
UC Irvine
ICS Technical Reports

Title
Effects of mixing design styles on the synthesis of RTL components

Permalink
https://escholarship.org/uc/item/72h5g1q0

Authors
Kipps, James R.
Gajski, Daniel D.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/72h5g1q0
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Effects of Mixing Design Styles
On The Synthesis of RTL Component§._

James R. ~l_{ipp~''-and Daniel D. Gajski

Technical Report 91-42

Information and Computer Science
University of California, Irvine

Irvine, CA 92717

Abstract

By mixing design styles during synthesis of RTL components such as adders,

multipliers, and AL Us, it is possible to generate a range of designs from small to f;;ist,

where intermediate designs make favorable and possibly desirable tradeoffs between

area and delay. Although module generators can be written to reflect design styles

that reduce either area or delay, the current approach to generator execution does not

examine the effects of mixing different design styles. We have developed an approach

to RTL component synthesis that searches the space of design alternatives, and we

have implemented this approach with the DTAS Design Language. The significance

of our approach is that it allows DTAS to generate designs use a combination of

design styles and to compare the effects of mixing styles. In this paper, we outline

the operation of DTAS and describe how DTAS expands and constrains the design

space. We present results from applying DTAS to large RTL components using an

MCNC benchmark library. We also present results of integrating DTAS with the

MISii logic optimizer.

Copyright © 1991 University of California, Irvine

z_
0pc¡
L3
rw. 91 ~y-;;_,

Effects of Mixing Design Styles
ih The Synthesis of RTL Components

Abstract

By mixing design styles during synthesis of RTL components such as adders,

multipliers, and ALUs, it is possible to generate a range of designa from small to fast,

where intermediate designs make favorable and possibly desirable tradeoffs between

area and delay. Although module generators can be written to reflect design styles

that reduce either area or delay, the current approach to generator execution <loes

not examine the effects of mixing different design styles. We have developed an

approach to RTL component synthesis that searches the space of design alternatives,

and we have implemented this approach in a system called DTAS. The significance

of our approach is that it allows DTAS to generate designs use a combination of

design styles and to compare the effects of mixing styles. In this paper, we outline

the operation of DTAS and describe how DTAS expands and constrains the design

space. We present results from applying DTAS to large RTL components using an

MCNC benchmark cell library. We also present results of integrating DTAS with

the MISII logic optimization system.

1 Introduction

The design style used in mapping register-transfer level (RTL) components., suc~ as

adders, multipliers, and ALUs, into logic or layout impacis the quality of the resulting

design with regard to area or delay. Far example, a ripple-carry style generates a small

but slow adder, while a carry look-ahead style generates a fast but large adder, and a

matrix style generates a small but slow multiplier, while a tree style generates a fast but

large multiplier. Design styles can be mixed to generate designs that tradeo:ff area and

delay. A 16-bit adder designed by rippling four 4-bit carry look-ahead adders will be

intermediate in area and delay between a full ripple-carry adder and a full carry look-

1

ahead adder. Whether the tradeoffs are actually desirable is difficult to determine in the

absence of technology mapping.

RTL components are often synthesized using module generators, where a module

generator is treated as procedure that generates logic or layout far a parameterized

component specification (1; 2; 3). Module generators can be written to refl.ect alternative ~

design styles. Such generators will include parameters with values such as smallest or

fastest to select between competing styles. The problem with this approach is that it

only finds a single point in the design space of an RTL component. There may exists

alternative designs that make favorable and even desirable tradeoffs between area and

delay. Without searching the design space, the "single design" approach to module

generation will fail to find these alternatives.

We have developed a search-based approach to RTL component synthesis that ex­

plores the effects of mixing alternative design styles. In this approach, input component

specifications are mapped into a given cell library by functional decomposition, where

design styles are represented as decomposition methods. When multiple decomposition

methods are applicable, each is tried. Search is controlled by constraining the size of

the design space with performance filters and other means. We have implemented this

approach in a system/language called DTAS.

