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ABSTRACT OF THE DISSERTATION

Development and Benchmarking of Imputation Methods for Microbiome and Single-cell

Sequencing Data

by

Ruochen Jiang

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Jingyi Jessica Li, Chair

Next generation sequencing (NGS) has revolutionized biomedical research and has a

broad impact and applications. Since its advent around 15 years ago, this high scalable

DNA sequencing technology has generated numerous biological data with new features and

brought new challenges to data analysis. For example, researchers utilize RNA sequencing

(RNA-seq) technology to more accurately quantify the gene expression levels. However, the

NGS technology involves many processing steps and technical variations when measuring

the expression values in the biological samples. In other words, the NGS data researchers

observed could be biased due to the randomness and constraints in the NGS technology.

This dissertation will mainly focus on microbiome sequencing data and single-cell RNA-

seq (scRNA-seq) data. Both of them are highly sparse matrix-form count data. The zeros

could either be biological or non-biological, and the high sparsity in the data have brought

challenges to data analysis.

Missing data imputation problem has been studied in statistics and social science as

the survey data often experience non-response to some of the survey questions and those

unresponded questions will be marked as “NA” or missing values in the data. Imputation

methods are used to provide a sophisticated guess for the missing values, and the purpose

is to avoid discarding the collected samples and for the ease of using the state-of-the-art

statistical methods. In machine learning, the famous Netflix data challenge regarding film
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recommendation system also falls into the missing data imputation problem category. Netflix

wants to find a way to predict users’ fondness of the movies they have not watched. The

potential scores these users would give to the unwatched films are regarded as missing values

in the data. NGS data imputation problem is different from the previous two cases in that

the missing values in the NGS data are not so well-defined. The zeros in the NGS data could

either come from the biological origin (should not be regarded as missing values) or non-

biological origin (due to the limitation of the sequencing technology and should be regarded

as missing values). The size (number of samples and features) of the NGS matrix data is

usually larger than the size of survey data but smaller than the size of the recommendation

system data. In addition, in most cases, the percentage of missing values in the survey

data is less than the percentage of zeros in the NGS data, and the missing values in the

film recommendation system data have the highest percentage (ą 99.9%). As a result, the

commonly used missing data imputation methods in statistics and machine learning are not

directly applicable to NGS data. In recent years, numerous imputation methods have been

proposed to deal with the highly sparse scRNA-seq data. In light of this, this dissertation

aims to address two questions. First, the microbiome sequencing data, having additional

information comparing to the scRNA-seq data, lacks an imputation method. Secondly,

whether to use imputation or not in scRNA-seq data analysis is still a controversial problem.

The first part of this dissertation focuses on the first imputation method developed for

the microbiome sequencing data: mbImpute. Microbiome studies have gained increased

attention since many discoveries revealed connections between human microbiome composi-

tions and diseases. A critical challenge in microbiome data analysis is the existence of many

non-biological zeros, which distort taxon abundance distributions, complicate data analy-

sis, and jeopardize the reliability of scientific discoveries. To address this issue, we propose

the first imputation method for microbiome data—mbImpute—to identify and recover likely

non-biological zeros by borrowing information jointly from similar samples, similar taxa, and

optional metadata including sample covariates and taxon phylogeny. Comprehensive simu-

lations verify that mbImpute achieves better imputation accuracy under multiple metrics,

compared with five state-of-the-art imputation methods designed for non-microbiome data.
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In real data applications, we demonstrate that mbImpute improves the power of identifying

disease-related taxa from microbiome data of type 2 diabetes and colorectal cancer, and

mbImpute preserves non-zero distributions of taxa abundances.

The second part of this dissertation focuses on how to deal with high sparsity in the

scRNA-seq data. ScRNA-seq technologies have revolutionized biomedical sciences by en-

abling genome-wide profiling of gene expression levels at an unprecedented single-cell reso-

lution. A distinct characteristic of scRNA-seq data is the vast proportion of zeros unseen in

bulk RNA-seq data. Researchers view these zeros differently: some regard zeros as biologi-

cal signals representing no or low gene expression, while others regard zeros as false signals

or missing data to be corrected. As a result, the scRNA-seq field faces much controversy

regarding how to handle zeros in data analysis. We first discuss the sources of biological and

non-biological zeros in scRNA-seq data. Second, we evaluate the impacts of non-biological

zeros on cell clustering and differential gene expression analysis. Third, we summarize the

advantages, disadvantages, and suitable users of three input data types: observed counts, im-

puted counts, and binarized counts and evaluate the performance of downstream analysis on

these three input data types. Finally, we discuss the open questions regarding non-biological

zeros, the need for benchmarking, and the importance of transparent analysis.
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3.1 Sources of zeros in scRNA-seq data. (a) An overview of a scRNA-seq ex-

periment. Biological factors that determine true gene expression levels include

transcription and mRNA degradation (top panel). Technical procedures that

affect gene expression measurements include cDNA synthesis, PCR or IVT am-

plification, and sequencing depth (bottom three panels). Finally, every gene’s

expression measurement in each cell is defined as the number of reads mapped to

that gene in that cell. (b) How the biological factors and technical procedures

in (a) lead to biological, technical, and sampling zeros in scRNA-seq data. Red

crosses indicate occurrences of zeros, while green checkmarks indicate otherwise.

Biological zeros arise from two scenarios: no transcription (gene 1) or no mRNA

due to faster mRNA degradation than transcription (gene 2). If a gene has mR-

NAs in a cell, but its mRNAs are not captured by cDNA synthesis, the gene’s

zero expression measurement is called a technical zero (gene 3). If a gene has

cDNAs in the sequencing library, but its cDNAs are too few to be captured by

sequencing, the gene’s zero expression measurement is called a sampling zero.

Sampling zeros occur for two reasons: a gene’s cDNAs have few copies because

they are not amplified by PCR or IVT (gene 4), or a gene’s mRNA copy number

is too small so that its cDNAs still have few copies after amplification (gene 5).

If the factors and procedures above do not result in few cDNAs of a gene in the

sequencing library, the gene would have a non-zero measurement (gene 6). The

figure is created with BioRender.com. . . . . . . . . . . . . . . . . . . . . . . . 84
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3.2 A two-state stochastic model of the expression levels of one gene. (a) A

diagram of the two-state gene expression model [222–224], where a gene stochas-

tically switches from an inactive state to an active state at rate ka and from an

active state to an inactive state at rate ki. The gene transcribes mRNA at rate

sm only when it is in the active state. The transcribed mRNA then degrades at

rate δ. (b) Given sm “ 200 and δ “ 1, the effects of ka and ki on the temporal

dynamics of the gene’s mRNA copy number. Three example values of ka and

ki are provided. Left: when both ka and ki are small, the mRNA copy number

switches between small and large values. Middle: when ka is much larger than

ki, the mRNA copy number remains large most of the time. Right: when ka is

much smaller than ki, the mRNA copy number remains small most of the time.

(c) Distributions of the gene’s mRNA copy number (across cells) corresponding

to the three example settings in (b). Left: when the gene’s mRNA copy number

switches between small and large values, the resulting distribution is bimodal

with two modes at zero and around sm{δ. Middle: when the gene’s mRNA copy

number is large most of the time, the resulting distribution has a single mode

around sm{δ. Right: when the gene’s mRNA copy number is small most of the

time, the resulting distribution has a single mode at zero. In summary, when ka

is small, the gene is expected to have biological zeros in cells with non-negligible

probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 A toy example showing how the PCR amplification may result in sam-

pling zeros. Five genes have their cDNAs amplified by PCR. After the non-linear

amplification, their relative proportions change. If the sequencing depth is lim-

ited to 52 reads, the first gene has sampling zeros in three out of five hypothetical

sequencing experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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3.4 Four count distributions: Poisson, zero-inflated Poisson (ZIP), nega-

tive binomial (NB), and zero-inflated negative binomial (ZINB). (a)

Parameterization, mean, variance, and zero proportion of each of the four dis-

tributions. (b), (c), (d), and (e) Illustration of the probability mass functions

of Poisson (b), ZIP (c), NB (d), and ZINB (e) distributions that all have mean

equal to 1. The horizontal axis indicates each possible value, and the vertical axis

indicates the probability of taking each possible value. For each distribution, the

parameter values are listed on the top right, and the zero proportion is listed at

the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Statistical modeling of 10x Genomics, Drop-seq, and Smart-seq2 data

for the same PMBC sample. 10x Genomics and Drop-seq data are UMI-

based, while Smart-seq2 data are non-UMI-based. (a) Violin plots showing the

distribution of cell library sizes for each of five PMBC cell types measured by
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diagram illustrating the design of the five masking schemes. From the top, the

first division is about whether masking is independent of or completely dependent

on count values, with the former as random masking and the latter as quantile

masking. The second division is about whether masking is performed across all

genes (with the same masking proportion) or within each gene (i.e., per-gene). If

the latter, the third division is regarding whether the masking proportion is the

same for all genes or specific to each gene depending on the gene’s mean non-
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CHAPTER 1

Introduction

Next generation sequencing (NGS) technology has revolutionized genomics research and

provides new opportunities for biologists and health care providers [1, 2]. On the other

hand, newly generated sequencing data has also brought new challenges to data analysis.

Particularly, we are interested in the challenge of high sparsity in microbiome sequencing

data and single-cell RNA-seq (scRNA-seq) data. In other words, both involve a lot of zero

values. Some of these zeros truly represent that the microbiome species does not exist in a

certain environment (for microbiome data) or a gene is not expressed in the biological system

when measured (for single-cell RNA-seq data). However, some of the zeros arise due to the

limitations in the sequencing technology [3]. The prevalence of zeros has threatened the

data analysis and disturbs the biological findings [4]. Some of the algorithm developers have

built zero-inflated models to better describe the observed distributions with high sparsity

[5]. In contrast, others developed imputation methods to make the data less sparse and they

illustrated that the imputed data could lead to more biologically meaningful discoveries [6].

Missing data imputation finds its root in statistics, and social science [7]. In the survey

data, researchers commonly meet with the problem of non-response to some of the questions

they asked [8]. The non-responses will lead to missing values in the collected data. Multiple

imputation is the most popular paradigm developed for missing data imputation in the survey

data [9]. The core of multiple imputation is to build a Bayesian model that describes the

joint distribution of the complete data (including both observed data and missing data) and

missing mechanism [9]. Other commonly used statistical approaches include mean or median

imputation and hot deck [10]. On the other hand, there are also some machine learning

methods proposed for imputation in the survey data, for example, multi-layer perception
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(MLP), KNN, and random forest [11, 12]. However, these methods, except for the mean

/ median imputation, are usually not applicable to NGS data imputation as the feature

number in the NGS data could go from „ 102 to „ 105, which is much larger than the

feature numbers of the survey data, usually below „ 102. The much larger scale in the NGS

data has made the computational time for those methods unaffordable.

In 2007, the famous Netflix data challenge aimed to develop a good film recommendation

system for the company [13]. This challenge is also a missing data imputation problem as

we can treat the existing user ratings as known values and the values to be imputed as

the missing rating that we want to predict. One of the most commonly used approaches

is low-rank matrix factorization (MF) [14, 15]. Comparing to the NGS data, the number

of features (films in the Netflix case) is comparable, while the number of samples (users in

the Netflix case) is even larger comparing to the samples (cells in single-cell RNA-seq data

or human samples in the human microbiome data). In addition, the percentage of missing

data in the Netflix case could be „ 99.9%, while in NGS sequencing data, the percentage of

zero values is relatively lower („ 90% in single-cell RNA-seq data and „ 70% in microbiome

sequencing data).

Besides the aforementioned distinctions between NGS sequencing data and survey data

or recommendation system data, another important issue for dealing with the zeros in NGS

data is that the “missing values” are not clearly defined. For the survey data, researchers

know that some people do not respond to certain questions and the “NA”’s emerge. For

recommendation system data, the data collector can recognize which of the films are rated

and the films that are not rated incur missing values. However, in the NGS data, the

term “missing value” is hard to be defined. Although some empirical evidence shows that

using imputation in some datasets could enable better clustering or differential abundance

analysis [4, 16, 17], the definition of missing values, or values that need to be imputed, is

quite vague and controversial. In Chapter 3, I specifically discussed about the missing values

in scRNA-seq data.

Due to the mentioned unique characteristics of NGS data, new imputation methods have

been developed. Hou et al. benchmarked the newly developed 18 imputation methods for
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scRNA-seq data [6]. Zhang et al. provided technical details regarding these newly proposed

imputation methods [18]. On the other hand, although microbiome sequencing data also

has high sparsity and endures similar problems in sequencing data generation, this type of

data has additional information including sample metadata and microbiome evolutionary

relationship. No imputation method has been proposed for microbiome sequencing data.

This dissertation focused on dealing with the high sparsity in microbiome sequencing data

and scRNA-seq data. In Chapter 2, I introduced the first imputation method specifically

designed for microbiome sequencing data. In Chapter 3, I discussed the origin of zeros in

scRNA-seq data, and how different perspectives towards data pre-processing would change

the downstream analysis results.

1.1 mbImpute: an accurate and robust imputation method for

microbiome data

The first part of this dissertation introduced a new imputation method specially designed

for microbiome sequencing data. It was inspired by the previous work scImpute by Vivian

on the scRNA-seq data [4]. To clarify, I want to point out that the microbiome data,

especially human microbiome data, treats collected patients’ biological samples as samples

and microbial species as features. On the other hand, single-cell RNA-seq data treat cells

as samples and genes as features. During our inspection on the microbiome data structure

and features, we found that it is distinctive from scRNA-seq data in several ways. First,

microbiome sequencing data involves fewer samples than scRNA-seq data. Second, the

percentage of zeros in scRNA-seq data is larger than the microbiome sequencing data if we

omit the features with zero values across all samples. Third, the microbiome sequencing

data usually has side information including sample metadata, and microbe phylogenetic

distances. The sample metadata includes features such as age, gender and BMI of the

human samples, while the phylogenetic distances measure the evolutionary similarities among

microbial species. We developed the first imputation method, mbImpute, to deal with the

high sparsity in the microbiome data, and it can leverage sample metadata and microbe
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phylogenetic distances if available.

We examine the performance of mbImpute using extensive simulation and real micro-

biome data study. Using simulation, we first show that mbImpute can recover false zeros

more precisely compared with other already developed imputation methods. Second, we

show that mbImpute is able to empower the downstream differential abundance (DA) analy-

sis. The purpose of DA analysis is to find taxa that exhibit different abundance (represented

by the values in the microbiome sequencing data) among two study groups (usually control

vs. diseased patients). In real data analysis, we confirm that mbImpute empowers the DA

analysis and the newly discovered DA taxa are biologically meaningful. Besides, mbImpute

empowers the taxon-taxon correlation analysis.

1.2 Sources of zeros in single-cell RNA-seq data and how they

affect data analysis

The second part of this dissertation focused on the controversy regarding dealing with the

high sparsity in scRNA-seq data. We first illustrated the origin of zeros in the scRNA-

seq data and then clarified some of the ambiguous concepts that have been widely used in

the scRNA-seq field. We showed the distributional differences between Unique molecular

identifier (UMI) implemented scRNA-seq data and non-UMI data. In summary, we found

that using Negative binomial distribution is good enough to capture the variation in the

UMI data, while around half of the genes’ expressions are better fitted by zero-inflated

distributions due to the high sparsity. We further examined how the downstream analysis is

affected by the increased proportion of introduced zero values. We focused on two types of

analysis: the cell-level clustering analysis and gene-level differential expression (DE) analysis.

The clustering analysis is at the cell level as the researchers want to examine how the cells are

clustered together using the expression profile and then they can assign cell types to these

clusters. The DE analysis is at the gene level as the researchers aim to find genes that exhibit

different expression patterns among different conditions. In addition, there are currently

three different perspectives towards pre-processing scRNA-seq data before the downstream
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analysis. Some researchers prefer direct modeling on the original data, some prefer to run

imputation before the downstream analysis, and there are recommendations to binarize the

scRNA-seq data before the downstream analysis (i.e., set the non-zero values to zero). We

presented our perspective on this matter, and the pre-processing method researchers shall

use would depend on their knowledge or training (whether they are tool users or method

developers) and the data type (UMI data vs. non-UMI data).

Our novelty in the methodology is that we developed five mechanisms to introduce zeros

to the scRNA-seq data. There are three types of missing mechanisms in the literature

[7]: missing completely at random (MCAR), missing at random (MAR) and missing not

at random (MNAR). Let X P Rnˆp be the matrix containing both observed and missing

values. This can be the gene expression matrix and missing values refers to false zeros.

Also we denote Xo as observed values and Xm as missing values. Let R P Rnˆp be the

associated binary matrix indicating whether the value is missing. That is, for i “ 1, ¨ ¨ ¨ , n

and j “ 1, ¨ ¨ ¨ , p,

Rij “

$

’

&

’

%

1 if Xij is observed.

0 if Xij is a missing value.

Then MCAR, MAR, MNAR corresponds to

PpR|Xq “

$

’

’

’

’

’

&

’

’

’

’

’

%

PpRq MCAR

PpR|Xoq MAR

PpR|Xmq MNAR

(1.1)

However, many of the currently developed imputation methods only consider the missing

mechanism, MCAR, the easiest to be implemented. Based on our discussion of the origins of

the zero expression values in the scRNA-seq data, we proposed five missing mechanisms that

correspond to one of MCAR, MAR or MNAR. We found that different ways to introducing

zeros would affect the results of the downstream analysis.
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1.3 Summary

During my doctoral study, I have developed one novel imputation method as a leading

author, and the details of this project will be described in Chapter 2 of this dissertation [19].

I have also written a perspective paper regarding the high sparsity in the scRNA-seq data

as a leading author [20], and the details are in Chapter 3. In addition, I have worked on

the modeling of RNA translation control. This collaborative project is under the process of

manuscript writing and omitted from this dissertation.
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CHAPTER 2

mbImpute: an accurate and robust imputationmethod

for microbiome data

2.1 Introduction

Microbiome studies explore the collective genomes of microorganisms living in a certain

environment such as soil, sea water, animal skin, and human gut. Numerous studies have

confirmed the importance of microbiomes in natural environments and human bodies [21].

For example, new discoveries have revealed the important roles microbiomes play in complex

diseases such as obesity [22], diabetes [23], pulmonary disease [24, 25], and cancers [26]. These

studies have shown the potential of human microbes as biomarkers for disease diagnosis or

as therapeutic targets for disease treatment [5].

The development of high-throughput sequencing technologies has advanced microbiome

studies in the last decade [27]. Two sequencing technologies are primarily used: the 16S ri-

bosomal RNA (rRNA) amplicon sequencing and the shotgun metagenomic sequencing. The

16S rRNA amplicon sequencing measures 16S rRNAs, which can be used to identify and

distinguish microbes [28]. The 16S sequencing reads are either clustered into operational

taxonomic units (OTUs) [29] or mapped to amplicon sequence variants (ASVs) [30, 31]. The

shotgun metagenomic sequencing, also known as the whole-genome sequencing (WGS), se-

quences all DNAs in a microbiome sample, including whole genomes of microbial species and

host DNAs [29, 32–38]. The WGS sequencing reads are mapped to known microbial genome

databases to quantify the abundances of microbial species. Despite the vast differences be-

tween the two technologies, 16S and WGS data can both be processed into the same data

structure containing abundances of microbes in microbiome samples: a taxon count matrix
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with rows as microbiome samples (which often correspond to subjects or individuals) and

columns as taxa (i.e., OTUs or ASVs for 16S rRNA data and species for WGS data), and

each entry corresponds to the number of reads mapped to a taxon in a microbiome sample.

It is worth noting that the total read count per microbiome sample, i.e., the sum of entries in

a row of the count matrix, differs by five orders of magnitude between the two technologies:

„ 103 per sample for 16S rRNA data and „ 108 for WGS data [39].

A critical challenge in microbiome data analysis is the existence of many zeros in taxon

counts, an ubiquitous phenomenon for both 16S rRNA and WGS data [39]. The large propor-

tion of zeros belongs to three categories by origin: biological, technical, and sampling zeros

[40]. Biological zeros represent true zero abundances of non-existent taxa in microbiome

samples. In contrast, technical and sampling zeros are non-biological zeros with different

origins: technical zeros arise from pre-sequencing experimental artifacts (e.g., DNA degra-

dation during library preparation and inefficient sequence amplification due to factors such

as GC content bias) [41], while sampling zeros are due to limited sequencing depths. Al-

though WGS data have much larger per-sample total read counts than 16S data have, they

still suffer from sampling zeros because they sequence more nucleic acid sequences (micro-

bial genomes instead of 16S rRNAs) and their effective sequencing depths are reduced by

widespread host DNA contaminations [42–44].

This data sparsity issue challenges microbiome data analysis, as most state-of-the-art

methods have poor performance on data containing too many zeros. Adding a pseudo-count

of one to zeros is a common, simple approach [45, 46], but it is ad-hoc and suboptimal because

it cannot distinguish biological zeros from technical and sampling zeros [47, 48]. Kaul et al.

[49] developed an approach to distinguish these three types of zeros and to correct only the

sampling zeros; however, their correction is still a simple addition of a pseudo-count of one,

ignoring the fact that the (unobserved) actual counts of sampling zeros may not be exactly

one.

In particular, this data sparsity issue hinders the differentially abundant (DA) taxon

analysis, which aims to identify the taxa that exhibit significantly different abundances

between two groups of samples [32]. Microbiome researchers employ two major types of
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statistical methods to identify DA taxa. Methods of the first type use parametric models [5,

45, 50–57]. For example, the zero-inflated negative binomial generalized linear model (ZINB-

GLM) is used in [5, 50, 51], the negative binomial regression is used in the DESeq2-phyloseq

method [52, 53], and the zero-inflated Gaussian model is used in the metagenomeSeq method

[54]. However, these parametric model assumptions may not hold for a particular dataset

[58]. Methods of the second type perform non-parametric statistical tests that do not assume

specific data distributions. Widely-used methods include the Wilcoxon rank-sum test [33–

38] and ANCOM [46]. A major drawback of these non-parametric methods is that a taxon

would be called DA if its zero proportions differ significantly between two groups of samples,

but this difference is unlikely biologically meaningful due to the prevalence of technical and

sampling zeros. Note that both types of DA methods require the input taxon abundances to

be in one of three units: counts [5, 50, 51, 53], log-transformed counts [54], and proportions

(i.e., each taxon’s count is divided by the sum of all taxa’s counts in a sample) [45, 46, 55–57];

regardless of the unit, DA taxon analysis is always biased by the prevalence of technical and

sampling zeros.

