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ABSTRACT OF THE DISSERTATION

Kernel-based anatomical image-guided optical tomographic

reconstruction

by

Reheman Baikejiang

Doctor of Philosophy in Biological Engineering and Small-scale Technologies

University of California Merced, 2017

Professor Changqing Li, Chair

Optical tomography, specifically, diffuse optical tomography (DOT) and fluorescent

molecular tomography (FMT) are promising functional imaging modalities with a

high sensitivity and specificity. However, the inverse problem of DOT and FMT

are ill-posed and ill-conditioned due to strong optical scattering in deep tissues,

which results in poor spatial resolution for deep target imaging. It is well known

that DOT and FMT image quality can be improved substantially by applying

structural guidance in the reconstruction algorithm.

In this dissertation, First, I conducted a feasibility study of computed tomog-

raphy (CT) guided DOT system for breast cancer imaging. I built a noncontact

projection style prototype DOT which consists of a laser at the wavelength of 650

nm and an electron multiplying charge coupled device (EMCCD) camera. We

have validated the CT-guided DOT reconstruction algorithms with numerical sim-

ulations and phantom experiments, in which different imaging setup parameters,

such as projection number of measurements and width of measurement patch, have

been investigated.

Secondly, inspired by the kernel methods in machine learning, I introduced a

kernel-based image reconstruction algorithm into anatomical image-guided DOT.

Compared with conventional Laplacian approaches that include structural priors

by regularization matrix, the developed method applied in this research incorpo-

xvi



rates a kernel matrix with the projection model into the objective function and

does not require image segmentation. The optical absorption coefficient at each

finite element node is represented as a function of a set of features obtained from

anatomical images such as computed tomography (CT) images. The proposed

kernel method is validated with numerical simulations and agar phantom experi-

ments. The proposed method utilized a CT volume data set without segmentation

from a clinical breast CT system in the DOT.

Lastly, I implemented kernel-based anatomical guidance into the FMT image

reconstruction. In FMT, the fluorophore concentration at each node is defined as

a function of a set of feature vectors, which is directly extracted from the voxel

intensities of the corresponding anatomical 3D images. This research studied the

effects of voxel size and a number of nearest neighbors in the kernel method on

the quality of reconstructed FMT images. The results indicate that the spatial

resolution and the accuracy of the reconstructed FMT images have been improved

substantially after applying the anatomical guidance with the proposed kernel

method. The proposed method utilized magnetic resonance imaging (MRI) rat

brain image in FMT simulation, which further proved that we do not need to

segment the anatomical image for the kernel method. The proposed kernel method

was found to be robust to the false positive guidance in the anatomical image.

As future work, the DOT prototype system will be integrated with a dedi-

cated CT system, and clinical trials will be conducted using kernel-based image

reconstruction algorithm.
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Chapter 1

Overview

1.1 Optical tomography

1.1.1 Introduction to optical tomography

Optical tomography has been a rapidly developing technology in biomedical

imaging for the last few decades[1, 2, 3]. Optical tomography utilizes non-ionizing

Near-infrared (NIR) photons in the wavelength range from 650 to 950 nm[4]. In

this range, biological tissues especially soft tissues such as breast and brain tis-

sues, are relatively transparent, which enables the detection of transmitted photons

through the tissue[5]. Optical absorption spectra vary with the oxygenation and

deoxygenation states of hemoglobin (Hb) which is related to hypermetabolism[6].

Hemoglobin concentration itself relates to the angiogenesis[6]. Both hyperme-

tabolism and angiogenesis are the major physiological markers of cancers due to

the fast cancer cell proliferation[7]. Therefore, optical absorption serves as intrin-

sic contrast for functional imaging. Besides absorption, optical scattering spectra

provide information about the size distribution of optical scattering particles such

as organelles in tissue, which potentially reveals cellular structure changes of the

cancerous tissues[8].

Optical tomography is significantly different from microscopic imaging which

based on unscattered or slightly backscattered ballistics(coherent) photons[9]. High

spatial resolution (a fraction of µm) is the main advantages of ballistic imaging.
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However, ballistic imaging constrained to a depth from where ballistic and/or

snake photons can be detected by the detectors which is usually less than one

millimeter[10]. Optical tomography can reach to little bit depth, up to several

centimeters (cm). There are numbers of techniques belong to the optical tomog-

raphy category. Here I briefly discuss few of them:

Optical coherence tomography (OCT)

OCT is a tomographic technique suitable for the imaging of surface layers of

highly scattering, nontransparent samples, as probing is obtained from backscat-

tered photons[11]. Basically, it comprises of a short-coherence light source and an

interferometer with one well-defined reference arm and a probe arm that is directed

into the sample[12]. OCT is analogous to ultrasonography. Spatial resolution is in

the range of a few micrometers(1 to 10µm) and penetration depth also reaches up

to a few millimeters(1-2 mm)[13].

Diffuse optical tomography (DOT)

DOT is suitable for samples larger than those used in OCT, such as human

breast and infant’s brain[14]. DOT allows for a spatially resolved analysis of optical

scattering and absorption properties, which is required for quantitative assessment

of functional parameters such as total hemoglobin and hemoglobin oxygenation.

The spatial resolution of DOT is in the order of 20% of the imaging depth[9].

Fluorescent molecular tomography (FMT)

FMT is a special case of DOT since the physics for diffusive photon propaga-

tion is identical. Instead of recovering intrinsic contrasts, FMT recovers extrinsic

contrasts such as fluoresce dye concentration[15]. It has better spatial resolution

than DOT, but require fluorescent dye injection. Currently it is suitable for small

animal imaging due to the toxicity of the contrast agents.
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Photoacoustic tomography (PAT)

PAT can treated as a hybrid imaging modality among optical imaging and

ultrasonic imaging, because the spatial resolution is determined by the acoustic

signals that are from optical absorbers excited by a short pulsed laser[9]. Due to

its hybrid nature, PAT overcomes the limitations of optical scattering thus can

image the optical absorbers at a superfine spatial resolution of ultrasonic imaging,

while it still has the limitations of acoustic imaging such as air-tissue interface

problem.

Ultrasound-modulated optical tomography (UOT)

UOT is another hybrid imaging technique that takes advantage of both optical

contrast and ultrasonic resolution[9]. In UOT, some of the scattered photons are

temporarily modulated by a focused ultrasonic wave inside the biological tissue,

which results in phase and frequency shift of transmitted photons. Such modulated

photons can be discriminated from background un-modulated photons, and their

origins can be directly derived from the position of the ultrasonic column inside

the tissue[16]. UOT allows recovering optical contrast at depths of few centimeters

with a millimeter resolution[9].

X-ray luminescence computed tomography (XLCT)

XLCT is an emerging hybrid imaging modality in which X-ray photons are

used to excite phosphors emitting optical photons that are measured for optical

tomography imaging[17, 18, 19]. The X-ray beam position and size are used as

anatomical guidance in the optical reconstruction[20]. XLCT is possible to have the

high sensitivity of optical imaging and high spatial resolution of X-ray imaging[21].

Recently, it has been demonstrated that a 23 mm deep target with a concentration

of 0.01 mg/mL could be reconstructed successfully, which indicate that XLCT is

suitable to image a mouse-sized object[22].

This dissertation focus on two applications of optical tomography in biomedical

imaging, namely: DOT and FMT.
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1.1.2 Photon transport and diffusion theory

Most biological tissues are characterized by strong optical scattering and week

absorption in the optical wavelength range from 650 to 1000 nm. Photon propaga-

tion through highly scattering media can be modeled analytically by the radiative

transfer equation (RTE), also known as Boltzmann transport equation. Neglect-

ing coherence, polarization and non-linearity, the RTE can be derived from the

principle of conservation of energy. Assuming optical properties such as refractive

index, absorption coefficient, scattering coefficient and scattering anisotropy are

time-invariant but space variant, RTE is written as[23, 24](
1

c

∂

∂t
+ ŝ · ∇+ µt

)
L(~r, ŝ, t) = µs

∫
4π

L(~r, ŝ, t)P (ŝ′ · ŝ)dΩ′ + S(~r, ŝ, t), (1.1)

where L(~r, ŝ, t) is the radiance at position ~r , at time t, propagating along the unit

direction vector ŝ = (sin θ cosφ, sin θ sinφ, cos θ), where θ and φ denote the polar

and azimuthal angles, respectively. The unit of radiance is the watt per steradian

per square meter (W m-2 sr-1). µt = µa + µs is the extinction coefficient. µa and

µs, the absorption and scattering coefficients, are the inverse of the absorption

and scattering mean free path respectively. c is the speed of light in the medium.

The phase function P (ŝ′ · ŝ) is the probability density function and the product

P (ŝ′ · ŝ)dΩ represents the probability of light with propagation direction ŝ′ being

scattered into the dΩ around direction ŝ. S(~r, ŝ, t) is the source radiance.

The intro-differential equation above is hard to be solved deterministically since

it has six degree of freedom, three in space, two in direction, and time. Monte Carlo

method is the widely accepted state-of-the-art stochastic method. However, the

statistical nature of the method requires tracking a large number of photons, which

is computationally expensive and not feasible for for image reconstruction. Under

the assumption that the radiance in highly scattering medium is nearly isotropic

after sufficient scattering, RTE can be approximated by the diffusion equation

through a truncated spherical harmonics expansion (P1 approximation)[24, 9].

Diffusion equation in time domain can be written as:

∂Φ(~r, t)

c∂t
−∇ · [D∇Φ(~r, t)] + µaΦ(~r, t) = S(~r, t), (1.2)
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where Φ is the fluence rate(or intensity), defined as the number of photons passing

through the surface of a unit sphere per unit time regardless of the flow direction, S

is an isotropic source of photons, and D = [3(µa+µ′s)]
−1 is the diffusion coefficient

in units of millimeters. Here µ′s = (1 − g)µs is the reduced scattering coefficient,

where g is scattering anisotropy, which is average of cosine of scattering polar angel

by single scattering. By Fourier transform, we can obtain the diffusion equation

in frequency domain:(
iω

c
+ µa

)
Φ(~r, ω)−∇ · [D∇Φ(~r, ω)] = S(~r, ω), (1.3)

where ω is the angular modulation frequency in radians. A zero-frequency special

case of frequency domain mode is the continuous wave (CW) mode:

µaΦ(~r)−∇ · [D∇Φ(~r)] = S(~r), (1.4)

This dissertation focuses on CW mode due to its simplicity. Boundary conditions

are required to solve the diffusion equation in the imaging domain. There are

two types of boundary conditions that exist according the differences between

the refractive index of scattering imaging medium and non-scattering ambient

medium. When refractive index of the two medium are same, refractive-index-

matched boundary condition can applied. From mathematical standpoint, these

type of boundary conditions belongs to the Cauchy boundary conditions. However,

air-tissue interface is dominant in biomedical imaging, which requires refractive-

index-mismatched boundary condition, which also know as Robin type (Type III)

boundary condition. In the time domain:

Φ(~r, t)− 2CRD∇Φ(~r, t) · n̂ = 0, (1.5)

where n̂ is the unit normal outward vector. The coefficient CR can be derived from

the Fresnels law:

CR =
1 +Reff

1−Reff

(1.6)

where Reff is the effective reflection coefficient which represents the percentage of

the outgoing radiance toward the ambient medium that is converted to incoming

radiance toward the scattering medium. Frequency domain and continuous wave
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domain boundary conditions can be derived by Fourier transform and taking zero-

frequency, respectively.

1.1.3 Diffuse optical tomography

Diffuse optical tomography (DOT), also known as near-infrared (NIR) tomog-

raphy, refers to the optical imaging of biological tissue in the diffusive regime[14].

Since NIR light can penetrate several centimeters into biological tissue, DOT can

image the human breast and infant brain without any ionizing risk. Due to the

ill-posedness of inverse problem in DOT image reconstruction, recovering imaging

information with good spatial resolution is challenging[25].

The basic principle of DOT is that NIR light source projects lights on the

surface of specimen and then diffused photons are detected by the high sensitive

photon detectors such as Charge couple device(CCD) camera at the surface of

specimen. The spatial distribution of optical absorption and reduced scattering

coefficients can be reconstructed using various algorithms (Figure 1.1). The spatial

resolution of DOT is poor due to the high scattering.

Figure 1.1: Schematic of DOT imaging
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Forward problem of DOT

In the CW domain, NIR light propagation in turbid media is modeled by the

diffusion equation [26], which is given as

−∇ · [κ(r)∇Φ(r)] + µa(r)Φ(r) = Q0(r) (1.7)

where Φ(r) and Q0(r) are the photon density and isotropic light source at position

r, respectively, and κ(r) is the optical diffusion coefficient defined by

κ(r) =
1

3[µa(r) + µ′s(r)]
(1.8)

with µa and µ′s representing the absorption coefficient and the reduced scattering

coefficient, respectively. The air-tissue boundary is represented by the refractive

index mismatch Robin (also known as Type-III) boundary condition, described

as[27]

− 2αn̂ · κ(r)∇φ(r) = Φ(r) (1.9)

where n̂ is the unit normal vector to boundary surface and α depends upon the

relative refractive index mismatch between the air and tissue interface. It is de-

termined by fitting the measurement data with the numerical calculations from

the forward model. Eq.1.7 can be solved by a finite element method based a finite

element mesh[28]

Inverse problem of DOT

The objective function (Ω), which minimizes the difference of modeled data

(obtained from forward model) with the measurements,if we only reconstruct the

absorption coefficients, can be written as [29]

Ω = min
µa
{||y − F (µa)||22 + λ||L(µa − µa0)||22} (1.10)

where λ is the regularization parameter and L is a dimensionless penalty matrix

which can be obtained from other structural imaging modality such as CT. When

the structural information is not available, the L matrix can be replaced with an

identity matrix I. The updating equation based on the Newton iterative method

can be written as[30, 31, 32]
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(JTJ + λLTL)δµa = JT (y − F (µa)) (1.11)

where J represents the Jacobian (sensitivity) matrix with a dimension NM×NN ,

where NM represents the number of measurements and NN is the number of

nodes. The update is represented by δµa = µa − µa0 . In general, the initial value

µa0 is obtained from data fitting procedure[33]. The L matrix is calculated before

the reconstruction. This type of inclusion of prior information is often referred as

soft-priors [34, 35].

1.1.4 Fluorescent molecular tomography (FMT)

FMT is an in vivo imaging modality to visualize physiological processes in

small animals due to its high sensitivity to detect low concentration of target

molecules. Since it shares same photon propagation model with DOT, it can also

refers as fluorescence DOT(fDOT)[36] . Instead of detecting intrinsic contrasts

like optical absorption and scattering coefficients, FMT detects the concentration

of fluorescent dye injected prior to imaging, which targets specific molecular. The

basic principle of FMT is that fluorescence dye is injected into a small animal,

excited by the light in the NIR range from the surface of the small animal, and then

the emitted fluorescent photons from fluorescent dye detected by the high sensitive

photon detectors such as CCD camera at the surface of specimen (Figure 1.2).

Similar to DOT, spatial resolution of FMT is poor due to the strong scattering.

Imaging depth of FMT is depends on the wavelength of light (both excitation and

emission). Green and blue lights, which have wavelength shorter than 500 nm,

have an imaging depth of only few millimeter, whereas red and NIR light, which

have a wavelength longer than 650 nm, have an imaging depth of up to 10 cm[37].

Fluorescence probes

FMT distinguish itself from DOT by detecting the concentration of target

specific fluorescence probes administrated to the imaging object before imaging.

Fluorescence probes are mainly divided into three groups: small synthetic, organic
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Figure 1.2: Schematic of FMT imaging

dyes; genetically encoded fluorescent proteins; and nanoparticles[37]. Fluorescence

dye molecules and fluorescent proteins have the structure, which can determine the

absorption and excitation spectrum. Quantum dots have a broad excitation but

a narrow emission spectrum. Quantum dot will emit light of specific frequencies,

which can be precisely designed by changing the dots’s size, shape and material.

