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CDC5 Inhibits the Hyperphosphorylation of the
Checkpoint Kinase Rad53, Leading to Checkpoint
Adaptation
Genevieve M. Vidanes1¤, Frédéric D. Sweeney2, Sarah Galicia2, Stephanie Cheung1, John P. Doyle1,

Daniel Durocher2, David P. Toczyski1*

1 Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America, 2 Samuel Lunenfeld Research

Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

Abstract

The Saccharomyces cerevisiae polo-like kinase Cdc5 promotes adaptation to the DNA damage checkpoint, in addition to its
numerous roles in mitotic progression. The process of adaptation occurs when cells are presented with persistent or
irreparable DNA damage and escape the cell-cycle arrest imposed by the DNA damage checkpoint. However, the precise
mechanism of adaptation remains unknown. We report here that CDC5 is dose-dependent for adaptation and that its
overexpression promotes faster adaptation, indicating that high levels of Cdc5 modulate the ability of the checkpoint to
inhibit the downstream cell-cycle machinery. To pinpoint the step in the checkpoint pathway at which Cdc5 acts, we
overexpressed CDC5 from the GAL1 promoter in damaged cells and examined key steps in checkpoint activation
individually. Cdc5 overproduction appeared to have little effect on the early steps leading to Rad53 activation. The
checkpoint sensors, Ddc1 (a member of the 9-1-1 complex) and Ddc2 (a member of the Ddc2/Mec1 complex), properly
localized to damage sites. Mec1 appeared to be active, since the Rad9 adaptor retained its Mec1 phosphorylation.
Moreover, the damage-induced interaction between phosphorylated Rad9 and Rad53 remained intact. In contrast, Rad53
hyperphosphorylation was significantly reduced, consistent with the observation that cell-cycle arrest is lost during
adaptation. Thus, we conclude Cdc5 acts to attenuate the DNA damage checkpoint through loss of Rad53
hyperphosphorylation to allow cells to adapt to DNA damage. Polo-like kinase homologs have been shown to inhibit
the ability of Claspin to facilitate the activation of downstream checkpoint kinases, suggesting that this function is
conserved in vertebrates.
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Introduction

Both exogenous pressures and normal cellular processes place

stresses on the genome that commonly results in DNA lesions,

such as DNA adducts, nicks, and breaks. A robust checkpoint

response has evolved to quickly react to the presence of damaged

DNA. When triggered, this evolutionarily conserved checkpoint

arrests the cell cycle and promotes repair to maintain the integrity

of the genome for the next generation of cells. An inability to

appropriately repair DNA can lead to mutations, loss of genetic

information, or genomic instability [1–3].

Checkpoint activation begins with the recruitment of checkpoint

sensors to the site of DNA damage. When a double-strand DNA

break (DSB) occurs, the DNA ends are resected in a 59 to 39

direction by exonucleases, exposing stretches of single-stranded

DNA (ssDNA) [4,5]. The Saccharomyces cerevisiae checkpoint sensor

complexes, which include the checkpoint clamp and the Mec1

kinase, recognize the exposed ssDNA and accumulate at the break

site [6–9]. The checkpoint clamp is a ring-shaped heterotrimeric

complex that consists of Ddc1, Mec3, and Rad17 (referred to as the

9-1-1 complex) and is reminiscent of the well-studied replication

processivity factor PCNA. The 9-1-1 clamp is likely loaded onto

DNA at ssDNA-dsDNA junctions that are created by resection, in a

manner similar to the proposed mechanism of PCNA loading at

sites of replication [10–13]. Tel1 accumulates at DSBs and

contributes to initial checkpoint activation [9], functioning in

parallel with the major yeast sensor kinase Mec1, in contrast to the

major role of the mammalian Tel1 homologue, ATM [14,15]. The

Mec1-binding partner, Ddc2, mediates the association with ssDNA

by interacting with the ssDNA-binding protein RPA. Similarly, the

homologous mammalian kinase, ATR, and its interacting partner,

ATRIP, localize to DNA damage via RPA [8].

The co-localization of the checkpoint sensors Mec1 and 9-1-1

leads to the activation of the downstream effector kinases

PLoS Biology | www.plosbiology.org 1 January 2010 | Volume 8 | Issue 1 | e1000286



mediated by checkpoint adaptors [16]. Damage created during

DNA replication damage utilizes the Mrc1 (Claspin) adaptor to

effect checkpoint signaling, whereas damage incurred outside of

replication uses the Rad9 adaptor [17]. Upon damage, the Rad9

adaptor is phosphorylated by Mec1, oligomerizes, and serves as a

scaffold to promote the activation the effector kinases, Chk1 and

Rad53 (Chk2 in mammals) [18–23]. Rad9 subsequently mediates

Mec1-phosphorylation or ‘‘priming’’ of Rad53, which is re-

quired for the auto-phosphorylation of activated Rad53 [22]. In

Schizosaccharomyces pombe, the phosphorylation of Cds1 (S.c. Rad53)

by Rad3 (S.c. Mec1) is mediated by Mrc1 and promotes a

dimerizing interaction through Cds1’s fork-head associated

(FHA) domain that helps induce Cds1 hyperphosphorylation

[24,25]. This mechanism is likely conserved in S. cerevisiae given

that the Rad53 FHA domains

and Mec1 phosphorylation sites are similarly required for its

hyperphosphorylation.

If unable to repair genomic damage, yeast will eventually

override the checkpoint and continue with cell division despite

the persistence of a break, in a process called adaptation. The

S. cerevisiae polo-like kinase, Cdc5, was implicated to have a role

in adaptation when the cdc5-ad allele was identified in a screen

for adaptation-defective mutants [26]. This allele has a leucine

mutated to a tryptophan at residue 251 and has wild-type activity

when assayed on a heterologous substrate [26,27]. Importantly,

the timing of adaptation onset correlated with the loss of Rad53

activity [28], suggesting that adaptation may be a consequence

of Cdc5-mediated checkpoint inhibition. Studies in higher

eukaryotes provide supporting evidence that polo kinase can

inhibit the checkpoint response after DNA damage. The Xenopus

homolog of Cdc5, Plx1, decreases Chk1 activity by promoting the

dissociation of the replication-checkpoint adaptor Claspin from

chromatin [29]. Similarly, during recovery after DNA damage,

the human Plk1 phosphorylates Claspin to promote its SCFbTrCP-

dependent degradation, which in turn prevents further Chk1

activation [30–32].

