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Abstract 

By mixing design styles during synthesis of RTL components such as adders, 

multipliers, and AL Us, it is possible to generate a range of designs from small to f;;ist, 

where intermediate designs make favorable and possibly desirable tradeoffs between 

area and delay. Although module generators can be written to reflect design styles 

that reduce either area or delay, the current approach to generator execution does not 

examine the effects of mixing different design styles. We have developed an approach 

to RTL component synthesis that searches the space of design alternatives, and we 

have implemented this approach with the DTAS Design Language. The significance 

of our approach is that it allows DTAS to generate designs use a combination of 

design styles and to compare the effects of mixing styles. In this paper, we outline 

the operation of DTAS and describe how DTAS expands and constrains the design 

space. We present results from applying DTAS to large RTL components using an 

MCNC benchmark library. We also present results of integrating DTAS with the 

MISii logic optimizer. 
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Effects of Mixing Design Styles 
ih The Synthesis of RTL Components 

Abstract 

By mixing design styles during synthesis of RTL components such as adders, 

multipliers, and ALUs, it is possible to generate a range of designa from small to fast, 

where intermediate designs make favorable and possibly desirable tradeoffs between 

area and delay. Although module generators can be written to reflect design styles 

that reduce either area or delay, the current approach to generator execution <loes 

not examine the effects of mixing different design styles. We have developed an 

approach to RTL component synthesis that searches the space of design alternatives, 

and we have implemented this approach in a system called DTAS. The significance 

of our approach is that it allows DTAS to generate designs use a combination of 

design styles and to compare the effects of mixing styles. In this paper, we outline 

the operation of DTAS and describe how DTAS expands and constrains the design 

space. We present results from applying DTAS to large RTL components using an 

MCNC benchmark cell library. We also present results of integrating DTAS with 

the MISII logic optimization system. 

1 Introduction 

The design style used in mapping register-transfer level (RTL) components., suc~ as 

adders, multipliers, and ALUs, into logic or layout impacis the quality of the resulting 

design with regard to area or delay. Far example, a ripple-carry style generates a small 

but slow adder, while a carry look-ahead style generates a fast but large adder, and a 

matrix style generates a small but slow multiplier, while a tree style generates a fast but 

large multiplier. Design styles can be mixed to generate designs that tradeo:ff area and 

delay. A 16-bit adder designed by rippling four 4-bit carry look-ahead adders will be 

intermediate in area and delay between a full ripple-carry adder and a full carry look-
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ahead adder. Whether the tradeoffs are actually desirable is difficult to determine in the 

absence of technology mapping. 

RTL components are often synthesized using module generators, where a module 

generator is treated as procedure that generates logic or layout far a parameterized 

component specification (1; 2; 3). Module generators can be written to refl.ect alternative ~ 

design styles. Such generators will include parameters with values such as smallest or 

fastest to select between competing styles. The problem with this approach is that it 

only finds a single point in the design space of an RTL component. There may exists 

alternative designs that make favorable and even desirable tradeoffs between area and 

delay. Without searching the design space, the "single design" approach to module 

generation will fail to find these alternatives. 

We have developed a search-based approach to RTL component synthesis that ex­

plores the effects of mixing alternative design styles. In this approach, input component 

specifications are mapped into a given cell library by functional decomposition, where 

design styles are represented as decomposition methods. When multiple decomposition 

methods are applicable, each is tried. Search is controlled by constraining the size of 

the design space with performance filters and other means. We have implemented this 

approach in a system/language called DTAS. 

Our objectives in developing DTAS are two-fold. One objective is to achieve a high­

level of design quality far large RTL data path components, such as 64-bit ALU s. We 

are attempting to meet this objective in two ways. First, when possible, components are 

mapped into complex RTL library cells, i.e., cells that can provide highly optimized layout 

in comparison to functionally equivalent configurations of Boolean cells ( 4). Second, 

alternative design styles are explored dynamically in arder to find designs that best meet 
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performance constraints. The other objective is to maintain design integrity against 

technology changes. We are attempting to meet this objective by automating the process 

of generating library-specific design methods (5). 