Phosphor nanoparticles are another type nanoparitcles, which have attracting wide

attention recently due to its lower toxicity compared to quantum dots and emission

wavelength is shorter than its excitation wavelength.

Indocyanine green (ICG) is one of the widely used cyanine dye in fluorescent

imaging. It has a peak spectral absorption at about 800 nm and emits fluorescence

between 750 nm and 950 nm[38]. Since there is a big overlap between the exci-

tation and emission spectrum, filtering out the scattered light from the excitation

beam is necessary. Although there are numerous fluorescence probes have superior

effectiveness in cancer detection, only few of them are Food and Drug Adminis-

tration (FDA) approved. Recently, ICG is approved by FDA and was adopted for

clinical use[39].

Forward problem of FMT

For FMT in the CW domain, the light propagation model in 3D is described

by a set of coupled differential equations which are given below[40, 41]:
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
−∇ · [Dex(r)∇Φex(r)] + µα,exΦex(r) = δs(r − rs)
n · [Dex(r)∇Φex(r)] + αexΦex(r) = 0

−∇ · [Dem(r)∇Φem(r)] + µα,emΦem(r) = Φex(r)x(r)

n · [Dem(r)∇Φem(r)] + αemΦem(r) = 0

(1.12)

where∇ denotes the gradient operator, D(r) = {3[µ′s(r)+µa(r)]}−1 is the diffusion

coefficient, µα(r) is the absorption coefficient and µ′s(r) is the reduced scattering

coefficient. Φ(r) is the photon fluence at the location r. δs(r − rs) is Dirac delta

function defining point sources,and rs is the location of the excitation point source.

x is the product of the unknown fluorescent dye concentration and the quantum

yield at each node to be reconstructed[42], n is the outward unit normal vector

of the boundary, and α is the Robin boundary coefficient. In Eq. (4.1), subscripts

ex and em mean corresponding terms at the excitation and emission wavelengths,

respectively. Eq. (4.1) can be solved by the finite element method (FEM) based

on a finite element mesh and is linearized to the following equation:

KexΦex = δs(r − rs), KemΦem = Φexx (1.13)

where Kex and Kem are the stiffness matrices at the excitation and emission wave-

lengths, respectively. With the conjugate gradient approach[43], the above equa-

tions can be described as[40]:

Ax = b (1.14)

where A ∈ RNm×Nn is the system matrix, x ∈ RNn×1 is the unknown fluorephore

distribution or the FMT image to be reconstructed, b ∈ RNm×1 is the measure-

ment vector, Nn is the finite element node number, and Nm is the number of

measurement.

Inverse problem of FMT

The inverse problem of FMT is to find distribution of the fluorephore within

the imaging domain based on linear equation (1.14). Conjugate gradient (CG),

preconditioned conjugate gradient (PCG), and algebraic reconstruction technique

(ART) are the most popular methods applied to solve this of type problem. How-

ever, due to the ill-posed and ill-conditioned nature of the inverse problem of FMT,
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regularization methods are desired. The objective function of the FMT with reg-

ularization will be:

x = arg min
x,x≥0

Φ(x) =: ||Ax− b||22 + λ||x||pp (1.15)

where λ is regularization parameter is the regularization term and 0 < p ≤ 1.

When p = 2 the regularization term becomes well-known Tikhonov regularization.

There are variety of optimization methods to solve the above equation, however,

Majorization-minimization (MM) algorithms stands out by its speed for large ma-

trix. Here I follow Zhu and Li[44] to majorize the least squares fitting term:

||b−Ax||22 =
m∑
i=1

(bi − (Ax)i)
2

≤
m∑
i=1

n∑
j=1

βij

[
bi − (AXk)i −

aii
bij

(xj − xkj )
]2

(1.16)

=
n∑
j=1

[
(xj − xkj )2

2

m∑
i=1

a2ij
βij
− xj

m∑
i=1

aij(bi −Axk)i) + gj(x
k
j )

]
where gj(x

k
j ) denotes a function of xkj only and non-negative parameters βij satisfies∑n

j=1 βij = 1. Following the [45], we set βij = aij/
∑

j aij. Using the first order

condition we have the update equation:

(xj − xkj )
m∑
i=1

a2ij
βij
−

m∑
i=1

aij(bj(Ax
k)i) = 0 (1.17)

Then we obtain the non-negative ordinary least squares(ols) solution in vector

form:

xk+1
osl =

(
xk +

1

κ
At(b− Axk)

)
+

(1.18)

where κj =
∑m

i=1

a2ij
βij

and u+ = max(0, u).

1.2 Multimodality imaging

1.2.1 Introduction of multimodality imaging

Biomedical imaging, in general, can be divided into two groups: anatom-

ical imaging and functional imaging. Anatomical imaging modalities such as
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CT, MRI, and ultrasound imaging provide morphological information at high-

resolution; however, these modalities provide little insight into physiological and

metabolic changes. On the other hand, functional imaging modalities such a

positron emission tomography (PET), single photon emission computed tomog-

raphy (SPECT), and optical tomography can provide functional and/or molecular

information with relatively low spatial resolutions. Since there is no single imaging

modality which can have both high resolution anatomical structures and high sen-

sitive functional information together, combining two or more imaging modalities

is an obvious approach.

Over the last two decades, there has been increasing interest in combining

the anatomical imaging modalities with functional imaging modalities to integrate

the strengths of both, and at some point, eliminate weaknesses of an individual

modality. The idea to combine two system is usually referred to as hybrid or

dual-modality, which was first introduced by Hasegawa et al. at the University

of California San Francisco, who combined a clinical CT scanner with SPECT

camera as the first clinical SPECT/CT device in early 1990s[46]. Following the

SPECT/CT, PET/CT scanners were also introduced at the end of 1990s[47], this

opened new field research in universities and companies around the world[48].

Following the success story of SPECT/CT and PET/CT, currently, integration of

MRI with PET or SPECT is one of the most active areas of multimodality imaging.

Besides combining anatomic imaging modality with functional imaging modality,

combining two anatomical imaging modality (hybrid X-ray/MR systems)[49] or

two functional imaging modalities (Optical/PET and Optical/SPECT) are also

investigated [50, 51].

Optical tomography, as a type of functional imaging modality with a relatively

low spatial resolution, has also attracted significant attention to combined with

high-resolution anatomical imaging modalities.

1.2.2 Anatomical guidance in DOT

Inclusion of a priori information into DOT can be implemented by minimizing

the the following objective function
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Ω = min
µa
{||y − F (µa)||22 + λ||L(µa − (µa0)||22} (1.19)

Here λ is same as in LevenbergMarquardt method and L is a dimensionless

penalty matrix which can be obtained from other structural imaging modalities

such as CT. The L matrix is calculated before the reconstruction procedure and

it is used through out the process to penalize the solution without change. This

type of inclusion of priori information is often referred as soft-priors [35, 52].

Two types of L matrix are widely used in literature, Laplacian-type that is

derived from the finite difference approximation to the Laplace equation and

Helmholts-type which is derived from the finite difference approximation to the

Helmholtz equation. In Laplacian-type, the L matrix is a matrix that relates each

nodal property of the numerical model to all other nodes. Therefore given a node

i within the mesh, its relationship to another node j having Laplacian structure

within the same mesh can be given as [34, 35] ,

Lij =


0 if i and j are not in the same region

−1/N if i and j are in the same region

1 if i = j

(1.20)

where N is number of finite element nodes comprising a given region. In this

case, LTL approximates a second-order Laplacian smoothing operator within each

region, and works to average the update within a same region, while allowing

discontinuity between different regions.

Helmholtz-type L-matrix is given as [53]

Lij =


0 if i and j are not in the same region

−1
N+(κh)2

if i and j are in the same region

1 if i = j

(1.21)

where N is same as in Laplacian-type. Variable h is chosen to be the distance

between the finite element nodes. κ = 1/l is the wave number, generally chosen

to be the inverse of the diameter (l) of the region in the imaging domain. In this

case, LTL approximates a second-order Helmholtz smoothing operator. It is shown
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that for small values of κ, which corresponds to a large l recover the same optical

property distribution as Laplacian-type.

1.2.3 Anatomical guidance in FMT

Similar to DOT, the inverse problem of FMT is also ill-posed and ill-conditioned

due to strong optical scattering in deep tissues. Structural priors are proven to

be highly effective to improve the spatial resolution of reconstructed images[54,

55]. When structured priors are present, the objective function of the FMT with

Laplacian regularization will be[55]:

x = arg min
x,x≥0

Φ(x) =: ||Ax− b||22 + λ||Lx||22 (1.22)

here regularization matrix L is same as in DOT.

Besides structural priors, there are functional priors, that improve accuracy

of the forward modeling by using accurate optical properties for each region seg-

mented from other imaging modality. Relatively accurate optical properties can

be assigned to each region either by literature search or DOT reconstruction. The

latter is also refereed to as DOT guided FMT, which achieved improved distri-

bution of fluorophore concentration in phantom study[56]. The improvement of

FMT image quality by applying both structural and functional prior information

was demonstrated by scholars[57, 58]

1.3 Thesis Outline

In this thesis, I describe the theory and the anatomical image-guided DOT/FMT

techniques used for breast cancer imaging and small animal imaging, respectively.

I will also present my contribution to this filed, kernel based image reconstruction

algorithm.

In chapter 2, I will present feasibility study of CT-guided DOT system for

breast cancer imaging. In this study, to validate its feasibility, we have built a

prototype DOT imaging system which consists of a laser at the wavelength of 650

nm and an electron multiplying charge coupled device (EMCCD) camera. We
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have validated the CT guided DOT reconstruction algorithms with numerical sim-

ulations and phantom experiments, in which different imaging setup parameters,

such as projection number of measurements and width of measurement patch,

have been investigated. Our results indicate that an air-cooling EMCCD camera

is good enough for the transmission mode DOT imaging. We have also found that

measurements at six angular projections are sufficient for DOT to reconstruct the

optical targets with 2 and 4 times absorption contrast when the CT guidance is

applied. Finally, we have described our future research plan on integration of a

multispectral DOT imaging system into a breast CT scanner. The key components

of the multispectral DOT imaging system have been described and discussed.

In chapter 3, a kernel method is introduced to include anatomical guidance

into the DOT image reconstruction. In this kernel method, the optical absorption

coefficient at each finite element node is represented as a function of a set of features

obtained from anatomical images such as computed tomography (CT) images.

Compared with Laplacian approaches that include structural priors, the proposed

method does not require image segmentation. The proposed kernel method is

validated with numerical simulations of 3D DOT reconstruction using synthetic

CT data. 5% Gaussian noise was added to both the numerical DOT measurements

and the simulated CT image. The proposed method was also validated by an agar

phantom experiment with the anatomical guidance from a cone beam CT scan.

The effects of voxel size and number of nearest neighbors in the kernel method

on the reconstructed DOT images were studied. The results indicate that the

spatial resolution and the accuracy of the reconstructed DOT images have been

improved substantially after applying the anatomical guidance with the proposed

kernel method. Furthermore, we demonstrated that the kernel method was able

to utilize clinical breast CT images as anatomical guidance without segmentation.

In addition, we found that the proposed kernel method was robust to the false

positive guidance in the anatomical image.

In chapter 4, the kernel method is introduced to include anatomical information

into the FMT reconstruction is presented. The proposed method introduces the

anatomical guidance into the projection model of FMT. The primary advantage
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of the proposed method is that it does not require segmentation of targets in

the anatomical images. Numerical simulations and phantom experiments have

been performed to demonstrate the proposed approach’s feasibility. Numerical

simulation results indicate that the proposed kernel method can separate two FMT

targets with an edge-to-edge distance of 1 mm and is robust to false positive

guidance. For the phantom experiments with two FMT targets, the kernel method

has reconstructed both targets successfully, which further validates the proposed

kernel method. We have compared the proposed kernel method with the soft prior

method thoroughly and found that the kernel method without target segmentation

is able to achieve similar anatomical guided results as the soft prior method.

Chapter 5 summarizes the dissertation and also discuss the future work.



Chapter 2

Diffuse optical tomography for

breast cancer imaging guided by

computed tomography: a

feasibility study

2.1 Introduction

In the United States of America, breast cancer ranks second in all cancers in

terms of cancer mortality in female population[59]. Breast cancer screening, es-

pecially if being capable of early detection, is one of the efficient approaches to

reduce the mortality rate caused by breast cancer [60]. Mammography has been

used widely for breast cancer screening, but it is difficult to diagnose breast can-

cers for breasts with high mammographic density and/or micro-calcifications[61].

Ultrasound imaging has higher sensitivity than mammography in imaging dense

breast but with low specificity in screening breast cancers[62, 63]. Magnetic reso-

nance imaging (MRI) was reported to have results correlated better with pathology

findings than mammography and obtained promising results when dynamic con-

trast agents are applied[64, 65, 66]. However, MRI is expensive and exogenous

agents are needed for better contrast. In 1990s, DOT has emerged with promises

17
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as an imaging tool for breast cancer screening and diagnosis because of its unique

features such as non-ionizing radiation, low cost, and high intrinsic absorption

contrast [67].

We use continuous wave (CW) measurement data due to its simplicity and

low cost. CW measurements at multiple wavelengths in the near infrared (NIR)

wavelength range were used to reconstruct different absorption chromophores in

tissues[68, 69, 70, 71, 72]. Most DOT breast imaging systems used fibers to deliver

lasers to breast surface and collected the diffused light on the breast surface, in

which the measurement number was determined by the optode pairings [73, 74, 75,

76, 77, 78, 69, 79, 80]. To increase the number of measurement data, Culver et al.

reported a charge coupled device (CCD) camera based DOT imaging system[81].

Turner et al. used a CCD camera to measure early photons in a DOT imaging

system[82]. In this study, we used an EMCCD camera to measure light intensity

on the breast surface in a transmission mode.

DOT is an ill-conditioned inverse problem and suffers low spatial resolution.

To enhance the DOT reconstruction, anatomical priors were introduced[32, 83, 84,

85, 86, 87]. Fang et al reported a Tomosynthesis/3D-mammogram guided DOT

imaging system [88, 89]. Brooksby et al. and Ntziachristos et al. reported MRI

guided, fiber based DOT imaging systems [90, 91, 35]. Zhu and colleagues used

ultrasound imaging to guide the DOT imaging[92, 76]. These studies have shown

substantial improvements in quality and accuracy of DOT imaging with structural

priors. However, these systems have limitations. Tomosynthesis is not true three-

dimensional (3D) imaging modality thus its structural guidance is not sufficient.

And the imaged breast is compressed during the Tomosynthesis/3D-mammogram

scan which might cause discomfort to patients. For MRI guidance, MRI is very

expensive some patients with some metal implants cannot be imaged by MRI.

For ultrasound imaging guidance, approximations are requite for coregistering the

two-dimensional (2D) ultrasound images to the 3D optical measurements[92] . Our

proposed CT guided DOT imaging system will not have these limitations.

In this paper, we report a novel CT guided DOT system for breast cancer

imaging. The spatial resolution of the DOT system is improved with the anatom-
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ical guidance obtained from CT imaging. There are several advantages of this

proposed system. Firstly, although breast CT system uses X-ray photons, the ra-

diation dose is less than or equivalent to that of a two-projection mammography,

which is minimal[93, 94]. Secondly, because we use an EMCCD camera to acquire

optical measurement data, our system is non-contact, does not need coupling fluid,

and will not bring any pain or discomfort during the scanning. Lastly, with the

use of an EMCCD camera we can have abundant measurement data for DOT re-

construction, although the camera may have limited sensitivity of measurements.

The rest of this article is organized as follows. In section 2.2, we introduce

methods and materials. Then we report numerical simulation and phantom exper-

iments. Finally, we end the paper with summary and future work.

2.2 Methods and materials

2.2.1 DOT prototype system

The DOT prototype system built in our lab consisted of an EMCCD cam-

era (C9100-13,Hamamatsu) with a lens (CM 120 12101,Schneider Xenon 25mm f

\0.95), a diode laser at 650 nm with a collimator (BWF-OEM-650-200-100-0.22,

B&W Tek, Inc), a linear stage (XN10-0060-E01-71 C044289, Velmex, Bloom-

field,NY) and a rotary stage (B4872TS-ZRS C042679, Velmex, Bloomfield,NY).