Our objectives in developing DTAS are two-fold. One objective is to achieve a high­

level of design quality far large RTL data path components, such as 64-bit ALU s. We

are attempting to meet this objective in two ways. First, when possible, components are

mapped into complex RTL library cells, i.e., cells that can provide highly optimized layout

in comparison to functionally equivalent configurations of Boolean cells (4). Second,

alternative design styles are explored dynamically in arder to find designs that best meet

2

performance constraints. The other objective is to maintain design integrity against

technology changes. We are attempting to meet this objective by automating the process

of generating library-specific design methods (5).

In this paper, we focus on the use of alternative design styles and the e:ffects mixing

designs has on design quality. We present results obtained by applying DTAS to a

16-bit adder, 24-bit multiplier, and 64-bit, 16-function ALU. Designs are mapped into

cells from an MCNC benchmark library. We also present a comparison of performance

gains achieved by passing DTAS 's designs through the MISii logk optimization system

(6). These results indicate that by dynamically examining the effects of mixing design

styles it is possible to find designs that make very favorable tradeoffs between area and

delay. These results complement traditional approaches to logic synthesis. By further

application of logic optimization techniques, such as those found in MISii, it is possible

to proportionally refine the performance characteristics of DTAS-generated designs.

2 DTAS: System Overview

DTAS is a functional synthesis system for RTL data path components. This includes

combinational components, such as decoders, multiplexers, parity checkers, and function

generators, arithmetic components, such as adders, comparators, multipliers, and AL U s,

and sequential components, such as shift registers and counters. Designs are hierarchically

decomposed into netlists of cells from a given ASIC vendor's library. These can be simple

Boolean cells or complex functional cells, from multiplexers, adders, and comparators up

to n-bit ALUs, multipliers, and counters. DTAS compares alternative design styles to

find candidate designs that best fit performance constraints. Designs can be output in

structural VHDL and input to logic synthesis and layout tools.

3

Behavioral
Synthesis

Cell
Library

VHDL
Translator

Functional
Decomposition

and
Technology

Mapping

VHDL
Generator

Figure 1: Top-level structure of DTAS

Logic Synthesis
and Layout

The top-level structure of DTAS is outlined in Fig. l. The input to DTAS is a

technology-independent netlist of RTL components, described using the GENUS com­

ponent library (7). This netlist is passed through a phase of functional decomposition

and technology mapping. The result is a set of hierarchical, library-specific netlists that

represent alternative implementations of the components in the input netlist. Each out­

put netlist traces the top-clown design of the input netlist into subcomponents. Leaves

implement the design with cells drawn from the given library. Netlists vary by the design

styles and library cells used in their construction.

DTAS is implemented as a rule-based constructive language, the architecture of which

is shown in Fig. 2. This includes a parser for reading and loading rules from text files and

an interpreter for selecting and firing loaded rules. Each rule describes a decomposition

method for a parameterized component specification. Decomposition can be described

with a combination of Boolean description and connected subcomponents. While the

DTAS Design Language is too complex to describe here, Fig. 3 presents three sample

4

ADD MULT ALU

VHDL Rule Parser/
Parser Loader

Rule
Interpreter

Design
Process

Technology Cell
Mapper Library

VHDL Performance
Writer Checker

Figure 2: System architecture of DTAS design language

rules for decomposing adders (ADD). The rule in Fig. 3 (a) decomposes a 1-bit adder

into Boolean logic; square brackets surrounding ports denote optionality. The other

two rules depict alternative design styles for an n-bit adder. The rule in Fig. 3 (b)

decomposes an n-bit adder into a netlist of n 1-bit adders connected with ripple carry.

The rule in Fig. 3 (e) decomposes an n-bit adder, for n ~ 4, into n 1-bit adders, with

carry propagate (P) and generate (G) outputs, anda carry look-ahead generator (CLA).

