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University of Hamburg

ABSTRACT

This paper presents the architecture of the discovery system SHUNYATA which models studies and
research in higher mathematics. SHUNYATA analyzes mathematical proofs and produces conceprs
and proof strategies which form the basis for the discovery of more difficult proofs in other mathemat-
ical theories. Its architecture avoids combinatorial explosions and does not require search strategies.
The proof strategies contain two categories of predicates. A predicate of the first category selects
a small set of proof steps and the predicates of the second category evaluate partial proofs and de-
cide which predicate of the first category should be applied next. Thus. the proof strategies melude
feedback loops. A detailed example is given. It contains a simnple proofl in group theory, the analysis
of this proof, and the discovery of a proof in lattice theory whose degree of difliculty represcnis the
state-of-the-art in automated theorem proving. The most important result of this work is the discov-
ery of a holistic logic based on the concept that cognitive structures arise from simple perceptions,
evolve by reflection and finally contain their own evolution mechanisms.

Keywords: Learning, knowledge acquisition, cognitive evolution, automated theorem proving.

1 INTRODUCTION

Traditional research in machine learning assumes the existence of domain-independent and objectiviz-
able cognitive structures and discovery mechanisms (e.g., [4]). This approach entails the following
difficulties:

e The learning system cannot change its representation language and its structure (e.g., [11]).
o After a period of time, the efficiency of the system decreases drastically (e.g., [8]).

SHUNYATA automatically changes its language and its structure on the basis of experience which
increases its efficiency. A crucial consequence is that it is impossible to objectivize its architecture,
i.e., it cannot be analyzed completely.

The organization of this paper is as follows. Section 2 gives an overview of SHUNYATA. Section 3
describes the reflection system which forms the core of SHUNYATA. Section 4 introduces the concept
of analytical spaces and Section 5 presents holistic logic. Sections 6 and 7 give a simple proof in
group theory and the analysis of this proof. Section 9 describes the discovery of a difficult proof in
lattice theory.

!Copyright © 1986 by Kurt Ammon. All rights reserved. Further, storage and utilization of the described programs
on data processing installations is forbidden without prior written permission of the author.
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2 OVERVIEW OF SHUNYATA

SHUNYATA has the structure of a tree in functional representation, i.e., every object is either a
symbol or else has the form

f(aI: ---1an)1

where f is a function and a, ..., a, are arguments. At the most general level SHHUNYATA does not
consist of interacting components but has only this functional structure which is very suitable for
representing reasoning processes. SHUNYATA contains three kinds of functions:

e Calculable functions. These are conventional effectively calculable functions, i.e., they are
objectivizable because they have a precise representation and produce precisely describable
values.

e Strange functions. The value of a strange function is composed of the name of the function and
its arguments. Finite sets, tuples, and bags can be regarded as strange functions. Example:
The set {ay,...,a,} is represented by

fset(ay,...,an),
where the value of fset(ay,...,a,) is fset(ay,...,an).

e Holistic functions. Holistic functions evolve through experience and cannot be objectivized.
Their development is accompanied by division and unification processes. Existential quan-
tification, universal quantification, and the operator that constructs sets from predicates are
holistic functions. The undecidability of predicate logic [5] indicates that the decision procedure
is a holistic function.

SHUNYATA contains elementary knowledge for evaluating holistic functions. In particular, it
uses a basic procedure to evaluate predicates that define finite sets. The central mechanism of this
procedure is the replacement of element relations by disjunctions of equality relations. In SHUNYATA
holistic functions presently produce the value not-evaluable if the system does not contain sufficient
knowledge for evaluating the function.

The most important functions of SHUNYATA are the analyze function and the proof function
which perform the proof analyses and generate proofs. The analyze function has the form

analyze(C,T, P),

where C is a predicate calculus, T a theorem, and P a proof for the theorem. It produces a proof
strategy. The proof function has the form

proof(C,T,5),

where C is a predicate calculus, T a theorem, and S a proof strategy. It produces a proof for the
theorem. The analyze and proof functions illustrate the spiral organization of SHUNYATA: The
analyze function constructs powerful proof strategies from proofs and the proof function constructs
complex proofs from proof strategies.
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3 THE REFLECTION SYSTEM

The reflection system is the core of SHUNYATA. It contains over one hundred simple functions and
their relations which are represented in a language closely related to predicate logic. The universe
of this language i1s the set of all symbols and all trees. The functions are eta-level concepts such
as the subset relation, the union of sets, and the addition of natural numbers. Thus, the reflection
system contains precise knowledge about finite trees.