As shown in Fig. 2.1, the imaged phantom was placed on the rotation stage. The

EMCCED camera was mounted on its right side with a distance of 25 cm so that

the field of view (FOV) of the camera covered the whole phantom. The laser

collimator was mounted on a linear stage and was 1 cm away from the phantom

surface on the left side. A laser beam was collimated to have a diameter less than 2

mm on the phantom surface. During the experiments, the EMCCD camera stayed

stationary while the rotary stage rotated the phantom with an angular step of 60

degrees. For each rotation angle, the linear stage moved the laser beam 6 steps in

vertical direction with a step size of 5 mm. This system generated 36 illumination

points on the phantom of interest. For each illumination position, three images

were taken by the EMCCD camera and averaged to reduce measurement noises.
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Figure 2.1: Photo of the DOT prototype system

2.2.2 Forward model and reconstruction algorithm

The propagation of light in turbid media such as biological tissues can be

modeled precisely by the radiative transfer equation (RTE)[9, 23, 25, 95]. Because

it is difficult to solve the RTE, the diffusion equation is widely accepted as an

approximation to the RTE in DOT imaging. The finite element method (FEM)

is used to solve the diffusion equation [95, 3]. And due to the ill-posed nature of

the inverse problem in DOT, regularization methods are used to stabilize the DOT

reconstruction [96, 97].

Forward modeling

In the CW domain, NIR light propagation in turbid media is modeled by the

diffusion equation [26], which is given as

−∇ · [κ(r)∇Φ(r)] + µa(r)Φ(r) = Q0(r) (2.1)
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where Φ(r) and Q0(r) are the photon density and isotropic light source at position

r, respectively, and κ(r) is the optical diffusion coefficient defined by

κ(r) =
1

3[µa(r) + µ′s(r)]
(2.2)

with µa and µ′s representing the absorption coefficient and the reduced scattering

coefficient, respectively. The air-tissue boundary is represented by the refractive

index mismatch Robin (also known as Type-III) boundary condition, described

as[27]

− 2αn̂ · κ(r)∇φ(r) = Φ(r) (2.3)

where n̂ is the unit normal vector to boundary surface and α depends upon the

relative refractive index mismatch between the air and tissue interface. It is deter-

mined by fitting the measurement data with the numerical calculations from the

forward model.

Reconstruction algorithm

The objective function (Ω), which minimizes the difference of modeled data

(obtained from forward model) with the measurements,if we only reconstruct the

absorption coefficients, can be written as [29]

Ω = min
µa
{||y − F (µa)||22 + λ||L(µa − µa0)||22} (2.4)

where λ is the regularization parameter and L is a dimensionless penalty matrix

which can be obtained from other structural imaging modality such as CT. When

the structural information is not available, the L matrix can be replaced with an

identity matrix I. The updating equation based on the Newton iterative method

can be written as[30, 31, 32]

(JTJ + λLTL)δµa = JT (y − F (µa)) (2.5)

where J represents the Jacobian (sensitivity) matrix with a dimension M × N ,

where M represents the number of measurements, and N is the number of nodes.

The update is represented by δµa = µa − µa0 . In general, the initial value µa0



22

is obtained from data fitting procedure[33]. The L matrix is calculated before

the reconstruction. This type of inclusion of prior information is often referred as

soft-priors [34, 35].

2.2.3 Mapping of measurement data

Correctly mapping of photon intensity information from an EMCCD camera

image to detector nodes on a finite element mesh is critical for the DOT image

reconstruction. To improve mapping accuracy, we made a reference cylinder which

had 24 × 9 checkerboard on its surface. Each checkerboard is a square with a

width of 10.21 mm that was equal to 1/24 of the cylinder circumference. The

3D physical coordinates of corners for each square were known on the cylinder

surface. To map correctly, we took one image of the reference cylinder with our

prototype system. There were 6×4 checks in the side field of view. We found pixel

coordinates of all 35 corners for square on the EMCCD camera image manually.

Then, using those pixel coordinates and their corresponding physical coordinates,

we generated linear mapping matrix for mapping finite element nodes coordinate

to the corresponding EMCCD camera image pixel. Fig. 2.2 shows mapping results

using the linear matrix we generated. Ideally, if the mapping was perfect, each

red dot in Fig. 2.2 should be on the crossing points on the checkerboard exactly.

Most of the nodes inside the FOV were matched very well, while the nodes far

away from the center were not mapped well with the corners of squares because we

used a simple linear mapping method and the surface of the cylinder was not flat.

The linear mapping matrix is good enough to be used in the phantom experiments

because the measurement nodes were not far away from the center.

2.2.4 Measurement setup

In our DOT prototype system, the EMCCD camera was used as a detector,

which could only measure half of the phantom surface in a transmission measure-

ment mode. For each angular projection, the linear stage moved the laser source

6 steps in vertical direction with a step size of 5 mm. This system generated 6
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Figure 2.2: Mapped reference nodes in an image taken by the EMCCD camera

source illumination points on the phantom of interest for each projection. For each

source position, we used all finite element nodes inside a 6 cm wide and 4 cm high

measurement patch on the other side of the phantom (Fig. 2.3b). The numerical

simulations reported later have helped us to select the width of the measurement

patch.

2.2.5 Phantom recipe and geometry

A cylindrical phantom with a diameter of 78 mm and a height of 60 mm was

made with Agar, Titanium dioxide (TiO2), Indian ink and water.A jelly like soft

base phantom made with a through hole at the target location, which is 15 mm

away from the center line of the cylinder. Then, a cylindrical target with a diameter

of 10 mm and a height of 10 mm was inserted into the hole on the background

phantom. The top 20 mm and the bottom 30 mm of the hole filled with same

material as base phantom (Fig. 2.3a). The phantom was fabricated to have

µa = 0.005 mm−1 and µ′s = 1.0 mm−1 at the wavelength of 650 nm. The target

had an absorption coefficient of 0.02 mm−1 and a reduced scattering coefficient of

1.0 mm−1 at the wavelength of 650 nm.
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(a) (b)

Figure 2.3: (a) Phantom geometry. (b) Source nodes (black) and detector nodes
(red) in a 6 cm wide measurement patch for an angular projection.

2.2.6 Measurement data calibration with a homogeneous

phantom

We used a cylindrical phantom whose surface was not flat. Different mea-

surement points on the cylindrical surface had different orientations and distances

to the EMCCD camera, which resulted in different photon collection coefficients

at different pixels. We calibrated our measurements with the same approach de-

scribed in Ref. [98]. At first, we made a homogeneous phantom with the same opti-

cal properties and the same geometrical dimensions as the heterogeneous phantom

of interest. Secondly, we obtained a set of measurement data Dij at same setup

for the heterogeneous phantom. Thirdly, optical properties such as absorption co-

efficient µa, reduced scattering coefficient µ′s and boundary condition parameter

α, were determined by data fitting[33]. Then, we calculated the calibration coeffi-

cients fij = D∗ij/Dij, where D∗ij are the measurements from forward modeling with

optical properties obtained in the 3rd step. Finally, we multiplied ratio factor fij

by the measurement data Mij from the heterogeneous phantom to obtain the final

calibrated measurements for DOT reconstruction.
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2.3 Results

2.3.1 Results of numerical simulations

The measurement projection number and the measurement data volume are

important factors for data acquisition time, reconstruction time and DOT image

quality. We conducted a series of numerical simulations to figure out the optimal

number of projections and the width of the EMCCD camera measurement patch.

In the numerical simulations, we used a cylindrical phantom with a diameter of 78

mm and a height of 60 mm. A cylindrical target (diameter of 10 mm and height

of 20 mm) was placed at 15 mm away from the center line of the phantom. Here

we simulated four different data acquisition types: (a) four projections with 3 cm

wide measurement patch; (b) four projections with 6 cm wide measurement patch;

(c) six projections with 3 cm wide measurement patch; (d) six projections with 6

cm measurement patch. In all cases, the number of source position in each angular

projection was 6, and placed 5 mm apart from each other vertically. The height of

detection patch was 4 cm for all cases. We set the reduced scattering coefficient to

1 mm−1 for both target and background uniformly. The absorption coefficient was

0.007 mm−1 for background and 0.028 mm−1 for target as shown in Table. 3.1.

Table 2.1: Optical properties and geometry dimensions of the phantom for
simulations.

Diameter Height µa µ′s

Background 78.0 mm 60.0 mm 0.007 mm−1 1.0 mm−1

Target 10.0 mm 20.0 mm 0.028 mm−1 1.0 mm−1

First, we compared reconstruction results among the above four cases with

5% Gaussian noise added. From Fig. 2.4, we see that we cannot reconstruct

the target with measurements from four projections. Although we can clearly see

target location in the reconstructed image using measurements from six projections

with 6 cm wide measurement patch, the value of the reconstructed absorption

coefficient is much less than the ground truth. Then we used a virtual CT image
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as structural prior in DOT reconstruction. From Fig. 2.5, we see that, we were

able to reconstruct good results for all four cases. Finally, We tested this with 30%

Gaussian noise added. From Fig. 2.6, we see that the target location is at the right

position, but the reconstructed absorption coefficient is much less that ground

truth value in case (a) of four projections with 3 cm wide measurement patch.

There are some artifacts on the boundary for cases (b) and (c). The simulation for

six projections with 6 cm wide measurement patch performs best in both target

location and quantitative accuracy. From the profile plots in Fig. 2.7, we can

also verify that the quality of the reconstructed absorption coefficient images from

six projections with 6 cm wide measurement patch is the best when a virtual CT

image was used as structural prior in the DOT reconstruction. From Fig. 2.7,

we calculate the errors of the reconstructed absorption coefficient in the target to

be 3.57% and 3.22% for 5% and 30% Gaussian noise cases, respectively, with the

virtual CT guidance and measurements at 6 projections with 6 cm wide patch.

2.3.2 Phantom experiment

We evaluated our single wavelength, EMCCD camera based DOT imaging pro-

totype system by preforming two set of an agar phantom experiments. The phan-

tom recipe and geometry was described in method section. The first phantom ex-

periment has 4:1 absorption contrast and the second has 2:1 absorption contrast.

The optical properties and geometrical dimensions are given in Table. 2.2 For each

illumination position, we used all finite element surface nodes in a 6 cm wide and 4

cm high patch on the other side of the phantom as detector nodes. The number of

nodes inside the patch for each projection are slightly different, and the total num-

ber of measurements are 14520 for all projections. We compared reconstruction

results among 4 different cases: (a) uncalibrated measurements data without struc-

tural guidance; (b) calibrated data without structural guidance; (c) uncalibrated

data with structural guidance; and (d) calibrated data with structural guidance.

For cases (b) and (d), we calibrated measurement with the method described in

section 2.2.6. For cases (c) and (d), we used the physical location information of

the target as the virtual structural prior because the CT scanner was not available
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Figure 2.4: Transverse sections of the reconstructed absorption coefficient images
from simulated measurements with 5% Gaussian noise added for cases (a) four
projections with 3 cm wide measurement patch; (b) four projections with 6 cm
wide measurement patch; (c) six projections with 3 cm wide measurement patch;
and (d) six projections with 6 cm wide measurement patch.
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Figure 2.5: Transverse sections of the reconstructed absorption coefficient images
with virtual CT guidance from simulated measurements with 5% Gaussian noise
added for cases (a) four projections with 3 cm wide measurement patch; (b) four
projections with 6 cm wide measurement patch; (c) six projections with 3 cm wide
measurement patch; and (d) six projections with 6 cm wide measurement patch.

(a) (b) (c) (d)

Figure 2.6: Transverse sections of the reconstructed absorption coefficient images
with virtual CT guidance from simulated measurements with 30% Gaussian noise
added for cases (a) four projections with 3 cm wide measurement patch; (b) four
projections with 6 cm wide measurement patch; (c) six projections with 3 cm wide
measurement patch; and (d) six projections with 6 cm wide measurement patch.
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(a) (b) (c)

Figure 2.7: (a) Ground truth absorption coefficient image for simulation,the dot-
ted black line indicates the profile position. Profiles of the reconstructed absorption
coefficient images along the black doted lines for (b) simulated measurements with
5% Gaussian noise (Fig. 2.4) ; (c) simulated measurements with 5% Gaussian noise
and with virtual CT guidance (Fig. 2.5); (d) simulated measurements with 30%
Gaussian noise and with virtual CT guidance (Fig. 2.6).

during the experimental time.

Table 2.2: Optical properties and geometrical dimensions of the experimental
phantoms.

Diameter Height µa µ′s

Background 78.0 mm 60.0 mm 0.005 mm−1 1.0 mm−1

Target

(4:1 µa contrast )
10.0 mm 10.0 mm 0.02 mm−1 1.0 mm−1

Target

(2:1 µa contrast )
10.0 mm 10.0 mm 0.01 mm−1 1.0 mm−1

The reconstructed results of 4:1 absorption contrast phantom are plotted in

Fig. 2.8, from which we can see that there are many artifacts at the boundary

in the reconstructed absorption coefficient image using uncalibrated data without

structural guidance (as shown in Fig. 2.8a). Calibration with the homogeneous

phantom improves reconstruction results even without structural prior but there

are still some artifacts at the boundary and the reconstructed absorption coefficient

at targets is less than the true value (as shown in Fig. 2.8b). Reconstruction with
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Figure 2.8: Transverse sections of the reconstructed absorption coefficient images
with measurements at six projections, a target with 4:1 absorption (µa) contrast
for cases (a) uncalibrated data without structural guidance; (b) calibrated data
without structural guidance; (c) uncalibrated data with structural guidance; and
(d) calibrated data with structural guidance.

structural guidance using uncalibrated measurement data outperformed the pre-

vious two cases with some artifacts at boundary (as shown in Fig. 2.8c). And the

recovered absorption coefficient at the target is much less than the exact value (as

shown in Fig. 2.8). Reconstruction with the structural prior using calibrated mea-

surements performs best in both target location and the reconstructed absorption

coefficients (as shown in Fig. 2.8d).

From the reconstructed results of 2:1 absorption contrast phantom (Fig. 2.9),

we can also see that measurement calibration and virtual structural guidance im-

proves the reconstruction results. Reconstructed image using uncalibrated data

without structural guidance almost same as corresponding results from 4:1 ab-
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Figure 2.9: Transverse sections of the reconstructed absorption coefficient images
with measurements at six projections, a target with 2:1 absorption (µa) contrast
for cases (a) uncalibrated data without structural guidance; (b) calibrated data
without structural guidance; (c) uncalibrated data with structural guidance; and
(d) calibrated data with structural guidance.

sorption contrast. (as shown in Fig. 2.9a), which can not provide useful functional

information. In cases (b) and (c), reconstructed image qualities improved to some

extent, but there are still significant artifacts. Reconstruction with the structural

prior using calibrated measurements gives us the best reconstructed optical prop-

erties in target region with accurate location (as shown in Fig. 2.9d).

To analyze the reconstructed images quantitatively, we plot the profiles along

the position indicated by the black dotted line. From the profile plots in Fig. 2.10,

we can also verify that the quality of the reconstructed images from calibrated data

with a virtual CT image as structural prior in DOT reconstruction is reaches to

ground truth image. For the 4 times absorption case, the mean squared errors
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Figure 2.10: Ground truth absorption coefficient image for (a) 4:1 absorption
contrast experiment and (b) 2:1 4:1 absorption contrast experiment. Profiles of
the reconstructed absorption coefficient images along he black doted lines for (c)
4:1 absorption contrast experiment (Fig. 2.8) and (d)2:1 absorption contrast ex-
periment (Fig. 2.9);

of the reconstructed absorption coefficient in the target for calibrated data with

virtual CT guidance is 3.8%. The error is 1.4% for the 2 times absorption contrast

case. The target size errors are 1 mm and 3 mm for 4 and 2 times absorption

contrast cases, respectively.