In this paper, we focus on the use of alternative design styles and the e:ffects mixing 

designs has on design quality. We present results obtained by applying DTAS to a 

16-bit adder, 24-bit multiplier, and 64-bit, 16-function ALU. Designs are mapped into 

cells from an MCNC benchmark library. We also present a comparison of performance 

gains achieved by passing DTAS 's designs through the MISii logk optimization system 

(6). These results indicate that by dynamically examining the effects of mixing design 

styles it is possible to find designs that make very favorable tradeoffs between area and 

delay. These results complement traditional approaches to logic synthesis. By further 

application of logic optimization techniques, such as those found in MISii, it is possible 

to proportionally refine the performance characteristics of DTAS-generated designs. 

2 DTAS: System Overview 

DTAS is a functional synthesis system for RTL data path components. This includes 

combinational components, such as decoders, multiplexers, parity checkers, and function 

generators, arithmetic components, such as adders, comparators, multipliers, and AL U s, 

and sequential components, such as shift registers and counters. Designs are hierarchically 

decomposed into netlists of cells from a given ASIC vendor's library. These can be simple 

Boolean cells or complex functional cells, from multiplexers, adders, and comparators up 

to n-bit ALUs, multipliers, and counters. DTAS compares alternative design styles to 

find candidate designs that best fit performance constraints. Designs can be output in 

structural VHDL and input to logic synthesis and layout tools. 
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Figure 1: Top-level structure of DTAS 

Logic Synthesis 
and Layout 

The top-level structure of DTAS is outlined in Fig. l. The input to DTAS is a 

technology-independent netlist of RTL components, described using the GENUS com­

ponent library (7). This netlist is passed through a phase of functional decomposition 

and technology mapping. The result is a set of hierarchical, library-specific netlists that 

represent alternative implementations of the components in the input netlist. Each out­

put netlist traces the top-clown design of the input netlist into subcomponents. Leaves 

implement the design with cells drawn from the given library. Netlists vary by the design 

styles and library cells used in their construction. 

DTAS is implemented as a rule-based constructive language, the architecture of which 

is shown in Fig. 2. This includes a parser for reading and loading rules from text files and 

an interpreter for selecting and firing loaded rules. Each rule describes a decomposition 

method for a parameterized component specification. Decomposition can be described 

with a combination of Boolean description and connected subcomponents. While the 

DTAS Design Language is too complex to describe here, Fig. 3 presents three sample 
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Figure 2: System architecture of DTAS design language 

rules for decomposing adders (ADD). The rule in Fig. 3 (a) decomposes a 1-bit adder 

into Boolean logic; square brackets surrounding ports denote optionality. The other 

two rules depict alternative design styles for an n-bit adder. The rule in Fig. 3 (b) 

decomposes an n-bit adder into a netlist of n 1-bit adders connected with ripple carry. 

The rule in Fig. 3 (e) decomposes an n-bit adder, for n ~ 4, into n 1-bit adders, with 

carry propagate (P) and generate (G) outputs, anda carry look-ahead generator (CLA). 

There are additional rules, not shown here, for decomposing CLAs and for decomposing 

carry look-ahead adders for n > 4. 
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ADD(X Y [CI]) 
(S [CD] [P G]) 

-> 
let CI := O (default) 

P := X(+)Y 
G .- X*Y 
S := P(+)CI 
CD := CI•P + G 

(a) 1-bit adder w / optional carry 

ADD(X-?n y-?n [CI]) 
(S-?n [CD]) 

:style RIPPLE 
:le.vals O 
where ?n > 1 
-> 

f or ?i from 1 to ?n 
ADD(X[?i] Y[?i] C.?i) 

(S[?i] C.?i+1) 
let C.1 := CI 

C.?n+1 :=CD 

(b) Ripple carry adder 

ADD(X-?n y-?n [CI]) 
(S-?n [CD] [P G]) 