An inference can be represented by

m =1i(ay,...,an),

where m is a meta-level theorem, ¢ is an rule of inference, and ay, ..., a, are the arguments. The system
uses predicates to construct small sets of inferences. ‘These predicates are modified dynamically.
The activity of the reflection system changes rapidly because it is controlled by the results of the
inferences. The set of meta-level theorems generated by the reflection svstem is called reflection
space. The architecture described avoids combinatorial explosions because the reflexion space can
be pruned by additional predicates. This mechanism produces a combinatorial reduction of the size
of the reflection space with regard to the number of predicates.

4 ANALYTICAL SPACES

Cognition permanently reduces huge amounts of information to a few concepts. Miller [10] argues
that only some seven concepts are contained in short-term memory simultaneously. This reduction
forces cognition to divide the world into analytical spaces which consist of a few concepls and the
environment these concepts refer to. An analytical space represents a view of the world. Examples
are geometry and space in mathematics, properties of programs and prograins in computer science,
and proof strategies and proofs in SHUNYATA. The principle of complementarity 31 stites that
quantum theory requires the existence of differcnt analytical spaces. (iodel’s Theorem |6, inplies
that there are different analytical spaces for the theory of natural numbers, Traditional epistemology
regards the world and cognition as completely separable entities. From a holistic point of view the
world and cognition are divided into different analytical spaces which contain essential but incomplete
knowledge.

5 HOLISTIC LOGIC

The SHUNYATA system is the first step towards an implementation of holistic logic. The central
hypotheses of this logic are:

e The basis or kernel of cognition is formless.

e Cognitive evolution creates new analytical spaces (division) and integrates existing analytical
spaces (unification).

New information in a cognitive system generates elementary analytical spaces which cause per-
turbations in its structures. This process can be considered as low-level perception. In integrating
the new analytical space the system must preserve its previous efficiency. [t first tries to assimilate
the new space into existing structures. If this is impossible, the new analytical space begins its own
evolution, i.e., the system performs a division process. The evolution is controlled by the activity of
the reflection system. Cognition achieves the most important advancements in its development by
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integrating different analytical spaces, 1.e., by unification processes. Even the high-level structures
of the reflection system are permanently revised and improved by divisions and unifications on the
basis of its low-level structures. Because cognitive structures arise from simple perception, their
origin can be regarded as an empty or formless kernel, i.e., the kernel lacks properties and structures.
Thus, the theory of holistic logic implies that it is impossibe to objectivize cognition and discovery
mechanisms completely. The integration of new information can be regarded as an induction process
which creates new structures. These are modified by future experience, i.c., by feedback processes.
Therefore, cognitive structures evolve by induction and feedback |[1].

6 A SIMPLE PROOF

This section gives a formalization of the elementary theory of groups, a theorem, and a complete
formalization of a proof which includes the reasons for the theorems. This approach to formalization
forms the basis for the analysis of the proof. It can be applied Lo predicate logic and meta-level
reasoning. The symbols and functions used in this section are defined in the appendix.

1. One binary predicate letter: p. We write z = y for p(z,y).
Three binary function letters: f, g, h. We write zy for f(z,y).

Constant: c.

Azioms: (zy)z = z(yz), 9(z,y)z =y, zh(z,y) = y.

o oA W N

Rules of inference:

(a) Substitution Rule: r = u € E, s € subs(r = u) = sub(r = u,s) € E. Function:
sub(r = u,s).

(b) Reflexivity Rule: r € R => r = r € E. Function: ref(r).

(c) Symmetry Rule: r = u€ E = u =r € E. Function: sym(r = u).

(d) Transitivity Rule: r =u € F, u=v€ E = r = v € E. Function: tran(r = u,u = v).

(e) Replacement Rule: r € R, d € D, u = v € E, d(r) = u —> rep(r,d,u —~ v) € E.
Function: rep(r,d,u = v).

(f) Chain Rule: r€ R, d€ D, u=v € E, s € subs(u = v),d(r) = st(1,sub(u = v,s)) =

rep(r,d, sub(u = v,s)) € E. Function: chain(r,d,u = v,s).
6. Theorem: g(e,c)z = z.