In this study, we overexpressed CDC5 from the GAL1 promoter

to probe how Cdc5 interacts with the DNA damage checkpoint to

promote adaptation. We found that the checkpoint steps leading to

Rad53 activation, including checkpoint sensor localization, Mec1-

phosphorylation of Rad9, and formation of the Rad9-Rad53

complex, remained mostly unaffected by Cdc5 overproduction.

However, damage-induced hyperphosphorylation of Rad53 was

lost and cells reentered the cell-division cycle.

Results

CDC5 Is Dose Dependent for Adaptation
An allele of CDC5, cdc5-ad, was originally identified in a screen

for adaptation-defective mutants [26]. To determine if the process

of adaptation is sensitive to the dosage of CDC5, we first analyzed

diploid yeast carrying various combinations of CDC5 alleles: wild-

type (WT), cdc5-ad, or a deletion. The percentage of cells able to

adapt to the DNA damage checkpoint was first measured by

creating DNA damage with the cdc13-1 temperature-sensitive

allele. Shifting cdc13-1 strains to the non-permissive temperature

destabilizes telomeres, causing the accumulation of ssDNA and

eliciting a checkpoint response. We assayed adaptation by shifting

these strains to the non-permissive temperature of 32uC for 2 h,

plating cells to pre-warmed plates, and then counting the number

of cells able to form microcolonies [33]. As expected and

consistent with previous observations, we found that greater than

90% of CDC5/CDC5 homozygous diploids were able to adapt

after 10 h of persistent and irreparable DNA damage (Figure 1A)

[26]. Moreover, diploids that express cdc5-ad as the only functional

CDC5 allele (cdc5-ad/cdc5-ad and cdc5-ad/cdc5D) were unable to

adapt for the duration of the 25-h time course. However, in

heterozygous strains carrying only one copy of WT CDC5 (CDC5/

cdc5D and CDC5/cdc5-ad), the rate of adaptation slows and the

number of cells that adapt drops to less than 50%. The slowed rate

of adaptation is consistent with the idea that CDC5 is dose

dependent for adaptation. However, the decrease in the total

number of cells that adapt likely reflects the decreasing ability of

diploids to survive after prolonged cell-cycle arrest. In support of

this conclusion, even those arrests that are not associated with

viability loss in the short term, such as those induced with

temperature-sensitive alleles of the Anaphase Promoting Complex

(APC), show loss of viability after about 10 h, around the time that

WT cells grown in glucose adapt (D. Toczyski, unpublished data).

The observation that a CDC5/cdc5D strain shows a more

significant defect than a CDC5/cdc5-ad diploid suggests that the

cdc5-ad is not functioning as a gain of function mutation. If cdc5-ad

had 50% activity for adaptation, the cdc5-ad/cdc5-ad and CDC5/

cdc5D strains would have an identical capacity to support

adaptation. Yet the observation that a cdc5-ad/cdc5-ad strain

showed a much more pronounced phenotype than a CDC5/cdc5D
suggests that the cdc5-ad allele is significantly impaired for CDC5’s

adaptation activity. The heterozygote contains a mixed population

of cells that adapt, as evidenced in Figure 1A, thus complicating a

population-based assay like a Western blot. Despite this,

examination of Rad53 directly in these diploids (Figure S1)

showed that at the time of adaptation (the 6-h time point), strains

with fewer copies of WT CDC5 had higher levels of phosphor-

ylated Rad53.

To further investigate if increased levels of CDC5 can promote

adaptation, we analyzed haploid yeast expressing endogenous

CDC5 or with additional copies of galactose-inducible CDC5.

Greater than 80% of WT haploid cells adapted by 12 h

(Figure 1B). This is slightly later than seen in the previous

experiment (Figure 1A), likely because these cells are grown in a

poorer carbon source. Thus, as seen previously, CDC5 overex-

pression causes re-budding of checkpoint arrested cells [20].

Author Summary

Cellular surveillance mechanisms, termed checkpoints,
have evolved to recognize the presence of DNA damage,
halt cell division, and promote repair. The purpose of these
checkpoints is to prevent the next generation of cells from
inheriting a damaged genome. However, after futile
attempts at repair over several hours of growth arrest,
yeast cells eventually adapt and continue with cell division
despite the presence of persistent DNA lesions. This
process of adaptation employs CDC5, a kinase that also
has essential roles in promoting cell division in the
absence of DNA damage. We found that increasing levels
of Cdc5 promote adaptation by suppressing the hyper-
phosphorylation of the checkpoint kinase Rad53, which in
turn suppresses the DNA damage checkpoint and relieves
cell division arrest. Intriguingly, overexpression of PLK1,
the human homolog of CDC5, has been reported in
various tumor types and has been linked to poor
prognosis. Therefore, understanding the mechanism of
adaptation in yeast may provide valuable insight into the
role of PLK1 overexpression in tumor progression. Two
related papers, published in PLoS Biology (van Vugt et al.,
doi:10.1371/journal.pbio.1000287) and PLoS Genetics (Don-
nianni et al., doi:10.1371/journal.pgen.1000763), similarly
investigate the phenomenon of checkpoint adaptation.

DNA Damage Checkpoint Inhibition by Cdc5
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CDC5 Suppresses the DNA Damage Checkpoint
Pellicioli et al. [28] provided evidence that the timing of

adaptation coincided with a loss of Rad53 hyperphosphorylation.