:style CLA 
:levels 1 
where ?n > 1 & ?n < 4 
-> 

f or ?i from 1 to ?n 
ADD(X[?i] Y[?i] C.?i) 

(S[?i] <> P.?i G.?i) 
CLA(P.1 .. ?n G.1 .. ?n C.1) 

(C.2 .. ?n CD P G) 
let C.1 := CI 

(e) Carry look-ahead adder 

Figure 3: Sample DTAS decomposition rules 

Internally, the input netlist is represented as a connection of modules, where a mod­

ule maps the functional specification of a component to a particular implementation of 

the specification. There is a 'one-to-many mapping between component specifications 

and component implementations; a module is viewed as an instance of a single imple-

mentation. At the beginning of the design process, the modules of the input netlist are 

said to be uninstantiated; i.e., they are specified but not link to an implementation. At 

the end, the input netlist may have been duplicated several times. In each copy, the 

modules of the netlist will be linked to a different set of implementations, giving a set of 

functionally-equivalent designs with varying performance characteristics. 

The input netlist is used to initialize the design space. The goal of the design process 

is to fully instantiate the design space from this seed. The design process uses the rule 
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¿ >,,, 
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Figure 4: Design space representation 

interpreter and the technology mapper to construct alternative implementations of each 

component specification of the input netlist. The design process then compares various 

combination of the implementations and instantiates those that satisfy a user-defined 

performance filter on area and delay. Once the design process has fully instantiated the 

design space, DTAS provides tools for examining and testing designs and for outputting 

the design in structural VHDL. 

3 Expanding The Design Space 

The design space is represented as an acyclic graph rooted at the input netlist of unin­

stantiated modules. As shown in Fig. 4, nades of the graph alternate between netlists, 

modules, component specifications ( cspec ), and alternative component implementations 

( cimpl). Each component implementation corresponds to either a library cell ora netlist 

of modules. Each netlist represents one level of component decomposition into connected 

subcomponents. Each module represents an instanc.e of a single implementation of a spec­

ified component. Component implementations corresponding to library cells are said to 
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ADD(r4 y-4 CI) 
(s-4 CO) 

: data X [] Y [] S [] 
:carry CI CO 
:style CLA 
:levels 1 

Figure 5: Sample component specification 

be grounded; grounded components constitute the leaves of the graph. Branches that 

do not eventually lead to grounded components are pruned from the graph. The design 

space is expanded by firing decomposition rules and grounded by matching component 

specifications to the speci:fication of library cells. 

The design process begins with the uninstantiated modules of the input netlist and 

recursively expands the design space far each distinct component specification. An ex-

ample component specification far a 4-bit carry look-ahead adder is shown in Fig. 5. It 

identifies the function type of the component (ADD), as well as its input ports (A B 

CI) and output ports (S CO); it specifies the width and type of each port; and it asso­

ciates attribute/value pairs with the component, such as STYLE/CLA and LEVELS/1. 

The ports, their type and· width, and the attribute/value pairs can all be treated as 

parameters of a speci:fication. 

To expand the design space far a component specification, the design process first 

sends the specification to the technology mapper. · The technology mapper matches the 

specification agains the component specifications describing each library cell. Far every 

successful match, the technology mapper returns a component implementation mapping 

the component specification to the matched library cell. 

N ext, the design process sends the specification to the rule interpreter, regardless 

of whether the technology mapper faund a match. The rule interpreter matches the 
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component specification against the head of each decomposition rule, where the head 

of a rule can be viewed as a parameterized component specification template. For each 

successful match, the matching rule is fired. Firing a decomposition rule generates a 

netlist of uninstantiated modules that implement the specified component to one level 

of decomposition. The design process is then applied recursively to this new netlist. 

The result is a set of fully grounded alternative implementations of the netlist. The rule 

interpreter returns a component implementation for each grounded netlist generated in 

this manner. 

