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ABSTRACT OF THE DISSERTATION

Essays on the Theory of Bargaining

and Economics of Matching Platforms

by

Andrew Park

Doctor of Philosophy in Economics

University of California, Los Angeles, 2022

Professor Simon Adrian Board, Chair

This thesis consists of three essays studying the theory of bargaining and learning dynamics

of matching platforms. The first essay studies the role of optimism in non-cooperative

bargaining, while the second essay explores how introducing bargaining incentives affect

trust building process in international relations context. The final essay considers learning

incentives of matching platforms that utilize their matching technology to exploit or explore

the quality of their constituents.

The first essay asks a theoretic question: does exaggerated optimism benefit an agent in

bargaining? The paper analyzes a two agent non-cooperative bargaining model to study if,

and when, one has incentive to over-report his level of optimism. It modifies the complete

information Rubinstein bargaining model to let players hold different beliefs about which

player makes an offer. Defining optimism over one’s perceived recognition probability, I find

that an agent always “envies” a more optimistic agent, and has incentive to play optimism

as strategic posture to benefit. The second part of the chapter introduces an asymmetry of

information to the game, letting an agent be of a “more optimistic” type with some known
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probability. I find that the less optimistic type 1q pretends to be the more optimistic type—

“play optimism”—if his probability of being more optimistic is high enough, 2q reveals his

type before the more optimistic type would have settled, and 3q benefits more by playing

optimism the higher the probability of extreme optimism is.

The second essay studies social encounters that involve both trust building and bargain-

ing. We show that while bargaining interferes with trust building in the sense that fully

informative signaling becomes impossible, bargaining alongside trust-building actually im-

proves welfare when initial trust is low. In contrast to the current literature, we show that

actors improve welfare by building trust more slowly. Thus, windows of opportunity to build

trust must be seized to prevent significant declines in expected welfare. We also characterize

the evolution of stakes that lead to the best outcomes. Our analysis explains why trust

building is so much more difficult than the current literature implies and illuminates the

opportunities that produce the best outcomes between adversaries with something to lose.

The third essay studies how platforms can utilize its pooling ability both to generate flow

output and to discover good agents at the same time. In a simple model of two types in

continuous time, the paper identifies an exploration-exploitation trade-off: by only matching

good agents to each other, the platform may maximize flow output while sacrificing discov-

ery of new good agents; on the other hand, by keeping an integrated pool, the platform

maximizes learning rate while sacrificing the number of good matches. We find that the

optimal matching policy is bang-bang from full integration–until the discovery ratio of good

agents hits a certain threshold–to full segmentation thereafter to maximize flow payoffs. We

also characterize how the threshold ratio responds to parameters of the model.
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CHAPTER 1

Playing Optimism: Role of Uncommon Prior in

Sequential Bargaining

1.1 Introduction

Bargaining skill matters. Different buyers often settle on substantially different prices for

the same product from the same supplier; defendants in civil case lawsuit pay a large sum

to hire lawyers because they believe a lawyer’s superior bargaining ability will more than

compensate for it in settlement terms. Game theorists have developed an approach to answer

what determines such bargaining power from as early as Nash [1950] and, more pertinently,

St̊ahl [1973]. In empirical IO literature, Grennan [2014] identifies the force of bargaining

ability using empirical evidence from hospitals’ purchase of medical devices, attributing as

much as 79% of price variation to this force. My paper studies a more specific form of

bargaining power: how optimism affects bargaining process and outcomes. In particular, it

focuses on the value of optimism as a strategic posture in determining the division of surplus

in a two-agent non-cooperative bargaining environment.

To formalize, I consider the celebrated model of Rubinstein [1982] as a basic framework.

The model considers two agents, each with her own impatience level, seeking to divide

fixed surplus under a strict procedure of infinitely repeated alternating offers. The complete

information assumption drives desirable results under this setting, yielding unique solution

of immediate agreement. The simple and insightful model invited many modifications to

better represent uncertainty or delays that are prevalent.
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Yildiz [2003] and Yildiz [2004] extend the model by letting the players hold subjective be-

liefs about the “recognition process.” In his model, each player believes he will be recognized

as proposer in period t with probability P 1
t and P 2

t , respectively, which don’t necessarily add

up to 1. Such departure from common prior assumption significantly alters the bargaining

process. Yildiz [2003] formulates the model, defining optimism as a social status in which the

sum of each players’ belief about his recognition probability exceeds 1. He further postulates

certain conditions on the level and evolution of optimism under which immediate agreement

still occurs. Yildiz [2004] discusses the flip side of this “immediate agreement theorem,” and

studies what happens when the aforementioned conditions do not hold. With added struc-

ture, he finds that when the two players’ prior beliefs are different and firm enough, they

wait until the realization of recognition process brings their posteriors close enough for an

agreement. With strategic choice of Bayesian updating mechanism, Yildiz [2004] shows that

while the players disagree about the division, they agree on the duration of delay regardless

of the realization.

On another strand of research, Abreu and Gul [2000] introduces asymmetry of informa-

tion to the Rubinstein framework. In their model, each player has known probability of

being irrational type who requires fixed—also known—share of the surplus. The incomplete

information about the other player’s private type dampens the game into a war of attrition,

in which each player pretends to be the irrational type and requires a larger share of the

surplus until the weaker player gives in. In continuous-time setting, the authors show that

a player’s bargaining power is increasing in his probability of being irrational and in the

opponent’s impatience level. They link this result with Myerson [1991]’s observation that

“influence of asymmetric information overwhelms the effect of impatience in determining the

division of surplus.”

This linkage is partly what motivates my paper. Abreu and Gul [2000] considers “hard”

information. In their model, the difference between the types dictates whether there is any

gain to bargaining, as playing against an irrational type renders any effort towards bargaining
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meaningless. My paper asks whether the same relationship holds over “softer” information.

Does an asymmetry in softer information, such as level of optimism, also overwhelm the effect

of impatience? Or was the relationship driven by the absolute strength of information?

To answer the question, my paper borrows the framework of Yildiz [2004] but asks a

fundamentally different question. Rather than viewing optimism as a social status over

which both players have complete knowledge, I introduce uncertainty to one of the player’s

level of optimism, who may use it as strategic posture to benefit in the division of surplus.

Under such incomplete information setting, my paper asks whether agents have incentive

to misreport their prior belief P i
0. Unlike Abreu and Gul [2000]’s discussion over hard

information, the types the agents can be, or act as to be, are still rational, and do not

trivialize the game upon revelation.

To fix ideas, let me formalize my question in an example. Consider a royalty negotiation

between a writer and a publisher who hold different beliefs about the expected success of

the book. The publisher thinks the book will fail with probability P 1
0 while the writer

thinks the book will succeed with probability P 2
0 , with P 1

0 ` P 2
0 ą 1. Both agree that the

up-front advance amount1 should depend on how well the book sells. Yildiz [2004] shows

that the parties will delay the settlement until enough evidence bring their beliefs closer

together, or “wait to persuade.” Now, suppose writer A co-authored the book with another,

more optimistic writer B (with P 21

0 ą P 2
0 ). The bargaining process of A and B against

the publisher are separate but the realization of P—the gradual revelation of the book’s

success—is the same for both A and B. In this setting, does A envy B? If so, does A want

to adopt B’s optimism as a strategy against his real belief? Can he do it?

Note that the three questions are substantively different. The last two questions only

have grounds if the answer to the first is a yes. As will be shown, however, it is not trivially

1Writers and publishers often agree on a royalty with advance up front, where the publisher pays a fixed
amount first, and later deducts it from future royalties. I consider the advance rather than the royalty as an
object of bargain because it better represents division of fixed surplus that does not depend on recognition
process.
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so. While B will settle at a more favorable posterior, leading her to get larger portion of

the up-front advance, she will achieve the settlement at a later date than A, shrinking the

size of the pie by that much. It is important to notice at this point that it is writer A who

evaluates both scenarios ex-ante, which is different from purely comparing the utility of A

and B at the end of each bargaining process. In section 3, the paper shows that the first

effect dominates the second effect: A always envies B. In the same section, I also show that

envy is a lower bound to the incentive to play optimism. In other words, if A already envies

B’s bargaining outcome, the utility A thinks he will get if he can use B’s type optimally for

himself is, almost by construction, even larger.

As noted by language, evaluation of the first two questions is contemplation: writer A is

debating whether to act as B in simulation. I call this process “contemplating optimism”,

and assume that the belief A reports is adopted without a doubt to the publisher, preserving

the common knowledge setting of Yildiz [2004]. An interpretation of this assumption is

that writer A simulates how the bargaining game would be played out given that he can

completely fool the publisher.

The final question of whether he can successfully “play optimism” as a strategic posture

is a completely different one from the previous two: this is where I introduce asymmetry of

information to the game. Since it is shown that A always has incentive to be treated as B,

the publisher becomes uncertain over whether the observed optimism is B’s actual belief or

A’s strategic posture. This uncertainty over which game he is playing—bargaining against

A or against B—prompts the publisher to behave differently from either of the equilibrium

strategies in which beliefs were common knowledge. This paper does not attempt to fully

characterize the solution concept of all possible equilibria of this new game. Instead, by

iterated elimination of conditionally dominated strategies, I show that as long as both A

and B are patient enough to cause delay in the first place, whether A can play optimism

only depends on his prior probability of being type B. Furthermore, I show that the second-
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ordered nature2 of the difference in types results in full revelation of uncertainty before the

game ends when the publisher plays against writer B.

The rest of the paper is organized as follows. Section 2 lays out the model, with some bor-

rowed results from Yildiz [2004], and defines objects of interest such as envy and conjectured

utility. Section 3 describes how writer A contemplates optimism, and presents answers to

the first two research questions. Section 4 modifies the model to playing optimism game, and

demonstrates two features of an equilibrium outcome that leads to the conclusion. Technical

algebra and proofs are relegated to the Appendix.

1.2 Model

1.2.1 Complete Information Framework

I consider three agents N “ t1, 2, 21u in discrete time space T “ t0, 1, 2, ¨ ¨ ¨ u with common

discount factor δ P p0, 1q.3 I take U “ tu P r0, 1s2|u1`u2 ď 1u and U 1 “ tu P r0, 1s2|u1`u2
1

ď

1u to be the set of all feasible expected utility pairs.4

The bargaining between agent 1 and 2 proceeds in the following way. In each period t,

Nature recognizes a player as proposer. The proposer offers a utility pair u “ pu1, u2q P U .

If the other player accepts, the game ends, yielding the agents δtu “ pδtu1, δtu2q. If the other

player does not accept, the game moves on to period t ` 1. If the players never agree, they

both get 0. The separate bargaining between agent 1 and 21 would proceed in the same way,

with u2 being replaced by u2
1

. The notational distinction will be preserved over the entire

paper, with superscript 1 referring to parameters in bargaining between 1 and 21, and naked

2The types are only indirectly linked to the payoffs they receive, unlike Abreu and Gul [2000] model where a
type directly corresponds to the payoff.

3To avoid verbal confusion, I refer to agent 2 as a he and 21 as a she.

4Even though utility of agent 1 is present in both sets, agent 1 either enters bargaining game against agent 2
or 21 and never together. Therefore, notation works as is in the complete information case.
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letters or superscript ˚ referring to parameters in bargaining between 1 and 2.5

Following Yildiz [2003]’s choice, I model the players’ beliefs as following beta distributions

to facilitate discussion of learning process. In particular, I assume that at the beginning of

time t, if agent i observes agent 1 propose m times so far, he assigns probability mi`m
n`t

to

the event that agent 1 gets recognized at any time s ě t. Fixing any positive integers

1 ď m1
2 ă m2 ă m1 ď n ´ 2 captures the desired prior belief system that there exists

optimism between agent 1 and 2, and even greater optimism between agent 1 and 21. Note

that at time 0, the agents’ prior beliefs about agent 1’s recognition probability share the same

denominator n, positing that the agents have the same level of firmness in their differing

prior beliefs. Such structure enables us to distinguish the agents by the following primitives:

‚ Distance in beliefs: ∆ ” m1 ´ m2, ∆1 ” m1 ´ m1
2

‚ Prior beliefs of one’s own recognition probability:

P 1
0 “ m1

n
, P 2

0 “ n´m2

n
, P 21

0 “
n´m1

2

n

‚ Posterior beliefs at t after agent 1 makes m offers:

P 1
t pmq “ m1`m

n`t
, P 2

t pmq “ n`t´m2´m
n`t

, P 21

t pmq “
n`t´m1

2´m

n`t

‚ Level of optimism:

ytpmq “ P 1
t pmq ` P 2

t pmq ´ 1 “ ∆
t`n

ą 0, y1
tpmq “ ∆1

t`n
ą ytpmq

1.2.2 Existing Results Under Complete Information

In the absence of agent 21, Yildiz(2004) solves the payoff-equivalent subgame-perfect equilib-

rium of the two-agent bargaining model. He shows, by iterated elimination of conditionally

dominated strategies, that all SPEs of this model are payoff equivalent:

5Note that although the model consists of 3 agents, bargaining is always between two agents, so the game can
be thought of as two separate two-agent bargaining game where the outcomes and procedures are disclosed
to everyone. I chose to represent it as three agents in order to avoid notational verbosity, as utility of agent
1 is not an object of interest until section 4.
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Lemma 1.1 (Yildiz [2004] Lemma 2). Given any pm, tq and i, there exists a unique V i
t pmq P

r0, 1s such that, in any SPE, the continuation value of i at pm, tq is V i
t pmq.

Proof. See Yildiz [2003] Theorem 1.

Utilizing the unique payoffs, Yildiz [2004] shows that agents do not settle on an agreement

until the discounted value of the next period’s social surplus (δSt ” δV 1
t ` δV 2

t ) is less than

1. While the focus of Yildiz [2004] is on the agreed duration of delay, I relay some of his

intermediate findings here as they facilitate our discussion in the next section.

Lemma 1.2 (Yildiz [2004] Lemma 3). For each t, Stpmq “ Stpkq for all m and k.

This finding that the social surplus is deterministic while continuation value or division of

surplus depends on the recognition process drives his result that the agents agree on a fixed

settlement date until which time both “wait to persuade.” At the agreed settlement date,

the recognized agent i offers δV j
t`1 to j, who barely accepts. The following definition and

results exhibit the evolution of the continuation value, an object of interest for my results:

Definition 1.1. A proposer rent is defined as: Rt “ maxt1 ´ δSt`1, 0u, and is thus also

deterministic.

Lemma 1.3 (Yildiz [2004] Lemma 5). Given any pm, tq and i,

V i
t pmq “ P i

t pmq ¨ Λt,

St “ p1 ` ytq ¨ Λt,

where Λt ”

8
ÿ

s“t

δs´tRs

Lemma 1.4. The present value of all future rents, Λt, is tightly bounded by:

Bt´1 ă Λt ă Bt

7



where

Bt ”
1

1 ` δyt`1

Finally, I relay another approximation result of Yildiz(2004).

Lemma 1.5. Settlement time t˚ is the latest period that satisfies:

t˚ ` n ă

c

∆δ

1 ´ δ

1.2.3 Conjectured Utility and Envy

The focus of this paper’s investigation in the complete information game is not so much the

outcome of the two-agent bargaining game. Rather, within the framework, this paper asks

how agents involved in their own bargaining game evaluate the profitability of participating

in the other bargaining game. To be specific, it studies whether agent 2, with his less

optimistic beliefs, envies the bargaining outcome of the more optimistic agent 21 against the

same agent 1. As agent 2 and 21 have different beliefs about the world, how they evaluate,

ex-ante, the bargaining outcome of their own and the other’s also differs.

In particular, I define conjectured utility Upm1
2|m2q as ex-ante evaluation of agent 2 of

what would happen in his view of the world if he can completely trick agent 1 that he is

agent 21, and mimic the strategy of 21 against 1. It is worth emphasizing again that this

conjectured utility is a different object from the expected utility of agent 21 in her bargaining

against agent 1, because her type and strategy are played out in the belief of agent 2. The

following illustration demonstrates this distinction:

8



Evaluated by agent 21 Evaluated by agent 2

Figure 1.1: Illustration of Posterior Updating with P 1
0 “ 3

4
, P 2

0 “ 1
2
, P 21

0 “ 3
4

This is an illustration of the difference between E21

t“0rδt
1

V 21

t1 s (left) and Upm1
2|m2q (right).

The top bars show each agent’s reported belief about the recognition probability of agent 1.

Note that both agent 21 on the left and agent 2 on the right report the same prior of P 21

0 “ 3
4
.

The mid-left bar shows projection of agent 21 of how the realization will persuade agent 1

at their time of settlement t1. The division of surplus she simulates at t1 is illustrated on

the bottom-left. The mid-right bar shows projection of agent 2 of how the realization will

persuade agent 1 at t1. Although he reported P 21

0 , he believes the realization will happen

around P 2
0 “ 1

2
, resulting in simulated posteriors that are drastic different from the ones

shown in mid-left bar. Note that due to the same firmness of belief, both simulations take

exactly t1 periods to settle. The bottom-right bar shows the value of Upm1
2|m2q before

discounting, which is clearly different from V 21

t1 on the bottom-left.

The next lemma formally defines and calculates the conjectured utility.
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Lemma 1.6. Conjectured utility is given by:

Upm1
2|m2q “ Et“0

„

δt
1

V 21

t1

ˇ

ˇ

ˇ

m2

n

ȷ

“ δt
1

t1
ÿ

m“0

ψ
`

m, t1
ˇ

ˇ

m2

n

˘

ˆ

P 2
t1 pmq

`

1 ´ δV 11

t1`1pmq
˘

`
`

1 ´ P 2
t1 pmq

˘

δV 21

t1`1pm ` 1q

˙

where

‚ ψ
`

m, t1
ˇ

ˇ

m2

n

˘

”
`

t1

m

˘`

m2

n

˘m`n´m2

n

˘t1´m
is the binomial probability of m occurrence in t1

tries with m2

n
probability of success,

‚ V 11

t1`1pmq “ m1`m
t1`n`1

¨ Λ1
t1`1

‚ V 21

t1`1pm ` 1q
t1`n´m1

2´m

t1`n`1
¨ Λ1

t1`1 from Lemma 1.2

Remark. Conjectured utility is a simulated evaluation of agent 2 of what would happen if

both agent 1 and himself act as if he were agent 21. ψ
`

m, t1
ˇ

ˇ

m2

n

˘

represents the probability

agent 2 thinks the realization will be panned out with. In each state of the world, represented

by m, agent 2 updates two versions of posteriors: one for reporting how agent 21 would have

reacted, and another in his mind starting from his true prior. At the time of settlement,

agent 2 evaluates the probability of recognition according to his true posterior, hence the

terms P 2
t1 pmq and 1 ´ P 2

t1 pmq instead of P 21

t1 pmq and 1 ´ P 21

t1 pmq. In contrast, the time of

settlement and actual division of surplus follow the strategy and not the belief of agent 2,

thus being t1 and 1 ´ δV 11

t1`1pmq
`

or δV 21

t1`1pm ` 1q
˘

, respectively.

With this formal treatment of simulation, I define envy as follows.

Definition 1.2. Agent 2 with P 2
0 “ m2

n
envies agent 21 with P 21

0 “
m1

2

n
if:

Upm1
2|m2q ą Upm2|m2q.

10



1.3 Contemplating Optimism

In this section, I utilize the carefully defined conjectured utility to show that agent 2 always

envies the more optimistic agent 21. The premise behind the intuition of this result is that

agent 2 believes the prior belief of agent 1 is unacceptably flawed. Otherwise, agent 2 would

feel no need to persuade in the first place. Therefore, I restrict the initial level of optimism

to the levels in which agents fail to agree at time 0. In this case, according to Yildiz [2004],

agent 2 will postpone agreement until the realization, which he believes will happen around

his prior belief P 2
0 , convinces agent 1 to update his posterior closer to, but not quite equal

to, P 2
0 .

This section shows that in my model, agent 2 contemplates a better option. By falsely

reporting his prior as P 21

0 —which is bigger than P 2
0—he can convince agent 1 that agreement

will not happen until posterior of agent 1 gets even closer to P 2
0 . This way, even with the same

realization, he can persuade agent 1 to settle at a more favorable posterior to himself, albeit

at a later, and thus further discounted, settlement date.6 The main result will show that the

positive effect of more favorable posterior always dominates the time effect of discounting.

Before positing the main result, the following paragraph demonstrates how the bargaining

game which agent 2 contemplates pans out.

In the perfect information game between agent 1 and agent 21, elimination of conditionally

dominated strategies dictates that the following happens. At time 0, δS 1
1 “ δV 11

1 ` δV 21

1 ą 1,

which means that both agents prefer waiting for the next period to offering each other his/her

discounted continuation value. Such optimism decreases as evidence brings their posteriors

close together, decreasing the perceived social surplus, until t1 when S 1
t1`1 ď 1

δ
. Up to this

point, prescribing any action to the proposer will constitute an equilibrium strategy as long

as the opponent does not want to accept it. I will assume, without loss of generality, that

6Remember, we are assuming the reported prior beliefs are accepted as common knowledge. Discussion of
how agent 1 reacts to this pretension possibility is postponed to next section, after showing that agent 2 has
incentive to pretend in the first place.
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at any time t ă t1, the recognized agent i offers 1 ´ δV i
t`1, which is less than δV j

t`1, and gets

rejected. At t1, the recognized agent i offers δV j
t , which is accepted, and enjoys proposer

rent Rt “ maxt1 ´ δSt`1, 0u. Contemplating this game leads to the following theorem.

Theorem 1.1. An optimistic agent always envies more optimistic agents. Equivalently:

Upm1
2|m2q ą Upm2|m2q, @ m1

2 ą m2.