2.4 Discussion and future work

We have built the prototype DOT imaging system that mimics the future CT

guided DOT imaging system by using the same EMCCD camera and the same col-

limated laser beam. With both numerical simulations and phantom experiments,

we have studied the effects of the projection number and the width of FOV on

the reconstructed DOT images. Although we used the virtual CT guidance in the

studies, the feasibility study in this paper lays a solid path for our future CT guided

DOT imaging with the real system. The major purpose of the proposed CT guided

DOT imaging system is to monitor the breast cancer response to the chemother-

apy. Neoadjuvant chemotherapy is widely used in the treatment of locally ad-
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vanced breast cancer. Monitoring the response to the chemotherapy can improve

survival and reduce morbidity. Tumor responsive to the chemotherapy has vascular

changes that can be monitored by DOT noninvasively. The total hemoglobin con-

centration reduction is a major sign for the responsive breast tumors.[99, 100, 101]

Photon scattering in DOT makes it difficult to localize tumor size and position.

CT can provide guidance in DOT reconstruction algorithms to minimize the effects

of optical scattering for accurately monitoring of breast cancers response to the

chemotherapy. The major challenge for the CT guided DOT imaging system is

that CT does not have very good soft tissue contrast to differentiate tumor very

well from its background. Patients with neoadjuvant chemotherapy usually have

late stage breast cancers. The CT contrast agents could enhance the breast cancer

imaging of CT. Furthermore, the soft prior guidance algorithm can correct the

mismatched guidance to some extent (up to 7%) as reported in Ref. [84].

The homogeneous phantom based calibration method as described in section

2.7 works well for phantom experiments. This method can be applied to in vivo

breast imaging by scanning a homogeneous phantom with the same geometry and

similar optical properties of the imaged breast. We can obtain the imaged breast

geometry from the CT images and then print a mold with a 3D printer. The optical

properties can be estimated by the fitting algorithm as described in reference [98].

Another approach, one of our future research topics, is to use a ray tracing software

(LightTools, Synopsys Inc.) to calculate the photon collection efficiency at different

detector positions on the breast surface.

One possible limitation of the proposed CT guided DOT imaging system is the

small dynamic range of the EMCCD camera. Another possible limitation is the

reflected optical photons from the scanners to the EMCCD camera. One way to

overcome this limitation is painting black all the components inside the system.

We have investigated the feasibility study of the CT guided DOT imaging with

2 times and 4 times absorption contrast targets for both numerical simulation and

phantom experiments. Although these studies can prove the feasibility, we need to

include the scattering effects in the future studies, especially when we will include

four lasers at four different wavelengths in the future system.
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In the future, we will build a multispectral EMCCD camera based DOT imag-

ing system which consists of 4 diode CW lasers, an optical switch, a fiber holder,

collimators, an EMCCD camera and a rotation stage. Four CW lasers at wave-

lengths of 650, 715, 880, and 915 nm will be connected to a 4-to-12 optical switch

which passes one laser to one of 12 fibers and the laser beam will be collimated at

the other end of the fiber with a collimator. Measurements at six projections with

rotational increments of 60 degrees will be taken to cover the whole surface of the

breast. Altogether, there will be 4 lasers with total 72 excitation positions for each

of them. For each laser excitation position, pictures will be taken by the EMCCD

camera as measurements in a transmission mode. The EMCCD camera based

DOT imaging system will be integrated into a breast CT imaging system[93]. The

breast CT imaging system has a powerful rotation gantry, on which optical fiber

holder and EMCCD camera will be mounted. The schematic of the proposed CT

guided DOT imaging system is plotted in Fig. 10. We have selected an optical

switch from Dicon Fiberoptics. The switch time is about 0.5 seconds. The rotation

time per 60 degrees is estimated to be 5 seconds. The exposure time per measure-

ment picture is estimated to be 1 second per wavelength and position. So that the

total measurement time for the DOT imaging is estimated about 8 minutes.

2.5 Conclusion

In this paper, we proposed a novel CT guided DOT system for breast can-

cer imaging, which uses an EMCCD camera as a detector without any coupling

liquid. We evaluated our prototype system with a set of numerical simulations

and phantom experiments. From numerical simulations, we confirmed that the

measurement data from six projections with 6 cm wide measurement patch are

enough to reconstruct good absorption image with high quantitative accuracy if

CT guidance is applied. From phantom experiments, we see that our proposed CT

guided DOT system is able to reconstruct 2 times absorption contrast image at

very high spatial resolution and quantitative accuracy. In the future, we will com-

bine our prototype DOT system with a dedicated breast CT system and evaluate
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Figure 2.11: Schematic of CT guided DOT system.

the system performance with phantom experiments and patient data. Our prelim-

inary measurements of the output laser power variation due to the rotation and

the collimated laser beam size changes due to different laser project distances have

further proved the feasibility of our proposed CT guided DOT imaging system.



Chapter 3

Kernel-based anatomically-aided

diffuse optical tomography

reconstruction

3.1 Introduction

Diffuse optical tomography (DOT) is a non-invasive, non-ionizing radiation

biomedical imaging modality[102] that can recover the spatial distribution of tissue

optical properties such as absorption and scattering coefficients[14, 74]. With mea-

surements at multiple wavelengths, DOT has the capacity of estimating hemoglobin

concentrations, oxygenation level, and water content of tissues[103, 104]. Its appli-

cations include, but are not limited to, brain imaging[105, 106, 107], breast cancer

characterization[108, 109, 110, 8, 111], prostate cancer monitoring[112, 113, 114,

115], and joint tissue imaging[116, 117]. However, DOT suffer from low spatial

resolution due to strong optical scattering in tissues. Furthermore, DOT image re-

construction is known to be a nonlinear, ill-posed, and ill-conditioned problem[25].

During the last two decades, many research groups and companies have made nu-

merous efforts to improve the spatial resolution of DOT systems. A variety of

algorithms have been proposed to improve the accuracy of the inverse problem of

DOT[73, 118, 119, 120, 27, 121, 122, 123, 124, 125, 126, 127, 128]. However, DOT

36
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system standalone is still inferior to the other functional imaging modalities such as

functional magnetic resonance imaging (fMRI), single-photon emission computed

tomography (SPECT), and positron emission tomography (PET).

To improve the spatial resolution of DOT imaging, anatomical image guided

reconstruction methods were introduced. Pogue, Brooksby, and Zhao, et al. have,

for the first time, introduced the structural guidance from the magnetic reso-

nance imaging(MRI) into the near-infrared tomographic imaging[129, 34, 130].

Ntziachristos et al. have also reported simultaneous magnetic resonance and

near-infrared mammography[131, 90]. Zhu et al. reported optical differentia-

tion of benign versus malignant breast masses using ultrasound (US)-guided DOT

system[132, 133, 134]. Fang et al. reported combined optical and x-ray tomosyn-

thesis breast imaging[89, 88].

There are two types of approaches to including anatomical information into the

DOT image reconstruction. One is the hard prior method, which is also known as

parameter reduction[32]. In the hard prior method, the optical properties within

the same region are forced to be uniform, which reduces the total number of un-

knowns from the node number in the finite element mesh to the number of distinct

regions segmented from an anatomical image. The disadvantages of the hard prior

method include its dependence on the accuracy of segmentation and a strong bias

to the incomplete or incorrect structural priors. The second is referred to as the

soft prior method[32], which allows different updates of the reconstructed opti-

cal properties in the same segmented region. However, both hard and soft priors

require region segmentation from the anatomical images, which can only be per-

formed by a radiologist or an expert of image processing. To eliminate the need for

image segmentation, a direct regularization method in which the anatomical image

gray-scale values are used to construct the regularization matrix was introduced

to DOT[135, 136, 137].

In this paper, inspired by the kernel method of PET image reconstruction[138],

we introduce the kernel method based image reconstruction as a new approach

to include anatomical guidance into DOT. Compared with the conventional hard

and soft prior approaches, the proposed kernel method does not require target
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region segmentation. Compared with a direct regularization method proposed

in Ref. [135], instead of utilizing single pixel intensities corresponding to the fi-

nite element nodes, we also use neighboring voxels, which allows us capture more

structural information from the anatomical image. The kernel-based image model

is directly incorporated into the forward model of DOT, which exploits the spatial

smoothness of the image in the feature space.

In this study, we only consider the optical absorption coefficient contrast be-

tween the target and the background for simplification. In the proposed kernel

method, the optical absorption coefficient at a node i is defined as a function of

a set of features, fi,which is directly extracted from the voxel intensities of the

corresponding anatomical images. Then, the kernelized DOT image model is in-

corporated into the forward model of DOT.

3.2 Methods

3.2.1 Kernel-based anatomically-aided reconstruction al-

gorithm

In the inverse problem of DOT, the objective function (Ω), which minimizes

the difference between modeled data (obtained from the forward model of DOT)

and the measurements, if we only reconstruct the optical absorption coefficients,

can be written as:

Ω(µa) =
1

2
||y −F(µa)||22 (3.1)

where µa is the optical absorption coefficient and F(µa) is the prediction from

the DOT forward model in continuous wave mode. Here we present the Gaussian

kernel method to encode anatomical information in the DOT image reconstruction.

This can be accomplished by defining a kernel function for each finite element node.

The optical absorption coefficient at node i can be written as a linear combination

of kernels in a way similar to PET[139, 138, 140]

µai =
∑
j

αjκ(fi,fj) (3.2)
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where fi and fj are are feature vectors corresponding to finite element node i and j

from anatomical image, respectively. These anatomical feature vectors are directly

extracted from the corresponding voxels in the 3-dimensional(3D) anatomical im-

ages for each finite element node. The finite element mesh and the anatomical

images should be co-registered. It is also worth noting that the voxels correspond-

ing to finite element nodes on the surface of the mesh and outside of the mesh are

excluded from the feature vector extraction. The vector α is referred to as the

coefficient image to be reconstructed. There are a variety of choices of the kernel

function κ[139, 141]. Here we use the radial Gaussian kernel[142],

κ(fi,fj) = exp(
−||fi − fj||2

σ2
) (3.3)

where the parameter σ controls the edge sensitivity. The above kernel representa-

tion can be written in a matrix-vector form as

µa = Kα (3.4)

where the element (i, j) of the kernel matrix K is equal to κ(fi,fj). For compu-

tational efficiency, a k-nearest neighbor(knn) search is carried out for each feature

vector corresponding to each finite element node using the knnsearch function in

MATLAB. The search is carried out according to Euclidean distance between the

feature vectors, not a physical distance of finite element nodes in the Cartesian

coordinate. Only those elements corresponding to the k-nearest neighbors are re-

mained in the kernel matrix and the rest of them are set to be 0. This results in

the following definition of the kernel matrix:

Kij =

{
κ(fi,fj), fj ∈ knn of fi

0, otherwise
(3.5)

by substituting (3.4) into (3.1), the kernelized objective function is obtained as

Ω(α) =
1

2
||y −F(Kα)||22 (3.6)

when K is an identity matrix, the above equation equal to the original objective

function (3.1). By finding partial derivative of objective function on α and setting
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it equal to zero:
∂Ω

∂α
= KTJT δ = 0 (3.7)

where δ is the data-model misfit, δ = y − F(Kα), J is the Jacobian, and T is

matrix transpose operator. Using the Taylor expansion of F(Kα) around αn−1

gives us:

F(Kαn) = F(Kαn−1) + JK∆αn + · · · , (3.8)

where ∆α = αn−αn−1. Rewriting δ utilizing the first two terms of (3.8) (ignoring

the rest, equivalently linearizing the problem) gives us

δn = y −F(Kαn) = y −F(Kαn−1)− JK∆αn = δn−1 − JK∆αn (3.9)

Rewriting (3.7) for the nth iteration

KTJT δn = 0 (3.10)

Substituting (3.9) into (3.10), we have:

KTJT (δn−1 − JK∆αn) = 0 (3.11)

Further simplification leads to an update equation

[KTJTJK]∆αn = KTJT δn−1 (3.12)

since the matrix KTJTJK is ill-conditioned, a diagonal term(the Tikhonov reg-

ularization) is added to stabilize the inverse problem. In this case the update

equation becomes:

[KTJTJK + λI]∆αn = KTJT δn−1 (3.13)

After the coefficient image α is obtained, the desired optical absorption coefficient

image can be calculated as

µa = Kα (3.14)
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3.2.2 Numerical simulation

Optimization of the Kernel method

The voxel number for each corresponding node and the number of nearest

neighbors in knnsearch are important parameters in constructing kernel matrix

K and have significant effects on the kernel method. In this paper, we studied

four different voxel numbers, 3×3×3, 5×5×5, 7×7×7, and 9×9×9. The lengths

of feature vectors were 27, 125, 343, and 729 respectively. For knnsearch, three

different values of k (16, 32, 64), the number of nearest neighbors, were also studied.

To evaluate and compare the quality reconstructed DOT images quantitatively, we

used a combinations of 4 metrics listed below. Their detailed definitions can be

found in Ref. [44]. They are volume ratio (VR), Dice similarity coefficient (Dice),

contrast-to-noise ratio (CNR), and mean square error (MSE). In general, for a

reconstructed image to have better quality, it has a VR and Dice close to one, a

small MSE, and a large CNR[143].

In the numerical simulations, we used a cylindrical phantom with a diameter of

78 mm and a height of 60 mm. A cylindrical target (diameter of 10 mm and height

of 10 mm) was placed at 15 mm away from the center line of the phantom and

20 mm below the top surface of the phantom in the vertical direction as depicted

in Figure 3.1(a). The numerical phantom was discretized into a 3D tetrahedral

finite element mesh with 9,877 nodes, 54,913 elements and 2,921 surface nodes.

Numerical DOT measurement data at six angular projections were generated by

the DOT forward model[144]. In each angular projection, six source positions

separated 5 mm apart were placed on one side of the phantom in the vertical

line as indicated by the black dots in Figure 3.1(b). A rectangular region on the

opposite side of the numerical phantom was chosen to be the field of view (FOV)

and all surface nodes within this region were used as measurement detectors as

indicated by the red dots in Figure 3.1(b). Then, 5% Gaussian noise (signal to

noise ratio (SNR) of 36.85 dB) was added to the numerical DOT measurement

data. The optical reduced scattering coefficient was set to 1 mm-1 for both target

and background uniformly. The optical absorption coefficient was 0.007 mm-1 for

the phantom background and 0.028 mm-1 for the target as shown in Table 3.1.
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Table 3.1: Optical properties and geometry dimensions of the phantom for the
numerical simulation.

Diameter Height µa µ′s

Background 78.0 mm 60.0 mm 0.007 mm-1 1.0 mm-1

Target 10.0 mm 10.0 mm 0.028 mm-1 1.0 mm-1

A synthetic 3D CT image with a matrix size of 527×527×401 was generated

with an isotropic voxel size of 0.15 mm as shown in Figure 3.1(c). The voxel inten-

sities of target region and the background were set to 1.5 and 0.34, respectively,

which are close to the CT image intensity in the phantom experiments described

below. 5% white Gaussian noise (SNR of 36.85 dB) was also added to the synthetic

CT images.

CT contrast effect in kernel method for CT guided DOT reconstruction

The voxel intensity in the CT image is used to generate the kernel matrix and

therefore further analysis is required to assess how the ratio of the target pixel

intensity to the background pixel intensity affects the performance of the proposed

kernel method. For this purpose, 3 more synthetic CT images with different CT

contrasts were used for the kernel method when k = 64 and voxel number of

7×7×7. In these simulations, the background voxel intensity of the CT image was

set to be uniform as 0.34. For the target region, voxel intensity values of 0.68,

1.02, and 2.04 were used for the contrast ratios of 2:1, 3:1, and 6:1, respectively.

For these three cases, all other factors such as the phantom geometry and optical

properties were the same as described in the above section.

