
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The mechanics of flow, contractility and adhesion in soft-bodied locomotion

Permalink
https://escholarship.org/uc/item/72f214f9

Author
Zhang, Shun

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/72f214f9
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

The mechanics of flow, contractility and adhesion in soft-bodied locomotion

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Shun Zhang

Committee in charge:

Professor Juan Carlos del Álamo, Chair
Professor Richard Firtel
Professor Robert Guy
Professor Juan Lasheras
Professor Qiang Zhu

2018



Copyright

Shun Zhang, 2018

All rights reserved.



The dissertation of Shun Zhang is approved, and it is acceptable in quality

and form for publication on microfilm or electronically:

Chair

University of California, San Diego

2018

iii



EPIGRAPH

这家伙很懒，什么都没有留下。

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 The coordination between mechanical and chemical subsystems initiate
locomotion of Physarum plasmodial fragments . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Preparation of Physarum fragments . . . . . . . . . . . . . . 7
2.2.2 Gel fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Traction force microscopy . . . . . . . . . . . . . . . . . . . 8
2.2.5 Pharmacological treatment . . . . . . . . . . . . . . . . . . . 8
2.2.6 Adjust the substrate adhesion . . . . . . . . . . . . . . . . . 8
2.2.7 Shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 The frequency of motility initiation depends on fragment size

and is affected by substrate adhesion and cortical strength . 11
2.3.2 Shape oscillations are governed by a dominant mode and are

affected by substrate adhesion and cortical strength . . . . . 12
2.3.3 Traction stress correlates with the contract area, and is af-

fected by varying cortical strength and substrate adhesion . 14
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3 Coordination of contractility, adhesion and flow in migrating Physarum
amoebae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Experimental Materials and Methods . . . . . . . . . . . . . . . . . 21
3.3 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Cell Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Comparison of Model Behavior . . . . . . . . . . . . . . . . 27
3.4.3 Role of Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.4 Adhesion Coordination and Crawling Speed . . . . . . . . . 32
3.4.5 Adhesion Correlation . . . . . . . . . . . . . . . . . . . . . . 34
3.4.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4 Self-organized mechano-chemical dynamics in amoeboid locomotion of
Physarum fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Preparation of Physarum fragments . . . . . . . . . . . . . . 45
4.2.2 Gel Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Flow Quantification . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.5 Traction force microscopy . . . . . . . . . . . . . . . . . . . 46
4.2.6 Measurement of free calcium concentration . . . . . . . . . . 47
4.2.7 Fragment shape statistics . . . . . . . . . . . . . . . . . . . . 47
4.2.8 Kymographic representation . . . . . . . . . . . . . . . . . . 48

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 The spatio-temporal organization of endoplasmic flow and

traction stresses reveals distinct dynamical modes in migrat-
ing Physarum fragments . . . . . . . . . . . . . . . . . . . . 48

4.3.2 The spatiotemporal dynamics of endoplasmic and ectoplasmic
flows affect the migration speed of Physarum fragments . . . 54

4.3.3 Dynamics of substratum adhesion experience smooth slip-
stick transitions . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.4 Dynamics of free intracellular calcium . . . . . . . . . . . . . 59
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 5 Locomotor adaptability of the schistosome pathogen to changes in its
physical environment: mechanical principles and implications for drug discovery . . . 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Ethics statement . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Preparation of S. mansoni . . . . . . . . . . . . . . . . . . . 69
5.2.3 Polyacrylamide Gel fabrication . . . . . . . . . . . . . . . . . 70
5.2.4 Flow Chamber Experiments . . . . . . . . . . . . . . . . . . 70
5.2.5 Experiments in a confined environment . . . . . . . . . . . . 71
5.2.6 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.7 Traction Force Microscopy . . . . . . . . . . . . . . . . . . . 73

vi



5.2.8 Kymograph Representation . . . . . . . . . . . . . . . . . . 74
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 The oral and ventral suckers are responsible for schistosome
adhesion and locomotion in a non-confined environment . . . 74

5.3.2 Sucker adhesion strength increases in response to increasing
flow stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Locomotion of S. mansoni under varying degrees of confine-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.4 Sucker action and peristaltic body contractions can be coor-
dinated during locomotion under confinement . . . . . . . . 83

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



LIST OF FIGURES

Figure 2.1: Shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2.2: Typical morphology of Physarum fragments with different size . . . . . 10
Figure 2.3: Size, cortical strength and substrate adhesion determines the frequency

of motility initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2.4: Shape oscillations are governed by mode number 0 and 2 . . . . . . . . 13
Figure 2.5: Size, cortical strength and substrate adhesion determines the morphology

of fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.6: Morphology determines the frequency of motility initiation . . . . . . . 15
Figure 2.7: Traction stress correlates with the contract area, and is affected by vary-

ing cortical strength and substrate adhesion . . . . . . . . . . . . . . . . 16

Figure 3.1: A schematic of our computational model of a Physarum plasmodium . . 23
Figure 3.2: Instantaneous intracellular flow and traction stresses exerted on the sub-

strate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 3.3: Instantaneous intracellular flow and traction stresses computed in model

cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 3.4: Kymographs of mean longitudinal flow obtained from experimental data

and predicted by model simulation . . . . . . . . . . . . . . . . . . . . . 29
Figure 3.5: Kymographs of mean traction stress obtained from experimental data

and predicted by model simulation . . . . . . . . . . . . . . . . . . . . . 29
Figure 3.6: Relation between flow asymmetry and centroid displacement asymmetry 31
Figure 3.7: Numerically calculated time sequence of centroid . . . . . . . . . . . . . 33
Figure 3.8: Average cell crawling speed as a function of adhesion coefficient and

adhesion phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 3.9: Correlation of experimentally measured intracellular flow and strain energy 35
Figure 3.10: Correlation of numerically calclulated intracellular flow and strain energy 35
Figure 3.11: Cross correlation of elastic energy of adhesion and average cytoplasmic

flow, relation between adhesion timeing and migration speed with different
adhesion coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.12: Effect of different adhesion timing and substrate heterogeneity on migra-
tion speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.1: Instantaneous endoplasmic flow speed and traction stresses exerted on
the substrate by migrating Physarum fragment . . . . . . . . . . . . . . 49

Figure 4.2: Kymographs of longitudinal endoplasm flow velocity,peripheral and lon-
gitudinal traction stress for peristaltic and amphistaltic fragments . . . . 50

Figure 4.3: Kymographs of flow and traction stress of two Physarum that exhibited
uncommon spatio-temporal dynamics . . . . . . . . . . . . . . . . . . . . 52

Figure 4.4: Motility parameters of peristaltic and amphistaltic Physarum fragments 53
Figure 4.5: Relation between flow pattern and migration speed . . . . . . . . . . . 54
Figure 4.6: Instantaneous snapshots showing velocity vectors for endoplasm and ec-

toplasm flows in a migrating Physarum . . . . . . . . . . . . . . . . . . 55

viii



Figure 4.7: Kymographs of longitudinal traction stress, endoplasm and ectoplasm
flow velocity for peristaltic and amphistaltic Physarum fragments . . . . 57

Figure 4.8: Time histories of longitudinal ectoplasm velocity and longitudinal trac-
tion stress at two specific locations in the front and the back of the peri-
staltic Physarum fragment . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.9: Time sequence of ratiometric measurememt of Ca2+ during the locomo-
tion of a typical peristaltic cell . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.10: Kymograph of ratiometric measurement of Ca2+ and instantaneous lon-
gitudinal velocities of peristaltic abd amphistaltic fragments . . . . . . . 60

Figure 4.11: Numerical simulation of concentration of passive scalar in mimic peri-
staltic and amphistaltic fragments . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.12: Time evolution of endoplasmic flow speed, ratiometric measurement of
Ca2+ and peripheral traction stress in peristaltic and amphistaltic fragments 63

Figure 5.1: Overview of various experimental setups to model the mechanical envi-
ronment of S. mansoni . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.2: Instantaneous traction stress patterns applied by S. mansoni suckers in
an unconfined environment . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.3: Substrate adherence of S. mansoni under flow . . . . . . . . . . . . . . 77
Figure 5.4: Instantaneous traction stress patterns applied by S. mansoni anchoring

against flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 5.5: Adhesive strength of S. mansoni subjected to stepwise increases in flow

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 5.6: Instantaneous traction stress patterns exerted by S. mansoni under vary-

ing levels of confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 5.7: Kinematics of S. mansoni movement under confinement . . . . . . . . . 82
Figure 5.8: Dynamics of S. mansoni movement under confinement . . . . . . . . . . 83
Figure 5.9: Peristaltic waves of body contractions and propulsive stresses . . . . . . 84
Figure 5.10: Coordination between peristaltic body contractions and sucker-mediated

propulsion in S. mansoni migrating under confinement . . . . . . . . . . 85
Figure 5.11: Coordination between peristaltic body contractions and sucker-mediated

propulsion in S. mansoni migrating under confinement . . . . . . . . . . 86

ix



LIST OF TABLES

Table 5.1: Calculated relevant flow properties with flow rate Q = 2.24, 11.2, 56.1 and
100 ml/min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 5.2: Acquisition protocols followed in this study . . . . . . . . . . . . . . . . . 73

x



ACKNOWLEDGEMENTS

There are so many of people whom I would like to acknowledge for helping me achieve

the success of my Ph.D. research and made these last six years an unforgettable life-changing

journey.

First of all, I want to thank my advisor, Juan Carlos del Álamo. Without him, none

of what you are reading would have been possible. I’m deeply grateful for Juan Carlos

offering me such precious opportunity to conduct research in this amazing lab, and open the

gate for my academic career. He is a model for me to follow for his professional, passionate

and vigorous attitude towards science. During this journey, there were also hesitations,

difficulties, and sometimes non of the experimental methods work. His advice, support and

encouragement means a lot to me to go through these hard times.

Thanks to Richard Firtel, Robert Guy, Qiang Zhu, for their support, suggestions and

their time. An exceptional mention goes to Juan Lasheras. Juan is always an wisdom elder

to me, giving me advice not only for my research, but also for my career and my life.

Next, my gratitude goes to all the amazing people currently in or graduated from our

research group for their insights, suggestions, inspirations and being great labmates, friends

: Ernesto, Ricardiño, Lorenzo, Josh, Maria, Toni, Yi-Ting, Ashish, Amy, Marissa, Cathleen,

Stephanie, Ruedi, Manu, Bego, Effie, Katie.

Thanks to all the other students and post docs in the Biomechanics wing of SME and

in the Mechanical and Aerospace Engineering department, present and past, for making the

workplace the perfect place to spend my days.

I am truly thankful to my friends I met during these years, who have supported me

and always made me feel a bit home: Ang, Fangzhou, Shuning, Bing, Shelly, Fei, Jia.

Finally, but perhaps the most important thanks to my family : my parents Guohua

and Xiangrong, my fiancee Dan, and my uncles, aunts and nephews. Thanks for always

supporting me and being pround of me all the time.

Chapter 2, in part, is a manuscript in preparation. The title of this manuscript is “The

coordination between mechanical and chemical subsystems initiate locomotion of Physarum

plasmodial fragments”. The dissertation author is the primary author of this work.

Chapter 3, in part, has been published in the Journal of The Royal Society Interface.

Lewis, Owen L ; Zhang, Shun ; Guy, Robert D ; del Álamo, Juan C. 2015. The title of this

paper is “Coordination of contractility, adhesion and flow in migrating Physarum amoebae”.

xi



The dissertation author was the co-first author of this paper.

Chapter 4, in part, has been published in the Journal of Physics D: Applied Physics.

Zhang, Shun ; Guy, Robert D ; Lasheras, Juan C ; del Álamo, Juan C. 2017. The title of this

paper is “Self-organized mechano-chemical dynamics in amoeboid locomotion of Physarum

fragments”. The dissertation author was the primary author of this paper.

Chapter 5, in part, has been submitted. Zhang, Shun ; Skinner, Danielle; Joshi,

Prateek ; Lasheras, Juan C ; Caffrey, Conor R ; del Álamo, Juan C. 2018. The title of

this paper is “Locomotor adaptability of the schistosome pathogen to changes in its physical

environment: mechanical principles and implications for drug discovery”. The dissertation

author was the primary author of this paper.

xii



VITA

2010 B.S. in Mechanical Engineering,
Southwest Jiaotong University (China)

2012 M.S. in Engineering Sciences (Mechanical Engineering),
University of California, San Diego

2012 - 2018 Graduate Research Assistant,
University of California, San Diego

2012 - 2015 Teaching Assistant,
University of California, San Diego

2018 Ph. D. in Engineering Sciences (Mechanical Engineering),
University of California, San Diego

PUBLICATIONS

Zhang, Shun, Robert D. Guy, Juan C. Lasheras, and Juan C. del Álamo. “Self-organized
mechano-chemical dynamics in amoeboid locomotion of Physarum fragments”, Journal of
Physics D: Applied Physics 50, no. 20 (2017): 204004.

Zhang, Shun, Danielle Skinner, Prateek Joshi, Juan C. Lasheras, Conor R. Caffrey, and
Juan C. del Álamo. “Locomotor adaptability of the schistosome pathogen to changes in its
physical environment: mechanical principles and implications for drug discovery”, Submitted

Zhang, Shun, Robert D. Guy, Juan C. Lasheras, and Juan C. del Álamo. “The coordination
between mechanical and chemical subsystems initiate locomotion of Physarum plasmodial
fragments”, In preparation

Lewis, Owen L., Shun Zhang, Robert D. Guy, Juan C. del Álamo. “Coordination of con-
tractility, adhesion and flow in migrating Physarum amoebae”, Journal of The Royal Society
Interface 12, no. 106 (2015): 20141359.

Álvarez-González, Begoña, Shun Zhang, Manuel Gõmez-González, Ruedi Meili, Richard A.
Firtel, Juan C. Lasheras, and Juan C. del Álamo. “Two-Layer Elastographic 3-D Traction
Force Microscopy”, Scientific reports 7 (2017): 39315.

xiii



ABSTRACT OF THE DISSERTATION

The mechanics of flow, contractility and adhesion in soft-bodied locomotion

by

Shun Zhang

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2018

Professor Juan Carlos del Álamo, Chair

Soft organisms including unicellular amoebae, slime molds and invertebrates without

exoskeleton use similar physical mechanisms to adhere to and crawl over surfaces. Despite

the wide range of length scales covered by these organisms (10−5m – 10−1m), and the variety

of biological processes involved in the regulation of force generation, all these organisms apply

waves of traction (i.e. shear) stresses on their substrate. Given this remarkable evolutionary

conservation of the mechanics of soft adhesive locomotion, its study is relevant to a broad

number of areas in medicine, ecology and engineering.

Soft adhesive locomotion has been studied theoretically and experimentally for over a

century. However, given that most organisms control their size very tightly, the impossibil-

ity of decoupling lengthscale dependence from organism dependence has made it difficult to

experimentally test theoretical hypotheses. In this work, we focused on the multinucleated

slime mold Physarum polycephalum because it is possible to prepare motile amoeboid speci-

mens of this organism with sizes spanning two orders of magnitude (10−5m – 10−2m). Given

its relatively large size and simple structure, Physarum relies on periodic back-and-forth in-

tracellular flows (a.k.a. shuttle streaming) to transport chemical signals such as Ca2+. In

turn, these signals regulate the generation of contractile forces that drive intracellular flow

and facilitate locomotion.
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The main goal of this thesis was to study the dynamics and interplays of these biophys-

ical processes, and their roles in the onset of locomotion and persistent directional migration.

To this end, we combined measurements of traction force, fragment morphology, endoplas-

mic and ectoplasmic velocity, ectoplasmic microrheology properties and endoplasmic Ca2+

concentration with experimental manipulations of cell-substrate adhesion, cortical strength

and cell size. In parallel, we worked closely with mathematicians to develop a model of a

motile fragment which includes forces from the viscous cytosol, a poro-elastic, contractile

cytoskeleton and adhesive interactions with the substrate.

Our results suggest that the onset of locomotion is governed by an interfacial instabil-

ity which is strongly affected by fragment size, cell-substrate adhesion and cortical strength.

We also found that most migrating Physarum fragments exhibit two types of wave patterns

in endoplasmic flow, contractility and chemical signaling. Slow-moving fragments display

standing wave patterns similar to amoeboid cells such as leukocytes or Dictyostelium. Fast-

moving fragments exhibit traveling wave patterns of traction stress, which are conserved in

larger organisms such as annelids or gastropods, and are reminiscent of leg density waves

in myriapod locomotion. We show that traveling waves of traction stress provide robust

propulsive forces in the presence of heterogeneous friction from the environment, and require

tight coordination between contractility and substrate adhesion.

We studied this hypothesis in more detail by investigating the mechanics of locomo-

tion of the flatworm Schistosoma mansoni (the most prevalent human endoparasite) under

varying levels of confinement, representative of the environments this flatworm encounters

in its migratory route from the liver to the intestine. Our results reveal that S. mansoni

migrates by exerting standing waves of traction stresses with its suckers under no or gentle

confinement, but transitions to exerting traveling waves of traction stress along its body

when crawling through in highly restrictive conditions.
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Chapter 1

Introduction

Adhesive locomotion of soft-bodied organisms is achieved by applying propulsions

on their environment through traction stress waves [1]. It covers a wide range of species

and legnthscales, plays an important role in many processes and affect everyone’s life. For

example, amoeboid cell migration is soft adhesive locomotion and plays an important role in

many physilogically relevent processes including cancer metastasis, the function of immune

system, morphogenesis and wound healing. [2–5]. Many of human parasites also share similar

mechanism of locomotion, and a better understanding of the mechanics will provide insights

on treating the parasite [6–8]. The locomotion of gastropods, most worms and slime molds

are also soft adhesive locomotion, and they are crucial in ecology for breaking down organic

matters [9–11]. A more comprehensive understanding of the mechanism will also facilitates

the design of new generation biomimetic soft robot [12].

In spite of the diverse species and lengthscales, the mechanics of propulsion is very

conserved for soft adhesive locomotion : organisms all generate periodic traction stress waves

as thrust to migrate. For example, single cellular systems like Dictyostelium generate clear

standing wave patterns of traction stress to migrate on flat surface [13, 14], while slime,

flat worms, gastropods all organized their traction stress in the form of traveling waves

[10, 11]. Despite the vast existing knowledge about the biochemical processes involved, our

understanding of the underlying mechanical processes behind these traction stress waves is

still rather phenomenological. Furthermore, micro and macro-scaled soft-bodied organisms

are always treated as separated research regimes. The link and transition in the mechanisms

of locomotion between micro and macro sized organisms are barely touched.

This work mainly focuses on the model organism Physarum polycephalum, which is

1



a multinucleated slime mold that forms fast moving amoebae. During locomotion, the cyto-

plasm flows periodically forward and backward [15], which is driven by a periodic contraction

of the cortex. The cortical contractions are regulated by calcium ions [16, 17], whose prop-

agation is in turn governed by the flow. These well-defined mechanochemical subsystems

make it an ideal model to study their coordination in locomotion. Furthermore, unlike other

cell types with a well defined size, we can easily vary the size of Physarum microamoebae

in the range from 50 µmto 1 mm. This allows us to study the fundamental flow physics

involved in amoeboid cell migration in a wide range of regimes, thus bridging the gap of

migration between micro and macro sized soft organisms.

Recently there has been an intense effort devoted to the fundamental study of active

fluids try to understand the complex dynamics and mechanics of cells [18, 19]. Despite this

foundational theoretical development, a gap remains between these theories and the actual

cellular systems. Particularly, cell-substrate interactions, large-scale cytoskeletal remodel-

ing and cell shape changes have been largely neglected. In this work, we simultaneously

quantified the traction stresses exerted on the substrate, the cytoplasmic velocity field, mor-

phology, and the transport of the intracellular calcium ions that regulate cellular contraction.

The resulting experimental characterization are unprecedented both in terms of complete-

ness and level of detail. We will perform measurements and develop models in tandem,

with our model development motivated by experimental observations, and our model predic-

tions tested by additional experiments. Numerical simulations give us the ability to explore

hypotheses based on our experimental observations, to push the boundaries of parameters

without undesired downstream effects, and to examine quantities that are not easily mea-

sured in experiments. Together our models and experiments will give a more comprehensive

and integrative view of the flow physics and design principles underlying soft-adhesive loco-

motion.