In addition to DA taxon analysis, other microbiome data analyses, such as the construc-

tion of taxon interaction networks [59–62], are also impeded by the data sparsity challenge.

Although zero-inflated modeling is commonly used for sparse data, it requires a specific

model formulation for each analysis task, which is often complicated or unrealistic for most

microbiome researchers. Hence, a flexible and robust approach is needed to address the

sparsity issue of microbiome data.

Imputation is a widely-used technique to recover missing data and facilitate data anal-

ysis. It has successful applications in many fields, e.g., recommender systems (e.g., the

Netflix challenge [63]), image and speech reconstruction [64–66], imputation of unmeasured

epigenomics datasets [67], missing genotype prediction in genome-wide association studies

[68], and the more recent gene expression recovery in single-cell RNA-sequencing (scRNA-

seq) data [4, 16, 17, 69, 70]. Microbiome and scRNA-seq data have the same count matrix

structure if one considers microbiome samples and taxa as analogs to cells and genes, re-

spectively; both data have large proportions of non-biological zeros. Given the successes of
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scRNA-seq imputation methods, we hypothesize that imputation can also relieve the data

sparsity issue in microbiome data. Although there are methods utilizing matrix completion

in the microbiome field, their main purpose is to perform community detection or dimension

reduction instead of imputation [71, 72]. Two distinct features of microbiome data make

it suboptimal to directly apply existing imputation methods. First, microbiome data are

often accompanied by metadata including sample covariates and taxon phylogeny, which,

however, cannot be used by existing imputation methods. In particular, phylogenetic infor-

mation is known to be valuable for microbiome data analysis [73–80], as closely-related taxa

in a phylogeny are likely to have similar functions and abundances in samples [81–84]. Sec-

ond, microbiome data have a much smaller number of samples (often in hundreds) than the

number of cells (often in tens of thousands) in scRNA-seq data, making those deep-learning

based imputation methods inapplicable [70, 85]. On the other hand, the smaller sample size

allows microbiome data to afford an imputation method that focuses more on imputation

accuracy than computational time.

Here we propose mbImpute, the first imputation method designed for microbiome data

including both 16S and WGS data. The mbImpute method identifies and corrects the ze-

ros and low counts that are unlikely biological (for ease of terminology, we will refer to

them as non-biological zeros in the following text) in microbiome taxon count data. The

goal of mbImpute is to provide a principled data-driven approach to relieve the microbiome

data sparsity issue due to prevalent non-biological zeros. To achieve this, mbImpute lever-

ages three sources of information: a taxon count matrix, sample covariates (e.g., sample

library size and subjects’ age, gender, and body mass index), and taxon phylogeny, with

the latter two sources being optional. There are two main steps in mbImpute (Fig. 2.1):

first, mbImpute identifies likely non-biological zeros; second, it imputes these zeros by bor-

rowing information from similar taxa (determined by both phylogeny and counts), similar

microbiome samples (in terms of taxon counts), and sample covariates if available (see an

illustration of the imputation step in Additional File 1: Fig. S1). The imputed data are

expected to contain recovered taxon counts and would thus facilitate various downstream

analyses, such as the identification of DA taxa and the construction of taxon interaction net-
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works. Microbiome researchers can use mbImpute to avoid the hassle of dealing with sparse

data in individual analysis tasks and to enjoy the flexibility of building up data analysis

pipelines.

2.2 Results

2.2.1 mbImpute outperforms non-microbiome imputation methods in recover-

ing missing taxon abundances and empowering DA taxon identification

As there are no imputation methods for microbiome data, we benchmark mbImpute against

five state-of-the-art imputation methods designed for non-microbiome data: four popular

scRNA-seq imputation methods (scImpute [4], SAVER [16], MAGIC [17], and ALRA [69])

and a widely-used general imputation method softImpute [86]. We design two simulation

studies, and the common goal is to obtain a “complete” microbiome dataset without non-

biological zeros, so that we can evaluate imputation accuracy by comparing the imputed data

with the complete data. In the first study, we simulate complete data from a generative model

fitted to a WGS dataset of type 2 diabetes (T2D) samples [37]; In the second, more realistic

simulation study, we extract a sub-dataset with fewer than 15% zeros as the complete data

from another WGS dataset of T2D samples [38]. In both simulation studies (see Additional

File 1: Simulation 1 and Simulation 2 [4, 5, 16, 21–23, 26, 27, 29, 32–38, 45, 46, 49–51, 70,

86–117]), we introduce non-biological zeros into the complete data by mimicking the observed

zero patterns in real datasets, obtaining what we call the zero-inflated data. After applying

the six imputation methods to the zero-inflated data in both studies, we compare these

methods’ imputation accuracy in three aspects: (1) the mean squared error (MSE) between

the imputed data and the complete data, (2) each taxon’s Pearson correlation between its

imputed abundances and complete abundances, and (3) the Wasserstein distance between the

distributions of taxa’s abundance mean/(standard deviation) ratios in the imputed data and

the complete data. Fig. 2.2a–d illustrate the comparison results, indicating that mbImpute

achieves the best overall performance in all three aspects. In particular, Fig. 2.2c–d and

Additional File 1: Fig. S2 show that the imputed data by mbImpute best resemble the
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complete data, verifying the advantage of mbImpute in recovering missing taxon abundances

in microbiome data.

We next demonstrate that mbImpute is a robust method. The core of mbImpute is to

borrow three-way information from similar samples, similar taxa, and sample covariates to

impute non-biological zeros in microbiome data (see Methods). In the aforementioned second

simulation study (Additional File 1: Simulation 2), we scramble samples in the real T2D

WGS data when we select the complete data, a situation not optimal for mbImpute; however,

mbImpute still outperforms existing imputation methods (Fig. 2.2a–b). To further test for

the robustness of mbImpute, we design a third simulation study including four simulation

schemes, where the information useful for imputation is encoded in sample covariates only,

samples only, taxa only, or three sources together (see Additional File 1: Simulation 3).

Additional File 1: Fig. S3 shows that mbImpute effectively recovers non-biological zeros and

reduces the MSE under every scheme. These results verify the robustness of mbImpute in

selectively leveraging the information useful for imputation.

To further evaluate the performance of mbImpute on 16S rRNA sequencing data, we use

a 16S simulator sparseDOSSA [105] to generate the abundances of 150 taxa in 100 samples

under two conditions (see Additional File 1: Simulation 4). Among these 150 taxa, 45 are

predefined as truly DA taxa. We apply five state-of-the-art DA methods: the Wilcoxon

rank-sum test, ANCOM [46], metagenomeSeq [54], DESeq2-phyloseq [52, 53], and Omnibus

test [118]. To evaluate the accuracy of DA taxon identification, we calculate the precision,

recall, and F1 score (i.e., the harmonic mean of precision and recall) of each method, with

or without using mbImpute as a preceding step, by comparing each method’s detected DA

taxa to the truly DA taxa. Note that metagenomeSeq uses the zero-inflated Gaussian linear

model for log-transformed microbiome data, but this model does not fit well to imputed

data, which have many zeros removed; hence, we use the Gaussian linear model without

zero-inflation to evaluate metagenomeSeq on imputed data. Under the false discovery rate

(FDR) thresholds of 0.05 (Fig. 2.2e) and 0.1 (Additional File 1: Fig. S4), the mbImpute-

empowered DA methods consistently have better recall rates and F1 scores than those of the

same DA methods without imputation. Notably, mbImpute improves both precision and
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recall rates of metagenomeSeq.

To evaluate the robustness of mbImpute to sequencing depth, we simulate 16S rRNA

sequencing data based on real data for 300 taxa in 54 samples with four sequencing depths:

1000, 2000, 5000, and 10,000 reads per sample (see Additional File 1: Simulation 5). Addi-

tional File 1: Fig. S5a shows that mbImpute has better imputation accuracy as sequencing

depth increases. This is an expected result because a larger sequencing depth leads to fewer

missing data so that mbImpute can be better trained with more non-missing data. We fur-

ther evaluate the performance of the five non-microbiome imputation methods along with

mbImpute. Additional File 1: Fig. S6 shows that softImpute and ALRA, the two low-rank

matrix factorization methods, also have better imputation accuracy as sequencing depth

increases, yet their accuracies are worse than those of mbImpute at all sequencing depths.

Unexpectedly, the four other imputation methods developed for scRNA-seq data—SAVER,

scImpute, MAGIC, and ALRA—show no improvement over the baseline, “no imputation”.

One possible reason is that the sequencing depths used in this simulation („ 103) are much

lower than those of typical scRNA-seq data („ 106). These results again suggest that

scRNA-seq imputation methods are unsuitable for microbiome 16S rRNA sequencing data.

We also check the robustness of mbImpute to outlier samples. Taking the sample with the

2000-read per-sample sequencing depth, we generate one or two outlier samples by assigning

large abundance values to 62 lowly abundant taxa in the existing 54 samples and setting

other taxa’s abundance to zero (see Additional File 1). Additional File 1: Fig. S5b shows

that the imputation accuracy of mbImpute is robust to the introduction of outlier samples.

Additional File 1: Fig. S7 shows the abundance distributions of four example taxa with

outlier values before and after imputation. We observe that the existence of outliers does

not distort the post-imputation distribution of non-outlier samples.

2.2.2 mbImpute empowers DESeq2-phyloseq in DA taxon analysis

We find that mbImpute works well with DESeq2-phyloseq [52, 53], a widely used DA method

for microbiome data, on real WGS datasets. We perform DA analysis on two T2D WGS
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datasets (Qin et al. and Karlsson et al.) and four CRC WGS datasets (Zeller et al., Feng

et al., Vogtmann et al., and Yu et al.), with or without using mbImpute as a preceding

step. The goal of DA analysis is to identify the DA taxa between the diseased and control

samples. These DA taxa may serve as potential targets for early detection or treatment of

disease [33]. Note that mbImpute does not utilize the samples’ group information (whether

each sample belongs to the diseased or control group) for its imputation, so that mbImpute

will not falsely increase sample similarity within groups.

We start with the five DA methods—Wilcoxon rank-sum test, ANCOM, metagenomeSeq,

DESeq2-phyloseq, and Omnibus test—for identifying disease-related DA taxa in the two T2D

and four CRC datasets. Under the FDR threshold 0.05, only DESeq2-phyloseq and Omnibus

test identify DA taxa in all datasets (Additional File 1: Table S1). Hence, we focus on eval-

uating the accuracy of DESeq2-phyloseq and Omnibus test on the original and imputed data

(for DESeq2-phyloseq applied to the imputed data, we refer to it as mbImpute-empowered

DESeq2-phyloseq). For a sanity check on the DA taxon identification results in each dataset,

we plot the distribution of taxa’s p-values calculated by DESeq2-phyloseq or Omnibus test

before and after mbImpute is applied (Additional File 1: Figs. S8–9). We find that all the

p-value distributions for DESeq2-phyloseq match our expectation (i.e., the expected p-value

distribution should have a mode near zero and be uniform elsewhere). However, the p-value

distributions for Omnibus test exhibit abnormality for the Karlsson et al. T2D and Vogt-

mann et al. CRC datasets. Specifically, the distributions have an unexpected mode near

one for the Karlsson et al. dataset after imputation and for the Vogtmann et al. dataset

before and after imputation. This phenomenon suggests that the distributional assumption

of Omnibus test does not hold for these data. Hence, we focus on the comparison between

DESeq2-phyloseq and mbImpute-empowered DESeq2-phyloseq in the following analysis.

To investigate whether the DA taxa identified by DESeq2-phyloseq or mbImpute-empowered

DESeq2-phyloseq are meaningful disease markers, we evaluate the predictive power of the

identified DA taxa for sample disease conditions (control or diseased). For each micro-

biome dataset, we use the DA taxa, identified by DESeq2-phyloseq or mbImpute-empowered

DESeq2-phyloseq, as features and apply the random forest algorithm to predict sample
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disease conditions. We use the 5-fold cross-validated precision-recall area under the curve

(PR-AUC) to evaluate the prediction accuracy (Fig. 2.3a). We observe that mbImpute-

empowered DESeq2-phyloseq leads to overall better prediction accuracy than DESeq2-phyloseq

does across the six datasets.

Then we focus on the Karlsson et al. T2D dataset and the Vogtmann et al. CRC dataset,

which exhibit the largest improvement in prediction accuracy when the DA taxa identified

by mbImpute-empowered DESeq2-phyloseq are used. For the Karlsson et al. T2D dataset,

we observe that mbImpute-empowered DESeq2-phyloseq outputs a greater number of small

p-values than DESeq2-phyloseq does (Additional File 1: Fig. S7), suggesting that more taxa

are identified as DA after imputation (in fact, all the DA taxa identified before imputation

are still found as DA after imputation). Hence, the improvement in prediction accuracy im-

plies that the DA taxa identified only after imputation contribute to the distinction between

control and T2D samples. In particular, we examine three example taxa (Ruminococcus

species) identified as DA only after imputation. Fig. 2.3b shows the distributions of these

three taxa’s abundances (on the log-scale) before and after imputation. For each taxon, we

observe that the imputed abundances and the original non-zero abundances have similar

ranges and both suggest that the taxon is more abundant in T2D samples than in control

samples. However, this abundance difference is obscured by the prevalent zeros before impu-

tation and thus cannot be captured by DESeq2-phyloseq. Literature evidence is consistent

with the post-imputation result of the first two taxa. Specifically, the first taxon has de-

creased abundances in T2D patients after the Acarbose treatment [119]. The second taxon,

Ruminococcus callidus, is shown to be enriched in T2D mouse models [120].

For the Vogtmann et al. CRC dataset, the 5-fold cross-validated PR-AUC increases by

almost 10% when the DA taxa identified after imputation, instead of those identified before

imputation, are used as features. In fact, fewer taxa are identified as DA after imputation

(Additional File 1: Fig. S8). At the q-value threshold 0.05, DESeq2-phyloseq identifies 53

DA taxa, while mbImpute-empowered DESeq2-phyloseq identifies 40 DA taxa, with only 17

taxa in overlap. This result suggests that the 23 DA taxa identified only after imputation

contribute much to the distinction between control and CRC samples. We examine three of
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these 23 taxa: Ruminococcus gnavus, Lachnospiraceae bacterium 2 1 58FAA, and Granuli-

catella adiacens. Fig. 2.3c shows that each taxon has its imputed abundances and its original

non-zero abundances in similar ranges; its imputed and original non-zero abundances both

suggest it to be more abundant in CRC samples than in control samples. However, this abun-

dance difference is obscured by the prevalent zero abundances before imputation and thus

cannot be captured by DESeq2-phyloseq. To confirm the post-imputation result, we find

literature evidence for the three taxa. First, several studies have reported that Ruminococ-

cus gnavus is associated with a higher risk of CRC [115, 121–123]. Second, two studies have

shown that Lachnospiraceae bacterium 2 1 58FAA is positively associated with colorectal

neoplasms, from which CRC arises [115]. Third, Granulicatella adiacens is reported to be

associated with CRC progression in both human [99] and mouse studies [124]. We also ex-

amine the taxa identified as DA before imputation but not as DA after imputation, and

we find that these taxa only differ in zero proportions and have similar non-zero abundance

distributions between control and CRC samples (Additional File 1: Fig. S10). We argue

that such taxa are unlikely to be truly DA because it is questionable whether zero proportion

differences are biologically meaningful given the prevalence of technical and sampling zeros.

Together, our analysis results on the Karlsson et al. T2D dataset and the Vogtmann et al.

CRC dataset suggest that compared to DESeq2-phyloseq, mbImpute-empowered DESeq2-

phyloseq can detect DA taxa that are more predictive of sample conditions, and we verify

that some DA taxa only detected by mbImpute-empowered DESeq2-phyloseq are function-

ally relevant by literature evidence.

For all the DA taxa identified by DESeq2-phyloseq and mbImpute-empowered DESeq2-

phyloseq in the two T2D and four CRC data datasets, we query the GMrepo database [115]

and find two T2D- and one CRC-related functional terms. For each term, we perform the

Fisher’s exact test to check its enrichment in the DA taxa identified from the corresponding

disease-related datasets. Our results show that all three terms are more enriched in the

DA taxa identified after mbImpute is applied (Table 2.1; Additional Files 1–7), providing

functional support to the efficacy of mbImpute in empowering DESeq2-phyloseq.

Furthermore, we analyze the overlap of the DA taxa identified in the two T2D datasets,
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DA method T2D term 1* T2D term 2** CRC term***
DESeq2-phyloseq 0.54 0.76 0.0027

mbImpute-empowered DESeq2-phyloseq 0.03 0.17 0.0010

Table 2.1: Fisher’s exact test p-values about the enrichement of T2D- and CRC-related functional terms in the DA taxa found
by DESeq2-phyloseq or mbImpute-empowered DESeq2-phyloseq. For each term, the DA taxa identified by each method from
the corresponding datasets are pooled to do the test.
*T2D term 1: “The time period before the development of symptomatic diabetes. For example, certain risk factors can be
observed in subjects who subsequently develop INSULIN RESISTANCE as in type 2 diabetes (DIABETES MELLITUS, TYPE
2).”
**T2D term 2: “A cluster of symptoms that are risk factors for CARDIOVASCULAR DISEASES and TYPE 2 DIABETES
MELLITUS. The major components of metabolic syndrome include ABDOMINAL OBESITY; atherogenic DYSLIPIDEMIA;
HYPERTENSION; HYPERGLYCEMIA; INSULIN RESISTANCE; a proinflammatory state; and a prothrombotic (THROM-
BOSIS) state.”
***CRC term: “Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorectal cancer include chronic
ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI; exposure to ASBESTOS; and irradiation of the CERVIX UTERI.”

Qin et al. and Karlsson et al. There is no overlap in the two sets of DA taxa identifed by

DESeq2-phyloseq, but Clostridium bolteae is identified by mbImpute-empowered DESeq2-

phyloseq in both datasets. In fact, Clostridium bolteae has been reported as eriched in CRC

samples in Qin et al. but not in Karlsson et al. In our analysis on the Karlsson et al. dataset,

Clostridium bolteae has FDR-adjusted p-values 0.347 and 0.036 before and after imputation,

respectively (abundance distributions in Additional File 1: Fig. S11). Literature evidence

suggests that Clostridium bolteae is positively associated with T2D in both human [125] and

mouse studies [126].

For the four CRC datasets (Feng et al., Yu et al., Vogtmann et al., and Zeller et al.), we

analyze the DA taxa identified in at least two datasets before and after imputation. Specif-

ically, DESeq2-phyloseq and mbImpute-empowered DESeq2-phyloseq respectively identify

four and 18 taxa (with three taxa in overlap) that have significantly lower abundances in

CRC samples than in normal samples. Among these taxa, DESeq2-phyloseq only identifies

Bifidobacterium animalis, while mbImpute-empowered DESeq2-phyloseq additionally iden-

tifies three other Bifidobacterium species: Bifidobacterium bifidum, Bifidobacterium catenu-

latum, and Bifidobacterium longum. Additional File 1: Figs. S12–14 show the distributions

of these three taxa’s abundances (on the log-scale) before and after imputation. Literature

evidence indicates that Bifidobacterium is beneficial to the immune system against CRC

[127–129] and has been used as probiotics [130]; all the four Bifidobacterium species de-

tected by mbImpute-empowered DESeq2-phyloseq have been reported to have significantly
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lower abundances in CRC samples [131, 132]. Together, our overlap analysis on T2D and

CRC datasets suggests that mbImpute helps recover the DA taxa that are detected in one

dataset but missed in another due to prevalent zeros.

2.2.3 mbImpute preserves distributional characteristics of taxa’s non-zero abun-

dances and recovers downsampling zeros

In the DA analysis described in the last section, we observe that mbImpute can well main-

tain the distributions of taxa’s non-zero abundances, see Fig. 2.3b–c. To further verify the

property of mbImpute in preserving characteristics of non-zero abundances, we examine

pairwise taxon-taxon relationships in the two T2D WGS datasets: Qin et al. and Karlsson

et al. For a pair of taxa, we calculate two Pearson correlations based on the raw data on

the log-scale: one using all the samples (“raw all-sample correlation”) and the other only

using the samples where both taxa have non-zero abundances (“raw non-zero-sample corre-

lation”). In this section, we perform our analysis on the log-scale of the taxa count matrix

since one of the assumptions for Pearson correlation is the normality of both variables, and

microbiome count data on the log-scale better resemble a continuous normal distribution.

For the same pair of taxa, we also calculate a Pearson correlation based on the imputed data

by mbImpute on the log-scale, using all the samples (“imputed all-sample correlation”). As

shown in Fig. 2.4a–b, there are vast differences between the raw all-sample correlations

and the corresponding raw non-zero-sample correlations. However, the imputed all-sample

correlations better resemble the corresponding raw non-zero-sample correlations, suggesting

that mbImpute well preserves pairwise taxon-taxon correlations encoded in taxa’s non-zero

abundances.

We also explore the linear relationship of each taxon pair using the standard major axis

(SMA) regression, which, unlike the least-squares regression, treats two taxa symmetrically.

For a pair of taxa, we perform two SMA regressions on the raw data: one using all the

samples (“raw all-sample regression”) and the other using only the samples where both

taxa have non-zero abundances (“raw non-zero-sample regression”). We also perform the
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Removal rate 40% 70%
% of downsampling zeros identified 95.83%˘ 0.46% 92.83%˘ 0.92%
Pearson correlation before imputation 0.7565˘ 0.0023 0.5261˘ 0.0016
Pearson correlation after imputation 0.8747˘ 0.0100 0.7582˘ 0.0235

Table 2.2: Effectiveness of mbImpute in indentifying zeros due to downsampling of Qin et al.’s T2D WGS dataset. For each
of two removal rates 40% and 70%, we repeat independent downsampling for ten times. For each removal rate (column), the
first row lists the average percentage of downsampling zeros identified by mbImpute; the second row lists the average Pearson
correlation between a downsampled matrix and the original matrix (on the log-scale) before imputation; the third row lists the
average Pearson correlation (on the log-scale) after mbImpute is used. Each average calculated across the ten downsampling
and is accompanied with an error margin, i.e., 1.96 times the standard error over the ten downsampling.

SMA regression on the imputed data by mbImpute, using all the samples (“imputed all-

sample regression”). Fig. 2.4a–b show that the raw all-sample regressions and the raw

non-zero-sample regressions return vastly different lines. Especially, the two lines between

Eubacterium sirasum and Ruminococcus obeum in the Karlsson et al. data (Fig. 2.4b bottom

left) have slopes with opposite signs. In contrast, the imputed all-sample regressions output

lines with slopes similar to those of the raw non-zero-sample regressions. This result again

confirms mbImpute’s capacity for preserving characteristics of taxa’s non-zero abundances

in microbiome data.