Sketch of proof. (See Appendix for technical details)

Expanding Upm2|m2q to match the form of conjectured utility, we are comparing7:

1) δt
1 řt1

m“0 ψ
`

m, t1
ˇ

ˇ

m2

n

˘

ˆ

P 2
t1 pmq

`

1 ´ δV 11

t1`1pmq
˘

`
`

1 ´ P 2
t1 pmq

˘

δV 21

t1`1pm ` 1q

˙

2) δt
˚ řt˚

m“0 ψ
`

m, t˚
ˇ

ˇ

m2

n

˘

ˆ

P 2
t˚pmq

`

1 ´ δV 1
t˚`1pmq

˘

`
`

1 ´ P 2
t˚pmq

˘

δV 2
t˚`1pm ` 1q

˙

Summing over different number of binomial possibilities (t1 tries vs. t˚ tries) complicates

the comparison a lot. Since the binomial combinations share the same probability m2

n
, we

can simplify by comparing where the most mass is. Defining m1 ” m2

n
t1 and m˚ ” m2

n
t˚

simplifies our comparison to the following:

1) δt
1

ljhn

A’

„

P 2
t1 pm1

q
l jh n

B’

`

1 ´ δV 11

t1`1pm
1
q

l jh n

C’

˘

`
`

1 ´ P 2
t1 pm1q

˘

δV 21

t1`1pm
1
` 1q

l jh n

D’

ȷ

2)

A
hnlj

δt
˚

„

B
h nl j

P 2
t˚pm˚

q
`

C
h nl j

1 ´ δV 1
t˚`1pm

˚
q
˘

`
`

1 ´ P 2
t˚pm˚q

˘

D
h nl j

δV 2
t˚`1pm

˚
` 1q

ȷ

‚ B’ “ B “ m2

n
: Agent 2 thinks his real posterior will be the same as his prior.

‚ C’ ą 1 ´ δ
m1

2`m1

n`t1`1
t1`n`1

t1`n`1`δ∆1 ą 1 ´ δm2

n
t˚`n`2

t˚`n`2`δ∆
ą C:

– from Lemma 1.3 and 1.4 (See Appendix for detail)

7t1 is the predetermined settlement time between agent 1 and 21 as before, and t˚ is the predetermined
settlement time between agent 1 and 2.
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– C’ dominates C almost linearly in ∆1 ´ ∆ “ m2 ´ m1
2

– D’ dominates D in similar manner

‚ A ą A’ : t1 ` n «

b

δ∆1

1´δ
, t˚ ` n «

b

δ∆
1´δ

from Lemma 1.5

In words, t1 and t˚ are set such that agents are willing to suffer δ for change in posterior

up to the time. For agent 2, starting from a more favorable prior facilitates movement

of posterior immensely faster than the current updating so that he is willing to wait for a

duration that the more optimistic agent 21 would have waited even with her slower updating.

Theorem 1.1 states that agent 2 would prefer imitating extreme optimism of agent 21 and

receiving the conjectured utility Upm1
2|m2q to getting his own bargaining outcome. A simu-

lated comparison of the three utilities—Upm2|m2q, Upm1
2|m2q, and Upm1

2|m
1
2q—are presented

in the following figure.
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Figure 1.2: Illustration of Envy: Upm2|m2q ă Upm1
2|m2q ă Upm1

2|m
1
2q

Based on the equilibrium strategy of agent 1 against agent 21, we can easily see that

agent 2 can do even better. In particular, while reporting the optimism level of agent 21,

agent 2 is actually not as optimistic about his future payoffs as agent 21, for there is a

discrepancy between his reported posterior and his actual posterior in his mind. Therefore,

if t1 is set such that agent 21 no longer deems it worthwhile to wait another period even with

her higher level of optimism, agent 2 would wish to settle earlier. Yildiz(2004) shows that

if agent 2 was in a bargaining game against agent 1 truthfully, that time in which he wishes

to settle is t˚. Contemplating optimism alters this consideration in two major ways. First,

agent 2 contemplates playing as agent 21, and therefore anticipates agent 1 to hold lower

continuation value—V 11

t . Second, the option of receiving conjectured utility in the future

increases continuation value of agent 2 compared to his original bargaining—to V 2c.o.
t . The

following corollaries formalize this idea.
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Corollary 1.1.1. The option of receiving conjectured utility makes agent 2 less willing to

settle every period. Equivalently:

V 2c.o.
t pmq ą V 2

t pmq, @m, t ď t1.

Proof. I prove this corollary in two steps:

i) V 2c.o.
t pmq ą V 2

t pmq, @m, t ă t˚.

By construction of t˚, agent 2 does not want to settle after any history pm, tq for t ă t˚

in his original bargaining. In other words, after any history pm, tq, treating his posterior

belief as the new prior and applying Theorem 1.1 show that agent 2 still envies more

optimistic agent 21 regardless of the realization m as long as t ă t˚. Formally,

V 2
t pmq “ P 2

t pmq
`

1 ´ δV 1
t`1pmq

˘

`
`

1 ´ P 2
t pmq

˘

δV 2
t`1pm ` 1q (1.1)

“ P 2
t pmq

`

1 ´ δSt`1

˘

` δEt

“

V 2
t`1|P 2

t pmq
‰

“ P 2
t pmqRt

l jh n

A

` δEt

“

V 2
t`1|P

2
t pmq

‰

l jh n

B

Since he does not settle before t˚ (δSt`1 ą 1), A term is 0 in the original bargaining.

Since Rt is non-negative by definition, this term can never decrease as he contemplates

optimism. The option of receiving conjectured utility at time t1, however, unambigu-

ously increases expected future benefits—B term—thus showing desired property that

V 2c.o.
t pmq ą V 2

t pmq.

ii) V 2c.o.
t pmq ą V 2

t pmq, @m, t ă t1.

i) shows the mechanism through which contemplating optimism increases continuation

value of agent 2. Here I show a bit more formally that it holds for all t ă t1. Considering

the aforementioned equilibrium strategy, V 2c.o.
t pmq is the continuation value of agent 2
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who evaluates his payoff of pretending to be agent 21 but using his belief. Formally,

V 2c.o.
t pmq “ P 2

t pmq
`

1 ´ δV 11

t`1pmq
˘

`
`

1 ´ P 2
t pmq

˘

δV 21

t`1pm ` 1q

Comparing the expression with (1.1), it suffices to show that V 11

t`1pmq ă V 1
t`1pmq, and

V 21

t`1pmq ą V 2
t`1pmq. Lemma 1.3 and 1.4 render this relationship easy to show, as

proof of Theorem 1.1 demonstrates a similar property. The intuition is that the direct

influence of increased difference in priors dominates the influence of corresponding

decrease in future proposer rents. Refer to the proof of Theorem 1.1 in the appendix

for the exact algebra.

Corollary 1.1.2. The revised settlement date—tc.o.—from which time agent 2 who contem-

plates optimism is willing to settle with agent 1 satisfies:

tc.o. ď t1.

Proof. Consider the aforementioned equilibrium strategy of agent 1 in his bargaining against

agent 21. At any time t ă t1, he offers 1 ´ δV 11

t`1 if he is recognized, and only accepts offers

higher than or equal to δV 11

t`1 if 21 is recognized. Under this specification, tc.o. satisfies:

δV 11

tc.o.pmq ` δV 2c.o.
tc.o. pmq ą 1 and δV 11

tc.o.`1pmq ` δV 2c.o.
tc.o.`1pmq ď 1 (1.2)

Note that the belief updating system dictates that the difference in posteriors only de-

crease as time passes and in the same speed for all realizations of m.8 This property results

in diminishing level of optimism and, in turn, decrease in perceived social surplus. Therefore,

tc.o. that satisfies (1.2) always uniquely exists as long as initial delay is present. Similarly,

8Refer to the model section of Yildiz(2004) for detailed discussion of this property.
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the settlement date t1 between agent 1 and 21 uniquely exists and satisfies:

δV 11

t1 pmq ` δV 21

t1 pmq ą 1 and δV 11

t1`1pmq ` δV 21

t1`1pmq ď 1

Comparing the expression with (1.2), it suffices to show that V 21

t ą V 2c.o.
t regardless of

realization, which is straightforward from P 21

t ą P 2
t :

V 21

t pmq “ P 21

t pmq
`

1 ´ δV 11

t`1pmq
˘

`
`

1 ´ P 21

t pmq
˘

δV 21

t`1pm ` 1q

ą P 2
t pmq

`

1 ´ δV 11

t`1pmq
˘

`
`

1 ´ P 2
t pmq

˘

δV 21

t`1pm ` 1q “ V 2c.o.
t pmq, @m

I pinpoint tc.o. here using one specific equilibrium strategy. Although different off-the-

equilibrium-path strategies we imbue agent 1 will result in a less narrowly specified range

of tc.o., we can easily check that the desired relationship holds for all strategies, as they all

converge to the same equilibrium strategy at t1.

Note that neither corollaries pinpoints the value of V 2c.o.
t or tc.o.. It is because the current

model of contemplating optimism forces agent 2 to intrude into another equilibrium, resulting

in his continuation values being dependent on the specification of off-the-equilibrium-path

strategies we imbue agent 1 with. However, as proof of Corollary 3.1.2 hints, the merit of

this contemplating optimism model is that the core results hold for every off-the-equilibrium-

path strategies we consider as long as they constitute a subgame-perfect equilibrium in the

original game. The next theorem, which naturally follows, sums up these core results into a

main result that agent 2 always has an incentive to play optimism in his contemplation.

Theorem 1.2. An optimistic agent always wants to play more optimistic.

Proof. This theorem naturally follows from Theorem 1.1 if “envy” is the lower bound of the

simulated utility of agent 2 from “playing” m1
2. Notice that by definition, agent 2 only settles

with agent 1 in contemplating optimism when he deems it more profitable than waiting for
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the conjectured utility. Therefore, tc.o. ď t1 implies the following relationship, proving the

desired property:

Utility from “playing” m1
2 “ max

!

δt
c.o.`1

¨ V 2c.o.
tc.o.`1

l jh n

A

, Upm1
2|m2q

)

ě Upm1
2|m2q

where A corresponds to the option value of settling at tc.o.—δt
c.o.

¨ δV 2c.o.
tc.o.`1. Since our choice

of m2 and m1
2 were only restricted by m1

2 ă m2 and t˚ ą 0 over the discussion, the theorem

holds for any optimistic agent who delays.

1.4 Playing Optimism

The discussion in section 3 and Theorem 1.2 can be interpreted as a negative result that in

presence of heterogeneous levels of optimism among agents, reporting his true belief is not

incentive-compatible for agent 2. This, in turn, sheds doubt on the generality in assuming

perfect information in games of uncommon priors such as Yildiz(2004). This section ad-

dresses the concern by imploring the full game of asymmetric information, and describes an

equilibrium behavior which accommodates the uncertainty in the level of optimism agent 2

reports.

To do so, I introduce the following modifications to the model.

‚ Agent space is reduced to a set of two elements: N “ t1, 2u

‚ Agent 1 can only be of one type: θ1 P Θ1 “ tm1u

‚ Agent 2 can be one of two types: θ2 P Θ2 “ tm2,m
1
2u

‚ The probability distribution over Θ2 is summarized by: ϕ “ Ppθ2 “ m1
2q P p0, 1q

The discrete time space T and common discount factor δ, as well as the properties and

related objects of m2 and m1
2 are preserved. As before, superscript 1 denotes parameters

in common-knowledge bargaining game between 1 and 21, and naked letters or superscript
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˚ denotes parameters in common-knowledge bargaining game between 1 and 2. Finally,

I attach superscript p.o. to parameters in the current asymmetric information game and

denote agent 1’s subjective belief of ϕ at time t as ϕ̂t.
9 Before I construct an equilibrium in

this model, I present two results that must hold in any Perfect Bayesian Nash Equilibrium

(henceforth PBE) of this game.

Lemma 1.7. Agent 2 of type m2 is always more willing to settle than type m1
2. Equivalently:

V 2p.o.
t pm, ϕ̂tq ă V 21p.o.

t pm, ϕ̂tq @m, t, and ϕ̂t ‰ 0.

Proof. While equilibrium behavior of each agent has not been developed yet, we can easily

predict that the continuation value of agent 1 at time t would depend not only on his

posterior P 1
t pmq—which can be summarized by m—but also on his belief of agent 2’s type,

ϕ̂t. Denoting this continuation value as V 1p.o.
t pm, ϕ̂tq, we need to consider two cases:

i) If type m2 acts in a way that affects ϕ̂t differently from type m1
2’s action, the statement

naturally follows from V 2
t pmq ă V 21

t pmq.

ii) If both types’ actions affect ϕ̂t in the same way, they would induce the same action

from agent 1, and their continuation values would differ only by how they evaluate their

future probabilities. Formally,

V 21p.o.
t pm, ϕ̂tq “ P 21

t pmq
`

1 ´ δV 1p.o.
t`1 pm, ϕ̂t`1q

˘

`
`

1 ´ P 21

t pmq
˘

δV 21p.o.
t`1 pm ` 1, ϕ̂t`1q

ą P 2
t pmq

`

1 ´ δV 1p.o.
t`1 pm, ϕ̂t`1q

˘

`
`

1 ´ P 2
t pmq

˘

δV 21p.o.
t`1 pm ` 1, ϕ̂t`1q

l jh n

A

“ V 2c.o.
t pm, ϕ̂tq, @m, ϕ̂t

where term A represents the fact that type m2 would have to act the same way as type m1
2,

9To avoid notational verbosity, I use superscript
1p.o. to denote parameters regarding agent 2 of type m1

2 in

the asymmetric information game. ex) V 21p.o.
t pmq.
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and thus be offered the same value. Our choice of m, ϕ̂t,m2 and m1
2 was arbitrary, so the

statement holds generally.

Lemma 1.8. At t “ 0, agent 1 is less willing to settle than he was in perfect information

bargaining game against 21. Equivalently:

V 1p.o.
1 pm, ϕ̂1q ą V 11

1 pmq @m, ϕ̂1.

Proof. Regardless of future actions, ϕ̂0 “ ϕ. Therefore, at t “ 0, agent 1 knows that with

1´ ϕ pą 0q probability, he is bargaining against type m2. Since Lemma 1.7 shows that type

m2 is “cheaper” than type m1
2, the statement naturally follows.

Imposing sequential rationality immediately provides that the previous two lemmas hold

for any PBE of this game. The following lemma is slightly less general but crucial in con-

structing the PBE of this game.

Lemma 1.9. There exists a PBE in which agent 1 and agent 2 of type m1
2 always make the

same decision at t1 as they would in their common knowledge bargaining game. Equivalently,

V 1p.o.
t1 pm, ϕ̂t1q “ V 11

t1 pmq @m.

Proof. Note that in this sequential bargaining, history affects the decisions of agents only

through their beliefs—P ip.o.
t pmq and ϕ̂t. Since agents update P ip.o.

t pmq the same way as

P i
t pmq, if ϕ̂t1 “ 1 and this belief is correct, agent 1 and agent 2 of type m1

2 are essentially

playing the same game as the common knowledge game of section 3 at t1. I prove that ϕ̂t1 “ 1

by making two observations:

i) If ϕ̂s “ 1, then ϕ̂t “ 1 @t ą s.

Suppose not: ϕ̂t ‰ 1. There are two possibilities. If ϕ̂s “ 1 was flawed, we are done.

If ϕ̂s “ 1 was correct and agent 1 is indeed against type m1
2, ϕ̂t ‰ 1 means that agent 2

acts sub-optimally between time s and t, contradicting the sequential rationality of agent
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2 in PBE. Therefore, by proof by contradiction, if ϕ̂s “ 1 in any PBE of this model, then

ϕ̂t “ 1 @t ą s.

ii) ϕ̂s “ 1 for some s ď t1.

Denote s as the earliest time that satisfies δV 2p.o.
s pm, ϕ̂sq ` δV 1p.o.

s pm, ϕ̂sq ă 1. From

Lemma 1.7, we know that V 2p.o.
t1 pm, ϕ̂t1q ă V 21p.o.

t1 pm, ϕ̂t1q @m, which ensures that s ď t1.

Therefore, any strategy that leads to ϕ̂t1 ă 1 and incentivizes agent 1 to play differently from

common knowledge game is dominated by offering δV 2p.o.
s pm, ϕ̂sq at time s ´ 1, which type

m2 will always accept, thereby Bayesian updating to ϕ̂s “ 1. Similar reasoning prompts

agent 2 of type m2 to always settle with agent 1 at time s, resulting in the same Bayesian

updating.

While I could not state with rigor that every possible PBE of this game satisfies Lemma

1.9, the intuition behind the relative ease with which we can solve this asymmetric infor-

mation game is as follows. First of all, although the game proceeds sequentially, the payoff

the two agents reap is instantaneous and not repeated. Such one-shot nature of the game

strips the uninformed agent 1 of any capability to punish misreports, enabling us to focus

on marginal decisions at each period. Second, not only can the types of agent 2 be used as

signaling device, they also affect how agent 2 actually evaluates future outcome of the game.

Therefore, even though type m2 has incentive to signal his type as m1
2, he does not intend

to play exactly the same as her until the end of the game. In other words, the bargaining

power that type m2 can assume is somewhat bounded by his true type, saving agent 1 from

being completely in the dark. The next theorem formalizes this idea by constructing a PBE

of this game.

Theorem 1.3. For all values of ϕ ‰ 1, there exists a PBE in which type m2 always settles

with agent 1 at once at tp.o., irrespective of m.

Proof. I prove this theorem by construction. I claim that the following constitutes a PBE:
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‚ ϕ̂t “

$

’

&

’

%

ϕ, @t ď tp.o.

1, @t ą tp.o.

‚ σ1
t pm, ϕ̂tq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

offer anything lower than 1 ´ δV 1p.o.
t`1 pm, ϕ̂t`1q, @t ă tp.o.

and offer δV 2p.o.
t`1 pm, 0q, @t s.t. tp.o. ď t ă t1

and offer δV 21p.o.
t`1 pm, ϕ̂t`1q, at t ě t1

or accept anything higher than δV 1p.o.
t`1 pm, ϕ̂t`1q, @t ă tp.o. or ě t1

or accept anything higher than δV 1p.o.
t`1 pm, 0q, @t s.t. tp.o. ď t ă t1

‚ σ2
t pm2,m, ϕ̂tq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

offer anything lower than 1 ´ δV 2p.o.
t`1 pm, ϕ̂t`1q, @t ă tp.o.

and offer δV 1p.o.
t`1 pm, 0q, @t ě tp.o.

or accept anything higher than δV 2p.o.
t`1 pm, ϕ̂t`1q, @t ă tp.o.

or accept anything higher than δV 2p.o.
t`1 pm, 0q, @t ě tp.o.

‚ σ2
t pm1

2,m, ϕ̂tq “

$

’

’

’

’

’

&

’

’

’

’

’

%

offer anything lower than 1 ´ δV 21p.o.
t`1 pm, ϕ̂t`1q, @t ă t1

and offer δV 1p.o.
t`1 pm, ϕ̂t`1q, @t ě t1

or accept anything higher than δV 21p.o.
t`1 pm, ϕ̂t`1q, @t

Since agent 2 of type m2 always settles at tp.o., it is easy to check that the belief ϕ̂t is

consistent with the hypothesized equilibrium strategy. The remaining pieces to be proved

are i) sequential rationality of hypothesized equilibrium strategy given the consistent belief,

and ii) the properties of tp.o..

From the proof of Lemma 1.9, we know that the given belief ϕ̂t leads to an optimal

strategy of agent 1 and agent 2 of typem1
2 playing as if they were in common knowledge game

at time t1. In particular, the result of Lemma 1.9 states that V 1p.o.
t1 pm, ϕ̂t1q “ V 11

t1 pmq @m.

Starting from t1 backwards, I iteratively formulate V 1p.o.
t through the following procedure:
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In the beginning of time t, assume all of the type m2 have already exited the game.10

This leads to the belief that ϕ̂t “ 1, which, in turn, brings us back to Lemma 1.9 so that

V 1p.o.
t pm, ϕ̂tq “ V 11

t pmq @m. Move on to time t ´ 1.

For t “ t1, the procedure runs smoothly. On the other hand, notice that as time goes

backwards, V 1p.o.
t pm, ϕ̂tq increases. Since we know that both types of agent 2 refuses to settle

with agent 1 at time 0, there will come a time, denoted by tp.o., when the assumption of the

procedure causes contradiction. Formally,

V 11

tp.o.pmq ` V 2p.o.
tp.o. pm,ϕq ą

1

δ
; V 11

tp.o.`1pmq ` V 2p.o.
tp.o.`1pm, 1q ď

1

δ

At tp.o., agent 1 thinks that with ϕ̂tp.o. “ ϕ probability, he is against agent 2 of type

m1
2 with whom he does not wish to settle, and with 1 ´ ϕ̂tp.o. “ 1 ´ ϕ probability, he is

against type m2 with whom he wishes to settle. Conveniently, the incentive for settlement

is mutual, so that even if there is a slightest chance that he plays against type m2, it is

dominant strategy for him to offer settlement which only the desired type m2 will accept.

This leads to the following property (α):

V 1p.o.
tp.o. pm,ϕq

“ ϕV 11

tp.o.pmq ` p1 ´ ϕq
“

P 1
tp.o.pmq

`

1 ´ δV 2p.o.
tp.o.`1pm ` 1, 0q

˘

`
`

1 ´ P 1
tp.o.pmq

˘

δV 1p.o.
tp.o.`1pm, 0q

‰

ą ϕV 11

tp.o.pmq ` p1 ´ ϕq
“

P 1
tp.o.pmq

`

1 ´ δV 2p.o.
tp.o.`1pm ` 1, 0q

˘

`
`

1 ´ P 1
tp.o.pmq

˘

δV 1p.o.
tp.o.`1pm, 1q

‰

“ V 11

tp.o.pmq ` p1 ´ ϕq
“

P 1
tp.o.pmq

␣`

1 ´ δV 2p.o.
tp.o.`1pm ` 1, 0q

˘

´
`

1 ´ δV 21p.o.
tp.o.`1pm ` 1, 1q

˘(‰

“ V 11

tp.o.pmq ` δp1 ´ ϕqP 1
tp.o.pmq

␣

δV 21p.o.
tp.o.`1pm ` 1, 1q ´ δV 2p.o.

tp.o.`1pm ` 1, 0q
(

The property shows that V 1p.o.
tp.o. pm,ϕq is bounded below by a value that is always higher

10“All” in the Harsanyi sense of treating probability over types as distributions. i.e. there is 0 probability that
type m2 remains until this time.
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than V 11

tp.o.pmq and linearly decreasing in ϕ. In particular, in the extreme values of ϕ,

ϕ Ñ 0 ùñ V 1p.o.
tp.o. pm,ϕq Ñ V 1

tp.o.pmq (1.3)

ϕ Ñ 1 ùñ V 1p.o.
tp.o. pm,ϕq Ñ V 11

tp.o.pmq (1.4)

This implies, in turn, that V 1p.o.
tp.o. pm,ϕq is so high for low enough values of ϕ that agent 2 of

type m2 prefers his original outcome in common knowledge case. Since type m1
2 would never

mimic type m2, this case reverts the game back to settlement at t˚ solution, immediately

satisfying this theorem. (Remember from last section that t˚��9m.) On the other hand,

the linear dependence on ϕ of this value—together with the fact that type m2 wants to

play optimism for V 1p.o.
tp.o. pm,ϕq close to V 11

tp.o.pm,ϕq—implies that there exists a threshold ϕ˚

above which type m2 chooses to mimic type m1
2 until tp.o.. For those ϕ ą ϕ˚, the following

property pinpoints the continuation values at any t ă tp.o., which in turn pins down the

offered utilities:

Denoting Sp.o.
t pϕ̂tq ” V 1p.o.

t pm, ϕ̂tq ` V 2p.o.
t pm, ϕ̂tq, S

1p.o.
t pϕ̂tq “ V 1p.o.

t pm, ϕ̂tq ` V 21p.o.
t pm, ϕ̂tq,

V 1p.o.
t pm,ϕq “ P 1

t pmq
“

ϕ
`

1 ´ δS
1p.o.
t`1 pϕq

˘

` p1 ´ ϕq
`

1 ´ δSp.o.
t`1pϕq

˘‰

` δEt

“

V 1p.o.
t`1

ˇ

ˇP 1
t pmq, ϕ

‰

V 2p.o.
t pm,ϕq “ P 2

t pmq
`

1 ´ δSp.o.
t`1pϕq

˘

` δEt

“

V 2p.o.
t`1

ˇ

ˇP 2
t pmq, ϕ

‰

V 21p.o.
t pm,ϕq “ P 21

t pmq
`

1 ´ δS
1p.o.
t`1 pϕq

˘

` δEt

“

V 21p.o.
t`1

ˇ

ˇP 21

t pmq, ϕ
‰

As the perceived social surplus only depends on ϕ̂t and not on m, the tp.o. at which

δSp.o.
t pϕ̂tq first shrinks below 1 does not depend on m for any ϕ ą ϕ˚. This finishes the proof

of existence of PBE with the property that type m2 always settles with agent 1 at once at

tp.o.��9m by construction.