In Chapter 2, we have combined traction force and morphology measurements with

experimental manipulations of cell-substrate adhesion, cortical strength and cell size of

Physarum fragments to understand the contribution of these mechanical factors to symme-

try breaking and motility initiation in flow driven amoeboid cell. Our experimental evidence

suggests a close dependence of probability of motility initiation with size and morphol-

ogy. Furthermore, this relation is strongly affected by cell-substrate adhesion and cortical

strength.

In Chapter 3, we have examined the relationship between spatio-temporal coordi-
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nation of intracellular flow and traction stress and the speed of amoeboid locomotion of

microplasmodia of Physarum polycephalum.We simultaneously perform particle image ve-

locimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the

stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we de-

velop a mathematical model of a motile cell which includes forces from the viscous cytosol,

a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our

experiments show that flow and traction stress exhibit back-to-front-directed waves with a

distinct phase difference. The model demonstrates that the direction and speed of locomo-

tion are determined by this coordination between contraction, flow and adhesion. Using the

model, we identify forms of coordination that generate model predictions consistent with

experiments. We demonstrate that this coordination produces near optimal migration speed

and is insensitive to heterogeneity in substrate adhesiveness.

In Chapter 4, we measure the spatio-temporal distributions of the velocities of the

endoplasm and ectoplasm of migrating Physarum fragments, the traction stresses it gen-

erates on the substratum, and the concentration of free intracellular calcium. Using these

unprecedented experimental data, we classify migrating Physarum fragments according to

their dynamics, finding that they often exhibit spontaneously coordinated wave patterns

of flow, contractility and chemical signaling. We show that Physarum fragments exhibit-

ing symmetric spatio-temporal patterns of these quantities migrate significantly slower than

fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm ve-

locity and traction stress at the substratum suggest that forward motion of the ectoplasm

is enabled by a succession of stick-slip transitions, which we conjecture are also organized in

the form of waves. Combining our experiments with a simplified convection-diffusion model,

we show that the convective transport of calcium ions may be key for establishing and main-

taining the spatio-temporal patterns of calcium concentration that regulate the generation

of contractile forces.

In Chapter 5, we explored the mechanics of locomotion of the schistosome pathogen

under physiologically relevant conditions using self-designed experimental setups and de-

vices. We revealed, for the first time, that S. mansoni change the locomotion mechanisms

when facing different physiologically relevant mechanical challenges. S. mansoni exclusively

use their oral and ventral suckers generating forces to migrate in the environment without

confinement around their body. When subjecting to flow of varying magnitude, S. mansoni

actively adjust their grabbing strength via their suckers to remain attached to the substrate.

3



However, S. mansoni switched to a completely different locomotion strategy when crawling

through restrictive conditions by applying traveling waves of strong traction stress along

the body. Strikingly, we discovered the sucker action and body contraction wave can be

coordinated to achieve faster locomotion when migrating under restrictive environment.
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Chapter 2

The coordination between mechanical

and chemical subsystems initiate

locomotion of Physarum plasmodial

fragments

2.1 Introduction

Amoeboid motility is defined by large shape changes associated with locomotion

[2, 3, 20]. Flow-driven amoeboid motility is an interesting paradigm because this motil-

ity mode is fast and robust to changes in the extracellular environment without creating

specific chemical bonds with the substrate, which involves the interplay between intracel-

lular flow, chemical signaling, cellular contraction, cell-substrate adhesion etc [11, 15, 21].

Many experimental and computational works are focused on revealing the mechanism of

mechanochemical oscillations that lead to persistent locomotion in flow driven amoeboid cell

[11, 21]. This has also spurred the exploratory design of bio-inspired amoeboid robots at

millimetric scales made of active self-oscillating hydrogels [22].

Although the biochemical and mechanical mechanisms that control steady-state mi-

gration in flow driven amoeboid cells have been well characterized, the mechanism of spon-

taneous symmetry breaking and motility initiation, which require nonlinear amplification of

stochastic fluctuations in chemical or mechanical signals [23], are still poorly understood.

Especially, the effect of mechanical properties of the cell, cell-substrate adhesion and mor-
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phological changes on motility initiation haven’t been quantified.

Recently, several papers examined instabilities using a generic poroelastic two-phase

model in a system with active stresses arising from a chemical transported through the cy-

tosol [24–26], which revealed different forms of mechanochemical waves including traveling,

standing, and rotating waves by employing linear stability analysis and numerical simu-

lations. Despite these foundational theoretical development, these models have been so far

limited to fixed simple geometries or have neglected key aspects of the mechanochemical feed-

back such as cell-substrate interactions, large-scale cytoskeletal remodeling and cell shape

changes. Erin et al. have shown the balance between cell-substrate adhesion and myosin

contraction determines the frequency of motility initiation in fish keratocytes [27]. How-

ever, this is not directly applicable to flow-driven amoeboid cell that rely on pressure-driven

cytoplasmic flows for migration without creating specific binding sites on the substrate.

The plasmodium Physarum polycephalum, a true slime mold, has been widely used

as a model organism in studies of flow-driven amoeboid locomotion. The plasmodium is a

single cell with multiple nuclei and is composed of a gel like outer ectoplasmic layer and

a sol-like inner endoplasm. The endoplasm exhibits streaming movements induced by the

periodic contraction of the ectoplasm, which is in turn governed by the transportation of

calcium ions of the flow [11]. The size of the plasmodia can be easily controlled by the way

it prepared. Experiments with small plasmodia of sizes ranging from tens to a few hundred

microns provide the possibility to study internal amoeboid dynamics and motility initiation

of Physarum without the pronounced vein structures usually present in Physarum fragments

of larger size.

In this work, we have combined traction force and morphology measurements with

experimental manipulations of cell-substrate adhesion, cortical strength and cell size of

Physarum fragments to understand the contribution of these mechanical factors to symme-

try breaking and motility initiation in flow driven amoeboid cell. Our experimental evidence

suggests a close dependence of probability of motility initiation with size and morphol-

ogy. Furthermore, this relation is strongly affected by cell-substrate adhesion and cortical

strength.
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2.2 Methods

2.2.1 Preparation of Physarum fragments

Physarum polycephalum plasmodia were cultured on 1% agar plate with oat flakes.

Small portions were cut from the parent plasmodia and transferred plain agar plate and

kept in a dark humid environment at room temperature for 10 hours. We subsequently

excised multiple tens to hundreds micron sized pieces from the marching end with a scalpel

and placed them over collagen coated polyacrylamide (PA) gels embedded with fluorescent

beads. A cap made of 1% agar of 1 mm thickness was then placed over the Physarum

fragments. The samples were put under microscope to acquire image sequences immediately

after.

2.2.2 Gel fabrication

Collagen-coated PA gels of 1.5 mm thickness were prepared for traction force mi-

croscopy as previously described [28]. The gels contained a thin top layer (10 µm) con-

taining 1 µm fluorescent beads (FluoSperes; molecular probes) that were used as fiduciary

markers to track substrate deformation. Gels were fabricated using 5% acrylamide and

0.3% bisacrylamide (Fisher BioReagents), resulting in a Young’s modulus of 8.73 kPa. The

Poisson’s ratio of the gel was measured to be 0.46, following an elastographic traction force

microscopy method developed by our group [29]. PA gels were activated with sulfo-SANPAH

(Thermal Scientific) under UV light and coated with 0.15 mg/ml collagen I (Corning).

2.2.3 Microscopy

A Leica DMI 6000B inverted microscope controlled by a PC running Micro-Manager

software was used for image acquisition [30]. An automated stage (ASI) was utilized to highly

improve the throughput. Two acquisition protocols were followed for different experiments

reported in this work. The bright field only image sequences were acquired under 10X with

30 seconds time interval for 8 hours. For experiments used to quantify the traction stress,

both bright and fluorescent field images were acquired with time interval of 5 minutes for

8 hours. The fluorescent filed was constructed by a 40-image fluorescence z-stack (∆z = 1

µm) for 3D traction force microscopy.
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2.2.4 Traction force microscopy

The 3D deformation of the top surface of PA substrate induced by Physarum frag-

ments were measured by tracking the motion of the fluorescent beads. Each instantaneous

fluorescence z-stack was cross-correlated with a reference z-stack which was recorded at the

end of experiment once the amoebae moved out of the field of view. Using these measure-

ments as boundary conditions, we solved the equation of mechanical equilibrium for the PA

gel as previously described [28, 31]. Using this solution, we computed the deformation field

in the whole polyacrylamide substrate, as well as the traction stress vector τ = (τxz, τyz) on

its top surface. The spatial resolution was 6.5 µm and 10 µm under 16X and 10X, and 1

µm in z.

2.2.5 Pharmacological treatment

Phalloidin and Latrunculin A have been reported that can be used to significantly

increase the thickness of cortical layer [32] or to disrupt the cortex of Physarum fragments

[33], respectively. To test the effect stronger cortical tension on motility initiation, 1 mM

Phalloidin (Sigma) was injected into the parent mold under a Nikon SMZ-10 microscope

using a PM 1000 cell micro-injection system (MicroData Instrument, Inc). The injected

amount(100 nl) is less than 1% of the volume of parent mold, which was calculated by the

measured diameter of the tubular structure of parent mold. After waiting for 2 hours, we

excised multiple micro amoebae from the marching end and placed them over collagen coated

PA gels as described before. To generate Physarum fragments with weaker cortex, the micro

amoebae generated as described in Section 2.2.1 were transferred to 5 µM Latrunculin A

(Cayman) solution for 10 minutes, and then washed by MQ water before seeded on PA gel.

2.2.6 Adjust the substrate adhesion

To decrease or increase the substrate adhesion, agar cap and PA gel were immersed

in 0.2% Pluronic F-127 (Sigma) or 2.5 mg/ml Poly-L-Lysine solution for 1 hour, respec-

tively. Followed by washing thoroughly with MQ water 3 times before seeding the Physarum

fragments.

8



0 200 400 600 800 1000 1200
120

140

160

180

200

220

240

260

R
a

d
iu

s
 [

µ
m

]

Arclength [µm]
0 50 100 150 200 250 300

20

30

40

50

60

70

80

R
a

d
iu

s
 [

µ
m

]

Arclength [µm]

0 2 4 6 8 10
0

2

4

6

8

10

12

A
m

p
li

tu
d

e
 [

µ
m

]

Mode Number
0 2 4 6 8 10

0

5

10

15

20

25

A
m

p
li

tu
d

e
 [

µ
m

]

Mode Number
0 2 4 6 8 10

0

2

4

6

8

10

12

14

A
m

p
li

tu
d

e
 [

µ
m

]

Mode Number

0 200 400 600 800
20

40

60

80

100

120

140

160

180

200
R

a
d

iu
s

 [
µ

m
]

Arclength [µm]

A B C

D E F

G H I

Figure 2.1: Shape analysis. (A,B,C) Snapshots of bright field images with different dominant
surface modes. Red curve is detected boundary, green dot is centroid. (D,E,F) The radial
distance from the centroid to points on detected boundary in (A,B,C) are plotted as a
function of arclength of the boundary. (G,H,I) Amplitude of the mode number n which is
derived from the Fourier transform of (D,E,F), with dominant surface mode number 2,3,4,
respectively.

2.2.7 Shape analysis

The shape analysis is illustrated in Figure 2.1. First, the boundary and centroid of

the fragments at each frame was detected by our customized code (Figure 2.1A,B,C). Then

the distance between the centroid and the boundary points were measured as a function

of the arclength along detected boundary (Figure 2.1D,E,F), and thus defined as R(s). A

9



CBA

Figure 2.2: Typical morphology of Physarum fragments with different size. (A) Small frag-
ments (R < 30 µm) are mostly rounded. (B) Fragments with 100 µm characteristic radius
develop tadpole like shape. (C) Larger fragments (R > 1mm) develop complex branched
structure.

Fourier analysis of R(s) resulted in a spectrum from which the amplitude of the surface wave

mode numbers was determined (Figure 2.1G,H,I).

2.3 Results

Unlike other cell types which have a well defined size, the size of Physarum fragments

can be varied across a few orders of magnitudes by how the samples were prepared. They

exhibit distinct morphologies with different length scale. For fragments with characteristic

radius R < 40 µm, most of them are rounded and not able to initiate persistent locomotion

(Figure 2.2A). Larger fragments which are bigger than a few hundred of microns generally

adapt to a complex morphology with a sheet-like frontal part and well developed tubular

veins at the rear (Figure 2.2C). In this work, we focused on the fragments with characteristic

radius less than 200 µm. Under which the Physarum fragments are not large enough to

develop tubular network with voids within the detected boundary.
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Figure 2.3: Size, cortical strength and substrate adhesion determines the frequency of motil-
ity initiation. (A) Percentage of fragments initiated motility as a function of size. Data is
binned with 10 µmin size. Black-control, red-weaker cortex, blue-stronger cortex, magenta-
increase adhesion, green-decrease adhesion. (B) The raw data used to generate (A). Y-
fragments initiated motility, N-fragments not initiated motility. Colors are consistent with
(A).

2.3.1 The frequency of motility initiation depends on fragment size

and is affected by substrate adhesion and cortical strength

After seeding samples of various size on substrate, it seems that larger fragments

are more likely to initiate persistent locomotion than smaller ones. This phenomenon is

quantitatively characterized in Figure 2.3, where a monotonic direct relationship between the

percentage of fragments initiated locomotion and their size has been revealed. All fragments

with a characteristic radius larger than 80 µmin control group initiated locomotion.

Although cell-substrate adhesion is directly involved in the process of motility ini-

tiation, it has been neglected for many computational works and its role is still not well

understood. We next investigated the effect of adhesion strength on motility initiation by

performing experiments on Pluronic or Poly-L-Lysine treated substrate, which decrease or

increase substrate adhesion, respectively. We found fragments of similar size are more likely

to initiate locomotion on more adhesive substrate, which is a clear evidence that increased

adhesion strength facilitates motility initiation. This hypothesis is further validated by the
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opposite effect we found that the frequency of motility initiation decreased as adhesion

strength decreased.

Cortical tension is another mechanical factor that could strongly affect the motility

initiation process. Physarum has been reported with strong and thick cortical layer which

is crucial for maintaining its shape. The effect of cortical tension in flow driven amoeboid

motility should be similar with surface tension in well studied hydrodynamic instability

problems, which stabilizes the system. We investigated the role of cortical strength by

pharmacological treatment with Phalloidin or Latrunculin A, which strength or weaken the

cortex, respectively. As expected, we found stronger cortex suppress the motility initiation

while weaker cortex facilitate this process (Figure 2.3).

2.3.2 Shape oscillations are governed by a dominant mode and are

affected by substrate adhesion and cortical strength

During the experiment, fragments were continuously shifting their shapes. The shape

at each frame can be extracted as surface modes (Figure 2.1). After normalizing with

fragment size and averaging over time, we find 281 out of 287 fragments exhibit a dominant

mode of mode 2 (except for mode 0 which stands for a circle), and the other 6 pieces show a

dominant mode 3 (2.4A). However, for the pieces with dominant surface mode 3, we didn’t

find any distinctions on size, whether or not initiated motility, migration velocity, magnitude

of traction stress etc. Since the shape oscillations of Physarum fragments are dominated by

surface mode 2, we only focused on mode 0 and 2 for our shape analysis in this study.

Essentially, mode 0 stands for a circle with the same size as the fragment, thus is related to

the roundness of the fragment. While mode 2, on the other hand, stands for how elongated

the fragment is.

Depending on the locomotion speed, the temporal evolution can be clearly divided

into stationary and persistent motion phase. Interestingly, the average amplitude of mode

0 are not significantly different for these two phases (Figure 2.4B), which differs from the

traditional view that the shape in the stationary phase should be more rounded while be

more elongated at the persistent motion phase. We then plot the average amplitude of mode

0 and 2 of the whole time sequence as a function of fragment size, and find that larger

fragments are more elongated (Figure 2.5).

Since the frequency of motility initiation is strongly affected by adhesion strength and
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Figure 2.4: (A) Box plot of the normalized amplitude of first 5 surface modes. Black-control,
red-weaker cortex, blue-stronger cortex, magenta-increase adhesion, green-decrease adhesion.
(B) Ratio of amplitude of mode 0 between stationary phase and persistent locomotion phase.
Colors are consistent with (A).

cortical tension, we hypothesized varying these quantities will also affect the morphologies

of the fragments. We found fragments of similar size are more rounded on less adhesive

substrate and are more elongated if being placed on more adhesive substrate. Callan-Jones

et al. [34] performed a flow instability analysis and proved that lower modes are less stable

as a function of increasing friction, which is consistent with our findings. As we mentioned

in previous section, cortical tension plays an important role for stabilizing the system. We

found fragments of similar contact area are more rounded with stronger cortex, as expected.

However, we didn’t find a clear opposite trend for fragments with weaker cortex. Possibly

due to some cascade effects from treating with Latrunculin A.

Our findings reveled a clear dependence of percentage of motility initiation and mor-

phology on fragment size, thus it is not surprised that the percentage of motility initiation

and morphology are also closely related (Figure 2.6). Strikingly, we didn’t find a signifi-

cant difference between the morphologies of fragments that are not able to initiate motility

under various conditions (supplementary material). This essentially means no matter what

method is used to vary the shape, the dependence of frequency of motility initiation on the

morphology is similar.
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Figure 2.5: Size, cortical strength and substrate adhesion determines the morphology of
fragments. (A) Normalized amplitude of surface mode 0 as a function of size. Black-control,
red-weaker cortex, blue-stronger cortex, magenta-increase adhesion, green-decrease adhesion.
(B) Normalized amplitude of surface mode 2 as a function of size. Colors are consistent with
(A).

2.3.3 Traction stress correlates with the contract area, and is af-

fected by varying cortical strength and substrate adhesion

To understand the effect of varying cortical strength and substrate adhesion to the

underlying mechanochemical oscillations, we measured the traction stress they exerted on the

substrate from the beginning until they achieve persistent locomotion and migrate out of the

acquisition window. In our experiments, Physarum fragments showing an inward contractile

pattern with larger stresses along the cell periphery all the time (Figure 2.7A). This pattern

has been proposed to be analogous to a surface tension, and has been recently linked to the

cortical F-actin filaments and their cross-linkers in Dictyostelium amoebae [13]. In the same

time, they exert a downward stress in the vertical direction within the cell periphery (Figure

2.7B). We found in-plane traction stress is in counterphase with the oscillations of contract

area, which is in agreement with previous findings (Figure 2.7G). But for the first time, we

revealed that the vertical traction stress is in phase with the horizontal one. (Figure 2.7H)

When the Physarum fragment contracts with minimum contract area, both horizontal and

vertical stresses increase and when the amoeba relaxes with maximum area, both traction
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Figure 2.6: Morphology determines the frequency of motility initiation. (A) Percentage of
fragments initiated motility as a function of normalized amplitude of surface mode 0. Data is
binned with 0.03 in amplitude. (B) The raw data used to generate (A). Y-fragments initiated
motility, N-fragments not initiated motility. Black-control, red-weaker cortex, blue-stronger
cortex, magenta-increase adhesion, green-decrease adhesion.

stresses decrease (Figure 2.7C,D).

For all the experiments we analyzed, strong normal compressive forces appeared near

the cell center (Figure 7 2.7B). This compressive force is positively related with the intracel-

lular pressure of the fragment, which directly related with the cortical tension. Even though

an accurate measurement of cortical tension is not applicable for this study, the compressive

forces can still be used as an indicator for cortical strength. As expected, we found fragments

with weaker cortex exerted significantly smaller magnitude of both horizontal and vertical

traction stresses, while the ones with stronger cortex exerted larger stress (Figure 2.7J).

These findings also validate the pharmacological treatment we used for modifying cortical

strength in this study.

The effect of varying substrate adhesion on the traction stress has also been quantified.