In contrast, cells harboring the adaptation-defective cdc5-ad allele

remained arrested with an activated checkpoint. This difference

does not appear to be mediated by alterations in the levels of Cdc5

or Cdc5-ad during an adaptation time course (Figure S2). These

data suggest that an as-yet unidentified step in the DNA damage

checkpoint is turned off to allow cells to adapt. However,

adaptation is a long and asynchronous process, making studying

the molecular mechanism difficult. Moreover, several pathways

downregulate the checkpoint to promote adaptation. Therefore,

we used the overexpression of CDC5 as a tool to probe specifically

how CDC5 impinges on the DNA damage checkpoint. We first

Figure 1. CDC5 overexpression promotes adaptation by suppressing checkpoint signaling. (A) Adaptation was measured by microcolony
assay [33] in diploid strains carrying a combination of CDC5, cdc5-ad, or cdc5D alleles, or (B) in haploid strains with or without additional copies of
integrated GAL-HA-CDC5. (C) Schematic model of checkpoint signaling. (D) Rad53 was analyzed by Western blots from cells that did or did not
overexpress HA-CDC5 after DNA damage was induced by shifting to the non-permissive temperature of cdc13-1 strains or (E) by treating cells with
300 mg/ml zeocin. 2% galactose and 10 mg/ml nocodazole were added after 2 h of damage induction.
doi:10.1371/journal.pbio.1000286.g001

DNA Damage Checkpoint Inhibition by Cdc5

PLoS Biology | www.plosbiology.org 3 January 2010 | Volume 8 | Issue 1 | e1000286



wanted to determine whether CDC5 overexpression inhibited the

checkpoint pathway itself, or promoted cell-cycle progression non-

specifically at a step downstream of the checkpoint. Damage was

induced by shifting cdc13-1 cultures to the non-permissive

temperature of 32uC for 2 h, leading to Rad53 phosphorylation.

CDC5 was then induced by adding 2% galactose to strains

expressing CDC5 under the GAL1 promoter. Nocodazole was

added simultaneously with galactose to prevent the adapting cells

from reentering the cell cycle. After galactose addition, the

hyperphosphorylation of Rad53 dropped significantly in strains

harboring the GAL-CDC5 construct, but not in control strains

lacking the construct (Figure 1D). This suppression of the

checkpoint was not specific to cdc13-1-induced damage. Rad53

hyperphosphorylation also dropped when the DSB-inducing drug

zeocin was used (Figure 1E). Together, these data support the

notion that CDC5 promotes checkpoint inactivation.

Recruitment of Checkpoint Sensors to DSBs Is Unaffected
by CDC5 Overexpression

To determine how CDC5 suppresses Rad53 phosphorylation,

we examined several upstream steps leading to Rad53 activation

after CDC5 overexpression. Recruitment of checkpoint sensors to

DSBs is one of the earliest events in checkpoint activation

(Figure 1C) and can be visualized by microscopy [6,9]. Therefore,

we monitored the localization of green fluorescent protein

(GFP) fused to the checkpoint sensors Ddc1 and Ddc2, a 9-1-1

checkpoint clamp subunit and the Mec1 binding partner,

respectively. Cells were treated with zeocin for 2 h before adding

galactose to induce CDC5 for an additional 2 h, as in Figure 1E,

and were then examined by fluorescence microscopy. Both Ddc1-

GFP and Ddc2-GFP form multiple foci in cells treated for 4 h with

zeocin (Figure 2A, left column). Importantly, CDC5 induction

during the second half of the zeocin treatment did not produce an

observable change in either Ddc1-GFP or Ddc2-GFP foci

formation (Figure 2A, right column) in contrast to its effect on

Rad53 phosphorylation at 4 h (Figure 1E). The maintenance of

checkpoint sensor localization at break sites, despite CDC5

overexpression, suggests Cdc5 likely acts downstream of this

recruitment step. In previous experiments, Ddc2-GFP foci were

found to be lost in a subset of adapted cells at late time points [6].

Our results using CDC5 overexpression suggest that this is not the

result of Cdc5 activity, although it may contribute to adaptation.

Regulation of the Rad9 Checkpoint Adaptor in Damage
Remains Unaffected by CDC5

We next investigated if Cdc5 inhibits Rad53 hyperphosphor-

ylation by interfering with the Rad9 checkpoint adaptor. Rad53

activation occurs through the coordination of the adaptor Rad9

and the sensor kinase Mec1 (Figure 1C). Following checkpoint

recruitment to DSBs, Rad9 is phosphorylated by Mec1 and, to a

lesser extent, Tel1. This phosphorylation promotes Rad9 associ-

ation with Rad53 [18,19,23]. DNA damage-induced Mec1/Tel1

phosphorylation causes a substantial electrophoretic mobility shift

in Rad9. This step in checkpoint activation was also largely

unchanged by the induction of CDC5 (Figure 2B, top). To verify

that the observed shift in Rad9 was due to phosphorylation by

Mec1/Tel1, we probed immunoprecipitated (IP) Rad9 with a

phospho-specific antibody that recognizes glutamine directed

phospho-serine and phospho-threonine residues, which corre-

spond to Mec1/Tel1 phosphorylation motifs. As expected, the pS/

pT-Q antibody only recognized Rad9 after damage induction and

with increasing intensity over time (Figure 2B, bottom). As seen in

the Rad9-FLAG Western, CDC5 overexpression resulted in only a

subtle change in Rad9’s electrophoretic mobility shift. This 2-fold

drop in Rad9 hyperphosphorylation was seen at the last (5 h) time

point but was not significant at the 4 h time point, despite the fact

that Rad53 phosphorylation was already lost by this time. Thus,

we conclude that Mec1/Tel1 are able to recognize and

phosphorylate Rad9 properly despite CDC5 induction, suggesting

that their kinase activity towards this substrate is not affected.

Cdc5 could disrupt Rad9 function without blocking Mec1/Tel1

phosphorylation of Rad9. First, we determined whether Rad53

remained associated with Rad9 after CDC5 overexpression. We

immunoprecipitated Rad9-FLAG in the presence of DNA damage

with or without CDC5 overexpression (Figure 2B, bottom). As

previously reported, Rad53 co-immunoprecipitated with Rad9

after induction of DNA damage. Despite the fact that CDC5

overexpression eliminated Rad53 hyperphosphorylation, Rad53

still associated with Rad9. The reciprocal experiment in which we

immunoprecipitated Rad53 showed that only shifted Rad9 binds

Rad53. Again, CDC5 overexpression had a marginal effect on

Mec1/Tel1-dependent phosphorylation of Rad9 and had no effect

on Rad9’s ability to interact with Rad53, despite Rad53’s

hypophosphorylated state (Figure 2C). Next, we examined the

oligomeric state of Rad9. Rad9 has been shown to form a

homodimer through its C-terminal BRCT domain [34]. It is

possible that CDC5 could disrupt this higher order structure, thus

disabling Rad9’s ability to promote Rad53 activation. To

determine whether Rad9 multimerization was affected by CDC5

overexpression, we expressed two differentially tagged alleles of

Rad9. Overexpression of CDC5 did not affect the efficiency with

which we were able to co-immunoprecipitate Rad9-myc with

Rad9-FLAG (Figure S3). Together, these data suggest that high

levels of Cdc5 specifically block the ability of Rad9 to promote

Rad53 auto-phosphorylation without affecting the make-up of the

Rad9-Rad53 complex.