As detailed as the procedure in the proof of Theorem 1.3 is, property (α) drives the entire
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characterization of the equilibrium. In other words, as long as property (α) holds—or more

weakly, as long as (1.3), (1.4), and the linear dependence on ϕ hold—I conjecture Theorem

1.3 will still hold. However, there are a couple of caveats in my treatment of this model that

hinder me from generalizing Theorem 1.3 further.

First, the equilibrium concept is not robust. The proof of Theorem 1.3 shows that the

constructed equilibrium is a PBE but not a sequential equilibrium. In order for it to be

fully robust, I would like the equilibrium strategies to satisfy sequential rationality starting

from every information set. This requires that I consider ϕ̂t “ 1 ´ ϵ for t ą tp.o.. However,

Lemma 1.9 heavily depends on agent 1 and agent 2 of type m1
2 playing as if their types were

common knowledge. As soon as I entertain ϵ possibility that the belief is flawed, the agents’

behaviors starting from t1 backwards alter completely.

On this front, I still conjecture the following saving grace. The main intuition behind

the Lemma 1.9 is that if agent 1 wishes to risk a rejection from type m1
2 by making a greedy

offer that only type m2 will accept at t
1, he is actually better off making that offer some time

before, and making sure that he is against type m1
2 when they reach t1. Even though a slight

perturbation to the belief ruins all hopes for building common knowledge, an ϵ possibility

that the opposing agent is still more willing to settle, and thus “cheaper”, is not enough to

incentivize agent 1 to risk making greedy offers at t1. Therefore, even though the constructed

PBE is not robust to slight perturbation of beliefs, I believe that the equilibrium strategy laid

out here can easily be modified correspondingly to construct a robust sequential equilibrium.

Furthermore, I do not consider mixed strategies from agent 2 of type m2. In constructing

the equilibrium strategies in the proof of Theorem 1.3, I break the indifference towards

always accepting an offer. While this is line with the literature, such practice is more

restrictive in this game because there is discrepancy between V 1p.o.
tp.o.`1pm, 0q and V 1p.o.

tp.o.`1pm, 1q.

In other words, if I let agent 2 of type m2 play mixed strategy between accepting and

rejecting when offered his discounted continuation value, there may be slight room to profit

by playing optimism for one more period. Modifying ϕ̂t accordingly to this mixed strategy
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will constitute another PBE which is different from the one constructed here. However, it will

not alter the core result that the time from which agent 2 of type m2 starts to accept/offer

settlement with positive probability does not depend on the realization m.

Besides these caveats, this section successfully shows that there exists a PBE in which

agents reveal their types at a predetermined period regardless of the realization ofm. Instead,

the equilibrium behaviors largely depend on ex-ante probability of type distribution ϕ. The

proof of Theorem 1.3 shows that there exists ϕ˚ above which type m2 always chooses to play

optimism, and thus benefits by the presence of type m1
2. Property (α) also shows that as ϕ

increases, type m2 benefits more and reveal their type at a later time.

1.5 Conclusion

This paper studies two modifications to the Rubinstein bargaining model. On the one hand,

I recognize the ease in approach and intuitive perturbation of considering uncommon prior

beliefs. While entertaining the possibility of difference in prior can explain delay even in

common knowledge setting, I show in section 3 that it is not likely a robust model, for

agents will always have incentive to misreport their prior. Instead, I propose introducing

an asymmetry of information to this model in which agents only differ in their subjective

prior beliefs of recognition probability. Imbuing one side of agents an opportunity to be of

more optimistic type, I find that such asymmetry of soft information still incentivizes the

informed agents to signal their types as being more optimistic. However, the agents are still

somewhat bound by their true types in evaluating future payoffs, resulting in full revelation

before the game ends for the more optimistic type. This paper formalizes this intuition by

constructing a PBE and analyzing its dependence on the parameters.

It finds that an asymmetry of information in the agents’ level of optimism still governs

the agents’ behaviors. Section 4 shows that the decision of whether to play optimism, how

long to play optimism, and how much one can gain by playing optimism all heavily depend
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on the initial distribution of types. The effect of impatience level only acts as an implicit

threshold that allows the difference in types to manifest itself as choosing different actions

(i.e. the agents must not wish to settle at time 0 for this model to have merit). It bolsters

Abreu and Gul [2000]’s assessment of Myerson’s quote in that the influence of asymmetry

in soft information was enough to overwhelm the impact of impatience level.

The results of the paper do not depend on specific choice of parameters, preserving the

generality necessary for such qualitative assessments. The paper is by no means exhaustive,

however. First of all, the core results, such as independence from the realization m, takes

heavy advantage of the convenience brought forth by the assumed belief structure. While

the possible realizations and Bayesian updating mechanism are general, the paper depends

on the beta distribution of agents’ beliefs to be able to separate evolution of optimism from

specific realizations. The first step in advancing this model would be to consider other belief

structures and to study how the results can be accommodated to them. The paper could

also be enhanced by making the solution concept more robust, or generalizing the results to

all possible equilibria of the model. In the meantime, I conclude this paper by echoing its

two main results: Optimistic agents always want to exaggerate their level of optimism. In

the presence of enough agents with extreme optimism, the moderately optimistic can and

will benefit by playing optimism.
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1.6 Appendix: Addendum to Proof of Theorem 1.1

From proof of Theorem 1.1 in section 3, showing that Upm1
2|m2q ą Upm2|m2q is equivalent

to comparing the following expressions:

1) Upm1
2|m2q « δt

1

ljhn

A’

„

P 2
t1 pm1

q
l jh n

B’

`

1 ´ δV 11

t1`1pm
1
q

l jh n

C’

˘

`
`

1 ´ P 2
t1 pm1q

˘

δV 21

t1`1pm
1
` 1q

l jh n

D’

ȷ

2) Upm2|m2q «

A
hnlj

δt
˚

„

B
h nl j

P 2
t˚pm˚

q
`

C
h nl j

1 ´ δV 1
t˚`1pm

˚
q
˘

`
`

1 ´ P 2
t˚pm˚q

˘

D
h nl j

δV 2
t˚`1pm

˚
` 1q

ȷ

where m1 ” m2

n
t1, and m˚ ” m2

n
t˚ denote the conjectured number of recognitions of agent 1

from the perspective of agent 2 until time t1 and t˚, respectively.

Algebraically, Upm1
2|m2q can be thought of as a convex combination of C 1 and D1, dis-

counted by A1, and Upm2|m2q a convex combination of C and D, discounted by A. Notice, as

from section 3, that B1 “ B “ m2

n
, which means that the weights of convex combinations are

the same. Therefore, the proof of theorem amounts to showing the following two properties:

3q A1
¨ C 1

ą A ¨ C and 4q A1
¨ D1

ą A ¨ D

Furthermore, I claim that showing 4) automatically satisfies both statements. The rea-

soning is as follows. As from proof of Corollary 3.1.1,

V 2
t pmq “ P 2

t pmq
`

1 ´ δV 1
t`1pmq

˘

`
`

1 ´ P 2
t pmq

˘

δV 2
t`1pm ` 1q

“ P 2
t pmq

`

1 ´ δSt`1

˘

` δEt

“

V 2
t`1|P

2
t pmq

‰

Notice that t˚ and t1 are determined so that 1 ´ δSt˚`1 « 1 ´ δSt1`1 « 0—the perceived

social surplus first crosses 1
δ
. Therefore, if A1 ¨D1 ą A ¨D, and the respective proposer rents

are such that 1´ δSt1`1 « C 1 ´D1 « C ´D « 1´ δSt˚`1 « 0, it implies that A1 ¨C 1 ą A ¨C

as well.
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This algebraic exercise also invites fitting interpretations. A1 ¨ D1 ą A ¨ D implies that

after having decided the strategies based on the common knowledge priors, agent 21 is better

off than agent 2—in utility comparison sense, not contemplating optimism—if agent 1 is

recognized at the time of settlement for both games. With this interpretation, it follows

naturally that under the same setting, agent 21 should also be better off than agent 2 even

if they get recognized at the time of settlement.

From Lemma 1.3, we know that continuation values in common knowledge games sur-

mount to who gets to take the present value of all future proposer rents, Λt. From positing

that proposer rents come from each agent’s optimistic belief about recognition probability

leads to the approximation in Lemma 1.4. Utilizing the lemmas lead to the following:

A1
¨ D1

“ δt
1

¨ δV 21

t1`1pm
1
` 1q “ δt

1

P 21

t1 pm1
qΛ1

t1

ą δt
1

¨
n ` t1 ´ m1

2 ´ m1

n ` t1 ` 1
¨

1

1 ` δy1
t1`1

(1.5)

“ δt
1

¨
n ` t1 ´ m1

2 ´ m1

n ` t1 ` 1
¨

1

1 ` δ ∆1

t1`n`1

(1.6)

“ δt
1

¨
n ` t1 ´ m1

2 ´ m1

n ` t1 ` 1
¨

t1 ` n ` 1

t1 ` n ` 1 ` δ∆1

“ δt
1

¨
n ` t1 ´ m1

2 ´ m1

n ` t1 ` 1 ` δ∆1

“ δt
1

¨
n ` t1 ` ∆1 ´ m1 ´ m1

n ` t1 ` δ∆1 ` 1
(1.7)

where (1.5) is given by the lower bound of Λ1
t1 shown in Lemma 1.4, (1.6) utilizes the

definition of optimism y1
t1`1, and (1.7) orders the variables nicer using the definition of ∆1.

Similar procedure leads to the following upper bound:

A ¨ D “ δt
˚

¨ δV 2
t˚`1pm

˚
` 1q ă δ˚

¨
n ` t˚ ` ∆ ´ m1 ´ m˚ ` 1

n ` t˚ ` δ∆ ` 2
(1.8)

Therefore, showing p1.7q ą p1.8q will finalize the proof that A1 ¨ D1 ą A ¨ D. In the

endeavor, I utilize Lemma 1.5 to clarify equations. In particular, I multiply δ´t1

to equation
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(1.7) and multiply δn´pn`t1q “ δ´t1

to (1.8). Doing so gets rid of δt
1

term from (1.7) and

transforms δt
˚

into δt
˚`n

δt1`n « δ

b

∆δ
1´δ

´

b

∆1δ
1´δ “ δ

b

δ
1´δ

p
?
∆´

?
∆1q

. Formally,

p1.7q ¨ δ´t1

ą p1.8q ¨ δn´pn`t1q

ùñ
n ` t˚ ` δ∆ ` 2

n ` t1 ` δ∆1 ` 1
¨

n ` t1 ` ∆1 ´ m1 ´ m1

n ` t˚ ` ∆ ´ m1 ´ m˚ ` 1
ą δ

b

δ
1´δ

`?
∆´

?
∆1

˘

(1.9)

ùñ

b

δ∆
1´δ

` δ∆ ` 2
b

δ∆1

1´δ
` δ∆1 ` 1

¨

n´m2

n

b

δ∆1

1´δ
` ∆1 ´ m1 ` m2

n´m2

n

b

δ∆
1´δ

` ∆ ´ m1 ` m2 ` 1
ą δ

b

δ
1´δ

`?
∆´

?
∆1

˘

(1.10)

ùñ

b

δ∆
1´δ

` δ∆ ` 1
b

δ∆1

1´δ
` δ∆1

¨

n´m2

n

b

δ∆1

1´δ
` ∆1 ´ m1 ` m2

n´m2

n

b

δ∆
1´δ

` ∆ ´ m1 ` m2 ` 1
ą δ

b

δ
1´δ

`?
∆´

?
∆1

˘

(1.11)

where from (1.9) to (1.10), I use the approximation of t˚ and t1 as in Lemma 1.5, and

also the definition of m˚ and m1 to group with t˚ and t1. Utilizing the fact that the first

fraction is less than 1, I add a small simplification by decreasing both the numerator and

denominator by 1 in (1.11). In effect, expression (1.11) substitutes all the variables in terms

of distance in prior beliefs ∆ and ∆1. The variation on the right hand side is driven by

the root difference in the distances in prior beliefs between agent 2 and agent 21. As this

difference
?
∆ ´

?
∆1 increases, the relationship between settlement time and ∆ forces the

range of allowed δ, shrinking it to a small range very close to 1, containing the value of

the expression in right hand side. In the meantime, the difference in the distances in prior

beliefs affect the left hand side either by multiplication or in the first order difference. This

effect is shown in simulation to always dominate the lower degree changes on the right hand

side. Although I cannot simplify the algebra to clear-cut comparison, the generous bounds

I use, as well as the strict relationship between settlement time t, discount factor δ, and

distance in prior beliefs ∆, allow an ease and precision in generating unambiguous difference

in simulation.

Intuitively, this result stems from the fact that both agent 2 and 21 choose to delay the

settlement against agent 1 in the first place. Such preferences only allow very high patience
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level δ and low firmness in belief n, compared to the distance in belief ∆. Therefore, as

intuitive proof in section 3 delineates, agent 2 is always willing to trade vastly favorable split

of the pie—driven by low firmness in belief and high ∆—for an additional damage from δ.
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CHAPTER 2

Windows of Opportunity to Build Trust While

Bargaining1

2.1 Introduction

In this chapter, we analyze how trust is built over time by rational agents. We focus on the

context of international relations, but I believe that the analysis could be applied to other

domains in which actors develop trust by making themselves vulnerable.

To represent the strategic problems that political actors often face, we model trust build-

ing in the context of bargaining. This is important because, in a sense, these processes are

opposites. While trust building involves signaling a willingness to cooperate, bargaining in-

volves signaling a willingness not to do so in order to achieve a favorable bargain. We study

social encounters that involve both. This allows us to show that trust building is much

more difficult than past literature implies.2 When states are bargaining and trust building

at the same time, fully informative signaling becomes impossible. Still more importantly,

bargaining changes the types of trust building that lead to the highest expected welfare.3

To understand how bargaining influences welfare, we must understand the factors that

influence the optimal choice of stakes over the course of the period of trust building and

bargaining. This is a long-standing issue in a variety of literatures, from negotiation theory

1Co-authored with Robert Trager, UCLA

2Cf. Kydd [2000, 2001, 2007, 1997b,a].

3The canonical statement of the bargaining model approach to international relations is Fearon [1995].
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to dispute mediation. Analysts have often wondered whether adversaries should start with

reciprocal actions on lower level issues to build trust gradually or should immediately address

the most important issues in “grand gestures.”4 History provides models for both. The

Oslo Peace Process between the Israelis and Palestinians, which left the status of Jerusalem

undetermined, is an example of putting off high stakes questions until lesser issues are dealt

with. The Egyptian-Israeli peace process, which began with Egyptian President Anwar

Sadat’s dramatic visit to the Israeli Knesset in 1977 and culminated in the Peace Treaty

in 1979, is an example of an initial agreement on with the most significant issues, like the

status of the Sinai Peninsula and recognition of the state of Israel.

We show that the larger the benefits to cooperation and the larger the gains from uni-

lateral defection while the other player cooperates, the more the optimal signaling stakes

tend to start high and end low. In other words, when the benefits to cooperation and the

gains from defection are high, grand gestures lead to higher expected welfare than gradual

building of trust. This is one sense in which there are windows of opportunity to build trust:

if the opportunity to make grand gestures in these contexts is not seized, the players are

worse off on average.

Bargaining often influences the optimal stakes in a similar way. The more important

bargaining is relative to trust building, the more actors have incentive to put off addressing

high stakes matters early on in peace processes. This may explain the different choices

and outcomes in the Israeli-Egyptian and Israeli-Palestinian peace processes. In the case

of Egypt, difficulties centered more on each side convincing the other that it wanted to

cooperate. In the case of the Palestinian peace process, there is more to bargain over. Thus,

negotiators opted for high stakes issues first in the first case and down the road in the second.

But bargaining also has surprising effects on welfare. When trust is high, the more actors’

need to bargain, the lower welfare. When trust is low, the opposite often occurs: welfare

4Berenji [2020].
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tends to increase in the importance of bargaining. This is because the bargaining dynamic

allows the players to signal trustworthiness using lower stakes. The risk of betrayal that the

players must take on to signal trustworthiness is lower because players are already taking on

another cost when they attempt to signal trustworthiness. The other cost they take on is the

risk of putting themselves in a worse bargaining position. The players can demonstrate their

trustworthiness by taking on this bargaining risk in lieu of taking on higher stakes issues

before they’ve built up trust. This is how bargaining increases welfare when trust is low.

Thus, even though trust building and bargaining are conceptual opposites, they are not

opposites when it comes to welfare implications. Bargaining can have a positive effect on

welfare when initial trust is low. Yet, bargaining also restricts the range of cases over which

it is possible to build trust at all.

So far, we have discussed the effect of issue sequencing on welfare. But sometimes the

significant tests of trust are not chosen, but arrive when they arrive. An alliance is tested

when the war arrives, for instance. There is no way to place this test ahead of lesser tests as

a grand gesture. The lesser tests - a period in which trust is built or not - must come first.

When we analyze such contexts, we find that it is usually better to build trust gradually.

In particular, when there is a highly consequential moment on the way when trust will be

tested, and the consequences of misplaced trust are high, it is always welfare improving to

build trust gradually in advance. In such instances, if a chance to build trust is missed, the

actors can still attempt to build trust later, and depending on context, this may or may not

be successful. But welfare will always be lost. This is the second sense in which there are

windows of opportunity to build trust.

The analysis below employs the framework for thinking about trust developed by Kydd

[2007]. Nevertheless, we come to somewhat different conclusions. Kydd argued that trust

can always be built quickly. We argue that even when trust can be built quickly, usually,

it should not be. Doing so leads to lower welfare. Further, when bargaining is present, not

only can trust not be built quickly, sometimes it cannot be built at all. Overall, our analysis
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explains why trust building is so much more difficult than the current literature implies

and illuminates the opportunities that produce the best outcomes between adversaries with

something to lose.

2.1.1 Literature Review

Trust has been defined and studied in a wide variety of ways across social science disciplines.

Nevertheless, Ruzicka and Keating [2015] identify three primary scholarly approaches.5 In

the psychological approach, trust is a result of the psychological predispositions and emotions

of actors. Though psychological approaches have had a long history in international relations

theory [Jervis, 2017], much of the scholarship was produced after the development of prospect

theory and behavioral economics by Kahneman and Tversky [2012]. In this line of research,

Larson [1997] examines the relationship between the United States and Soviet Union during

the Cold War, arguing that the psychological dispositions of the states’ leadership hindered

the development of trust even on issues on which the states had convergent preferences. Hall

and Yarhi-Milo [2012b] concur, arguing that leaders use both costly signals and personal

rapport with other leaders when deciding on the trustworthiness of another actor.6 Yarhi-

Milo et al. [2018] conduct an experiment that shows highly trusting leaders view both public

signals and material action as more informative than low-trust types. While actors may still

act strategically, their preferences are formed from their psychological disposition [Rathbun,

2009], which may explain dyadic rivalries [Goertz and Diehl, 1993], the democratic peace

[Maoz and Russett, 1993], and resolutions to collective action problems [Mercer, 2005].

In the social constructivist approach,7 trust develops through repeated interaction in

5See Cho et al. [2015] for a robust interdisciplinary literature review on trust.

6Rathbun [2012, 2009] distinguishes between the psychological notion of moral trust, which is more constant
over time, and strategic trust, which is situation-dependent and more akin to the rational choice approach
below.

7Trust is sometimes viewed as a form of social capital [Fukuyama, 1995]. In this vein of literature, scholars
sometimes define trust as an actor’s confidence that other actors will “do what is right” [Hoffman, 2002,
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shared communities [Mitzen, 2006, Wendt, 1999, March and Olsen, 1998]. Adler and Barnett

[1998], for instance, view trust as a necessary precondition for the development of a common

identity among states. Similarly, [Booth and Wheeler, 2007] and [Wheeler, 2010] study the

trust or distrust that develops between individual leaders. In this vein, Cronin [1999] notes

that Italian principalities were able to overcome histories of distrust when they began to

reconceptualize themselves as Italians instead of, for example, Tuscans or Parmans. This

trusting community was then able to overcome collective action problems. Constructivists

recognize the importance of an awareness of cultural norms and differences when engaging

in negotiations [Buitrago, 2009].

Finally, the rationalist approach views trust as an endogenous property of situations

given uncertainty about actors’ intentions [Kydd, 2005]. These scholars emphasize Bayesian

updating as the mechanism through which beliefs evolve. Axelrod and Keohane [1985]

were some of the first scholars to view trust as tied to rational choice, arguing that actors’

preferences are based on both the situation and their personal interpretation of events.