When the design process finally has all the alternative implementations for each of 

the distinct component specifications in the netlist on which it is working, it compares 

combinations of the implementations and constructs a netlist of each combination that 

satisfies the given performance filter. These netlists are added to the design space. 

(Performance filters are discussed furth~r in Sec. 4.) 

A sample design space for a 4-bit adder is shown in Fig. 6; assume that the cell library 

includes a variety of Boolean gates anda 1-bit full adder (FAl). The decomposition rule 

shown in Fig. 7 matches the component specification at the root of the design space. 

This rule generates a set of netlists that decampase the adder into a ripple-carry add_er 

with varying levels of carry look-ahead, assuming a 4-bit CLA. The design rule seen 

earlier in Fig. 3 (b) is applicable to a 4-bit adder with zero levels of carry look-ahead and 

generates a netlist of four 1-bit adders. The specification for the 1-bit adders matches the 

specification of the FAl library cell, so the design process can ground one implementation 

of the netlist. The specification also matches the design rule seen earlier in Fig. 3 (a), 

which decomposes the 1-bit adders into Boolean gates, which can also be grounded. A 

rule not shown here decampases the RIPPLE-style adder with one level of look-ahead 
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:STYLE CLA 
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Ca 

Figure 6: Design space for 4-bit adder 
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ADD(x-?n y-?n [CI]) 
(s-?n [CD]) 

where ?n > 1 
varying ?l from O to ceiling(log(?n,4)) 
-> 

ADD(X-?n y-?n CI) 
(s-?n co) 

:style RIPPLE 
:levels ?l 

Figure 7: Decomposition rule far n-bit adder 

in to a CLA-style adder, and the rule seen in Fig. 3 (e) further decampases the adder 

into faur 1-bit adders with carry propagate (P) and generate (G) outputs and a 4-bit 

CLA. The rule from Fig. 3 (a) is also applicable to the 1-bit adders, decomposing them 

into Boolean gates; another rule not shown here decampases the CLA into Boolean 

gates. The final result is that the input netlist far the 4-bit adder has three alternative 

implementations: ADDi, ADD2 , and ADD3. 

4 Controlling Search 

If fully expanded, the size of the design space far a given netlist is bounded by the 

product of the number of alternative implementations far each module in the netlist. 

Even far small components, such as a 16-bit adder, there can be severa! hundred thousand 

alternative designs, only a small percentage of which are of interest. Far DTAS to become 

a viable synthesis tool, sorne farm of search control is necessary. We use two fundamental 

controlling principies to limit the manner in which DTAS expands the design space. 

The first principie is to ignore netlist implementations containing two or more iden­

tically speci:fied modules that are not instances of the same component implementation. 

Far instance, DTAS maps the 4-bit ripple-carry adder seen earlier in Fig. 6 into two 

implementations, one in which all faur 1-bit adders are mapped into the FAl library cell, 
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and the other in which all four 1-bit adders are mapped into Boolean gates. If our first 

principle were not used, the design space would include an additional 14 ripple-carry 

implementations that mix the 1-bit library adders with the 1-bit Boolean adders. This 

principle reduces the size of the design space for a given netlist to be the product of 

number of alternative implementations for each distinct component specification among 

the netlist's modules. This effectively reduces the design space for a 16-bit adder to the 

tens of thousands. 

The second principle is to apply a performance filter during netlist construction. 

Construction is the bottom-up P_!ocess in which the design process. combines alternative 

implementations of the netlist 's modules in order to genera te alternative implementations 

of the netlist. Before returning this set of netlists, the design process passes it to a 

performance checker. The performance checker calcula tes the area and delay of each 

implementation, orders the implementations by area, from smallest to largest, and applies 

a user-defined performance filter to the ordered list. The performance filter is expected to 

delete undesirable implementations and return a new list that is a subset of the original. 

For instance, if delay is critical, the filter can discard all but sorne percentage of the 

fastest implementations; if area is critica!, it can discard all but the smallest. The list 

returned by the performance filter is returned by the performance checker and added to 

the design space by the design process. 