There are additional rules, not shown here, for decomposing CLAs and for decomposing

carry look-ahead adders for n > 4.

5

ADD(X Y [CI])
(S [CD] [P G])

->
let CI := O (default)

P := X(+)Y
G .- X*Y
S := P(+)CI
CD := CI•P + G

(a) 1-bit adder w / optional carry

ADD(X-?n y-?n [CI])
(S-?n [CD])

:style RIPPLE
:le.vals O
where ?n > 1
->

f or ?i from 1 to ?n
ADD(X[?i] Y[?i] C.?i)

(S[?i] C.?i+1)
let C.1 := CI

C.?n+1 :=CD

(b) Ripple carry adder

ADD(X-?n y-?n [CI])
(S-?n [CD] [P G])

:style CLA
:levels 1
where ?n > 1 & ?n < 4
->

f or ?i from 1 to ?n
ADD(X[?i] Y[?i] C.?i)

(S[?i] <> P.?i G.?i)
CLA(P.1 .. ?n G.1 .. ?n C.1)

(C.2 .. ?n CD P G)
let C.1 := CI

(e) Carry look-ahead adder

Figure 3: Sample DTAS decomposition rules

Internally, the input netlist is represented as a connection of modules, where a mod­

ule maps the functional specification of a component to a particular implementation of

the specification. There is a 'one-to-many mapping between component specifications

and component implementations; a module is viewed as an instance of a single imple-

mentation. At the beginning of the design process, the modules of the input netlist are

said to be uninstantiated; i.e., they are specified but not link to an implementation. At

the end, the input netlist may have been duplicated several times. In each copy, the

modules of the netlist will be linked to a different set of implementations, giving a set of

functionally-equivalent designs with varying performance characteristics.

The input netlist is used to initialize the design space. The goal of the design process

is to fully instantiate the design space from this seed. The design process uses the rule

6

netlist

---- ¿ ---­
~.,.....~

module module module

'
~edby ·

instance of cspec ----...---- ------cimpl cimpl cimpl

1 1 1

library netlist
,/' ~

module · · · module

netlist
¿ >,,,

~ '
module · · · module

Figure 4: Design space representation

interpreter and the technology mapper to construct alternative implementations of each

component specification of the input netlist. The design process then compares various

combination of the implementations and instantiates those that satisfy a user-defined

performance filter on area and delay. Once the design process has fully instantiated the

design space, DTAS provides tools for examining and testing designs and for outputting

the design in structural VHDL.

3 Expanding The Design Space

The design space is represented as an acyclic graph rooted at the input netlist of unin­

stantiated modules. As shown in Fig. 4, nades of the graph alternate between netlists,

modules, component specifications (cspec), and alternative component implementations

(cimpl). Each component implementation corresponds to either a library cell ora netlist

of modules. Each netlist represents one level of component decomposition into connected

subcomponents. Each module represents an instanc.e of a single implementation of a spec­

ified component. Component implementations corresponding to library cells are said to

7

ADD(r4 y-4 CI)
(s-4 CO)

: data X [] Y [] S []
:carry CI CO
:style CLA
:levels 1

Figure 5: Sample component specification

be grounded; grounded components constitute the leaves of the graph. Branches that

do not eventually lead to grounded components are pruned from the graph. The design

space is expanded by firing decomposition rules and grounded by matching component

specifications to the speci:fication of library cells.

The design process begins with the uninstantiated modules of the input netlist and

recursively expands the design space far each distinct component specification. An ex-

ample component specification far a 4-bit carry look-ahead adder is shown in Fig. 5. It

identifies the function type of the component (ADD), as well as its input ports (A B

CI) and output ports (S CO); it specifies the width and type of each port; and it asso­

ciates attribute/value pairs with the component, such as STYLE/CLA and LEVELS/1.

The ports, their type and· width, and the attribute/value pairs can all be treated as

parameters of a speci:fication.