Furthermore, we systematically evaluate the performance of mbImpute in preserving

raw non-zero-sample correlations on the two T2D WGS datasets and the four CRC WGS

datasets, with each dataset containing samples in two groups: diseased and control. Fig. 2.4c

show that the imputed all-sample correlations resemble the raw non-zero-sample correlations

much better than the raw all-sample correlations do, on every dataset including all samples

(“whole” in Fig. 2.4c). Moreover, within each sample group in each dataset (“diseased” and

“control” in Fig. 2.4c), the imputed all-sample correlations still better resemble the raw non-

zero-sample correlations than the raw all-sample correlations do. Note that the resemblance

is defined based on the Pearson correlation of two sets of correlations. Additional File 1:

Fig. S15 shows that the same conclusion holds when the resemblance is defined based on

the Spearman correlation. Note that mbImpute does not use the group information of each

sample in its imputation process.

Our results echo existing concerns about spurious taxon-taxon correlations in microbiome

data due to excess non-biological zeros [133, 134]. In other words, taxon-taxon correlations
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cannot be accurately estimated from raw data using all samples. Without imputation,

an intuitive approach is to use taxa’s non-zero abundances to estimate taxon-taxon cor-

relations; however, this approach reduces the sample size for estimating each taxon pair’s

correlation because it does not use the samples containing zero abundances for either taxon,

and it also makes different taxon pairs’ correlation estimates rely on different samples. To

address these issues, mbImpute provides another approach: its imputed data allow taxon-

taxon correlations to be estimated from all samples. Moreover, we observe that mbImpute

makes log-transformed taxon abundances closer to be normally distributed (Additional File

1: Fig. S16); thus, the Pearson correlation is a more meaningful measure for taxon-taxon

associations on the imputed data than on the raw data.

In addition, based on the T2D WGS dataset generated by Qin et al., we verify mbImpute’s

capacity to identify non-biological zeros generated by downsampling. In each sample (i.e.,

each row in the sample-by-taxon count matrix), we assign every taxon a sampling probability

proportional to its count, i.e., the larger the count, the more likely the taxon is to be sampled;

based on these probabilities, we sample 60% or 30% of the non-zero taxon counts, and we set

the unsampled counts to zeros (corresponding to a removal rate of 40% or 70%); we repeat the

downsampling independently for ten times. After applying mbImpute to the downsampled

count matrices, we find that mbImpute correctly identifies 95.83% and 92.83% (on average)

of the newly introduced non-biological zeros under the two removal rates. Before imputation,

the average Pearson correlations between the downsampled matrices and the original matrix

(on the log-scale) are 0.76 and 0.53 under the two removal rates. After applying mbImpute

to all the three matrices, the correlations are increased to 0.87 and 0.76 (Table 2.2). This

result confirms the effectiveness of mbImpute in recovering zeros due to downsampling.

2.2.4 mbImpute increases the similarity of microbial community structure be-

tween 16S rRNA and WGS data

We further show that mbImpute can enhance the similarity of taxon-taxon correlations in-

ferred from micrbiome data measured by two technologies—16S rRNA sequencing and WGS.
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We use two microbiome datasets of healthy human stool samples: a 16S rRNA dataset from

the Human Microbiome Project [135] and a WGS dataset from the control samples in Qin

et al. We compare the genus-level taxon-taxon correlations between these two datasets, and

we perform the comparison again after applying mbImpute. Fig. 2.5 shows that mbImpute

increases the similarity between the taxon correlation structures in the two datasets. Before

imputation, the Pearson correlation between the two correlation matrices (one computed

from 16S rRNA taxon abundances and the other from WGS taxon abundances) is 0.59;

mbImpute increases the correlation to 0.64. In particular, we observe three taxon groups

(highlighted by magenta, green, and purple squares in Fig. 2.5) supported by both 16S

rRNA and WGS data after imputation. Notably, in the magenta squares, Acidaminococcus

has correlations with Dialister and Blautia only after imputation, and this result is con-

sistent with the literature: Acidaminococcus and Dialister are both reported to have low

abundances in healthy human stool samples [136]; Acidaminococcus and Blautia are both

associated with risks of T2D and obesity, lipid profiles, and homeostatic model assessment

of insulin resistance [137]. The green squares contain three bile-tolerant genera: Alistipes,

Bilophila, and Bacteroides [138]. The raw 16S and WGS data only reveal the correlation

between Bacteroides and Alistipes, but mbImpute recovers the correlations Bilophila has

with Alistipes and Bacteroides. The purple squares indicate a strong correlation between

Sutterella and Prevotella after imputation, yet this correlation is not observed in raw WGS

data. We verify this correlation in the MACADAM database [139], which contains metabolic

pathways associated with microbes. Out of 1260 pathways, Sutterella and Prevotella are as-

sociated with 154 and 278 pathways, respectively, and 122 pathways are in common; Fisher’s

exact test finds that the overlap is statistically significant (p-value ă 2.2ˆ10´16), suggesting

that Sutterella and Prevotella may be functionally related. Overall, our results indicate that

mbImpute can facilitate meta-analysis of 16S and WGS data by alleviating the hurdle of

prevalent non-biological zeros.

We perform a negative control study to confirm that the increased similarity between

16S rRNA and WGS data is not an artifact introduced by mbImpute. We use a 16S rRNA

dataset of human oral samples and a WGS dataset of human stool samples, which are
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expected to have different genus-level taxon-taxon correlations. Same as in the previous

study, we compare the genus-level taxon-taxon correlations between the two datasets before

and after applying mbImpute. Additional File 1: Fig. S17 shows that mbImpute decreases

the similarity between the taxon correlation matrices of the two datasets. Before imputation,

the Pearson correlation between the two correlation matrices is 0.21; mbImpute decreases

the correlation to 0.09.

2.3 Discussion

A critical challenge in microbiome data analysis is statistical inference of taxon abundance

from highly sparse and noisy data. Our proposed method, mbImpute, will address this

challenge and facilitate analysis of both 16S and WGS data; mbImpute works by correcting

non-biological zeros and retaining taxa’s non-zero abundance distributions after imputation.

As the first imputation method designed for microbiome data, mbImpute is shown to out-

perform multiple state-of-the-art imputation methods developed for other data types. In the

DA analysis, we show that mbImpute-empowered DESeq2-phyloseq has better performance

in selecting predictive taxa for disease conditions comparing to DESeq2-phyloseq. The rea-

son is that mbImpute-empowered DESeq2-phyloseq is able to identify the taxa missed by

the DESeq2-phyloseq (due to excess zeros) but should be called DA (i.e., having non-zero

abundances that exhibit significantly different means between two sample groups). We then

demonstrate that mbImpute preserves taxa’s non-zero abundance distributions. As a result,

taxon-taxon correlations calculated from all samples after imputation better resemble the

taxon-taxon correlations calculated from non-zero counts only. Hence, mbImpute can fa-

cilitate taxon network analysis by allowing all taxon pairs to have meaningful correlations

computed from all samples. Moreover, mbImpute improves the reproducibility of DA taxon

identification across studies and the consistency of microbial community detection between

16S and WGS data.

In the application of mbImpute, two practical concerns are what normalization method

and phylogenetic distance metric work the best with mbImpute. First, the goal of nor-
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malization is to make taxon counts comparable across samples, a necessary assumption of

mbImpute. In our results, we think our way of normalization is sufficient to meet this as-

sumption. However, the appropriate normalization method for mbImpute is case by case in

future applications, depending on whether confounders such as batch effects are observable;

hence, users’ judgement is indispensable. We recognize that benchmarking normalization

methods for microbiome data is a separate project. Hence, we refer users to benchmark

papers [39, 140] to guide their choice of benchmark methods. Second, users may specify the

phylogenetic distances between taxa based on their domain knowledge. In our results, we

define the phylogenetic distance between two taxa as the number of branches connecting

them in a phylogenetic tree, but alternative choices exist, such as the total lengths of the

branches. If users want to choose a distance metric, we recommend that they supply the

phylogenetic distances defined by candidate metrics into mbImpute and choose the metric

that leads to the smallest cross-validated MSE, i.e., the cross-validated imputation error of

mbImpute on non-missing data.

Regarding the mbImpute-empowered DA analysis, we note that it offers a new perspec-

tive of identifying DA taxa from microbiome 16S and WGS data after imputation. We have

summarized three statistical definitions of DA taxa in microbiome data in Additional File

1: Statistical definitions of DA taxa. Note that mbImpute-empowered DA analysis is ad-

vantageous in that it alleviates the existence of non-biological zeros, and it uses all available

samples for DA testing. A controversial question is, if a taxon has few zeros in condition

1 but few non-zeros in condition 2, and the non-zero values have similar magnitudes in the

two conditions, whether or not should this taxon be called DA. We note that mbImpute is

unlikely to impute the predominant zeros in condition 2 because it would treat these zeros

as biological zeros. Hence, mbImpute-empowered DA analysis is likely to call such a taxon

as DA.

There has been a long-standing concern about sample contamination in microbiome se-

quencing data, e.g. contamination from DNA extraction kits and laboratory reagents [141,

142]. Existing studies have attempted to address this issue via calibrated sequencing op-

erations [142–144] and computational methods [145, 146]. We recommend researchers to
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perform contamination removal before applying mbImpute. Moreover, by its design, mbIm-

pute is robust to certain types of sample contamination that result in outlier taxa and

samples. For each outlier taxon, mbImpute would borrow little information from other taxa

to impute this outlier taxon’s abundances. Similarly, mbImpute is robust to the existence of

outlier samples that do not resemble any other sample.

In statistical inference, a popular and powerful technique is the use of indirect evidence by

borrowing information from other observations, as seen in regression, shrinkage estimation,

empirical Bayes, among many others [147]. Imputation follows the indirect evidence princi-

ple, where the most critical issue is to decide what observations to borrow information from

so as to improve data quality instead of introducing excess biases. To achieve this, mbImpute

employs penalized regression to selectively leverage similar samples, similar taxa, and sample

covariates to impute likely non-biological zeros, whose identification also follows the indirect

evidence principle by incorporating sample covariates into consideration. Also, mbImpute

provides a flexible framework to make use of microbiome metadata: it selectively borrows

metadata information when available, but it does not rely on the existence of metadata (see

Methods).

In the comparison of mbImpute with softImpute, a general matrix imputation method

widely used in other fields, we observe that softImpute’s imputed taxon abundances exhibit

artificial spikes and smaller variances than those of the original non-zero abundances, possibly

due to its low-rank assumption. In contrast, mbImpute is a regression-based method that

focuses more on local matrix structures, and we find that it retains well the original non-

zero abundance distributions. We will investigate the methodological differences between

mbImpute and softImpute in a future study.

Moreover, we observe that, similar to each taxon’s non-zero abundances, the imputed

abundances exhibit a bell-shaped distribution across samples on the log-scale. This suggests

that statistical methods utilizing normal distributional assumptions become suitable and

applicable to imputed taxon abundances. A possible use of imputed microbiome data is

to construct a taxon-taxon interaction network, to which network analysis methods may

be applied to find taxon modules and hub taxa [148]. As a preliminary exploration, we
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construct Bayesian networks of taxa based on the two T2D datasets Qin et al. and Karlsson

et al. after applying mbImpute. Interesting changes are observed in taxon interactions from

control samples to T2D samples (Additional File 1: Figs. S18–19). For example, two genera,

Ruminococcus and Eubacterium, have interactive species in control samples but not in T2D

samples. In future research, differential network analysis methods can be applied to find

taxon communities that differ between two sample groups.

2.4 Methods

2.4.1 mbImpute methodology

Here we describe mbImpute, a statistical method that corrects prevalent non-biological zeros

in microbiome data. As an overview, mbImpute takes a taxon count matrix as input; pre-

processes the data; identifies the likely non-biological zeros and imputes them based on the

input count matrix, sample covariates, and taxon phylogeny; and outputs an imputed count

matrix.

Notations

We denote the sample-by-taxon taxa count matrix as M “ pMijq P Znˆmě0 , where n is

the number of microbiome samples and m is the number of taxa. We denote the sample

covariate matrix (i.e., metadata) as X P IRnˆq, where q equals the number of covariates plus

one (for the intercept). (By default, mbImpute includes sample library size as a covariate.)

In addition, we define a phylogenetic distance matrix of taxa as D “ pDjj1q P Zmˆmě0 , where

Djj1 represents the number of branches connecting taxa j and j1 in the phylogenetic tree.

Data pre-processing

mbImpute requires every taxon’s counts across samples to be on the same scale before im-

putation. If this condition is unmet, normalization is needed. However, how to properly

normalize microbiome data is challenging, and multiple normalization methods have been
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developed in recent years [48, 149, 150]. Regarding the choice of an appropriate normaliza-

tion method, users may refer to benchmark papers [39, 140]. To give users the flexibility of

choosing an appropriate normalization method, mbImpute allows users to input a normalized

count matrix by specifying that the input matrix does not need normalization. Otherwise,

mbImpute normalizes samples by library size.

Default normalization (optional) To account for the varying library sizes (i.e.,

total counts) of samples, mbImpute first normalizes the count matrix M by row. The

normalized count matrix is denoted as MpN q “ pM
pN q
ij q P Rnˆm

ě0 , where

M
pN q
ij “ 106

¨
Mij

řm
j1“1Mij1

.

After this normalization, every sample has a total count of 106.

mbImpute applies the logarithmic transformation to the normalized counts so as to reduce

the effects of extremely large counts [98]. The resulted log-transformed normalized matrix

is denoted as Y “ pYijq P Rnˆm
ą0 , with

Yij “ log10

`

MN
ij ` 1.01

˘

,

where the value 1.01 is added to make Yij ą 0 to avoid the occurrence of infinite values in a

later parameter estimation step, following Li and Li [4, 97]. This logarithmic transformation

allows us to fit a continuous probability distribution to the transformed data, thus simpli-

fying the statistical modeling. In the following text, we refer to Y as the sample-by-taxon

abundance matrix.

mbImpute step 1: identification of taxon abundances that need imputation

mbImpute assumes that each taxon’s abundances, i.e., a column in Y, follow a mixture

model. The model consists of two components: a Gamma distribution for the taxon’s likely

non-biological zeros and low abundances and a normal distribution for the taxon’s actual
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abundances, with the normal mean incorporating sample covariate information (including

sample library size as a covariate). Specifically, mbImpute assumes that the abundance of

taxon j in sample i, Yij, follows the following mixture distribution:

Yij „ pj ¨ Γ pαj, βjq ` p1´ pjq ¨N
`

XT
i¨γj, σ

2
j

˘

,

where pj P p0, 1q is the missing rate of taxon j, i.e., the probability that taxon j is falsely

undetected, Γ pαj, βjq denotes the Gamma distribution with shape parameter αj ą 0 and

rate parameter βj ą 0, and N
`

XT
i¨γj, σ

2
j

˘

denotes the normal distribution with mean XT
i¨γj

and standard deviation σj ą 0. In other words, with probability pj, Yij is a missing value that

needs imputation; with probability 1 ´ pj, Yij is sampled from the non-missing abundance

distribution of taxon j and does not need imputation. mbImpute models the normal mean

parameter as a linear function of sample covariates: XT
i¨γj, where Xi¨ P IRq denotes the i-th

row in the covariate matrix X, i.e., the covariates of sample i, and γj P IRq represents the q

covariates’ effects (including the intercept) on taxon j’s abundance. This formulation allows

a taxon to have similar expected abundances (when not missing) in samples with similar

covariates.

The intuition behind this model is that taxon j’s non-missing abundance in a sample

is drawn from a normal distribution, whose mean depicts the expected abundance given

the sample covariates. However, due to library preparation and under-sampling issues in

sequencing, false zero or low counts could have been introduced into the data, creating

another mode near zero in taxon j’s abundance distribution. mbImpute models that mode

using a Gamma distribution with mean αj{βj, which is close to zero.

mbImpute fits this mixture model to taxon j’s abundances using the expectation-maximization

(EM) algorithm to obtain the maximum likelihood estimates p̂j, α̂j, β̂j, γ̂j, and σ̂2
j . Addi-

tional File 1: Fig. S20 shows four examples where the fitted mixture model well captures

the bimodality of an individual taxon’s abundance distribution. However, some taxa are

observed to have an abundance distribution containing a single mode that can be well mod-

elled by a normal distribution. When that occurs, the EM algorithm would encounter a
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convergence issue. To fix this, mbImpute uses a likelihood ratio test (LRT) to first decide if

the Gamma-normal mixture model fits to taxon j’s abundances significantly better than a

normal distribution Yij „ N
`

XT
i¨ηj, ω

2
j

˘

does. Given the maximum likelihood estimates η̂j

and ω̂2
j and under the assumption that Yij’s are all independent, the LRT statistic of taxon

j is:

Λj “ ´2 ln
śn

i“1 fN pYij ;XT
i¨η̂j ,ω̂

2
j q

śn
i“1rp̂j ¨fΓpYij ;α̂j ,β̂jq`p1´p̂jq¨fN pYij ;XT

i¨γ̂j ,σ̂
2
j qs

,

which asymptotically follows a Chi-square distribution with 3 degrees of freedom (because

the mixture model has three more parameters than in the normal model) under the null

hypothesis that the normal model is the correct model. We summarize the LRT p-values

calculated on six real WGS datasets and observe that few taxa have p-values greater than

0.05 (see Additional File 1: Fig. S21a). Additional File 1: Fig. S21b shows the distribution

of one randomly picked taxon with LRT p-value greater than 0.05 in each dataset; these

taxa’s log-transformed counts do not have a mode close to zero. If the LRT p-value ď 0.05,

mbImpute uses the mixture model to decide which abundances of taxon j need imputation.

Specifically, mbImpute decides if Yij needs imputation based on the estimated posterior

probability that Yij comes from the Gamma component:

dij “
p̂j ¨fΓpYij ;α̂j ,β̂jq

p̂j ¨fΓpYij ;α̂j ,β̂jq`p1´p̂jq¨fN pYij ;XT
i¨γ̂j ,σ̂

2
j q
,

where fΓp¨; α̂j, β̂jq and fN p¨;X
T
i¨ γ̂j, σ̂

2
j q represent the probability density functions of the esti-

mated Gamma and normal components in the mixture model. Otherwise, if the LRT p-value

ą 0.05, mbImpute concludes that none of taxon j’s abundances need imputation and sets

d1j “ ¨ ¨ ¨ “ dnj “ 0.

Based on the dij’s, mbImpute defines a set Ω of (sample, taxon) pairs whose abundances

are unlikely missing and thus do not need imputation:

Ω “ tpi, jq : dij ă dthre, i “ 1, . . . , n; j “ 1, . . . ,mu ,
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and a complement set Ωc containing other (sample, taxon) pairs whose abundances need

imputation:

Ωc
“ tpi, jq : dij ě dthre, i “ 1, . . . , n; j “ 1, . . . ,mu .

Although dthre “ 0.5 is used as the default threshold on dij’s to decide the abundances that

need imputation, mbImpute is fairly robust to this threshold choice because most dij’s are

concentrated around 0 or 1. We show this phenomenon in Additional File 1: Fig. S22, which

displays the distribution of all the dij’s in the data from Zeller et al. [33], Feng et al. [34],

Yu et al. [35], Vogtmann et al. [36], Qin et al. [38], and Karlsson et al. [37].

To summarize, mbImpute does not impute all zeros in the taxon count matrix; instead,

it first identifies the abundances that are likely missing using a mixture-modelling approach,

and it then only imputes these values in the next step.

mbImpute step 2: imputation of the missing taxon abundances

In step 1, mbImpute identifies a set Ω of the (sample, taxon) pairs whose abundances do not

need imputation. To impute the abundances in Ωc, mbImpute first learns inter-sample and

inter-taxon relationships from Ω by training a predictive model for Yij, the abundance of

taxon j in sample i. The rationale is that taxon j should have similar abundances in similar

samples, and that in every sample, the taxa similar to taxon j should have abundances similar

to taxon j’s abundance. In addition, sample covariates are assumed to carry predictive

information of taxon abundances. Hence, for interpretability and stability reasons, mbImpute

uses a linear model to combine the predictive power of similar taxa, similar samples, and

sample covariates:

Yij “ Y T
i¨ κj ` Y

T
¨j τi `X

T
i¨ζj ` εij ,

where Yi¨ P IRm
ą0 denotes the m taxa’s abundances in sample i, Y¨j P IRn

ą0 denotes taxon j’s

abundances in the n samples, Xi¨ P IRq denotes sample i’s covariates (including the intercept),

and εij is the error term. The parameters to be estimated include κj P IRm, τi P IRn and

ζj P IRq, i “ 1, . . . , n; j “ 1, . . . ,m. Note that κj represents the m taxa’s coefficients (i.e.,

weights) for predicting taxon j, with the j-th entry set to zero, so that taxon j would not
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predict itself; τi represents the n samples’ coefficients (i.e., weights) for predicting sample i,

with the i-th entry set to zero, so that sample i would not predict itself; ζj represents the

coefficients of sample covariates for predicting taxon j. In the model, the first term Y T
i¨ κj

borrows information across taxa, the second term Y T
¨j τi borrows information across samples,

and the third term XT
i¨ζj borrows information from sample covariates. The total number of

unknown parameters is mpm ´ 1q ` npn ´ 1q `mq, while our data Y and X together have

nm ` nq values only. Given that often m " n, the parameter estimation problem is high

dimensional, as the number of parameters far exceeds the number of data points. mbImpute

performs regularized parameter estimation by using the Lasso-type `1 penalty, which leads to

good prediction and simultaneously selects predictors (i.e., similar samples and similar taxa)

to ease interpretation. That is, mbImpute estimates the above parameters by minimizing

the following loss function:

L
`

tκj, ζju
m
j“1, tτiu

n
i“1

˘

:“
ÿ

pi,jqPΩ

“

Yij ´
`

Y T
i¨ κj ` Y

T
¨j τi `X

T
i¨ζj

˘‰2
` λ

˜

m
ÿ

j“1

m
ÿ

j1‰j

Dψ
jj1 |κjj1 | `

n
ÿ

i“1

n
ÿ

i1‰i

|τii1 |

¸

,

where λ, ψ ě 0 are tuning parameters chosen by cross-validation, Djj1 represents the phy-

logenetic distance between taxa j and j1, κjj1 represents the j1-th element of κj, and τii1

represents the i1-th element of τi. Here Dψ
jj1 , i.e., Djj1 to the power of ψ, represents the

penalty weight of |κjj1 | (in our R package implementation, the mbImpute function can take

any distance matrix D as input that reflects the relationship among taxa specified by the

user.) The intuition is that if two taxa are closer in the phylogenetic tree, they are more

closely related in evolution and tend to have more similar DNA sequences and biological func-

tions [111, 116], and thus we want to borrow more information between them. For example,

if Dj1j2 ą Dj1j3 , i.e., taxa j1 and j2 are farther away than taxa j1 and j3 in the phylogenetic

tree, then the estimate of κj1j2 is more likely to be shrunk to zero than the estimate of κj1j3 ,

and mbImpute would use taxon j3’s abundance more than taxon j2’s to predict taxon j1’s

abundance. The tuning parameter ψ is introduced because the distance Djj1 , the number

of branches connecting taxa j and j1, may not be the best penalty weight for the prediction

purpose. Choosing ψ by cross-validation is expected to enhance the predication accuracy.
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mbImpute performs the estimation using the R package glmnet [90] and obtains the

parameter estimates: κ̂j P IRm, τ̂i P IRn, and ζ̂j P IRq, i “ 1, . . . , n; j “ 1, . . . ,m. Finally, for

pi, jq P Ωc, the abundance of taxon j in sample i is imputed as:

Ŷ ij “ Y T
i¨ κ̂j ` Y

T
¨j τ̂i `X

T
i¨ ζ̂j ,

and mbImpute does not alter Yij if pi, jq P Ω.