When being placed on more adhesive substrate, the fragments exert much larger (significantly

different) in-plane traction stress while seems to be a smaller (not significantly different)

out-of-plane traction stress (Figure 2.7I,J). The correlation between horizontal and vertical

stresses are also weaker (Figure 2.7G,H). As for the experiments performed on low adhesive

substrates, fragments exerted a smaller traction stress in horizontal direction (significantly
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Figure 2.7: (A) Instantaneous in-plane traction stress exerted on the substrate by a
Physarum fragment during locomotion initiation. (B) Instantaneous out-of-plane trac-
tion stress exerted on the substrate by a Physarum fragment during locomotion initia-
tion. (C)Time evolution of average in-plane traction stress (blue) and contract area (green).
(D)Time evolution of average in-plane traction stress (blue) and out-of-plane traction stress
(green). (E) Time evolution migration velocity. (F) Time evolution of normalized ampli-
tude of mode 0. (G) Spearman correlation coefficient for temporal evolution of in-plane
traction stress and contract area. Black-control, red-weaker cortex, blue-stronger cortex,
magenta-increase adhesion, green-decrease adhesion. (H) Spearman correlation coefficient
for temporal evolution of in-plane traction stress and out-of-plane traction stress. (I) Av-
erage magnitude of the in-plane traction stress. (J) Average magnitude of the out-of-plane
traction stress. The number of fragments (N) are indicated beneath the box plot. (Asterisks)
Statistically significant differences between each specific group and its corresponding control
distribution (Wilcoxon ranksum test, ∗ p < 0.05, ∗∗ p < 0.01).

different). The vertical traction stress also looks smaller compare with the control group,

but it is not significantly different.
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2.4 Discussion

This study has revealed a close relation of adhesion strength, morphology and corti-

cal strength with symmetry breaking and motility initiation process of flow driven amoeboid

cell, which were often neglected in the theoretical and computational models. The experi-

mental data presented in this work will motivate related theoretical work to include these

parameters to the theory development aiming at understanding the complex dynamics of

mechanochemical systems of the cell. Furthermore, these experimental measurements pro-

vide detailed quantitative data of how these mechanical factors working together in live cells,

thus can be used as important validations for model development.

The contact area has been used throughout the manuscript to indicate the size of

Physarum fragments. It is a rather crude approximation since the fragments underwent

very dynamic oscillations in contract area and thickness. However, the experimental setup

of agar cap provides a gentle confinement on the thickness variation of the fragments thus

prevent drastic changes in contract area. Furthermore, the results in this work are still valid

even if we take the errors caused by approximating size using contract area into consideration.

For example, the group of fragments with stronger cortex are thicker because they exerted

significantly stronger compressive normal forces on the substrate. This essentially means

that with the same contact area, the ones treated with Phalloidin are larger in size, which

will shift the curve stands for the group of stronger cortex to the right along x axis in Figure

2.3. After applying this argument to all the groups with variations in substrate adhesion

and cortical strength, we find our conclusions are still valid.
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Chapter 3

Coordination of contractility, adhesion

and flow in migrating Physarum

amoebae

3.1 Introduction

Cell migration plays a critical role in a wide variety of biological processes, including

morphogenesis, wound healing and the immune response. Amoeboid motility is a fast type

of cell migration defined by large shape changes as the cell extends and retracts various

pseudopodia and blebs [35]. These extensions are driven by the interplay between substrate

adhesion, the polymerization of filamentous actin and the pressure driven flow of cytoplasm

[2]. Research on amoeboid motility has recently intensified in part because this migration

mode is robust to changes in the extracellular matrix and the specific molecular nature of the

cell-matrix adhesions [3, 4]. That is to say, amoeboid cells are able to cross barriers, move

through confined channels, or squeeze through 3-D matrices by contracting and pushing-off

the surrounding environment. This versatility has also spurred the exploratory design of

bio-inspired millimetric robots made of active self-oscillating hydrogels [22]. Despite the vast

existing knowledge about the biological and molecular processes involved in cell migration,

our understanding of the underlying mechanical processes is still rather phenomenological.

In particular, the coordination of contractility, adhesion and flow of cytoplasmic material

that enables pseudopod extension is not fully understood. In fact, it is not even clear if

coordination of these processes is necessary for motility in all scenarios [3].
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This work investigates the coordination of cellular contractile force, substrate adhe-

sion and cytoplasmic flow in migrating amoebae of the slime mold Physarum polycephalum.

Physarum plasmodia generate a periodic flow of cytoplasm (known as shuttle streaming)

through a tubular network. This flow is driven by pressure gradients created by contraction

of the actomyosin network within the plasmodium [36–38]. Small-scale Physarum amoeabe

(∼ 100µm in length) can exhibit a similar behavior where a rhythmic flow of cytoplasm

moves back and forth along the centerline of a roughly tadpole shaped cell. The onset of

this behavior has been observed to coincide with a drastic increase in the locomotion speed

of growing physarum [39]. Larger scale plasmodia (l ∼ 500µm) can develop more complex

morphologies including chains of round contractile heads connected by relatively inert tubes,

as shown by Rieu et al in a companion paper [40].

Due to the relatively large scale of the organism, Particle Image Velocimetry (PIV,

[41]) experiments allow researchers to measure the intracellular fluid velocity in Physarum

amoebae using cell organelles as flow tracers. The periodic waves of cytoplasmic streaming

in tadpole shaped cells have been well characterized by PIV and it has been argued that the

traveling-wave nature of the intracellular flow is responsible for generating directed motility

[15]. However, a purely hydrodynamic explanation of Physarum amoeboid motility does

not address the transmission of traction stress to the underlying substrate, which is ulti-

mately necessary for cellular migration to take place. It is unclear if passive, uncoordinated

cell-substrate interactions are sufficient for Physarum plasmodia to effectively “flow” across

a substrate. Alternately, the motility of Physarum plasmodium might depend upon cell-

substrate adhesion being dynamically coordinated relative to the stresses generated by the

flow. It is known that substrate bound structures are mechanically linked the to actomysosin

network within the plasmodium [42]. However, the precise nature of these structures is not

well studied, and there currently exists no quantitative description of the stresses which

the cell exerts on the substrate as it migrates, nor how these stresses are correlated to the

cytoplasmic flow.

To answer these questions, we concurrently perform Traction Force Microscopy (TFM)

and PIV measurements on migrating Physarum amoebae. In the past, TFM has been used

to study the adhesive forces that enact locomotion of a diverse array of unicellular and mul-

ticellular organisms ranging from a few microns to a few centimeters in size [9, 31, 43, 44].

In conjunction with these experiments, we develop a computational model for migrating

Physarum amoebae based on a modified Immersed Boundary (IB) [45]. The model ac-
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counts for hydrodynamic effects, elastic forces within the cell interior, and adhesive coupling

of the cytoskeleton to the substrate. We use the model to examine how cytoskeletal contrac-

tion, cyotosolic flow, and cell-substrate adhesion work together to generate cell locomotion.

Our measurements show that traction stresses in migrating Physarum amoebae are

mainly distributed along the cell periphery forming an inward contractile pattern. These

stresses are spatiotemporally modulated to establish a rythmic contraction wave that travels

in the direction of cell migration. The contractile wave has the same time period as the

intracellular flow waves previously described, and a phase lag of approximately 1/3 of a cycle.

These spatiotemporal flow and stress patterns are reproduced by the numerical simulations

using an idealized model of adhesion. We apply this adhesion model to investigate the

strength of adhesion and its coordination relative to the rhythmic flow of cytoplasm. Specific

coordination patterns are identified which are consistent with experimental data. These

parameters are seen to be optimal in that they (nearly) maximize migration velocity of the

model cell for a given strength of actomyosin contraction. Finally, we perform numerical

simulations of the model cell crawling across randomly heterogeneous substrates and show

that the speed of migration is only mildly perturbed. These simulations imply that the

proposed model of motility is robust to perturbations of adhesiveness of the extracellular

substrate.

3.2 Experimental Materials and Methods

This section summarizes the cell culture, microscopy and analysis methods employed

to prepare migrating Physarum microamoebae, and to jointly measure the intracellular flows

and traction forces generated by these amoeabe while migrating. A more exhaustive descrip-

tion of these methods can be found in the Supplementary Information. Physarum plasmodia

were obtained from a generous gift by Toshiyuki Nakagaki (Research Institute for Electronic

Science, Hokkaido University) and cultured as previously described [15]. Small portions of

area ∼ 0.2 × 0.2 mm2 were cut from the parent plasmodia to produce migrating amoebae,

which were transfered to collagen-coated polyacrylamide (PA) gels embedded with fluores-

cent beads. The PA gels were prepared as previously described [28]. We kept the PA gel

humidified throughout the experiment and flattened the amoebae to facilitate intracellular

flow visualization by placing an agarose cap on top of the PA gel containing the specimen.

Using an inverted microscope, we simultaneously acquired transmitted-light and fluo-
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rescence z-stack image sequences of the migrating Physarum amoebae with time resolutions

of 0.2 s and 12 s respectively. These data enabled us to jointly measure the intracellular flow

and traction forces generated by the amoebae, which oscillate with a much slower period of

∼ 100 sec [15].

Physarum’s dense distribution of intracellular vesicles was exploited to determine

intracellular streaming velocities from the transmitted light images using particle image

velocimetry (PIV) [15, 41]. The raw image sequences were pre-processed for PIV by applying

high-pass, band-pass and low-pass temporal filters, which allowed us to resolve the flow

inside narrow channels (see Figure 3.2(a)). The resulting spatial resolution of the flow

measurements was 6.5 µm.

The three-dimensional deformation produced by physarum amoebae on the PA sub-

strate was measured by tracking the displacements of the embedded fluorescent beads as

described by del Álamo et al. [28]. From the measured deformation, we computed the trac-

tion stresses (see Figure 3.2(b)) and strain energy (see Figure 3.9) generated by the cells

using Fourier TFM methods described elsewhere [28, 31]. The spatial resolution of these

measurements was 13 µm.

3.3 Mathematical Model

Our model of the cell incorporates the effects of intracellular liquid (cytosol), the

solid internal cell structure (cytoskeleton), and interaction with the extracellular substrate

(through adhesion) in a moving geometry defined by the cell membrane and underlying cortex

(see Figure 3.1). The model is described by the balance of forces on three materials: the liquid

cytosol, the porous elastic cytoskeleton, and the adhesive complexes which mechanically

couple the cell interior to the substrate. The velocity of the viscous cytosol (~uf ) satisfies

the forced Stokes equations. The fluid forces (viscosity and pressure) are balanced by body

forces from the drag due to the internal cytoskeleton (~fdrag) and the elastic forces on the

membrane/cortex which bounds the cell (~fmem). The forces acting on the cytoskeleton are

the elastic forces due to deformation (~Fe), an active contractile force due to myosin molecular

motors in the actin network (~Fa), drag due to the cytosol (~Fdrag), forces due to adhesions

to the substrate (~Fadh), and forces generated by attachment of the cytoskeletal network to

the surrounding membrane/cortex (~F attach
net ). Finally, the adhesion complexes are subject to

forces applied by the external substrate (~Fsubs), balanced by the forces which the complexes

22



apply to the internal cytoskeleton. The system of equations which describe these force

balances is

µ∆~uf −∇p+ ~fdrag + ~fmem = 0, (3.1)

∇ · ~uf = 0, (3.2)

~Fe + ~Fa + ~Fdrag + ~Fadh + ~F attach
net = 0, (3.3)

~Fsubs − ~Fadh = 0. (3.4)

These equations effectively describe the cell interior as an actively contractile poro-elastic

network. A similar model (with an additional description of chemical kinetics) has been

used to investigate symmetry breaking and the onset of contractile waves in Physarum mi-

croplasmodia [24, 46]. For a description of how we compute these forces and the material

parameters, see [47].

Viscous Cytosol
Cytoskeletal Network

Adhesive Points Membrane

ŷ

x̂

Figure 3.1: A schematic of our computational model of a Physarum plasmodium. Cytoskele-
tal network points are shown as red circles. Membrane points are shown as blue diamonds.
Adhesive points are illustrated as brown exes. Viscous cytosol that permeates the porous
media is illustrated as light blue shading.

The active contractile force (~Fa) drives the deformation of the cell and the flow of

cytosol. We assume that this force is generated by a traveling wave of isotropic contractile
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stress with magnitude

Σa(x, t) =
C

2

(
cos

(
2π

`cont
x− 2π

T
t

)
+ 1

)
, (3.5)

where C is the maximum contractile stress, `cont is the wavelength, and T is the period.

The spatial variable x is the the longitudinal body coordinate of the cell. The wave travels

along the body (from posterior to anterior) with wavespeed `cont/T . We assume that the

resulting wave of cell shape deformation is directly correlated with the underlying cytoskeletal

contraction and choose `cont = 1600 µm (four body lengths) and T = 100 sec, which is

consistent with the wavelength and period of deformation reported in [15] and with our own

experiments. Similarly, the value of C is chosen so that the resulting deformations of the

model cell are on the same scale as those observed in experiments.

Many of the material parameters can be measured or estimated. Conversely, the

precise nature of the proteins with which Physarum adheres to the substrate is not known,

even if some candidates have been identified [48]. The period of the deformations observed in

physarum is long (∼ 100 sec) compared to the timescale of the dynamics of a cell-substrate

bond, and so we represent the dynamics of adhesion via a viscous drag law [49] of the form

~Fsubs = −ζ(x, t)~Uadh, (3.6)

where ~Uadh is the velocity of the adhesion complexes (relative to the substrate), and ζ is a

viscous interaction coefficient. In Section 3.4.5 we investigate an idealized ζ of the form

ζ(x, t) =
A

2

(
cos

(
2π

`adh
x− 2π

T
t+ φ

)
+ 1

)
+ ε. (3.7)

This choice of ζ is inspired by the observation that both the deformation of, and associated

flow within Physarum appear to propagate from the posterior to the anterior of the cell as

a traveling wave (discussed in more detail in Section 3.4). The wavelength `adh and period

T of the adhesion modulation are assumed to be the same as those of the contractile wave.

The parameter φ represents the phase of the coordinated adhesion relative to the traveling

wave of contraction strength (eq. (3.5)). The amplitude parameter A is a measure of the

strength of active coordinated adhesion, and will often be referred to as the “coefficient of

adhesion” in the following text. The parameter ε represents nonspecific adhesive interactions

between the substrate and the basal surface of the cell. We report coefficient of adhesion in
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nondimensional units of [A/ε].

3.4 Results

3.4.1 Cell Behavior

Upon reaching an adequate size (approximately 100 µm across), we observe the cells

elongate into a tadpole-like shape concurrent with the onset of a rhythmic, pulsating flow

of cytosol. In most cases, this behavior is similar to that reported in [15], with waves of

contraction and flow traveling from posterior to anterior along the long axis of the cell. We

refer to these cells as “peristaltic.” We also observe a second mode of deformation which

we call “amphistaltic” due to the fact that the front and rear contract and relax in an anti-

phase manner. The amphistaltic amoeboid mode could be the precursor of the contractile

dumbbells found by Rieu et al. in the companion paper [40]. Of the 21 cells we study, 10 of

them clearly exhibit the peristaltic behavior, while 6 are amphistaltic. For an illustration of

the difference between these modes, see Supplementary Information. Approximately 5 of the

cells we observe do not obviously fall into the category of peristaltic of amphistaltic mode,

and exhibit characteristics of each. The peristaltic mode appears to be stable on timescales

of at least 1000 sec. After this, the cells migrated far enough to leave the observation

window. In this work we focus only on the peristaltic cells due to the fact that they migrate

approximately twice as fast as amphistaltic cells, and are consistent with the experiments of

previous investigations [15].

In peristaltic cells, the cytoplamsic flow is primarily directed along the cell centerline

from its anterior to its posterior end (hereafter referred to as the longitudinal or cell axis),

and has a distinct period of 90 ± 12 sec (measured over 10 cells). A region of cytoplasmic

flow directed forward develops at the cell rear. This pattern of forward flow becomes more

prominent and travels along the cell axis toward the cell front. Eventually, a region of flow

directed backwards emerges at the cell rear, and it also propagates toward the the cell

front, before the entire pattern repeats. Figure 3.2(a) shows three instantaneous measured

velocity fields: a fully developed forward flow pattern, a fully developed backward directed

flow pattern, and the final stages of the backward flow pattern, as a new forward flow begins

at the posterior of the cell. The emergence of this periodic wave of back-and-forth flow is

observed to coincide with a dramatic increase in the migration velocity of the cell [39].
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(c)(b)(a)

m100 µ

Figure 3.2: (a) Instantaneous intracellular flow observed in migrating physarum. Arrows
indicate the direction of flow, colormap indicates the projection of flow velocity onto the
cell axis [µm/sec]. (b) Instantaneous traction stresses exerted on the substrate. Arrows
indicated the direction of traction stress, colormap indicates the magnitude [Pa]. (c) Traction
stresses with the moving cortical average removed. Arrows indicate the direction of stresses,
colormap indicates the magnitude [Pa]. All arrow fields are downsampled by a factor of 4 in
each direction for visual clarity.

The migration of the cell is necessarily accompanied by the application of traction

stresses to the substrate. Figure 3.2(b) shows a sequence of the stresses applied to the

substrate by Physarum at three time points which are approximately those reported in

Figure 3.2(a). There is a slight time difference between the images of (a) and (b) due

to changing the imaging channel of the microscope from bright field to fluorescent field.

Supplementary Movie 1 shows the joint time evolution of intracellular flow and traction

stresses for the cell in Figure 3.2.

The dominant feature of this traction stress pattern is purely contractile, with the

larger stresses distributed along the cell periphery. This behavior has been observed in other

cell types, and it has been hypothesized that this effect is due to strong stresses associated

with the cell cortex and directed out of the plane of the substrate [13]. Because our model

only considers in-plane stress, we remove the average “cortical” stress from the measured

stress field to compare with model predictions. At each instant of time, the average trac-
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tion stress field is compiled from the traction stresses recorded during the previous, current

and following periods of the observed behavior. We then remove the average contractile

stress from the instantaneous traction stress field, yielding the stress patterns shown in

Figure 3.2(c). This procedure reveals loci of expansive and contractile stress that propagate

from the posterior to the anterior. As the expansive locus leaves the front of the cell, a new

one develops behind the contractile locus.
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Figure 3.3: (a) Instantaneous intracellular flow computed in model cell. Arrows indicate
the direction of flow, colormap indicates the projection of flow velocity onto the cell axis
[µm/sec]. (b) Instantaneous traction stresses computed in model cell. Arrows indicate the
direction of stress field, colormap indicates the magnitude of stress field [Pa]. Again, all
arrow fields are downsampled by a factor of 4 in each direction for visual clarity.

3.4.2 Comparison of Model Behavior

In this section, we illustrate the behavior of our model simulations and compare with

experimental observations. All simulations were run with φ = 3π/2 and A = 100ε, re-

spectively. In Sections 3.4.4 and 3.4.5 we justify this choice and consider other adhesion
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parameters. In Figure 3.3(a) we show instantaneous fluid velocity fields obtained from the

model at time intervals analogous to Figure 3.2. The three panels illustrate a fully devel-

oped forward flow, a fully developed region of backward flow, and the onset of a forward

flow pattern at the posterior of the cell (Supplementary Movie 2 shows the time-resolved

animation). Qualitatively, they are very similar to the behavior shown in Figure 3.2(a). In

Figure 3.3(b) we provide illustrations of traction stress fields (~Ftrac) generated by our model

cell during the same simulation shown in Figure 3.3(a). The time points shown are offset

from those in Figure 3.3(a) for a more direct comparison with experiments. The three panels

show the forward propagation of a contractile locus of stress through the cell body, as well as

a locus of expansive stress that exits the anterior of the cell before a weaker one emerges at

the posterior (Supplementary Movie 3 shows the time-resolved animation). In this regard,

the model again reproduces the qualitative behavior observed in live physarum.

To further analyze the flow patterns that we observe (or our model predicts), we

generate kymographs of the measured (or calculated) longitudinal flow averaged over each

lateral cross section of the cell,

U(x, t) =

∫
Ωc
~uf · x̂ dy∫
Ωc
dy

, (3.8)

where Ωc denotes the interior of the cell, x is the longitudinal coordinate, y is the coordinate

orthogonal to the longitudinal axis, and x̂ is unit vector oriented towards the anterior of the

cell. Similarly, we compare kymographs of the observed and measured traction stresses by

defining

S(x, t) =

∫
Ωc

~Ftrac · x̂ dy∫
Ωc
dy

, (3.9)

which measures the average traction stress in the direction of motion at each cross section

of the cell body.