Cdc5 kinase Activity Is Required to Suppress Rad53
Hyperphosphorylation

To determine whether the loss of Rad53 hyperphosphorylation

requires Cdc5 kinase activity, we compared the effects of

overexpressing CDC5 and the kinase-defective allele cdc5-K110A.

Increasing levels of CDC5 after checkpoint activation resulted in a

decrease in Rad53 phosphorylation, as expected (Figure 3A). In

contrast, inducing cdc5-K110A had no effect (Figure 3A), suggesting

Cdc5’s kinase activity is necessary for its ability to inactivate

checkpoint signaling. Interestingly, induction of the cdc5-ad allele

produced an intermediate effect, manifested by the later and less

robust decrease in Rad53 phosphorylation compared to CDC5

induction (Figure 3A), consistent with its reduced ability to

promote checkpoint adaptation.

Cdc5 Downregulates the Damage Checkpoint
Independently of the Ptc2, Ptc3, and Cdc14
Phosphatases

The PP2C-type phosphatases, Ptc2 and Ptc3, have been

implicated to have roles in adaptation and in regulating Rad53

phosphorylation [35,36]. We generated ptc2D ptc3D strains to test

the possibility that CDC5 acts indirectly on the checkpoint via

these phosphatases. If this were indeed the case, we would expect

the ptc2D ptc3D stains to be resistant to CDC5 overexpression. We

instead found the damage-induced Rad53 phosphorylation was

reduced by CDC5 induction even in the absence of both Ptc2 and

Ptc3 (Figure 3B), implying CDC5 works independently of these

phosphatases. Cdc5 has recently been shown to target MIH1, the

budding yeast orthologue of the fission yeast cdc25 phosphatase

DNA Damage Checkpoint Inhibition by Cdc5
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Figure 2. CDC5 impinges on checkpoint signaling pathway at the step of Rad53 phosphorylation. (A) After 2 h of 300 mg/ml zeocin
treatment, 10 mg/ml nocodazole and 2% galactose were added to induce blank or HA-CDC5 for an additional 2 h. Cells were examined by
fluorescence microscopy to visualize Ddc1-GFP or Ddc2-GFP localization. (B) Cells were DNA damaged by shifting cdc13-1 strains to 32uC for 2 h and
then induced to express HA-CDC5. Rad9-FLAG was precipitated from lysates with Sigma a-FLAG congugated agarose beads. IP and lysates were
analyzed by Western blotting with the indicated antibodies. (C) The reciprocal IP was performed as described in (B), immunoprecipitating Rad53 with
the a-Rad53 (DAB001, from the Durocher lab) antibody on Protein A Dynabeads. Strains listed as+/2damage are cdc13-1 or CDC13, respectively.
doi:10.1371/journal.pbio.1000286.g002

DNA Damage Checkpoint Inhibition by Cdc5
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Figure 3. Suppression of Rad53 phosphorylation requires Cdc5 kinase activity but is independent of Ptc2, Ptc3, or Cdc14
phosphatases. Rad53 phosphorylation was examined by Western blot from cells that have been damaged for 2 h before nocodazole and galactose
were added to induce (A) CDC5, the kinase inactive cdc5-K110A, or adaptation defective cdc5-ad allele (B), or CDC5 in cells deleted for the PTC2 and

DNA Damage Checkpoint Inhibition by Cdc5
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[37]. As Cdc5 has been shown to inhibit the Swe1 kinase [38,39],

which antagonizes MIH1, this phosphorylation may activate

Mih1. To test whether Cdc5 is acting through MIH1, we deleted

MIH1 and examined the effect of this on Cdc5 mediated Rad53

inactivation (Figure S4A). MIH1 deletion had no effect on the

ability of Cdc5 overexpression to drive Rad53 dephosphorylation.

We also examined the effect of MIH1 overexpression on

adaptation itself. To do this, we overexpressed MIH1 in CDC5

and cdc5-ad disomic strains harboring a non-essential extra copy of

chromosome VII with an HO cut site. When HO is induced with

galactose, WT strains are able to adapt and grow to form a patch,

whereas cdc5-ad mutants remain permanently arrested [26,33].

Overexpression of MIH1 neither blocked adaptation in WT cells

nor rescued the adaptation phenotype in cdc5-ad cells (Figure S4B).

While Cdc5 seems to act independently of these phosphatases, we

cannot rule out the possibility that Cdc5 functions by activating

other phosphatases that could mediate the loss of Rad53

phosphorylation.

One of the key roles of the Cdc5 kinase is to advance anaphase

by promoting the release of the Cdc14 phosphatase from the

nucleolus, which in turn dephosphorylates Cyclin-Dependent

Kinase (CDK) substrates. It has been reported that overexpression

of CDC5 results in the premature release of the Cdc14 [40].

Previous work has suggested a role for CDK in checkpoint

signaling, in part through its regulation of DNA processing at sites

of DNA damage [41–44]. To explore the possibility that the loss of

Rad53 phosphorylation was a secondary effect of Cdc14 release,

we compared the effect of CDC5 overexpression to CDC14

overexpression on checkpoint signaling. Similar to that of CDC5,

overexpression of CDC14 did not disrupt the damage-dependent

interaction of Rad9 and Rad53, although Rad9 displayed a subtle

decrease in electrophoretic mobility (Figure 3C).