Thus, mistrust is more likely to arise in bargaining over international security, in which one

side can be eliminated completely, than in issues of economics, in which arrangements can

continue indefinitely. Kydd [2007] defines trust as “a belief that the other side is trustworthy,

that is, willing to reciprocate cooperation.” Our model is in this tradition, taking Kydd’s

formalization of trust building processes as its starting point. Through interactions, states

receive signals and update their beliefs about other’s trustworthiness in Bayesian fashion.8

Decision theory offers a strong foundation for learning from the world in this way, but this is

not to say social actors always do update their levels of trust for others in this fashion [Hall

and Yarhi-Milo, 2012a].9

2006].

8A related line of research focuses on enduring rivalries, dyads of states that come to mistrust one another
through repeated interaction, often leading to the arms buildup and war as in traditional security dilemma
models [Goertz and Diehl, 1995, Klein et al., 2006].

9Another strand of literature focuses on cheap talk processes as a source of trust. See Fudenberg and Tirole
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In rationalist accounts, trust building and bargaining are at odds. If a security-seeking

state could simply ex ante trust that another state was security seeking, there would be

no need for further negotiation and arms buildups. Kydd [2007] notes that, during crisis

bargaining, states send signals of resolve; in contrast, when trying to assure others of their

trustworthiness, states send signals that they are open to cooperation. Kydd notes that

these are often relatively small stakes that nonetheless “expose one to some risk of defection

on [their opponent’s part].” 10

A number of models of international relations incorporate trust building. One example is

the security dilemma concept of Defensive Realism. In this model, states are either trusting

or fearful, which determines how aggressively they respond to the arms buildup of other

states [Jervis, 2017, Kydd, 1997b]. Kydd [2010] models trust as an exogenous process in

climate treaty negotiations. Initially, states are unsure whether to trust others to sign. Over

time, as information about the effectiveness of the treaty increases, states learn that others

are either trustworthy types who were waiting for research into the effectiveness of the policy

or untrustworthy types who will not under any circumstance cooperate. A predecessor to this

strand of literature is Axelrod [1984], who found that repeated Prisoner’s Dilemma games

can produce cooperation through an extended “shadow of the future.”

Kydd [2000, 2007] first formalized the development of trust in his Assurance Game.11

Assurance in the international relations literature can be traced back to Osgood [1962],

who argued that the mistrust driving the Cold War arms race can be mitigated through a

[1991] in support of this idea and Bracht and Feltovich [2009] against it. Bornstein and Gilula [2003] show
via lab experiments that cheap talk can improve cooperation in assurance games. Schweitzer et al. [2006]
provide a potential solution to this dilemma: cheap talk can increase trust only if a player has not behaved
deceptively in prior interactions. Other scholars show empirically that inter-state networks give states an
opportunity to develop beliefs about the trustworthiness of other states [Maoz, 2010, Ostrom and Ahn, 2009].

10Solhaug et al. [2007] note that trust is inversely related to risk and possibly directly related to the size of the
stakes. Though Hoffman [2002] defines trust as more than just based on risk, arguing that common usage of
the phrase generally implies uprightness and not just “a good bet.” Malhotra and Murnighan [2002] show
that binding contracts lead to players to become more trusting at a slower rate than non-binding contracts.

11Kydd [2001] applies the assurance game to NATO enlargement in Eastern Europe, showing that limited
expansion of NATO can be reassuring to Russia when trust is relatively high.
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strategy he called GRIT (Graduated Reciprocation in Tension-reduction). In this strategy,

each state would repeatedly unilaterally offer increasingly signals of cooperation in order to

reduce mistrust.12 In the model of Kydd [2007], states first choose whether to cooperate in a

low stakes encounter. If they do, this signals their willingness to cooperate in a subsequent

higher stakes encounter. Formally, three types of equilibria result: non-cooperative, in which

no state makes an offer in the first round; reassurance, in which only trustworthy types offer

the signal; and time-will-tell, in which both states signal and then untrustworthy types defect

in the second round. The costliness of signals varies inversely with level of trust, power of

the sender, and the strength of first-mover advantage and varies directly with the costs of

conflict. Kydd demonstrates that at any level of initial trust, security seekers may find an

assurance equilibrium.13

This feature of Kydd’s assurance model is important. It implies that when trust is low,

it is easy to build. When trust is low, they can have a low stakes encounter and if the

sides cooperate there, they will have no trouble cooperating in a subsequent high stakes

encounter. The lower the initial level of trust, the lower the signaling stakes must be to

signal trustworthiness. It is as if the U.S. and North Korea could cooperate on a relatively

low stakes issue, like violent incidents near the border with South Korea, and then trust each

other enough to enter high stakes cooperation on nuclear arsenals and opening to the world.

Why does the model have this implication? It is due to the fact that even the low stakes

international is high risk given the low level of trust. Taking such a great risk in cooperating

signals a strong willingness to cooperate. Thus, signaling trustworthiness is always available

- at moment’s notice, or at least relatively quickly - if trustworthy types will but seize the

opportunity.

This dynamic has a logic to it, but as a description of the world, it is unconvincing. If the

12See also Etzioni [1962], Schelling [1980], Stein [1991] for other foundational analyses of assurance.

13Kydd [2006] studies how mediators in bargaining processes can build trust, arguing that moderately biased
mediators with single-peaked preferences are more trustworthy than mediators indifferent over outcomes.
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U.S. and North Korea managed to cooperate on lower stakes issues - as they have for periods

in the past - experience demonstrates that their levels of trust might still be low. They might

still see the need to build trust gradually, though Kydd’s model offers no explanation for

why that would be so.

We show below that a key reason for this apparent discrepancy between the model and

the political world is the need of adversaries to bargain while they build trust. This implies

that trust building when initial trust is low may be impossible. It is no surprise then that

building trust between the U.S. and North Korea has proven so difficult. Further, even when

trust can be signaled quickly in one step, we show that it is usually welfare improving to

signal trust gradually in a series of steps.

The trust-building models in international relations also generally assume a given bar-

gaining order. The Assurance Game in Kydd [2007] assumes that smaller stakes are offered

before larger ones. Sometimes, however, states can choose between equilibria in which the

highest stakes are addressed early or later on in peace processes and other negotiations.

Osgood [1962], for example, argued that the existing bargaining process between the US

and USSR was leading to an arms race and suggested unilaterally offering smaller stakes

instead to build trust. The issue remains relevant in contemporary negotiations. In the

bargaining process between Israel and Palestine, should the states reach an agreement on

settlements in the West Bank first or start with the final status of Jerusalem? The paper in

international relations that comes closest to exploring this question is Fershtman [2000]. In

this model, two sides (a and b) are deciding on two issues. However, group b is composed of

two players who have conflicting preferences over the issue prioritization. The players can

bargain simultaneously, issue-by-issue, or simultaneously with one player in group b acting

as the group’s representative. Fershtman finds that a prefers any type of negotiation with a

representative to issue-by-issue bargaining to simultaneous bargaining, and each player in b

prefers issue-by-issue over simultaneous bargaining.

The role of issue ordering in bargaining is explored further in the economics and manage-

39



ment literatures.14 Scholars have identified that varying the number, timing, and ordering

of issues can affect bargaining outcomes [Sebenius, 1983, Balakrishnan et al., 1993, Geiger,

2017]. Sebenius [1983] argues that the probability of agreement depends on the number of

linked issues, while Balakrishnan et al. [1993] argue that beginning with less important is-

sues can increase the probability of a successful outcomes, though with an externally-imposed

deadline, that conclusion can be reversed [Watkins, 1998].15

A number of scholars have sought to formalize players’ preferences over agendas, varying

their time preference, relative bargaining strength, and utility over the set of issues. In

general, these models produce a wide variety of SPE in contrast to the single equilibrium

in the single-issue game in Rubinstein [1982]. Early papers in this literature focused on

how exogenous variation in bargaining structure affected SPE [Busch and Horstmann, 1997].

Inderst [2000] was the first to study fully endogenous agendas, finding that if all issues are

mutually beneficial, they are settled in the first round. However, if some issues produce a

net loss for one player, in equilibrium, some issues will be solved after a time delay. 16 In

contrast, Fatima et al. [2002] models player time preferences, finding that if one player has

an incentive to delay, agreement will be reached at the earliest deadline; otherwise, it will

be reached immediately. In and Serrano [2004] study a two-issue game, finding that there

always exist SPE that are decided immediately and that every bargaining process is finite.

Busch and Horstmann [2002] study a two-issue game, finding that when agreements are

implemented as they are reached, easy issues are negotiated before hard ones and that when

agreements are implemented simultaneously, larger issues are bargaining over first. The first

agenda Pareto dominates the second. Chatterjee [2005] finds that high discount rates can

14See Carraro et al. [2005] for a review.

15Thompson [1998] argues that sequential bargaining should be avoided, as simultaneous bargaining on all
issues can allow for trade-offs among issues, widening the bargaining range. Shell [2006] argues that, in
multi-issue bargaining, negotiators should begin with larger issues because of the norm of reciprocity.

16Lang and Rosenthal [2001] provide another early model showing that issue-by-issue bargaining can exist
when the agenda is endogenized.
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make sequential bargaining inefficient, leading players to prefer simultaneous negotiations.

Finally, Banerji [2002] analyzes a game with one buyer and two sellers. He finds that when

an issue is renegotiated, if the new agreement with at least one of the sellers must be strictly

worse to a buyer than the preexisting agreement, the buyer will prefer sequential bargaining.17

Thus, there are many works that address issue sequencing in negotiations and they have

a varied set of findings. These works give reasons to start bargaining processes with more or

less consequential stakes, but none do so in the context of building trust. In general, they

also do not examine the welfare implications of different equilibria. Those that do do not

consider cases where actors benefit from signaling a willingness to cooperate at the same

time as they benefit from signaling a willingness to demonstrate resolve in bargaining. Here,

the international relations literature comes closest in that models of inter-state bargaining

include the implicit benefit to cooperating of avoiding war.18 Yet, in most of these models,

there is no disincentive to signaling that one is the very highest resolved type, which means

the type with the lowest costs conflict - that is, the type least willing to cooperate. There

is therefore no benefit to signaling trustworthiness is most of these models. Such types are

willing to accept concessions, if that is all cooperation requires, but they are not willing to

make concessions when the other side does. The belief that the other will do so is the essence

of trust. That is what we study below, alongside the more traditional bargaining incentives.

17A number of models analyze the relationship between the valuation of issues and issue ordering in the above
context in which one buyer is negotiating with at least two sellers. If the buyer is able to achieve positive
surplus by reaching prices below her valuation, she will negotiate with sellers with lower bargaining power
first [Munster and Reisinger, 2018, Krasteva and Yildirim, 2012]. The conclusifon is reversed with negative
surplus [Munster and Reisinger, 2018]. Likewise, buyers prefer to negotiate more important issues first,
either in terms of valuation [Chatterjee, 2005] or anticipated surplus [Raskovich, 2007]. As in Geiger [2017],
outside options weaken the bargaining power of the seller [Munster and Reisinger, 2018, Raskovich, 2007].

18For overviews of this literature, see Powell [2002] and Trager [2016].
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2.2 Model

2.2.1 Primitives

We model trust building as a dynamic game of incomplete information between two players

(I “ t1, 2u) that comprises of possibly multiple stages. In each period k, both players engage

in a simultaneous move game of choosing between cooperation (C) and defection (D).

The sole source of uncertainty in our model is each agent’s cost to defection. We as-

sume that each player draws cost ci from a uniform distribution with support r0, 1s, and

that this information is private information: ci is known to herself but not to the oppo-

nent.19 This payoff-relevant cost to defection also represents the agent’s trustworthiness to

the opponent, as agents with higher cost will tend to defect less. The game of trust dy-

namics revolves around the agents’ incentive, or lack thereof, to communicate this private

information through their actions.

Actions the agents take each period bear two consequences in payoff: a simultaneous game

component that represents flow utility in the given period – henceforth “game component”

– and a reputation component that represents how the signaled information from the chosen

actions affect their bargaining leverage over subsequent periods – henceforth “bargaining

component.” We parameterize the relative importance of the bargaining payoff as µ, so that

each period’s stake αk is divided into αk ¨µ of bargaining payoff and αkp1´µq of game payoff.

First, we summarize the game component of the payoffs, which is analogous to the setup

in Kydd [2005], in Table 2.1. Each cell represents flow payoffs to the players with the

corresponding action. The payoff matrix is identical for all periods, except that they are

weighted by the relative importance of each period k, denoted αk, with the last stage stake

19In his scholarship on trust, Kydd generally focuses on discrete types. In Kydd [2010], however, he allows
for a continuous type space. In this model, trust is a function of (exogenous) increases in information. As
information about a climate policy is made available, states are revealed to have types that never cooperate,
initially do not cooperate until the policy is proven beneficial, initially do cooperate until the policy is proven
ineffective, and never cooperate. Kydd [2003] models states with continuous costs for conflict to analyze the
usefulness of a third-party mediator.
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normalized to 1. When both players cooperate, they receive a cooperation benefit of b ě 0.

We do not normalize this benefit to 0 as in Kydd [2005], because we allow for more than

two periods, and wish to capture the trade-offs between cooperating in one period versus

another. When both players defect, they engage in a conflict over which each player i has a

pi chance of winning. Normalizing the utility from winning to 1 and the utility from losing

to 0 yields the standard expected utility of pi ´ ci.
20 Finally, when only one of the players

defects, the sole defector gains the first-mover advantage ϕ on top of the usual payoff from

conflict, at the expense of the cooperating player who is caught off guard.

Table 2.1: The Game Component Payoff Matrix

C D

C b, b p1 ´ ϕ ´ c1, p2 ` ϕ ´ c2

D p1 ` ϕ ´ c1, p2 ´ ϕ ´ c2 p1 ´ c1, p2 ´ c2

One can note from this stage game payoff that when pi ` ϕ ´ ci ě b, it is a dominant

strategy for player i to defect regardless of the opponent’s action. On the other hand, if

pi ` ϕ ´ ci ă b for both players, it would be mutually beneficial for them to communicate

their private information and cooperate, as cooperation is the best response to the opponent’s

cooperation in this case. Therefore, denoting the threshold cost as c̄ip” pi ` ϕ ´ bq, we can

analyze whether players with ci ą c̄i can successfully communicate their trustworthiness and

achieve mutual cooperation.21

The game component of the payoffs highlights the incentive of the high cost types to

successfully communicate their trustworthiness while being wary of possibly facing the low

cost type. In practice, however, broadcasting that one has high costs to a non-cooperative

outcome worsens her bargaining leverage over the range of cooperative outcomes. This is

20pi ` p´i “ 1.

21In the symmetric version of p1 “ p2 “ 1
2 that we often work with later, c̄ ” 1

2 ` ϕ ´ b serves as a parameter
that summarizes the level of trust.
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so even against a cooperative partner. We capture this in a simple way in the bargaining

component of the model.

We model this bargaining aspect of interactions in a simple way that is consistent with

many specific bargaining protocols. In each period, there is a bargaining surplus µ ě 0.

When players have signaled that they have high costs to a non-cooperative outcome, we

assume that they receive a lower share of this surplus. For simplicity, we assume in particular

that the bargaining surplus is divided in inverse proportion to the players’ expected costs

following their actions in a period given their equilibrium strategies.

In a threshold equilibrium, for instance, as we will soon show, in each period k, a player

with cost lower than a threshold tk defects while a player with a higher cost cooperates.22

Therefore, when a player defects, she signals that her cost type is lower than tk ( tk`tk´1

2
in

expectation) and vice versa for the cooperating player ( tk`tk`1

2
in expectation). For example,

consider a single period game in which costs are distributed uniformpr0, 1sq and an equilib-

rium in which a player with costs below 1
2
defects while one with a higher cost cooperates.

A defecting player signals an expected cost type of 1
4
while a cooperating player signals 3

4
.

The bargaining surplus in the second period is therefore divided 3
4
µ to the defecting player

and the remaining 1
4
µ to the cooperating player.

This is consistent with many bargaining protocols. For instance, we could equally spec-

ify that the players play a Nash demand game over the bargaining surplus in each period

following the trust game. This would be equivalent to the assumption we make here in the

demand game equilibrium in which the players propose the equivalent division of the bar-

gaining surplus.23 More importantly, the bargaining outcome we assume is consistent with

analyses of the many bargaining environments in which expected share of the bargaining

22We also allow tk to be 0 or 1, in which case a player cooperates or defects, respectively, regardless of their
private cost type.

23Note that one simplification we make here is the implicit assumption that the bargaining portion of the game
conveys no additional information beyond what has already been conveyed in the trust building portion of
the game.
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surplus increases in players’ value for the no-agreement outcome.24

Table 2.2 below summarizes the key notation of the model.

Table 2.2: Notations For Game of Trust Building While Bargaining

µ Relative weight on bargaining payoff

αk kth period stake

ci Player i’s cost from conflict, drawn from Up0, 1q

b Cooperation benefit

pi Likelihood that player i wins in conflict

ϕ Fixed and symmetric first-mover advantage

c̄i Stage game threshold cost for cooperation

2.2.2 Trust Building Equilibria

How do players build trust under this model of trust dynamics? Cooperative players with

high private costs would want the opponent to cooperate as well in order to avoid getting into

costly conflict. The obstacle is that the defective players with low costs would also want the

opponent to cooperate, to extract the first mover advantage ϕ. In a prolonged negotiation

that we represent as a multi-period game, can the cooperative players utilize earlier stages to

elicit mutual cooperation? Upon observing early cooperation from the opponent, can players

successfully weed out defective opponents who wish to deceive them into paying additional

ϕ? Before attempting to directly answer these questions, it helps to analyze a simpler version

of the game as a benchmark, that we call a one shot game of cooperation, with only one

period of game component as the payoff.

Consider two players playing the game of choosing between cooperation and defection

where the payoffs are given in Table 2.1 above. In this simultaneous move game without

24Fey and Ramsay [2011], Banks [1990].
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the bargaining component, it is easy to check that everyone defecting regardless of their

private cost constitutes a Nash Equilibrium. In fact, we already established in the model

introduction that when the private cost ci is less than c̄i, it is a dominant strategy for player

i to defect regardless of the opponent’s cooperation. Is there, then, a possibility of achieving

a separating equilibrium that induces some cooperation?

Noting that higher cost to defection can only increase the incentive to cooperate, we can

establish that the separating equilibrium would consist of a threshold strategy whereby play-

ers above a certain threshold t cooperates while the rest defects. After restricting attention

to the separating equilibria in threshold strategies, one can easily check that such t solves

the following equality condition, and always exists between c̄ and 1 as long as c̄ ď p
?
ϕ´1q2.

p1 ´ tqpc̄ ´ tq
l jh n

offensive cost/gain in switching from C to D
against the cooperator

` tϕ
ljhn

defensive gain in switching from C to D
against the defectors

“ 0

With this separating equilibrium in the benchmark game in mind, we can modify the

original analyses to the following sets of questions. When we extend the one shot game

of cooperation to multiple periods, can we still achieve separating equilibria with equal or

larger cooperation range? What does trust building look like? Do all signaling happen in

the first stage and players play the game of certain actions from the second period onward?

Or do the eventual defectors gradually reveal their types over the course in the order of their

private costs?

To formalize ideas, we define the parameters that describe the K-period game and an

action sequence of players within the game as follows:

Definition 2.1. A K-period game is summarized by the parameter set pc̄, ϕ, µ,αq, where

α “ pα1, α2, ..., αKp” 1qq. In each period k, player i takes action ai,k P tC,Du given the

parameters and previous actions of the two players. Such actions over K periods yield an

action sequence ai “ pai,1, ai,2, ..., ai,Kq.
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Similar to how we restricted our attention to the equilibria of threshold strategies in the

benchmark model, in our main model, we will focus on strategies in which no player starts

with defection followed by cooperation. As we established earlier, in our model, it only

helps a player if the opponent trusts her early and cooperates, regardless of her private cost.

Therefore, our restriction to strategies that preclude signaling defection only to cooperate

later is an intuitive one.

Assumption 2.1 (No Perverse Signaling). We assume away any perverse signaling where

ai,m “ D and ai,n “ C for any m,n such that m ă n.

One could also interpret this assumption as a property of our model that once the players

miscoordinate, they can never restore trust and obtain mutual cooperation later. With the

assumption of no perverse signaling and the definition of an action sequence, we are now

ready to introduce strategies and the different forms of trust building equilibria. First, in

parallel to the reassurance equilibrium of Kydd[2005], we introduce a separating equilibrium

in which the defecting players reveal themselves by defecting from the first stage of the game,

and the cooperating players in the first stage cooperate throughout the entire game.

Definition 2.2 (Immediate Revelation Equilibrium). In the K period symmetric game of

trust building with pc̄, ϕ, µ,αq, the Immediate Revelation Equilibrium pspppcqqq, bq is a

strategy profile paired with consistent belief system as follows:25

sipciq “

$

’

&

’

%

pC, pC
ˇ

ˇ a´i,1“C, D
ˇ

ˇ a´i,1“Dq, ..., pC
ˇ

ˇ a´i,K´1“C, D
ˇ

ˇ a´i,K´1“Dqq if ci ą t

pD, ..., Dq if ci ď t

bi “

$

’

’

’

’

’

&

’

’

’

’

’

%

Ppc´i ą t
ˇ

ˇ a´i,l“Cq “ 1

Ppc´i ď t
ˇ

ˇ a´i,l“Dq “ 1

Ppanything elseq “ 0

@l ď K

25The sequential rationality conditions that the threshold t needs to satisfy are detailed in the appendix.
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The Immediate Revelation Equilibrium in which the eventual defectors reveal themselves

in the earliest stage is reassuring in the sense that from the second period onward, players

of all cost types proceed with complete knowledge of the ensuing actions. This particular

equilibrium corresponds well with the reassurance equilibrium of Kydd[2005]. Kydd’s reas-

surance equilibrium also constitutes a separating equilibrium with binary types, with trust

level that is exogenously given as a parameter. Our Immediate Revelation Equilibrium can

be thought of as its generalization which not only deals with continuum of types, but also

endogenizes the trust level a player holds against the opponent.

Players may also build trust gradually. Since players across all cost types prefer that the

opponent cooperates, some proportion (with high costs, as will soon be shown) of the eventual

defectors may start with cooperation. Knowing this incentive, cooperative players do not

update their belief about the opponent’s trustworthiness as dramatically as in the Immediate

Revelation Equilibrium. We call such equilibrium a Gradual Revelation Equilibrium, as is

formalized below.