Figure 3.4 shows experimental measurements of U , together with results for the model

cell. For both our experiments and simulations, we observe flows in good agreement with

those reported previously [15]. A periodic pattern is clearly evident, where regions of forward

and rearward flow are generated at the back of the cell, and quickly propagate toward the

front in an approximately linear fashion. We refer to this pattern as a “phase wave,” and

to its propagation speed as the “phase velocity”, cφ. In previous experiments this phase

velocity was reported as cφ = 12± 1 µm/sec [15]. Here, we measure higher phase velocities,
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Figure 3.4: Kymographs of mean longitudinal flow U . (a) Data recorded in migrating phys.
(b) Values predicted by model simulation. Filled arrows indicate flow directed foward. Open
arows indicate regions of backward flow.

cφ = 23.8 ± 12.0 µm/sec across our experiments, and our model predicts 24 ≤ cφ ≤ 38

µm/sec.

Time [sec]

C
el

l A
xi

s 
[µ

m
]

Longitudinal Traction Stress [Pa]

 

 

0 50 100 150 200 250 300
0  

100

200

300

400

500

−30

−20

−10

0

10

20

30

Time [sec]

C
el

l A
xi

s 
[µ

m
]

Longitudinal Traction Stress [Pa]

 

 

0  50 100 150 200 250 300
0  

100

200

300

400

500

−100

−50

0

50

100

(b)(a)

Figure 3.5: Kymographs of mean traction stress S. (a) Data recorded in migrating phys.
(b) Values predicted by model simulation. Filled arrows indicate regions of stress directed
forward. Open arrows indicate stress directed backward.

Figure 3.5(a) shows a kymograph of traction stresses measured in the same exper-

iment as Figure 3.4(a) (with average cortical stresses removed). The data displayed are

qualitatively representative of a large number of experiments. For comparison, Figure 3.5(b)

shows a traction stress kymograph for the model cell. In the kymographs, we see a dis-

tinct phase wave of adhesion stress similar to the flow pattern in Figure 3.4. However, we

note that in both experiments and our model, the phase velocity of the flow patterns is

approximately four times faster than that of the traction stress patterns. The numerically

calculated traction kymograph reproduces the main features of the traction stresses observed

in live physarum. However, model and experiment do not agree in all respects. For example,
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for these parameters our model predicts the maximal forward stresses occur at the anterior

and posterior of the cell while this does not appear to be the case in experiments. Altering

parameters changes this aspect of the model predictions, but may cause other disagreements

with experiments. It is difficult to identify by visual inspection which adhesion parameters

most closely reproduce the spatiotemporal dynamics of the adhesion stress observed in ex-

periments. In Section 3.4.5, we develop a more quantitative analysis of the coordination of

adhesion to compare experiments and calculations.

3.4.3 Role of Flow

It is argued in [15] that the asymmetry in the motion of a fluid particle in such a flow

pattern is directly responsible for the net displacement of the cell. Figure 3.6(a) illustrates

this argument by showing particle paths in an idealized flow where regions of forward and

backward flow propagate through the cell body. A particle translates forward and then

backward with the same speed over one period of the wave. The particle is in a region of

forward flow for more than half the period, resulting in net forward displacement. We define

the asymmetry in the flow to be the ratio of the forward and backward displacement of such a

particle path. Figure 3.6(b) shows the displacement of the centroid of a Physarum specimen.

We define the centroid displacement asymmetry to be the ratio of the forward and backward

displacements of the centroid over one period. In Figure 3.6(c), we plot the asymmetry in

the flow as a function of the centroid displacement asymmetry, measured in our experiments.

If the flux of mass due to the intracellular flow wave were solely responsible for the migration

of the cell center of mass, then the data in Figure 3.6(c) would lie on the green dashed line

with slope 1. However, this line is in fact a poor fit to the data, while the best linear fit

(solid blue line) has a much lower slope of ≈ 0.16.

Examining Figure 3.6(c) more closely reveals a critical phenomenon. We observe

that 45% of the data points have a flow asymmetry less than unity, despite having a centroid

asymmetry greater than unity (lower right quadrant in the figure). Thus, for a significant

fraction of our observations the intracellular flow suggests a net backward translation of

mass, even though the cell has moved forwards. For comparison, in Figure 3.6(d), we show

flow kymographs from two cells. Cell A (marked with upward triangles in Figure 3.6(c))

predominantly exhibits a flow asymmetry less than one, while Cell B (marked with downward

triangles in Figure 3.6(c)) predominantly exhibits a flow asymmetry greater than one. Both
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Figure 3.6: (a) An illustration of particle paths associated with a constant phase wave. The
forward and backward particle displacements (Df and Db) are shown. Flow asymmetry
is defined to be Df/Db. (b) A time series of the centroid of a migrating physarum. The
forward and backward centroid displacements (Lf and Lb) are shown. Centroid displacement
asymmetry is defined to be Lf/Lb. (c) Experimentally measured values of flow and centroid
displacement asymmetry over 118 periods (each data point) and 9 cells (distinguished by
distinct markers). The best linear fit is shown in blue. The line Df/Db = Lf/Lb in green
for comparison. (d) Flow kymographs from the cells marked A (upward triangles) and B
(downward triangles) in (c), illustrating flow asymmetry less than and greater than one
respectively.

exhibit similar phase velocities of the flow wave. While intracellular flow is likely to play a

role in the migration of physarum, our experiments (and model predictions in Section 3.4.4)
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indicate that intracellular flow kinematics alone cannot determine the migration of the cell.

3.4.4 Adhesion Coordination and Crawling Speed

Figure 3.7 shows the centroid trajectories and flow kymographs for three cells gen-

erated with the model using different forms adhesion coordination. Cell A utilizes a phase

parameter of φ = 3π/2 and an adhesion coefficient of A = 100ε. Cell C utilizes the same

adhesion coefficient, and a reversed phase parameter of φ = π/2. Cell B was simulated with

φ = 3π/2 and adhesion coefficient A = 0. All three of these cells are driven with the same

contraction pattern, but more importantly exhibit very similar flow patterns which are all

consistent with both our experiments and experiments of others [15, 39]. However, while cell

A migrates forward consistent with experimental observations, cell B shows no net transla-

tion over the course of the simulation, and cell C migrates backwards. The implication is that

while hydrodynamic effects may generate stresses integral to motility, it is the coordination

of the transmission of those stresses to the substrate that ultimately determines motility.

Furthermore, from Cell B we see that coordinated adhesion is critical to motility. A cell

migrating using just the nonspecific, uncoordinated adhesion (ε) fails to migrate.

For comparison, Figure 3.6(b) provides a time course of the center of a Physarum

specimen migrating in the lab. Qualitatively, the predicted migration behavior of model cell

A closely matches that observed in our experiments. We see a distinct, periodic translation

forward and backward, with a pronounced asymmetry to the two translations resulting in a

net forward displacement of the cell. For the simulation shown, the net displacement of the

model cell is approximately 6 µm per period, which is is equivalent to an average migration

velocity of ≈ 0.06 µm/sec. In the laboratory, we measure Physarum migrating at speeds of

0.169± 0.041 µm/sec across the 10 cells which exhibit peristaltic behavior. Thus, our model

predicts Physarum migration in reasonable agreement with experiments, and suggests that

coordination of adhesion and contraction is essential for efficient locomotion.

We now explore the speeds of migration predicted by the model as a function of

adhesion strength and coordination. We perform simulations varying the phase parameter

(φ) over eight equally spaced values from 0 to 2π, and the coefficient of adhesion (A) over

6 orders of magnitude. All parameter values give rise to similar periodic displacements (as

shown in Figure 3.7). However, depending on the phase and strength of adhesion, our model

predicts various translation velocities and directions of migration (Figure 3.8).
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Figure 3.7: Numerically calculated time sequence of cell center is shown in (a). The solid
lines indicate the centroids of individual cells, while the corresponding dashed lines indicates
a best (least squares) linear fit. Migration speeds reported are given by the slope of this fit.
The flow kymographs of U for each cell are shown in (b). Filled arrows indicate forward
flow. Open arrows indicate regions of backward flow.
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Figure 3.8: Average cell crawling speed as a function of adhesion coefficient and adhesion
phase. Adhesion coefficient is reported in non-dimensional units [A/ε]. Dashed grey line
indicates zero migration velocity.
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We observe that the migration velocity of the model cell is a non-monotonic function of

adhesion coordination and strength. Indeed, the cell speed is maximal at moderate values

of coordinated adhesion, while uncoordinated or strongly adherent cells display negligible

migration. In the limit A << ε, the coordinated adhesion is negligible compared to the

uniform, uncoordinated adhesion and the cell cannot move directionally despite generating

periodic cell shape changes (see cell B in Figure 3.7). In the limit of strong adhesion A >> ε,

the cell is effectively stuck to the substrate and cannot move even if this adhesion is highly

coordinated. Experiments performed on highly adhesive substrates coated with collagen and

the polycation poly-L-Lysine [50] are qualitatively consistent with the model predictions.

Physarum amoebae migrating on these sticky substrates adopt a tadpole shape, and create

peristaltic contraction waves and intracellular streaming. However, they barely move (see

Supplementary Movie 4).

As each simulation is driven with active contractions of the same amplitude and form,

we may consider migration speed of the cell as a measure of efficiency. The cell translates

most efficiently with an active adhesion coefficient of A/ε ∼ 10–100, and a coordination

phase of φ ∼ π–3π/2. Thus, the model predicts an optimal parameter regime in which to

drive motility. However, the parameters A and φ are not measurable in our experiments.

In the next section, we develop a quantitative measure of the relative timing of flow and

adhesion within physarum. This will be used to determine if these model parameters are

consistent with experiments.

3.4.5 Adhesion Correlation

We examine the time evolution of the strain energy exerted by live migrating Physarum

on their substrate (Equation S.5), and compare it with the evolution of the average intracel-

lular flow velocity. The results show a distinct periodic pattern in both variables, with the

flow wave preceding the adhesion wave by approximately a quarter period (Figure 3.9, left

panel). This behavior is robust across the 9 reported experiments. To more precisely quantify

this phase relationship between flow and adhesion energy, we calculate the cross correlation

of flow and adhesion energy, as well as the autocorrelation of the flow wave (Figure 3.9, right

panel). The distance between peaks of the autocorrelation function is interpreted as the

period of the flow wave oscillation (T). The position of the first peak (restricted to times

t > 0) of the cross correlation function indicates the relative timing of the flow and energy

34



waves (θ). The ratio θ/T defines the relative phase (between 0 and 1), which we measured

to be 0.34 ± 0.07 in our experiments.
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Figure 3.9: Experimentally measured flow (solid) and energy (dashed). Left panel shows
average flow velocity within the cell interior, as well as total strain energy of adhesion as a
function of time. Right panel shows auto and cross correlation of flow and energy, as well as
the relative timing θ.
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Figure 3.10: Numerically calculated flow (solid) and energy (dashed). Left panel shows
average flow velocity within the cell interior, as well as total strain energy of adhesion as a
function of time. Right panel shows auto and cross correlation of flow and energy, as well as
the period T .

We perform the same analysis for the model simulations. Figure 3.10 shows the

average intracellular fluid velocity and strain energy within the model adhesions, as well as

the auto and cross correlation of these two time sequences. The data shown is for a cell with

φ = 3π/2 and A = 100ε, which is the same parameter set used for the forward moving cell

in Figure 3.7, as well as Figures 3.4 and 3.5. For these parameters, the model reproduces

accurately the observed phase relationship between flow and energy waves. We see a clear

phase lag of approximately a quarter period.

Given the good agreement between model and experiments, we utilize the phase

relationship between flow and energy to identify plausible adhesion parameters in the model.

The results are shown in Figure 3.11(a), where we report the relative phase lag of the

energy wave, in periods of the wave, for all simulations shown in Figure 3.8. For reference,

the relative phase observed in experiments (0.34 ± 0.07) is illustrated with the solid and
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dashed grey lines. The relative phase of adhesion energy appears to be highly sensitive to

φ, and relatively insensitive to adhesion strength (beyond the range A ≈ ε). Values of φ in

the range 3π/2–2π (2π and 0 are equivalent) produce a relative timing which is consistent

with experimental measurements. Of these parameter values, φ = 3π/2 is the only one

which produces migration in the forward direction regardless of the strength of coordinated

adhesion. For cells using φ = 3π/2, the phase lag between flow and strain energy remains

in the range 0.21–0.33 when varying the adhesion strength over 6 orders of magnitude.

Specifically, in the case of highest migration velocity, we measure a phase lag of 0.25. In

Figure 3.11(b) we show the average adhesion timing θ/T (calculated for all values A > ε)

and the maximum signed migration velocity for each value of the coordination parameter

φ. Again, we see that of the values of φ which are consistent with experiment, φ = 3π/2

produces the maximum migration velocity.
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Figure 3.11: Panel (a) shows maximum cross correlation of elastic energy of adhesion and
average cytoplasmic flow. Adhesion coefficient is reported in non dimensional units [A/ε].
Horizontal grey lines indicates experimentally measured phase of 0.34 ± 0.07. Panel (b)
shows the average adhesion timing and maximum migration speed for each value of adhesion
coordination φ. Vertical grey lines indicates experimentally measured phase of 0.34± 0.07

3.4.6 Robustness

From the criteria discussed above, the spatiotemporal pattern of adhesion which is

most consistent with experimental evidence corresponds to a phase lag of φ ≈ 3π/2 and
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a strength of A ≈ 100ε. Furthermore, these parameters predict nearly optimal migration

velocity within the constraints of the model. It is noteworthy that this optimal migration

velocity is not sensitive to the strength of adhesion. Returning to Figure 3.8, we see that the

model predicts a migration velocity above 0.03 µm/sec (roughly 50% of maximal) over more

than two decades of adhesion strength. Thus far, our simulations consider only spatially

uniform substrates. In relevant environments, the strength of adhesive interactions between

the cell and substrate is not homogenous, as numerous extracellular and intracellular factors

may affect such interactions. Therefore, we modify our model to quantify the robustness of

migration with respect to spatial variations in adhesion strength. We alter the model of cell

adhesions to the substrate in order to incorporate spatial heterogeneity. The existing form

of adhesion (eq. (3.7)) is replaced with

ζ(x, t) =
A

2
g(xlab, ylab)

(
cos

(
2π

`adh
x− 2π

T
t+ φ

)
+ 1

)
+ ε, (3.10)

where g(xlab, ylab) is a randomly constructed function of fixed laboratory coordinates. By

construction, this function has mean of µr = 1 and standard deviation σr = 0.34. This has

the effect of spatially modulating the strength with which the cell adheres to the substrate.
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Figure 3.12: (a) Open circles indicate outliers in data set. Filled red points indicate the
migration velocity calculated for a cell migrating across a homogeneous substrate. The inset
shows a single randomly generated example of the spatial heterogeneity g(x, y). (b) Dashed
black lines indicate time course of centroids of cells migrating across random substrate. Solid
red line indicates cell migrating across homogeneous substrate. φ = 3π/2 in all cases.
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Using the randomly constructed function g to represent a heterogeneous substrate,

we simulated cells migrating across ten different substrates. We performed these simulations

for the three values of φ which generically resulted in forward migration, and values of

coordinated adhesion that results in the greatest migration velocity for each phase parameter.

This means φ = π, 5π/4, and 3π/2, with A = 20ε, 40ε, and 100ε, respectively. The results

are summarized in the box plot of Figure 3.12(a). The spread of the data shows that

migration speed is relatively insensitive to substrate heterogeneity for the considered values

of φ. Notice that the value φ = 3π/2, which is most consistent with our live Physarum

experiments, produces a substantially lower spread in migration speed, with half the data

falling within ±2.5% of the median value. Thus, this spatiotemporal pattern of adhesion

coordination is highly robust with respect to local variations in the strength of substrate

adhesiveness.

Figure 3.12(b) shows the time evolution of the centroid of the 10 cells with random

adhesion strength for φ = 3π/2 (black), compared with the homogeneous substrate case

(red). The inset shows the full time course, while the main panel shows just the final 100

sec of migration. Over time, the location of the cells migrating across random substrates

begins to deviate as random effects accumulate over time. However, these deviations are

quite small compared to the scale of cell migration. This result indicates that, for the set of

model parameters that reproduce the experimental measurements, the instantaneous speed

of migration is remarkably insensitive to the spatial heterogeneity of the substrate throughout

the whole oscillation period.

3.5 Discussion

Migrating amoeboid cells such as Physarum microplasmodia apply highly dynamic

traction forces on their surroundings, leading to large shape changes and fast intracellular

streaming flows. However, there is a paucity of simultaneous measurements of traction forces

and intracellular streaming, which has made it difficult to develop mechanistic models that

relate the forces driving amoeboid motion and the cellular deformations realizing this motion.

In this work, we combine simultaneous measurements of cytoplasmic flow and the

traction stresses in migrating physarum microplasmodia, with detailed computational mod-

els of amoeboid migration that resolve the mechanics of cellular deformation and substrate

adhesion. Our measurements reveal that Physarum amoebae move by creating traveling
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waves of contractile traction stresses with a well defined period of ∼ 100 sec. The traction

stress waves are similar in character to the previously observed waves of intracellular flow,

but the flow waves consistently precede the stress waves by ∼ 1/4 cycle. Inspired by this

observation, we use our numerical model to investigate the consequences of migration us-

ing traveling waves of coordinated contraction and adhesion. Our investigations show that,

by altering the timing of adhesion relative to the flow wave, the cell is able to migrate with

different velocities and in different directions. These findings transform the previously estab-

lished view that directional migration of Physarum amoebae is caused by the directionality

of the flow waves [15].

By juxtaposing our modeling and experimental work, we have identified specific forms

of generation and transmission of cellular forces which plausibly drive the migration of

Physarum amoebae. Within the context of our adhesion model, our simulations and experi-

ments reveal a distinct pattern of spatiotemporal coordination between contraction and adhe-

sion which reproduces the experimentally measured cytoplasmic flows and traction stresses,

and the scale of cell migration speed. This coordination pattern consists of a phase lag

of 3/4 cycle between adhesion and contraction (φ ≈ 3π/2). In addition to validating the

model, this result provides insight into the underlying mechanism of amoeboid motility. The

particular adhesion coordination pattern we highlight is extremely robust to perturbations

in adhesive interactions with the extracellular environment, and results in nearly maximum

migration speed within the context of the model. Interestingly, the adhesion coordination

pattern that produces maximum migration speed (φ = 5π/4) is less robust, possibly because

it does not properly reproduce the relative timing of flow and traction stress. This insight

into the potential compromises of different adhesion coordination would not have been pos-

sible through experimental investigations alone. Our model allows us a direct control over

the coordination of adhesion that we are unable to control in a laboratory setting.

We note that our frictional adhesion model is rather independent of the precise nature

of the cell-substrate interactions. While this model could be justified as a time averaged

effect of integrin-like molecular binding, this assumption is not necessary to arrive at the

precise mathematical form that we use. Indeed, it is unclear how Physarum exerts stresses

on its surroundings. Previous models have suggested that wave-like patterns of contraction

may spontaneously arise from the coupling of the mechanics and chemistry of contraction in

Physarum [24, 46]. It is plausible that a similar mechanism may give rise to a wave-like mod-

ulation of the strength of adhesive interactions. Though it is unlikely that microplasmodia

39



migrate utilizing adhesive patterns as simple as our idealized wave of adhesion, our model-

ing assumptions are consistent with a variety of possible mechanisms. More experimental

investigation into the specific nature of physarum-substrate interaction is required.

While somewhat unique, the motility of Physarum microplasmodia shares fundamen-

tal characteristics with other forms of amoeboid migration. Rythmic cellular contractions of

period ∼ 100 sec are known to drive the motion of neutrophil-like and Dictyostelium amoe-

boid cells [14, 31]. In particular, while intracellular flow kinematics do not fully determine

the motility of physarum, our results suggest that cellular contractions are used to generate

intracellular flows and cell locomotion. The use of pressure-driven flows of cytoplasm to gen-

erate translation has been widely observed in motile cells [2, 14, 51]. This is in contrast to cell

types which utilize the polarity of actin filaments to generate polymerization-driven protru-

sions such as lamellapodia and filapodia [52]. Our experimental model does not generalize to

this type of motility, but our modeling framework could be adapted to account for network

polarity and polymerization stresses. Furthermore, the observed motility of Physarum is

consistent with a model of cell-ECM interaction that does not require specific integrin-like

binding molecules. It has been shown that neutrophils undergo amoeboid migration in three

dimensional environments in the absence of specific binding molecules [4]. This contributes

to the growing notion that friction mediated motility is biologically advantageous, as it is

robust to geometric and mechanical changes in the ECM [3, 51].