7. Proof:

Theorems Reasons
g(e,c)z = g(c,c)(ch(c, 7)) chain(g(c,c)z, 2, y = zh(z,y), {(z,0), (v, 2)}) |
9(c,c)(ch(e,z)) = (g9(c,c)c)h(c,z) | chain(g(c,c)(ch(c,z)), (), z(y2) == (zy)z, |
{(z,9(c, ).y, ), (2, k(e 2))}) |
I
l

(g(c,c)e)h(ec,z) = ch(c,z) chain((g(c,c)c)h(c, z), 1, glz,y)xr =y, {(r,¢),(y,c)})
chic,z) =2 chain(ch(c,z), (), zh(z,y) = v, {(z,¢),(y,x)})

The proof steps containing the Symmetry Rule or the Transitivity Rule are omitted. The proof
in ordinary scientific notation is

g(c,c)z = g(e,c)(ch(ec,z)) = (9(c, c)e)h(c,z) = ch(c,z) = z.
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7 THE ANALYSIS OF THE PROOF

This section describes the automatic analysis of the previous proof. The result of this analysis is a
proof strategy.

The proof in the previous section contains four steps Yi, Y3, Y3, and Yy. These proof steps are
tuples

(r =t,chain(r,d,u = v, s)),

where r € R, d € D, u = v € E, and d(r) = st(1,sub(u = v,s)). SHUNYATA analyzes the four
proof steps successively. The analysis produces two categories of predicates which represent the proof
strategies. These predicates are generated from the functions of the reflection system like the terms
and well-formed formulas of a predicate calculus. The predicates of the first category have the form

p(C, T, X,Y),

where C is a predicate calculus, T the theorem to be proved, X a tuple of proof steps, and YV a
proof step. At the beginning of the analysis the tuple X is empty. SHUNYATA tests whether these
predicates satisfy the following requirements:

e The evaluation of p(C, T, X, Y;) yields the truth value true where Y;, ¢ € {1,2,3, 4}, is the proof
step to be analyzed.
e The evaluation of {Y| p(C,T, X,Y)} yields a small set of proof steps in a limited space of time.

The predicates of the second category have the form
gle, T, X}

where C is a predicate calculus, T the theorem to be proved, and X a tuple of proof steps. They
decide which predicate of the first category should be applied next. Thercfore, the proof strategies
include feedback loops. The proof steps generated by the predicates of the first category are appended
to the tuple X until X contains the complete proof, i.e., the proof steps Y. V5, V3, and Y,

1. The analysis of the first proof step. SHUNYATA generates predicates and tests whether they
satisfy the requirements described. It discovers the proof strategy:

r=st(1,T)A
u=v € azms(C) U {b| (3a)(a € azms(C) A b = sym(a)) }A
pr(2,s) C con(T) U var(T)

This proof strategy produces twelve proof steps.

2. The analysis of the second proof step (division). The previous strategy does not generate the
second proof step. Thus, the second proof step can be considered as a perturbation with regard
to the previous strategy. SHUNYATA tests further predicates but they fail to produce the two
proof steps. Therefore, it has to perform a division process, 1.e., it contructs a second predicate
that produces the second proof step and a criterion that decides when the first and the second
predicate should be applied. The division yields the strategy:

€ pr((1,2), %) pr((1, 1), XIA
u=v € azms(C) U {b| (3a)(a € azms(C) A b = sym(a))}A
ne(lvs(u)) = ne(lvs(v))
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The dots represent the first predicate. The criterion states that the first predicate is applied
only if the second predicate generates no proof steps, i.e.,

(Y1 p(C.T, X, V)} = 0,
where p denotes the second predicate. Thus, the second predicate has priority. This strategy
produces four additional proof steps.

3. The analysis of the third proof step (unification). It is very difficult to integrate the third
proof step. The division process first fails because it yields a strategy that generates an infinite
number of proof steps. Then, it produces a complex strategy with three predicates:

re pr((1,2),X) —pr((1,1), X)A

u = v € azms(C) U {b| (3a)(a € azms(C) A b = sym(a))}A
ne(lvs(u)) > ne(lvs(v))A

not(t € pr((1,1),X) U pr((1,2), X))

The dots represent the first and the second predicate. The third predicate has priority. Thus,

the third proof step causes a strong perturbation in the previous strategy. Finally, SHUNYATA
unifies the second and the third predicate and discovers a simple and efficient strategy:

F (2,5~ (L 1), %7

u = v € azms(C) U {b| (Ja)(a € azms(C) A b = sym(a))}A
ne(lvs(u)) > ne(lvs(v))A

not(t € pri(1,1),X) U pr((1,2), X))

The dots représent the first predicate. This strategy produces the third proof step.