Note that mbImpute does not require the availability of the sample covariate matrix X

or the phylogenetic tree. In the absence of sample covariates, the loss function becomes

L
`

tκju
m
j“1, tτiu

n
i“1

˘

:“
ÿ

pi,jqPΩ

`

Yij ´
`

Y T
i¨ κj ` Y

T
¨j τi

˘˘2
` λ

˜

m
ÿ

j“1

m
ÿ

j1‰j

Dψ
jj1 |κjj1 | `

n
ÿ

i“1

n
ÿ

i1‰i

|τii1 |

¸

,

minimizing which returns the parameter estimates: κ̂j P IRm and τ̂i P IRn, i “ 1, . . . , n;

j “ 1, . . . ,m. Finally, for pi, jq P Ωc, the abundance of taxon j in sample i is imputed as:

Ŷ ij “ Y T
i¨ κ̂j ` Y

T
¨j τ̂i ,

and mbImpute does not alter Yij if pi, jq P Ω. In the absence of the phylogenetic tree,

mbImpute sets Djj1 “ 1 for all j ‰ j1 P t1, . . . ,mu.

When m is large, mbImpute does not estimate mpm ´ 1q ` npn ´ 1q ` mq parameters

but uses the following strategy to increase its computational efficiency. For each taxon j,

mbImpute selects the k taxa closest to it (excluding itself) in phylogenetic distance and sets

the other pm ´ kq taxa’s coefficients in κj to zero. This strategy reduces the number of

parameters to mk`npn´ 1q`mq and decreases the computational complexity from Opm2q

to Opmq.

In summary, mbImpute step 2 includes two phases: training on Ω and prediction (impu-

tation) on Ωc, as illustrated in Additional File 1: Fig. S1.
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2.5 Availability of Data and Materials

2.5.1 Imputation methods

We compare mbImpute with five existing imputation methods designed for non-microbiome

data: softImpute and four scRNA-seq imputation methods (scImpute, SAVER, MAGIC, and

ALRA). All these imputation methods take a count matrix as input and ouput an imputed

count matrix with the same dimensions.

1. softImpute

We use R package softImpute (version 1.4) and the following command to impute a taxon

count matrix (a sample-by-taxon matrix):

complete(taxa count matrix, softImpute(taxa count matrix, rank.max = cv.rankmax))

where rank.max is chosen by 10-fold cross-validation.

2. scImpute

We use R package scImpute (version 0.0.9) with the input as a taxon-by-sample count matrix

(transpose of the matrix in Fig. 1):

scimpute(count path = "taxa count matrix trans.csv", Kcluster = 1, out dir = "sim imp")

where taxa count matrix trans.csv is the input file containing the transposed taxon count

matrix.

3. SAVER

We use R package SAVER (version 1.1.2) with the input as a taxon-by-sample count matrix

(transpose of the matrix in Fig. 1):

saver(t(taxa count matrix), ncores = 1, estimates.only = TRUE)
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4. MAGIC

We use Python package MAGIC (version 2.0.3) and the following commands to impute a taxon

count matrix:

magic op = magic.MAGIC()

magic op.set params(n pca = 40)

magic op.fit transform(taxa count matrix)

5. ALRA

We apply R functions normalize data, choose k, and alra, which were released on Aug 10,

2019 at https://github.com/KlugerLab/ALRA, and the following commands to impute a

taxon count matrix:

normalized mat = normalize data(taxa count matrix)

k chosen = choose k(normalized mat, K = 49, noise start = 44)$k

alra(normalized mat, k = k chosen)$A norm rank k cor sc

2.5.2 DA analysis methods

In simulation studies, we compare five existing DA methods: the Wilcoxon rank-sum test,

ANCOM, metagenomeSeq, DESeq2-phyloseq, and Omnibus test. We apply each method

to taxon counts, with or without using mbImpute as a preceding step. When mbImpute is

used as a preceding step, we call the resulting method a mbImpute-empowered DA method.

In real data studies, we compare mbImpute-empowered DESeq2-phyloseq and mbImpute-

empowered Omnibus test with DESeq2-phyloseq and Omnibus test, respectively. Each

method calculates a p-value for each taxon and identifies the DA taxa by setting a p-value

threshold to control the FDR. See Additional File 1 for the statistical definitions of DA taxa.
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1. Wilcoxon rank-sum test

We implement the Wilcoxon rank-sum test using the R function pairwise.wilcox.test in

the package stats (version 3.5.1). For each taxon, we perform the test on its counts in

two sample groups to obtain a p-value, which suggests if this taxon is DA between the two

groups. In simulations, we use the following command to implement a two-sided test for

each taxon:

pairwise.wilcox.test(x = taxon counts, g = condition, p.adjust.method = "none")

2. ANCOM

We use the ANCOM.main function released on Sep 27, 2019 at https://github.com/FrederickHuangLin/

ANCOM [46]. Since this function does not provide an option for a one-sided test, we use its

default settings and report its identified DA taxa based on a two-sided test with a signifi-

cance level 0.05 (sig = 0.05), in both simulations and real data analysis. We note that no

external FDR control is implemented. Specifically, we use the following command to obtain

the result of ANCOM:

ANCOM.main(taxa count matrix, covariate matrix, adjusted = F, repeated = F, main.var

= "condition", adj.formula = NULL, repeat.var = NULL, multcorr = 2, sig = 0.05,

prev.cut = 0.90, longitudinal = F)

where taxa count matrix is a sample-by-taxon count matrix and covariate matrix is a

sample-by-covariate matrix, same as the input of mbImpute.

3. metagenomeSeq

We use two R packages, metagenomeSeq (version 1.28.2) and phyloseq (version 1.30.0).

Specifically, we use the following command to obtain the result:

mseq obj <- phyloseq to metagenomeSeq(physeq2)

pd <- pData(mseq obj)

mod <- model.matrix(„ 1 + condition, data = pd)
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ran seq <- fitFeatureModel(mseq obj, mod)

where physeq2 is an object created from a count matrix and sample covariates using the

phyloseq package.

4. DESeq2-phyloseq

We use the DESeq2 (version 1.26.0) package combined with phyloseq (version 1.30.0). Specif-

ically, we use the following command to obtain the result of DESeq2:

Deseq2 obj <- phyloseq to deseq2(physeq2, „ condition)

results <- DESeq(Deseq2 obj, test="Wald", fitType="parametric")

where physeq2 is an object created from a count matrix and sample covariates using the

phyloseq package.

5. Omnibus test

We use the R package mbzinb (version 0.2). Specifically, we use the following command to

obtain the result of Omnibus test:

mbzinb data <- mbzinb.dataset(taxa count matrix, covariate matrix)

mbzinb test result <- mbzinb.test(mbzinb data, group = "condition")

For the Wilcoxon rank-sum test, MetagenomeSeq, DESeq2-phyloseq, and Omnibus test,

after obtaining the p-values of all taxa and collecting them into a vector p values, we adjust

them for FDR control using the R function p.adjust in the package stats (version 3.5.1):

p.adjust(p values, method = "fdr")

Then we set the FDR threshold to 0.05 in both simulation and real data analysis. The

taxa whose adjusted p-values do not exceed this threshold are called DA. ANCOM directly

outputs the DA taxa.
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2.5.3 Classification

We use a 5-fold cross-validated precision-recall area under the curve (PR-AUC) to evaluate

the classification results using identified DA taxa as features and diseased / control group

as classification labels. We use the R package randomForest (version 4.6-14) to perform

the random forest classification and the R package PRROC (version 1.3.1) to calculate the

PR-AUC.

2.5.4 T2D and CRC datasets

We apply mbImpute to six real microbiome datasets, each corresponding to an independent

study on the relationship between microbiomes and the occurrence of a human disease. All

the six datasets were generated by the whole genome shotgun sequencing and are available

in the R package curatedMetagenomicData [103]. We compare the disease-enriched DA taxa

identified by DESeq2-phyloseq and mbImpute-empowered DESeq2-phyloseq. Below is the

description of the six datasets and our analysis.

Two T2D datasets [37, 38]. The Karlsson et al. dataset contains 145 fecal samples

from 70-year-old European women to study the relationship between human gut microbiome

compositions and T2D status. The samples/subjects are in three groups: 53 women with

T2D, 49 women with impaired glucose tolerance (IGT), and 43 women as the normal control

(CON). The eleven sample covariates include the subject’s age, the number of reads in each

sample, the triglycerides level, the hba1c level, the ldl (low-density lipoprotein cholesterol)

level, the c peptide level, the cholesterol level, the glucose level, the adiponectin level, the

hscrp level, and the leptin level. In our analysis, we consider the 147 species-level taxa (having

at least 10% non-zero counts in both T2D and CON groups) with phylogenetic information

available in the R package curatedMetagenomicData. Qin et al. [38] performed deep shotgun

metagenome sequencing on 369 Chinese T2D patients and non-diabetic controls (CON). The

two sample covariates include the body mass index, and the number of reads in each sample.

We analyze 156 species-level taxa (having at least 10% non-zero counts in both T2D and

CON groups) with phylogenetic information. From both datasets, we identify DA taxa by
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comparing the T2D and CON groups.

Four CRC datasets [33–36]. Zeller et al. [33] and Feng et al. [34] studied CRC-related

microbiomes in three conditions: CRC, small adenoma (ADE; diameter ă 10 mm), and

control (CON). Zeller et al. [33] sequenced the fecal samples of patients across two countries

(France and Germany) in these three groups: 191 patients with CRC, 66 patients with ADE,

and 42 patients in CON. The sample covariates include the subject’s age category, gender,

body mass index and country, and the number of reads in each sample. We include 188

species-level taxa (having at least 10% non-zero counts in both CRC and CON groups) with

phylogenetic information. Feng et al. [34] sequenced samples from 154 human subjects aged

between 45–86 years old in Australia, including 46 patients with CRC, 47 patients with ADE,

and 61 in CON. The sample covariates include the subject’s age category, gender, body mass

index, and number of reads in each sample. We include 182 species-level taxa that have at

least 10% non-zero counts in both CRC and CON groups. Yu et al. [35] and Vogtmann

et al. [36] studied CRC-related microbiomes in two conditions: CRC vs. CON. In detail, Yu

et al. [35] sequenced 128 Chinese samples, including 75 patients with CRC and 53 patients

in CON. The only sample covariate is the number of reads in each sample. We study 173

species-level taxa that have at least 10% non-zero counts in both CRC and CON groups.

Vogtmann et al. [36] included 104 samples from Washington DC and sequenced their fecal

samples, including 52 with CRC and 52 in CON. The sample covariates include the subject’s

age category, gender, body mass index, and the number of reads in each sample. We include

167 species-level taxa that have at least 10% non-zero counts in both CRC and CON groups.

From all the four datasets, we identify DA taxa by comparing the CRC and CON groups.

2.5.5 16S rRNA sequencing datasets

We include two 16S rRNA sequencing datasets from the R package HMP16SData [151] (version

1.6.0). The two datasets correspond to the healthy human stool samples and healthy human

oral samples. The healthy stool 16S dataset includes 187 samples and 43140 OTUs, and the

healthy oral 16S data includes 190 samples and 43140 OTUs.
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2.5.6 Software and code

The mbImpute R package is available at https://github.com/ruochenj/mbImpute [152].

The source code and data for reproducing the results are available at https://doi.org/10.

5281/zenodo.4840266 [153]. Both the R package and the source code are under the MIT

license.
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Figure 2.1: An illustration of mbImpute. After mbImpute identifies likely non-biological zeros, it imputes them (e.g. the
abundance of taxon 2 in sample 2) by jointly borrowing information from similar samples, similar taxa, and sample covariates
if available (details in Methods).
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Figure 2.2: mbImpute outperforms state-of-the-art imputation methods designed for non-microbiome data
and enhances the identification of DA taxa. (a) Mean squared error (MSE) and (b) mean Pearson correlation of taxon
abundances between the complete data and the zero-inflated data (“No imputation,” the baseline) or the imputed data by each
imputation method (mbImpute, softImpute, scImpute, SAVER, MAGIC, and ALRA) in Simulations 1 and 2 (see Additional
File 1). (c)-(d) For each taxon, the mean and standard deviation (SD) of its abundances are calculated for the complete data,
the zero-inflated data, and the imputed data by each imputation method in Simulation 1; (c) shows the distributions of the
taxon mean / SD and the Wasserstein distance between every distribution and the complete distribution; (d) shows the taxa
in two coordinates, mean vs. SD, and the average Euclidean distance between the taxa in every (zero-inflated or imputed)
dataset and the complete data in these two coordinates. (e) Accuracy (Precision, recall, and F1 scores) of five DA methods
(Wilcoxon rank-sum test, ANCOM, metagenomeSeq, DESeq2-phyloseq, and Omnibus test) with the FDR threshold 0.05 on
raw data (light color) and imputed data by mbImpute (dark color) in the 16S data simulation.
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Figure 2.3: mbImpute empowers DESeq2-phyloseq in identifying DA taxa. (a) The barplots show classification
accuracy, measured by 5-fold cross-validated precision-recall area under the curve (PR-AUC), by the random forest algorithm
for predicting samples’ disease conditions in two T2D datasets (Qin et al. and Karlsson et al.) and four CRC datasets (Feng
et al., Vogtmann et al., Yu et al., and Zeller et al.). The features are the DA taxa detected by DESeq2-phyloseq (light color) or
mbImpute-empowered DESeq2-phyloseq (dark color; labeled as mbImpute + DESeq2-phyloseq). (b) The histograms show the
distributions of three taxa in control and T2D samples in Karlsson et al. before and after mbImpute is applied. The three taxa,
Ruminococcus sp 5 1 39BFAA, Ruminococcus callidus, and Ruminococcus albus, are identified as enriched in T2D samples only
after imputation. (c) The histograms show the distributions of three taxa in control and CRC samples in Vogtmann et al.
before and after mbImpute is applied. The three taxa, Ruminococcus gnavus, Lachnospiraceae bacterium 2 1 58FAA, and
Granulicatella adiacens, are identified as enriched in CRC samples only after imputation. In (b) and (c), adjusted p-values
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scatter plots show the relationship between the abundances of Dorea formicigenerans and Ruminococcus torques in Qin et al.’s
control samples, with or without using mbImpute as a preceding step. The left plot shows two standard major axis (SMA)
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Figure 2.5: mbImpute improves the similarity of taxon-taxon correlations between 16S and WGS data of
microbiomes in healthy human stool samples. Four Pearson correlation matrices are calculated based on a common set
of genus-level taxa’s abundances in 16S and WGS data, with or without using mbImpute as a preceding step. Before imputation,
the Pearson correlation between the two correlation matrices is 0.59, and this correlation increases to 0.64 after imputation.
For illustration purposes, each heatmap shows square roots of Pearson correlations, with the bottom 40% of values truncated
to 0. The magenta, green, and purple squares highlight three taxon groups, each of which contains strongly correlated taxa
and is consistent between the 16S and WGS data after imputation.
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2.6 Supplementary materials

Simulation 1 for benchmarking imputation methods

To compare mbImpute with existing imputation methods developed for non-microbiome

data, we generated microbiome abundances from a generative model fitted to the T2D data

with 53 subjects and 344 taxa [37]. Below we describe the data generation process step by

step.

Complete data generation

1. We followed the data pre-processing steps of mbImpute (see Methods in the main text)

to convert the OTU count matrix to log-transformed normalized abundances. Then

we removed the taxa with greater than 95% of zero counts (equivalently, log10p1.01q

abundances) across subjects and kept 193 taxa. We denote the abundance matrix after

this filtering step by Y “ pYijq P IRnˆm, where n “ 53 and m “ 193. We also collected

the sample covariate matrix X P IRnˆq, where q “ 12.

2. Following step 1 of mbImpute (see Methods in the main text), we identified a set Ω

of (sample, taxon) pairs whose abundances are unlikely missing and thus do not need

imputation.

3. Following step 2 of mbImpute (see Methods in the main text), we fit the following

model to the (sample, taxon) pairs in Ω:

Yij “ Y T
i¨ κj ` Y

T
¨j τi `X

T
i¨ζj ` εij ,

by minimizing the loss function

ÿ

pi,jqPΩ

`

Yij ´
`

Y T
i¨ κj ` Y

T
¨j τi `X

T
i¨ζj

˘˘2
` λ

˜

m
ÿ

j“1

m
ÿ

j1‰j

Dψ
jj1 |κjj1 | `

n
ÿ

i“1

n
ÿ

i1‰i

|τii1 |

¸

and obtaining the parameter estimates: κ̂j P IRm, τ̂i P IRn, and ζ̂j P IRq, i “ 1, . . . , n;
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j “ 1, . . . ,m. The tuning parameters λ, ψ ě 0 were chosen by cross-validation. Note

that we constrained κj to have only 5 non-zero entries corresponding to the 5 taxa clos-

est to taxon j in phylogenetic distance, i.e., tj1 : Djj1 is among the five smallest of all Djr, r ‰

ju.

4. We generated the complete, log-transformed abundance of taxon j in sample i, as

Y comp
ij “ Y T

i¨ κ̂j ` Y
T
¨j τ̂i `X

T
i¨ ζ̂j .

We denote the resulting matrix Ycomp “ pY comp
ij q as the complete data that contain

log-transformed abundances without missing values.

Zero-inflated data generation

Next, we introduced zero inflation to Ycomp and generated Yzi by mimicking real data as

follows. With the identified Ω, we calculated zreal
k (taxon k’s proportion of likely false zeros

across samples) and µreal
k (taxon k’s average abundance after we excluded likely false zeros)

for each taxon k in Karlsson et al.’s data Y, k “ 1, . . . ,m. Next we introduced zeros into

Ycomp in the following non-parametric way for each taxon j, j “ 1, . . . ,m:

1. We calculated taxon j’s average abundance in Ycomp as the mean of column j, denoted

by µcomp
j ;

2. We randomly sampled a value from tzreal
k : µreal

k P pµcomp
j ´0.5, µcomp

j `0.5qu and denoted

it as zzi
j , i.e., the proportion of false zeros to be introduced into taxon j’s abundances

in Ycomp;

3. We randomly drew false zero indicators Iij „ Bernoullipzzi
j q independently for sample

i “ 1, . . . , n;

4. We set Y zi
ij “ max

`

Y comp
ij ¨ Iij, log10p1.01q

˘

.

The reason why we set the minimum value of Yzi to log10p1.01q is that mbImpute step 1

sets the minimum log-transformed abundance to log10p1.01q to facilitate the fitting of the

Gamma-normal mixture model.
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Evaluation criteria for imputation accuracy

After applying an imputation method to Yzi (mbImpute also used X), we obtained Yimp and

evaluated the imputation performance by the following three criteria. Note that mbImpute

identified 8 taxa with too many zeros in Yzi and excluded them from imputation. For a

fair comparison, we excluded these 8 taxa from the calculation of the evaluation criteria for

every imputation method, so m was reduced to 193´ 8 “ 185 in the following.

1. Mean squared error (MSE) between Yimp and Ycomp:

MSE “
1

nm

n
ÿ

i“1

m
ÿ

j“1

pY comp
ij ´ Y imp

ij q
2 ,

which is shown in Fig. 2a.

2. Pearson correlation between Y imp
¨j and Y comp

¨j for j “ 1, . . . ,m. The mean of these m

correlations is shown in Fig. 2b.

3. Mean and standard deviation (SD) of taxon j in the imputed data vs. those in the

complete data:

Ȳ imp
¨j “

1

n

n
ÿ

i“1

Y imp
ij vs. Ȳ comp

¨j “
1

n

n
ÿ

i“1

Y comp
ij ,

sdimp
¨j “

d

1

n´ 1

n
ÿ

i“1

´

Y imp
ij ´ Ȳ imp

¨j

¯2

vs. sdcomp
¨j “

d

1

n´ 1

n
ÿ

i“1

`

Y comp
ij ´ Ȳ comp

¨j

˘2
,

j “ 1, . . . ,m. In Fig. 2c, we computed the Wasserstein distance between the distri-

bution of
!

Ȳ imp
¨1 {sdimp

¨1 , . . . , Ȳ imp
¨m {sdimp

¨m

)

vs. that of
 

Ȳ comp
¨1 {sdcomp

¨1 , . . . , Ȳ comp
¨m {sdcomp

¨m

(

.

In Fig. 2d, we computed the Euclidean distance between the imputed data and the

complete data as

g

f

f

e

m
ÿ

j“1

´

Ȳ imp
¨j ´ Ȳ comp

¨j

¯2

`

´

sdimp
¨j ´ sdcomp

¨j

¯2

.
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Simulation 2 for benchmarking imputation methods based on real

WGS data

To further benchmark mbImpute against existing imputation methods developed for non-

microbiome data, we used a semi-simulation approach by obtaining a subset of microbiome

WGS data with at least 86% non-zeros from a T2D dataset composed of 344 subjects and

469 taxa [38]. Below we describe the data generation process step by step.

Complete data generation

1. We followed the data pre-processing steps of mbImpute (see Methods in the main text)

to convert the OTU count matrix to log-transformed normalized abundances, denoted

by Y “ pYijq P IR344ˆ469. We also collected the sample covariate matrix X P IR344ˆ3.