Lastly, we performed an in situ autophosphorylation assay

(ISA). In this assay, total protein is run on a denaturing gel and

transferred to a membrane. After renaturation, the membrane is

incubated with c-32P. The ISA assay measures autophosphoryla-

tion of Rad53 by incorporation of c-32P to membrane-bound

renatured Rad53. Surprisingly, CDC5 overexpression allowed

Rad53 to undergo limited autophosphorylation at later time

points, although the majority of Rad53 appeared hypopho-

sphorylated (Figure 3C, bottom). In contrast to CDC5 overex-

pressing cells, however, Rad53 isolated from CDC14 overexpress-

ing cells displayed robust autophosphorylation in the ISA assay

and a reduction in electrophoretic mobility similar to that of

Rad53 isolated from control cells. Together, these results suggest

that checkpoint inhibition by Cdc5 cannot be attributed to

increased Cdc14 activation.

We next attempted to determine whether Rad53, like Rad9,

retained its Mec1-dependent priming phosphorylation upon Cdc5

overexpression. Given that Mec1 appeared to retain its activity as

judged by Rad9 phosphorylation, we expected that the Mec1-

priming phosphorylation on Rad53 was intact. Extensive efforts to

examine Rad53 using the phospho-S/T-Q antibodies were

unsuccessful, even on purified Rad53 from damage-only control

cells. We instead performed an ISA assay and observed that

Rad53 appeared to retain its kinase activity, despite the fact that it

lost its hyperphosphorylation in vivo (Figures 3C and 4A). This

result thus provides an unusual situation in which Rad53 is Rad9

bound and capable of autophosphorylating but rather remains

hypophosphorylated in vivo.

While the Rad9-Rad53 interaction persists after Cdc5 induc-

tion, it is still possible that Cdc5 overexpression acts not on Rad53

directly, but modifies Rad9 in such a way as to make it unable to

promote Rad53 activation. To distinguish between these possibil-

ities, we examined the effect of Cdc5 overexpression on a strain

expressing a Ddc2-Rad53 fusion. This fusion was previously

shown to bypass the requirement for the adaptors Rad9 and Mrc1

and allow Rad53 to be activated in their absence [45]. We found

that the activation of the Ddc2-Rad53 fusion is partially inhibited

by Cdc5 (Figure 3D). This suggests that the effect of Cdc5

overexpression on Rad53 activation is not entirely dependent

upon Rad9 but may act redundantly upon both Rad9 and Rad53.

Importantly, activation of the Ddc2-Rad53 fusion does not require

the WT Rad53 [45], so its dephosphorylation cannot be an

indirect effect of inactivation of the WT Rad53 allele.

Cdc5 Binds and Phosphorylates Rad53
Polo-like kinases recognize substrates that have been previously

phosphorylated by other kinases, such as CDK and ATM/ATR in

higher eukaryotes [29–32,46]. Since Rad53 is phosphorylated by

the CDK and Mec1/Tel1 kinases [16,47,48], we wondered

whether Rad53 could serve as a direct substrate for Cdc5. We first

determined if Cdc5 was able to interact with Rad53 in vivo. In

fact, the human homolog of Rad53, Chk2, has been reported to

directly bind the human Plk1 [49,50]. HA-Cdc5, as well as the

kinase dead HA-cdc5-K110A, was indeed found to immunopre-

cipitate with Rad53 (Figure 4B and unpublished data) and did not

immunoprecipitate in a control rad53D strain (Figure S5A). To

examine whether the interaction of Rad53 and Cdc5 during an

active DNA damage checkpoint is mediated by the Rad9 adaptor

protein, we also performed the co-immunoprecipitation in a rad9D
strain. HA-Cdc5 was still co-immunoprecipitated with Rad53 in

the absence of Rad9 (Figure 4B), suggesting the binding between

Cdc5 and Rad53 is not mediated by Rad9. The in vivo interaction

between Rad53 and Cdc5 was also found to occur independently

of damage (Figure 4B), which is consistent with both the Rad9-

independent binding data (Figure 4B) and the human Chk2-Plk1

interaction data [49,50].

Having discovered that the Cdc5 kinase activity is critical for its

function to reduce Rad53 phosphorylation, we performed in vitro

kinase assays to determine if Rad53 could be a direct substrate of

Cdc5. The HA-Cdc5 kinase was isolated from yeast extracts that

were either untreated or damaged with zeocin. To ensure that the

in vitro phosphorylation of Rad53 was specific to Cdc5 kinase

activity and not a product of Rad53 autophosphorylation, the

Rad53 substrates used harbored the D339A kinase inactivating

mutation. This Rad53-D339A substrate was otherwise WT

(labeled WT) or also carried additional mutations in one or both

of the FHA domains. Rad53 contains two FHA domains that are

important for checkpoint function [19] and mediate association

with phosphorylated proteins, such as Rad9 [51] and potentially

Cdc5. The rad53 R70A mutation corresponds to the N-terminal

FHA1 domain and the R605A mutation to the C-terminal FHA2

domain. Similar to the in vivo binding data, the in vitro

phosphorylation of Rad53 by Cdc5 can occur independently of

the DNA damage. HA-Cdc5, isolated either from untreated

PTC3 phosphatases. (C) Rad53 was immunoprecipitated with a-Rad53 from cells treated as above that express either HA-CDC5 or CDC14-Pk. In
addition, rad9D and rad9D GAL-HA-CDC5 strains were examined as controls. Lysates and IP samples were analyzed by Western blotting with the
indicated antibodies. (D) The experiment was performed as in parts (A) and (B) excepting that strains were transformed with a construct expressing a
Ddc2-Rad53 fusion. Both WT Rad53 and the fusion protein were visualized with anti-Rad53 antibody.
doi:10.1371/journal.pbio.1000286.g003
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extracts (Figure 4C) or DNA-damaged extracts (Figure 4D), clearly

phosphorylated Rad53 in vitro, as seen by both the incorporation

of radio-labelled phosphate or the Cdc5-induced electrophoretic

shift of Rad53. As expected, this result required a functional HA-

Cdc5 since no Rad53 phosphorylation was observed when the

kinase dead mutant, HA-cdc5-K110A, was used as a control

(Figure S5B). The rad53-R605A mutant seemed to be phosphor-

ylated to a similar level as the wild-type. Surprisingly, the rad53-

R70A mutant alone was less phosphorylated and the R70A

R605A double mutant was not at all phosphorylated by Cdc5

(Figure 4C and 4D). These data suggest that the Rad53 FHA1

phosphobinding domain and to a lesser extent the FHA2 domain

promote Cdc5’s ability to phosphorylate Rad53. Since mutations

of either FHA domain compromise (FHA1) or eliminate (FHA2)

checkpoint function [19,52], we were unable to examine the effect

of loss of these domains on the ability of cells to adapt to the

checkpoint.