Effect of false positive guidance in the kernel method

A false positive target in the synthetic CT image (see Figure 3.1d) was used

to investigate how false positive guidance affects the proposed kernel method. For

this purpose, the top target is the true optical absorption target and the bottom

target is the false optical absorption target. Both targets were defined with the
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Figure 3.1: (a) Phantom geometry. (b) Source nodes (black) and detector nodes
(red) in a 6 cm wide measurement patch for an angular projection.(c) One cross
section of simulated CT image with 5% Gaussian noise. (d) The CT image with
a true target (top) and a false positive target (bottom) used for the anatomical
guidance in the false positive simulation.

same contrast and size in the CT images. In this numerical simulation, all other

factors were the same as described in section 4.2.4.

Clinical breast CT image as anatomical guidance in the kernel method

The ultimate goal of the proposed kernel method in CT guided DOT is the

applications in the clinical studies. Compared with the phantom CT image, the

breast CT image has much more heterogeneous background and different CT con-

trast. In this study, a clinical breast CT image as shown in Figure 3.2(a) was used,

in which the CT image at different coronal planes of the breast is plotted. This CT

data set is from a 48-year old women presented for diagnostic workup of a palpable

lump in the left breast at the one o’clock position. On mammography, she was

found to have heterogeneously dense breast tissue and a mostly obscured 2 cm

mass corresponding to the palpable finding. As part of a clinical trial, the patient

underwent a contrast-enhanced dedicated breast CT scan 103 seconds after the in-

jection of 100 mL of Visipaque 320 at a rate of 4 mL/sec. On the contrast-enhanced
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breast CT image as shown in Figure 3.2(a), the oval 20x24x17mm (APxMLxSI)

mass becomes conspicuous. The histopathology showed a low-grade infiltrating

mammary carcinoma, which was estrogen and progesterone receptor positive and

Her-2, negative. We have performed segmentation of the breast CT image and

display the segmented image in Figure 3.2(b), where the highlight region is the

oval mass and the grey region is the background. The segmentation was used in

the soft prior method for anatomical guidance.

When the patient was scanned on the breast CT scanner, there was no optical

imaging system. In this study, optical measurements were simulated with the

forward model previously-reported by our group[144]. From the CT image, a 3D

finite element mesh was generated with 27,146 tetrahedral elements, and 6,187

nodes, as displayed in Figure 3.2(c). Similar to the numerical phantom studies,

numerical measurements in six angular projections were used with an angular step

of 60 degrees. For each angular projection, we selected a patch with a width of 6

cm and a height of 4 cm to mimic the FOV of a CCD camera. All the surface nodes

in the patch were used as DOT detectors. For each angular projection, we selected

6 nodes at the opposite side of the patch as the laser illumination position. The

laser illumination position had an interval of 0.5 cm. The laser beam illuminated

the six positions sequentially. For each illumination position, the light intensities

on the detectors in the FOV were recorded as the measurements. With six angular

projections, we have 36 laser source positions and 14,082 total measurements. We

added 5% Gaussian noise (SNR of 36.85 dB) onto the numerical DOT measurement

data. In the forward model, we have set the nodes in the target region with the

optical absorption coefficient of 0.028 mm-1 and the reduced scattering coefficient

of 1.0 mm-1. The nodes in the background region had the optical absorption of

0.007 mm-1 and the reduced scattering coefficient of 1.0 mm-1.

During the DOT reconstruction, for the kernel method, we used the breast CT

image (Figure 3.2a) without segmentation as the anatomical guidance to generate

the kernel matrix K. For the soft prior method, we had to segment the breast CT

image (Figure 3.2b) because the finite element nodes in the target region and the

background should be known to generate the regularization matrix L in the soft
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Figure 3.2: (a) Transverse sections of the CT image of a breast cancer patient. (b)
The segmentation of the CT image shown in (a) where the tumor is highlighted.
(c) The finite element mesh of the breast for DOT reconstruction. (d) The laser
illumination positions (black dots) and the detector nodes (red dots) of a typical
angular projection.

prior method[84].

3.2.3 Phantom experimental setup

In the phantom experiment, we used a cylindrical phantom with a diameter of

78 mm and a height of 60 mm that was made of 2% Agar, titanium dioxide (TiO2)

as scattering particles, Indian ink as an optical absorber, and water. A jelly-like

agar phantom was fabricated with a through hole at the target location, which is

19.82 mm away from the center line of the cylinder. A cylindrical target with a

diameter of 10.86 mm and a height of 13.63 mm was made inside a transparent
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(a) (b)

Figure 3.3: (a) Phantom geometry. (b) One slice CT image of phantom in
experiment

glass tube with a wall thickness of 0.3 mm. Then, the target inside the glass tube

was inserted into the hole of the background phantom. The center of the target

was 19.82 mm away from the center of the base phantom, which was calculated

from the CT image. The top 20 mm and the bottom 30 mm of the hole were filled

with the same material as the base phantom (Figure 3.3a). The base phantom

was fabricated to have µa= 0.007 mm-1 and µ′s = 1.0 mm-1 at the wavelength of

650 nm. The target had an optical absorption coefficient of 0.028 mm-1 and a

reduced scattering coefficient of 1.0 mm-1 at the wavelength of 650 nm as listed in

Table 3.2.

We used the same finite element mesh as that in the numerical simulation to dis-

cretize the agar phantom. The experimental measurement data were acquired with

a DOT prototype system built in our lab that was consisted of an EMCCD cam-

era (C9100-13,Hamamatsu) with a lens (CM 120 12101, Schneider Xenon 25mm

f\0.95), a diode laser at 650 nm with a collimator (BWF-OEM-650-200-100-0.22,

B&W Tek, Inc), a linear stage (XN10-0060-E01-71 C044289, Velmex, Bloom-

field,NY) and a rotary stage (B4872TS-ZRS C042679, Velmex, Bloomfield,NY).

Details of the prototype DOT imaging system were described in Ref. [144]. Dur-

ing the experiments, the EMCCD camera stayed stationary while the rotary stage

rotated the phantom with an angular step of 60 degrees. For each rotation angle,
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the linear stage moved the laser beam six steps in the vertical direction with a step

size of 5 mm. For each illumination position, an image was taken by the EMCCD

camera and mapped onto the detector nodes within the measurement patch de-

picted in Figure 3.1(b). This experimental setup generates same source-detector

pairs as those in the numerical simulation. Measurement data were calibrated with

a homogeneous phantom by the same approach as described in Ref. [98].

A CT volume data set with a matrix size of 470×470×368 and an isotropic voxel

size of 0.169 mm was reconstructed using 500 projections acquired on a dedicated

breast CT system. Details of the breast CT system were described in Ref. [93].

Briefly, the x-ray tube was operated at a current of 160 mA and the voltage of

50 kVp with 0.15 mm of added copper (Cu) filtration. 500 angular projections

were acquired. A filtered back-projection algorithm was used to reconstruct the

CT image with a Shepp-Logan filter. A coronal slice of the reconstructed CT

data set used to calculate the target’s size and position is shown in Figure 3.3(b).

Because the optical absorption contrast alone does not have CT contrast, and

only the glass tube was observed in the reconstructed CT images, we filled the

target regions by pixels having the same CT contrast as the glass tube to provide

anatomical guidance in the kernel method. The mean voxel intensities of the target

region and the background are 1.50 and 0.34, respectively.

Table 3.2: Optical properties and geometry dimensions of the phantom for
experiment

Diameter Height µa µ′s

Background 78.0 mm 60.0 mm 0.007 mm-1 1.0 mm-1

Target 10.86 mm 13.63 mm 0.028 mm-1 1.0 mm-1
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3.3 Results

3.3.1 Numerical Simulation Results

Optimization of the kernel method

Numerical simulation with one target was conducted to evaluate the proposed

kernel method. The geometric and optical properties of the numerical phantom are

described in section 4.2.4. Figure 3.4(a) shows transverse sections of the ground

truth optical absorption coefficient image of the simulation phantom. Numerical

measurements were generated by the DOT forward model as described in sec-

stion 4.2.4. First, for comparison, we reconstructed the DOT image by Levenberg-

Marquardt algorithm with the CT structural guidance through the approaches of

soft prior and without any structural guidance, respectively[84]. The reconstructed

optical absorption coefficient image is plotted in Figure 3.4(b) for the case with-

out the structural prior and Figure 3.4(c) for the case with the soft prior. Figure

3.4(b) indicates that the reconstructed optical absorption coefficient in the target

region is nearly half of its true value we assigned in the simulation, and there

are strong artifacts near the bottom and top boundaries of the cylindrical phan-

tom. With the soft prior method, we can reconstruct very good optical absorption

coefficient image with accurate target size and optical absorption coefficient in

the target region as shown in Figure 3.4(c), which is consistent with our previous

studies[145, 144]. Then, we performed the DOT reconstruction with the proposed

kernel DOT. To investigate how the parameters in the kernel method affect the

DOT reconstruction, we studied four different voxel numbers (3×3×3, 5×5×5,

7×7×7, and 9×9×9) and three different nearest neighbors (k = 16, 32, 64) with

12 combinations of the kernel-based DOT reconstructions. Reconstructed DOT

images with fixed voxel number (3×3×3) and different k of 16, 32, 64 are plotted

at the middle row of Figure 3.4, from which we find that k = 64 outperformed

the the cases with k = 16 and k = 32. The bottom row of Figure 3.4 shows the

reconstructed DOT images with the kernel method for a fixed k = 64 and different

voxel numbers of 5×5×5, 7×7×7, and 9×9×9. From these figures, it is seen that

the qualities of the reconstructed DOT images are slightly improved by increasing
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the number of voxel for the kernel method.

Table 3.3: For the numerical simulation, the calculated VR, Dice, CNR and MSE
with kernel method for different numbers of nearest neighbor k and different voxel
numbers, with soft prior and no prior.

k Voxel size VR Dice CNR MSE

16 3×3×3 0.47 0.64 30.35 3.51e-07

32 3×3×3 0.52 0.68 31.57 3.37e-07

64 3×3×3 0.52 0.68 32.32 3.28e-07

64 5×5×5 0.52 0.68 32.43 3.30e-07

64 7×7×7 0.52 0.68 32.51 3.26e-07

64 9×9×9 0.52 0.68 32.50 3.27e-07

Soft prior 1.0 1.0 891.03 3.51e-08

No prior 1.19 0.04 3.78 1.52e-06

To evaluate the simulation results quantitatively, we calculated image quality

metrics such as VR, Dice, CNR, and MSE for the reconstructed DOT images in

Figure 3.4 for the cases without anatomical guidance case (Tikhonov regularization

alone), with the soft prior method and the six combinations of the kernel method.

We have listed the quantitative image quality metrics in Table 3.3, which indicates

that the reconstruction with the soft prior method is the best with VR and Dice

coefficients of 1 and the lowest recorded MSE. We also see that the DOT recon-

struction without any structural guidance is the worst with a VR much less than

1 and a Dice coefficient of 0. For the cases with kernel method, MSE decreased

nearly linearly when k and voxel number increased. Reconstructed DOT image

for k=64 and voxel number of 7×7×7 is the best among all the cases of the kernel

method with the highest CNR of 32.51 and the lowest MSE of 3.26e-07. VR and

Dice coefficients are the same for all the combinations of the kernel method, except

for the case k=16 and voxel number of 3×3×3 with the lowest VR of 0.47 and Dice

of 0.64.



50

Figure 3.4: The optical absorption coefficient images for numerical simulation.
(a) Ground truth image; (b) the reconstructed image without structural prior; (c)
reconstructed image with soft prior from the CT guidance. The reconstructed
optical absorption coefficient images with kernel method for a fixed voxel numbers
of 3×3×3 and (d) k = 16, (e) k = 32, (f) k = 64; and for a fixed k = 64 with
different voxel number of (g) 5×5×5, (h) 7×7×7, (i) 9×9×9.
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CT contrast effect in kernel method for CT guided DOT reconstruction

The reconstructed optical absorption coefficient images with the kernel method

when k=64 and voxel number of 7×7×7 are plotted in Figures 3.5a, 3.5b, and 3.5c

for the CT contrast 2:1, 3:1, and 6:1, respectively. Figure 3.5 indicates that the

reconstructed images are similar to those in the previous simulations, in which the

CT contrast is 4.4:1. The quantitative image metrics were calculated and listed

in Table 3.4, from which we see that the metrics are also very close for these

three cases, although the case with the contrast of 6:1 has slightly better CNR and

MSE values, but lower VR and Dice coefficients. These results indicate that the

proposed kernel method does not require a high CT contrast for its guidance in

DOT reconstruction.

(a) (b) (c)

Figure 3.5: Reconstructed DOT images with the kernel method for a fixed voxel
numbers of 9×9×9 and k = 64 with the structural guidance from the CT images
of different contrasts: (a) 1:2, (b) 1:3, (c) 1:6.

Table 3.4: The calculated VR, Dice, CNR and MSE for the reconstructed optical
absorption coefficient images as shown in Figure 3.5 with different background to
target CT contrasts.

CT contrast VR Dice CNR MSE

1:2 0.57 0.72 33.09 3.23e-07

1:3 0.57 0.72 34.63 2.94e-07

1:6 0.47 0.65 35.33 2.68e-07
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Effect of the false positive target in the kernel method

Using the anatomical guidance from the simulated CT image with a false pos-

itive target, we have performed the DOT reconstruction with both the soft prior

and the kernel method. For the soft prior method, we have tried different regu-

larization parameters and plotted the best reconstructed image in Figure 3.6(b).

For the kernel method, we used the optimized parameters as k = 64 and voxel

numbers of 7×7×7 and the reconstructed optical absorption coefficient image is

plotted in Figure 3.6(c). Compared with the ground truth image plotted in Figure

3.6(a), it is clear that there is no false positive target observed in the reconstructed

DOT images when both the soft prior method and the kernel method were used

as shown in Figure 3.6(b) and Figure 3.6(c), respectively. It is also confirmed by

the profile plot (as shown in Figure 3.6d) across the dotted line in Figure 3.6(a).

From the profile plot, it is seen that there is no false positive target for the kernel

method and a negligible false positive target for the soft prior method as the slight

bump in the profile plot. This indicates that the kernel method is robust to the

false positive guidance in the anatomical image.

Clinical breast CT image as anatomical guidance

The ground truth image is plotted in Figure 3.7(a). We have also performed

the DOT reconstruction without any anatomical guidance for this case and the

reconstructed optical absorption coefficient image is plotted in Figure 3.7(b), from

which it is seen that the target is barely reconstructed. One possible reason is

that we only used the measurements from six angular projections, which is not

optimized for the DOT reconstruction without anatomical guidance. We have also

reconstructed the optical absorption coefficient images with the soft prior method

(Figure 3.7c) and the kernel method (Figure 3.7d). Both methods have recon-

structed the target very well. It is not surprising to see that the reconstructed

target in Figure 3.7(c) has a sharp boundary because segmentation of the target

was applied in the soft prior method without adding any error. With the anatomi-

cal guidance from the CT image directly without segmentation, the kernel method

with k=64 and the voxel number of 7×7×7 performed well without introducing
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Figure 3.6: The optical absorption coefficient image: (a) the ground truth image;
(b) the reconstructed image with soft prior; (c) the reconstructed image with the
kernel method. (d) profile plot across the dotted line in figure (a)

any false positive targets from the fibroglandular tissues that are clearly seen in

the CT image surrounding the oval mass as shown in Figure 3.7(c). We have also

calculated the image quality metrics to evaluate the reconstructed DOT image

quantitatively and listed them in Table 3.5.

Table 3.5: For Simulation with breast CT image, the calculated VR, Dice, CNR,
and MSE for images in Figure 3.7.