2. Following step 1 of mbImpute (see Methods in the main text), we identified a set Ω

of (sample, taxon) pairs whose abundances are unlikely missing and thus do not need

imputation.

3. For each taxon, we checked if it has at least 43 non-zero counts, or equivalently, at

least 43 abundances greater than log10p1.01q, across the 344 subjects. If yes, we kept

the taxon; otherwise, we filtered it out. This step left us with 145 taxa.

4. Denote the index set of samples where taxon j has non-zero counts as

Ij “ ti : Yij ą log10p1.01q, i “ 1, . . . , 344u

Note that all |Ij| ě 43 due the the filtering step. Then we constructed a new index set

of samples I 1j, with |I 1j| “ 50, in the following way:

(a) if |Ij| ă 50, I 1j “ IjY a random subset of Icj with size 50´ |Ij|;

(b) otherwise, I 1j “ a random subset of Ij with size 50.

5. We constructed the complete data by column-stacking taxon j’s abundances in the

samples in I 1j, with the 50 samples randomly ordered, j “ 1, . . . , 145, resulting in
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Ycomp P IR50ˆ145, which we assumed to have no missing values. By our construction,

Ycomp has at least 86% values greater than log10p1.01q, corresponding to non-zero

values on the count scale.

6. We constructed the sample covariate matrix Xcomp P IR50ˆ3 as follows: for sample i

and covariate r (i “ 1, . . . , 50; r “ 1, 2, 3),

(a) if covariate r is categorical (e.g., gender), Xcomp
ij was decided by the majority vote

of the j-th covariate values of the original samples rearranged into the i-th row of

Ycomp: majorityptXi1j : sample i1 is in the i-th row of Ycompuq;

(b) if covariate r is numerical (e.g., BMI), Xcomp
ij was set to the average of the j-th

covariate values of the original samples rearranged into the i-th row of Ycomp:

averageptXi1j : sample i1 is in the i-th row of Ycompuq.

Zero-inflated data generation for mimicking WGS data

Next, we introduced zero inflation to Ycomp and generated Yzi by mimicking real WGS data

as follows. With the identified Ω, we calculated zreal
k (taxon k’s proportion of likely false

zeros across samples) and µreal
k (taxon k’s average abundance after we excluded likely false

zeros) for each taxon k in Qin et al.’s data, k “ 1, . . . , 469. Next we introduced zeros into

Ycomp in the following non-parametric way for each taxon j, j “ 1, . . . , 145:

1. We calculated taxon j’s average abundance in Ycomp as the mean of column j, denoted

by µcomp
j ;

2. We randomly sampled a value from tzreal
k : µreal

k P pµcomp
j ´0.5, µcomp

j `0.5qu and denoted

it as zzi
j , i.e., the proportion of false zeros to be introduced into taxon j’s abundances

in Ycomp;

3. We randomly drew false zero indicators Iij „ Bernoullipzzi
j q independently for sample

i “ 1, . . . , 50;

4. We set Y zi
ij “ max

`

Y comp
ij ¨ Iij, log10p1.01q

˘

.

The reason why we set the minimum value of Yzi to log10p1.01q is that mbImpute step 1
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sets the minimum log-transformed abundance to log10p1.01q to facilitate the fitting of the

Gamma-normal mixture model.

Evaluation criteria for imputation accuracy

After applying an imputation method to Yzi (mbImpute also used Xcomp), we obtained Yimp

and evaluated the imputation performance by the following three criteria, where n “ 50 and

m “ 145.

1. Mean squared error (MSE) between Yimp and Ycomp:

MSE “
1

nm

n
ÿ

i“1

m
ÿ

j“1

pY comp
ij ´ Y imp

ij q
2 .

2. Pearson correlation between Y imp
¨j and Y comp

¨j for j “ 1, . . . ,m. The mean of these m

correlations is shown in Fig. 2b.

Simulation 3 for evaluating the accuracy and robustness of mbIm-

pute

To evaluate the accuracy and robustness of mbImpute, we simulated microbiome abundances

based on real data [33] using four schemes. We set the number of samples to n “ 50 and

the number of taxa to m “ 200. Under each scheme, we first generated the complete data,

as described below.

Scheme 1: Covariate

1. We randomly sampled (without replacement) 50 samples’ six covariates (gender, age,

disease subtype, BMI, country, and number of reads) from Zeller et al.’s data. Then we

added a 50-length vector of ones to the sampled covariates to form a sample covariate

matrix X P IRnˆq, with q “ 7.

2. We randomly sampled (without replacement) 200 taxa’ normalized and log-transformed
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abundances (see Methods in the main text) from Zeller et al.’s data. We fit the Gamma-

normal mixture model (step 1 of mbImpute) to each sampled taxon j, and we denote

the estimated coefficient vector in the normal mean as γ̂j P IRq, j “ 1, . . . ,m.

3. We simulated the log-transformed abundance of taxon j in sample i, i “ 1, . . . , n, from

the following model:

Y comp
ij “ XT

i¨ γ̂j ` εij ,

where εij „ N p0, 1q independently. We denote the resulting matrix Ycomp “ pY comp
ij q

as the complete data that contain log-transformed abundances without missing values.

Scheme 2: Sample

1. We randomly divided n “ 50 samples into 5 groups. For each sample i, i “ 1, . . . , n,

we denote its group index by kpiq P t1, . . . , 5u.

2. We generated a sample-to-sample distance matrix Dsamp “ pDsamp
ii1 qnˆn:

Dsamp
ii1 “

$

&

%

2p|kpiq ´ kpi1q| ` 1q if i ‰ i1

0 otherwise

so that two samples from closer groups (in terms of group index) had a smaller distance.

3. We converted the distance matrix Dsamp into a sample-to-sample covariance matrix

Σsamp such that two samples having a smaller distance would have a larger covariance

Σsamp
ii1 “

$

&

%

exp tp´Dsamp
ii1 {6q1.3u if i ‰ i1

exp tp´Dsamp
ii1 {6q1.3u ` 1 otherwise

,

where the constants 6 and 1.3 were chosen to make Σsamp positive definite.

4. We simulated the log-transformed abundances of taxon j in all the n samples, j “

1, . . . ,m, from the following model:

Y comp
¨j

ind
„ N p3 ¨ 1n,Σsamp

q ,
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which we collected as columns to form Ycomp “ pY comp
ij q, i.e., the complete data con-

taining log-transformed abundances without missing values.

Scheme 3: Taxon

1. We randomly divided m “ 200 taxa into 10 groups. For each taxon j, j “ 1, . . . ,m,

we denote its group index by rpjq P t1, . . . , 10u.

2. We generated a taxon-to-taxon distance matrix Dtaxon “ pDtaxon
jj1 qmˆm:

Dtaxon
jj1 “

$

&

%

2p|rpjq ´ rpj1q| ` 1q if j ‰ j1

0 otherwise

so that two taxa from closer groups (in terms of group index) had a smaller distance.

3. We converted the distance matrix Dtaxon into a taxa-to-taxa covariance matrix Σtaxon

such that two samples having a smaller distance would have a larger covariance

Σtaxon
jj1 “

$

&

%

exp
 

p´Dtaxon
jj1 {12q1.3

(

if j ‰ j1

exp
 

p´Dtaxon
jj1 {12q1.3

(

` 1 otherwise
,

where the constants 12 and 1.3 were chosen to make Σtaxon positive definite.

4. We simulated the log-transformed abundances of sample i in all the m taxa, i “

1, . . . , n, from the following model:

Y comp
i¨

ind
„ N p3 ¨ 1m,Σtaxon

q ,

which we collected as rows to form Ycomp “ pY comp
ij q, i.e., the complete data containing

log-transformed abundances without missing values.

Scheme 4: Taxon + Sample + Covariate

We combined the data generation procedures from the above three schemes. Following the

same notations as above, we simulated the log-transformed abundance of taxon j in sample
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i, i “ 1, . . . , n, j “ 1, . . . ,m, as follows:

1. We generated baseline values, following scheme 1:

Y comp1
ij “ XT

i¨ γ̂j ` εij

to form Ycomp1 “ pY comp1
ij q.

2. We introduced a sample correlation structure as in scheme 2:

Y comp2
¨j

ind
„ N pY comp1

¨j ,Σsamp
q ,

which we collected as columns to form Ycomp2 “ pY comp2
ij q

3. We introduced a taxon correlation structure as in scheme 3:

Y comp
i¨

ind
„ N pY comp2

i¨ ,Σtaxon
q ,

which we collected as rows to form Ycomp “ pY comp
ij q, i.e., the complete data containing

log-transformed abundances without missing values.

Next, we introduced zero inflation to Ycomp and generated Yzi by mimicking real data as

follows. We applied the step 1 of mbImpute to Zeller et al.’s data, which contain 486 taxa

[33]; that is, we identified likely false zeros. Then we calculated zreal
k (taxon k’s proportion of

likely false zeros across samples) and µreal
k (taxon k’s average abundance after we excluded

likely false zeros) for each taxon k in Zeller et al.’s data, k “ 1, . . . , 486. Next we introduced

zeros into Ycomp in the following non-parametric way for each taxon j, j “ 1, . . . ,m:

1. We calculated taxon j’s average abundance in Ycomp as the mean of column j, denoted

by µcomp
j ;

2. We randomly sampled a value from tzreal
k : µreal

k P pµcomp
j ´0.5, µcomp

j `0.5qu and denoted

it as zzi
j , i.e., the proportion of false zeros to be introduced into taxon j’s abundances

in Ycomp;
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3. We randomly drew false zero indicators Iij „ Bernoullipzzi
j q independently for sample

i “ 1, . . . , n;

4. We set Y zi
ij “ max

`

Y comp
ij ¨ Iij, log10p1.01q

˘

.

The reason why we set the minimum value of Yzi to log10p1.01q is that mbImpute step 1

sets the minimum log-transformed abundance to log10p1.01q to facilitate the fitting of the

Gamma-normal mixture model.

After applying mbImpute to Yzi (mbImpute also used X), we obtained Yimp and eval-

uated the imputation performance by calculating the mean squared error (MSE) between

Yimp and Ycomp:

MSEmbImpute
“

1

nm

n
ÿ

i“1

m
ÿ

j“1

pY comp
ij ´ Y imp

ij q
2

and the MSE between the zero-inflated matrix Yzi and Ycomp:

MSEno imputation
“

1

nm

n
ÿ

i“1

m
ÿ

j“1

pY comp
ij ´ Y zi

ij q
2 .

The results are summarized in Supplementary Fig. S3.

Simulation 4 for DA analysis on 16S rRNA data

We used the R package sparseDOSSA by [154] to simulate the 16S rRNA sequencing data

with known DA taxa. Specifically, we used the following command to obtain simulated data:

metadata <- matrix(rbinom(n = 100, size = 1, prob = 0.5), nrow = 1, ncol = 100)

simulated data <- sparseDOSSA(number features = 150, number samples = 100,

percent spiked = 0.3, UserMetadata = metadata)

In order to evaluate the performance of four DA methods (the Wilcoxon rank-sum test,

ANCOM, metagenomeSeq, and DESeq2-phyloseq) before and after mbImpute is applied, we

use three evaluation metrics: precision, recall, and F1 score. The results are summarized in

Fig. 2e in the main text.
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Simulation 5 for robustness to sequencing depth and outlier samples

To evaluate the robustness of mbImpute to sequencing depth and the existence of outlier

samples, we performed simulation based on the 16S rRNA sequencing data of 54 healthy

human stool samples in the R package HMP16SData (version 1.6.0). Below we describe the

data generation process step by step.

Complete data generation

1. We randomly sampled 300 taxa in the 16S rRNA sequencing data that each has no

more than 70% of zeros across samples, obtaining a 54ˆ 300 OTU count matrix.

2. We followed the data pre-processing steps of mbImpute (see Methods in the main

text) to convert the OTU count matrix to a log-transformed normalized abundance

matrix, denoted by Y “ pYijq P IR54ˆ300. We also collected the sample covariate matrix

X P IR54ˆ2 and the phylogenetic distance matrix D P Z300ˆ300
ě0 .

3. We create a complete abundance matrix denoted by Ycomp with the same dimensions

as Y. Specifically, for each taxon j, we identified a set Ωj of samples in which taxon

j’s original counts are not 0, and we denote the rest of the samples as Ωc
j. From the

j-th column of Y, we copied the abundances in samples in Ωj to the corresponding

entries in the j-th column of Ycomp, and we calculated the mean µ̂j and the standard

deviation σ̂j of the abundances in the samples in Ωj. Then we sampled abundances

for the samples in Ωc
j independently from N pµ̂j, σ̂jq to fill in the corresponding entries

in the j-th column Ycomp.

4. We transform Ycomp to a complete count matrix Mcomp by setting the pi, jq-th entry

as M comp
ij “ tp10Y

comp
ij ´ 1.01qu.

Complete data adjusted by sequencing depth

1. Samples (rows) in Mcomp have total counts around 2,000. We varied the sequencing

depth as s “ 1,000, 2,000, 5,000, or 10,000.
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2. For each sequencing depth, we sampled a 300-dimensional count vector for sample i,

i “ 1, . . . , 54, from a multinomial distribution, whose total is the sequencing depth and

whose probability vector is M comp
i¨ {p

ř300
j“1M

comp
ij q, where M comp

i¨ denotes the i-th row

of Mcomp. We stacked the sampled vectors by row into a count matrix Mcomp
s , whose

log-transformed abundance matrix is denoted by Ycomp
s .

3. We transform Ycomp
s to a complete count matrix Mcomp

s by setting the pi, jq-th entry

as pMsq
comp
ij “ tp10pYsq

comp
ij ´ 1.01qu.

Zero-inflated data generation

We introduced zero inflation to Ycomp
s , following the same non-parametric procedure as in

simulation 2. We denote the resulting zero-inflated matrix by Yzi
s and the corresponding

count matrix by Mzi
s , s “ 1,000, 2,000, 5,000, and 10,000.

Zero-inflated data with outlier samples

1. Given s “ 2,000, we use Yzi
s to define the lowly abundant taxa as those that have mean

abundances below the median and at least 10 non-zero abundances.

2. To generate one outlier sample, for the 62 lowly abundant taxa based on our defini-

tion, we set their abundances in the outlier sample to be 62 values randomly sampled

from the top 100 maximum abundances (for each taxon, we calculated the maximum

abundance). For the other taxa, we set their abundances in the outlier sample to zero.

3. To generate the second outlier sample, we repeated step 2.

4. We denote the resulting abundance matrices and count matrices with one or two outlier

samples by Yzi
1o and Mzi

1o or Yzi
2o and Mzi

2o, respectively.

55



Evaluation criteria for imputation accuracy

After applying mbImpute to the zero-inflated abundance matrices, each denoted by Yzi, we

obtained the corresponding imputed abundances matrices, each denoted by Yimp, and we

evaluated the imputation performance by calculating the mean squared error (MSE) between

Yimp and the corresponding complete abundance matrix Ycomp:

MSEmbImpute
“

1

nm

n
ÿ

i“1

m
ÿ

j“1

pY comp
ij ´ Y imp

ij q
2

and the MSE between the zero-inflated matrix Yzi and Ycomp:

MSEno imputation
“

1

nm

n
ÿ

i“1

m
ÿ

j“1

pY comp
ij ´ Y zi

ij q
2 .

Note that the MSE is only calculated for non-outlier samples when outlier samples are

introduced. The results are summarized in Supplementary Figs. S5 and S6.

Statistical definitions of DA taxa

Here we list three possible statistical definitions of DA taxa. For a given taxon j, we denote

M1
j and M2

j as its (random) counts in two samples from subject groups 1 and 2. The first

and most straightforward definition of DA is whether the null hypothesis

H0 : ErM1
j s “ ErM2

j s

is rejected. The Wilcoxon rank-sum test is based on this definition. However, this definition

has an obvious drawback: it ignores the existence of excess false zeros, i.e., many observed

zero values of M1
j and M2

j are not reliable. This drawback motivates the second definition,

which introduces latent variables Z1
j and Z2

j indicating whether taxon j is detected in the

two samples. The second definition relies on zero-inflated models: M r
j |pZ

r
j “ 0q “ 0, r “ 1, 2,
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and it defines taxon j as DA if the null hypothesis

H0 : ErM1
j |pZ

1
j “ 1qs “ ErM2

j |pZ
2
j “ 1qs

is rejected. The metagenomSeq is based on this definition. A drawback of this definition

is that many observations of M1
j and M2

j would not be used for testing this hypothesis, if

their corresponding Z1
j and Z2

j are inferred as zeros, resulting in a power loss. To relieve this

issue, imputation can be used to rescue the likely false zeros and infer their actual values, and

mbImpute achieves this by borrowing information from similar samples, similar taxon, and

sample covariates, leading to the third definition of DA taxa. Assuming that the imputation

is successful, we denote M imp1
j and M imp2

j as taxon j’s imputed counts, and Y imp1
j and Y imp2

j

as the imputed abundances on the logarithmic scale, in the two samples. Then the third

definition calls taxon j DA if the null hypothesis

H0 : ErM imp1
j s “ ErM imp2

j s or H0 : ErY imp1
j s “ ErY imp2

j s

is rejected. This third definition is advantageous in that (1) compared with the first defi-

nition, it is less affected by the existence of false zeros, whose different proportions in the

two subject groups may lead to false positive DA taxa (i.e., the taxa whose non-zero counts

do not exhibit a clear difference between the two groups), and (2) compared with the sec-

ond definition, it uses all the observations of taxon j for testing, leading to an increase in

statistical power.

Fisher’s exact test for detecting the enrichment of T2D- and CRC-

related terms in DA taxa

We use functional terms in the GMrepo [115] database to understand the DA taxa identi-

fied by DESeq2-phyloseq or mbImpute-empowered DESeq2-phyloseq. Among all functional

terms, we identified two T2D-related terms:
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‚ “The time period before the development of symptomatic diabetes. For example,

certain risk factors can be observed in subjects who subsequently develop INSULIN

RESISTANCE as in type 2 diabetes (DIABETES MELLITUS, TYPE 2).”

‚ “A cluster of symptoms that are risk factors for CARDIOVASCULAR DISEASES

and TYPE 2 DIABETES MELLITUS. The major components of metabolic syndrome

include ABDOMINAL OBESITY; atherogenic DYSLIPIDEMIA; HYPERTENSION;

HYPERGLYCEMIA; INSULIN RESISTANCE; a proinflammatory state; and a pro-

thrombotic (THROMBOSIS) state.”

and one CRC-related term:

‚ “Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorec-

tal cancer include chronic ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI;

exposure to ASBESTOS; and irradiation of the CERVIX UTERI.”

Given a T2D- or CRC-related functional term, we performed the Fisher’s exact test to

check its enrichment in the DA taxa identified by DESeq2-phyloseq or mbImpute-empowered

DESeq2-phyloseq from the corresponding T2D or CRC datasets. Specifically, we constructed

a two-by-two contingency table (see below), whose rows indicate whether taxa are annotated

by the functional term or not, and whose columns indicate whether taxa are identified as

DA or not; each entry in the contingency table is the number of taxa satisfying the row and

column conditions.

identified as DA not identified as DA

annotated by the term a b

not annotated by the term c d

Based on the above contingency table, the p-value of the Fisher’s exact test is calculated

as

p “

`

a`b
a

˘`

c`d
c

˘

`

a`b`c`d
a`c

˘ .
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A smaller p-value shows stronger evidence against the null hypothesis that there is no de-

pendence between whether taxa are related to the term and whether taxa are identified as

DA. In other words, a smaller p-value indicates a stronger enrichment of the term in the DA

taxa.

To test the enrichment of each T2D-related term, we combined the DA taxa identified

from the two T2D datasets by DESeq2-phyloseq or mbImpute-empowered DESeq2-phyloseq.

To test the enrichment of each CRC-related term, we combined the DA taxa identified from

the four CRC datasets by DESeq2-phyloseq or mbImpute-empowered DESeq2-phyloseq. The

results are summarized in Table 1 in the main text.
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Supplementary Table

Wilcoxon ANCOM MetagenomeSeq DESeq2-phyloseq Omnibust test
Qin et al. 25 20 9 11 20
Karlsson et al. 5 6 0 1 4
Feng et al. 42 18 0 30 28
Yu et al. 19 22 4 54 23
Vogtmann et al. 0 0 0 53 2
Zeller et al. 25 34 10 36 20

Table 2.3: The number of DA taxa identified by each DA method in each dataset at the FDR threshold 5%.
There are two T2D datasets (Qin et al. and Karlsson et al.) and four CRC datasets (Feng et al., Vogtmann et al., Yu et al.,
and Zeller et al.)
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Supplementary figures
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Figure 2.6: A diagram illustrating the step 2 of mbImpute. After step 1 that identifies likely false zeros, mbImpute
borrows information across taxa, samples, and sample covariates to impute these likely false zeros. For details, see Methods in
the main text.
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(b) Control samples [34]

Figure 2.7: Correlations between phylogenetically closely related taxa in the raw data vs. those in the imputed
data. For each pair of taxa connected by a path shorter than 4 branches in the phylogenetic tree, we computed their correlation
in the raw data using their mutual non-zero abundances (vertical axis) and their correlation in the imputed data using all the
abundances (horizontal axis). The Pearson correlation between these two sets of correlations is reported for each imputed
dataset, showing that mbImpute achieves the highest correlation in both (a) the CRC samples and (b) the control samples.
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Figure 2.8: mbImpute reduces MSE under the four different simulation schemes in Simulation 3.
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Figure 2.9: mbImpute enhances DA taxa identification in 16S simulation. Accuracy (Precision, recall, and F1 scores)
of four DA methods (Wilcoxon rank-sum test, ANCOM, metagenomeSeq, DESeq2-phyloseq, and Omnibus test) with an FDR
threshold 0.1 on raw data (light color) and imputed data by mbImpute (dark color) in 16S data simulation.
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Figure 2.10: Robustness of mbImpute to sequencing depth and outlier samples (Simulation 5; independently
repeated for five times). (a) Distributions of MSE before and after mbImpute is applied to simulated 16S rRNA sequencing
data with four sequencing depths (number of reads per sample). (b) Distributions of MSE before and after mbImpute is applied
to the data in (a) with the 2,000-read per-sample sequencing depth and 0, 1 or 2 outlier samples added.
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Figure 2.11: Effects of sequencing depth on the imputation accuracy of six imputation methods (Simulation 5;
independently repeated for five times). Mean squared error (MSE) between the complete data and the zero-inflated data
(“No imputation,” the baseline) or the imputed data by each imputation method (mbImpute, softImpute, scImpute, SAVER,
MAGIC, and ALRA) under each of four sequencing depths. The results of the baseline and mbImpute are the same as those in
Supplementary Fig. S5a. Only mbImpute is consistently better than the baseline; its has the smallest MSE at every sequencing
depth, and its MSE decreases as the sequencing depth increases.
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Figure 2.12: Abundance distributions of four taxa with one or two outlier samples before and after mbImpute
is applied. For each taxon, the top row (”raw”) displays the abundance distributions with 0, 1, or 2 outlier samples before
imputation, and the bottom row (”imp”) shows the distributions after mbImpute is applied. The abundance values in the
outlier samples are marked by red circles.
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Figure 2.13: Distributions of DESeq2-phyloseq p-values before and after mbImpute is applied.
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Figure 2.14: Distributions of Omnibus test p-values before and after mbImpute is applied.
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Figure 2.15: Abundance distributions of three taxa in control and CRC samples in Vogtmann et al. before and
after mbImpute is applied. The three taxa, Alistipes shahii, Clostridium citroniae, and Flavonifractor plautii, are identified
as DA by DESeq2-phyloseq before imputation but not as DA after imputation. Adjusted p-values are listed.
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Figure 2.16: Distributions of Clostridium bolteae abundances before and after mbImpute is applied. Two T2D
datasets, Qin et al. and Karlsson et al., are included in this figure.
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Figure 2.17: Distributions of Bifidobacterium catenulatum abundances before and after mbImpute is applied.
Two CRC datasets, Feng et al. and Zeller et al., are included in this figure.