Definition 2.3 (Gradual Revelation Equilibrium). In the K period symmetric game of trust

building with pc̄, ϕ, µ,αq, the Gradual Revelation Equilibrium pspppcqqq, bq is a strategy

profile paired with consistent belief system as follows:

sipciq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pC, ..., pC
ˇ

ˇ a´i,K´1“C, D
ˇ

ˇ a´i,K´1“Dqq if ci ą tK

pC, ..., pC
ˇ

ˇ a´i,K´2“C, D
ˇ

ˇ a´i,K´2“Dq, Dq if tK´1 ă ci ď tK

pC, ..., pC
ˇ

ˇ a´i,K´3“C, D
ˇ

ˇ a´i,K´3“Dq, D,Dq if tK´2 ă ci ď tK´1

... ...

pD, ..., Dq if ci ď t1
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bi “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Ppc´i ą tl
ˇ

ˇ a´i,l“Cq “ 1

Pptl´1 ă c´i ď tl
ˇ

ˇ a´i,l´1“C & a´i,l“Dq “ 1

Ppc´i ď t
ˇ

ˇ a´i,l“Dq “ 1

Ppanything elseq “ 0

@l ď K

The composition of which cost types start their defection in each period depends not only

on the parameters but also on the stakes of the game αk. The more back-loaded the stakes

are, the longer the defectors would postpone deviation not only to capture the bigger ϕ but

also because they risk less in earlier periods from the probability of losing ϕ by being defected

upon. In later sections, we analyze which stakes evolution is conducive of which types of

Gradual Revelation Equilibrium, and the welfare implications of various issue sequencing.

The final variant of the equilibrium we introduce is similar to the Gradual Revelation

Equilibrium except that no player of any cost types reveal themselves in the first period.

We introduce this equilibrium more for a technical reason that when the trust level is too

high, the Gradual Revelation Equilibrium may fail to exist because the belief system cannot

sustain defection in the first period.

Definition 2.4 (Cheating (Time-will-tell) Equilibrium). In the K period symmetric game

of trust building with pc̄, ϕ, µ,αq, the Cheating Equilibrium pspppcqqq, bq is a strategy profile

paired with consistent belief system as follows:

sipciq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pC, ..., pC
ˇ

ˇ a´i,K´1“C, D
ˇ

ˇ a´i,K´1“Dqq if ci ą tK

pC, ..., pC
ˇ

ˇ a´i,K´2“C, D
ˇ

ˇ a´i,K´2“Dq, Dq if tK ě ci ą tK´1

... ...

pC,C,D, ..., Dq if t2 ă ci ď t3
26

pC,D, ..., Dq if ci ď t2

26In the 2-period case (K “ 2), t3 becomes 1, and there are only two strategies pC,Dq and pC,Cq
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bi “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Ppc´i ą tl
ˇ

ˇ a´i,l“Cq “ 1

Pptl´1 ă c´i ď tl
ˇ

ˇ a´i,l´1“C & a´i,l“Dq “ 1

Ppc´i ď t2
ˇ

ˇ a2“Dq “ 1

Ppanything elseq “ 0

@l ď K

In all equilibria introduced thus far, the proportion of types that play a certain strategy

determines where the thresholds get drawn, which in turn determine the proportion of each

action types. Given the endogenous nature, there may exist more variants of equilibria

especially for games of longer periods. As we restricted attention to the equilibria with

no perverse signaling, we focus on the Immediate Revelation Equilibrium and the Gradual

Revelation Equilibrium in the analysis as they bear the most pertinent interpretation of

building trust in our model. We do, however, have the following completeness result for

the two period game, which is often the entire focus of analysis in the literature, including

Kydd[2005].

Observation. In the 2 period game of trust building without perverse signaling, the Cheating

Equilibrium, Gradual Revelation Equilibrium, Immediate Revelation Equilibrium, and the All

Defection Equilibrium exhaust the set of possible equilibria, and their domain of existence is

in increasing order in c̄.
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In the 2 period game of trust, the three types of equilibria defined above–the Cheating, the Gradual
Revelation, and the Immediate Revelation Equilibrium–together with All Defection Equilibrium,
exhaust the set of possible equilibria. The height of each equilibria sketches the expected welfare, to
be discussed later.

A: At c̄ “ 0.2, the Cheating Equilibrium requires α of 0.8, and yields expected welfare of 0.428
B: At c̄ “ 0.4, the Gradual Revelation Equilibrium requires α of 0.7, and yields 0.184
C: At c̄ “ 0.6, the Immediate Revelation Equilibrium requires α of 1, and yields 0.041

Figure 2.1: Existence of Equilibrium Types by Trust Level

2.3 Analysis

2.3.1 Maximal Cooperation

We grouped the types of equilibria in our game of trust building by how the eventual defec-

tors reveal themselves under each equilibrium type, and how the revelation pattern induces

corresponding changes in the belief system. A cooperation in any period under the Immedi-

ate Revelation Equilibrium signals that a player is sure to cooperate in all periods, whereas

the signaling effect of a cooperation under Gradual Revelation Equilibrium is incomplete

and gradual over repeated cooperations.

In analyzing the implications of each equilibrium, as important as the revelation pattern

51



is the eventual cooperation range–how often the opponent is expected to be an eventual

cooperator as opposed to a defector. In the binary type model of Kydd[2005], in which the

actions each type wants to take is exogenously given, the Immediate Revelation Equilib-

rium represents an immediate inception of trust as the cooperative players know they will

cooperate with each other throughout the game. In our continuous type model in which

action types are endogenous, however, evaluating how reassuring an equilibrium is to the

cooperative type is a circular endeavor as the equilibrium simultaneously decides who the

cooperative types are. In particular, in the Immediate Revelation Equilibrium where the

players finish signaling in the first period, the threshold t that solves the incentive com-

patibility equation unilaterally decides the cooperation region. In the Gradual Revelation

Equilibrium, analysis of welfare and the notion of trust is more involved than the position

of a single threshold, but the corresponding notion of the eventual cooperation range is a

relevant measure nonetheless. We propose the following definition to formalize this concept.

Definition 2.5 (Maximal Revelation). Under trust building equilibria of theK period game,

we say the players maximally reveal when all but those for whom it is a dominant strategy

to defect in a stage game cooperate in the penultimate period. In other words, tK´1 “ c̄.

Remember from our discussion of the benchmark one shot game of cooperation that c̄ is

the threshold cost type below which the players have the dominant strategy to defect. In

context of our K period model, any cost type below c̄ can never be made to cooperate in the

final period. Therefore, our definition of maximal revelation can be thought of as setting the

most conservative line in the continuum of cost types so that all types who can cooperate

do signal cooperation from the penultimate round of the game.

We are now ready to present the first main result of our analysis. Kydd[2005] finds that

in a two period game of trust building with exogenously given binary types, a separating

equilibrium in which the two types play the same action over both periods always exists with

appropriately sized first period stake compared to the second. We provide a generalization

of the result with continuum of cost types that endogenously decide which type plays which
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action.

Proposition 2.1. In the 2 period game of trust building without bargaining pc̄, ϕ, pµ “ 0qq,

there always exists an Immediate Revelation Equilibrium that supports maximal revelation.

In particular, maximal revelation can be achieved when α “ 1´c̄
c̄

Proof. Proofs of the propositions can be found in the appendix.

The two period game of trust building is particularly interesting if we interpret the

first stage as a signaling gesture for the second main stage. Under such interpretation, the

Immediate Revelation Equilibrium in our model of trust building with continuous cost types

describes a negotiation in which the players choose to play the same action in the main stage

as they signaled in the first stage. Our first result then states that when the ratio of the

signaling stake to the main game is equal to the ratio of the higher cost types to the lower

with respect to c̄–the stage game dominant strategy threshold–the players choose to signal

and play cooperation in both stages as long as their private costs are above c̄.

We could also interpret the knife-edge α that supports maximal revelation as players

choosing the size of the signaling stake before their types get realized. That there exists

a unique size of the signaling round that induces maximal truthful signaling establishes

grounds for the players to choose the appropriate signaling stake with respect to the relevant

parameters–the cooperation benefit b and the first mover advantage ϕ in case of conflict.

Proposition 2.1 states that the more of the ”high cost” types there are, the larger the

signaling stake that induces maximal revelation becomes.

As astonishing as it is to find that the separating equilibrium result of binary action type

model generalizes to our model with continuous cost types, we acknowledge the limitations

in applying this result to trust dynamics in the real world. In particular, thus far, the

highest cost type has no reason to hesitate broadcasting his private cost and achieving mutual

cooperation whenever possible. In the current model without bargaining, the opponent’s high

cost only serves to signal guaranteed cooperation and thus encourages mutual cooperation
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instead of providing incentive to take advantage of such high cost. In practice, however, it is

hard to imagine that advertising one’s vulnerability to defection would be a solid negotiation

tactic.

We introduce bargaining to the game of trust building to address this gap between tra-

ditional trust building models and real world negotiation tables. With bargaining payoffs

introduced in the model section, a player receives the inverse of her advertised cost type in

comparison to her opponent. Therefore, communicating her very high cost may incentivize

the opponents to defect earlier to enjoy bargaining edge for longer periods, including some

lower cost types among the eventual cooperators of the original game. This introduction of

bargaining can be thought of as another augmentation of Kydd[2005] as he suggests it would

be ”interesting to modify [the fully stationary model] in future research to allow for gestures

that weaken a state in subsequent disputes.”

While we detail the impact of bargaining in later sections, we note that bargaining adds

incentive to defect across all types as described above. In particular, as the marginal type

near the threshold c̄ defects, bargaining precludes maximal revelation in the Immediate

Revelation Equilibrium in trust building game of any length.

Proposition 2.2. In the trust building game pc̄, ϕ, pµ ‰ 0qq of any length, Immediate Reve-

lation Equilibrium can never support maximal revelation.

On the other hand, under Gradual Revelation Equilibrium, defection strategy and the

corresponding belief system evolve gradually over multiple periods. To fix ideas, take the

two period model. Under the Gradual Revelation Equilibrium, some of the eventual defec-

tors with cost below c̄–who would have defected from the first period under the Immediate

Revelation Equilibrium–may signal cooperation in the first period to extract a larger ϕ in

later period. Rationally expecting this behavior, some of the cooperators in the first period

do not believe the opponent’s cooperation as truthful signal and defensively defect in the

second period to protect against the cheating. As higher cost represents lower defection
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benefit to the defectors and higher cost to defection to the cooperators, it is naturally the

high costs among the eventual defectors that cheat (play pC,Dq), and the low costs among

the original cooperators that defensively play pC,Dq.

Figure 2.2: Strategies under GRE2 when pc̄, ϕq “ p0.3, 0.2q and α “ 0.6

As players with costs marginally above c̄ defensively react to the cheating players with

costs marginally below c̄, the mass of players who play strategy pC,Dq have private cost

range that always encompasses c̄. In context of maximal revelation, it not only means that

the Gradual Revelation Equilibrium is not compatible with maximal revelation, but it also

implies that the cooperation range is always short of maximal in the last period.

Proposition 2.3. In the 2 period game of trust building pc̄, ϕ, µq, Gradual Revelation Equi-

librium can never support maximal revelation. Moreover, the last period cooperation is also

never maximal under Gradual Revelation Equilibrium, even without bargaining.

Does this mean that as we allow players cheat their signal and defect on later periods,

we necessarily sacrifice the eventual cooperation range? We find that as we make the game

longer, maximal revelation in the penultimate period and maximal cooperation in the last

period are both possible under Gradual Revelation Equilibria. In particular, in the three

period game, we find that maximal revelation and maximal cooperation always coincide

under Gradual Revelation Equilibrium, meaning that no player starts defection on the third

period.

Corollary 2.3.1. In the three period game of trust building pc̄, ϕ, µq, maximal cooperation

under the Gradual Revelation Equilibrium always coincides with maximal revelation. In other

words, tK´1 “ c̄ whenever tK “ c̄.
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Figure 2.3: Strategies under GRE3 when pc̄, ϕq “ p0.6, 0.3q and pα1, α2q “ p0.2, 0.8q

2.3.2 Welfare

Thus far, we have concentrated on the cooperation range in the context of building trust, and

how various equilibria achieve maximal cooperation in the ultimate stage of the game. We

also looked into the concept of revelation in the penultimate period, with the interpretation

of providing reassurance in the final stage as all actions are truthfully signalled for. While

cooperation range and truthful signaling are natural metrics in analyzing the Immediate

Revelation Equilibria, the analysis of trust gets more involved under the Gradual Revelation

Equilibria, in which players of different cost types cooperate for varying duration of stages.

To illustrate, let us take as examples two Gradual Revelation Equilibria in the two period

model without bargaining when the parameters are: pc̄, ϕ, bq “ p0.3, 0.2, 0.4q. When the

signaling stake α “ 0.6, the two thresholds that determine an equilibrium as fixed points

are t1 “ 0.1 and t2 “ 0.4. On the other hand, when α “ 2.2, the two thresholds become

t1 “ 0.2933 and t2 “ 0.3027. Remember, under the Gradual Revelation Equilibrium of

two periods, a player of a cost type below t1 defects for both periods, of type between t1

and t2 cooperates in the first period then defects in the second, and of types higher than

t2 cooperates for both periods as long as the opponent cooperates in the first period. The

following figure illustrates the two examples.
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Equilibrium B exhibits a bigger eventual cooperation range r0.302, 1s, but at the cost of much
bigger signaling stake. Under Equilibrium A, players not only utilize much smaller signaling stake
to build trust but also cooperate more in the first period.

Figure 2.4: Two examples of the Gradual Revelation Equilibrium

As shown in figure 2.4, Equilibrium B elicits a bigger eventual cooperation range than

Equilibrium A. If the objective of the game were to achieve maximum likelihood of cooper-

ation, the players would unambiguously prefer the signaling stake be 2.2. Notice, however,

that under the second equilibrium, there is 29.3% chance that the opponent defects from

the first stage. And in our model, the first stage not only serves as a signaling round but

also incurs a game component of the payoff. Therefore, while the second equilibrium induces

more cooperation in the final round, it also requires a much bigger signaling stake at which

period the opponent defects with much bigger probability.

As the example illustrates, the cooperation range is an incomplete metric in analyzing the

Gradual Revelation Equilibrium, in which each period represents utility generating rounds

on top of serving the signaling purpose. In order to address the issue, we introduce a welfare

notion to evaluate an equilibrium. For each equilibrium, given a player’s cost type, we can

calculate her expected utility against a random opponent. We calculate such expected utility

for all cost types that are willing to cooperate if the opponent cooperates; note that this

range of cost types correspond to region above c̄. Taking the expectation of these expected

utilities would give us a welfare notion that represents how reassuring an equilibrium is to

the cooperative types. We formally define this concept as follows.
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Definition 2.6 (Ex-ante Expected Utility). In evaluating welfare under an equilibrium in

the K period game of trust building, an Ex-ante Expected Utility is the expected utility

a ”cooperative” player is expected to gain from an equilibrium before both her and her

opponent’s type has been realized:
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Evaluating the two equilibria in the example above with the ex-ante expected utility, we

can assess that, prior to realization of the private cost types, players are actually better off

under Equilibrium A.27

The applicability of ex-ante expected utility as a welfare measure is not limited to the

Gradual Revelation Equilibria. We could also evaluate the utility a player is expected to

gain out of the Immediate Revelation Equilibrium using the same measure. We recognize

that comparing welfare implications of two separate equilibria of a game is a precarious

endeavor, and we do not argue that the players choose to be in one equilibrium versus

another. However, just as we established that maximal cooperation is only possible under

the Immediate Revelation Equilibrium and not under the Gradual Revelation Equilibrium

in the two period game, it is worth noting that the ex-ante expected utility in the Gradual

Revelation Equilibrium is always higher than under the Immediate Revelation Equilibrium

given the same parameters.

Proposition 2.4. In the 2 period game of trust building pc̄, ϕ, µq, for any28 Immediate Rev-

elation Equilibrium, there exists a Gradual Revelation Equilibrium that is welfare-improving

in the ex-ante expected utility sense.

The main mechanism by which a Gradual Revelation Equilibrium welfare-improves on

27EUA “ 0.2013,EUB “ 0.1976. Riemann sum approximation method is detailed in the appendix.

28There can be up to two Immediate Revelation Equilibria per parameter set.
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the Immediate Revelation Equilibrium in the 2 period game is twofold: 1) Gradual Reve-

lation Equilibrium is supported by smaller signaling stake than the Immediate Revelation

Equilibrium, and 2) interim cooperation in the first stage by the eventual defectors benefits

the high cost types. While the second force gets stronger in games of longer periods, unlike

the 2 period case, the Gradual Revelation Equilibria in games of longer periods often require

bigger signaling stakes than the Immediate Revelation Equilibrium. Yet, the computations

of welfare for the two equilibrium types show that the welfare result generalizes at least to

the three period model without bargaining.

Corollary 2.4.1. Proposition 2.4 generalizes to trust building games of 3 periods without

bargaining.

We need to note that the welfare notion we utilize is an ex-ante concept in terms of the

realization of private cost types. One of the implications is that with low c̄ or high cooper-

ation benefit, the welfare notion will favor an equilibrium that exhibits the highest mutual

cooperation in either period of the game. In particular, because the Cheating Equilibrium

requires that all cost types play cooperation in the signaling period, even though players fail

to gain any information out of the first round, it outperforms the trust building equilibria

under which meaningful screenings occur.

Proposition 2.5. In the 2 period game of trust building pc̄, ϕ, µq, when it exists, the Cheat-

ing Equilibrium always outperforms the Gradual Revelation Equilibrium and the Immediate

Revelation Equilibrium.

While the unanimous cooperation in the signaling period allows the Cheating Equilibrium

to generate the highest welfare, it also constrains its existence. As c̄ increases (trust level

lowers), the Cheating Equilibrium is no longer supported by any signaling stake as the

increasing defection bonus ϕ compared to the cooperation benefit b lures the low cost types

to defect in the first period.29 In the plots below, we show that as ϕ increases, the Cheating

29As c̄ “ 1
2 ` ϕ ´ b, ϕ and b jointly determine c̄.
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Equilibrium is only supported by a narrow band of cooperation benefits, compared to other

trust building equilibria on the left scatter plot. Figure 2.5 30also shows that the existence of

the Cheating Equilibrium is also much more sensitive to bargaining than other trust building

equilibria, as bargaining provides defection incentives across all types.

(a) Support of Equilibria when bargaining is
unimportant (µ “ 0)

(b) Support of Equilibria when bargaining is
more important (µ “ 0.4)

Figure 2.5: Support of the Cheating Equilibrium is Narrow and Highly Sensitive to Bargain-
ing

2.3.3 Issue Sequencing

With the appropriate measure to assess an equilibrium’s welfare implications in place, we

are ready to analyze which game induces better outcome for the players. In particular, we

could interpret the trust building games under different parameters as alternative negotiation

sequences. Given the same parameters pc̄, ϕ, µq, do parties prefer to sequence bargaining deals

so that the most consequential issue gets settled first? Or do they prefer to test waters with

less significant issues, and then proceed to the most important issue after building necessary

trust?

Notice that the two Gradual Revelation Equilibria of two periods given in Figure 2.4

30Recall that c̄ “ 1
2 ` ϕ ´ b. Thus, restricting the range of c̄ between 0 and 1 bounds b from above by ϕ ` 1

2
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describes these two alternatives. In the given example–in which it was more likely that a

player is above the dominance threshold c̄, and the cooperation benefit b was twice as big as

the first mover defection payoff ϕ–the players enjoyed higher welfare when they sequenced

issues from low stakes deal to the high stakes. Does this pattern generalize, so that players

always prefer that issues be sequenced in increasing importance? If not, what determines

when it is optimal to test the waters first? How does such optimal stakes evolution look like

when we extend the game to more than two periods?

We start with a result that echoes our first proposition regarding the Immediate Rev-

elation Equilibrium. In the Immediate Revelation Equilibrium, the threshold in cost type

that divides the players who cooperate from those who defect summarizes the trust dynamic

in the game. The lower the threshold, the higher the probability of mutual cooperation for

both periods. Therefore, the optimal sequencing of stakes is those that result in the maxi-

mal revelation. Recall that in the two period game of trust building the maximal revelation

becomes the unique Immediate Revelation Equilibrium when the relative size of the signal-

ing stake exactly matches the odds ratio of being above dominance-defection threshold c̄ to

being below (α “ 1´c̄
c̄
).

As players with cost type below c̄ are sure to defect in the last period, c̄ represents the

overall trust level in the system. The higher the c̄, the more people defect in the last period,

and the smaller the signaling stake has to become to induce maximal revelation for the high

cost types to willingly risk cooperation in the first stage. We find that this pattern of optimal

signaling stake decreasing as c̄ increases–or trust level decreases–generalizes to the General

Revelation Equilibrium and the Cheating Equilibrium as well.

Note that the Gradual Revelation Equilibrium is summarized by two thresholds instead

of one, and we need to utilize the welfare metric we established earlier in assessing which

sequencing lead to better outcome for the participants.

Proposition 2.6. In the 2 period game of trust building, the optimal signaling stakes in-

crease as trust increases: As c̄ decreases, αopt–the signaling stake that maximizes the ex-ante
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expected utility–increases.

In context of the 2 period game, this result about the size of the signaling round provides

a complete answer to the issue sequencing problem. The higher the overall trust level, the

more confident the cooperative players become in risking earlier rounds to make sure that

they get truthful signaling. On the other hand, in games of longer periods, in addition to the

ratio of the ultimate round to the rest of the game, we are also interested in how to sequence

the multiple issues leading up to the final round. If the players postpone the settlement on

the most important issues to the very last round, how do they stack the issues leading up

to the finale? When they choose to open up with a grand gesture, do they follow it up by

smoothly decreasing the stakes? Or do they switch to minor issues in the interim, and raise

the stake back up in the final round?