Because we are interested in examining the effects of mixing design styles on area 

and delay, our preferred filter discards implenientations that do not make "favorable" 

tradeoffs between area and delay. We call this the baseline range filter and define "fa­

vorable" in the following manner. Plotting the smallest implementation and the fastest 

implementation within a two-dimensional graph of delay versus area, we imagine a line 
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De/ay 

•. J ... o 100% 
...• 2 

... ... ... baseline ... ... ... ... 
......... -10%' ...... 

..... .... ..... ..... 

cutoff ......... ........ ~ ...... - ... • 3 
• 4 

.___ _______________________________________________ Area 

Figure 8: Example application of the baseline range filter 

between these two points and call this the baseline. Any of the remaining implemen­

tations that falls between the origin of the graph and a parallel line, called the cuto[f, 

sorne percentage distance from the baseline are considered to make a favorable tradeoff 

between area and delay; all other implementations are discarded. 

To illustrate, consider the graph seen in Fig. 8, which plots six alternative designs by 

area and delay. Each alternative appears as a numbered dot. The baseline is shown as 

a dashed line connecting Design 1, which has the least area, to Design 6, which has the 

least delay. The cutoff is a distance of negative ten percent from the baseline, where a 

line at a distance of 100 percent from the baseline would intersect a point at the delay 

of the smallest design and the area of the fastest_ design. Given this cutoff, Designs 2 

and 5 would be discarded by the perforance filter. The percentage distance of the cutoff 

from the baseline is a parameter of the baseline range filter and can be adjusted by the 

designer. 

U sing a performance fil ter can significantly constrains the size of the design space. 

Far instance, even when the baseline range filter is applied only to Boolean gates, it still 

13 



reduces the design space for a 16-bit adder to less than a dozen alternative implementa­

tions. Examples of the baseline range filter will appear again in the next section, where 

we present our results. 

5 Performance Results 

To determine the effects of mixing design styles, we have applied DTAS to the task of 

designing three RTL components of increasing size and complexity: a 16-bit full adder 

(ADD16), a 24-by-24-to-48 bit multiplier (MULT24), anda 64-bit, 16-function arithmetic 

logic unit (ALU64/16). Generated designs were validated by simulation on randomly­

selected inputs. We have also linked DTAS to the MISII logic optimization system (6) 

and report results of its applications to the AL U64/16 example. The results reported 

here are independent of mapping to MSI- and LSI-level RTL cells. We will present the 

results of using DTAS to map designs into a library of RTL in a future paper. 

The cell library used in these experiments is the MCNC benchmark cell library 

"lib2.mis2lib" (8). This library contains a variety of one- and two-level Boolean gates. 

The performance filter used is the baseline range filter described in the last section. Area 

is computed as the sum of the area of the cells used in the design and is measured in 

103 microns. Delay is computed using the intrinsic-plus-fanout delay model given in the 

library and is measured in nanoseconds. In our experiments, we vary the percentage 

distance of the cutoff to the baseline. All experiments were run using Common Lisp on 

a Sun-3/110 workstation. We also give the elapsed wall-clock time required to generate 

the entire set of designs for each example; this time is heavily dominated by the delay 

computations of the performance checker. 
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...__,,..-~~~~~~~~~~~~~~~~~~~~.--~-Area 

141.1 271.9 

Figure 9: Design space for AD D 16 

The graph seen in Fig. 9 plots the results of applying DTAS to the component speci­

fication of ADD16, which appears in the upper left-hand comer. DTAS generated three 

alternative designs. Design 1 is the smallest, implementing ADD16 with full ripple carry. 

Design 3 is the fastest, implementing ADD16 with two levels of carry look-ahead. Design 

2 implements ADD16 by rippling four carry look-ahead 4-bit adders. The dashed line be-

tween Design 1 and Design 3 represents the baseline. For this example, the performance 

filter was set to accepts implementations that are within 100 percent of the baseline, 

which is a very liberal interpretation of what constitutes a favorable tradeoff. In this 

case, Design 2 is not a necessarily desirable alternative. The wall-clock time required to 

generate this set of designs was 35 seconds. 