Discussion

Polo-like kinases participate in several processes that collectively

promote mitotic progression, including mitotic exit, early anaphase,

Figure 4. Rad53 interacts with and is phosphorylated by Cdc5. (A) Rad53 was immunoprecipitated from strains shifted to 32uC for 2 h
followed by galactose addition to induce the blank or HA-CDC5. As added controls, rad9D and CDC13 strains were also analyzed. Rad53 activity was
measured by in situ autophosphorylation assay from the lysates. Asterisk denotes the lane with half the amount of sample as loaded in lane 4. (B)
Lysates and IP samples from the experiment described in (A) were analyzed by Western blotting by the indicated antibodies. (C and D) In vitro kinase
assays were performed with purified HA-Cdc5 kinase from (C) undamaged or (D) zeocin treated cells. The substrates were purified recombinant
kinase-dead rad53 (D339A, listed as WT) in combination with R70A (FHA1) and/or R605A (FHA2) mutations.
doi:10.1371/journal.pbio.1000286.g004
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APC activation, and sister chromatid separation [27,53–55]. The

discovery of an adaptation-defective allele of CDC5 suggested that

this kinase also had a role in negatively regulating the DNA damage

checkpoint [26], however the mechanistic details remained

unknown. Our data suggest that Cdc5 does not inhibit formation

of the Rad9-Rad53 complex and yet blocks the ability of the Mec1-

primed Rad53 molecules to produce hyperphosphorylated Rad53

in vivo.

Adaptation to DNA damage begins to occur after approxi-

mately 6–8 h of cell cycle arrest if cells were unable to repair the

damage. Loss of checkpoint signaling has been previously shown

to correlate with the onset of adaptation [28]. However, there

could be multiple pathways converging on the checkpoint after an

extended cell-cycle arrest. One of the advantages of the CDC5

overexpression approach taken here is that it has allowed us to

isolate CDC5-specific effects from those of other pathways. For

example, Ptc2 and Ptc3 clearly have a role in Rad53 regulation,

and deletion of these phosphatases causes an adaptation-defective

phenotype [35]. However, we found that checkpoint suppression

caused by CDC5 overexpression occurred in the absence of both

these phosphatases (Figure 3B), consistent with the model that at

least two pathways work independently to promote adaptation.

Ptc2 and Ptc3 may have important roles in recovery from the

checkpoint once damage has been repaired. Cdc5 does not appear

to have an essential role in the process of recovery, since cdc5-ad

mutants are able to reenter the cell cycle once damage is repaired

[26] and Rad53 dephosphorylation occurs in DNA-damaged cdc5-

ad strains if MEC1 activity is removed [28]. Rad53 has recently

been proposed to act in a negative-feedback loop, in which Rad53

phosphorylates Rad9 to prevent the BRCT-SCD domain-specific

oligomerization of Rad9 that is required to maintain checkpoint

signaling [56]. While this negative-feedback loop may also feed

into adaptation, our results showing that overproduced Cdc5

prevents in vivo Rad53 autophosphorylation suggest Cdc5 exerts

its effect upstream of this loop.

We found that Cdc5 and Rad53 could interact both in vivo and

in vitro, which could support the notion that Cdc5 directly inhibits

Rad53. Cdc5 kinase activity was required to suppress Rad53

phosphorylation (Figure 3A) and kinase-dead Cdc5 was co-

immunoprecipitated with Rad53 (unpublished data), eliminating

the mechanism of simple binding inhibition. Interestingly, hypo-

phosphorylated Rad53 from Cdc5 overproducing cells retained

its ability to trans-autophosphorylate by ISA (Figure 4B). A

population of Rad53 that is capable of undergoing limited

autophosphorylation in the ISA assay in the absence of a

significant phospho-shift as measured by gel mobility assay has

been observed previously in the checkpoint-defective rad53

FHA2-R605A mutant [22,52]. These data and those presented

here suggest that these two assays measure distinct aspects of

Rad53 activation that are together required for its in vivo function

and that Cdc5 may specifically act to counter one of these

functions in vivo. In fission yeast, phosphorylation of Cds1 (the

Rad53 homolog) by Rad3 (the Mec1 homolog) is thought to

promote Cds1-Cds1 interactions required for autophosphorylation

[24]. Similarly, Rad53 autophosphorylation activity requires

Mec1/Tel1 phosphorylation [22]. Therefore, if Mec1/Tel1 were

completely inhibited, Rad53 would not be active in the ISA assay,

which we did not observe. Consistent with Rad53 maintaining its

priming phosphorylation, Rad53 remained a tight doublet even

after CDC5 overexpression caused loss of its hyperphosphorylation.

This, along with our data demonstrating Rad9 is appropriately

phosphorylated by Mec1/Tel1 despite CDC5 overexpression,

would suggest that Mec1/Tel1 are active and can phosphorylate

Rad53 enough to prime its activity.

Cdc5 was able to directly phosphorylate Rad53 in vitro. Cdc5

phosphorylation might affect the positioning of Rad53 with respect

to either other Rad53 molecules or Rad9 so as to prevent proper

Rad53 trans-autophosphorylation. Active and phosphorylated

Rad53 must be released from Rad9 [57], suggesting that these

Rad9-bound hypophosphorylated Rad53 molecules could act

dominantly to prevent further checkpoint activation, as does

expression of the kinase-dead allele of RAD53 [58].