The form of amoeboid motility we observe in Physarum also shares many character-

istics with locomotion in higher organisms. The traveling wave of contraction is similar to

contraction patterns observed in migrating gastropods, annelids, and dictyostelium slugs. In

both experimental and theoretical investigations of these organisms, it has been seen that the

direction of contraction wave propagation is not the critical factor in determining migration

direction. Rather, migration results from the timing of interactions between the organism

and substrate [9, 53]. As we have previously discussed, this same behavior is observed in our

model.

While Physarum locomotion shares this behavior with various gastropods and an-

nelids, we note that the amoeba moves on a vastly different scale than these organisms.

The slugs observed in [9] ranged from 0.7-28 cm in length, while Physarum microplasmodia

begin to migrate in this fashion after reaching a size of approximately 100 µm. This seems to

indicate that a motility mechanism predicated on traveling waves of strain and appropriately

timed adhesive interactions represents a robust design principle; one which is viable across

40



length scales from cellular to macro. Indeed, the advantageous characteristics of Physarum

have not gone unnoticed by the robotics community, where the organism has been the inspi-

ration for biomimetic design [22, 54].
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Chapter 4

Self-organized mechano-chemical

dynamics in amoeboid locomotion of

Physarum fragments

4.1 Introduction

Amoeboid locomotion is a fast type of cellular locomotion that involves large shape

changes mediated by cell contractility, and does not require biochemically regulated adhe-

sion to the extracellular environment [3, 4, 20, 55]. In addition to its conspicuous biomed-

ical applications, the study of amoeboid locomotion has been recently applied to the bio-

mimetic design of fluid filled, highly deformable robots [22, 56]. Amoeboid organisms such

as Amoeba proteus and Physarum polycephalum are particularly interesting model organisms

for biomimetic design because they develop significant intracellular pressure-driven flows

[57, 58]. Because diffusion across these giant cells is slow, intracellular flows are important

not only to drive motility but also for the transport of chemical signals and nutrients (see

§4.3.4 below and [59]). The non-linear feedback between pressure-driven flow, molecular

transport and cell contractility can lead to rich dynamics that differ from those observed in

smaller cells, and which are yet poorly understood.

This study examines the spatio-temporal dynamics of flow driven amoeboid loco-

motion in the true slime mold Physarum polycephalum. The Physarum plasmodium is a

multi-nucleated slime mold that is composed of a gel-like ectoplasm and a sol-like endoplasm

[60]. During locomotion, the endoplasm flows back and forth in a periodic manner, which
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is customarily characterized as ‘shuttle flow’ [15, 57]. This flow is driven by periodic con-

tractions of cross linked actomyosin fibrils in the ectoplasm [21, 61, 62]. The contraction

is regulated by waves of calcium ions [16, 17], whose propagation is notably influenced by

the endoplasmic flow [63, 64]. The interactions between these physical phenomena can be

associated with the complex spatio-temporal patterns observed in a variety of Physarum

preparations, including non-locomoting protoplasmic droplets, and locomoting plasmodial

fragments of small (∼ 100µm) [21] and intermediate (∼ 1µm) size [65]. These experiments

reported homologous spatio-temporal patterns for a range of different geometries, biologi-

cal strains and environmental conditions, implying that the spatio-temporal coordination of

motility in Physarum plasmodia could be achieved via remarkably robust physical mecha-

nisms. However, investigating the details of these mechanisms has been difficult since the

vast majority of previous experiments recorded a limited amount of data, namely the frag-

ment thickness as estimated indirectly from image brightness. In particular, there is very

limited information about the spatio-temporal dynamics of calcium ions and their relation

with endoplasmic flow and ectoplasmic contractility [64].

Mathematical models facilitate the investigation of spatio-temporal coordination of

Physarum motility by integrating the available experimental data into quantitative frame-

works including variables that may be hard to measure experimentally. Various models have

been constructed under this premise, and the numerical results have reproduced a variety

of experimentally observed spatio-temporal patterns [21, 24, 46, 66]. However, these models

have been so far limited to fixed simple geometries or have neglected key aspects of the

mechano-chemical feedback present in locomoting Physarum fragments.

This paper presents novel multi-channel measurements of mechanical and chemical

variables in plasmodial fragments of Physarum polycephalum undergoing directional migra-

tion. These measurements provide simultaneous spatio-temporal maps of the contractile

forces generated by the fragments on their substratum, the velocities of their endoplasm and

ectoplasm, and the distribution of free intracellular calcium concentration ([Ca2+]i). The

experimental data are analyzed to study how a biological system like Physarum coordinates

the generation of mechanical forces with their shape changes and internal flows via adhe-

sion to its substratum, and how these pressure driven flows transport the chemical signals

that regulate force generation in the first place. The ultimate goal of the analysis is to un-

derstand how these phenomena are spontaneously organized to enable the directional flow

driven locomotion of amoeboid organisms.
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4.2 Methods

4.2.1 Preparation of Physarum fragments

Motile Physarum fragments of approximately 500 µm in length were prepared as in

our previous study [21]. Physarum plasmodia were grown on 1% agar gel (Granulated; BD)

using 150× 15 mm culture plates (BD), fed with oat flakes (QUAKER) and kept in a dark

humid environment at room temperature. Small portions of ∼ 0.2× 0.2 mm2 were cut from

the parent plasmodia, transfered to collogen coated polyacrylamide (PA) gels embedded

with fluorescent beads. A cap made of agarose was placed over the Physarum fragments

immediately after. After several hours, the fragments adapted to tadpole like shape and

perfomed directed migration, with noticeable intracellular streaming.

4.2.2 Gel Fabrication

Collagen-coated PA gels were prepared for traction force microscopy as previously

described [28]. The gel was ∼ 1.5 mm thick and consisted of two layers, the top layer was

thin (∼ 10 µm) and contained 0.5 µm florescent beads (FluoSperes; Molecular Probes).

The gels were fabricated using 5% acrylamide and 0.3% bisacrylamide (Fisher BioReagents),

resulting in a Young’s modulus value equals to 8.73 kPa [67]. The Poisson’s ratio of the gel

was measured to be 0.46 using the forces generated by the Physarum fragments themselves,

following an elastographic traction force microscopy method recently developed by our group

[29]. The cap, made of 0.8% agarose with thickness of 3 mm, prevented the PA gel from

drying out and generate gentle confinement (a ∼ 30 Pa and a ∼ 1 KPa Young’s modulus) to

facilitate the measurement of intracellular flow. More details about the effect of the agar cap

on our measurements and the migration of Physarum fragments can be found in [21, 29].

4.2.3 Microscopy

A Leica DMI 6000B inverted microscope and a PC running Micro-Manager software

were used for image acquisition [30]. Time-lapse sequences were acquired at 16X in both

bright-field and fluorescent-field. First, 10 images were acquired in the bright field at a

frame rate of 5 Hz for flow quantification. Then, a 40-image fluorescence z-stack (∆z = 1

µm) was acquired over 10 sec for traction force microscopy. This 12-second acquisition cycle

was repeated until the cell moved out of the field of view, providing quasi-simultaneous
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recordings of intracellular streaming and traction stresses, given that the variables oscillate

with a much longer period of ∼ 100 sec [15].

4.2.4 Flow Quantification

The cytoplasm of Physarum amoebae is densely packed with intracellular vesicles,

which were used as fiduciary markers to quantify the intracellular streaming velocity by

particle image velocimetry (PIV) [15, 41]. The intracellular domain can be separated as

endoplasmic flow phase and ectoplasmic gel phase with respective characteristic velocities of

10 µm/s and 0.15 µm/s. Different algorithms were used to determine the velocities range

across 2 orders of magnitude. For ~Vsol, we pre-process the raw image sequences using high-

pass, band-pass and low-pass temporal filters as described in our previous paper [21]. Then

we ran an in-house PIV algorithm on each filtered image sequences and asigned the velocity

vector resulting from the sequences that maximizes the PIV signal-to-noise ratio at each

point. As for ~Vgel, we ran PIV on image pair consists of the first and last image in bright

field of each acquisition cycle. The rather long time interval (1.8 second) allowed us to detect

the low velocities of the ectoplasmic gel phase. Points with velocity lower than 0.2 µm/s were

considered as ectoplasm. The PIV interrogation window size and spacing were respectively

32 and 8 pixels, yielding a spatial resolution of 6.5 µm.

4.2.5 Traction force microscopy

The 3D deformation of the PA substrate was measured at its top surface on which

the Physarum amoebae were migrating as reported by del Álamo et al. [28]. Each instanta-

neous fluorescence z-stack was cross-correlated with a reference z-stack which was recorded

at the end of experiment once the amoebae moved out of the field of view. Using these mea-

surements as boundary conditions, we computed the three-dimensional deformation field in

the whole polyacrylamide substrate by solving the elasto-static equation. We then compute

the traction stress ~τ = (τxz, τyz, τzz) exerted by the cell on the substrate using Fourier TFM

methods described elsewhere [28, 31]. The spatial resolution of ~τ was 13 µm in x,y and 1

µm in z.
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4.2.6 Measurement of free calcium concentration

Single-wave length calcium indicators like Calcium Green-1 (Molecular Probes) ex-

hibit an increase in fluorescence upon binding calcium ions and have been successfully applied

to monitor the dynamics of [Ca2+]i. However, the recorded intensity of these indicators can

vary with other factors such as cell thickness. In our experiments, the local thickness of

Physarum fragments can vary up to 50% during migration. Dual-wavelength ratiometric

dyes, with distinct spectra of calcium free and calcium bond forms, can be used to minimize

the effect of variation in cell thickness. However, dual-wavelength dyes require excitation in

the UV range, for which Physarum fragments exhibit significant auto-fluorescence. To solve

this problem, Texas Red (Molecular Probes), which is a calcium insensitive fluorescent dye,

is co-injected into the sample together with Calcium Green-1. The ratio of fluorescent inten-

sity between calcium sensitive dye and background dye are used to monitor the variation of

[Ca2+]i. Both dyes were dextran-conjugated and had a molecular weight of 10 kDa, which

dramatically reduced leakage and compartmentalization compared to their non-conjugated

forms. The dyes were coinjected into the parent mold under a Nikon SMZ-10 microscope

using a PM 1000 cell micro-injection system (MicroData Instrument, Inc). Time-lapse se-

quences were acquired under 20X in bright-field, FITC and TRITC. 10 images in bright field

were acquired first at 5 Hz for flow quantification, followed by one snapshot in FITC for Cal-

cium Green-1 and another one in TRITC for Texas Red. This 5-second acquisition cycle was

repeated for at least 10 minutes, allowing us to obtain a quasi-simultaneous quantification

of intracellullar flow and [Ca2+]i during Physarum migration. Preliminary results obtained

from this acquisition protocol were presented in [64].

4.2.7 Fragment shape statistics

Cell contours are extracted from bright-field microscopy time-lapse sequences as de-

scribed previously [31]. Raw images are digitally thresholded, eroded and dilated in order

to obtain a time-dependent scalar field Ωc(t, x, y) containing ones inside the fragment and

zeroes outside of it. The statistical distributions of fragment shape are determined from

Ωc(t, x, y) following the method outlined in ref. [68]. At each instant of time, Ωc(t, x, y) is

rotated so that the major axis of the fragment coincides with the x direction, and translated

so that the origin (x, y) = (0, 0) is set at the centroid of the fragment. The probability

density function of a point belonging to the interior of the fragment in this reference frame
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is calculated simply as

P (x, y) =
1

Nc

Nc∑
i=1

1

Nt,i

Nt,i∑
j=1

Ωc,i(tj, x, y), (4.1)

whereNc is the number of cells andNt,i is the number of temporal observations corresponding

to the i-th cell. According to this definition, the median cell shape is defined by the iso-

contour P (x, y) = 0.5.

4.2.8 Kymographic representation

To facilitate the analysis of the spatio-temporal organization of endoplasmic flow,

traction stresses, free intracellular calcium, etc., we generated kymographs for the quanti-

ties of interest. We followed the approach introduced by Bastounis et al.[14] for migrating

amoeboid cells. At each instant of time (t) the major axis of cell is aligned vertically (x),

and the measured quantity (q(t, x, y)) is projected and the averaged over the cross section

of the Physarum fragment, i.e.

q(t, x) =

∫
Ωc(t, x, y)q(t, x, y) · ux dy∫

Ωc(t, x, y) dy
, (4.2)

where Ωc denotes the interior of the Physarum fragment, and ux is a unit vector oriented

towards the fragment’s front. Plotting two-dimensional maps of q produces kymographs that

can reveal patterns of organization in the spatio-temporal dynamics of migrating Physarum

fragments.

4.3 Results and Discussion

4.3.1 The spatio-temporal organization of endoplasmic flow and

traction stresses reveals distinct dynamical modes in migrat-

ing Physarum fragments

A few hours after seeding the Physarum fragments on PA gel, we observed that frag-

ments of diameter larger than ∼ 100 µm performed persistent locomotion. Fragments larger

than ∼ 500 µm formed complex branched structures markedly different from an amoeboid
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(a) t=1070s t=1081s t=1092s t=1103s t=1114s t=1125s

50µ

50µm/s

m

(b) t=396s t=416s t=436s t=455s (c) t=462s t=482s t=507s t=527s

Figure 4.1: (a) Instantaneous endoplasmic flow speed and traction stresses exerted on the
substrate by a migrating Physarum fragment. Arrows exhibit the flow speed and colormap
shows the magnitude of traction stresses. (b, c) Instantaneous traction stresses exerted by
two Physarum fragments with different dynamical behaviors, with the stress vectors along
the cell boundary removed. Black circles indicate the location of contraction centers.

shape, and were not considered in this study. We focused our investigation on fragments of

size ∼ 300 µm, which generally adopted a tadpole-like shape, with a more rounded head and

a tapering tail.

Directional locomotion of Physarum fragments requires the spatio-temporal coordi-

nation of endoplasmic flows and traction stresses exerted on a contact surface [21]. Most of

the fragments analyzed in this study developed organized endoplasmic flows that oscillated

between forward and backward motion with a well defined periodicity (Figure 4.1a). The

traction stresses exerted by these locomoting fragments oscillated with a similar period, all

the time showing an inward contractile pattern with larger stresses along the cell periph-

ery. This pattern has been proposed to be analogous to a surface tension [62, 69], and has

been recently linked to the cortical F-actin filaments and their cross-linkers in Dictyostelium

amoebae [13]. Removing the stress vectors near each fragment’s boundary renders the trac-

tion stress generated under the fragment’s body easier to analyze, and unmasks waves of

contraction with distinct spatio-temporal dynamics (Figure 4.1b, c).
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Figure 4.2: Kymographs of longitudinal endoplasm flow velocity (a, d), peripheral traction
stress (b, e), and longitudinal traction stress (c, f) for a peristaltic (a– c) and an amphistaltic
(d– f) Physarum fragment.

The most common organized pattern consisted of traveling waves that propagated for-

ward along the center line of the motile fragment (Figure 4.2a–c). We labeled this migration

mode as peristaltic because their motion was driven by forward traveling waves of contrac-

tion and relaxation (Figures 4.1b and 4.2b,c). This terminology is based on previous studies

of Physarum migration [15, 60, 70], in which peristaltic fragments were designated by ana-

lyzing the dynamics of fragment width change rather than their force generation dynamics.

In Physarum fragments undergoing peristaltic locomotion, both the forward and backward

endoplasmic flow waves are generated from the tail and propagate forward in an approxi-

mately linear fashion. This mode has drawn more attention in previous studies because it

occurs more often and leads to faster migration than other modes [15, 21, 57, 71]. However,

it is not the only migration mode of Physarum locomotion with organized spatio-temporal

dynamics.
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We also observed a less frequent yet distinct mode of locomotion in which the head

and tail contracted and relaxed in an anti-phase manner, and which we named the am-

phistaltic mode. This mode sustains waves of forward and backward endoplasmic flow that

alternate periodically, similar to the peristaltic mode. However, in Physarum fragments un-

dergoing amphistaltic locomotion, the waves of forward endoplasmic flow originate at the

fragment’s front and propagates backward, whereas the waves of backward flow originate at

the fragment’s back and travel forward. This dynamics leads to evident ‘V’-shaped patterns

in the flow kymograph (Figure 4.2d). The instantaneous spatial patterns of traction stresses

in amphistaltic Physarum fragments showed inward contraction similar to peristaltic ones

(Figure 4.1c). However, the traction stress kymographs revealed remarkable differences in

their spatio-temporal dynamics. Instead of traveling waves, amphistaltic fragments sustained

standing waves of traction stress with alternating peaks and valleys at the front and rear of

the fragment (Figure 4.2e, f). Consistently, traction stress snapshots of amphistaltic frag-

ments show localized contraction centers in the front and rear part of the fragment (black

circles in Figure 4.1c). This pattern of contraction resembles that of the Physarum “dumb-

bells” previously described by others [38, 42, 62, 72]. These dumbbells form two thick round

heads connected by a tube that contract alternatively while the fragment stays in place. We

also observed a few contractile dumbbells in our experiments. However, the amphistaltic

Physarum fragments reported here always adopted a tadpole-like shape and were able to

move persistently.

Out of the 40 fragments in our study, 20 exhibited peristaltic behavior, 8 were am-

phistaltic, and 2 alternated between peristaltic and amphistaltic. In addition, 5 fragments

had organized spatio-temporal dynamics that did not match either the peristaltic or am-

phistaltic patterns, and 5 more fragments had disorganized dynamics. Once a Physarum

fragment began migrating either by the peristaltic or by the amphistaltic mode, the frag-

ment would sustain the same mode for the duration of the whole experiment, i.e. & 30 mins

& 20 cycles. Thus, the spatio-temporal dynamics of migrating Physarum fragments ap-

pear to settle into relatively robust oscillatory behaviors. This observation generally agrees

with Rodiek et al.[65], who measured the height oscillations of ∼ 1 mm–long Physarum

fragments while they were migrating freely without being constrained by an agarose cap.

These authors reported two spatio-temporal patterns in their measurements that resem-

ble the peristaltic and amphistaltic behaviors found in our experiments: traveling waves

that propagated at ∼ 5µm/s, and standing waves with multiple spatial nodes separated
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Figure 4.3: Kymographs of flow and traction stress of two Physarum that exhibited uncom-
mon spatio-temporal dynamics. (a, b, c) Kymographs for a fragment exhibiting organized
dynamics with two consecutive backward flow waves for each forward flow wave (reminiscent
of a period doubling state). (d, e, f) Kymographs for a fragment exhibiting disorganized
dynamics.

by wavelength of ∼ 100µm with period of 10 minutes. We observed a few fragments that

shifted spontaneously between the peristaltic and the amphistaltic mode while migrating,

as well as other organized spatiotemporal patterns including 2-to-1 backward/forward flow

waves (Figure 4.3a,b,c) and disorganized patterns (Figure 4.3d,e,f). This type of behavior

is typical for systems with complex non-linear dynamics. Consistently, previous experimen-

tal studies on Physarum protoplasm droplets found traveling waves, standing waves, and

chaos in local droplet thickness [73, 74]. In addition, recent mathematical models that in-

clude feedback between contraction, endoplasmic flow and calcium signaling in simplified

non-migratory geometries have predicted a number of dynamical regimes depending on the

level of mechano-chemical feedback and the rheological properties of the endoplasm [25, 66].
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Figure 4.4: (a)–(e) Box plots of motility parameters corresponding to peristaltic (N = 20)
and amphistaltic (N = 8) Physarum fragments. (a) Average oscillation period. (b) Average
magnitude of the traction stresses. (c) Average endoplasmic flow speed. (d) Average fragment
length. (e) Shape factor. (f) Average shape of peristaltic (red line) and amphistaltic (blue
line) types. Shaded regions contain 90% of the statistical distribution of shapes for each
fragment type.