VR Dice CNR MSE

No prior 0.35 0.0 1.37 1.14e-05

Soft-prior 1.0 1.0 36.78 1.06e-06

Kernel method 0.59 0.74 28.00 4.09e-07
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Figure 3.7: Reconstructed optical absorption coefficient images using the clinical
breast CT image as anatomical guidance with (a) the ground truth image; (b)
without the structural guidance; (c) the soft prior method and (d) the kernel
method.
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3.3.2 Phantom experimental results

An Agar Phantom experiment with one target was conducted to evaluate the

proposed kernel method. Phantom geometries and the DOT prototype system are

described in section 4.2.5. Figure 3.3(b) shows a cross section of the phantom CT

image obtained from dedicated breast CT scanner. As described in the numerical

simulation, we have performed the DOT reconstruction of this phantom experi-

ment without the structural prior, with the structural prior through the method of

soft-prior, and with the structural guidance by the proposed kernel method of 12

different cases with 3 different nearest neighbor k (16, 32, 64) and 4 different voxel

numbers (3×3×3, 5×5×5, 7×7×7, 9×9×9). The reconstructed optical absorption

coefficient images are plotted in Figure 3.8(a), for the case without the structural

guidance, Figure 3.8(b), for the soft-prior case, and Figure 3.8(c) for the kernel

method with k=64 and a voxel number of 7×7×7). Figure 3.8(c) is the best case

among all the 12 cases of the kernel method. Figure 3.8(a) indicates that the tar-

get is missed for the DOT reconstruction without any structural guidance. From

Figure 3.8(b), we see that the target is reconstructed at the right location, but the

maximum value of optical absorption coefficients inside the target region is less

than the true value. As indicated by Figure 3.8(c), the kernel method with k = 64

and the voxel number of 7×7×7 has a good reconstructed image. We calculated

the image quality metrics for the results in Figure 3.8 and listed them in Table 4.4,

from which, we know that the reconstructed image with the soft-prior method has

the best metrics as we see in the numerical simulations. The main reason is that

we extracted the target and background regions accurately from the CT image and

did not add any noise in the soft prior guidance. However, the optical absorption

coefficients in the target region are less than the true value. The kernel method

reconstruction has the comparable results with the soft prior method in terms of

the image evaluation metrics and has slightly better accuracy of the reconstructed

value in the target region than the soft prior method.



56

(a) (b) (c)

Figure 3.8: Reconstructed DOT images of the phantom experiment: (a) without
the structural guidance; (b) with the structural guidance through the soft-prior
method; (c) with the structural guidance by the kernel method (k = 64, voxel
number 7×7×7).

Table 3.6: For the phantom experiment, the calculated VR, Dice, and CNR for
images in Figure 3.8.

VR Dice CNR

No prior 0.875 0.0 0.4842

Soft-prior 1.0 1.0 246.20

Kernel method 0.650 0.758 16.03

3.4 Discussions and Conclusion

We proposed a kernel method to introduce the anatomical guidance into the

DOT image reconstruction. Compared with the conventional structural prior

guided DOT reconstruction algorithms, such as soft prior, the proposed method

has the advantages of not requiring the image segmentation and region classifica-

tion as demonstrated by Figure 3.7. With the correct guidance as shown in Figure

3.4, the soft prior outperforms the proposed kernel method with better VR and

DICE coefficient. However, the proposed methods yields higher optical absorp-

tion coefficients in the numerical simulation with breast CT data and phantom

experiment. It also yields less artifacts near the source locations than the soft

prior method as shown in Figure 3.7. Key parameters in this proposed method
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are the voxel number and k-nearest neighbor. From the simulation study, we can

see that k-nearest neighbor has signification impact to improve the quality of re-

constructed image. However, voxel numbers are not changing the quality of the

reconstructed images significantly, while increasing the computation time. In this

study, we conclude k-nearest neighbor as k=64 and voxel number of 7×7×7 as

optimum parameter.

In this study, we validated the proposed kernel method with both numerical

simulations and phantom experiments. We only reconstructed the optical ab-

sorption coefficient images because our initial project goal is to reconstruct the

hemoglobin concentration that is closely related to the optical absorption coeffi-

cient. We believe our current study is sufficient to validate the proposed kernel

method, while, in the future we will apply the kernel method to reconstruct both

the optical absorption and the reduced scattering coefficient images.

The proposed kernel method is validated by the CT image guidance. It is

straightforward to apply the proposed kernel method for DOT imaging with other

anatomical guidance such as MRI[91, 146]. We have studied the simultaneous

PET and fluorescent molecular tomography (FMT) imaging for studies with mice

model[147]. The proposed kernel method can be applied to the future PET guided

DOT for the breast cancer imaging because a breast dedicated PET scanner has

a spatial resolution of about 2.5 mm which is much higher than that of the DOT

imaging[148].

In summary, simulation and phantom experiment results have validated the

kernel method. Our results indicate that the higher number of nearest neighbors

and larger voxel size improve the quality of the reconstructed images. The numer-

ical simulation results indicate that the proposed kernel method is robust to CT

contrast and the false positive targets in the guided CT image. With the clini-

cal breast CT image, we demonstrated that we do not need the segmentation for

the kernel method. Future work includes investigating the effects of false nega-

tive prior information in anatomical images on the performance of the proposed

method. Moreover, a thorough examination of this method with a clinical data

will be conducted in the future.



Chapter 4

Anatomical image guided

fluorescence molecular

tomography reconstruction using

kernel method

4.1 Introduction

Fluorescence molecular tomography (FMT) has been emerging as an optical

imaging modality for many years. FMT, as an important molecular imaging tool,

has a broad range of applications in biomedical studies from drug development in

small animal models[149, 150, 151, 152, 153, 154, 155, 156] to the clinical diagnosis

in humans[157, 158, 159]. However, due to the strong scattering nature of optical

photons in deep tissues and a limited number of measurements, the inverse problem

of FMT is ill-posed and under-determined, which results in low spatial resolution

in FMT imaging, in particular for targets in deep turbid media.

Many approaches have been proposed to improve the FMT image quality,

including the use of multispectral wavelengths for both excitation and emission

wavelengths, different illumination patterns[160, 161], charge-coupled device(CCD)

cameras to increase the number of measurements[162, 163, 43, 164, 165],and im-

58
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proved FMT reconstruction algorithms, especially the sparse enhancement FMT

reconstruction for the sparse FMT targets[166, 167, 168, 169, 42, 170]. A re-

gion reconstruction methods implemented with level set method was also intro-

duced to improve the FMT image reconstruction[171, 172]. A thorough review of

FMT imaging in terms of instruments, methods and applications was presented in

Ref.[173].

Although numerous efforts have been implemented to improve FMT, its spatial

resolution is inferior to the other functional imaging modalities such as functional

magnetic resonance imaging (fMRI), single-photon emission computed tomography

(SPECT), and positron emission tomography (PET). To further improve the spa-

tial resolution of FMT, structural guidance from anatomical images have been

introduced into the FMT[174, 55, 152, 175]. Davis et al. reported the mag-

netic resonance imaging (MRI)-coupled FMT implemented with Laplacian-type

regularization.[158, 174, 151, 54, 153]. Schulz et al. reported a hybrid system

for simultaneous FMT and X-ray computed tomography[55, 176, 155, 156].Stuker

et al. reported combined MRI and FMT system using single photon avalanche

diode detectors[177]. Recently, microscopic positron emission tomography (mi-

croPET), with a spatial resolution up to 1 mm, has been used to guide FMT

imaging[175, 178]. More recently, tri-modality[179] and even pentamodal tomo-

graphic imaging systems were also investigated[180].

One of major challenges in a multimodality FMT system is how to utilize

anatomical information properly and easily in the FMT reconstruction. Soft

prior method is a widely accepted approach, which allows variations within the

regions. Local Laplace and weighted segments have also been introduced to FMT

reconstruction[176, 55].It has been demonstrated that the combination of Laplace

with weighted segments performed best in terms of quantification and localization.

However, both methods require image segmentation, which is time-consuming and

prone to human error. To eliminate the need for direct prior image segmentation,

Holt et al. reported a direct regularization method, in which the anatomical image

gray-scale values are introduced into a regularization operator[181]. Similarly, our

proposed kernel method also eliminates the need for anatomical image segmenta-
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tion. The major difference is that our approach does not need the regularization

operator, which allows us to have maximum flexibility to implement this method.

In this paper, inspired by the kernel method in PET image reconstruction[138],

we introduce the kernel-based image reconstruction as a new approach to incorpo-

rating anatomical guidance into FMT. Compared with the Laplacian-type regu-

larization methods, the proposed kernel method does not require the target region

segmentation. Furthermore, as demonstrated by the numerical simulations in this

paper, the proposed kernel method is also robust to the false positive guidance and

inhomogeneity in the anatomical images.

In the kernel method, the fluorophore concentration at a node i is defined as

a function of a set of feature vectors, fi, which is directly extracted from the

voxel intensities of the corresponding anatomical 3D images. Then, the kernelized

FMT image model is incorporated into the forward model of FMT. Due to the

simplicity of this model, we can combine it with any FMT reconstruction algorithm.

In this study, we used a kernelized projection model of FMT with majorization-

minimization (MM) approach[44, 143].

The rest of the paper is organized as follows: in Section 4.2, we describe the

FMT forward model, the regularized reconstruction method of FMT, and the pro-

posed kernel-based reconstruction algorithm. In Section 4.3, numerical simulations

and experimental results are presented. Finally, we conclude the paper with dis-

cussions in Section 4.4.

4.2 Methods

4.2.1 Forward model and reconstruction algorithms of FMT

Light propagation in tissues is dominated by optical scattering and can be mod-

eled by the diffusion equation[3]. For FMT in the continuous wave (CW) domain,

the light propagation model in 3D is described by a set of coupled differential

equations which are given below[40, 41]:
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
−∇ · [Dex(r)∇Φex(r)] + µα,exΦex(r) = δs(r − rs)
n · [Dex(r)∇Φex(r)] + αexΦex(r) = 0

−∇ · [Dem(r)∇Φem(r)] + µα,emΦem(r) = Φex(r)x(r)

n · [Dem(r)∇Φem(r)] + αemΦem(r) = 0

(4.1)

where∇ denotes the gradient operator, D(r) = {3[µ′s(r)+µa(r)]}−1 is the diffusion

coefficient, µα(r) is the absorption coefficient and µ′s(r) is the reduced scattering

coefficient. Φ(r) is the photon fluence at the location r. δs(r − rs) is Dirac delta

function defining point sources,and rs is the location of the excitation point source.

x is the product of the unknown fluorescent dye concentration and the quantum

yield at each node to be reconstructed[42], n is the outward unit normal vector

of the boundary, and α is the Robin boundary coefficient. In Eq. (4.1), subscripts

ex and em mean corresponding terms at the excitation and emission wavelengths,

respectively. Eq. (4.1) can be solved by the finite element method (FEM) based

on a finite element mesh and is linearized to the following equation:

KexΦex = δs(r − rs), KemΦem = Φexx (4.2)

where Kex and Kem are the stiffness matrices at the excitation and emission wave-

lengths, respectively. With the conjugate gradient approach[43], the above equa-

tions can be described as[40]:

Ax = b (4.3)

where A ∈ RNm×Nn is the system matrix, x ∈ RNn×1 is the unknown fluorephore

distribution or the FMT image to be reconstructed, b ∈ RNm×1 is the measure-

ment vector, Nn is the finite element node number, and Nm is the number of

measurement.

Because of the ill-conditioned and ill-posed nature, Eq. (4.3) is usually solved

as regularized least square problem with the non-negativity constraint:

x = arg min
x,x≥0

Φ(x) =: ||Ax− b||22 + λ||x||1 (4.4)

where λ is the L1 regularization parameter.
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In this study, for the case without anatomical guidance, Eq. (4.4) is solved

by the MM approach that updates the FMT image iteratively to minimize the

mismatch between the model predictions and the measurements[44, 143, 41].

4.2.2 Soft prior method

When structured priors are present, the objective function of the FMT with

Laplacian regularization will be:

x = arg min
x,x≥0

Φ(x) =: ||Ax− b||22 + λ||Lx||22 (4.5)

In soft prior method, regularization matrix L is defined as[158]:

Lij =


1, for i = j

− 1
N
, if i and j are in the same region

0, otherwise

(4.6)

where N is number of node in that region. In Eq. 4.5, regularization term ||Lx||22
can be treated as special case of ||Ax − b||22 when b = 0. Then it can solved by

the MM approach described in Refs. [44, 143, 41]

4.2.3 Kernel based anatomically-aided reconstruction al-

gorithm

The anatomically-aided FMT reconstruction algorithms usually incorporate the

anatomical guidance as a regularization matrix, which enhances the smoothness

within the anatomical regions and also allows sharp transition between the differ-

ent regions[181]. In this paper, we introduce the kernel method which includes the

anatomical guidance into the projection model of FMT. The fluorophore distribu-

tion at the node i is defined with a kernel function as[182, 183, 138]

xi =
∑
j

αjκ(fi,fj) (4.7)

where fi and fj are the anatomical feature vectors corresponding to the finite

element nodes of i and j, respectively. These anatomical feature vectors are di-

rectly extracted from the corresponding voxels in the 3D anatomical images for



63

each finite element node. The finite element mesh and the anatomical images

should be co-registered. In some reported multimodality FMT systems, accurate

co-registrations were reported[155, 177], which makes the proposed method is easy

to be implemented. It is also worth pointing out that voxel corresponding to finite

element nodes on the surface of the mesh and outside of the mesh are excluded

from the feature vector extraction. The length of the feature vectors depends on

the voxels number. For example, for a voxel number of 3×3×3, the length of the

feature vector is 27.

In Eq. 4.7, κ is the kernel function. There are a variety of choices of the kernel

function κ[141, 184]. Here we use the radial Gaussian kernel[142],

κ(fi,fj) = exp(
−||fi − fj||2

σ2
) (4.8)

where the parameter σ controls the edge sensitivity and yields more accurate results

when σ = 1[185]. For computational efficiency, a k-nearest-neighbor (knn) search

is carried out for each feature vector corresponding to each finite element node

using the knnsearch function in MATLAB. The search is carried out according to

Euclidean distance between the feature vectors, not a physical distance of finite

element nodes in the Cartesian coordinate. Only those elements corresponding to

the k -nearest-neighbors are stored in the kernel matrix and the rest of them are

set to be 0. This will result in the following definition of kernel matrix:

Kij =

{
κ(fi,fj), fj ∈ knn of fi

0, otherwise
(4.9)

Thus, the kernel matrix is a sparse symmetric Nn × Nn matrix. The kernel

matrix is normalized in this study for higher image quality[138]:

K̄ = diag−1[K1N ]K (4.10)

here 1N is a vector of all ones. Eq. (4.7) can be written in matrix-vector form:

x = K̄α (4.11)

where the vector α is a new unknown vector referred as the coefficient image. By

substituting Eq.(4.11) into (4.3), the kernelized inverse problem the FMT can be
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written as

AK̄α = b (4.12)

Combining the kernelized projection model (4.12) with objective function (4.4)

leads to the following objective function:

α = arg min Φ(α) =: ||AK̄α− b||22 + λ||α||1 (4.13)

Because the reconstructed images are already regularized by the kernels, we

set regularization parameter in Eq. (4.13) to zero in this study[138], and solved

by the MM approach[44, 143].Once α is obtained we can easily obtain the final

fluorophore distribution image by the linear transformation x = K̄α.

4.2.4 Numerical simulation setup

Cylindrical simulation phantom

In this simulation, we used a cylindrical phantom with a diameter of 22 mm

and a height of 80 mm. Cylindrical targets with a diameter of 1.4 mm and a

length of 20 mm were embedded 20 mm below the top surface of the phantom.

In the coordinate system, the base of the cylinder was a circle on the x-y plane

centering the origin of the coordinate system and the height was along the z-axis.

In this simulation, two targets were embedded at (-1.7,5.56) and (1.7,5.56) in the

x-y plane with an edge-to-edge distance of 2 mm as shown in Fig. 4.1(a).