4. The analysis of the fourth proof step. The previous strategy also produces the fourth proof
step.

Thus, the proof strategy produces eighteen proof steps, i.e., eighteen theorems:

g(c,c)z = g(g(c,c)e,c)zx
g(c,¢)z = g(ch(e,¢),c)z
g(c,c)z = g(e, 9(c, c)c)z
g(c,c)z = g(c, ch(c,c))z
g(c, C):L‘ = g(g(z, C)I’C)I
9(¢,c)z = g(zh(z,c),c)z
g9(c,c)z = g(¢, 9(z,¢)z)z

g(c,c)z = g(e,zh(z,c))z

g(c,c)z = g(e, ¢)(g(c, z)e) = (g(c,c)g(e, z))e

gle,e)z = g{c,c)(ch(e, 2)) | ... =(g(c,c)e)h(e,z) | ...=ch{c,z) | .c==
g(c,c)z = g(c,c)(g(z,z)z) | ... = (9(c,c)9(z, 7))z

g(e,e)z = g(e, e)(zh(z,z)) | ... = (9(c, c)z)h(z, z)

The dots represent the terms on the right side of the preceding column. The proof is underlined.
The first column is generated by the first predicate of the proof strategy and the other columns are
generated by the second predicate.
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The proof steps can be considered as new information for the system which can cause perturbations
in its structures. The analysis of the proof steps produces predicates and proof strategies, i.¢., new
concepts. These predicates are generated like the terms and well-formed formulas of a predicate
calculus and they are selected by experimentation. The predicates and proof strategies that were
produced by analyzing the previous proof steps form the basis for the analysis of the next proof
step. Thus, SHUNYATA changes its language and its structure on the basis of experience. The next
section shows how the strategy for this simple proof in group theory can be used for discovering a
difficult proof in lattice theory.

8 THE DISCOVERY OF A DIFFICULT PROOF

This section describes the discovery of a proof for SAM’s Lemma which was an open problem until
1969. It was solved by Guard et al. (7] and subsequently by McCharen et al. [9]. The degree
of difficulty for discovering a proof for SAM’s Lemma represents the state-of-the-art in automated
theorem proving [2]. The size of a proof in ordinary scientific notation is approximately one and a
half pages [12].

1. One binary predicate letter: p. We write z = y for p(z, y).

2. Two binary function letters: f, g. We write zy for f(z,y) and z + y for g(z,y). In order to
omit parentheses, we assume that the first function has priority.

3. Constants: 0,1,a,b,¢,d.

4. Azioms:
(zy)z2=1z(yz) (z+y)+z=z+(y+2) zy=yz z+y=y+z
rr==x r+zr=1=x z(z+y)=2z z+zy=r=r
ODz=0 O+z=1=z Ir=1 L+ z=1
(a+b)c=0 (a+bd)+c=1 (ab)d =0 ab+d=1

g+z=z=>(z+y)z=z(y+2)
5. Theorem: (c + da)(c + db) = c.

6. Proof Strategy: The proof strategy for the theorem in group theory is applied but the axiom that
contains the implication requires special treatment: The consequence is treated like the other
equations if the condition can be proved by the repeated application of the second predicate
of the strategy. This strategy generates seventy-four theorems. The application of the first
predicate may be regarded as an extension step and the repeated application of the second
predicate as a simplification step. The extension step produces seventy-two theorems and the
simplification step two theorems.

Extension Simplification !
(¢ + da)(c + db) = (cc + da)(c + db) i

(c + da)(c + db) = (¢ + da(a + B))(c + db) | (c+ da(a + b))(c + db) = c

le-+-dallo+d) = e+ daYle+ dbB+a)) | Lot dale+dblia-a)) =

(¢4 da){e + db) = e+ da){e + d1b)
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Some parentheses are omitted because of the associativity of the first function. The first proof
is underlined.

7. Proof The strategy produces the proof
(c + da)(c+ db) = (c + da(a + b))(c + db) = c.

9 RELATED WORK

The first project concerned with automated mathematics research was AM |8, p. 137]. AM focuses on
research in elementary mathematics, SHUNYATA on research in higher mathematics. AM discovers
mathematical concepts, SHUNYATA additionally develops powerful cognitive structures, e.g., new
ideas. AM uses rules to represent heuristic knowledge whereas SHUNYATA uses a modified predicate
calculus, in particular predicates that generate finite sets of trees. AM contains scphisticated heuristic
rules from the beginning and does not learn from experience. In contrast, SHUNYATA analyzes new
information on the basis of a simple language closely related to predicate logic and develops concepts
and discovery mechanisms on the basis of experience. AM does not generate proofs.