To expand the design space far a component specification, the design process first

sends the specification to the technology mapper. · The technology mapper matches the

specification agains the component specifications describing each library cell. Far every

successful match, the technology mapper returns a component implementation mapping

the component specification to the matched library cell.

N ext, the design process sends the specification to the rule interpreter, regardless

of whether the technology mapper faund a match. The rule interpreter matches the

8

component specification against the head of each decomposition rule, where the head

of a rule can be viewed as a parameterized component specification template. For each

successful match, the matching rule is fired. Firing a decomposition rule generates a

netlist of uninstantiated modules that implement the specified component to one level

of decomposition. The design process is then applied recursively to this new netlist.

The result is a set of fully grounded alternative implementations of the netlist. The rule

interpreter returns a component implementation for each grounded netlist generated in

this manner.

When the design process finally has all the alternative implementations for each of

the distinct component specifications in the netlist on which it is working, it compares

combinations of the implementations and constructs a netlist of each combination that

satisfies the given performance filter. These netlists are added to the design space.

(Performance filters are discussed furth~r in Sec. 4.)

A sample design space for a 4-bit adder is shown in Fig. 6; assume that the cell library

includes a variety of Boolean gates anda 1-bit full adder (FAl). The decomposition rule

shown in Fig. 7 matches the component specification at the root of the design space.

This rule generates a set of netlists that decampase the adder into a ripple-carry add_er

with varying levels of carry look-ahead, assuming a 4-bit CLA. The design rule seen

earlier in Fig. 3 (b) is applicable to a 4-bit adder with zero levels of carry look-ahead and

generates a netlist of four 1-bit adders. The specification for the 1-bit adders matches the

specification of the FAl library cell, so the design process can ground one implementation

of the netlist. The specification also matches the design rule seen earlier in Fig. 3 (a),

which decomposes the 1-bit adders into Boolean gates, which can also be grounded. A

rule not shown here decampases the RIPPLE-style adder with one level of look-ahead

9

CI CI

A~ A~
B~s B~s
COJ~ CO

ADD(r4 Y-4 CI)

ADD1 ADD2

1 1

º~~º
ADD(X-4 Y-4 CI)

cs-4 ca)
:STYLE RIPPLE
:LEVELS O

----- ----

(s-4 CO)

ADDripple1 ADDrapple2

1 1

-0000 -0000
~ J

ADD(X Y CI)
(S CO)

/ \
FA1 ADDBool

1 1 CI

a ~vs
co

ADD(X-4 y-4 CI)
cs-4 co>

:STYLE RIPPLE
:LEVELS 1

ADD(X-4 y-4 CI)
(s-4 CO)

:STYLE CLA
:LEVELS 1

Ca

Figure 6: Design space for 4-bit adder

co

ADD(x-?n y-?n [CI])
(s-?n [CD])

where ?n > 1
varying ?l from O to ceiling(log(?n,4))
->

ADD(X-?n y-?n CI)
(s-?n co)

:style RIPPLE
:levels ?l

Figure 7: Decomposition rule far n-bit adder

in to a CLA-style adder, and the rule seen in Fig. 3 (e) further decampases the adder

into faur 1-bit adders with carry propagate (P) and generate (G) outputs and a 4-bit

CLA. The rule from Fig. 3 (a) is also applicable to the 1-bit adders, decomposing them

into Boolean gates; another rule not shown here decampases the CLA into Boolean

gates. The final result is that the input netlist far the 4-bit adder has three alternative

implementations: ADDi, ADD2 , and ADD3.

4 Controlling Search

If fully expanded, the size of the design space far a given netlist is bounded by the

product of the number of alternative implementations far each module in the netlist.

Even far small components, such as a 16-bit adder, there can be severa! hundred thousand

alternative designs, only a small percentage of which are of interest. Far DTAS to become

a viable synthesis tool, sorne farm of search control is necessary. We use two fundamental

controlling principies to limit the manner in which DTAS expands the design space.