71



Fr
eq
ue
nc
y

0 1 2 3 4 5 6

0
10

20
30

40

Fr
eq
ue
nc
y

0 1 2 3 4 5 6

0
10

30
50

70

Fr
eq
ue
nc
y

0 1 2 3 4 5 6

0
10

20
30

40

Fr
eq
ue
nc
y

0 1 2 3 4 5 6

0
10

30
50

70

Bifidobacterium bifidum

raw

imputed

Feng et al. Yu et al.

Figure 2.18: Distributions of Bifidobacterium bifidum abundances before and after mbImpute is applied. Two
CRC datasets, Feng et al. and Yu et al., are included in this figure.
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Figure 2.19: Distributions of Bifidobacterium longum abundances before and after mbImpute is applied. Two
CRC datasets, Vogtmann et al. and Zeller et al., are included in this figure.
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Figure 2.21: Distributions of four randomly chosen taxa from Karlsson et al. after mbImpute is applied. The
imputed abundances are approximately normal.
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Figure 2.22: Four Pearson correlation matrices are calculated based on a common set of genus-level taxa’s
abundances in 16S healthy human oral samples and WGS healthy human stool samples, with or without using
mbImpute as a preceding step. Before imputation, the Pearson correlation between the two correlation matrices is 0.21,
and this correlation decreases to 0.09 after imputation. For illustration purposes, each heatmap shows square roots of Pearson
correlations, with the bottom 40% of values truncated to 0.
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Figure 2.23: Visualization of genus-level taxon interaction networks constructed from two T2D datasets after
mbImpute is applied. Four genus-level interaction networks constructed by the PC algorithm (Kalisch et al., 2007) on the
Karlsson et al. and Qin et al.’s control samples and T2D samples after mbImpute is applied.
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Figure 2.24: Visualization of species-level taxon interaction networks of three genera (Eubacterium, Ruminococ-
cus, and Dorea) from two T2D datasets after mbImpute is applied. Four strain-level interaction networks constructed
by the PC algorithm on the Karlsson et al. and Qin et al.’s control samples and T2D samples after mbImpute is applied.
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Figure 2.25: Abundance distributions of four taxa in the data from [33]. The same histogram is displayed in each
column to show each taxon’s abundance distribution. Top panel: fitted Gamma-normal mixture model, where the red and
green areas represent the Gamma and normal components, respectively. Bottom panel: fitted normal distribution represented
by the blue area. For details, see Methods in the main text.
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Figure 2.26: Outputs of step 1 of mbImpute on six real datasets. (a) Distributions of the LRT p-values in step 1
of mbImpute. Most p-values are close to 0. For each dataset, the percentage of taxa with ą 0.05 p-values are shown at the
top right. (b) Distributions of six example taxa, each of which has the LRT p-value ą 0.05 in each dataset. For these taxa,
mbImpute does not perform imputation.
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Figure 2.27: The distributions of dij ’s calculated in step 1 of mbImpute applied to six real datasets. The 0.5
threshold is indicated by the red dotted line. For details, see Methods in the main text.
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CHAPTER 3

How to deal with zeros in single-cell RNA-seq data

and how they will affect downstream analysis

3.1 Introduction

The rapid development of single-cell technologies has brought unprecedented opportuni-

ties to quantify transcriptome heterogeneity among individual cells and transcriptome dy-

namics along cell developmental trajectories [155–158]. Several single-cell RNA sequencing

(scRNA-seq) protocols have been developed. Two major types of protocols are (1) tag-based,

unique molecular identifier (UMI)-based protocols such as Drop-seq [159] and 10x Genomics

Chromium [160, 161] and (2) full-length, non-UMI-based protocols such as Smart-seq2 [162]

and Fluidigm C1 [163]. Data generated by different protocols exhibit disparate accuracy

and noise levels in quantifying gene expression in single cells, posing many computational

and analytical challenges for researchers to extract biological knowledge from scRNA-seq

data [3, 164]. Facing these challenges, computational researchers have developed hundreds

of computational and statistical methods for various scRNA-seq data analytical tasks, in-

cluding the selection of informative marker genes [165–169], the identification of cell types

and states [167, 170–176], the reconstruction of cell developmental trajectories [177–182],

and the identification of cell-type-specific genes [53, 166, 181, 183–190].

A universal analytical challenge for scRNA-seq data generated by any protocol is the

vastly high proportion of genes with zero expression measurements in each cell. This data

sparsity issue is apparent when scRNA-seq data are compared with bulk RNA-seq data

[188, 191, 192], which contain aggregated gene expression measurements from many cells.

The proportion of zeros in scRNA-seq data can be as high as 90% [193]. Such excess zeros
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would bias the estimation of gene expression correlations [194] and hinder the capture of

gene expression dynamics [195] from scRNA-seq data. In early scRNA-seq data analyses,

the high data sparsity provoked the use of zero-inflated models [188, 190, 196] and the

development of imputation methods for reducing zeros [85, 173, 194, 195, 197–211]. More

recently, however, there are voices against the use of zero-inflated models for scRNA-seq

data generated by UMI protocols [212]. Besides, there is a proposal for treating zeros as

useful information that researchers should embrace [213]. These mixed statements raised

a fundamental question to the scRNA-seq field: should we use or remove these zeros in

scRNA-seq data analysis?

Here we offer some perspectives on these two puzzling questions by discussing the sources

of zeros in scRNA-seq data, the impacts of zeros on various data analyses, the existing

approaches for handling zeros, and the pros and cons of these approaches. In detail, we

first define biological and non-biological zeros arising from scRNA-seq data generation, and

we clarify several ambiguous terms about zeros in the scRNA-seq literature. Second, we

summarize three commonly used approaches for handling zeros—direct statistical modeling,

imputation, and binarization—and discuss their respective pros and cons. Third, we use

scRNA-seq data generated by Drop-seq, 10x Genomics, and Smart-seq2 to demonstrate the

relation between zero patterns and protocols. In this case, we use simulation studies to

evaluate the effects of zeros and zero-generation mechanisms on cell clustering and differen-

tially expressed (DE) gene identification. Last, we provide some practical advice and future

directions for bioinformatics tool developers and users in dealing with the highly sparse

scRNA-seq data.

We summarize the key concepts used in this paper, including their definitions and nature

(biology, technology, or modeling), in Table3.1.

3.2 Sources of zeros in scRNA-seq data

Zero measurements in scRNA-seq data have two sources: biological and non-biological

(Fig. 3.1). While biological zeros carry meaningful information about cell states, non-
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key concepts definition nature 
RNA polymerase an enzyme that transcribes a DNA sequence 

into an RNA sequence 
biology 

mRNA degredation the process of an mRNA sequence being 
destroyed 

biology 

biological zero absence of mRNA of a gene in a cell biology 
GC-rich majority of the bases in a sequence are either 

cytosine (C) or guanine (G) 
biology 

reverse transcription enzyme-mediated synthesis of a DNA molecule 
from an RNA template; a step to enable DNA 
sequencing 

sequencing technology 

cDNA complementary DNA (synthesised from reverse 
transcription) 

sequencing technology 

PCR polymerase chain reaction; a step to amplify 
cDNA copy number 

sequencing technology 

IVT in vitro transcription amplification; a step to 
amplify cDNA copy number 

sequencing technology 

sequence read a short sequence read out by sequencing 
machine 

sequencing technology 

UMI unique molecular identifier, which is used to 
correct amplification bias 

sequencing technology 

non-biological zero absence of reads or UMIs of a gene in a cell in 
scRNA-seq data when the gene in fact has 
mRNAs in the cell 

sequencing technology 

techinical zero absence of reads or UMIs of a gene in a cell 
due to the library-preparation steps (e.g. cDNA 
amplification) before sequencing 

sequencing technology 

sampling zero absence of reads or UMIs of a gene in a cell 
due to limited sequencing depth 

sequencing technology 

dropouts various meanings in the literature ambiguous 
excess zeros various meanings in the literature ambiguous 
two-state gene expression 
model 

a model that describes a gene’s switching 
between active and inactive states during 
transcription 

modeling 

zero inflation a statistical concept that depends on a specified 
statistical model 

modeling 

Poisson a statistical model for counts; it requires the 
count variance to be equal to the count mean 

modeling 

zero-inflated Poisson (ZIP) a statistical model for counts; it allows for a 
larger proportion of zeros than Poisson does 

modeling 

negative binomial (NB) a statistical model for counts; it requires the 
count variance to be larger than the count mean 

modeling 

zero-inflated negative 
binomial (ZINB) 

a statistical model for counts; it allows for a 
larger proportion of zeros than NB does 

modeling 

masking scheme a way to mask a proportion of non-zero counts 
in a matrix to zeros 

modeling 

differentially expressed (DE) 
gene 

a gene that has statistically significant 
difference in expression between two conditions 
(e.g., cell groups) 

modeling 

impute to change the zero counts in a matrix to non-
zero counts 

modeling 

binarize to change the non-zero counts in a matrix to 
ones 

modeling 

 
Table 3.1: A summary of the key concepts used in this paper, including their definitions and nature.
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RNA polymerase 
binding 

mRNA existing  
in the cell 

cDNA synthesis 

Gene 1 Gene 2 Gene 3 Gene 4 

Reads allocation 

PCR/IVT 
amplification 

0 0 0 0 
Biological 

zero 
Biological 

zero 
Technical 

zero 
Sampling 

zero 

Gene 6 

>0 
non-zero 

Gene 5 

0 
Sampling 

zero 

(few) (many) 

(few) (many) 

(few) (many) 

a b

Figure 3.1: Sources of zeros in scRNA-seq data. (a) An overview of a scRNA-seq experiment. Biological factors that
determine true gene expression levels include transcription and mRNA degradation (top panel). Technical procedures that
affect gene expression measurements include cDNA synthesis, PCR or IVT amplification, and sequencing depth (bottom three
panels). Finally, every gene’s expression measurement in each cell is defined as the number of reads mapped to that gene in
that cell. (b) How the biological factors and technical procedures in (a) lead to biological, technical, and sampling zeros in
scRNA-seq data. Red crosses indicate occurrences of zeros, while green checkmarks indicate otherwise. Biological zeros arise
from two scenarios: no transcription (gene 1) or no mRNA due to faster mRNA degradation than transcription (gene 2). If
a gene has mRNAs in a cell, but its mRNAs are not captured by cDNA synthesis, the gene’s zero expression measurement is
called a technical zero (gene 3). If a gene has cDNAs in the sequencing library, but its cDNAs are too few to be captured by
sequencing, the gene’s zero expression measurement is called a sampling zero. Sampling zeros occur for two reasons: a gene’s
cDNAs have few copies because they are not amplified by PCR or IVT (gene 4), or a gene’s mRNA copy number is too small
so that its cDNAs still have few copies after amplification (gene 5). If the factors and procedures above do not result in few
cDNAs of a gene in the sequencing library, the gene would have a non-zero measurement (gene 6). The figure is created with
BioRender.com.
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biological zeros represent missing values artificially introduced during the generation of

scRNA-seq data. In our paper, non-biological zeros include technical zeros, which occur

during the preparation of biological samples for sequencing, and sampling zeros, which arise

due to limited sequencing depths. Our classification of zeros in sequencing data into biolog-

ical, technical, and sampling zeros is aligned with the classification in Silverman et al. [41]

except a slight difference (we refer to the zeros due to inefficient amplificaiton, e.g., PCR,

as sampling zeros, while Silverman et al called them technical zeros). The non-biological

zeros have typically been viewed as impediments to the full and accurate interpretation of

cell states and the differences between them. Fig. 3.1a provides an overview of a scRNA-seq

experiment, and it highlights the biological factors and technical procedures that may lead

to zeros in scRNA-seq data. Fig. 3.1b summarizes how biological factors result in biological

zeros and how technical procedures cause non-biological zeros, including technical zeros and

sampling zeros. It is worth noting that biological and non-biological zeros are hardly dis-

tinguishable in scRNA-seq data without biological knowledge or spike-in control (see Future

directions).

Biological zeros in scRNA-seq data

A biological zero is defined as the true absence of a gene’s transcripts or messenger RNAs

(mRNAs) in a cell [41]. Biological zeros occur for two reasons (Fig. 3.1b). First, many

genes are unexpressed in a cell (e.g., gene 1 in Fig. 3.1b), and cells of distinct types have

different genes expressed—a fact that results in the diversity of cell types [214, 215]. Second,

many genes undergo a bursty process of transcription (i.e., mRNA synthesis); that is, these

genes are not transcribed constantly but intermittently, a well-known phenomenon in gene

regulation [190, 191, 196, 216–218]. Specifically, in eukaryotic cells, transcription is initiated

by the binding of specific transcription factors (TFs) and RNA polymerase to the promoter

of a gene [219–221]. Due to the stochasticity of TF binding, a gene switches between active

and inactive states, and its transcription only occurs during the active state [222]. Hence,

systems biologists have used a two-state gene expression model to describe how the rates

of three processes—active/inactive state switching, transcription, and mRNA degradation—
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jointly determine the distribution of a gene’s mRNA copy numbers, i.e., expression levels, in

cells of the same type [222–224]. Fig. 3.2 illustrates the model and provides three example

settings of model parameters along with their corresponding gene expression distributions.

Depending on the gene’s switching rates between the active and inactive states, transcription

rate, and degradation rate, the resulting distribution may exhibit a mode near zero, which

makes it appear that the gene expresses no mRNA at a particular time, in a large number

of cells (e.g., gene 2 in Fig. 3.1b).

3.2.1 Non-biological zeros in scRNA-seq data

Non-biological zeros reflect the loss of information about truly expressed genes due to the

inefficiencies of the technologies employed from sample collection to sequencing. Unlike

biological zeros, non-biological zeros refer to the zero expression measurements of genes with

transcripts in a cell. There are two types of non-biological zeros [41]: (1) technical zeros,

which arise from library-preparation steps before sequencing, and (2) sampling zeros, which

result from a limited sequencing depth.

One cause of technical zeros is the imperfect mRNA capture efficiency in the reverse

transcription (RT) step from mRNA to cDNA. The efficiency has a considerable variation

across protocols and may be as low as 20% [225], depending on multiple experimental pa-

rameters [226]. The efficiency may even differ between mRNA transcripts. For example, if

an mRNA transcript has an intricate secondary structure or is bound to proteins, it would

not be reversely transcribed to cDNA efficiently [3, 186, 190]. In summary, if a gene’s mRNA

transcripts in a cell are not converted into cDNA molecules (cDNAs), the gene would falsely

appear as non-expressed in that cell in the sequencing library, resulting in a technical zero

in scRNA-seq data (e.g., gene 3 in Fig. 3.1b).

The other type of non-biological zeros, sampling zeros, occurs due to a constraint on the

total number of reads sequenced, i.e., the sequencing depth [212, 227], which is determined by

the experimental budget and sequencing machine. During sequencing, cDNAs are randomly

captured (“sampled”) and sequenced into reads. Hence, a gene with fewer cDNAs is more
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Figure 3.2: A two-state stochastic model of the expression levels of one gene. (a) A diagram of the two-state gene
expression model [222–224], where a gene stochastically switches from an inactive state to an active state at rate ka and from
an active state to an inactive state at rate ki. The gene transcribes mRNA at rate sm only when it is in the active state. The
transcribed mRNA then degrades at rate δ. (b) Given sm “ 200 and δ “ 1, the effects of ka and ki on the temporal dynamics
of the gene’s mRNA copy number. Three example values of ka and ki are provided. Left: when both ka and ki are small,
the mRNA copy number switches between small and large values. Middle: when ka is much larger than ki, the mRNA copy
number remains large most of the time. Right: when ka is much smaller than ki, the mRNA copy number remains small most
of the time. (c) Distributions of the gene’s mRNA copy number (across cells) corresponding to the three example settings in
(b). Left: when the gene’s mRNA copy number switches between small and large values, the resulting distribution is bimodal
with two modes at zero and around sm{δ. Middle: when the gene’s mRNA copy number is large most of the time, the resulting
distribution has a single mode around sm{δ. Right: when the gene’s mRNA copy number is small most of the time, the resulting
distribution has a single mode at zero. In summary, when ka is small, the gene is expected to have biological zeros in cells with
non-negligible probability.
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likely to be undetected due to this random sampling. If undetected, the gene’s resulting zero

read count is a “sampling zero.” There are two reasons why a gene (in a cell) may have too

few cDNAs in the sequencing library: too few cDNAs before amplification and inefficient

cDNA amplification. Below we explain why cDNA amplification may cause some genes to

have a disproportionally low cDNA copy number in the sequencing library (see Fig. 3.3).

The cDNA amplification step is essential for scRNA-seq, as it increases the number

of cDNA copies of a gene so that the gene is more likely to be detected by sequencing.

Polymerase chain reaction (PCR) [228] is the most widely-used amplification procedure.

However, PCR amplification is non-linear; thus, the ratio between the copy numbers of two

differentially expressed genes is artificially distorted by PCR, i.e., a ratio greater (or smaller)

than one becomes even larger (or smaller) after PCR. As a remedy, in vitro transcription

(IVT) has been developed for linear amplification [229]. However, compared with PCR, IVT

requires more input cDNAs to ensure successful amplification; thus, PCR is still the dominant

amplification procedure for scRNA-seq [230]. Though indispensable, cDNA amplification

is known to introduce biases into cDNA copy numbers because the amplification efficiency

depends on cDNA sequence and structure [231, 232]. For example, GC-rich cDNA sequences

are harder to be amplified [41]. The amplification efficiency also depends on the design of

cell barcodes, adapters, and primers; overlaps or complementarity of barcode, adapter, and

primer sequences would induce cDNA secondary structures and thus reduce the amplification

efficiency [233, 234]. Moreover, cDNA copy number biases would accumulate as the number

of amplification cycles increases [231, 235]; that is, the more cycles, the larger the difference of

two genes (with different amplification efficiency) in cDNA copy numbers [236, 237]. Since

different scRNA-seq experiments may use different numbers of amplification cycles (e.g.,

18 cycles in a Smart-seq2 experiment [238] and 14 cycles in a 10x Genomics experiment

[239]), cDNA copy number biases differ among scRNA-seq datasets. In addition, the non-

linear amplification nature of PCR would exaggerate the expression level differences between

lowly-expressed and highly-expressed genes. Altogether, due to amplification biases, cDNA

copy numbers in a sequencing library may not reflect cDNAs’ actual proportions before

amplification. As a result, the genes with small cDNA proportions in the sequencing library
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Figure 3.3: A toy example showing how the PCR amplification may result in sampling zeros. Five genes have
their cDNAs amplified by PCR. After the non-linear amplification, their relative proportions change. If the sequencing depth
is limited to 52 reads, the first gene has sampling zeros in three out of five hypothetical sequencing experiments.
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are likely to be missed by sequencing and thus result in sampling zeros (e.g., gene 4 suffering

from inefficient amplification and gene 5 having too few cDNAs in Fig. 3.1b).

3.2.2 Clarification of zero-related terminology

In the current scRNA-seq literature, much ambiguity exists in the use of terms includ-

ing “dropouts,” “excess zeros,” and “zero-inflation” to describe the prevalence of zeros in

scRNA-seq data [240]. We clarify the three terms by summarizing their various uses in the

scRNA-seq field to facilitate our discussion.

Dropout or dropouts are widely used regarding the prevalence of zeros in scRNA-seq

data. It was first introduced in the SCDE method paper: “dropout describes zero gene

expression for the genes that show moderate or high expressions in only a proportion of cells

[190].” Hence, dropouts, as a data-driven concept, are not equivalent to either biological or

non-biological zeros. Nevertheless, the use of “dropouts” in later papers became inconsistent

and confusing: most papers meant non-biological zeros [173, 188, 192, 202, 205, 241, 242];

some meant non-biological zeros and low expression measurements [195, 243]; some meant

all zeros [196, 197, 244]. In addition, “dropout” was often used as an adjective to mean

the existence of many zeros [245]. Such inconsistent uses of “dropouts” are emphasized in a

recent work [240]. To avoid possible confusion, we will not use “dropout” or “dropouts” in

the following text.

Excess zeros are used in various ways: some papers referred to the larger proportion of

zeros in scRNA-seq data than in bulk RNA-seq data [192]; some meant non-biological zeros

[195, 242]; some meant the additional zeros that cannot be explained by the negative bino-

mial (NB) model [243]. To avoid confusion, we will not use “excess zeros” in the following

text.

Zero inflation, unlike the first two terms, is a statistical concept that depends on
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a specified model, i.e., a count distribution such as the Poisson distribution and the NB

distribution [241]. It means the proportion of zeros that exceeds what is expected under the

specified model [192]. We will use “zero inflation” in the following discussion because its

definition has no ambiguity.

3.3 Debate on zero-inflated modeling of scRNA-seq data

Since the advent of scRNA-seq, zero-inflated models have been widely used in bioinformatics

tools on the observed scRNA-seq count data [188, 190, 196, 246]. Zero-inflated models are

mixture probabilistic models with two components: a point mass at zero and a common dis-

tribution, including the Poisson and NB distributions for read or UMI counts and the normal

distribution for log-transformed read or UMI counts. More recently, however, researchers

have found that UMI counts are not zero-inflated when compared with the Poisson or NB

distribution [41, 160, 239, 240].