Our demonstration that Cdc5 phosphorylation of recombinant

Rad53 depends on both Rad53 FHA domains (Figure 4C and 4D)

is particularly intriguing. First, it suggests that this activity is quite

specific. Moreover, it argues that Rad53 provides the binding

specificity to allow Cdc5 to phosphorylate it, in contrast to the

classic model in which polo-like kinases recognize a substrate via

their phosphobinding polo-box domains and then subsequently

phosphorylate the bound substrate [59]. This mechanism is also

different from how the human homologs, Chk2 and Plk1, are

reported to interact [50]. However, as both proteins contain

phosphobinding motifs, mutual recognition between Cdc5 and

Rad53 may be required in vivo. An alternative model of indirect

inhibition is one in which Rad53 could bridge an interaction

between Cdc5 and Rad9 and promote Cdc5 phosphorylation of

Rad9. As a result, Cdc5-mediated phosphorylation could interfere

with proper Rad53 autophosphorylation. This model has the

benefit of targeting the checkpoint mediator responsible for

activating the two parallel effector kinases Rad53 and Chk1, both

shown to lose activity as cells adapt [28].

Cdc5 can now be added to the growing list of proteins that

interact with the Rad53 FHA1 domain. Rad53 contains two FHA

domains, one at each terminus, whereas homologous proteins such

as human Chk2 and S. pombe Cds1 contain only one N-terminal

FHA domain. Although both Rad53 FHA domains contribute to

its checkpoint function, the N-terminal FHA1 is more structurally

similar to its homologous counterparts. This raises interesting

prospects on how Rad53’s FHA1 domain facilitates interactions

with downstream targets including Dbf4, Asf1, Mdt1, Rad9, and

other Rad53 molecules [19,60–63], as well as promote its own

inactivation by interacting with Ptc2 [35,36] and, potentially,

Cdc5.

Our results strongly suggest the polo-like kinase, Cdc5, can

inhibit checkpoint signaling at the level of Rad53 hyperpho-

sphorylation. Rad53 autoactivation provides an amplification step

in which primed Rad53 can activate additional Rad53 molecules

in a positive-feedback loop, thereby preventing premature or

unnecessary checkpoint activation. The findings that both the in

vivo interaction and the in vitro phosphorylation of Rad53 by

Cdc5 imply that there is potential for a constitutive interaction, in

agreement with human Chk2 and Plk1 data [50]. While the

biological significance for a constitutive interaction is not yet clear,

it presents the opportunity for each kinase to inhibit the other and

generate a switch-like decision to undergo adaptation. Indeed,

Plk1 has been reported to be inhibited by the DNA damage

checkpoint [64,65]. This leads us to question, what can tip the

balance of this potential inhibitory face-off: the activity of a third

kinase such as CDK on either or both Rad53 and Cdc5, or the

relative strength of their interaction compared to other substrates?

Adaptation can be considered as a final attempt at survival after

yeast have exhausted all other repair options. However, as a

consequence of promoting cell division in the presence of DNA

damage, adaptation also results in increased genomic stability [66].

Our study of adaptation, particularly our use of CDC5 overex-

pression, may provide valuable insights into the mechanisms of

tumorigenesis. The human homologue PLK1 has been reported to

be overexpressed in various tumors including non-small-cell lung
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cancer, melanoma, colorectal cancer, and non-Hodgkin lympho-

ma. In addition, the levels of PLK1 in a subset of tumor types may

provide prognostic value [67,68]. Our work implies that, if indeed

parallel with adaptation, PLK1 overexpression could lead to

checkpoint suppression, an enhanced rate of mutagenesis due to

genomic instability, and ultimately carcinogenesis.

Materials and Methods

Yeast Strains and Plasmids
All haploid strains were derived from yDPT1-1 (LS MatD cdc13-

1 cyh1 can1 lys5 ade2 ade3::GalHO trp1 his3 ura3 leu2 pep4::LEU2) and

yDPT42-4 (LS MatD cdc13-1 cyh1 can1 lys5 ade2 ade3::GalHO trp1

his3 ura3 leu2 pep4::LEU2 URA3::Gal-HA3-CDC5 2 copies). Plasmids

pDM164, pDM173, and pDM191 were linearized with NcoI to

integrate GAL-HA3-CDC5, GAL-HA3-cdc5-K110A, and GAL-HA3-

cdc5-ad, respectively. Plasmid c518 was linearized with XcmI to

integrate GAL-Cdc14-Pk. A PCR-based integration cassette was

created to insert a C-terminal 36Flag epitope tag to RAD9 using

the p3FLAG::HYG. GFP fusions to DDC1 and DDC2 were

created as described previously [6]. DDC2-RAD53 36 FLAG

from the pRS316 DDC2-RAD53 36 FLAG plasmid was cloned

into pRS304 and digested with SexAI for integration at the RAD53

locus [45].

Fluorescence Microscopy
Cells were treated with 300 mg/ml zeocin (Invitrogen) for a total

of 4 h. After the first 2 h of zeocin treatment, 2% galactose and

10 mg/ml nocodazole were added and incubated for another 2 h.

Microscopy was performed with the Leica DMRXA microscope

using the FITC filter, 1006 1.4NA PlanApo oil-immersion

objective, and Hamamatsu C4742-95 CCD camera. Openlab

4.0.3 imaging software (Improvision) was used to capture multiple

z-section images. Fluorescence exposure times were kept constant

between strains carrying a particular GFP fusion.

Adaptation
Adaptation was assessed morphologically by counting the

number of cells in a microcolony, as previously described [33].

Arrested, large-budded cells were counted as two cells. Additional

budding beyond the two-cell stage was considered adapted.

Rad53 and Rad9 IP
56108 cells were collected for each IP. The Rad53 IP was

carried out with 1 ml/IP of polyclonal DAB001 (gift from D.

Durocher) on protein A Dynabeads (Invitrogen), as previously

described [22]. For Rad9-FLAG purification, cells were subjected

to glass bead lysis at 4uC in lysis buffer (25 mM HEPES-OH,

pH 7.5, 250 mM NaCl, 0.2% Triton X-100, 1 mM EDTA, 10%

glycerol, and protease inhibitor cocktail). Fifteen ml of Sigma Anti-

FLAG M2 agarose beads were added to each sample and allowed

to incubate at 4uC for 2 h. The beads were washed four times with

lysis buffer. The beads were boiled in SDS-PAGE loading buffer to

elute bound proteins.