The first principie is to ignore netlist implementations containing two or more iden­

tically speci:fied modules that are not instances of the same component implementation.

Far instance, DTAS maps the 4-bit ripple-carry adder seen earlier in Fig. 6 into two

implementations, one in which all faur 1-bit adders are mapped into the FAl library cell,

11

and the other in which all four 1-bit adders are mapped into Boolean gates. If our first

principle were not used, the design space would include an additional 14 ripple-carry

implementations that mix the 1-bit library adders with the 1-bit Boolean adders. This

principle reduces the size of the design space for a given netlist to be the product of

number of alternative implementations for each distinct component specification among

the netlist's modules. This effectively reduces the design space for a 16-bit adder to the

tens of thousands.

The second principle is to apply a performance filter during netlist construction.

Construction is the bottom-up P_!ocess in which the design process. combines alternative

implementations of the netlist 's modules in order to genera te alternative implementations

of the netlist. Before returning this set of netlists, the design process passes it to a

performance checker. The performance checker calcula tes the area and delay of each

implementation, orders the implementations by area, from smallest to largest, and applies

a user-defined performance filter to the ordered list. The performance filter is expected to

delete undesirable implementations and return a new list that is a subset of the original.

For instance, if delay is critical, the filter can discard all but sorne percentage of the

fastest implementations; if area is critica!, it can discard all but the smallest. The list

returned by the performance filter is returned by the performance checker and added to

the design space by the design process.

Because we are interested in examining the effects of mixing design styles on area

and delay, our preferred filter discards implenientations that do not make "favorable"

tradeoffs between area and delay. We call this the baseline range filter and define "fa­

vorable" in the following manner. Plotting the smallest implementation and the fastest

implementation within a two-dimensional graph of delay versus area, we imagine a line

12

De/ay

•. J ... o 100%
...• 2

... baseline
......... -10%'

.....

cutoff ~ - ... • 3
• 4

.___ ___ Area

Figure 8: Example application of the baseline range filter

between these two points and call this the baseline. Any of the remaining implemen­

tations that falls between the origin of the graph and a parallel line, called the cuto[f,

sorne percentage distance from the baseline are considered to make a favorable tradeoff

between area and delay; all other implementations are discarded.

To illustrate, consider the graph seen in Fig. 8, which plots six alternative designs by

area and delay. Each alternative appears as a numbered dot. The baseline is shown as

a dashed line connecting Design 1, which has the least area, to Design 6, which has the

least delay. The cutoff is a distance of negative ten percent from the baseline, where a

line at a distance of 100 percent from the baseline would intersect a point at the delay

of the smallest design and the area of the fastest_ design. Given this cutoff, Designs 2

and 5 would be discarded by the perforance filter. The percentage distance of the cutoff

from the baseline is a parameter of the baseline range filter and can be adjusted by the

designer.

U sing a performance fil ter can significantly constrains the size of the design space.

Far instance, even when the baseline range filter is applied only to Boolean gates, it still

13

reduces the design space for a 16-bit adder to less than a dozen alternative implementa­

tions. Examples of the baseline range filter will appear again in the next section, where

we present our results.

5 Performance Results

To determine the effects of mixing design styles, we have applied DTAS to the task of

designing three RTL components of increasing size and complexity: a 16-bit full adder

(ADD16), a 24-by-24-to-48 bit multiplier (MULT24), anda 64-bit, 16-function arithmetic

logic unit (ALU64/16). Generated designs were validated by simulation on randomly­

selected inputs. We have also linked DTAS to the MISII logic optimization system (6)

and report results of its applications to the AL U64/16 example. The results reported

here are independent of mapping to MSI- and LSI-level RTL cells. We will present the

results of using DTAS to map designs into a library of RTL in a future paper.

The cell library used in these experiments is the MCNC benchmark cell library

"lib2.mis2lib" (8). This library contains a variety of one- and two-level Boolean gates.