In an attempt to find differences in the properties of peristaltic and amphistaltic

Physarum fragments that could explain their distinct dynamics, we compared their oscilla-

tion period, average traction stress magnitudes and average endoplasmic flow speeds. How-

ever, we did not find any significant difference in these parameters between the two types of

fragments (Figure 4.4a-c). Furthermore, both peristaltic and amphistaltic fragments adopted

a similar tadpole-like shape during migration (Figure 4.4f). Rieu et al.previously reported

that Physarum fragments with distinct dynamics of force generation can be differentiated

by the number of membrane invaginations [62]. To quantify whether there were differences

in the number of membrane invaginations of Physarum fragments undergoing peristaltic and

amphistaltic locomotion, we measured the shape factor Sf = P 2(4πA)−1, where P is each

fragment’s perimeter and A is its area. This parameter is unity for a perfect circle and in-

creases as the number of lobes and invaginations in the perimeter of the fragment increases.
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Figure 4.5: (a) Box plot of average migration speeds in peristaltic (N = 20) and amphistaltic
(N = 8) Physarum fragments. Two asterisks denote statistically significant differences be-
tween medians (p < 0.01). (b) Simplified model schematic for the distance traveled by
endoplasmic fluid particles per oscillation cycle. Top panel, peristaltic fragments; bottom
panel, amphistaltic fragments. (c) Scatter plot of the distance ∆xcent traveled by the cen-
troid of the Physarum fragment per oscillation cycle vs. the net distance ∆xflow traveled
by an endoplasmic fluid particle. •, peristaltic fragments; �, amphistaltic fragments. The
dashed line is ∆xcent = ∆xflow.

No significant difference was found between the two types of fragments (Figure 4.4e). On-

going measurements of the endoplasmic rheological properties [75] should clarify if these

properties play an important role in establishing the spatio-temporal dynamical state of mi-

grating Physarum fragments, as predicted by some mathematical models [25, 66]. Despite

these similarities, the average migration speeds of peristaltic and amphistaltic fragments

were significantly different, as shown in the next section.

4.3.2 The spatiotemporal dynamics of endoplasmic and ectoplasmic

flows affect the migration speed of Physarum fragments

We found that Physarum fragments undergoing peristaltic migration were in aver-

age ∼ 3 times faster than those undergoing amphistaltic migration (Figure 4.5a). This

difference in locomotion speed is particularly remarkable considering that both peristaltic

and amphistaltic fragments have similar sizes and shapes, and that their traction stresses

and internal flow speeds have similar magnitudes and oscillation periods (Figure 4.5). A

possible explanation can be found by noting the different asymmetries in the motion of

endoplasmic fluid particles that arise from the different spatio-temporal dynamics of flow
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Figure 4.6: Instantaneous snapshots showing velocity vectors for endoplasm (blue) and ec-
toplasm (green) flows in a migrating Physarum , superimposed on the bright field image of
the fragment. The pseudo-color map indicates the magnitude of velocity according to the
colorbar in the right hand side of the panel. (a) Frontal part of the fragment. (b) Rear part
of the fragment.

waves in each locomotion mode. Figure 4.5 presents this idea by plotting spatio-temporal

particle trajectories in a simplified model in which the endoplasmic flow has constant speed

and waves propagate forward and backward with constant wave speeds along the Physarum

fragment. In peristaltic fragments, Matsumoto et al.[15] noted that fluid particles spend

longer times traveling forward than backward, yielding net forward displacement every cycle

period (∆xflow > 0, Figure 4.5c). Extending this argument to amphistaltic Physarum frag-

ments predicts that fluid particles approximately return to their original location at the end

of each period (Figure 4.5c). Consistent with this reasoning, a scatter plot of the net forward

motion of the centroid of a fragment (∆xcent) vs. ∆xflow clearly segregates the amphistaltic

and peristaltic locomotion modes (Figure 4.5b).

It should be noted that the flow kinematics argument hold as long as the Physarum

fragments do not experience shape changes over time scales longer than their ∼ 100 s oscilla-

tion period. This could explain Rodiek’s et al.[65] observation that unconstrained Physarum

fragments that sustain traveling waves in their height advance their front slower than frag-

ments that sustain multi-nodal standing waves, because their fragments undergo substantial

elongation and flattening during the duration of the experiment. In our experiments, this

secular thickness variations are constrained by agarose cap placed on top of the sample.

While it provides a plausible explanation for the major differences in migration speed

found between peristaltic and amphistaltic fragments, the flow kinematics hypothesis also
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poses a paradox because it predicts that amphistaltic fragments should not be able to mi-

grate. Furthermore, we previously used mathematical modeling to show that the asymme-

try of endoplasmic flow velocity alone cannot determine the migration speed of migrating

Physarum fragments [21]. The data in figure 4.5(b), which shows that ∆xcent is significantly

lower than ∆xflow, agrees with this idea. Physarum plasmodia are often conceptualized as

being composed of a two-phase fluid in which the sol and gel phases respectively represent

the endoplasm and the ectoplasm. Therefore, it is reasonable to expect that the dynamics

of the ectoplasm may contribute to the net migration speed of the plasmodium.

We still know little about the dynamics of the ectoplasm because its motion is signifi-

cantly slower and harder to measure than that of the endoplasm. In this study, we expanded

the image processing algorithm for the quantification of intracellular flow [21], in order to

measure the flow velocity of the ectoplasm in addition to that of the endoplasm (see §4.2

and Figure 4.6).

Ectoplasm velocity is organized spatio-temporally in the form of traveling waves and

standing waves in peristaltic and amphistaltic fragments respectively (Figure 4.7a,d), con-

sistent with the dynamics of the traction stresses generated by the fragments (Figure 4.7b,e)

and their endoplasm flow velocity (Figure 4.7c,f). However, in both types of fragments the

ectoplasm velocity is asymmetric reaching substantially higher values during forward mo-

tion than during backward motion, particularly in the rear. These results suggest that the

dynamics of the ectoplasm also contribute to the net motion of Physarum fragments.

4.3.3 Dynamics of substratum adhesion experience smooth slip-

stick transitions

Inspection of Figure 4.7 suggests that traction stresses generation is closely related

to the motion of the ectoplasm over the substratum, which is sound considering that the

ectoplasm forms a cortical layer directly in contact with the plasmodial membrane. We

explored this relationship in more detail in order to gain insight about the regulation of

substratum adhesion in migrating Physarum fragments, which is not well understood since

integrin-like adhesion proteins have not been identified yet for this organism.

We plotted the time evolution of the ectoplasm speed together with that of the trac-

tion stresses at the front of a fragment (Figure 4.8a), and with the phase difference between

these two variables. The time lag between the two signals was calculated by maximizing their
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Figure 4.7: Kymographs of longitudinal ectoplasm flow velocity (a, d), longitudinal traction
stress (b, e), and longitudinal endoplasm flow velocity (c, f) for a peristaltic (a–c) and an
amphistaltic (d–f) Physarum fragment. In panels (a, d), we have added bright green and
purple at the floor and ceiling of the colormaps to emphasize asymmetries in the velocity
data.

cross-correlation over interrogation windows of 95 seconds and 50% overlap. The instanta-

neous phase difference was then obtained as the ratio of time lag and the averaged oscillation

period (83 seconds). This analysis revealed that the traction stresses and ectoplasm velocity

oscillate in phase for the most part. This result suggest that adhesion in this region follows

the viscous-like regime τ = ξv where τ is the adhesion stress, v the ectoplasm velocity and ξ

is a friction factor. This result is in agreement with theoretical studies describing biological

friction as the consequence of the thermally driven formation and rupture of molecular bonds

[49].

In contrast to our observations at the front of the fragments, the time evolutions of

ectoplasm speed and traction stresses have a complex relationship at the rear, alternating
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(rad)

(a) Front

(b) Rear

Figure 4.8: Time histories of longitudinal ectoplasm velocity ( 4 ) and longitudinal traction
stresses ( ◦ ) at two specific locations in the front (panel a) and the back (panel b) of the
peristaltic Physarum fragment shown in Figure 4.7. The tiled bars at the top of the plots
represent the time-dependent phase differences (in radians) between the ectoplasm velocity
and the traction stresses. Blue and orange tiles represent phase differences near −π/2 (cell
and substrate stick) and zero (cell and substrate slip) respectively, as indicated by the color
scale at the top of the figure.

intervals at which they oscillate in phase with intervals in which the ectoplasm velocity

precedes the traction stresses by approximately 1/4 of an oscillation period. Since a time

integration of endoplasm velocity (i.e. endoplasm displacement) would generate the same

phase difference of 1/4 period, we interpret this result as indicative of the occurrence of

stick-slip transitions at the rear of Physarum fragments. Slip-stick transitions occur when ξ

has a non-monotonic dependence with the ectoplasm velocity, which is a common behavior

in biological friction [49]. This type of transitions have been linked to the dramatic shape

oscillations experienced by cells such as keratocytes when crawling on flat substrata [76],
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Figure 4.9: Time sequence of ratiometric measurememt of [Ca2+]i during the locomotion of
a typical peristaltic cell showing a Ca2+ wave propagating forward.

and it has been proposed that the frequency of these oscillations correlates with the speed of

cell crawling [31, 68, 76, 77]. In the present experiments, we did not observe sharp changes

in traction stress, ectoplasm speed or fragment length occurring at the stick-slip transitions,

suggesting that these transitions are mild in migrating Physarum fragments. We analyzed

kymographs of the phase difference between the time evolutions of traction stress and ec-

toplasm speed (not shown). While these data were somewhat noisy, they suggested that

periodic stick-slip transitions propagate from the rear to the front of peristaltic fragments,

while a standing stick-slip transition seems to form near the front of amphistaltic fragments.

The dynamics of these transitions could provide a mechanism for Physarum to regulate the

strength of their substrate adhesion in a way that supports asymmetry in the motion of

the ectoplasm. However, additional experiments and further analysis are needed to confirm

these ideas.

4.3.4 Dynamics of free intracellular calcium

The transport of calcium ions in Physarum fragments occurs in a complex regime

that likely couples convection, diffusion and a time-dependent geometry caused by fluid-

structure interactions at the fragment’s lengthscale. Using reported values of cytoplasmic

Ca2+ diffusivity, D = 5.3× 10−10m2/s [78], and our measurement of intracellular flow speed

v ∼ 5µm/s, we estimate that characteristic timescales for Ca2+ diffusion and convection

over a cell length (l ∼ 100µm) are the same, tD = tC = 20s. Furthermore, this transport

timescale is similar to the period of cellular shape changes (T ≈ 100s) observed in our

59



Logitudinal Speed of Endoplasm [µm/sec]

Time [sec]

C
e
ll
 A

x
is

 [
µ

m
]

 

 

0 50 100 150 200 250 300

100

200

300

400

500

−5

0

5

Logitudinal Speed of Endoplasm [µm/sec]

Time [sec]
C

e
ll
 A

x
is

 [
µ

m
]

 

 

0 50 100 150 200 250 300 350

100

200

300

400

−5

0

5

Ratio of Fluorescence Intensity (FITC/TRITC)

Time [sec]

C
e
ll
 A

x
is

 [
µ

m
]

 

 

0 50 100 150 200 250 300

100

200

300

400

500

0.9

0.95

1

1.05

1.1

Ratio of Fluorescence Intensity (FITC/TRITC)

Time [sec]

C
e
ll
 A

x
is

 [
µ

m
]

 

 

0 50 100 150 200 250 300 350

100

200

300

400

0.9

1

1.1

(a)

(b)

(c)

(d)

Figure 4.10: (a) Kymograph of ratiometric measurement of [Ca2+]i in a typical peristaltic
fragment. (b) Kymograph of instantaneous longitudinal velocities of endoplasmic flow of the
same peristaltic fragment in Figure 4.10(a). (c) Kymograph of ratiometric measurement of
[Ca2+]i in a typical amphistaltic fragment. (d) Kymograph of instantaneous longitudinal
velocities of endoplasmic flow of the same amphistaltic fragment in Figure 4.10(c).

experiments.

In order to study the relation between endoplasmic flow and the distribution of free

intracellular calcium, we performed ratiometric measurements of free ion concentration,

[Ca2+]i, jointly with intracellular flow. Figure 4.9 shows a time sequence of [Ca2+]i through-

out one oscillation cycle of a typical peristaltic cell. Although this type of measurement is

inherently noisy, it is possible to discern waves of high calcium concentration propagating

from the rear to the front of the Physarum fragment. The spatio-temporal dynamics of these

waves are clearly observed when [Ca2+]i is represented in kymographic form. Figure 4.10

shows kymographs of [Ca2+]i and intracellular flow that are representative of the peristaltic

and amphistaltic migration modes.

Both for the peristaltic and amphistaltic modes, the spatio-temporal patterns of cal-

cium concentration are consistent with the dynamics of the traction stress, endoplasmic flow

and ectoplasmic motion. In Physarum fragments undergoing peristaltic migration, we found

waves of [Ca2+]i that traveled from the rear to the front of the fragment (Figure 4.10a),

whereas patterns of [Ca2+]i standing waves were observed for Physarum fragments under-
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going amphistaltic locomotion (Figure 4.10c). The phase speed of the traveling waves was

found to agree well with the measured endoplasmic flow velocity, v0 ≈ 5µm/s, suggesting

that endoplasmic flows may be important in sustaining the dynamics of [Ca2+]i transport.

To test this hypothesis, we considered a simple 1-D model for the transport of a

passive scalar in non-dimensional form,

St ∂tc+ vendo∂xc = Pe−1∂xxc (4.3)

where vendo is a prescribed velocity normalized with v0, the spatial variable x ε[0, 1] is nor-

malized with the fragment length L, and the time variable t is normalized with the period

of the flow oscillations T . The two non-dimensional parameters in this equation are the

Strouhal number St = L/(v0T ) and the Péclet number Pe = Lv0/D, both of which have

values of order unity in migrating Physarum fragments according to our experimental mea-

surements and [78]. The solution to this transport equation exhibits traveling waves of

passive scalar when vendo is set to mimic our experimental measurements for peristaltic frag-

ments, e.g. vendo = sin[2π(x − ζt)] where the non-dimensional phase velocity ζ ≈ 5 (Figure

4.11a–b). Likewise, this simple model generates standing waves of passive scalar when the

endoplasmic velocity is set to mimic our measurements for amphistaltic fragments (Figure

4.11c–d). Qualitatively, these results are robust with respect to changes in the parameter

values, and in the boundary conditions (e.g. Neumann vs. Dirichlet) and initial conditions.

For instance, the passive scalar in Figure 4.11 evolves from random initial conditions into

temporally periodic pattern in about one oscillation cycle.

It is evident that a flow-transport-only model for the dynamics of intracellular calcium

does not capture many of the quantitative features observed in our measurements of Figure

4.10. It is also evident that such a simplistic model neglects potentially relevant phenomena

such as chemical kinetics of phosphorylation/dephosphorylation of the myosin light chain,

Ca2+ influx through various calcium channels on plasma membrane, Ca2+ release from the

sarcoplasmic reticulum and endoplasmic reticulum through IP3 channels, etc [79–84]. Nev-

ertheless, the ability of such a simple model to generate traveling waves and standing waves

of a passive scalar highlight the importance of endoplasmic flow in the self-organization of

dynamical patterns in migrating Physarum fragments.

The molecular regulation of acto-myosin contractility by calcium should be the same

for Physarum fragments following the peristaltic and amphistaltic migration modes, given
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(b) Endoplasm Flow
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Figure 4.11: (a) Kymograph of concentration of passive scalar in a mimic peristaltic frag-
ment. (b) Kymograph of longitudinal velocities of endoplasmic flow representative of a peri-
staltic fragment. (c) Kymograph of concentration of passive scalar in a mimic amphistaltic
fragment. (d) Kymograph of longitudinal velocities of endoplasmic flow of endoplasmic flow
representative of an amphistaltic fragment.

that we prepared all the fragments using the same protocol and the emergence of these

modes was spontaneous. Thus, we hypothesized that the phase coordination between the

dynamics of calcium and contractility waves would be the same for both migratory modes.

While it was not possible to measure [Ca2+]i and traction stresses simultaneously in our

experiments, we measured both [Ca2+]i jointly with endoplasmic flow, and traction stresses

jointly with endoplasmic flow. The flow data were then used as reference to temporally align

the oscillations of [Ca2+]i and traction stress for Physarum fragments following the same

migration mode. We plotted time profiles at specific locations at the front and rear of each

fragment (Figure 4.12), and juxtaposed the time evolution of endoplasmic flow velocity to

that of [Ca2+]i or traction stresses (Figure 4.12).

For the peristaltic migration mode, the time evolutions of endoplasmic flow and

[Ca2+]i were found to have opposite phases at the front of the Physarum fragment (Fig-

ure 4.12a). The time evolutions of endoplasmic flow and traction stress also had opposite

phases at the fragment front (Figure 4.12b), implying that the oscillations in [Ca2+]i and

traction stress were in phase. The same relationship between [Ca2+]i, endoplasmic flow and

the traction stresses can be deduced from the time profiles of these variables recorded at the
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Figure 4.12: Top row (a, c, e, g): Time histories of endoplasmic flow velocity ( ◦ ) and
ratiometric measurement of [Ca2+]i ( 4 ), averaged along the width of a peristaltic fragment
(panels a and c) and an amphistaltic fragment (panels e and g). Bottom row (b, d, f, h):
Time histories of endoplasmic flow velocity ( ◦ ) and peripheral traction stress ( � ),
averaged along the width of a peristaltic fragment (panels b and d) and an amphistaltic
fragment (panels f and h). Panels (a, b, e, f): Fragment front. Panels (c, d, g, h): Fragment
rear.

rear of peristaltic Physarum fragments (Figure 4.12c, d). In amphistaltic fragments (Fig-

ure 4.12e–h), the phase coordination between the waves of [Ca2+]i, flow speed and traction

stress was the same as in peristaltic fragments. Our finding that the calcium concentration

is in phase with traction stresses agrees with previous observations [63, 85, 86]. Yoshiyama

et al.[63] interpreted this result as an indication that calcium inhibits acto-myosin contrac-

tility in Physarum because the maximum calcium concentration coincides with the onset

of relaxation. However, the kinetics of the involved biochemical reactions could make this

response more complicated [87].

4.4 Conclusion

The multi-nucleated slime mold Physarum polychephalum can be used to generate

amoeboid-like motile cells by excision of ∼ 100 µm-long fragments from the parent mold.

These fragments are formed by a cortical gel-like ectoplasm that surrounds a sol-like endo-

plasm. Periodic contractions of the ectoplasm drive shuttle flows in the endoplasm, which

transport the nutrients and calcium ions necessary for contraction. The feedback among these

processes can lead to rich spatio-temporal dynamics that significantly affect the migration

behavior of Physarum fragments. However, our understanding of these dynamics is limited
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by a lack of direct measurements of quantitative variables. This study provides detailed

concurrent measurements of the spatio-temporal distribution of endoplasmic and ectoplas-

mic flow, contractile forces and [Ca2+]i in migrating fragments of Physarum plasmodia. To

the best of our knowledge, this is the first experimental quantification of mechano-chemical

dynamics in a model organism of flow-driven amoeboid migration.

The spatio-temporal patterns found in the measured quantities suggests that the

mechano-chemical dynamics of these fragments can lead to a variety of both disorganized

and organized states. We focused our attention on two particularly stable organized states

associated with periodic oscillations in flow, contractile forces and [Ca2+]i. In the most

stable (i.e. frequently observed) state, the mechano-chemical dynamics of the fragment are

organized in the form of traveling waves that propagate from the rear to the front of the

fragment, in good agreement with the peristaltic behavior studied in previous works [15, 21].

We also investigated a second stable dynamical state that we termed amphistaltic because

it consists of alternate anti-phase contractions and relaxations of the fragment’s front and

back (from αµφß in Greek meaning “on both sides”). These anti-phase contractions are

associated with standing waves of traction stresses and [Ca2+]i, but they lead to traveling

waves of endoplasmic flow with alternating propagation directions; waves of forward flow

propagate backward and viceversa, leading to clear V -shape patterns in spatio-temporal

flow kymographs.

Our data suggest that the transport of calcium ions by the endoplasmic flows observed

in Physarum fragments may be fundamental to coordinate the spatio-temporal patterns of

traction stresses that drive their locomotion. Specifically, we showed that the forward trav-

eling waves of endoplasmic flow found in peristaltic fragments can sustain traveling waves

of calcium concentration, consistent with our experimental measurements of [Ca2+]i. In a

similar fashion, the flow waves of alternating propagation direction observed in amphistaltic

fragments can sustain standing waves of [Ca2+]i, also consistent with our experimental mea-

surements. Furthermore, we showed that the patterns of concentration of calcium ions evolve

in space and time with the same phase as those of the traction stresses.