Western Blot Analysis
Protein samples were run on 6% or 8% SDS-PAGE gels and

transferred onto nitrocellulose membrane (Millipore). a-Cdc5

(YN-19 from Santa Cruz) or a-HA antibodies were used against

HA-Cdc5 when listed as Cdc5 or HA-Cdc5 in figures, res-

pectively. Other antibodies used for Western blots include: a-Pk,

a-myc, a-FLAG, a-Rad53 (YC-19 from Santa Cruz), and a-pS/

pT-Q (Cell Signalling).

Rad53 and Cdc5 Kinase Assays
The Rad53 purification and ISA were performed as previously

described [22,58]. HA-Cdc5 IP were performed by growing

250 ml cultures of the appropriate strains to OD600 = 1 in rich

media containing 2% raffinose. Protein expression was induced for

3 h following addition of 2% galactose. Cells were lysed in RIPA

buffer (150 mM NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1%

SDS, 50 mM Tris pH 8.0, protease inhibitor cocktail (Roche), and

phosphatase inhibitor cocktail (Sigma)). IPs were performed using

HA-coupled dynabeads (Invitrogen) for 1 h. The beads were

washed three times in RIPA buffer and two times in kinase buffer

(25 mM Hepes pH 7.5, 250 mM NaCl, 20 mM MgCl2, 20 mM

MnCl2, 1 mM DTT). In vitro kinase assays were performed as

follows. Purified recombinant rad53-D339A was incubated with

immunoprecipitated Cdc5 in kinase buffer (25 mM Hepes pH 7.5,

250 mM NaCl, 20 mM MgCl2, 20 mM MnCl2, 1 mM DTT,

40 mM ATP, and 0.5 ml [c-32P]ATP (Perkin-Elmer)) for 30 min.

The reactions were stopped by adding SDS sample buffer and by

boiling the sample for 5 min. Half of the reactions were then

loaded on an 8% SDS-PAGE gel and transferred to PVDF

membrane (Millipore). The membrane was exposed overnight on

a phosphor screen (GE Bioscience) and revealed by phosphorima-

ging (GE Bioscience). All quantifications were performed with

ImageQuant 5.0.

Supporting Information

Figure S1 Rad53 phosphorylation in diploids. cdc13-1

strains were grown overnight at permissive temperature (23uC) in

rich media containing 2% dextrose, diluted to an OD660 of 0.2,

and shifted to 32uC to induce damage. Cells were collected every

2 h. Alpha factor (10 mg/ml) was added to the culture at 4 h with

additional boluses at 6 and 8 h to arrest adapting cells in the

subsequent G1 phase. Lysates were prepared for Western blot

analysis to compare levels of phosphorylated Rad53. yDPT27-2 is

CDC5/CDC5; yDPT18-9 is CDC5/cdc5D; yDPT28-3 is CDC5/

cdc5-ad; yDPT19-19 is cdc5-ad/cdc5D; yDPT29-1 is cdc5-ad/cdc5-ad.

Found at: doi:10.1371/journal.pbio.1000286.s001 (0.40 MB TIF)

Figure S2 Levels of Cdc5 are unaffected by adaptation.
(A) Adaptation was measured by microcolony assay in cdc13-1

CDC5 and cdc13-1 cdc5-ad haploid strains. Cells were initially

synchronized in G1 with 7.5 mg/ml of alpha-factor at 23uC for 2 h

before release into pre-warmed liquid YM-1 at 32uC to induce

damage. Cells were plated 2 h after the temperature shift and

counted every hour thereafter. (B) Hourly samples were taken

from the adaptation time course described in panel A to measure

levels of Rad53, Cdc5, and Cdc28, as a loading control, by

Western blot. Asynchronous cells are labeled as A; alpha-factor

arrested cells are labeled as af.

Found at: doi:10.1371/journal.pbio.1000286.s002 (0.47 MB TIF)

Figure S3 Rad9-Rad9 interaction unaffected by CDC5
overexpression. Rad9-FLAG was immunoprecipitated from

strains containing a copy of each RAD9-FLAG and RAD9-18myc

that were damaged for 2 h at the non-permissive temperature for

cdc13-1, then treated with galactose to induce HA-CDC5. The 5m

and 5F denote the 5 h time point of strains that express only

RAD9-18myc or RAD9-FLAG, respectively. Input and IP

samples were analyzed by Western blotting with the indicated

antibodies.

Found at: doi:10.1371/journal.pbio.1000286.s003 (0.58 MB TIF)

Figure S4 Cdc5 does not regulate adaptation through
Mih1. (A) Rad53 phosphorylation was examined after Cdc5

overexpression in wild-type cells, or cells deleted for MIH1, as in

DNA Damage Checkpoint Inhibition by Cdc5
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Figure 2C. (B) All strains are disomic rad52D mutants carrying a

galactose-inducible HO endonuclease and a site for the HO

endonuclease on the end of a second copy of chromosome VII (see

[26,33] for complete description). CDC5 and cdc5-ad strains were

transformed with CEN-based plasmids lacking an insert (‘‘empty

vector’’) or with a PGK or Gal1,10 driven MIH1 gene. Two of

each transformant were patched to glucose plates selecting for

both copies of chromosome VII and the plasmid. After 1 d of

growth, these were replicated to similar selective plates containing

sucrose instead of glucose. After another day of growth, these

plates were replica plated to complete synthetic media with sucrose

(left) or sucrose and galactose (right).

Found at: doi:10.1371/journal.pbio.1000286.s004 (0.58 MB TIF)

Figure S5 The interaction between Cdc5 and Rad53. (A)

Western blot of HA-Cdc5 from input and immunoprecipitated

Rad53. Strains listed as2/+damage are CDC13 and cdc13-1,

respectively. Asterisk denotes rad53D. (B) In vitro kinase assay

performed with purified HA-Cdc5 or kinase dead HA-cdc5-

K110A from undamaged or zeocin-treated cells. The substrates

(all kinase-dead, D339A) were purified recombinant Rad53 or

rad53 R70A R605A (FHA double mutant).

Found at: doi:10.1371/journal.pbio.1000286.s005 (0.27 MB TIF)
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