The performance filter used is the baseline range filter described in the last section. Area

is computed as the sum of the area of the cells used in the design and is measured in

103 microns. Delay is computed using the intrinsic-plus-fanout delay model given in the

library and is measured in nanoseconds. In our experiments, we vary the percentage

distance of the cutoff to the baseline. All experiments were run using Common Lisp on

a Sun-3/110 workstation. We also give the elapsed wall-clock time required to generate

the entire set of designs for each example; this time is heavily dominated by the delay

computations of the performance checker.

14

Dela y

36.2 •. J ...

ADD(X-16 y-16 CI)
(S-16 CO)

27.0 • 2 (87%,-25%)

16.1 3 (93%,-56%)
...__,,..-~~~~~~~~~~~~~~~~~~~~.--~-Area

141.1 271.9

Figure 9: Design space for AD D 16

The graph seen in Fig. 9 plots the results of applying DTAS to the component speci­

fication of ADD16, which appears in the upper left-hand comer. DTAS generated three

alternative designs. Design 1 is the smallest, implementing ADD16 with full ripple carry.

Design 3 is the fastest, implementing ADD16 with two levels of carry look-ahead. Design

2 implements ADD16 by rippling four carry look-ahead 4-bit adders. The dashed line be-

tween Design 1 and Design 3 represents the baseline. For this example, the performance

filter was set to accepts implementations that are within 100 percent of the baseline,

which is a very liberal interpretation of what constitutes a favorable tradeoff. In this

case, Design 2 is not a necessarily desirable alternative. The wall-clock time required to

generate this set of designs was 35 seconds.

The graph seen in Fig. 10 plots the results of applying DTAS to the component

specification of MULT24. DTAS has rules that encade two multiplier design styles:

matrix and tree. These rules encoding the tree style decomposes an n-bit multiplier into

four smaller multipliers, a series of carry-save adders, and an n-bit adder. The partial­

product multipliers can be decomposed further using either a tree or matrix style; the

adder can be decomposed using any mix of adder design styles.

15

Dela y

166.5 •1

120.0 • 2 (33,-283)

105.4 • 3 (6%,-37%)

90.4
83.4
79.6

• 4 (12%,-46%)
• 5 {18%,-50%)

MULT(X--24 y~24)
(P~48)

..... 6 (215%,-52%)
.___,..,....,.....,........,.~~~~~~~~~~~~~~~~~~~~-.--Area

5613.16637.9 17695.2

Figure 10: Design space for MULT24

Because of the range of possible designs, it was necessary to set the percentage cutoff

to -10 percent of the baseline for this experiment. Nonetheless, DTAS still generated

six alternative designs. At one end of the baseline, Design 1 implements MULT24 as

a full matrix multiplier; at the other end, Design 6 implements MULT24 as a full tree

multiplier with full carry look-ahead adders at each level of the tree. Design 6 reduces

delay by 51 percent over Design 1, but only by increasing the area by 215 percent. In this

case, the intermediate designs appear quite desirable. Far a cost of 3 percent more area

over Design 1, Design 2 reduces delay by 28 percent; for a cost of 2 percent in delay over

Design 6, Design 5 reduces area by 73 percent. Designs 3 and 4 make similar tradeoffs.

Design 2 implements MULT24 as a tree of matrix multipliers with a ripple carry adder;

Design 3 as trée of matrix multipliers with a full carry look-ahead adder; Design 4 as

tree of tree of matrix multipliers with ripple carry adders; and Design 5 as a tree of tree

of matrix multipliers with full carry look-ahead adders. The wall-clock time required by

DTAS was 5493 seconds.