Apart from the organization of their mechano-chemical dynamics, we did not ob-

serve significant differences between the properties of peristaltic and amphistaltic Physarum

fragments. Both types of fragments were found to have similar sizes and shapes, and their

traction stresses and internal flow speeds were found to have similar magnitudes and os-

cillation periods. Nevertheless, the average migration speed of peristaltic fragments was
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measured to be 3 times higher than the migration speed of amphistaltic fragments. We

argued that this difference could be caused in part by the spatio-temporal dynamics of the

endoplasmic flows in the two types of fragments. In peristaltic fragments both positive and

negative endoplasmic velocity waves propagate forward, which allows for positive net endo-

plasmic motion every oscillation cycle [15]. On the other hand, in amphistaltic fragments

positive and negative velocity waves propagate in opposite directions, which leads to zero

net endoplasm motion.

Albeit slowly, amphistaltic fragments undergo peristent directional migration over

long periods of time. Thus, it is evident that analyzing the symmetry of endoplasm flow

is not sufficient to capture the migratory behavior of Physarum fragments. In contrast to

the endoplasm, we observed that the ectoplasm of both peristaltic and amphistaltic frag-

ments flows faster forward than it does backward, leading to a significant amount of net

motion per cycle. In a previous study [21], we used numerical modeling to illustrate that

this type of asymmetry in ectoplasm motion would require tight coordination between the

generation of contractile forces and the adhesion of the ectoplasm to the substratum. We

explored this coordination by comparing the time evolutions of the traction stresses gener-

ated by the Physarum fragments and of the motion of their ectoplasm. Our experimental

results suggest that the spatio-temporal coordination between these two quantities may be

realized by means of stick-slip transitions. We occasionally observed stationary “hotspots”

in the measured traction stresses (see e.g. Figure 4.1a), which might be associated with the

stick-slip transitions observed at the fragment tail. These stationary adhesions are however

more common in other types of amoeboid cells such as Amoeba proteus or Dyctiostelium

discoideum. In both cell types, the adhesion sites remain stationary as the cells migrate over

them, leaving a clear signature in the kymographs that consists of horizontal bands [13, 14].

This behavior significantly contrasts with the dynamics of the traction stresses observed in

migrating Physarum fragments. Finally, our data provide preliminary evidence that these

transitions might be organized in the form of traveling or standing waves, consistent with the

dynamics of endoplasmic flow, contractility and calcium distribution. Further experiments

and analyses are needed to confirm and expand this mechanistic model.
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Chapter 5

Locomotor adaptability of the

schistosome pathogen to changes in its

physical environment: mechanical

principles and implications for drug

discovery

5.1 Introduction

Schistosomiasis is a ‘neglected’ infectious disease of the tropics that infects more than

240 million of the world’s poorest people in Africa, South-East Asia and South America [88].

The three principal species of this flatworm infecting humans are Schistosoma mansoi, S.

haematobium and S. japonicum. Mature flukes live in the venous blood system where they

mate and produce eggs which eventually exit the body via the feces or urine, depending on

species. Many eggs, however, become trapped in various internal tissues and organs, inducing

chronic inflammation and fibrosis that manifest as pain, malaise and a decreased ability to

attend school or perform manual labor. Given its morbidity, schistosomiasis is a focus of

various (inter)national drug delivery campaigns to decrease prevalence and incidence.

Infection is established via free swimming larvae (cercariae) that are released from

snail intermediate hosts. After penetration of the skin, the larvae (∼ 200× 100 µm) trans-

form to schistosomula which traverse the lungs and eventually establish in the venous blood
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system. Worms mature as males or females (each up to 1 cm long): maturation of the female

depends on intimate contact with the male worm which enfolds the female in a specialized

gynecophoral canal. Males are responsible for transporting the slender cylindrical females

around the venous system for deposition of eggs.

Schistosomes are soft-bodied, acoelomate triploblastic metazoa that possess a complex

muscular system made up of circular, oblique and longitudinal muscles intricately interlaced

with a nervous system that utilizes both classical and peptidergic signaling systems [89].

This neuromuscular complexity results in a remarkable plasticity/pliancy in parasite shape

and movement that are augmented by two anteriorly-placed oral and ventral suckers which,

presumably, maintain the worm’s position on the vein wall and aid in locomotion. S. man-

soni is found throughout the hepatic portal and mesenteric veins, which possess marked

transitions in vessel lumen diameter (D) and blood flow speed (v), ranging from D > 1 cm

and v ∼ 30 cm/s within the hepatic portal vein [90] to D < 0.1 mm and v ∼ 1 mm/s within

the mesenteric veins. Considering that the body diameter of a mature male worm is around

0.5 mm, it is conceivable that the suckers aid movement in larger veins whereas crawling

and squeezing is employed in the more confined veins, however, locomotion by the adult

has neither been formally investigated nor quantified. In organisms without extremities,

crawling and squeezing typically rely on the exertion of periodic waves of shear stress (also

known as traction stress) on the surrounding environment [9, 91–95]. Organisms relying on

this mechanism of locomotion can control and modify the characteristics of these waves in

order to adapt their migration to diverse properties of the surrounding environment, such as

surface roughness, adhesiveness and confinement [9–11, 21, 44].

The mechanics underlying schistosome locomotion are unknown. Neither is it known

whether and how the flatworm adapts its locomotion to the varying conditions of flow shear

stress and physical confinement encountered in different parts of the hepatic portal and

mesenteric venous systems. Specifically, how the pathogen organizes the traction stress

generated by its suckers and body to achieve persistent locomotion is unknown. Nor is it

clear whether the parasite employs crawling or squeezing when confined. Moreover, we do not

understand whether the pathogen can engage muscle and sucker movement in a coordinated

/ synergistic manner. Understanding these activities, would complement recent insights into

the physical organization of the pathogen’s neuromuscular system. Further, given that the

neuromuscular system of parasitic worms is a rich source of drug targets, being able to

quantify and differentiate the action of experimental chemistries on schistosome locomotion,
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including relative to the only drug available for treatment, praziquantel, would offer value

in the discovery and development of new drugs.

In this study, we explored the mechanics of locomotion of the schistosome pathogen

under physiologically relevant conditions using self-designed experimental setups and de-

vices. We revealed, for the first time, that S. mansoni change the locomotion mechanisms

when facing different physiologically relevant mechanical challenges. S. mansoni exclusively

use their oral and ventral suckers generating forces to migrate in the environment without

confinement around their body. When subjecting to flow of varying magnitude, S. mansoni

actively adjust their grabbing strength via their suckers to remain attached to the substrate.

However, S. mansoni switched to a completely different locomotion strategy when crawling

through restrictive conditions by applying traveling waves of strong traction stress along

the body. Strikingly, we discovered the sucker action and body contraction wave can be

coordinated to achieve faster locomotion when migrating under restrictive environment.

5.2 Methods

5.2.1 Ethics statement

Maintenance and handling of small vertebrate animals were carried out in accordance

with a protocol approved by the Institutional Animal Care and Use Committee (IACUC)

of the University of California San Diego. UCSD-IACUC derives its authority for these

activities from the United States Public Health Service (PHS) Policy on Humane Care and

Use of Laboratory Animals, and the Animal Welfare Act and Regulations (AWAR).

5.2.2 Preparation of S. mansoni

The acquisition, preparation and in vitro maintenance of S. mansoni have been de-

scribed. We employ a Puerto Rican isolate of S. mansoni that is cycled between Biomphalaria

glabrata snails and female Golden Syrian hamsters (Simonsen Laboratories; infected at 4-6

weeks of age) as intermediate and definitive hosts, respectively. Briefly, adult worms are

harvested from hamsters 42 days post-infection in RPMI or DMEM, and washed 5 times

prior to maintenance overnight at 37 ◦C and 5 % CO2 in Basch medium containing 4 %

FBS, 500 µg/ml streptomycin and 500 U/ml penicillin.
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5.2.3 Polyacrylamide Gel fabrication

Collagen-coated PA gels of 1.5 mm thickness were prepared for traction force mi-

croscopy as previously described [28]. The gels contained a thin top layer (10 µm) impreg-

nated with 1 µmfluorescent beads (FluoSperes; molecular probes) that were used as fiduciary

markers to track substrate deformation. Gels were fabricated using 5 % acrylamide and 0.3

% bisacrylamide (Fisher BioReagents), resulting in a Young’s modulus of 8.73 kPa. The

Poisson’s ratio of the gel was measured to be 0.46, following an elastographic traction force

microscopy method developed by our group [29]. Gels were activated with sulfo-SANPAH

(Thermal Scientific) under UV light and coated with 0.15 mg/ml collagen I (Corning).

5.2.4 Flow Chamber Experiments

To carry out experiments with adult S. mansoni worms under flow conditions rep-

resentative of their in vivo environment, a flow chamber device was fabricated. The device

was assembled using 5 laser-cut acrylic sheets (labeled P1 - P5 in Figure 5.1B), with features

tailored to create an inlet that sequentially leads to a reservoir, a rectangular test section

that can house a polyacrylamide (PA) gel at its bottom, another reservoir and the outlet.

Silicon grease was applied between each sheet to prevent leaking, and the whole setup was

fastened by screws.

Prior to each experiment, the device was assembled and filled with the culture medium

described above. Subsequently, a 1 mL pipette was used to gently introduce adult male S.

mansoni worms into the device from the inlet. After that, the inlet was connected to a 60-ml

syringe (BD) filled with culture medium. The syringe was then gently pushed to drive S.

mansoni onto the PA gel. Then the whole system was placed on the stage of microscope for

image acquisition (see below), with the syringe installed on a NE-4000 double syringe pump

(Pump Systems Inc).

A flow rate of Q = 2.24 ml/min was applied after S. mansoni adhered to the PA

substrate. Then the flow rate was increased in a stepwise manner to Q = 11.2, 56.1 and

100 ml/min, with each flow step lasting for at least 10 seconds. At each flow step, if a

worm was able to adhere for at least 5 seconds, it was regarded as an adhering worm.

The recording was stopped when the worm detached from the substrate or the maximum

flow rate had been reached. We followed the exact solution of the velocity profile in a

rectangular channel presented by Boussinesq [96] to calculate relevant flow properties from
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Q and the chamber geometry, including the Reynolds number, maximum flow velocity, wall

shear stress and pressure gradient (Table 5.1). The viscosity of culture medium was measured

as µ = 8.54 × 10−4 Pa·s at 37◦C using particle tracking microrheology methods previously

calibrated by us [97, 98].

The flow rates in our experiments were chosen to cover the physiologically relevant

induced wall shear stress ranging from human vena cava to venules [99]. Among all vessels

encountered by S. mansoni, the portal vein has the highest flow velocity. Thus a reference

value for wall shear stress in the hepatic portal vein [90] was calculated by assuming a

Poiseuille profile with maximum velocity of 30 cm/s in the center, vessel diameter of 1 cm

and blood viscosity of blood = 2.73 × 10−3 Pa·s at 37 ◦C, resulting in τwall = 0.3275 Pa.

This value falls into the range of wall shear stress induced by the flow steps applied in our

device.

Table 5.1: Calculated relevant flow properties with flow rate Q = 2.24, 11.2, 56.1 and 100
ml/min.

Flow rate (ml/min) 2.24 11.22 56.1 100
Wall shear stress (Pa) 0.0191 0.0955 0.4775 0.851
Max flow velocity (m/s) 0.0056 0.028 0.14 0.25
Reynold’s number 3.28 16.39 81.95 146.1
Pressure gradient (Pa/m) 38.26 191.28 956.4 1704.8

5.2.5 Experiments in a confined environment

To mimic the physically restrictive environment encountered by S. mansoni in narrow

veins, we sandwiched the worms between the polyacrylamide (PA) gel used for traction force

microscopy (see below) and an agar cap (0.8 % agarose, 18 mm diameter and 1.5 mm

thickness), as in our previous work [11, 21]. To generate varying levels of confinement, the

cap is fabricated with a gap of different depths (see Figure 5.1C). The cap was soaked in

culture medium for 30 minutes before the experiment, and was placed on top of the PA gel

with S. mansoni immediately after transferring the worms. In this setup, the worms are

sandwiched in a gap of either 100 or 300 µm, which, considering that the thickness of an

adult male S. mansoni is ∼ 500 µm, generated different levels of confinement on the worms.

Nevertheless, the constraint was not severe enough to arrest the motion of the worms.
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Figure 5.1: (A) Schematics of a free adhesive (sucker-based) locomotion (left), a worm adher-
ing against flow (center), and a worm moving under confinement (right), with corresponding
bright-field images (A1, lateral view; A2 and A3, dorsal views) captured during our exper-
iments; VS and OS refer to the ventral and oral suckers, respectively. (B) Flow chamber
design. The image to the left is a diagram of the device layer design, with all important
dimensions indicated in mm. O1 and O2 are inlet and outlet orifices. The image to the
right is a photograph of the assembled device. (C) Fabrication scheme of the agar caps
system used to generate controlled confinement. A 3D printed PLA washer (grey) and a
round coverslip (green) are glued on a square coverslip (blue). An agar solution (purple) is
poured and covered with a square coverslip to flatten its surface while the solution solidifies.
Varying the number of round coverslips controls the gap produced in the agar gel.

5.2.6 Microscopy

A Leica DMI 6000B inverted microscope controlled by a computer running Micro-

Manager software was used for image acquisition [30]. All experiments were performed at 37
◦C. Different acquisition protocols were followed for the various experiments reported here.

The experiments performed under no confinement (including the flow chamber experiments)

were imaged under 5X and at 1 frame per second (fps) in both bright and fluorescent fields.

This field of view was sufficient to capture the oral and ventral suckers. Under confinement,

we imaged at 2X in order to capture the traction stresses generated along the length of the

body. In addition, we acquired time-lapse image sequences at 10 and 100 fps in bright field
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only. The complete acquisition protocols are listed in table 5.2.

Table 5.2: Acquisition protocols followed in this study under various combinations of flow
rate and constrains.

Experimental
setup

Channel Magnification FPS Purpose

No constrain,
no flow

BF/FLUO 5X 1 Movement, trac-
tion stress under
sucker

No constrain,
with flow

BF/FLUO 5X 1 Traction stress
under sucker

Constrain, no
flow

BF/FLUO 2X 1 Movement and
body wave, trac-
tion stress under
body and sucker

Constrain, no
flow

BF 2X 10 High tempo-
ral resolution
of body wave
and sucker
coordination

constrain, no
flow

BF 5X 100 Velocity of ma-
terial points on
the body

5.2.7 Traction Force Microscopy

The in-plane deformation of the top surface of the PA substrate by moving S. mansoni

was measured by tracking the motion of the fluorescent beads as reported by del Álamo

et al.[28]. Each instantaneous fluorescent image was cross-correlated with a reference image

which was recorded at the end of experiment, after the worms had moved out of the field

of view. Using these measurements as boundary conditions and assuming the deformation

in z direction is 0, we solved the equation of mechanical equilibrium for the PA gel as

previously described [28, 31]. Using this solution, we computed the deformation field in the

whole polyacrylamide substrate, as well as the traction stress vector τ = (τxz, τyz) on its top

surface. The spatial resolution was 20 µmand 50 µmunder 5X and 2X, respectively.
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5.2.8 Kymograph Representation

We generated kymographs to analyze the spatio-temporal dynamics of S. mansoni

locomotion. At each instant of time (t), the centerline of the worm’s body is determined

from bright field images. Then, the distance along the centerline from the tail is used as an

independent variable together with time to create 2D representations by stacking together

data from different time instants. In particular, we plot the spatiotemporal distributions of

worm width w(s, t), and longitudinal traction stress τs(s, t) = τw(s, t) · es(s, t), where τw
represents the local average of the traction stress across the worm’s body width, and es is a

unit vector parallel to the body’s centerline.

5.3 Results

Using a custom-built apparatus, we measured the mechanics of S.mansoni locomotion

in environments designed to replicate those encountered by the parasite in vivo. Figure

5.1A illustrates the three experimental designs employed, namely (i) free adhesive (sucker-

based) locomotion, (ii) locomotion without confinement subjecting to directional flow and

(iii) locomotion under two levels of environment (mild and severe).

5.3.1 The oral and ventral suckers are responsible for schistosome

adhesion and locomotion in a non-confined environment

In the absence of confinement and when adhering to over a flat surface, we observed

that adult male S. mansoni exclusively use their oral and ventral suckers to apply forces

(Figure 2). Both suckers generated various coordinated patterns of traction stress on their

substrate, namely contraction, expansion and rotation. Most frequently, we recorded an in-

ward contractile pattern (Figure 5.2A, D), which could be sustained by worms for prolonged

periods of time. This inward contractility is consistent with a suction pressure difference

being generated inside the sucker. The same pattern was also observed in other environ-

mental conditions, such as under flow and when physically confined (see below). Outward

stress patterns also occurred in some cases for both suckers (Figure 5.2B,E). However, these

force-generation events were transient and not observed when S. mansoni was subjected to

flow. The data suggest that the suckers of S. mansoni are sessile that generate pressure

differences by expanding and contracting the suction cup, as opposed to stalk suckers with
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Figure 5.2: Instantaneous traction stress patterns applied by S. mansoni suckers in an
unconfined environment. (A, B, C) Inward, outward and rotational patterns induced by
the ventral sucker alone. (D, E, F) Inward, outward and rotational patterns induced by the
oral sucker alone. (G) Contractile traction stress pattern applied by coordination of the oral
and ventral suckers. (H) Expanding traction stress pattern applied by coordination of the
oral and ventral suckers. The arrows and color map indicate the direction and magnitude of
the traction stress vector, and have been superimposed on bright field images of the worm.
Scale bar = 1 mm.

a rigid cylinder and generate pressure differences by pulling on the stalk which is connected

with a piston [100].

Rotational traction stress patterns were also often observed under the suckers (Figure

5.2C,F), typically coinciding with changes in the worm’s direction of motion or with in-
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plane rotations of the body. This result indicates that the suckers of S. mansoni are crucial

for pivoting during locomotion. To understand whether the suckers actively coordinate

chiral contractility, or whether the observed chiral patterns were a passive reaction to net

hydrodynamic torque acting on the body of the worm, we performed experiments with worms

that had been cut just posterior to the ventral sucker. In these worm fragments, we observed

both contractile and expansive traction stress patterns in the suckers, but not rotational ones.

Thus, the rotational traction stress patterns observed in whole worms are passive and not

actively generated by the suckers.

While resting, S. mansoni typically adhered with just one sucker, either the oral or

the ventral one. However, we observed coordinated adhesion and traction force patterns

during locomotion, which involved the two suckers as well as the body (‘neck’) between

the suckers. This coordination resulted in “marching”. When marching forward, the neck

elongates supported by the ventral sucker until the oral sucker adheres to the substrate.

Then, the ventral sucker detaches and the neck contracts, dragging the entire worm forward

towards the oral sucker, which, in turn, detaches after the ventral sucker re-adheres to the

substrate. The reverse sequence of actions was also observed for backward marching. The

marching is somewhat similar to the motion of an inchworm, however, for S. mansoni , both

adhesion points are located in a relatively small anterior ‘neck’ region.

In many instances, while marching, the neck elongated or contracted before one of

the suckers had detached from the substrate, which allowed us to measure a pattern of

contractile (Figure 5.2G) or expansive (Figure 5.2H) traction stress coordinated between the

two suckers. This result suggests that the suckers may sense mechanical forces to regulate

the adhesion and locomotion of S. mansoni .

5.3.2 Sucker adhesion strength increases in response to increasing

flow stress

In vivo, mature S.mansoni reside in the hepatic portal and the mesenteric veins where

they are subjected to blood flow stress of varying magnitude. To study the adhesion and

motility of S. mansoni under physiologically representative flow conditions, we performed

experiments in a customized flow chamber (Figure 5.1A2) designed to supply varying levels

of flow rate and shear stress on worms.