The simplest model to investigate how players choose to allocate different stakes within

the signaling rounds is to study optimal stakes structure in the Gradual Revelation Equi-

librium of three periods. Normalizing the final round as 1, we could ask how the optimal

stakes evolution looks like under different parameters of the model. Although we do not

have an analytic result that is as definitive as Proposition 2.6, we do find a few patterns

that bear important interpretations. First, we find that for high c̄ (low trust level), which

implies that the cooperation benefit b is smaller than the first defection bonus ϕ, the optimal

stakes form a decrescendo followed by a grand gesture. In other words, under low trust,

the optimal Gradual Revelation Equilibrium happens when both parties start with the most

important issue, and then gradually decrease the stakes. Second, in the lower c̄ range that is

still above a half so that ϕ remains bigger than b, the players enjoy the highest welfare under

the Gradual Revelation Equilibrium where the stakes are hump-shaped. That is, the parties

start with a minute issue, address the most pressing concern in the interim, and cools down

in the final stage. Finally, when c̄ is in the medium range, and both the cooperation benefit

b and the first defection payoff ϕ are small, the optimal stakes evolves in s-shape: the parties

test the water with the smallest issue, and increases the stakes dramatically in the interim

62



period, and then increases the stakes more slowly toward the final round. The figure below

illustrates, by example, how the optimal stakes evolution responds to the fundamental pa-

rameters of the model: b and ϕ. The graphs are produced by holding the other fundamental

parameters constant.

(a) Optimal Stakes w.r.t. changing b (b) Optimal Stakes w.r.t. changing ϕ

As cooperation benefit increases, the optimal stakes put higher emphasis on the signaling stakes.

Figure 2.6: How Optimal Stakes Respond to Fundamental Parameters, ϕ and b

We do find an overarching condition that dictates the three different patterns of the

optimal stakes above. It is that the growth factor from the first stakes to the second is

always higher than the growth factor from the second stakes to the final. Not only is the

condition met in the increasing stakes evolution–the s-shape and the hump-shape–but the

condition also holds when the stakes are decreasing: in the grand gesture pattern, the drop in

importance is less dramatic between the first and the second issue than between the second

and the final. We formalize the finding as a proposition.

Proposition 2.7. In the 3 period game of trust building without bargaining pc̄, ϕ, pµ “ 0qq,

the stakes, α1 and α2 that result in the Gradual Revelation Equilibrium which induces the
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highest ex-ante expected utility satisfy the following inequality:

g1 ”
α2

α1

ě
1

α2

” g2

So far, we have investigated the issue sequencing problem in games without bargaining.

How does introduction of bargaining to the trust building game affect the optimal choices

of stakes evolution? As noted earlier, bargaining induces players across all cost types to

defect more. Such additional defection incentives limit the range of parameters under which

the Gradual Revelation Equilibria can be sustained. On the other hand, negative prospect

from bargaining payoffs also brings the effect of lowering overall trust in the game. In

light of Proposition 2.6 and the three patterns introduced above, lowering trust results in

incentivizing higher stakes in the last period. The graphs below shows how the optimal

stakes in the example above responds to introduction of bargaining (with µ “ 0.2). We can

notice that bargaining induces more s-shaped evolution of stakes as the optimal choice under

the same parameter set.
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(a) Optimal nominal stakes w.r.t. changing µ
(b) Welfare on µ for various trust levels

Increasing bargaining weights shows two effects on the optimal signaling stakes:
1) The sum of the signaling stakes decrease, and
2) The evolution shifts toward an s-shape; bargaining reduces the first stage stake more
dramatically than the second signaling stake.

The welfare graph on the right shows that as trust decreases, bargaining tends to increase welfare
in the aforementioned α ´ µ trade-off.

Figure 2.7: How Optimal Stakes Respond to µ and Welfare Implications

2.3.4 How Bargaining Affects Trust Building

In our earlier analysis of maximal cooperation, we found that as bargaining introduces uni-

lateral incentive to defect across all types, it precludes the Immediate Revelation Equilibrium

from maximally revealing, as the marginal types above c̄ are pushed away from cooperating.

It is important to stress, however, that it is not necessarily true that unilaterally providing

defection incentives should result in all Perfect Bayesian Equilibria demonstrating higher

defection. In fact, in certain Immediate Revelation Equilibria, as players rationally expect

the opponents to defect more, there will be less cooperative opponents to take advantage

of, which, in turn, decreases the incentive to defect for some cost types. Such effect is more

stark in the Gradual Revelation Equilibria, where reputation affects trust building in more

intricate ways as cost types reveal gradually over the periods.
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We do find that introducing bargaining unambiguously limits how many equilibria can

be supported given the parameters. While bargaining may not shift all equilibria toward

more defection, it is still true that the predominant force bargaining has on our model of

trust building is that bargaining provides further incentives to defect across all types. Such

defection incentive proves incompatible with all three types of trust building equilibria, and

while introduction of bargaining finds new equilibria under certain sets of parameters, it

limits the parameters under which trust building equilibria may be supported in general.

There is another important implication that lowering trust has on our model of trust

building. Recall from Proposition 2.1 that lower trust level in the game corresponds to

smaller signaling stake that achieve maximal revelation in Immediate Revelation Equilibria.

Following the comparative statics, one could conjecture that introducing bargaining that

lowers overall trust level would then result in shrinking the optimal signaling stake. In fact,

we find through simulation that the statement holds true for almost all optimal equilibria in

the trust building game of two periods, as long as they are still supported.

Proposition 2.8. In the 2 period game of trust building, increasing weight on bargaining

decreases the size of signaling stake needed to support the most optimal trust building equi-

libria.

We could interpret the proposition as follows. In the process of building trust, in order to

get a more truthful signaling leading up to the ultimate stage of the negotiation, the players

may choose to increase the signaling stake in order to incentivize the eventual defectors to

reveal themselves sooner. Under such interpretation, bargaining may serve as an alternative

device that provides incentive to defect earlier in the game, thus making the decision in the

final stage more reassuring. We could thus understand Proposition 2.8 as demonstrating a

trade-off between employing higher signaling stakes–investing in α–and introducing higher

bargaining payoffs–investing in µ–in order to sustain trust building equilibria.

How does this α´µ trade-off affect welfare? In particular, given the fundamental param-
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eters pc̄, ϕq, when are players better off building trust through more bargaining as opposed

to through bigger signaling stakes? Since bargaining and signaling jointly affect trust build-

ing equilibria in an intricate manner, we do not claim that we have an analytic result that

dictates when it is welfare-improving to build trust through bargaining. Instead, we share a

computational result that reveals a consistent pattern. Our computed equilibria show that

in supporting the Gradual Revelation Equilibria in games of lower trust, employing higher

bargaining weights results in higher social welfare in the ex-ante expected utility sense than

utilizing higher signaling stakes.

Proposition 2.9. Among the optimal Gradual Revelation Equilibria in games of 2 and

3 periods, bargaining increases expected welfare when trust level is low. In other words,

there is a threshold in the trust level under which increased weight on bargaining payoffs

unambiguously increases maximal expected utility.

As such, introducing bargaining to the game of building trust over multiple periods

not only serves to make earlier results more realistic, but it also gives us insight about the

relationship between defection incentives and welfare. In particular, the proposition supports

empirical wisdom that when trust level is low, the common knowledge of unilateral motive

to deviate increases the overall welfare by having agents buckle up the safety belts.

2.3.5 Building Trust Under Fixed Stakes

So far in our comparative analyses of welfare under various trust building equilibria, we have

endogenized the signaling stakes α with the interpretation of issue sequencing or employment

of signaling versus bargaining as means of supporting defection incentives. We found that

building trust gradually requires smaller signaling stakes and thus outperforms the immediate

inception of trust in ex-ante welfare sense. On the other side of the coin, however, building

trust over a fixed set of negotiation issues is often of interest as well. In this section, we study

the welfare implications of various trust building equilibria in both 2 and 3 period games
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with fixed stakes. Through comparison, we also analyze the conditions under which there is

opportunity to build trust over longer duration and what factors may close this window of

opportunity.

In the welfare section, we established that between the two forms of trust building equilib-

ria in 2 period games, the Gradual Revelation Equilibrium welfare-improves on the Immedi-

ate Revelation Equilibria by employing a smaller signaling round to build trust (Proposition

2.4). We find that this pattern–that gradual building of trust elicits higher social welfare

than the immediate counterpart–holds more robustly in 3 period games as it also holds true

even with fixed stakes. In the 3 period game of trust building, when the first two stages serve

as signaling rounds for the main contention in the last period, we find that the Gradual Rev-

elation Equilibrium always induces higher expected welfare than the Immediate Revelation

Equilibrium. We formalize the finding in the following proposition.

Proposition 2.10. In the 3 period game of trust building pc̄, ϕ, µq, with fixed signaling stakes

α1, α2 ă 1, for any Immediate Revelation Equilibrium, there exists a Gradual Revelation

Equilibrium that is welfare-improving.

This is a stronger result than Proposition 2.4, where the main force through which we

found a Gradual Revelation Equilibrium that outperforms all Immediate Revelation Equilib-

ria was by endogenizing the size of the stake. It is both intuitive and reassuring to find that

as we analyze trust building games of longer duration, welfare favors the gradual building

of trust more readily. The more stages there are over which to build trust, the better the

players utilize each opportunity to establish trust rather than rushing all signaling in the

first round and playing the sure game for the rest.

We can also perform different sets of welfare comparisons to address more directly this

concept of windows of opportunity to gradually build trust. Consider planning for negoti-

ation with endogenous number of signaling rounds as follows. There is a set issue of fixed

stake in the final stage. The players may wait until the final stage to play the one shot game
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of cooperation, or they may open up one more negotiation round before the main stage and

utilize the additional stage to communicate their private types. This would be the compari-

son between the Nash Equilibrium in the benchmark one shot game of cooperation and the

trust building equilibria in the 2 period games that we analyzed. We found that the players

elicit higher cooperation from each other by utilizing the signaling round to separate the

types. We now analyze the extension of this comparison: given the set issues of fixed stakes

in the final two periods, when can the players benefit from additional signaling? In other

words, knowing the stakes of the main issue and the size of penultimate signaling round,

when is there a window of opportunity to start earlier?

Given the parameters of the 2 period game pc̄, ϕ, µq and the fixed stake of the penultimate

signaling round, α2, we first document which equilibrium elicits the highest expected welfare.

We already established in Proposition 2.5 that when trust level is high enough to support the

Cheating Equilibrium, it outperforms both the immediate and the gradual version of trust

building equilibria that require some players to play defection in the signaling round. While

we also established that with endogenous α2, the Gradual Revelation Equilibrium welfare-

improves on the Immediate Revelation Equilibrium, when we require that both equilibria

be supported by the same fixed stake, we could not find a distinctive pattern under which

one equilibrium elicits higher welfare than the other. Then, we compare the highest welfare

achieved by any equilibrium under pc̄, ϕ, µ, α2q with the welfare generated by the Gradual

Revelation Equilibrium of the 3 period game with the same pc̄, ϕ, µ, α2q, where the size of

the earliest signaling round α1 is endogenously chosen to maximize welfare. The welfare

comparison bears the following pattern.

Proposition 2.11. For any equilibrium in the 2 period game pc̄, ϕ, α2, µq, if there exists

a Gradual Revelation Equilibrium in the 3 period game with the same parameters plus a

welfare-maximizing α1, it induces higher welfare when:

1. The final period stake is sufficiently higher than the signaling stakes,
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2. And the cooperation benefit and the first mover advantage are sufficiently high.

In words, we find that the sufficient condition that the players may benefit from earlier

signaling stage is that 1) the signaling stage stakes are low relative to the final stage, and 2)

the per-period swing between mutual cooperation benefit and unilateral defection advantage

is high.

2.4 Conclusion

In the introduction to the article, we argued that trust has been studied without taking

bargaining dynamics into account. The reverse is perhaps even more true, particularly in

the international relations literature. It is important to understand signaling a willingness

to cooperate, to exist together in peace, alongside signaling a willingness to resort to force.

Not that this has not been addressed,31 but the literature devoted to signaling a willingness

to cooperate is a vanishingly small fraction of the literature devoted to the other. The focus

on the credibility of commitments to use force is perhaps a result of the Cold War problems

of deterrence. Even there, however, as other authors have shown,32 problems of trust loomed

large. Trust is the facilitator of all aspect of social relations because it relates to the resources

devoted to productive activities as opposed to conflict and to the risks that individuals and

groups are willing to take to reduce the dangers of conflict. Trust building has been studied,

but there is reason to think it should be examined more.

In this chapter, we make a start in this direction. We confirm some past results and

question others. We question the view that trust building is relatively easy and can be

efficiently accomplished quickly. In a rationalist framework, it cannot. Usually–always when

the stakes are building to final consequential encounter–it must take place in a series of

31On the need for the credibility of the promise to cooperate if demands are met to be credible in order to
coerce, see George et al. [1991] and Jervis [2003].

32See, for instance, Larson [1997], Kydd [2005].
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interactions. The need to bargain is a crucial factor inhibiting trust building, and this factor

can also be welfare improving. It makes actors less willing to signal trustworthiness, but this

also means that actors can signal trustworthiness with lower stakes, which means lower risk

overall.

We have also demonstrated results on the difficult questions of issue sequencing. When

the bargaining aspect of the interaction is important or the consequences of misplaced trust

are high, grand gestures–starting with high stakes issues–maximize welfare. When trust is

more important that bargaining or the consequences of misplaced trust are low, it is better

to begin with the easier, less consequential issues. We also show that if the optimal stakes

are increasing, they increase more in the early or middle stages than in the latter ones. This

is because of the dynamics of the need to screen out the actors who would be tempted to

pretend to be trustworthy until the latter stages.

One of the important implications of the analysis is that there are windows of opportunity

to build trust. When they are missed, there may not be enough time to recover. This

decreases the welfare of all.

One reason this may be important is that international relations today are more adver-

sarial than they were in the period after the Cold War ended. Several state dyads of great

consequence (Russia - U.S., China - U.S., and North Korea - U.S.) are more fraught with

conflicts than they were in the recent past. Rather than building trust, it is arguable that

trust among these powers has diminished. At the end of the Cold War, for instance, Russia

allowed Soviet Republics to break away and Russian influence to diminish greatly, even in

its traditional spheres of influence. The United States did not initially fully exploit Russia’s

pulling back; in fact U.S. Secretary of State James Baker promised that NATO “there would

be no extension” of NATO’s jurisdiction “one inch to the east.”33 Subsequent history gave

the lie to that. Arguably, Russia showed itself willing to cooperate until the United States

33Trachtenberg [2020].
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showed itself unwilling to reciprocate. The relationship today–trust–has suffered greatly as

a result.

If predictions about the strategic implications of changing technologies are borne out,

these declines in trust may be extremely consequential. If AI technologies destabilize the nu-

clear balance, for instance, trust will be the key factor determining the risks of a catastrophic–

potentially civilization ending–nuclear accident that countries take on. We would then

greatly regret the current missed opportunities to build trust over time.

The case of North Korea is an interesting one because the bargaining and trust dynamics

are each on full display. Both sides are worried that the other is willing to behave coopera-

tively in response to cooperation, and both sides are bargaining. Consider Lindsey Graham’s

statement, which he said characterized U.S. President Trump’s thinking: “If there’s going

to be a war to stop [Kim Jong Un], it will be over there. If thousands die, they’re going

to die over there. They’re not going to die here.”34 On the one hand, the statement can

be understood in terms of bargaining: the U.S. would like to signal its willingness to bear

the costs of war in order to improve its bargaining position. On the other hand, however, if

the U.S. is able to signal that it sees low costs to conflict, it is a less trustworthy partner.

This, in turn, potentially places the U.S. in great danger because a distrustful North Korea

is more likely to take actions itself that might impose enormous costs on the U.S.

The findings suggest many fascinating paths for future research. Empirical evidence sug-

gests, for instance, that the psychological and rationalist approaches to belief updating are

often used in tandem [Yarhi-Milo et al., 2018]. Sometimes, however, psychological disposi-

tions cause actors to choose suboptimal actions, ignoring Bayesian updating of trust in favor

of psychological judgments [Hall and Yarhi-Milo, 2012b, Larson, 1997]. One promising area

of future research is elucidating the precise nature of the interaction between psychological

34NBC News, Sen. Lindsey Graham: Trump Says War With North Korea an Option, 2 August, 2017, avail-
able here: https://www.nbcnews.com/news/north-korea/sen-lindsey-graham-trump-says-war-north-korea-
option-n788396.
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and strategic trust updating. Another direction for future work is to consider trust building

in the context of unequal or changing balances of power. How should actors build trust when

power is slowly or rapidly shifting in favor of one side? How would the dynamics change if

there were uncertainty over the direction of the power shift? We hope other researchers will

continue to investigate these topics through these questions and many others. In spite of the

insightful work that has already been done in the area, we believe it remains dramatically

understudied, particularly in relation to its importance in social relations.

73



2.5 Appendix

2.5.1 Sequential Rationality of 2-Period Equilibria

In the main text, we formally defined the three types of equilibria in the 2-period game

of trust building as strategy profiles paired with consistent belief systems. The equilibrium

concept we employ is the Perfect Bayesian Equilibrium; the strategies and the beliefs need to

satisfy two conditions: sequential rationality and consistency of beliefs. In this first section

of the appendix, we complete the definitions of the trust building Perfect Bayesian Equilibria

by laying out the sequential rationality conditions that pin down where the thresholds get

drawn in each equilibrium.

1. Immediate Revelation Equilibrium

sipciq “

$

’

&

’

%

pC, pC
ˇ

ˇ a´i,1“C, D
ˇ

ˇ a´i,1“Dq, ..., pC
ˇ

ˇ a´i,K´1“C, D
ˇ

ˇ a´i,K´1“Dqq if ci ą t

pD, ..., Dq if ci ď t

bi “

$

’

’

’

’

’

&

’

’

’

’

’

%

Ppc´i ą t
ˇ

ˇ a´i,l“Cq “ 1

Ppc´i ď t
ˇ

ˇ a´i,l“Dq “ 1

Ppanything elseq “ 0

@l ď K

where t is a threshold that satisfies the following conditions35:

(a) EpUpC, pC|C,D|Dqqq ă EpUpD,Dqq when ci ă t and

EpUpC, pC|C,D|Dqqq ě EpUpD,Dqq when ci ě t:

p1 ´ µqppα ` 1qt ´ 1qϕ ` p1 ´ tqpα ` 1qpc̄ ´ tqq ` µpα ` 1qp 2´t
3´2t

´ 1
2
q “ 0

(b) EpUpC,Dqq ă EpUpD,Dqq when ci ă t:

p1 ´ µqppα ` 1qt ´ 1qϕ ` p1 ´ tqαpc̄ ´ tqq ` µpα ` 1qp 2´t
3´2t

´ 1
2
q ě 0

35EpUpC, pC|C,D|Dqqq ě EpUpC,Dqq when ci ě t) is always satisfied: 1. b ą a and 2. b ą 1
2 ` ϕ ´ ci when

ci ě t ě c̄q
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2. Gradual Revelation Equilibrium

sipciq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pC, ..., pC
ˇ

ˇ a´i,K´1“C, D
ˇ

ˇ a´i,K´1“Dqq if ci ą tK

pC, ..., pC
ˇ

ˇ a´i,K´2“C, D
ˇ

ˇ a´i,K´2“Dq, Dq if tK´1 ă ci ď tK

pC, ..., pC
ˇ

ˇ a´i,K´3“C, D
ˇ

ˇ a´i,K´3“Dq, D,Dq if tK´2 ă ci ď tK´1

... ...

pD, ..., Dq if ci ď t1

bi “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Ppc´i ą tl
ˇ

ˇ a´i,l“Cq “ 1

Pptl´1 ă c´i ď tl
ˇ

ˇ a´i,l´1“C & a´i,l“Dq “ 1

Ppc´i ď t
ˇ

ˇ a´i,l“Dq “ 1

Ppanything elseq “ 0

@l ď K

where t1 and t2 are the thresholds that satisfy the following conditions:

(a) EpUpC, pC|C,D|Dqqq ě EpUpC,Dqq when ci ě t2 and

EpUpC, pC|C,D|Dqqq ă EpUpC,Dqq when t2 ě ci ě t1:

pt2 ´ t1qpp1´µqϕ`µp 2´t1´t2
3´t1´2t2

´ 1
2
qq ` p1´ t2qpp1´µqpc̄´ t2q `µp 2´t1´t2

3´t1´2t2
´ 1

2
qq “ 0

(b) EpUpC,Dqq ě EpUpD,Dqq when ci ě t1 and

EpUpC,Dqq ă EpUpD,Dqq when ci ă t1:

t1 ˚ pp1 ´ µqαϕ ` µpα ` 1qp 2´t1
3´2t1

´ 1
2
qq

` pt2 ´ t1qpp1 ´ µqαpc̄ ´ t1q ` µpα ` 1qp 2´t1
3´2t1

´ 1
2
qq

` p1 ´ t2qpp1 ´ µqpαpc̄ ´ t1q ´ ϕq ` µpαp 2´t1
3´2t1

´ 1
2
q ` 2´t1

3´2t1
´ 2´t1´t2

3´t1´2t2
q “ 0

3. Cheating Equilibrium
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sipciq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pC, ..., pC
ˇ

ˇ a´i,K´1“C, D
ˇ

ˇ a´i,K´1“Dqq if ci ą tK

pC, ..., pC
ˇ

ˇ a´i,K´2“C, D
ˇ

ˇ a´i,K´2“Dq, Dq if tK ě ci ą tK´1

... ...

pC,C,D, ..., Dq if t2 ă ci ď t3
36

pC,D, ..., Dq if ci ď t2

bi “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Ppc´i ą tl
ˇ

ˇ a´i,l“Cq “ 1

Pptl´1 ă c´i ď tl
ˇ

ˇ a´i,l´1“C & a´i,l“Dq “ 1

Ppc´i ď t2
ˇ

ˇ a2“Dq “ 1

Ppanything elseq “ 0

@l ď K

where t is a threshold that satisfies the following conditions:

(a) EpUpC, pC|C,D|Dqqq ă EpUpC,Dqq when ci ă t and

EpUpC, pC|C,D|Dqqq ě EpUpC,Dqq when ci ě t:

p1 ´ µqpp1 ´ tqpc̄ ´ tq ` tϕq ` µp 2´t
3´2t

´ 1
2
q “ 0

(b) EpUpC,Dqq ą EpUpD,Dqq when ci ă t:

p1 ´ µqpαc̄ ´ p1 ´ tqϕq ` µpαp2
3

´ 1
2
q ` 2

3
´ p1

2
t ` p1 ´ tq 2´t

3´2t
qq ď 0

2.5.2 Maximal Revelation Proofs

In this section of the appendix, we provide analytic proofs for the first three main results

along with a corollary. The driving force in deciding whether a game could result in maximal

revelation is the incentives of marginal types sustaining the threshold around the stage game

dominance threshold c̄.