Figure 4.1: Numerical simulation phantom geometry of (a) the cylindrical phan-
tom with target locations at T1 (-1.7, 5.56) and T2 (1.7, 5.56) and (b) the elliptic
cylindrical phantom with target locations at T1 (-1.2, -5.0) and T2 (1.2, -5.0).
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In this and following simulations, the phantom tissue optical properties were

set to be µa= 0.012 mm-1 and µ′s= 0.83 mm-1 at both the excitation wavelength

(650 nm) and the emission wavelength (700 nm). We assigned the fluorophore

concentration to be 1 in the target regions and 0 in the background regions. The

numerical phantom was discretized with a 3-dimensional (3D) tetrahedral finite

element mesh with 29,989 nodes and 155,310 elements. Numerical FMT measure-

ment data was generated by Eq. (4.3) with a line pattern laser projected on the

phantom surface. The line laser had a width of 1 mm and a length of 50 mm. We

had 30 excitation positions of the line laser to cover the whole surface[186]. For

each line laser excitation, the 9,280 surface nodes on the side of the cylinder were

used as the measurement detectors. Then, we added 30% Gaussian noise to the

numerical FMT measurement data.

The 3D CT images with 220×220×801 voxels was generated with the grid size

of 0.1 mm. The intensities of target regions and the background were set to 0.24

and 0.06, respectively, which are close to the CT data in phantom experiment. We

added 15% white Gaussian noise to the numerical CT images.

Elliptic Cylindrical numerical phantom

In this simulation,we used an elliptic cylindrical phantom with a horizontal

semi-axis of 6.9 mm, vertical semi-axis of 9.2 mm and a height of 50 mm. Cylin-

drical targets with a diameter of 1.4 mm and a length of 20 mm were embedded

20 mm below the top surface of the phantom. In the coordinate system, the base

of the cylinder was an ellipse on the x-y plane centering the origin of the coordi-

nate system and the height was along the z axis. Two targets were embedded at

(-1.2,-5.0) and (1.2,-5.0) in the x-y plane with an edge-to-edge distance of 1 mm as

showed in Fig. 4.1(b). The phantom geometry was discretized with a 3D tetrahe-

dral finite element mesh with 32,882 nodes and 191,359 elements. Numerical FMT

measurement data were generated by Eq. (4.3) with a line pattern laser projected

on the phantom surface. The line laser had a width of 1 mm and a length of 50 mm.

We had 30 excitation positions of the line laser to cover the whole surface[186].

For each line laser excitation, the 6,013 surface nodes on the side surface of the
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cylinder were used as the measurement detectors. Then, we added 30% Gaussian

noise to the numerical FMT measurement data.

The transverse sections of CT image were generated using the “phantom” com-

mand in MATLAB (as shown in Fig. 4.5 in the result section). The area outside of

the ellipse was trimmed. Then we stacked the phantom images to generate a 3D

CT image with 234×176×501 voxels. Two targets with a diameter of 1.4 mm and

a length of 20 mm were added in the 3D CT phantom. The intensity of targets is

0.99, which is 1% less than the intensity of the edges of the ellipse. This is because

the tumor with CT contrast agent injection has contrast as high as bones in CT

images [55]. Like the first simulation, we added 15% Gaussian noise to numerical

CT images.

Numerical simulation using MRI images of a rat brain

The ultimate goal of the proposed kernel method is to apply it in anatomical

images (such as CT or MRI) guided FMT for small animal studies. To validate

the feasibility of the proposed method using in vivo anatomical guidance with

heterogeneous structures, we used MRI images of a rat brain as the anatomical

guidance. MRI imaging was performed with a Bruker Biospec 7 Tesla (7T) small-

animal scanner (Bruker BioSpin MRI, Ettlingen, Germany). A 72 mm internal

diameter linear resonator was used for radio frequency (RF) transmission and a

four-channel rat brain phased array surface coil was used for signal reception. The

rat brains were imaged coronally with a fast-spin echo sequence (RARE; axial:

TE/TR = 8 ms/750 ms; FOV = 40 × 40 mm2; MTX = 256 × 256; ST/SI = 1

mm/1 mm; ETL = 4). Data were acquired and reconstructed using ParaVision

5.1 software (Bruker BioSpin MRI). Experiment was conducted under a protocol

approved by the University of California, Davis, Animal Use and Care Committee

(Davis, CA). A male athymic nude rat, purchased from Harlan Laboratories (Hay-

ward, CA) was inoculated with 3 × 10mm6 U87 MG cells/10 µ L intracranially.

The rat was administered 0.5 mmol/kg of the small molecule gadolinium chelate,

gadoteridol (Bracco Imaging) via bolus i.v. injection prior to T1w imaging.

From the MRI images, We used the open-source software iso2mesh to generated
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a 3D finite element mesh with 181,686 tetrahedral elements, and 41,427 nodes[187].

We segmented the tumor in the MRI images as the FMT target region for simulate

FMT measurement. Similar to the numerical phantom studies, numerical FMT

measurement data was generated by Eq. (4.3) with a line pattern laser projected

on the rat brain surface. We used 30 excitation positions of the line laser to cover

the whole rat brain surface[186]. For each line laser excitation, the 20,055 surface

nodes were used as the measurement detectors. The tissue optical properties were

set to µa= 0.012 mm-1 and µ′s= 0.83 mm-1 at both the excitation wavelength

(650 nm) and the emission wavelength (700 nm). We assigned the fluorophore

concentration to be 1 in the target regions and 0 in the background regions. Like

other simulation studies, we added 30% Gaussian noise to the simulated FMT

measurement data. In the kernel, we can extract the feature vectors easily from

the MRI images because the FE mesh is generated from the same image, so they are

already co-registered. Then, we generated the kernel matrix using the Eq. (4.8) and

(4.9) to incorporate anatomical information into the FMT image reconstruction

by minimizing the kernelized objective function (4.13).

During the kernel method FMT reconstruction, we used the MRI images with-

out segmentation as the anatomical guidance to generate the K matrix. For the

soft prior method, we used segmented images to generate the soft prior matrix

without adding any segmentation error.

The voxel number for each corresponding node and the number of nearest

neighbors in knnsearch are important parameters in constructing kernel matrix

K and have significant effects on the kernel reconstruction method. In this paper

we studied 3 different voxel numbers, 3×3×3, 5×5×5, and 7×7×7. The lengths of

feature vectors were 27, 125, and 343 respectively. for knnsearch, different values

of k(16, 32, 64, 128, 256), the number of nearest neighbors, were also studied.

4.2.5 Phantom experimental setup

To validate our algorithm, we conducted an agar phantom experiment. In this

experiment, we used a cylindrical phantom with a diameter of 22 mm and a length

of 80 mm. The phantom was composed of 1% intralipid, 2% agar, 20 µM bovine
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hemoglobin (H2625, Sigma-Aldrich Inc., St. Louis, MO) and water. We embedded

two capillary tubes with a length of 20 mm and a diameter of 1.4 mm as targets, in

which 20 µM Sulfo-Cyanine5 dye (Lumiprobe Corporation, Hallandale Beach, FL)

was injected. The geometry of the experimental phantom is shown in Figs. 4.2b,

where the two red bars indicate two FMT targets. The edge-to-edge distance of

the two targets was 2.94 mm.

The phantom geometry was discretized with a 3D tetrahedral finite element

mesh with 37,333 nodes and 199,881 elements. During the FMT imaging, a line

laser (1 mm wide and 50 mm long) at the wavelength of 643 nm scanned the surface

of the phantom sequentially with 30 excitation positions that were distributed

uniformly on the phantom surface. For each line laser excitation position, an

emission picture at the wavelength of 720 nm was taken. All 9,384 surface nodes on

the side surface of cylinder were used as the detector nodes and the measurements

were obtained from acquired emission pictures. Details of the conical mirror based

FMT imaging system were described in Ref. [188]. The phantom optical properties

were µa = 0.012 mm-1 , µ′s = 0.83 mm-1 at both 643 nm and 720 nm wavelengths.

Figure 4.2: The geometry of the phantom experiment with target locations at T1
(1.72, 4.71) and T2 (5.01, 1.87).

The 3D CT images of the phantom with an isotropic voxel size of 0.15 mm were

obtained with our lab-made micro-CT imaging system with 180 projections[189].

The micro-CT system consists of an x-ray source and a flat panel detector placed

opposite to each other on a micro-CT gantry that rotates around the bed where

the phantom was placed. The source-to-isocenter distance is 205.34 mm and the

source-to-detector distance is 246.2 mm. The detector has a 49.2 mm by 49.2 mm



69

sensing area consists of a 1,024 by 1,024 pixel sensor with 48 µm pixel spacing.

The X-ray tube was operated at a current of 0.5 mA and the voltage of 50 kVp.

A filtered backprojection algorithm was used to reconstruct the micro-CT images

with a Shepp-Logan filter. The obtained CT images are shown in Fig. 4.9(a),

from which we calculated each targets’ size and position. Because Sulfo-Cyanine5

dye does not have CT contrast, only the capillary tubes were observed in the

reconstructed microCT images and the fluorescence dye (target) regions were filled

by pixels having the same CT contrast as the capillary tubes as guidance in the

kernel method.

4.2.6 FMT image evaluation criteria

According to our previous studies, the combinations of 4 metrics listed below

can evaluate the quality of the reconstructed FMT images very well. Their de-

tailed definitions can be found in Refs. [44, 143]. Briefly, The Volume Ratio (VR)

measures the ratio between the true region of interest (ROI) and the reconstructed

region of interest (rROI). The Dice similarity coefficient (Dice) measures the loca-

tion accuracy of the reconstructed target. Ideally, VR and Dice coefficients should

be 1. The Contrast-to-Noise Ratio (CNR) measures how well the reconstructed

target is distinguished from its background. The higher the CNR coefficient is, the

better the reconstructed image. The Mean Square Error (MSE) is the difference

between the measurements and the model predictions. The MSE closer to zero is

better.

4.3 Results

4.3.1 Simulation Results

Cylindrical phantom simulation with two FMT targets

In this simulation, we had two capillary tube targets embedded inside the cylin-

drical background phantom with an edge-to-edge distance of 2 mm as described

in Fig. 4.1(a). For comparison, we have reconstructed FMT images with soft prior
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method. The ground truth FMT images, simulated CT images, and the recon-

structed FMT images with the soft prior method are plotted in Fig. 4.3. All the

FMT reconstructions in this paper were conducted in 3D and results are shown by

slices along the z-axis with equal distance. Then, we performed the reconstruction

with the proposed kernel based FMT reconstruction algorithm. To investigate how

the parameters in the kernel method affect the FMT reconstruction, we studied

3 different voxel numbers (3×3×3, 5×5×5,and 7×7×7) and 3 different nearest

neighbors (k =16, 32, 64) with 9 combinations of the kernel based FMT recon-

structions. The reconstructed FMT images are plotted in Fig. 4.4, in which each

column indicates different voxel numbers and each row indicates different numbers

of nearest neighbors. For all 9 cases, the two targets have been reconstructed and

separated successfully as indicated by Fig. 4.4.

Figure 4.3: For the numerical simulation of two targets: (a) the ground truth
image, (b) simulated anatomical guidance images, and (c)the reconstructed FMT
image with soft prior method.

To evaluate the simulation results quantitatively, we calculated quantitative im-

age quality metrics such as VR , Dice, CNR, and MSE for the FMT reconstruction

with the soft prior method, and the 9 FMT reconstructions with kernel method,

as shown in Table 4.1. For the kernel method, when the voxel number is fixed, we

have better FMT reconstruction quality as the nearest neighbor k increases. For

example, the Dice coefficient increased from 0.002 to 0.023 as k increased from 16

to 64 for the voxel number of 3×3×3. Similarly, for the fixed nearest neighbor

k, we found that the FMT image quality becomes better with larger voxel num-

bers. The best FMT reconstruction result was obtained with k = 64 with 7×7×7
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voxel size, which is highlighted in Table 4.1. From Table 4.1, we see that the soft

prior method performed better than the kernel method in this simulation when

the target regions were known accurately in the anatomical guidance.

Figure 4.4: Reconstruction FMT images for the cylindrical phantom simulation
of 2 targets by the kernel method with different nearest neighbor k as indicated
by each row and different voxel numbers indicated by each column.

Elliptic cylindrical phantom simulation with two FMT targets

In this simulation, we had two capillary tube targets embedded inside the el-

liptic cylindrical background phantom with an edge-to-edge distance of 1 mm as

described in Fig. 4.1(b). For comparison, we have also reconstructed FMT im-

ages with the soft prior method. The ground truth FMT images, simulate CT
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Table 4.1: For the cylindrical phantom simulation of 2 targets, the calculated VR,
Dice, CNR and MSE with kernel method for different numbers of nearest neighbor
k and different voxel numbers, and soft prior method.

k Voxel number VR Dice CNR MSE

16 3×3×3 0.124 0.002 18.264 3.88e-4

16 5×5×5 0.223 0.159 21.351 2.96e-4

16 7×7×7 0.387 0.306 19.554 3.44e-4

32 3×3×3 0.127 0.006 19.688 3.41e-4

32 5×5×5 0.243 0.187 22.713 2.51e-4

32 7×7×7 0.451 0.430 22.099 2.66e-4

64 3×3×3 0.139 0.023 20.029 3.29e-4

64 5×5×5 0.347 0.323 23.956 2.22e-4

64 7×7×7 0.639 0.596 24.111 2.21e-4

Soft Prior 0.952 0.964 32.355 1.67-e4

images, and the reconstructed FMT images with the soft prior method are plot-

ted in Fig. 4.5. Then, we performed the reconstruction with the proposed kernel

based FMT reconstruction algorithm. To investigate how the parameters in the

kernel method affect the FMT reconstruction, we studied 3 different voxel numbers

(3×3×3, 5×5×5,and 7×7×7) and 3 different nearest neighbors (k = 64, 128, 256)

with 9 combinations of the kernel based FMT reconstructions. The reconstructed

FMT images with the kernel method are plotted in Fig. 4.6, in which each col-

umn indicates different voxel numbers and each row indicates different numbers

of nearest neighbors. For all 9 cases, the two targets have been reconstructed and

separated successfully as indicated by Fig. 4.6.

To evaluate the simulation results quantitatively, we calculated quantitative

image quality metrics for the FMT reconstruction with the soft prior method

and the kernel method with 9 combinations, as shown in Table 4.2. From the

Table 4.2, when the voxel number is fixed, we have better FMT reconstruction

image quality as the nearest neighbor k increases. One example is that the Dice
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Figure 4.5: For the cylindrical phantom simulation of two FMT targets, (a) the
ground truth image and (b) simulated CT images, and (c) the reconstructed FMT
image with the soft prior method.

increase from 0.469 to 0.803 as k increase from 64 to 256 for the voxel number of

3×3×3. Similarly, for the fixed nearest neighbor k, we found that the FMT image

quality becomes better with larger voxel number in this simulation setup up. The

best FMT reconstruction result was obtained with k = 256 with 7×7×7 voxel size,

which is highlighted in Table 4.2.