The graph seen in Fig. 10 plots the results of applying DTAS to the component 

specification of MULT24. DTAS has rules that encade two multiplier design styles: 

matrix and tree. These rules encoding the tree style decomposes an n-bit multiplier into 

four smaller multipliers, a series of carry-save adders, and an n-bit adder. The partial­

product multipliers can be decomposed further using either a tree or matrix style; the 

adder can be decomposed using any mix of adder design styles. 
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90.4 
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MULT(X--24 y~24) 
(P~48) 

..... 6 (215%,-52%) 
.___,..,....,.....,........,.~~~~~~~~~~~~~~~~~~~~-.--Area 

5613.16637.9 17695.2 

Figure 10: Design space for MULT24 

Because of the range of possible designs, it was necessary to set the percentage cutoff 

to -10 percent of the baseline for this experiment. Nonetheless, DTAS still generated 

six alternative designs. At one end of the baseline, Design 1 implements MULT24 as 

a full matrix multiplier; at the other end, Design 6 implements MULT24 as a full tree 

multiplier with full carry look-ahead adders at each level of the tree. Design 6 reduces 

delay by 51 percent over Design 1, but only by increasing the area by 215 percent. In this 

case, the intermediate designs appear quite desirable. Far a cost of 3 percent more area 

over Design 1, Design 2 reduces delay by 28 percent; for a cost of 2 percent in delay over 

Design 6, Design 5 reduces area by 73 percent. Designs 3 and 4 make similar tradeoffs. 

Design 2 implements MULT24 as a tree of matrix multipliers with a ripple carry adder; 

Design 3 as trée of matrix multipliers with a full carry look-ahead adder; Design 4 as 

tree of tree of matrix multipliers with ripple carry adders; and Design 5 as a tree of tree 

of matrix multipliers with full carry look-ahead adders. The wall-clock time required by 

DTAS was 5493 seconds. 

The graph seen in Fig. 11 plots the results of applying DTAS to ALU64/16. DTAS 

rules encade two AL U styles: an integrated style, in which all operations are generated 
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5626.9 6158.7 7295.9 

Figure 11: Design space for ALU64/16 

by externa! logic around an adder with carry enable, and a segregated style, in which 

arithmetic and comparison operations are separated from logic operations, where the 

former are generated by an adder ( without carry enable) and the latter by a function 

generator; outputs are combined through a multiplexer. Design 1 uses the integrated 

style with a ripple carry adder; Design 2 uses the integrated style with a full carry 

look-ahead adder; Design 3 uses the segregated style with a full carry look-ahead adder. 

Design 2 makes a very favorable tradeoff between Designs 1 and 3. In this experiment, 

the cutoff was set to the baseline. The wall-clock time required by DTAS was 3859 

seconds. 

Although DTAS performs technology mapping via functional decomposition and by 

comparison of functional specifications, we do not feel that this is in competition with 

the logic optimization and graph-matching techniques found in mainstream logic syn­

thesis. Rather, we feel that it is complementary. DTAS can generate a range of designs 

for complex RTL components, such as MULT24 and AL U64/16, whose Boolean descrip­

tion would overwhelm the MISII logic optimizer. MISII can then be used to optimize 

subcomponents of these designs. 
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Our claim is that by dynamically examining the effects of mixing design styles, we can 

generate a range of designs that make favorable and desirable tradeoffs between area and 

delay. We have presented results that validate this claim on two complex components, 

a 24-bit multiplier anda 64-bit ALU. We have also presented results that show how our­

approach can be integrated with mainstream logic synthesis technology to produce even 

better designs. 

The DTAS Design Language/System is implemented in Common Lisp on a Sun-3 

workstation environment. The designs generated for the three examples presented in 

Sec. 5 required 85 decomposition rules. Our future efforts will emphasize the use of 

RTL library cells and on techniques for maintaining technology independence within the 

DTAS framework. 
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