The use of UMIs in scRNA-seq can correct the amplification biases in non-zero gene

expression measurements [247]; that is, UMIs can be used to identify and remove reads from

cDNA duplicates that are results of amplification, and thus some non-zero gene expression

measurements would be reduced. However, UMIs cannot help recover sampling zeros, whose

corresponding cDNA copy numbers stay unknown despite the use of UMIs [246]. In fact,

UMIs cannot reduce any zeros, including biological and non-biological ones. The change

of modeling choice—from zero-inflated models for non-UMI-based data to non-zero-inflated

models for UMI-based data—indicates that whether or not to use zero-inflated models has

nothing to do with the prevalence of zeros. In other words, the modeling choice is a statistical

consideration and says nothing about the proportions of zeros or the distinction between

biological and non-biological zeros.

Four count distributions—Poisson, zero-inflated Poisson (ZIP), NB, and zero-inflated

NB (ZINB)—have been widely used to model a single gene’s read or UMI counts across

cells in scRNA-seq data. In fact, the former three models are special cases of the ZINB

model (Fig. 3.4a). Poisson only has one parameter (λ) equal to both mean and variance
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(Fig. 3.4b). Compared with Poisson, ZIP has one more zero-inflation parameter (p) to

indicate the proportion of additional zeros that do not come from Poisson (Fig. 3.4c); when

this zero-inflation parameter is zero, ZIP reduces to Poisson. Also, compared with Poisson,

NB has one more dispersion parameter (ψ) that indicates the over-dispersion of variance

relative to the mean (i.e., unlike Poisson, NB has variance greater than mean; Fig. 3.4d);

when this dispersion parameter is positive infinity, NB reduces to Poisson. Compared with

NB, ZINB has one more zero-inflation parameter (p) to indicate the proportion of additional

zeros that do not come from NB (Fig. 3.4e); when this zero-inflation parameter is zero, ZINB

reduces to NB.

For a fair comparison, we illustrate these four distributions, with example parameters

such that they all have the same mean as one (Fig. 3.4b–e). With the same mean, ZIP and

NB have more zeros than Poisson does, and ZINB has the most zeros. Between ZIP and

NB, which one has more zeros depends on their parameter values, and when they have the

same zero proportion, their non-zero distributions are still different. Moreover, when the

four distributions have the same mean, compared with Poisson and ZIP, NB and ZINB have

heavier right tails, i.e., greater probabilities of taking larger values.

Svensson shows that non-zero-inflated distributions can describe the variation in droplet

scRNA-seq data using droplet-based ERCC spike-in data. To evaluate this claim on real

scRNA-seq data with both droplet-based and full-length protocols, we perform the similar

analysis on three real scRNA-seq PBMC datasets. More specifically, we fit the above four

count distributions—two zero-inflated (ZIP and ZINB) and two non-zero-inflated (Poisson

and NB)—to a non-UMI-based dataset generated by Smart-seq2 and two UMI-based datasets

generated by 10x Genomics and Drop-seq. These three datasets are ideal for studying how

the modeling choice depends on the experimental protocol, as they were generated by a

benchmark study [193] that applied multiple scRNA-seq protocols to measure peripheral

blood mononuclear cells (PBMCs) from the same batch, and the benchmark study labeled

cells using the same cell types and curated genes to be the same across protocols. We

first compare the three datasets in terms of their distributions of cell library size (i.e., the

total number of reads or UMIs in each cell), numbers of cells, and distributions of the
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Figure 3.4: Four count distributions: Poisson, zero-inflated Poisson (ZIP), negative binomial (NB), and zero-
inflated negative binomial (ZINB). (a) Parameterization, mean, variance, and zero proportion of each of the four distri-
butions. (b), (c), (d), and (e) Illustration of the probability mass functions of Poisson (b), ZIP (c), NB (d), and ZINB (e)
distributions that all have mean equal to 1. The horizontal axis indicates each possible value, and the vertical axis indicates
the probability of taking each possible value. For each distribution, the parameter values are listed on the top right, and the
zero proportion is listed at the bottom.
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Figure 3.5: Statistical modeling of 10x Genomics, Drop-seq, and Smart-seq2 data for the same PMBC sample.
10x Genomics and Drop-seq data are UMI-based, while Smart-seq2 data are non-UMI-based. (a) Violin plots showing the
distribution of cell library sizes for each of five PMBC cell types measured by each protocol [193]. For the UMI-based protocols
(10x Genomics and Drop-seq) and Smart-seq2, a cell’s library size is defined as the total number of UMIs and reads, respectively,
in that cell. (b) Barplots showing the number of cells detected for each cell type by each protocol. (c) Violin plots showing the
distribution of the number of genes detected per cell. (d) Barplots showing the proportions of genes for which zero-inflated (ZI)
models are chosen (black) and genes for which non-zero-inflated models are chosen (non-black). The model selection is done by
likelihood ratio tests. (e) Four example genes’ distributions of UMI counts in B cells measured by 10x Genomics. The observed
count distributions are shown in histograms. Non-zero-inflated (no ZI) models are chosen, and the fitted model distributions
are shown in cyan curves. (f) The same four example genes’ distributions of UMI counts in B cells measured by Drop-seq. (g)
The same four example genes’ distributions of read counts in B cells measured by Smart-seq2. ZI models are chosen for two
genes.
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number of genes detected per cell. Fig. 3.5a–c show that, compared with the two UMI-

based datasets, the Smart-seq2 (non-UMI-based) dataset has larger cell library sizes, fewer

cells, and more genes detected—a phenomenon consistent across the five cell types (B cells,

CD14+ monocytes, CD4+ T cells, cytotoxic T cells, and natural killer cells).

Next, for each gene in each dataset, we fit the four distributions to its read or UMI counts

in cells of each type, and we choose its distribution among the four distributions by likelihood

ratio tests (see [248] for detail). The rationale is to choose the least complex distribution

that fits the data well. Fig. 3.5d shows that non-zero-inflated distributions (Poisson and

NB) are chosen for almost all genes in the 10x Genomics and Drop-seq datasets, while

zero-inflated distributions (ZIP and ZINB) are chosen for about half of the genes in the

Smart-seq2 dataset. This result is consistent with the recent advocate for not using zero-

inflated models for UMI-based data [212, 240], and it suggests that zero-inflated modeling

is still useful for Smart-seq2 data. For illustration purposes, in Fig. 3.5e–g, we plot the

read or UMI count distributions for four genes (EEF1A1, ACTB, CD79B, and LCP1 ) in B

cells in these three datasets, and we also plot the fitted chosen distribution for each gene.

Specifically, non-zero-inflated distributions are chosen for all the four genes in the UMI-based

datasets, while zero-inflated distributions are chosen for CD79B and LCP1 in the Smart-

seq2 dataset. Our results show that the same gene’s expression distribution under the same

biological condition may be described by different statistical models for data generated by

different protocols, confirming that zero inflation provides no direct information on biological

zeros, whose existence does not depend on protocols (Fig. 3.1b).

3.4 How non-biological zeros affect scRNA-seq data analysis

To evaluate the effects of non-biological zeros on scRNA-seq data analysis, such as cell

clustering and DE gene identification, we need access to true cell types and true DE genes.

Hence, we use scDesign2 [248], a probabilistic, flexible simulator we developed to generate

realistic scRNA-seq count data from any protocol with gene correlations captured. First,

we train scDesign2 on the three benchmark PBMC datasets (10x Genomics, Drop-seq, and
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Smart-seq2) [193], which all contain the same five cell types (B cells, CD14+ monocytes,

CD4+ T cells, cytotoxic T cells, and natural killer cells) and are used in Fig. 3.5. Second,

we simulate the corresponding non-zero-inflated synthetic datasets, one for each protocol, in

the form of gene-by-cell count matrices. In detail, after the first training step, every gene

in each cell type has a fitted count distribution (Poisson, ZIP, NB, or ZINB) by scDesign2;

in the second simulation step, we generate read or UMI counts for every gene in each cell

type from the non-zero-inflation component (Poisson or NB). Note that we set the number

of synthetic cells generated by scDesign2 equal to the number of real cells for each cell type.

Hence, for each gene, this simulation procedure removes the statistical zero inflation, which

we define in the last section, and provides the gene’s expected expression level in each cell

type (as the mean of its non-zero-inflation component).

Based on the three non-zero-inflated synthetic datasets (10x Genomics, Drop-seq, and

Smart-seq2), we define the positive controls for two typical analyses: cell clustering and

DE gene identification, which are ubiquitous in scRNA-seq data analysis pipelines. For cell

clustering, the positive controls are provided by scDesign2 as the cell types from which it

generates synthetic cells. For DE gene identification, the positive controls are provided by

scDesign2 as the genes whose expected expression levels differ between cell types.

Using each of the five masking schemes (see Supplementary), we introduce a varying

number of non-biological zeros, corresponding to masking proportions p “ 0.1, . . . , 0.9, into

the three synthetic datasets corresponding to 10x Genomics, Drop-seq, and Smart-seq2 pro-

tocols, creating three suites of zero-inflated datasets, one suite per protocol. Note that

each suite contains one non-zero-inflated dataset and 45 “ 9 (# of masking proportions) ˆ

5 (# of masking schemes) zero-inflated datasets. Then we apply Monocle3 (R package ver-

sion 0.2.3.0) [181] and Seurat (R package version 3.2.1) [166], two popular multi-functional

software packages, to the three suites of datasets. We use the two packages to perform cell

clustering and DE gene identification, and we evaluate the analysis results based on our

previously defined positive controls. Fig. 3.6a–c summarizes how the accuracy of the two

analyses deteriorates as the masking proportion increases under each masking scheme and

for each protocol.
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Figure 3.6: Effects of non-biological zeros on cell clustering and DE gene identification. We introduce a varying
number of non-biological zeros, which correspond to masking proportions 0.1–0.9, into the simulated (a) Smart-seq2, (b) Drop-
seq, and (c) 10x Genomics datasets using five masking schemes. The horizontal axes show (top) the total zero proportion
(including the zeros before masking and the non-biological zeros introduced by masking) and (bottom) the masking proportion
(i.e., the proportion of non-zero counts masked by a masking scheme). After introducing non-biological zeros, we apply Monocle
3 and Seurat to each dataset to perform cell clustering and identify DE genes. For the two analyses, we evaluate their accuracy
using the adjusted rand index (ARI) and F1 score (given the false discovery rate 5%), respectively. (d) Technical definitions of
the ARI and F1 score.
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The clustering results (top rows in Fig. 3.6a–c) show that the clustering accuracy (mea-

sured by the adjusted rand index; Fig. 3.6d) is robust to the introduction of non-biological

zeros up to the masking proportion p “ 0.6 (i.e., 60% non-zero counts are masked as zeros) for

most masking schemes. Compared with Monocle3, Seurat is more robust to non-biological ze-

ros under all the five masking schemes. Among all schemes, the two schemes that assume (1)

dependence between masking and count values and (2) gene-specific masking proportions—

quantile mask (all genes) and quantile mask (per-gene, specific %) (Fig. 3.8b)—

have the least deteriorating effects on cell clustering. This result is reasonable as these two

schemes tend to mask low counts to zeros so that the relative order of gene expression counts

(from low to high) is better preserved than by the other three schemes. A recent article ar-

gues that zeros in scRNA-seq data carry biological meanings and should be embraced, and

its argument is based on the assumption that most zeros correspond to low expression levels

[213], an assumption aligned with these two masking schemes. Finally, among the three

protocols, clustering on Smart-seq2 data is most robust to non-biological zeros, likely be-

cause Smart-seq2 data contain fewer zeros than the two UMI-based protocols’ data do. It

is worth noting that, between the two UMI-based protocols, clustering accuracy is better on

10x Genomics data than Drop-seq data.

The DE gene identification results (bottom rows in Fig. 3.6a–c) show that the F1 scores

(at 5% false discovery rate; Fig. 3.6d) are robust to non-biological zeros for Seurat, but not

as much for Monocle3. The reason is that Seurat uses MAST [188], a method built upon

a zero-inflated model, for DE gene identification, while Monocle3 uses non-zero-inflated

models (including Poisson, quasi Poisson, and NB) that cannot account for additional non-

biological zeros. Among the five masking schemes, the two random schemes that assume

independence between masking and count values—random mask (all genes) and random

mask (per-gene, specific %) (Fig. 3.8b)—have the most deteriorating effects on DE gene

identification. This result is reasonable as these two schemes may mask high counts to zeros,

so they disrupt every gene’s count distribution more than the other three schemes do. In-

terestingly, although quantile mask (per-gene, same %) is unlikely a realistic generation

mechanism of non-biological zeros as it masks the same proportion of non-zero counts for ev-
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ery gene, we observe that Seurat has robust F1 scores as non-biological zeros are introduced

by this scheme. This seemingly unexpected result reflects that zero-inflated models are ro-

bust for DE gene identification under quantile masking, even though the masking proportion

may not be reasonable. Finally, regarding the three protocols, Seurat has better F1 scores for

Smart-seq2 data than Monocle3 does, a reasonable result given the observed zero-inflation

in Smart-seq2 data (Fig. 3.5d). For the two UMI-based protocols, Monocle3 and Seurat

have comparable performance in terms of F1 scores. We have also observed that the DE

analysis results for UMI data are better than for non-UMI-based data. One possible reason

is the larger sample sizes (larger numbers of cells) in Drop-seq and 10x data that increase

the power in statistical testing. To supplement the F1 scores, we show the corresponding

precision and recall rates in Supplementary Fig. 3.9. It is worth noting that although the

false discovery rate is set to 5%, the precision rates of both Monocle3 and Seurat are far

below the expected precision 95%, which is equal to one minus the false discovery rate. This

phenomenon calls for better false discovery rate control in scRNA-seq DE analysis [249]. In

addition, compared to Seurat, Monocle3 shows a greater fluctuation in both precision and

recall as the masking proportion increases.

In summary, compared with DE gene identification, cell clustering is more robust to non-

biological zeros. This result suggests that the sparsity in scRNA-seq data affects gene-level

analyses more than cell-level analyses because the latter jointly uses all genes’ expression

levels. Overall, Seurat is more robust than Monocle3 is to non-biological zeros for both

analyses. For cell clustering, Seurat has better accuracy regardless of protocols. For DE

gene identification, Seurat is preferable for Smart-seq2 data, while Monocle3 has better

accuracy for UMI-based data.

It is worth noting that many imputation methods evaluate their imputation accuracy

based on only the random mask (all genes) scheme [85, 199, 250]. Our results indicate

that non-biological zeros introduced by different masking schemes have different effects on

cell clustering and DE gene identification, and quantile masking may be more realistic given

previous reports that genes with lower expression values have more zeros than genes with

higher expression [191, 196]. Hence, we urge that quantile masking schemes be considered
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in the future evaluation of computational methods that deal with non-biological zeros.

3.5 Input data: observed vs. imputed vs. binarized counts

Current scRNA-seq data analysis typically takes three types of input data: observed, im-

puted, and binarized counts. Researchers use imputed and binarized counts to deal with the

vast proportion of zeros. Although log-transformed counts are often used as input data, this

practice is under controversy [239, 251, 252] and is not the focus of our discussion. Here we

summarize the advantages, disadvantages, and suitable users (bioinformatics tool developers

vs. users) of each input data type.

Direct modeling of observed counts is the most common practice for bioinformatics tool

developers [166, 181, 183–186, 188, 253]. An obvious advantage of direct modeling is that

observed counts are not biased by any data pre-processing steps. Hence, observed counts are

the preferred input data type for most tool developers. However, unlike tool developers, tool

users need to apply existing bioinformatics tools to scRNA-seq data. If the observed counts

do not work well with existing tools, for practical reasons, tool users may consider data

pre-processing steps such as imputation and binarization so that existing tools can output

reasonable analysis results.

Since the sparsity in scRNA-seq counts has posed a great hurdle for many existing tools,

imputation has been proposed as a practical data pre-processing step, and many imputation

methods have been developed [85, 173, 194, 195, 197–211]. Of course, imputation has the

risk of biasing data, leading to false signals [245] or diminished biological variation [18,

195]. However, imputation has two practical advantages for single-cell biologists who are

mostly tool users. First, many imputation methods have shown that their imputed counts,

in which many zeros in the observed counts become non-zeros, agree better with biological

knowledge and/or biologists’ expectations. For example, the effectiveness of imputation has

been supported by evidence that scRNA-seq data after imputation agree better with bulk

RNA-seq data or single-cell RNA fluorescence in situ hybridization (FISH) data [85, 198,

254]. Second, imputation builds a bridge that connects sparse scRNA-seq data to many
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Figure 3.7: (Continued on the following page.)
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Figure 3.7: Performance ranks of using observed, binarized, and imputed counts (from three experimental
protocols ad under five masking schemes) in three downstream analyses. (a) We perform cell clustering (Clustering),
cell dimension reduction (DR), and gene differential expression (DE) analysis on the observed, binarized, and imputed counts
of Smart-seq2, Drop-seq, and 10x Genomics data. We consider three popular imputation methods: scImpute, SAVER, and
MAGIC. In addition to the original data, we use five masking schemes (Type 1 ZI–Type 5 ZI) to introduce 50% non-biological
zeros and evaluate the effects on the downstream analyses with different input data. The five masking schemes are random mask

(all genes), quantile mask (all genes), random mask (per-gene, specific %), quantile mask (per-gene, same %), and
quantile mask (per-gene, specific %), corresponding to type 1 ZI–type 5 ZI, respectively. The six columns correspond to
different input data types: observed counts, binarized counts, binarized counts analyzed by the Qiu’s clustering algorithm
(bin-Qiu clust), imputed counts by scImpute, imputed counts by SAVER, and imputed counts by MAGIC. For cell clustering,
except bin-Qiu clust, clustering is conducted by the Louvain clustering algorithm (in Seurat); clustering performance is ranked
by the ARI. For cell DR analysis, we apply UMAP (in Seurat) to perform DR and calculate the average Silhouette score (based
on known cell types) for each input data type to evaluate the DR performance. For gene DE analysis, we apply the two-sample
proportion test to binarized counts and MAST (in Seurat) to observed, binarized, and imputed data to perform DE analysis.
To rank the DE performance by the F1 score (at the 5% false discovery rate), since binarized counts have two DE methods,
we compute the rank for the better-performing method in each comparison. In each row of each matrix, rank 1 indicates the
best-performing input data type, while rank 6 indicates the worst. (b) On the original data, we compute the average ranks of
the six input data types. Columns 4–6 show the average ranks for Smart-seq2 data, Drop-seq data, and 10x Genomics data
across the three downstream analysis—cell clustering analysis, cell DR analysis, and gene DE analysis. Columns 7–9 show the
weighted averages of the ranks for the three downstream analysis given the three protocols. Weights of 2, 1, 1 are used for
Smart-seq2, Drop-seq, and 10x Genomics to ensure that the weights for non-UMI-based and UMI-based data are equal.

powerful tools designed for non-sparse data. For example, DESeq2 [53] and edgeR [184] are

two popular DE gene identification methods for bulk RNA-seq data; however, they are not

directly applicable to scRNA-seq data because their models do not account for data sparsity.

Hence, if tool users cannot find a DE gene identification method that works well for their

scRNA-seq data, they may consider reducing zeros by imputation methods to make DESeq2

or edgeR applicable [210, 211, 255], conditional on verified false discovery rate control [249,

256].

Moreover, a recent article provides a new perspective by proposing to use only binarized

counts (with all non-zero counts truncated as ones) for cell clustering [213]. It argues that, by

removing the magnitudes of non-zero counts, binarization alleviates the need for normalizing

individual cells’ sequencing depths. Further, its key message is that zeros are biologically

meaningful because binarized counts can lead to reasonable cell clustering results. Other

works also suggest that binarized counts can serve as useful data, in addition to observed

counts, and be incorporated into scRNA-seq data modeling and analysis [176, 257]. Although

binarized counts eliminate the expression differences between highly- and lowly-expressed

genes, they highlight the co-expression patterns of genes, i.e., whether two genes are co-

expressed in a cell, which have been used in marker gene selection [165] and gene network

construction [258–260]. However, it remains unclear whether binarized counts can replace

observed counts in scRNA-seq data analysis. Our intuition says that the answer is unlikely
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yes for all analyses because the magnitudes of non-zero counts reflect expression levels of

genes in each cell. Qiu uses binarized counts to deal with cell clustering, a cell-level analysis

[213]. For gene-level analyses such as DE gene identification, binarized counts are unlikely

better than observed counts. For example, if a gene has similar percentages of zero counts in

two cell types, but its non-zero counts are much larger in one cell type than the other, then

this gene should be identified as DE using observed counts, but it would be missed as DE

using binarized counts. In the previous section “How non-biological zeros affect scRNA-seq

data analysis,” we have compared the effects of non-biological zeros on clustering and DE

gene analysis. For tool developers, it would be beneficial to consider using binarized counts

in addition to observed counts for developing new analysis tools. For tool users, binarized

counts can be used for exploratory data analysis because several efficient computational tools

are applicable to binary counts only, e.g., scalable probabilistic principal component analysis

[261].

We further evaluate the effects of the three input data types (observed, binarized, and

imputed counts) on three popular downstream analyses: cell clustering, cell dimension re-

duction (two-dimensional visualization), and DE gene identification. To obtain the imputed

counts, we use three popular imputation methods: scImpute, MAGIC, and SAVER, which

demonstrate good performance in a recent benchmark study [6].

To benchmark cell clustering and dimension reduction results, we use the three real

scRNA-seq PBMC datasets with labelled cell types [193]—one non-UMI-based dataset gen-

erated by Smart-seq2 and two UMI-based datasets generated by 10x Genomics and Drop-

seq—which we have used in the previous section to evaluate the effects of non-biological

zeros. To benchmark DE gene identification results, we generate synthetic datasets contain-

ing pre-defined true DE genes by scDesign2 [248] from two cell types (CD4+ T cells and

cytotoxic T cells) in the three real datasets.

For cell clustering, we use two algorithms: Qiu’s algorithm designed specifically for bina-

rized counts [213] and the Louvain algorithm (implemented in Seurat). For all three input

data types, we use the Louvain algorithm to cluster cells; for binarized counts only, we also

use Qiu’s algorithm. Based on the cell type labels provided in all three datasets, we calculate
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the ARI as a measure of clustering accuracy (Fig. 3.10; top row).