36In a 2-period case (K “ 2), t3 becomes 1, and there are only two strategies pC,Dq and pC,Cq

36EpUpC, pC|C,D|Dqqq ě EpUpC,Dqq when ci ě t) is always satisfied: 1. b ą a and 2. b ą 1
2 ` ϕ ´ ci when

ci ě t ě c̄q
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Proof of Proposition 2.1. 37 Maximal revelation strategy is ”Play pC, pC|C,D|Dqq if ci ą c̄,

play pD,Dq otherwise.” Consider the following incentives to deviate:

i. ci “ c̄ ´ ϵ can profitably deviate to pC,Dq when F ptq ă 1
α`1

Compared to the revelation strategy, ci ă t may risk losing ϕ in the first stage to

the low cost types, for gaining ϕ ´ ϵ from the high cost types in the second stage.

Specifically, by changing from pD,Dq to pC,Dq,

– From the low types pF pc̄qq: lose ϕ in stage 1,

– From the high types p1 ´ F pc̄qq: p1
2

` ϕ ´ ci,
1
2

´ ciq Ñ pb, 1
2

` ϕ ´ ciq:

lose c̄ ´ ci in stage 1, and ”lose” ´ϕ in stage 2

In expectation, the gain from deviation exceeds the loss when

ci ą c̄ ´
1

α

`

1 ´ α
F pc̄q

1 ´ F pc̄q

˘

ϕ

Since ci “ c̄ ´ ϵ, this profitable deviation is possible when F pc̄q ă 1
α`1

ii. ci “ c̄ ` ϵ can profitably deviate to pD,Dq when F pc̄q ą 1
α`1

For ci ą c̄, loss from first stage ϕ could be larger than the possible cooperation on both

stages. Specifically, by changing from pC, pC|C,D|Dqq to pD,Dq,

– From the low types pF pc̄qq: gain ϕ in stage 1,

– From the high types p1 ´ F pc̄qq: pb, bq Ñ p1
2

` ϕ ´ ci,
1
2

´ ciq:

”gain” c̄ ´ ci in stage 1, ”gain” c̄ ´ ϕ ´ ci in stage 2

In expectation, the gain from deviation exceeds the loss when

ci ă c̄ ´
1

α ` 1

`

1 ´ α
F pc̄q

1 ´ F pc̄q

˘

ϕ

37In most of the main text, we work with the case in which the cost types are drawn from uniform distribution
F pcq “ c. The proof is on more general space of any continuous cumulative density function F pcq.
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Since ci “ c̄ ` ϵ, this profitable deviation is possible when F pc̄q ą 1
α`1

Since ci ă c̄ can profitably deviate when F pc̄q ă 1
α`1

, and ci ą c̄ can profitably deviate

when F pc̄q ą 1
α`1

, maximal revelation is only possible when F pc̄q “ 1
α`1

.

Proof of Proposition 2.2. In order to sustain maximal revelation with bargaining, the thresh-

old t that satisfies both sequential rationality condition of the Immediate Revelation Equi-

librium should equal the dominance threshold c̄.

p1 ´ µq ¨ ppα ` 1qt ´ 1qϕ ` µ ¨ pα ` 1qpWCD ´ 0.5q “ 0 (2.1)

p1 ´ µq ¨ ppα ` 1qt ´ 1qϕ ` µ ¨ pc̄pWCD ´ 0.5q ` p1 ´ c̄qpWCD ´ WDq ě 0 (2.2)

where WCD “ 1´t
1´t` 1

2
´ t

2

“ 2
3
, and WD “

1´ t
2

1´ t
2

` 1
2

´ t
2

“ 2´t
3´2t

ą 1
2
.

Substituting t “ c̄, and subtracting (2.1) from (2.2) gives:

p2q ´ p1q : c̄ ¨ pWCD ´
1

2
q ` p1 ´ c̄qpWCD ´ WDq ě pα ` 1qpWCD ´

1

2
q

ñ c̄ ¨
1

6
` p1 ´ c̄q ¨ p

2

3
´ WDq ě pα ` 1q ¨

1

6
(2.3)

Since c̄ P r0, 1s and WD ą 1
2
, the LHS of (2.3) is a convex combination between 1

6
and a

number smaller than 1
6
, while the RHS is clearly larger than 1

6
as α ą 0. Therefore, (2.3)

can never be satisfied.

Proof of Proposition 2.3. The sequential rationality condition of the Gradual Revelation

Equilibrium without bargaining is given by:

pt2 ´ t1qϕ ` p1 ´ t2qpc̄ ´ t2q “ 0

1. In order to achieve maximal revelation pt1 “ c̄q, and still support Gradual Revelation
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Equilibrium pt2 ą t1q, there must exist a range of types strictly above c̄ who employ

pC,Dq strategy in vacant fear of facing defection in the second period despite knowing

for sure that the opponent who played C in the first period has cost type strictly

above c̄. It is easy to check that players will universally prefer to be in the maximally

revealing Immediate Revelation Equilibrium, and continue to cooperate in the second

period when faced with cooperation in the first period.

2. As for the maximal cooperation in the last period, consider t2 “ c̄. The maximal

cooperation would bring the second term to 0, leaving the first term to also be 0.

This is only possible when t1 “ t2 “ c̄, which violates the definition of the Gradual

Revelation Equilibrium pt2 ą t1q. In fact, this case exactly corresponds to the maximal

revelation in the Immediate Revelation Equilibrium. We can see that the Gradual

Revelation Equilibrium converges to the Immediate Revelation Equilibrium as the

revelation region gets close to maximal.

3. When we add bargaining, it would only add positive value to the left hand side, corre-

sponding to the interpretation of adding unilateral incentive to defect. This would not

only preclude maximal revelation in the Gradual Revelation Equilibrium, but also the

Immediate Revelation Equilibrium, as t1 ą t2 is the only way to support the incentive

compatibility condition, which is a contradiction.

Proof of Corollary 2.3.1. The sequential rationality condition of the Gradual Revelation

Equilibrium of 3 period games without bargaining is given by:

t1 ¨ ϕ ` p1 ´ t1qpc̄ ´ t1q “ p1 ´ t2qg1ϕ

pt2 ´ t1q ¨ ϕ ` p1 ´ t2qpc̄ ´ t2q “ p1 ´ t3qg2ϕ

pt3 ´ t2q ¨ ϕ ` p1 ´ t3qpc̄ ´ t3q “ 0 (2.4)
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Maximal cooperation would mean that t3 “ c̄. One could easily see from 2.4 that this is

only possible when t2 “ t3.

2.5.3 Welfare Results

In the main text, we constructed a welfare notion as formally given in definition 2.6. The

metric is an ex-ante welfare metric as it expectations out the agents’ own cost type as well

as the cost type of the opponent. As we interpret the metric as average utility that an agent

expects to receive before her type or the opponent’s type gets realized, we compare this

ex-ante expected utility under different types of equilibria to gain insight on welfare.

This section of the appendix provides justification of the three results about ex-ante

expected utility comparisons among trust building equilibria. First, on dense set of param-

eters 38, we calculate the thresholds t that characterize trust building equilibria by solving

the system of sequential rationality conditions provided in the first section of the appendix.

Then, we calculate ex-ante expected utility under each of the equilibrium characterization

by taking Riemann sum approximation on both the own agent’s and the opponent’s cost

type (ci, c´iq. With the data frame of welfare calculations, we compare and contrast the

three types of equilibria, applying necessary data processing with python pandas package.

We defer the details constituting proofs of Proposition 2.4, Corollary 2.3.1, and Proposition

2.5 to the online appendix. The solutions of the equilibrium constructing conditions, as

well as python scripts for welfare calculations and processing are also provided in the online

appendix.

38c̄ : r0, 1s in steps of 0.05
ϕ : r0 : 1 ´ c̄s in steps of 0.05
µ : r0 : 1s in steps of 0.1
α1&α2 : r0.1 : 3.8s in steps of 0.1
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2.5.4 Issue Sequencing Results

This section of the appendix provides proofs for Proposition 2.6 and Proposition 2.7. Propo-

sition 2.6 posits a computational pattern that as trust level falls off–or c̄ increases–the size

of the signaling stake under the optimal equilibrium decreases. The online appendix details

the computations. We utilize the same data frame that we detailed in the welfare analysis

section. Then, within each type of equilibria39, we document the highest welfare yielding

equilibrium. Iteratively checking how the welfare under each of the optimal equilibrium

moves with increasing c̄ demonstrates the pattern that as trust level decreases, so does the

signaling stake needed to support the equilibrium that yields the highest welfare for given

parameters.

Proof of Proposition 2.7. For this proof, we first provide an analytic result that convinces

us to claim that optimal Gradual Revelation Revelation should always demonstrate g1 ě g2.

Then, we back up our claim with computations that confirms that optimal equilibria do

demonstrate this rule given the parameters.

The following constitute sequential rationality conditions for Gradual Revelation Equi-

libria in a 3 period game:

t1 ¨ ϕ ` p1 ´ t1qpc̄ ´ t1q “ p1 ´ t2qg1ϕ (2.5)

pt2 ´ t1q ¨ ϕ ` p1 ´ t2qpc̄ ´ t2q “ p1 ´ t3qg2ϕ (2.6)

pt3 ´ t2q ¨ ϕ ` p1 ´ t3qpc̄ ´ t3q “ 0 (2.7)

Suppose, by contradiction, that g2 ą g1. Function tϕ ` p1 ´ tqpc̄ ´ tq is decreasing in t

for all t ď
c̄´ϕ`1

2
which, in turn, implies that it holds for all t ď c̄ by optimality condition

39There are 5 types of equilibria in total: The Cheating, Gradual Revelation, and the Immediate Revelation
equilibria for the game of 2 periods, and the Gradual Revelation and the Immediate Revelation Equilibria
for the game of 3 periods.
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(1 ´ c̄ ě ϕ). Thus, utilizing t2 ą t1, we get the following inequality from (2.5) and (2.6):

pt3 ´ t2qg2 ě pt3 ´ t2qg1 ě p1 ´ t2qg1 ´ p1 ´ t3qg2 ą t1 (2.8)

Now we have all ingredients for our claim. For optimal Gradual Revelation Equilibria,

t3 cannot be too much higher than c̄, for that would suggest a considerable mass of types

playing defection in the final round when it only hurts themselves. On the other hand, by

(2.7), the tight pt3 ´ c̄q binds pt3 ´ t2q as well. The only possibility to support tight pt3 ´ t2q

while sustaining (2.8) would be to have g1 be large and t1 be minimal at the same time.

However, such combination would contradict (2.5).

Our bounds on parameters, as well as our definition of optimal Gradual Revelation Equi-

libria, are not tight enough to warrant proof of proposition. While our analytic portion of the

proof results in a claim, in the online appendix, we provide actual computations of optimal

Gradual Revelation Equilibria in the ex-ante welfare sense that indeed demonstrates that

g1 ě g2.

2.5.5 How Bargaining Affects Welfare Under Trust Building Equilibria

In the main text, we discuss how bargaining affects trust building. We posit that the main

force bargaining brings to the trust building game is to provide unilateral incentive to deviate

across all cost types. While this force has implications on range of parameters that support

Perfect Bayesian Equilibria as well as the thresholds that characterize actions under each

equilibrium, we summarize the unambiguous effect bargaining has on welfare as two main

propositions. In this section of the appendix, we explain the computational approach we

took in order to detect such unambiguous pattern in welfare, and guide the readers to the

online appendix for details.

We use the same data frame that documents solutions of Perfect Bayesian Equilibria

under the fine grid of parameters as in the welfare section. While the welfare section dealt
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with comparisons on all equilibria that exist, in this section, we focus on the equilibrium

that yields the highest expected utility per each parameter set. In the online appendix,

under sections Proposition 2.8 and Proposition 2.9, we first provide this table of ”optimal”

equilibria. Then, we proceed to iterate over each trust parameters pc̄, ϕq, checking that as

we increase µ, the pattern we try to prove persists without an instance of reversal.

For Proposition 2.8, the pattern is that αopt–the size of the signaling stake in the equi-

librium with highest welfare–decreases as we increase the weight on bargaining. We do find

less than 1% of outliers that do reverse this pattern, but the size of the welfare reversal is so

small in those instances that we posit the general pattern as a proposition. Proposition 2.9

finds that as we increase the bargaining weight, the expected welfare increases unambigu-

ously when the trust level is low enough. For the Gradual Revelation Equilibrium in the 2

period game, the threshold trust level is c̄ “ 0.5, whereas in the 3 period game, the pattern

persists when c̄ ě 0.55.

The table of ”optimal” equilibria under each parameter set, as well as the procedure for

finding the pattern as we increase the bargaining weight µ is well documented in the online

appendix with detailed captions.

2.5.6 Computations of Welfare Under Fixed Stakes

In this last section of the appendix, we provide computational justifications for Proposi-

tions 2.10 and 2.11. As in the welfare section, the propositions constitute comparisons of

expected utility among trust building equilibria; only this time, the size of each stages is

fixed. Proposition 2.10 states that when stakes are fixed, agents are better off on average

under the gradual building of trust, as opposed to immediate inception of trust. The online

appendix details this simple and strong welfare comparison.

Proposition 2.11 considers a more complicated comparison. As the main text explains, we

consider optimally elongating a 2 period game by choosing the size of an additional signaling
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round, and supporting a Gradual Revelation Equilibrium of 3 periods. This comparison

exercise represents adding one more opportunity to build trust. The comparison allows us

to investigate when it is unambiguously beneficial to have one more opportunity to build

trust. The online appendix demonstrates that the condition is two fold: 1) α1, α2 ă 0.3,

and 2) b, ϕ ą 0.5. The online appendix discloses the full python code that generates the

comparisons as well as the result table and captions for explaining each step.
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CHAPTER 3

Learning Through Matching1

3.1 Introduction

From successful transactions in TaskRabbit to tips in Uber Rides, many platforms derive

benefit from matching one good agent to another. With thousands of new users per day,

however, big matching platforms cannot ensure the quality of all members.

Based on these observations, this paper proposes a model of learning through matching

whereby the platform dynamically maximizes output by controlling which agents to recruit

and how to group them into pools. At each point in continuous time, the platform makes

recruitment decisions over agents who have high or low pizzazz. Agents derive utility from

matching with a partner of high pizzazz regardless of her own, whereas the platform wants to

maximize the number of matches between the high pizzazz agents. In particular, we assume

a supermodular match output whereby only the matches between the high types may create

value to the platform. This feature applies to tipping behavior in Uber Rides, in which tip

realizes only when a good driver takes a frequent tipper.

The platform in our model perfectly observes all output and its producers. Therefore,

once an agent creates output, the platform learns of her high pizzazz without error; our model

features the “perfect good news” signal structure. Within this framework, we study how the

platform utilizes its pool of signaled agents to optimize output over time. We recognize

the exploration-exploitation trade-off as main force: by exclusively matching these proven

1Co-authored with Isabel Juniewicz, UCLA
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members to each other, the platform may maximize flow output while sacrificing discovery

of other high pizzazz agents who are yet to signal; on the other hand, by keeping a general

pool, the platform sacrifices instantaneous output but facilitates learning, which in turn,

accelerates future output.

In the first part of the paper, we analyze how the platform balances this tradeoff when

they can only maintain one matching pool. Essentially, this sub-model examines the optimal

exploration decision of how to mix unknown type agents with the pool of proven members.

We find that the solution is bang-bang: the optimal exploration policy prescribes full explo-

ration followed by full exploitation. Along optimal schedule, the platform begins with full

recruitment of unknown agents as candidate members. As matches realize, some candidate

members with high pizzazz generate output and become proven members. Over the candi-

date members who don’t, the platform grows more and more pessimistic until it drops them

at once, and thereafter only keeps the agents who have signaled thus far.

At the heart of the analysis is the shuffling argument. Candidate members lose reputa-

tion as a function of their time spent in the platform. Therefore, given a choice between

two unknown agents, the platform recruits one that has been recruited for less time. Since

the platform in our model makes decisions in continuous time with discounting, optimal

recruitment demonstrates two features: 1) constant shuffling of candidates to hold all un-

known agents at equal posterior, and 2) the earlier the learning the better. We combine

the two features to prove the bang-bang solution to the optimal exploration problem, and

characterize the optimal stopping time of exploration.

The paper then turns to the optimal two pool control problem. This sub-model endows

the platform the ability to segment its recruits into two pools. The platform may now

keep different mixtures of proven members and its candidate members in two pools and

find balance between exploitation and exploration. We surprisingly find that even with the

flexibility to mix, the optimal allocation schedule prescribes full integration – recruiting all

agents into one pool – until full segmentation – putting together all unknown agents into
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one pool, and constantly promoting signaled agents to the other “premium” pool.

The rest of the paper is organized as follows. Section 2 introduces the general model with

arbitrary number of pools. Section 3 fixes the number of pools to one, and characterizes

optimal exploration policy. Section 4 then turns to the two pool model, and describes the

optimal allocation schedule of full integration to full segmentation. Section 5 concludes.

3.2 Model

3.2.1 Agents

We consider a one-to-one matching market of two sides. There is unit mass of agents on

both sides, who are heterogeneous in their pizzazz θ. In particular, we assume a dichotomy

in which p0 of the agents are attractive (θ “ H) and the rest are not (θ “ L). Pizzazz in

our model represents value to the other side. When an agent matches up with an attractive

counterpart, she receives utility of 1 regardless of her own pizzazz, whereas she enjoys 0

utility from matching with an unattractive partner, also regardless of her type. We assume

that the proportion of attractive agents in the market are symmetric. Agents are assumed

to be memoryless and ignorant of their own pizzazz. In fact, the scope of the current paper

takes agents as automata that only make participation decisions. Rather, the focus of the

paper is on the matching platform as a designer that dynamically controls learning by its

recruitment and matching decisions – subject to the participation constraints.

3.2.2 Matching

We consider a dynamic model in continuous time with discounting. For each t P r0,8q, the

platform symmetrically allocates tNi,tu
m
i“1 agents from both sides into m matching pools.2

2We could generalize to allow asymmetric recruitment in future research. For the scope of the current article,
we limit the platform’s ability to symmetric recruitment, and ask how the platform optimally chooses to
explore agents with unknown quality.
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We will discuss how the platform populates multiple pools in “the platform’s design problem”

section of the model. Until then, to introduce notations with more ease, we suppose one set

pool with Nt agents on each side and drop the i subscripts.

Matching is random and one-to-one with constant return to scale (CRS) technology.3 In

particular, over a time interval rt, t` dts, µNtdt matches realize, where µ P p0, 1q represents

match friction. Matching is random in an independent and identical manner both across

time and across agent types: in a given period, agents of high and low pizzazz face the same

probability of matching regardless of their matching history.

We assume that matches produce output in stochastic and supermodular fashion. Only

the matches between high-pizzazz agents independently have λ ą 0 probability of producing

output. Other combinations can never produce output. It is this match output that the

platform dynamically maximizes through its pool allocation decision.

3.2.3 Information Structure

Here we lay out the information structure, which is at the heart of the study. At time 0, the

platform believes that all agents in the market have p0 probability of being the high type.

In subsequent time, we assume a powerful platform; it observes all matches, and identifies

ones that produce output. Along with the supermodularity of the match output function,

this means that the platform completely learns the high quality of an agent the moment she

contributes to an output. We assume that the platform keeps track of the identity of these

proven members and we denote their mass nt.

On the other hand, over the agents who have been in the platform but have not yet

3We discuss a generalization to increasing returns to scale in the concluding section.
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generated output the platform updates the posterior belief pt according to Bayes’ rule4:

pt ” Ppθ “ H| R ntq “
p0 ´ nt

1 ´ nt

(3.1)

Implicit in notation 3.1 are two assumptions. First is that this agent has to be active in

the platform for the entire r0, ts time frame. We show that this always holds in Theorem

3.1: once the platform begins “exploring” an agent (recruits a candidate member from pool

of unknown agents), it keeps him in the pool until pt falls below a certain threshold, or he

produces output, at which point he becomes a proven member. The second, more important,

assumption is an anonymity assumption. While the platform follows the identity of the

proven members, we assume that it does not exploit it in updating the reputation of the

candidate members who match up with them differently from those who don’t:

Assumption 3.1. The platform does not utilize the identity of proven members in updating

the reputation of the candidate members.

This compromise we make to keep our model both tractable and realistic is standard in

matching literature.5

3.2.4 The Platform’s Design Problem

We are now ready to formally state the platform’s design problem acrossm pools. Combining

the CRS matching function and the supermodular output function, we can summarize the

law of motion of expected output in pool i as:

9Mi,t “ λ ¨ µNi,t ¨ q2i,t (3.2)

4Theoretically, notation in the demonstrated updating is only sound in a 1-pool setting; formally, we would
need at least one pi,t per pool in which the platform explores unknown agents. As we will show in the
analysis section, however, the optimal policy dictates that the platform keeps exploration to at most one
pool.

5See Anderson and Smith [2010] Assumption 2.
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where Ni,t denotes the total number of agents in pool i and qi,t denotes its fraction of

high pizzazz agents.

At t “ 0 when the platform only has impartial information about its agents, it cannot

yield any discriminatory power over any pool. In other words, qi,0 is expected to be p0 in

any matching pool. However, as matches realize and the platform learns the identity of the

proven members, it can utilize the information to maximize output.

Within this framework, we fix m – the total number of pools – and analyze the platform’s

optimal allocation decision. In particular, for each time t and each pool i, we allow the

platform to allocate αi,t fraction of its proven members and βi,t fraction of its unknown

agents to constitute Ni,t to dynamically maximize output:

Ni,t “ αi,t ¨ nt ` βi,t ¨ p1 ´ ntq (3.3)

Formally, the platform in our model chooses an allocation schedule ptαi,tuiďm, tβi,tuiďmqtě0

to maximize total output, namely:

Wpα,βq :“
ÿ

iďm

ż

tě0

e´rt
¨ 9Mipnptq, αiptq, βiptqqdt (3.4)

where t 9Mi,tuiďm and tNi,tuiďm follow the allocation and the required law of motion:

equation (3.2) and (3.3). The allocation choice will also dynamically determine the evolution

of nt.