Numerical simulation with false target size in the numerical anatomical

CT image

The numerical phantom geometry of this simulation study same as the second

simulation plotted in Fig. 4.1b. However, the diameter of the right target in the

simulated anatomical guidance CT images (Fig. 4.7b) was enlarged intentionally

from 1.4 mm to 2.8 mm to study how the false target size affects the FMT re-

construction with the proposed kernel method. The enlarged target was moved

to the right 0.7 mm so that the edge-to-edge distance of the two targets was still

1 mm in the simulated CT images as shown in Fig. 4.7(b). For comparison, we

have performed the reconstruction with the soft prior method and with the ker-

nel method of 3 different nearest neighbors k and 3 different voxel numbers as in

the above section. Among all the reconstructions with the kernel method, unlike

the previous simulation, we found that the reconstruction with the nearest neigh-

bor of k=256 and the voxel number of 3×3×3 had the least error with a MSE
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Figure 4.6: Reconstruction FMT images for the elliptic cylindrical phantom sim-
ulation with 2 FMT targets by the kernel method with different nearest neighbor
k as indicated by each row and different voxel numbers indicated by each column.

of 8.54e-4, whereas the soft prior method had MSE of 1.31e-3. Fig. 4.7 plots the

ground truth image (Fig. 4.7a), the reconstructed FMT image with the soft prior

method (Fig. 4.7c), and the reconstructed FMT image by the kernel method with

the nearest neighbor of k = 256 and the voxel number of 3×3×3 (Fig.4.7d). As

indicated in Fig.4.7c, the two targets were barely separated with the soft prior

method. Fig.4.7d is a representative reconstructed FMT image with the kernel

method and indicates that the image quality is much better than that of Fig. 4.7c

as demonstrated by the CNR of 12.214 for Fig. 4.7c and 17.543 for Fib. 4.7d. The

calculated image quality metrics are listed in Table 4.3.
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Table 4.2: For the numerical simulation of elliptic cylindrical phantom with 2 FMT
targets, the calculated VR, Dice, CNR and MSE with kernel method for different
numbers of nearest neighbor k and different voxel numbers, and with the soft prior
method.

k Voxel number VR Dice CNR MSE

64 3×3×3 0.366 0.469 18.971 6.22e-4

64 5×5×5 0.318 0.419 19.452 6.16e-4

64 7×7×7 0.519 0.635 22.262 4.82e-4

128 3×3×3 0.516 0.604 20.811 5.16e-4

128 5×5×5 0.481 0.590 21.113 5.39e-4

128 7×7×7 0.519 0.653 23.072 4.57e-4

256 3×3×3 0.713 0.803 25.028 1.35e-4

256 5×5×5 0.668 0.782 25.286 1.46e-4

256 7×7×7 0.757 0.845 26.108 1.21e-4

Soft Prior 1.046 0.934 26.661 1.73e-4

Table 4.3: For the numerical simulation with a false target size, the calculated VR,
Dice, CNR and MSE with kernel method of different numbers of nearest neighbor
k = 256 and different voxel numbers, and soft prior method.

k Voxel number VR Dice CNR MSE

256 3×3×3 0.394 0.548 17.543 8.54e-4

256 5×5×5 0.281 0.416 16.816 8.91e-4

256 7×7×7 0.409 0.537 16.728 9.06e-4

Soft Prior 0.466 0.527 12.214 1.31e-3

Numerical simulation using MRI images of a rat brain

To validate the proposed kernel based FMT image reconstruction algorithm

with guidance from realistic anatomical images, we conducted simulation study

using in vivo rat brain MRI images as shown in Fig. 4.8(a). Details of the MRI

images and simulation setup described in Section. 4.2.4. The contrast of tumor to
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Figure 4.7: For numerical simulation with false larger target size, (a) the ground
truth image, (b) simulated CT imges with falsy enlarged target. (c) the recon-
structed FMT image with soft prior method, and (d) the reconstructed FMT
image by the kernel method with the nearest neighbor of k = 256 and the voxel
number of 3×3×3.

the background surrounding it is approximately 1:2. First, we reconstructed the

FMT image using the soft prior method, in which only two regions considered.

We have obtained very good FMT results from the soft prior method as shown in

Fig. 4.8(b). Fig. 4.8(c) is the reconstructed FMT image obtained by the kernel

method when using the MRI images as the anatomical guidance directly without

segmentation. In the kernel method, we set the nearest neighbor of k = 256 and

the voxel number of 3×3×3. From Fig. 4.8 we can see that the kernel method

reconstructed the target very well with comparable results from the soft prior

method. For the kernel method VR, Dice, CNR, and MSE are 0.529, 0.626, 23.007,

and 7.14e-4, while for the soft prior method those metrics are 0.966, 0.974 , 42.622

and 3.12e-4, respectively.
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Figure 4.8: For numerical simulation with rat head MR image (a)MRI image,
FMT reconstructed image with (b) soft prior method (c) kernel method with
k = 256 and the voxel number of 3×3×3.

4.3.2 Phantom experimental results

Reconstruction with homogeneous background in CT images

The phantom’s geometry is plotted in Fig. 4.2. As described in the numerical

simulation section, we have performed the FMT reconstruction of this phantom

experiment with the soft prior method and with kernel method of 15 different case

with 5 different nearest neighbor k (16, 32, 64, 128, 256) and 3 different voxel

numbers (3×3×3, 5×5×5, 7×7×7).The reconstructed FMT images along with

anatomical CT images are plotted in Fig. 4.9. The kernel based reconstruction re-

sults (Fig. 4.9(d)) are as good as the results from the soft prior method (Fig. 4.9(c))

when the homogeneous anatomical images were used as guidance. For compari-

son, we have also reconstructed the target without anatomical guidance as shown

in Fig. 4.9(b), from which we see that the two targets were reconstructed with

large position errors. To analyze the reconstructed FMT images quantitatively, we

have calculated the VR, Dice, and CNR as listed in Table 4.4 for each case, where

the microCT images were referred as the ground truth image to calculate those

metrics. The MSE has not been calculated because we do not know the exact

fluorescent dye concentration. From Table 4.4, we know that the kernel method

has the best reconstruction results with the nearest neighbor of 64 and the voxel

number of 5×5×5, in which the VR, Dice and CNR are 0.714, 0.643, and 25.849,

respectively. The VR, Dice, and CNR are 0.729, 0.757 and 30.312 for the FMT

reconstruction with the soft prior method. These similar image quality metrics in-
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dicate that the kernel method is as good as the soft prior method for FMT targets

with homogeneous background.

Figure 4.9: (a)Original CT images, FMT reconstruction result (b)without prior
(c) with soft prior method homogenous background (d) with kernel method recon-
struction using original CT images as guidance with k = 64 and the voxel number
of 5×5×5.

Reconstruction with inhomogeneous background in CT images

To further validate the proposed method in a more complicated anatomical

images, we added some artificial features in the physical CT images we obtained.

As shown in Fig. 4.10(a), the darkest big cylinder has an intensity of less than

50% of the background. The other two big cylinders have an intensity of 50%

more than the background intensity. We also added another three small cylinders

at the random locations with a different intensities. Two of them had intensity

of 5 times more than the background, which is slightly higher than the targets’

intensity. This mimics bones in CT images or fat and bloods in MRI images.
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Table 4.4: The calculated VR, Dice, and CNR for the phantom experiments with
the soft prior and the kernel method.

Homogeneous Inhomogeneous

VR Dice CNR VR Dice CNR

Soft prior 0.729 0.757 30.312 0.677 0.728 29.704

Kernel method 0.714 0.643 25.849 0.672 0.648 28.250

No prior 0.752 0.025 2.569

For the reconstruction with the soft prior method we had 6 regions: two targets,

three big cylinder artificial features, and the background. Unlike the homogeneous

background case, here we obtained the best kernel method based FMT images

with the nearest neighbor of 256 and the voxel number of 3×3×3, in which the

VR, Dice and CNR are 0.672, 0.648, and 28.250, respectively. Those image quality

metrics are slightly lower than those of the soft prior method: 0.677, 0.728, and

29.704 respectively. These results demonstrated that the kernel method is able to

achieve comparable results to the soft prior method when there are inhomogeneous

inclusions in the anatomical guidance images.

Figure 4.10: (a) CT image with artificial features (b) FMT reconstruction result
with soft prior method inhomogenous background (c) kernel method reconstruction
using CT image with artificial features as guidance with k = 256 and the voxel
number of 3×3×3.
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4.4 Discussions and Conclusion

In this paper, we have introduced the kernel method as a new approach to in-

clude the anatomical guidance in the FMT image reconstruction, in which a kernel

matrix having the anatomical priors is created and incorporated into the projec-

tion model of FMT. It is worth noting that we used the forward model without the

kernel method to generate the FMT measurements for numerical simulations. Nu-

merical simulations and phantom experiments have been performed to demonstrate

that the proposed kernel method has reconstructed the FMT targets successfully

and have comparable results as the soft prior method.

Compared with conventional Laplacian-type regularization method to include

anatomical priors such as soft priors, the kernel method has the advantage of easy

implementation, in which we do not need to segment the target and background

regions in the anatomical images. This advantage is more significant for some

cases in which the targets are not easily differentiated and segmented. This may

result in a concern of the misguidance from the false positive regions. To address

this issue, we have performed two numerical simulations, one with false target

size (from 1.4 mm to 2.8 mm in diameters) as described in section 4.3.1. Our

results indicate the false target size guidance has some effects when two targets

are very close. However, the kernel method performs better than the soft prior

method. Another advantage of the kernel method is that we do not have to search

for optimum regularization parameter, which is searched with the L-curve method

in conventional regularization methods.

To generate the kernel matrix, three parameters must be set before the FMT

image reconstruction. The first parameter is the Gaussian kernel coefficient σ.

According to previous studies [138, 185], σ = 1 yields best results. The second

parameter is the number of nearest neighbors k. From the results of both nu-

merical simulations and phantom experiments, we found that the reconstructed

image quality is better with a larger number of k. It also depends on the features

of anatomical images.As indicated in numerical simulations with cylindrical ge-

ometry and phantom experiment with homogeneous background, for anatomical

images with fewer features, we can obtain good reconstruction results considering
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only 64 nearest neighbors in the kernel matrix. However, for the anatomical im-

ages with rich features, such as elliptic cylindrical simulation, the simulation with

MRI data and phantom experiment with inhomogeneous background, we have to

consider more nearest neighbors in the kernel matrix. We acknowledge that for

the simulations and experiments presented the results of kernel method with up to

k=64, we can obtain much better reconstruction results with k=256.The third pa-

rameter is the voxel number. As demonstrated in the first and second simulations,

of anatomical images without any false information, the quality of reconstructed

FMT images increase slightly as the voxel number increases for a fixed number

of nearest neighbors k. However, for the numerical simulations with the false tar-

get size in anatomical images, kernel method with the smaller number of voxels

performs better than the kernel method with the larger number of voxels. As it

shown in Table 4.3, Dice and CNR are achieved highest with voxel number of

3×3×3 for the reconstruction with kernel method when k=256. MSE also reached

the lowest for the case of voxel number 3×3×3. VR coefficient is not informative

in the case because the incorrect bigger size of the target in the anatomical images

introduce higher volume ratio to the reconstruction image. Similarly, Numerical

simulation with MR images and phantom experiment with artificial features fur-

ther demonstrate this trend by obtaining the best results with of voxel number of

3×3×3.

The kernel matrix was generated before the FMT reconstruction with the ma-

trix generation times depending on the voxel size and the nearest neighbor number.

Table 4.5 lists the K matrix generation time for elliptic cylindrical simulation with

two targets. For the best image quality setup with the nearest neighbor of 256 and

the voxel number of 3×3×3, the K matrix generation time was 20.09 seconds on

a cluster with 12 nodes (2.8 GHz each node) and 128 GB memory. This is slightly

longer than the time spent on the generating regularization matrix for the soft

prior method, which was 12.28 seconds in this simulation with 5 regions. We ac-

knowledge that, the time spent on generating the soft prior matrix refers to the

time for generating matrix L from the region labeled vector. Since kernel matri-

ces are are sparse, multiplications involved in reconstruction processes also do not
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introduce significant computation time. In this study, the kernel method based

FMT reconstruction converged in no more than 10 iterations which are around 5

seconds total.

Table 4.5: Construction time of the kernel matrix K with different k values and
voxel sizes (in seconds).

Voxel number k = 16 k = 32 k = 64 k = 128 k = 256

3×3×3 3.36 3.78 5.46 8.88 20.09

5×5×5 11.32 12.78 16.81 23.58 38.79

7×7×7 28.89 34.59 43.05 57.30 96.42

In summary, we have introduced a kernel method based FMT reconstruction al-

gorithm as a new approach to include the anatomical guidance. Numerical simula-

tions prove that this method is robust in overcoming incorrect anatomical guidance.

Phantom experiments further validate that the proposed method can improve the

FMT reconstruction quality and does not increase the reconstruction time. In the

future, we will apply the proposed kernel method to in vivo experiments on the

hybrid systems.



Chapter 5

Conclusion and future work

In this present work, feasibility of CT guided DOT for breast cancer imaging

has been studied. A non-contact CCD camera based prototype system was built

and numerical simulations and phantom experiments were conducted. Numerical

simulations indicated that the measurement data from six projections with a 6

cm wide measurement patch are enough to reconstruct a good absorption contrast

image with high quantitative accuracy if CT guidance is applied. From phantom

experiments, we see that our proposed CT guided DOT system is able to recon-

struct 2 times absorption contrast targets with very high spatial resolution and

quantitative accuracy.

Image segmentation, a tedious precess, is required for soft prior based anatom-

ical guidance method. to remove this requirement, kernel-based image reconstruc-

tion algorithm was introduced to directly incorporating anatomical images into

the DOT image reconstruction. We conducted numerical simulation and phantom

experiments to validate the new algorithm. Simulation and phantom experiment

results have validated the kernel method. Our results indicate that the higher

number of nearest neighbors and larger voxel size improve the quality of the re-

constructed images. The numerical simulation results indicate that the proposed

kernel method is robust to CT contrast and the false positive targets in the anatom-

ical guidance such as CT images. After applying the new method With the clinical

breast CT images as the guidance, we demonstrated that we do not need the seg-

mentation for the proposed kernel method.

83
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We have also implemented kernel-based image reconstruction algorithm for

anatomical image guided FMT. Numerical simulations and phantom experiments

have been performed to demonstrate that the kernel method has reconstructed the

FMT targets successfully and have comparable results as the soft prior method.

Numerical simulations prove that this method is robust in overcoming incorrect

anatomical guidance. Phantom experiments further validate that the proposed

method can improve the FMT reconstruction quality and does not increase the

reconstruction time.

In the future, we will build a multispectral EMCCD camera based DOT imag-

ing system which consists of 4 diode CW lasers, an optical switch, a fiber holder,

collimators, an EMCCD camera and a rotation stage. Four CW lasers at wave-

lengths of 650, 715, 880, and 915 nm will be connected to a 4-to-12 optical switch

which passes one laser to one of 12 fibers and the laser beam will be collimated at

the other end of the fiber with a collimator. Measurements at six projections with

rotational increments of 60 degrees will be taken to cover the whole surface of the

breast. Altogether, there will be 4 lasers with a total 72 excitation positions for

each wavelength. For each laser excitation position, pictures will be taken by the

EMCCD camera as measurements in a transmission mode. The EMCCD camera

based DOT imaging system will be integrated into a breast CT imaging system.

The rotation time per 60 degrees is estimated to be 5 seconds. The exposure time

per measurement picture is estimated to be 1 second per wavelength and position.

Therefore, the total measurement time for the DOT imaging is estimated at about

8 minutes.

The integrated CT-guided DOT system will allow us to use breast CT images

directly to guide DOT image reconstruction applying the proposed kernel method.

The multispectral aspect of the CT-guided DOT system will make it possible to

monitor changes in hemoglobin concentrations and oxygenation. Further more,

since we will have more measurement data, we can possible reconstruct reduced

scattering coefficients along with optical absorption coefficients. The morphologi-

cal imaging, including the scattering particle mean diameter imaging and the scat-

tering particle volume fraction imaging can obtained from the reduced scattering
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images at multiple wavelengths.

Regarding the image reconstruction algorithm, new version of kernel method,

the highly-constrained back-projection (HYPR) method has been introduced into

the dynamic PET image and it has been demonstrated that HYPR method is

simpler to be implemented and can further improve the kernel-based dynamic PET

image reconstruction[190]. In the future, HYPR kernel method can be introduced

in the image reconstruction of DOT and FMT to improve the reconstructed images

quality.

Furthermore, we can also employ deep convolutional neural network (CNN) to

improve DOT and FMT image reconstructions. We can build a CNN which can be

trained with data which obtained from higher number of projections, possibly 24

or 36 projections, then be used to improve the quality of reconstructed images from

only 4 or 6 projections data. Similar methods proven to be efficient in low-dose CT

image reconstruction[191]. Directly employing the method must be challenging

since image reconstruction in DOT is nonlinear and requires computing a huge

Jacobian matrix. However, following the advancements in linearizing techniques

and rapidly increasing computation power, it is possible to introduce deep learning

techniques into DOT and FMT image reconstruction in the coming years.
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