10 CONCLUSIONS

In this paper, I have described an idealized trace of cognitive evolution from the very beginning to a
level that is suitable for research in higher mathematics. The origin of cognitive structures is a form-
less kernel. This formulation is a short paraphrase of the hypothesis that cognitive structures arise
from simple perceptions, evolve by reflection and finally contain their own evolution mechanisms.
Their development is accompanied by division and unification processes and creates an increasing
objectivization of the environment. The discovery systermn SHUNYATA models these high-level cog-
nitive processes and constructs more advanced theories froni weaker ones. It is an evolving tree in
functional representation. Its core is a reflection system which contains a language that is potenuially
universal because this language is permanently revised and improved. Cognilive structures arc holis-
tic in the sense that they cannot be reduced to simpler structures and that they cannot be completely
separated from the objects they refer to, i.e., they are domain specific because they change on the
basis of experience. The experiments suggest that artificial cognitive systems must have at least the
computational capacity of human cognition and that they must use the same cognitive structures
and the same organization.

SHUNYATA is written in ZETALISP and is presently running on a Symbolics 3600. The system
has constructed many proofs from proof strategies, for example the previous proof for SAM's Lemma
without special procedures for associativity and commutativity. If a representation similar to the
representation humans use for associativity and commutativity is integrated into SHUNYATA, its
efficieny increases by a factor of over two hundred. In generating finite sets of proof steps from
predicates, the system produces more than one hundred simple LISP programs per minute and
evaluates them. SHUNYATA has analyzed several proofs and has acquired concepts and strategies
for these proofs, for example the strategy described in this paper. The proof analysis requires multi-
processing. The strategies are LISP programs which contain holistic functions and which are written
and compiled by SHUNYATA. They can be regarded as heuristic knowledge which is modified on the
basis of experience. Thus, the proof analysis involves the autornatic and evolutionary development of
programs by division and unification. The automatic revision and extension of the reflection system
has not yet been implemented.
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APPENDIX: NOTATIONS

azms(C) The axioms of a predicate calculus.

bag(ai,...an) The bag containing the elements a;,...,a,. A bag is an unordered group of
elements.
Example: bag(z,y, z).

con(u = v) The constants of an equation u = v.
Example: con(g(c,c)z = z) = {c}.

D The set of subtree descriptors. Subtree descriptors are tuples of natural
numbers that denote subtrees of trees.
Examples: The subtree descriptor () denotes the subtree f(a,b) of the tree
f(a,b), the subtree descriptor (2) the subtree g(b,c) of the tree f(a,g(b,c)),
and the subtree descriptor (2,1) the subtree b of the tree f(a,g(b,c)). We
write 1 for the subtree descriptor (1) and 2 for the subtree descriptor (2).

E The theorems of a predicate calculus.
lvs(t) The bag of leaves of a tree ¢.

Example: lvs(f(g(z,y),z)) = bag(z,y, ).
ne(b) The number of elements in a bag b.

Example: ne(bag(z,y,z)) = 3.

pr(d,t) The projection of a set of trees ¢ described by the subtree descriptor d.
Examples: pr(1,{(e,d),(c,d)}) = {a,c},
pr((1,2),{(f(a,b),c),(f(d,e). c)})= {b,e}.

R The terms of a predicate calculus.

rep(r,d,u = v) The replacement of the subterm of a term r that is selected by the subtree
descriptor d by the term v of the equation u = v.
Example: rep(g(c,c)z,2,z = ch(c,z)) = g(c,c)(ch(c, z)).

st(d,t) The subtree of the tree ¢ that is selected by the subtree descriptor d.
Examples: st((), f(a,b)) = f(a,b), st(2, f(a,d)) = b,
st((1,2), f(g(a,b),c)) = b.

sub(u =v,s)  The application of the substitution s for the variables in the equation u = v
to the equation u = v.
Example: sub(y = zh(z,v), {(z,¢),(y,z)}) = = = ch(c,z).

subs(u = v) The substitutions for the variables of an equation u = v.
Example: {(z,c),(y,z)} is a substitution for the variables of the equation
y = zh(z,y).

var(u = v) The variables of an equation u = v.

Example: var(g(¢,c)z = z) = {z}.
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