Even with fixed number of pools, the continuous time nature of our model renders general

optimal control analysis relatively complicated. Instead, we focus on the one-pool and the

two-pool case, in which we are able to utilize a few key insights to fully characterize the

platform’s optimal allocation policy.
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3.3 One Pool Control: Optimal Recruitment Problem

We now characterize the platform’s optimal allocation policy in the one pool problem. We

first observe that the “perfect good news” nature of our model dictates that the platform

always recruits proven members into their one pool; that is, αt ” 1. This follows from

the fact that a proven member both increases flow output 9Mt – having more high pizzazz

agents increases expected number of high-high matches – and facilitates faster learning – a

high type candidate member has higher chance of signaling through matching with a proven

member than another candidate member. We can thus fix αt ” 1 and focus on the platform’s

optimal exploration policy βt over the unknown agents.

The platform expects high pizzazz agents to signal their high type through matching at

a certain rate. Therefore, over its candidate members, the platform grows more and more

pessimistic. In particular, the platform updates its pt over these agents of unknown pizzazz

as a function of their time spent in the platform. Even with assumption 3.1, this means

that for every agent, the platform needs to keep track of when and for how long they have

been recruited. While characterizing a reputation vector over the continuum of agents as a

function of the platform’s recruitment policy is possible, analyzing the platform’s incentive

provides us insight that, in the optimal exploration policy, we need only to update pt as a

function of time.

To see why, first consider the platform’s incentive to recruit one candidate member versus

another. As we noted that the platform grows more pessimistic of its candidate members the

more time they spent in the platform, if the platform has to choose certain agents over the

others in constituting its βt, it would be ones that have been recruited for less time. Bring

this discrete choice concept to continuous time, and we have a platform that constantly

shuffles through the unknown agents to constitute βt; i.e. pt and qt both evolve at the same

rate for all of unknown agents, and they only depend on tβtutě0.
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So far, the platform’s optimal exploration problem becomes:

max
βt

ż

tě0

e´rt
¨ λµ ¨

`

nt ` βtpp0 ´ ntq
˘2

nt ` βtp1 ´ ntq
dt (3.5)

s.t. 9nt “ λµ ¨ βtpp0 ´ ntq (3.6)

where we substituted in Nt “ 1 ¨ nt ` βt ¨ p1 ´ ntq, and qt “
nt`βtpp0´ntq

Nt
. The law of motion

for nt – mass of proven agents – highlights the two factors that make up a discovery; the

platform discovers a high type agent when 1) output realizes and 2) it involves at least one

member not already identified as the high type. It also shows the two countervailing effects

of recruiting from unknown agents: recruiting a candidate member hurts flow output 9Mt,

but facilitates discovery, which, in turn, helps future output.

With the updated platform problem, consider the platform’s decision to recruit an ar-

bitrary β̄ ă 1 proportion of unknown agents for dt period of time. Since the platform

constantly shuffles the unknown type agents to keep pt the same for all, we can imagine an

alternative exploration strategy of recruiting full 1 mass of unknown agents for shorter period

of time to elicit the same learning. The law of motion given in (3.6) reveals that boosting β̄

to 1 would facilitate learning exactly by proportion 1
β̄
, thus requiring β̄dt time to elicit the

same learning. Between the two exploration strategies, discounting implies that, regardless

of pt, it is always beneficial to front-load exploration. In other words, if the platform chooses

to explore at all, the optimal policy mandates full exploration until full exploitation. We

formalize the finding as theorem.

Theorem 3.1. Optimal Exploration Problem becomes Optimal Stopping Problem.

Proof. We prove this theorem in three steps.

First, we formalize the shuffling argument. Suppose, by contradiction, that the platform

chooses β̄ ă 1 agents to explore for rt̄, t̄ ` dts interval, for arbitrary β̄ and t̄:
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Among its candidate members, the platform is more pessimistic of those who have been

in the platform the longest. Therefore, the platform can improve on exploring set β̄ agents

for dt by exploring one set of β̄ agents for β̄dt, and switching the exploration set to yet

unexplored agents for the remaining p1 ´ β̄qdt time:

Then, it is obvious that with time discounting, the platform can explore the two separate

cohorts simultaneously and improve:

This improvement is always applicable to any β̄ at any time t̄, so the platform can iron

any gradual exploration evolution into jumps.

Second, we check that the flow output does not suffer from this expedited learning. It

is clear from evolution of nt in equation (3.6) that faster learning benefits the entire output
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series that follow. In addition, we find that even within the instantaneous output, the

optimal recruitment policy of unknown agents prescribes bang-bang: the platform either

explores everyone or none at all.

We check this property by analyzing the second order derivative of instantaneous output.

Differentiating the integrand of equation (3.5) twice gives:

B2I

Bβ2
t

“
2n2

t p1 ´ p0q2

pn ` βtp1 ´ ntqq3
ą 0

which confirms that the platform’s optimal recruitment policy for maximal instantaneous

output is also convex.

Finally, we reiterate that faster learning benefits future output to conclude that the all-

or-nothing exploration policy has be be all exploration in the beginning until no exploration

and full exploitation stage. Therefore, the optimal exploration problem of (3.5) and (3.6)

reduces to an optimal stopping problem of when to stop exploration.

Theorem 3.1 reduces the optimal control problem of choosing an infinite series tβtutě0 to

a univariate optimization problem of at which time τ the platform should halt exploration.

Formally, the optimal stopping time problem is:

max
τ

ż τ

0

e´rt
¨ λµ ¨ p20dt `

ż

těτ

e´rt
¨ λµnτdt (3.7)

s.t. nt “ p0
`

1 ´ e´2λµp0¨mintt,τu
˘

(3.8)

The first integral of (3.7) refers to total output generated in the full exploration stage

until τ . Since the platform keeps all agents – signaled and unsignaled – qt is constant at p0.

The second term shows output in the exploitation stage. From τ onward, the platform only

keeps proven members, and thus Nt is nt and qt is 1.

In words, the platform begins with full recruitment to maximally facilitate learning when
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it is most valuable. This point is trivial in the current model when the platform starts with

0 mass of proven members, but it also holds true when it begins with n0 ą 0 as long as it

is small enough compared to the projected mass of high type agents p0. We will formally

lay out the optimal exploration policy in the next theorem, which would also specify the

threshold n0 that divides the platform’s initial exploration policy from full exploration to no

exploration. For now, we introduce a notation that will aid our description of the optimal

stopping time. At each time t, we denote the discovery ratio – proportion of proven members

within the total mass of high type agents – as ρt :“
nt

p0
.

To formally characterize optimal stopping time τ is to solve a univariate maximization

problem of (3.7) and (3.8). Combining the equations and taking the first order condition

gives:
B

Bτ
“ λµe´rτ

¨

´

`

p0 `
λµp0
r

˘

p0 ´
`

1 `
λµp0
r

˘

nτ

¯

(FOC)

As nt naturally evolves in a non-decreasing manner while the first term in the main

parenthesis remains fixed, our maximization problem is convex and solution obtains when

the two terms in the parenthesis equal. We can better understand the trade-off when we

express it in terms of ρt:

Value from exploration increases as long as p1 `
λµp0
r

q ¨ p1 ´ ρtq ą 1 ´ p0 (3.9)

Intuitively, when ρt is low, there are many high type agents left to explore, increasing

the incentive to explore, and vice versa for high ρt. In particular, the optimal policy would

mandate further exploration if the total value of possibly discovering a yet unknown high

type agent (LHS) exceeds the expected damage of recruiting a low type agent (RHS). The

added λµp0
r

represents an additional continuation value of a high type agent; she not only

increases total number of matches, but might also contribute to output, at which point she

becomes a proven member to stay in the platform forever after.

We encompass the results so far to characterize the platform’s optimal allocation policy
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in the following theorem.

Theorem 3.2. The platform’s optimal allocation policy is given by:

α˚
” 1

β˚
pρtq “

$

’

&

’

%

1 if ρt ď ρ˚

0 if ρt ą ρ˚

where ρ˚ solves:

p1 `
λµp0
r

q ¨ p1 ´ ρ˚
q ą 1 ´ p0

3.4 Two Pool Control: Optimal Segmentation Problem

Thus far, in light of the platform’s general allocation problem, we have limited the number

of pools to one, with the interpretation that platform often decides how to optimally recruit

agents with learning value. In the process, we have essentially reduced the optimal allocation

problem of two types – the proven members and the unknown agents – into a single-armed

decision of optimally recruiting candidate members (which we then reduced to an univariate

optimization problem with respect to time.) While such simplicity of the one pool control

problem enabled us to fully characterize the optimal allocation policy, we recognize that

many matching platforms keep more than one pool to differentiate their users. For example,

various dating apps utilize different versions of a ranking system whereby agents of a rank

are matched with a partner of similar rank.

Does the platform keep every proven member in a premium pool to maximize matching

between high type agents? Or does it keep pools of different mixtures? In this section,

we study the next simplest version of our general allocation model – the two pool control

problem – to answer these questions.

Formally, the platform in our two pool control model chooses an allocation schedule
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ptα0, α1, α2utě0, tβ0, β1, β2utě0q to maximize total output, given by equation (3.4). Remem-

ber, αi,t and βi,t refer to the proportion of proven members and unknown agents that the

platform allocates to the ith pool at time t, where the subscript 0 refers to non-recruitment.

For example, at arbitrary time t̂, an allocation policy pt0, 1, 0u, t0, 0, 1uq would represent the

following:

(i) full recruitment of proven members (α0,t̂ “ 0),

(ii) pool 1 purely populated by proven members (β1,t̂ “ 0, α1,t̂ ą 0)

(iii) full mass of candidate members into pool 1 (α1,t̂ “ 1, α2,t̂ “ 0),

(iv) full recruitment of unknown agents as candidate members (β0,t̂ “ 0),

As in the one pool model, (i) is intuitive. A proven member contributes to both instan-

taneous output and learning by matching, and thus should be fully recruited at any point

in time. On the other hand, the other features (ii) - (iv) of the given allocation policy may

seem overly simplistic and for expository purpose only. In fact, however, this given alloca-

tion policy – populating one pool with the entire mass of unknown agents and constantly

promoting proven members to the other “premium” pool – turns out to be one of the only

two6 possible policies in any optimal allocation schedule.

To illustrate why that is, we will examine the features one by one. Lemma 3.1 will es-

tablish that in any non-trivial two-pool allocation, it is optimal to keep one pool entirely

consisting of proven members. This shows that the optimal allocation policy always pre-

scribes feature (ii), and also reduces the dimension of the general allocation problem to

choosing pxt, ytq of pt0, xt, 1 ´ xtu, tyt, 0, 1 ´ ytuq. Theorem 3.3 then constructs the solution

to the reduced problem, displaying the bang-bang nature of feature (iii) and (iv). As the

6Disregarding trivial isomorphic alternatives. With CRS technology, full exploration policy pt0, 1, 0u, t0, 1, 0uq

can be represented by an infinite isomorphic copies of pt0, l, 1 ´ lu, t0, l, 1 ´ luq @l.
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optimal policy of the one-pool model mandated full exploration followed by full exploitation,

the optimal two-pool policy prescribes full integration followed by full segmentation.

Lemma 3.1. If q1,t ‰ q2,t, then maxtq1,t, q2,tu “ 1. In words, if both pools are utilized in a

non-trivial manner, one of the pools purely consists of proven members.

Proof. We already established full recruitment of proven members (α0 ” 0). Therefore, the

following two cases exhaust possible outcomes: 1) entire nt proven members are concentrated

in one pool (αt “ t0, 1, 0u), or 2) they are dispersed into two pools (αt “ t0, x, 1 ´ xu. In

both cases, we show that it is optimal to keep one pool purely populated by proven members.

1) αt “ t0, 1, 0u case.

Without loss of generality, we call the pool that only houses proven members as pool

1. We show that, at any time t, regardless of β̂ :“ (how many unknown agents are

recruited), βt “ t1 ´ β̂, 0, β̂u is the optimal allocation.

Suppose, by contradiction, that for interval rt, t`dts, βt “ t1´ β̂, b, β̂´bu for arbitrary

b P p0, β̂q. Then, flow output generated in the interval for both pools as a function of

b become:

dM1
t pbq “ λµpnt ` bq ¨

´nt ` b ¨ pt
nt ` b

¯2

dt

dM2
t pbq “ λµpβ̂ ´ bq ¨ p2tdt

Differentiating with respect to b and combining the two to calculate the effect of unit

mixture of an unknown agent into pool 1 gives:

BdMtpbq

Bb
“ ´λµp1 ´ ptq

2dt ă 0

Therefore, regardless of the size of nt, allocating any unknown agent into the premium

pool unambiguously hurts output.
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Likewise, total learning (i.e. newly discovered proven members) generated in the in-

terval as a function of b is:

dntpbq “ λ
´

dM1
t pbq ¨

b ¨ pt
nt ` b ¨ pt

` dM2
t pbq

¯

dM1
t pbq ą 0, dM2

t pbq ă 0 and dM1
t pbq ` dM2

t pbq ă 0. Since b¨pt
nt`b¨pt

ă 1, dntpbq – the

impact of mixing an unknown agent into pool 1 on total learning generated – is also

negative.

Since adding b mass of unknown agents into pool 1 decreases both output and rate of

learning, we have shown that when αt “ t0, 1, 0u, optimal policy prescribes β2,t “ 0.

2) αt “ t0, x, 1 ´ xu case.

We go through the same steps as case 1)7 and find that when αt “ t0, x, 1 ´ xu,

optimal allocation of unknown agents becomes βt “ t1 ´ β̂, 0, β̂u or t1 ´ β̂, β̂, 0u or

t1´ β̂, x ¨ β̂, p1´ xq ¨ β̂u. In the last case, the ratio of proven members to the unknown

agents in both pools are the same – q1,t “ q2,t. With CRS matching technology, this

allocation is isomorphic to recruiting all agents into one-pool, and thus is a trivial use

of the two pools.

Since case 1) and 2) exhaust all possibilities, we have proven that optimal allocation

schedule always keeps one of the two pools purely consisting of proven members.

Lemma 3.1 shows that at each point in time along the optimal allocation schedule, the

platform keeps pool 1 entirely populated by proven members. In effect, pool 1 becomes

the premium pool, with q1,t ” 1, designed for full exploitation of the high type agents.

Therefore, not unlike our approach in the one-pool model, we can focus on the platform’s

optimal exploration policy over pool 2.

7We detail the calculations in the appendix.
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Formally, Lemma 3.1 reduces the set of possible optimal allocation policy to pt0, xt, 1 ´

xtu, t1 ´ yt, 0, ytuq for xt P r0, 1s, yt P r0, 1s. We now show that, analogous to the bang-

bang result of the one-pool model, the optimal allocation schedule prescribes full integration

followed by full segmentation.

Theorem 3.3. Optimal allocation schedule always prescribes full integration – effectively

recruiting and pooling all agents into one pool8 – followed by full segmentation.

Formally, there exists n˚ by which the platform’s optimal allocation policy prescribes:

β˚
t ” t0, 0, 1u

α˚
t pntq “

$

’

&

’

%

t0, 0, 1u if nt ď n˚

t0, 1, 0u if nt ą n˚

Proof. The reduced problem is to optimally control xt P r0, 1s and yt P r0, 1s to dynamically

maximize positive match outcome. This is a canonical form of optimal control problem, with

admissible control variables pxt, ytq jointly affecting the evolution of the state variable nt.

Formally, the optimal control problem is:

max
txp¨q,yp¨qu

ż 8

0

e´rt
¨ 9Mpnptq, xptq, yptqqdt

s.t. 9nptq “ fpnptq, xptq, yptqq

np0q “ 0; xptq P r0, 1s; yptq P r0, 1s

We solve the infinite horizon Hamilton–Jacobi–Bellman equation in the appendix. The

solution prescribes xt P t0, 1u for all values of yt. Using insight from the one pool solution,

we conclude that the platform front-loads learning (x “ 0) until the diminishing exploration

value crosses the growing exploitation value – both due to growing nt – and switch to full

8With CRS matching technology, we can always mimic one pool setting in two pool model by keeping qt the
same in both pools.
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segmentation (x “ 1). Since the platform keeps all recruited unknown type agents to pool

2, the decision to fully recruit them (yt “ 1) follows from the one pool solution.

3.5 Conclusion

This paper integrates insights from literature on experimentation and random matching, and

asks a new question that involves both: How do platforms utilize their matching power to

strike balance between optimal experimentation and maximal flow output? We propose a

general allocation model that covers both the one-pool recruitment problem and the two-pool

segmentation problem, and find that solution to both resolves the exploration-exploitation

tradeoff in a bang-bang manner.

In the one pool model, we found that the platform never wants to sample for assuring

quality. The optimal exploration policy prescribes front-loading exploration by recruiting

everyone in the market. And when the platform discovers sufficient mass of agents with

assured quality, it drops agents of still unknown quality all at once. The finding provides

two takeaways. First, the value function describing the balance between exploration and

exploitation is convex even in the dynamic setting. Second, the threshold at which the

platform’s strategy switches from full exploration to full exploitation only depends on the

discovery ratio.

That we found similar result for the two pool model is surprising. With additional

ability to segment its users into two pools and keep different mixtures, one could imagine

a more nuanced resolution of the exploration-exploitation tradeoff. Instead, the optimal

allocation schedule prescribes that the platform keeps one pool for each extreme, due to the

aforementioned convex nature of the value function. We think it would be fruitful research

to extend our general model to more than two pools, and see whether the bang-bang pattern

breaks.

While this paper provides some answers to the matching platform’s optimal policy, we
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recognize the doors left open for further research. We assumed a constant-return-to-scale

matching technology for technical reasons, but in application, there are scaling involved in

many matching industries. We conjecture that introducing scale would further incentivize the

platform to keep an integrated pool, but fully characterizing optimal policy under increasing

return to scale technology would be interesting. Breaking the symmetry assumption and

better characterizing the matching friction would also enrich the analysis.

3.6 Appendix

Addendum to Proof of Lemma 3.1. Here we lay out the proof that when αt “ t0, x, 1 ´ xu,

the optimal candidate member allocation becomes βt “ t1 ´ β̂, 0, β̂u or t1 ´ β̂, β̂, 0u or

t1 ´ β̂, x ¨ β̂, p1 ´ xq ¨ β̂u

Suppose without loss of generality that βt “ t1 ´ β̂, y ¨ β̂, p1 ´ yq ¨ β̂u. Then, flow output

generated in the interval rt, t ` dts for both pools become:

dM1
t pyq “ λµpx ¨ nt ` y ¨ β̂q ¨ q21,tdt

dM2
t pyq “ λµp1 ´ x ¨ nt ´ y ¨ β̂q ¨ q22,tdt

Combining the two, we examine the first-order and the second-order differentiation with

respect to y:

BdMtpyq

By
“ q22,t ´ 2p0q2,t ` 2p0q1,t ´ q21,t

B2dMtpyq

By2
“

2

N2,t

pp0 ´ q2,tq
2

`
2

N1,t

pp0 ´ q1,tq
2

ą 0

Therefore, regardless of nt, x, orβ̂, full concentration of candidate members into either

pool 1 or pool 2 maximizes flow output.

Likewise, learning (i.e. newly discovered proven members) generated in both pools as a
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function of y become:

dn1,tpyq “ dM1,t ¨
p1,t ¨ y ¨ β̂

x ¨ n1,t ` p1,t ¨ y ¨ β̂
“ λµq1,tp1,ty ¨ β̂dt

dn2,tpyq “ dM2,t ¨
p2,t ¨ p1 ´ yq ¨ β̂

p1 ´ xq ¨ n2,t ` p2,t ¨ p1 ´ yq ¨ β̂
“ λµq2,tp2,tp1 ´ yq ¨ β̂dt

Combining the two, we examine the first-order and the second-order differentiation with

respect to y:

Bdntpyq

By
“
p0p1 ´ yq ¨ β̂

N2,t

pq2,t ´ p0q ´ p0 ¨ q2,t ´
y ¨ β̂p0
N1,t

pq1,t ´ p0q ` p0 ¨ q1,t

B2dntpyq

By2
“

2p0
N2,t

p
p1 ´ yq ¨ β̂

N2,t

´ 1qpq2,t ´ p0q `
2p0
N1,t

p
y ¨ β̂

N1,t

qpq1,t ´ p0q ă 0

Solving the first order condition gives: y “ x. Therefore, regardless of nt, x, orβ̂, full

integration of all members maximizes total learning.

This completes the calculations for the αt “ t0, x, 1 ´ xu case.

Optimal Control Problem in Theorem 3.3. Here we reiterate the optimal control problem,

and characterize the optimal path of the control variables txptq, yptqu.

The optimal control problem is:

max
txp¨q,yp¨qu

ż 8

0

e´rt
¨ 9Mpnptq, xptq, yptqqdt

s.t. 9nptq “ fpnptq, xptq, yptqq

np0q “ 0; xptq P r0, 1s; yptq P r0, 1s
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We can write the the current-value Hamiltonian as:

Ĥ
`

nptq, xptq, yptq, ϕptq
˘

“ 9M
`

nptq, xptq, yptq
˘

` ϕptq ¨ f
`

nptq, xptq, yptq
˘

According to Pontryagin’s Maximum Principle, The optimal pair
`

n̂ptq, x̂ptq
˘

satisfies the

necessary conditions:

(I) Ĥx

`

nptq, xptq, yptq, ϕptq
˘

“ 0 @t P R`

(II) Ĥy

`

nptq, xptq, yptq, ϕptq
˘

“ 0 @t P R`

(II) Ĥn

`

nptq, xptq, yptq, ϕptq
˘

“ rϕptq ´ 9ϕptq @t P R`

Checking (I):

n ´
2npp0 ´ x ¨ nq

1 ´ x ¨ n
`
npp0 ´ x ¨ nq2

p1 ´ x ¨ nq2
`ϕptq ¨

´

´
npp0 ´ nq

1 ´ x ¨ n
`
npp0 ´ nqpp0 ´ x ¨ nq

p1 ´ x ¨ nq2

¯

“ 0

ñ ϕptq “
1 ´ p0
p0 ´ nptq

However, plugging the ϕptq into (III) yields:

Ĥn

`

nptq, xptq, yptq, ϕptq
˘

ă rϕptq ´ 9ϕptq regardless of n(t)

which implies that the optimal path of the control variable xt is always corner solution

for all t. Since xt P r0, 1s, by insight from one-pool model that learning is the most valuable

in the beginning, we get that regardless of yptq, the optimal allocation policy of the potential

members become:

Optimal x̂ptq “

$

’

&

’

%

0 if nptq ă ν

1 if nptq ě ν
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This completes the proof needed to establish that the optimal path prescribes xt P t0, 1u

for all values of yt.
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