For cell dimension reduction, we perform UMAP (implemented in Seurat) on the ob-

served, binarized and imputed counts (Figs. 3.12, 3.13, and 3.14 show the results of Smart-

seq2, Drop-seq, and 10x Genomics, respectively). We use the average Silhouette score to

evaluate how well the labeled cell types are separated in the two-dimensional UMAP space

(Fig. 3.11; top row).

For DE gene analysis, we consider two DE methods. For all three inpute data types,

we use MAST (implemented in Seurat) to perform DE gene identification; for binarized

counts only, we also apply a two-sample proportion test to the binarized data. At a 5% false

discovery rate, we use precision (Fig. 3.16), recall (Fig. 3.17) and F1 score (Fig. 3.15) to

evaluate the identification results.

Fig. 3.7a–b summarizes the relative performance of the three input data types for the

three protocols (Smart-seq2, Drop-seq, and 10x Genomics) in the three downstream analyses.

In terms of cell clustering, for non-UMI-based Smart-seq2 data, the Louvain algorithm has

better performance on scImpute and SAVER’s imputed counts than on the observed or bina-

rized counts; for UMI-based Drop-seq and 10x Genomics data, the Louvain algorithm on the

observed counts and Qiu’s algorithm on the binarized counts have comparable performance

and outperform the Louvain algorithm applied to other input data types, suggesting that

imputation does not improve the clustering of UMI-based data. Notably, Qiu’s algorithm

only works well for binarized counts of UMI-based data, likely due to its special design. In

terms of cell dimension reduction, scImpute’s imputed counts work the best for non-UMI-

based data; the observed counts have the best performance for UMI-based data; binarized

counts and MAGIC’s imputed counts have poor performance for both non-UMI-based and

UMI-based data. In terms of DE gene analysis, for non-UMI-based data, all three imputation

methods’ imputed counts outperform the observed and binarized counts, a result consistent

with our previous discussion on the existence of zero-inflation in non-UMI-based data; for

UMI-based data, the observed counts and scImpute’s imputed counts lead to the best result

for Drop-seq and 10x Genomics data, respectively.
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Moreover, we evaluate the three input data types in the three downstream analyses

after applying the five masking schemes (see Supplementary) to introducing additional non-

biological zeros. Under each masking scheme, we mask 50% of the original non-zero counts

as zeros in each of the three original datasets (Smart-seq2, Drop-seq, and 10x Genomics).

In terms of cell clustering analysis, for non-UMI-based data, scImpute’s imputed counts

demonstrate robust performance and stay as a top-performing input data type under the

first three masking schemes, including the two random masking schemes; interestingly, by

the Louvain algorithm, the binarized counts do not perform well for the original data but

become a top-performing input data type under the last four masking schemes, including the

three quantile masking schemes. These two results suggest that scImpute’s imputation and

binarization ameliorate the effects of additional non-biological zeros in complementary ways.

For UMI-based data, the observed counts lead to the overall best clustering results under

all masking schemes (ranked the 1st in 6 out of 10 protocol-masking scheme combinations),

while Qiu’s algorithm is not robust to the introduction non-biological zeros by masking

schemes. In terms of cell dimension reduction, scImpute’s imputed counts are the best input

data type for non-UMI-based data (ranked the 1st under 3 out of 5 masking schemes), while

the observed counts are the best for UMI-based data (ranked the 1st in 8 out of 10 protocol-

masking scheme combinations). In terms of DE gene analysis, for non-UMI-based data, there

is no universal winner: the observed counts work the best under random masking schemes,

while SAVER and MAGIC’s imputed counts work the best under quantile masking schemes.

For UMI-based data, scImpute’s imputed counts have the best performance (ranked the

1st in 6 out of 10 protocol-masking scheme combinations), followed by the observed counts

(ranked the 1st in 4 out of 10 protocol-masking scheme combinations).

In summary, the observed counts work well for UMI-based data and are robust to the

introduction of non-biological zeros. As expected, the binarized counts work well under

the quantile masking schemes, which largely preserve the ranks of gene expression levels.

Qiu’s clustering algorithm works well for the binarized counts of UMI-based data but is

not robust to the introduction of non-biological zeros. Imputation methods show concrete

improvement for non-UMI-based data, but not so much for UMI-based data. Among the
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imputation methods, scImpute shows the best performance, while MAGIC does not perform

well; a likely reason is that the data we use contain discrete cell types instead of continuous

cell trajectories. Notably, the performance of imputation methods depends heavily on the

masking scheme, demonstrating the importance of considering multiple masking schemes for

the development and benchmarking of imputation methods.

Future directions

ScRNA-seq technologies have advanced the revelation of genome-wide gene expression pro-

files at the cell level. Accordingly, many computational algorithms and statistical models

have been developed for analyzing scRNA-seq data. A well-known challenge in scRNA-seq

data analysis is the prevalence of zeros, and how to best tackle zeros remains a controversial

topic. Modeling and analysis may be performed on observed, imputed, or binarized scRNA-

seq counts. However, the relative advantages and disadvantages of these three strategies

remain ambiguous. In this article, we attempt to address this controversy by discussing mul-

tiple intertwined topics: the biological and non-biological sources of zeros, the relationship

between zero prevalence and scRNA-seq technologies, the extent to which zero prevalence

affects various analytical tasks, and the three strategies’ relative advantages, disadvantages,

and suitable users. We benchmark the performance of analytical tasks on observed, binarized

and imputed data with or without non-biological zeros introduced.

The prevalence of biological and non-biological zeros is a mixed result of intrinsic biologi-

cal nature and complex scRNA-seq experiments. In particular, the generation mechanism of

non-biological zeros is protocol dependent. Hence, it is infeasible to distinguish non-biological

zeros from biological zeros purely based on observed counts. As a result, existing imputation

methods have a glass ceiling if they use only observed counts as input. To better distin-

guish non-biological zeros from biological zeros, researchers need to utilize spike-in RNA

molecules, whose true counts are known (e.g., External RNA Control Consortium spike-ins

[262]), to investigate the generation mechanism of non-biological zeros. Such investigation

requires consortium efforts such as the work by the Sequencing Quality Control (SEQC-2)
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consortium [263]. With a better understanding of how the generation of non-biological ze-

ros depends on mRNA sequence features such as GC contents, statistical and mechanistic

models may be developed to better distinguish non-biological zeros from biological zeros and

thus to improve imputation accuracy.

The prevalence of biological and non-biological zeros is only one of the many obstacles

in using scRNA-seq data for scientific discoveries. As scientific discovery is a trial-and-error

process, scRNA-seq data analysis is unavoidably multi-step. Hence, bioinformatics tool

developers must consider the pre-processing steps applied to input data and the downstream

analyses users may perform on output data. Taking the popular Seurat package as an

example, many data pre-processing steps are used before DE gene identification. These

steps include filtering low-quality genes and cells, data normalization, gene selection, cell

dimension reduction, and cell clustering. Hence, if tool developers are not aware of these

pre-processing steps, their bioinformatics tools may not fit into the state-of-the-art scRNA-

seq data analysis pipelines. Ultimately, the transparency and reproducibility of scRNA-seq

data analysis call for a community collaboration between tool developers and users. Towards

this goal, every research article, regardless of being tool development or data analysis, should

contain a detailed description of each step and the underlying justifications [264].

Code availability

The R code for reproducing the results in Figs. 3.2–3.6 is available at https://doi.org/

10.5281/zenodo.4393041.
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3.6 Supplementary materials

Design of five masking schemes

Given the three synthetic datasets without zero inflation, we use five masking schemes to

introduce a varying number of non-biological zeros into each dataset. Since there is no

consensus on the generation mechanism of non-biological zeros, we design the five masking

schemes to reflect two fundamental questions: whether the occurrence of non-biological

zeros (1) depends on the actual gene expression levels and/or (2) is gene-specific. As the

five masking schemes cover the extreme answers to both questions (Fig. 3.8a), we expect

that they together cover the unknown generation mechanism of non-biological zeros and

would thus reveal the realistic effects of non-biological zeros on cell clustering and DE gene

identification.

We provide a toy example to demonstrate the five masking schemes in Fig. 3.8b and

summarize their technical details in Fig. 3.8c. In short, for a dataset with n non-zero counts,

given a masking proportion p, all schemes would mask approximately np non-zero counts.

However, the five schemes differ in masking which np non-zero counts, and they can be

categorized in two ways corresponding to the two aforementioned questions.

The first categorization is whether masking depends on the non-zero count values: ran-

dom masking vs. quantile masking. While the two random masking schemes assume the

independence between whether a non-zero count would be masked and the count value itself,

the three quantile masking schemes assume a complete dependence by truncating non-zero

values below a quantile (which corresponds to the masking proportion) to zero. Specifically,

the two random masking schemes differ in the definition of independence: random mask (all

genes) assumes the complete independence between masking and count values; random mask

(per-gene, specific %) only assumes the conditional independence between masking and

count values given each gene, and the masking proportion is gene-specific. Note that we

define each gene’s specific masking proportion as a function of the gene’s non-zero counts

based on an empirical formula in the literature [195, 196] (Fig. 3.8c); in short, the larger a
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gene’s non-zero counts are, the smaller the gene’s masking proportion is. Besides the two

random masking schemes, the three quantile masking schemes differ in how they perform the

truncation: quantile mask (all genes) truncates the lowest 100p% non-zero counts of all

genes; quantile mask (per-gene, same %) truncates the lowest 100p% non-zero counts of

each gene; quantile mask (per-gene, specific %) truncates the lowest non-zero counts

of each gene based on the gene’s specific masking proportion determined by the empirical

formula.

The second categorization is regarding whether the masking proportion is gene-specific.

Two schemes mask the same expected proportion 100p% of non-zero counts for all genes:

random mask (all genes) and quantile mask (per-gene, same %). Three schemes use

gene-specific masking proportions: quantile mask (all genes), random mask (per-gene,

specific %), and quantile mask (per-gene, specific %). Specifically, although quantile

mask (all genes) does not use the empirical formula to determine gene-specific masking

proportions as in random mask (per-gene, specific %) and quantile mask (per-gene,

specific %), it still truncates different proportions of non-zero counts for different genes.

The reason is that its truncation threshold is set to the p-th quantile of all genes’ non-zero

counts, and different genes have different numbers of non-zero counts below that threshold.

It is also worth noting that we do not include random mask (per-gene, same %) because

it is theoretically equivalent to random mask (all genes)—both schemes are expected to

randomly mask 100p% of every gene’s non-zero counts (Fig. 3.8a).

Note that random masking aims to reflect the random nature of sampling zeros. In a

sequencing experiment, allocation of reads to genes is essentially random sampling from a

multinomial distribution, whose probabilities are the proportions of genes in terms of cDNA

copy numbers in the sequencing library. Due to the randomness of sampling, for two genes

with moderately different non-zero proportions, it is possible that, in one experiment, the

gene with the larger proportion receives a zero read count, i.e., a sampling zero, while the

gene with the smaller proportion receives a non-zero read count. The magnitude of the

randomness depends on the sequencing depth. For every gene, the standard deviation of its

count over its expected count is equal to a large constant depending on its proportion (i.e.,
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a

p1´ qiq{qi, where qi is the proportion of gene i) multiplied by the inverse of the square root

of the sequencing depth (i.e., 1{
?
N , where N is the sequencing depth). Hence, the smaller

the sequencing depth, the larger the standard deviation of every gene’s count in relation to

its expected count, the more likely that genes receive sampling zeros irrespective of their

proportions. Moreover, the expected number of sampling zeros (i.e.,
řI
i“1p1 ´ qiq

N , where

I is the number of genes) decreases as the sequencing depth increases. In contrast, quantile

masking aims to reflect gene proportions in the sequencing library and technical zeros, i.e.,

zero counts due to zero proportions without randomness. Quantile masking also reflects the

fact that, despite of randomness, a gene with a small proportion is more likely to receive a

sampling zero than a gene with a much larger proportion does.

Hence, for Drop-seq and 10x Genomics, since they sequence many cells, per-cell sequenc-

ing depth is low and thus randomness is influential, random masking better represents the

occurrence of non-biological zeros, sampling zeros in particular, than quantile masking does.

For Smart-seq2, since per-cell sequencing depth is high and thus randomness is negligible,

quantile masking better resembles the generation mechanism of non-biological zeros, techni-

cal zeros in particular, than random masking does.
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Figure 3.8: Five masking schemes for introducing non-biological zeros. (a) A tree diagram illustrating the design of
the five masking schemes. From the top, the first division is about whether masking is independent of or completely dependent
on count values, with the former as random masking and the latter as quantile masking. The second division is about whether
masking is performed across all genes (with the same masking proportion) or within each gene (i.e., per-gene). If the latter, the
third division is regarding whether the masking proportion is the same for all genes or specific to each gene depending on the
gene’s mean non-zero expression level. Note that random masking across all genes is equivalent to random masking per-gene
with the same masking proportion (shown by the double arrow on the left). (b) A toy example illustration of the five masking
schemes. The topleft plot shows the expression counts of three genes in four cells without zero-inflation; the other five plots
show the expression counts after the five masking schemes are applied with the same masking proportion p “ 0.5 (i.e., 50% of
the non-zero gene expression counts are masked as zeros). (c) Technical explanation of each masking scheme. In the notations,
p denotes the overall masking proportion across all genes, and pi is the masking proportion of gene i.
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Figure 3.9: Effects of non-biological zeros on DE gene identification in terms of precision and recall. We
introduce a varying number of non-biological zeros, which correspond to masking proportions 0.1–0.9, into the simulated (a)
Smart-seq2, (b) Drop-seq, and (c) 10x Genomics datasets using five masking schemes. The horizontal axes show (top) the
total zero proportion (including the zeros before masking and the non-biological zeros introduced by masking) and (bottom)
the masking proportion (i.e., the proportion of non-zero counts masked by a masking schemes). After the introduction of
non-biological zeros, we apply Monocle 3 and Seurat to each dataset to identify DE genes. We evaluate the accuracy using the
precision and recall (given the false discovery rate 5%; defined in Fig. 3.6d), respectively.
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Figure 3.10: Evaluation of clustering analysis on observed, binarized and imputed data. We evaluate the clustering
analysis on Smart-seq2, Drop-seq, and 10X Genomics data based on observed, binarized and imputed data. We perform this
analysis before and after using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros. Besides the
bin-Qiu et al. which indicates the clustering algorithm developed specially for binarized data, we use Louvain clustering (in
Seurat) on observed, binarized, and imputed data. We use ARI to evaluate the clustering results.
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Figure 3.11: Evaluation of dimension reduction analysis on observed, binarized and imputed data. We evaluate
the dimension reduction analysis on Smart-seq2, Drop-seq, and 10X Genomics data based on observed, binarized and imputed
data. We perform this analysis before and after using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological
zeros. We use UMAP (in Seurat) on observed, binarized, and imputed data to perform dimension reduction. We use Silhouette
score to evaluate the dimension reduction results.
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Figure 3.12: UMAP dimesion reduction visualization on observed, binarized and imputed Smart-seq2 data.
We perform UMAP (in Seurat) on Smart-seq2’s observed, binarized and imputed data. We perform this analysis before and
after using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros.
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Figure 3.13: UMAP dimesion reduction visualization on observed, binarized and imputed Drop-seq data. We
perform UMAP (in Seurat) on Drop-seq’s observed, binarized and imputed data. We perform this analysis before and after
using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros.
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Figure 3.14: UMAP dimesion reduction visualization on observed, binarized and imputed 10X Genomics data.
We perform UMAP (in Seurat) on 10X Genomics’ observed, binarized and imputed data. We perform this analysis before and
after using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros.
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on Smart-seq2, Drop-seq, and 10X Genomics data based on observed, binarized and imputed data. We perform this analysis
before and after using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros. We apply two-sample
proportion test on binarzied data and MAST (in Seurat) on observed, binarized, and imputed data to perform DE analysis.
We use F1 score (given the false discovery rate 5%) to evaluate the DE results.
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Figure 3.16: Evaluation of DE analysis on observed, binarized and imputed data. We evaluate the DE analysis
on Smart-seq2, Drop-seq, and 10X Genomics data based on observed, binarized and imputed data. We perform this analysis
before and after using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros. We apply two-sample
proportion test on binarzied data and MAST (in Seurat) on observed, binarized, and imputed data to perform DE analysis.
We use precision (given the false discovery rate 5%) to evaluate the DE results.
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Figure 3.17: Evaluation of DE analysis on observed, binarized and imputed data. We evaluate the DE analysis
on Smart-seq2, Drop-seq, and 10X Genomics data based on observed, binarized and imputed data. We perform this analysis
before and after using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros. We apply two-sample
proportion test on binarzied data and MAST (in Seurat) on observed, binarized, and imputed data to perform DE analysis.
We use recall (given the false discovery rate 5%) to evaluate the DE results.
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CHAPTER 4

Discussion

The imputation problem in statistics, such as in survey data, is different from the imputation

problem in machine learning, such as in the movie recommendation system data. In statistics,

researchers care about the validity of inference on the imputed data. The state-of-the-art

method, in this case, is multiple imputation. Multiple imputation provides a framework that

can incorporate the uncertainty in the imputation step into the post-imputation inference. In

contrast, in machine learning imputation problems, such as the film recommendation system

in the Netflix data challenge, researchers or tool developers care more about the imputed

values per se. They want to decide whether or not to recommend a specific film based on

the imputed ratings. In this case, prediction is the key, while the uncertainty in the imputed

value is not so essential as for statistical inference.

In the imputation problem for sequencing data, the goal is a mixture of inference and

prediction. For inference, using scRNA-seq data analysis as an example, if researchers are

interested in identifying DE genes using statistical tests, the uncertainty in the imputation

step should be considered. In this case, the multiple imputation framework is still feasible

for Bayesian imputation models such as SAVER and regression-based imputation models

like mbImpute. In contrast, the low-rank factorization-based imputation methods, such as

ALRA and softImpute, aim for the exact recovery of the original matrix, and no uncertainty

is reported in their imputation results. Currently, how the uncertainty in most imputation

methods affects inference tasks has not been well studied and remains a future research

direction. For prediction, if researchers aim to perform unsupervised learning such as cell

clustering or dimension reduction, their primary focus is on the imputed values, similar to

the the movie recommendation problem, where the uncertainty of imputed values is less of
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a concern.

It remains an open question regarding how to evaluate imputation methods on real se-

quencing data. For scRNA-seq imputation methods, the most popular benchmarking ap-

proach is to artificially introduce additional zeros (missing values) into the matrix, perform

imputation, and compare the imputed values of these additional zeros with the original val-

ues. However, this approach is in fact a simulation study as this artificial missing mechanism

may differ significantly from the true missing mechanism. Another approach is to use ex-

ternal data—e.g., fluorescence in situ hybridization (FISH) data—as the ground truth and

compares the imputed values with the corresponding values in the external data. However,

this approach is often unachievable or restricted to a few values available in the external

data; in most cases, it cannot be used to evaluate the accuracy of all imputed values. The

third approach is to perform downstream analysis such as clustering on the imputed data.

For example, in scRNA-seq cell clustering analysis, researchers can evaluate the clustering

accuracy before and after imputation by associating cell clusters with known cell types. The

problem with this approach is that it is specific to a downstream analysis and does not di-

rectly reflect the imputation accuracy. For example, an imputation method working well for

cell clustering may not perform well for DE gene analysis. In order to fairly and thoroughly

evaluate how different imputation methods perform, researchers need a better understanding

of the missing mechanisms in sequencing data. For example, experiments can be designed

to evaluate the reverse transcription efficiency of different mRNAs and see correspondingly

how non-biological zeros would arise in the resulting sequencing data.

Another question to be answered is whether researchers should use direct modeling or

imputation in sequencing data analysis. Many statistical models can directly quantify the

over-dispersion and large proportion of zeros in sequencing data. In Chapter 3, we have intro-

duced the zero-inflated models, which add a zero mass to the original distribution to explain

additional zeros. In the microbiome field, researchers apply zero-inflated quasi-Poisson [265]

and Poisson log-normal models [266] to microbiome sequencing data. However, this direct

modeling approach treats all zeros equally and ignores the fact some zeros are biological and

thus trustworthy, while other zeros are not, similar to our discussion about scRNA-seq data
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in Chapter 3. How the existence of non-biological zeros affects parameter estimation depends

on the unknown generation mechanism of non-biological zeros. Furthermore, zero-inflated

models often face convergence issues during model fitting. On the contrary, our mbImpute

attempts to distinguish likely non-biological zeros and correct them so that non-zero-inflated

models can be fitted efficiently and stably. However, questions remain about the potential

biases of imputed values. Hence, future work is need to compare the direct modeling ap-

proach and the imputation approach under the same objectives relevant to sequencing data,

an issue outlined in the last paragraph.

In our mbImpute work, we used a regression-based framework to perform imputation.

Methodologically, how the regression-based framework differs from the low-rank factorization-

based framework has not been well studied. The current matrix factorization literature aims

to achieve exact recovery/imputation of the missing values based on the observed values. On

the other hand, the regression-based framework assumes a probabilistic model. Both meth-

ods face the high-dimensional parameter estimation problem, but they perform penalization

from different perspectives to achieve sparsity in the estimated parameters. For mbImpute’s

regression-based framework, we add L1 penalties to parameters. On the other hand, the

low-rank factorization-based framework, as indicated by its name, puts a constraint on the

rank of the matrix to be imputed to achieve feasible parameter estimation. In terms of model

assumption, low-rank factorization-based imputation methods require the true matrix to be

low rank, which does not necessarily hold for sequencing data due to the widespread bi-

ological diversity of individuals and cells. Empirically, we observed that softImpute, the

state-of-the-art low-rank factorization method, decreases the variance of non-zero values in

the imputed data, while mbImpute better preserves the variance after imputation. A new

theoretical framework is yet to be developed to evaluate the preservation of variance by

imputation.

Our mbImpute model employs a data pre-processing step: the log transformation of

counts. For count data analysis, it is still a controversial problem regarding whether the log

transformation is advantageous or disadvantageous over direct modeling of counts. Booe-

shaghi and Patcher (2021) pointed out two reasons for applying the log transformation to
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scRNA-seq data, including variance stabilization and converting the multiplicative effect to

additive effect [267]. As discussed in Chapter 3, the PCR amplification in sequencing leads

to exponential amplification of sequencing materials. Applying log-transformation to the

sequencing data with PCR amplification will bring the values in the data to a similar scale.

On the other hand, there are voices against using the log transformation on count data [268].

If researchers are dealing with UMI data that have corrected for the amplification bias, the

count distributions fit well to the observed data, and no log-transformation is needed.
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