data more specifically suited 
to our research question. Future research could use longer and 
more difficulty stimuli, providing more variation in surprisal 
values, as well as a higher precision eye tracker. 
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