The graph seen in Fig. 11 plots the results of applying DTAS to ALU64/16. DTAS

rules encade two AL U styles: an integrated style, in which all operations are generated

16

Dela y

229.4 •. J

44.0

ALU(A-64 B-64 CI s-4)
(F-64 ca R)

:CTRL S[] (:STYLE BINARY)
:OPERATIONS (ADD SUB INC DEC

EQ LT GT ZEROP AND OR NAND
NOR XOR XNOR LNOT LIMPL

• 2 (9%,-80%) 3 (30%,-81 %)
.__,...--...--...--...--...--...--...--~...--...--...--...--...--...--...--...--...--...--...--...--...--...--~- A rea
5626.9 6158.7 7295.9

Figure 11: Design space for ALU64/16

by externa! logic around an adder with carry enable, and a segregated style, in which

arithmetic and comparison operations are separated from logic operations, where the

former are generated by an adder (without carry enable) and the latter by a function

generator; outputs are combined through a multiplexer. Design 1 uses the integrated

style with a ripple carry adder; Design 2 uses the integrated style with a full carry

look-ahead adder; Design 3 uses the segregated style with a full carry look-ahead adder.

Design 2 makes a very favorable tradeoff between Designs 1 and 3. In this experiment,

the cutoff was set to the baseline. The wall-clock time required by DTAS was 3859

seconds.

Although DTAS performs technology mapping via functional decomposition and by

comparison of functional specifications, we do not feel that this is in competition with

the logic optimization and graph-matching techniques found in mainstream logic syn­

thesis. Rather, we feel that it is complementary. DTAS can generate a range of designs

for complex RTL components, such as MULT24 and AL U64/16, whose Boolean descrip­

tion would overwhelm the MISII logic optimizer. MISII can then be used to optimize

subcomponents of these designs.

17

Our claim is that by dynamically examining the effects of mixing design styles, we can

generate a range of designs that make favorable and desirable tradeoffs between area and

delay. We have presented results that validate this claim on two complex components,

a 24-bit multiplier anda 64-bit ALU. We have also presented results that show how our­

approach can be integrated with mainstream logic synthesis technology to produce even

better designs.

The DTAS Design Language/System is implemented in Common Lisp on a Sun-3

workstation environment. The designs generated for the three examples presented in

Sec. 5 required 85 decomposition rules. Our future efforts will emphasize the use of

RTL library cells and on techniques for maintaining technology independence within the

DTAS framework.

References

[1] J. Rabaey, H. de Man, J. Vanhoof, G. Goossens, and F. Catthoor, "CATiIEDRAL­

II: A synthesis system for multiprocessor DSP systems," in Silicon Compilers (D. D.

Gajski, ed.), pp. 311-360, Reading, MA: Addison-Wesley, 1988.

[2] R. K. Brayton, R. Camposano, G. De Micheli, R. H. J. M. Otten, and J. van Eijnd­

hoven, "The yorktown silicon compiler system," in Silicon Compilers (D. D. Gajski,

ed.), pp. 204-310, Reading, MA: Addison-Wesley, 1988.

[3] R. Camposano and L. H. Trevillyan, "The integration oflogic synthesis and high-level

synthesis," in Proceedings of the International Symposium of Circuits and Systems,

pp. 744-747, 1989.

19

[4] N. D. Dutt and J. R. Kipps, "Bridging high-level synthesis to rlt technology libraries,"

in Proceedings of the 28th Design Automation Conference, 1991.

[5] J. R. Kipps and D. D. Gajski, "The role of learning in logic synthesis," International

Journal of Pattern Recognition and Artificial Intelligence, vol. 4, pp. 167-180, June

1990.

[6] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, "Tech­

nology mapping in mis," in Proceedings of the International Conference on Computer­

Aided Design (ICCAD-87}, pp. 116-119, November 1987.

[7] N. Dutt, "GENUS: A generic component library far high-level synthesis," Tech. Rep.

88-22, Department of Information and Computer Science, University of California,

Irvine, September 1988.

[8] R. Lisanke, Logic Synthesis and Optimization Benchmarks. Research Triangle Park,

NC: Microelectronics Center of North Carolina, 1988.

20