Figure 5.3A shows as the flow rate was increased through the flow chamber, the
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Figure 5.3: Substrate adherence of S. mansoni under flow. (A) Percentage of adherent S.
mansoni as a function of flow rate and corresponding wall shear stress (average +/- standard
error, n=4 worm batches with 11, 20, 5 and 5 worms). A dose-response curve based on fitting
to the Hill Equation is plotted in black. The blue square indicates the 50% detachment flow
rate based on the model. (B) Distribution of sucker usage as a function of flow rate and
corresponding wall shear stress (Blue – oral sucker alone; green – ventral sucker alone; red –
both suckers, data are average +/- standard error).

percentage of S. mansoni that could withstand the hydrodynamic drag and remain attached

to the substrate decreased sharply. The corresponding wall shear stress associated with the

flow rate is also labeled in the figure. The sucker primarily responsible for adhesion was the

larger ventral sucker. Whereas > 80% of the worms remained attached at the lowest flow

rate of 2.24 ml/min, ∼80% of the worms were washed away at the highest flow rate of 100

ml/min. As this behavior is reminiscent of the dose-response curve of a drug effect, we fitted

our data using the Hill equation [101, 102] and found that the 50% detachment flow rate

was Q50 = 26.6 ml/min. The traction stress measured in the flow chamber (Figure 4) is

consistent with the observed response in attachment. At low flow rates, the ventral sucker

exerts a contractile pattern of traction stress, as indicated by the dipolar structure of both

the flow (τxz) and the cross-flow (τyz) components of the stress (Figure 5.4A, D, G). This

pattern is similar to that observed in the flow-free condition (Figure 2A). As Q increased, so

did the hydrodynamic drag experienced by the worm, which was balanced by the traction

stress under the ventral sucker. Consequently, τxz increased markedly in magnitude and lost

its dipolar structure, becoming unidirectional (Figure 5.4 D-F).
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Figure 5.4: Instantaneous traction stress patterns applied by S. mansoni anchoring against
flow. (A, B, C) Traction stress patterns for different flow rates. The arrows and color map
indicate the direction and magnitude of the traction stress vector. (D, E, F) Traction stresses
in the flow direction for different flow rates. (G, H, I) Traction stresses perpendicular to the
flow direction for different flow rates. (A, D, G) Flow rate = 11.22 ml/min, (B, E, H) 56.1
ml/min or (C, F, I) 100 ml/min. The black squares in A indicate positions where grabbing
strength is calculated from traction stress. Scale bar = 500 µm.

Our experimental data suggest that there is a maximum level of traction stress the

ventral suckers of S. mansoni can withstand before detaching from their substrate. Consis-

tent with this finding, the worms transitioned from using either the oral or ventral sucker

to attach to the substrate under no flow, to preferentially using the stronger ventral sucker,

and then, increasingly, both suckers as Q was raised (Figure 5.3B). By applying equilibrium
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of forces for the highest flow rate condition, it should be possible to estimate the maximum

traction stress τmax that one sucker is able to withstand before detaching. Assuming that

the flow around the worm is dominated by viscous stress (i.e. steady flow with negligible

inertia),

τmax ∼
µU

R
× 2πRL

Alip
=

18LµU

5R2
∼ 150Pa, (5.1)

where the worm is assumed to have a cylindrical shape of length L ∼ 10−2m and radius

R ∼ 0.25 × 10−3m, µ ∼ 10−3Pa · s is the molecular viscosity of the medium, U ∼ 0.25m/s

is the centerline velocity in the flow chamber, and Alip ∼ π(R+ 2R
3

)R
3

= 5
9
πR2 is the area of

the sucker lip in contact with the substrate, which has been assumed to have a width equal

to R/3 (see Figure 5.1A). This estimation agrees reasonably with the values of the traction

stress measured in the flow chamber for the highest flow rate (Figure 5.4F). Using similar

arguments, the value of τmax,50 corresponding to Q50 = 26.6 ml/min can be estimated to be

τmax,50 ∼ 40Pa.

Interestingly, the cross-flow traction stress kept their contractile pattern but also

increased in magnitude with the flow rate (Figure 5.4G-I). This result suggests that S.

mansoni senses hydrodynamic forces and responds to them by grabbing the substrate with

increasing strength via their suckers in order to remain attached to the substrate. To test

this hypothesis, we plotted the grabbing strength of adult male worms vs. Q for each

worm normalized by its corresponding value for Q = 0 (Figure 5.5). We quantified grabbing

strength from the cross-flow component of the traction stress τyz, as the average magnitude of

τyz at two diametrically opposed regions under the adhering sucker in the axis perpendicular

to the flow (black regions in Figure 5.4A). We then used our estimation of Q50 to categorize

each worm as adherent if they remained attached for Q > Q50 or non-adherent otherwise.

These results indicate that adherent worms gradually increased their grabbing strength in

response to increasing flow rate.

5.3.3 Locomotion of S. mansoni under varying degrees of confine-

ment

To study the motility of S. mansoni in a setup that mimics the more narrow bores

of mesenteric veins, we sandwiched worms between a PA substrate and agar caps that cre-

ated varying levels of confinement (see Methods section). The traction stress exerted by the
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Figure 5.5: Adhesive strength of S. mansoni subjected to stepwise increases in flow rate. The
adhesive strength is calculated from the traction stresses perpendicular to the flow direction
and normalized with its value at zero flow rate. The black boxplots correspond to worms
that remain attached to the substrate for flow rates Q > Q50. The red boxplots corresponds
to worms that detached from the substrate for Q > Q50.

worms varied notably with the level of confinement. As explained above, S. mansoni em-

ploys its suckers to move under no confinement, so that no measureable traction stress was

recorded along the main body (Figure 5.6A-D). When the gap between the PA gel and the

agar cap was slightly narrower (300 µm) than the diameter of the worm’s body ( ∼ 500 µm),

S. mansoni maintained the same inch worm-like mechanism used on free surfaces, but also

generated traction stress along the body with coordinated body contractions. In these con-

ditions of increased substrate resistance, the traction stress applied by the suckers increased

dramatically in magnitude (generally more than 10 times larger than in no confinement con-

dition) to account for the additional friction created between the body and the substrate

(Figure 5.6E-H).

Remarkably, S. mansoni switched to a completely different locomotion strategy when

crawling through more restrictive conditions whereby the gap between the PA gel and the

agar cap was decreased to 100 µm. Specifically, traveling waves of strong traction stress
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Figure 5.6: Instantaneous traction stress patterns exerted by S. mansoni under varying levels
of confinement. (A-D) No confinement. (E-H) Gentle confinement (300 µmgap between
substrate and agar cap). (I-L) Severe confinement (100 µmgap). (A, E, I) Traction stress
exerted while extending the oral sucker forward. (C, G, K) Traction stress exerted while
contracting the neck region between the oral and ventral suckers. Panels B, D, F, H, J,
L are enlarged views of the boxed areas in panels A, C, E, G, L, K. The arrows and
color map indicate the direction and magnitude of the traction stress vector, and have been
superimposed on bright field images of the worm. Scale bar = 1 mm.

along the body of the worm were recorded (Figure 5.6I-L). These waves exhibited a rich

variety of spatio-temporal patterns which could emerge from any position along the body

and propagate towards the anterior or posterior at various wave speeds, leading to a wide

range of locomotion behaviors. Here we focus on persistent forward locomotion, which was

always achieved by peristaltic waves of muscle contraction and traction stress, by performing

a series of experiments with the gap size of 100 µm.

Figure 5.7B displays a representative kymograph of worm body width, revealing that

2-3 peristaltic waves of muscle contraction were present along the worm’s body at any given

time. These contraction waves always (red bands in the kymograph) originated at the

anterior part of the main body, immediately behind the ventral sucker (green dot in Figure

5.7A), and traveled backwards with a wave speed c ≈ 1 mm/s. Of note, while the contraction
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Figure 5.7: Kinematics of S. mansoni movement under confinement. (A) Instantaneous
body width of a worm (represented in color along the worm’s centerline) in a 100 µmgap,
showing three contraction waves. The green and magenta dots indicate the starting (just
behind the ventral sucker) and final (500 µmfrom the posterior tip) positions of the body
width measurement. (B) Kymograph of body width represented as a function of time and
normalized position along the centerline (1=anterior end and 0=posterior end). (C) Instan-
taneous map of body movement velocities. The arrows and color map represent the direction
and magnitude of the velocity vector, and have been superimposed on bright field images of
the worm. Scale bar = 1 mm.

waves traveled backwards, the body of the worm experienced fast (∼ 100 µm/s) forward

displacement in the wave regions, as shown in Figure 5.7C. This figure maps the velocities of

material points on the surface of the worm, which were measured by tracking their associated

texture in bright-field image sequences via cross-correlation analysis, similar to Lai et al.[9].

On the other hand, the regions between contractions, i.e., the interwave regions, experienced

very slow (∼ 10 µm/s) backward displacement.

These data suggest that S. mansoni exploits passive friction to generate thrust forces

at the interwave regions, and that these forces balance the resistance created by the for-

ward displacement of the body in the wave regions. To confirm this idea, we measured the

deformations and traction stress exerted by S. mansoni during locomotion, and mapped

them together with bright field images of the worm body (Figure 5.8A-F). As expected,

these maps showed that the longitudinal substrate deformations and traction stress were

propulsive, i.e., point backwards, in the interwave regions, whereas they were resistive in

the wave regions. The peristaltic contraction waves also co-localized with regions of strong

transversal deformation and traction stress. Consequently, the profiles of worm width and

longitudinal traction stress along the body of S. mansoni had opposite phases (Figure 5.8G),

with traction stress maxima co-localizing with areas of body contraction. The kymographs

of body width and longitudinal traction stress (Figure 5.9) indicate that the spatio-temporal
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Figure 5.8: Dynamics of S. mansoni movement under confinement. (A) Instantaneous
substrate deformation patterns exerted by a moving worm in a 100 µmgap. (B, C) Maps of
instantaneous substrate deformation in the directions longitudinal (B) and transverse (C)
to worm body motion. (D) Instantaneous traction stress patterns exerted by a migrating
worm. (E, F) Maps of instantaneous traction stress in the directions longitudinal (E) and
transverse (F) to worm body motion. In panels (A) and (D), the arrows and color maps
represent the direction and magnitude of the deformation and traction stress vectors, and
have been superimposed on bright field images of the worm. Scale bar = 1 mm. (G)
Simultaneous measurements of worm body width (blue) and longitudinal traction stress
(red) along the worm’s centerline (0 = posterior end, 1 = anterior end).

dynamics of these quantities are similar, all exhibiting retrograde traveling waves with the

same period and wave speed. To migrate within the narrow vessels, S. mansoni also need

to be able to move backward since there is no room to rotate the whole body. As expected,

backward locomotion can be achieved by reversing the direction of the wave to propagate

from the tail to the head.

5.3.4 Sucker action and peristaltic body contractions can be coor-

dinated during locomotion under confinement

During locomotion in confined environments, about 75% (14 out of 19) of the worms

analyzed employed peristaltic body waves and not their suckers. The other 25% of worms

employed their suckers in addition to body waves. To understand whether these two inde-

pendent locomotor mechanisms could be coordinated, we measured the length of the head

region between the oral and ventral suckers and plotted its time evolution together with

that of the width of the anterior part of the worm’s main body (Figure 5.10A). The data

indicate that, for worms using both their suckers and peristaltic waves, the waves were ini-

tiated when the head region reached its minimum length and the ventral sucker completed
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Figure 5.9: Peristaltic waves of body contractions and propulsive stresses. (A) Kymograph
of body width along the body of S. mansoni moving under confinement (100 µm gap). (B)
Kymograph of longitudinal traction stress recorded simultaneously with body width for the
same worm. The dashed lines in both kymographs correspond to peristaltic waves of body
width and longitudinal traction stress propagating backward. The worm image insets on the
left-hand side show instantaneous body width and traction stress measurement along the
worm’s centerline.

its forward step toward the oral sucker before establishing a new adhesion. This behavior

can be appreciated in bright-field images of migrating worms (Figure 5.10B). It leads to the

continuous propagation of a wave of forward displacement from the anterior to the posterior

of the worm via coordination of two markedly different mechanisms (Figure 5.10C) leading

to faster locomotion.

We also observed that S. mansoni could switch their locomotion between peristaltic

waves alone, and suckers and peristaltic wave coordination. We analyzed all 19 specimens

that sustained more than eight cycles in a given mode and found that worms with sucker -

peristaltic wave coordination migrated significantly faster than those employing peristaltic

waves alone (median speeds 80.6 µm/s vs. 25.7 µm/s; Mann-Whitney test p-value < 0.01;

see Figure 5.11A). This difference could be explained by considering that, on average, worms
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Figure 5.10: Coordination between body contractions and sucker-mediated propulsion in
S. mansoni migrating under confinement. (A) Head length of a worm as a function of
time (red) together with body width at a longitudinal position near the head (blue) under
confinement (100 µm gap). The magenta and green points in the bright field image of the
worm to the left mark the anterior and posterior ends of the head region, whereas the yellow
point marks the location at which body width was plotted. (B) Montage of bright field
images. White triangles mark the position of body wave, the green dashed line shows the
position of ventral sucker and the magenta dashed line indicates the position of oral sucker.
(C) Composite kymograph of head length (top, grey color map) and body width (bottom,
rainbow color map). The data show multiple instances when peristaltic body contraction
waves (red ridges) firing at the point when the head length is shortest (dark grey).
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Figure 5.11: Coordination between peristaltic body contractions and sucker-mediated
propulsion in S. mansoni migrating under confinement. (A) Box plots of S. mansoni worm
speeds (100 µm gap) using exclusively peristaltic waves of body contractions (red, n=8) or
by coordinating sucker motion with peristaltic body waves (blue, n=5). Asterisks denote
statistically significant differences between medians (Mann-Whitney test p-value < 0.01).
(B) Scatter plot of movement speed versus frequency of peristaltic waves. Red circles –
peristaltic waves only; blue squares – sucker - peristaltic wave coordination. Linear least
square fits through the origin are applied to each data set. (C-E) Box plots of motility
parameters for worms migrating exclusively by peristaltic waves of body contractions (red,
n=8) or by sucker - peristaltic wave coordination (blue, n = 5): (C) average wave frequency,
(D) average wave speed and (E) average body length.

migrated forward a fixed distance with each wave cycle, i.e., a stride length (the slope of

the regression lines in Figure 5.11B). Then, engaging the suckers in the motion cycle results

in a longer stride (174 µm vs 95 µm, see Figure 5.11B). In an attempt to find additional

differences between the two locomotion modes, we compared their wave frequency, wave
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speed and worm body length. Because we found a trend for wave frequency to be higher in

worms with sucker - peristaltic wave coordination, we compared wave speed and body length

in a subgroup of experiments with wave frequency more than 0.3 Hz. However, we did not

find significant differences in these variables (Figure 5.11C, D, E). Overall, the data indicate

that S. mansoni , under confinement, move via peristaltic waves along the long axis of the

worm which can be coordinated with the marching action of the oral and ventral suckers.

5.4 Discussion

Soft bodied animals are generally lack of extremities. Instead, they utilize a fluid

skeleton as mechanism of locomotion. The fluid skeleton does not necessarily have to con-

tain fluid which can flow freely. However, tissue structures loosely constructed is enough to

allow small changes in shape and permit muscular antagonism for motility. During locomo-

tion, soft-bodied organisms generate waves of muscular contractions. The energy of muscle

contraction is then transmitted by the fluid of the hydraulic system to the surface of the

organism and dynamically vary their shape, which exerts traction stress against the environ-

ment and acts as the propeller [1]. In general there seems to be comparatively few ways in

which the demands of robust locomotion can be met, so it is not surprising that soft-bodied

organisms of different phyla exhibit convergent evolution and show similar adaptations in

response to similar mechanical problems.

In this work, we provided detailed experimental data and have shown that S. mansoni

uses coordinate dynamics between oral and ventral suckers generating forces to migrate

in the environment without confinement. When subjecting to flow of varying magnitude,

S. mansoni actively adjust its grabbing strength via suckers to remain attached to the

substrate. Similar mechanisms of sucker usage are also found in nemertine Malacobdella [91]

and leech Hirudo [6]. When migrating under confined environment, S. mansoni switched

to a completely different locomotion strategy and generating peristaltic retrograde waves

traveling along the body to migrate forward. This is essentially the same mechanism utilized

by earthworm to move on the surface of substrate or burrow into soft materials. It should

be noted that as earthworms crawl forward, they actively extend the setae on the wider

part of the segments to provide stronger anchorage on the substrate and retract the setae

at the thinner segment to reduce the friction [10]. The scanning electron microscopy of

S. mansoni revealed tubercles scattered irregularly over the surface of their body [103–105].
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However, whether and how these structures are actively involved in the migration by varying

the spatio-temporal distribution of adhesion coefficient still need further investigation.

During the migration under constrained environment, we found two different loco-

motion mechanism yielding distinct characteristic migration speed, depending on whether

the suckers are involved in the locomotion. The ones actively utilize their suckers and syn-

chronized with the generation of body waves exhibit a significant higher migration speed

compare with the ones migrating using body waves only. This phenomenon can be ex-

plained as the passive suckers induce a pure friction with the surrounding environment, thus

hinder the worm to achieve a high migration speed. On the other hand, the active sucker

dynamics can be regarded as an extended anterior-most part of the body wave. Because

of the synchronization with the body wave, suckers only need to exert a small magnitude

anchorage forces on the substrate to overcome the friction of the anterior most segment of

the body. We do observed that the worms under strongly constrained environment exert

weaker stress under the suckers compared with under gently constrained environment or in

free moving environment without constrain. Interestingly, recent studies revealed that S.

mansoni has two brains. Our data poses a fundamental question for the brain functions of

complex neuromuscular control for dynamical behaviors of body wave and sucker dynamics.

Throughout this study, we have thoroughly investigated the mechanisms of locomo-

tion when S. mansoni facing different mechanical challenges, and provided many quantities

involved in locomotion such as the detachment rate and grabbing strength to various flow

rate, the migration velocity and body wave frequency as well as traction stress under suckers

and body. All of these would offer significant values in discovery and development of new

drugs.
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Chapter 6

Conclusion

This work mainly focused on the mechanics of flow, contractility and adhesion during

soft adhesive locomotion using Physarum polycephalum as the model organism. To this end,

we combined measurements of traction force, fragment morphology, endoplasmic and ecto-

plasmic velocity, ectoplasmic microrheology properties and endoplasmic Ca2+ concentration

with experimental manipulations of cell-substrate adhesion, cortical strength and cell size.

In parallel, we worked closely with mathematicians to develop a computational model which

includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive

interactions with the substrate.

Our results suggest a hydrodynamic instability governs motility initiation of flow-

driven amoeboid cell, and the process is determined by capillary number, which involves

the interplay of size, cortical strength and cell-substrate adhesion. We also found that most

migrating Physarum fragments exhibit two types of wave patterns in endoplasmic flow,

contractility and chemical signaling. Slow-moving fragments display standing wave patterns

similar to amoeboid cells such as leukocytes or Dictyostelium. Fast-moving fragments exhibit

traveling wave patterns of traction stress, which are conserved in larger organisms such as

annelids or gastropods, and are reminiscent of leg density waves in myriapod locomotion.

Combined our experimental data with computational model, we show that traveling waves

of traction stress require tight coordination between contractility and substrate adhesion.

A specific phase difference 3π/2 between adhesion and contractility in the computational

model generates most similar wave patterns of endoplasmic flow and traction stress with the

experimental observations. Furthermore, we found this specific phase difference provide the

most robust migration speed in the presence of heterogeneous friction from the environment,
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which suggests Physarum choose robustness over maximum migration speed in nature.

Standing and traveling wave patterns result from the nonlinearity nature of the in-

terplays between intracellular flow, traction stress, chemical signaling and adhesion. Inter-

estingly, we found similar wave patterns of traction stress on higher organisms with much

complex neuromuscular coordination. We thoroughly investigated the mechanics of locomo-

tion of the flatworm Schistosoma mansoni (the most prevalent human endoparasite) under

varying levels of confinement, representative of the environments this flatworm encounters

in its migratory route from the liver to the intestine. Our results reveal that S. mansoni

migrates by exerting standing waves of traction stresses with its suckers under no or gentle

confinement, but transitions to exerting traveling waves of traction stress along its body

when crawling through in highly restrictive conditions. Furthermore, we find the traveling

waves of body contraction and the standing waves of sucker actions can be coordinated to

achieve faster locomotion with a longer stride length, which is defined as the distance S.

mansoni migrated as one body wave propagates across the body.

In Chapter 2, we have combined traction force and morphology measurements with

experimental manipulations of cell-substrate adhesion, cortical strength and cell size of

Physarum fragments to understand the contribution of these mechanical factors to symme-

try breaking and motility initiation in flow driven amoeboid cell. Our experimental evidence

suggests a close dependence of probability of motility initiation with size and morphol-

ogy. Furthermore, this relation is strongly affected by cell-substrate adhesion and cortical

strength.

In Chapter 3, we have examined the relationship between spatio-temporal coordi-

nation of intracellular flow and traction stress and the speed of amoeboid locomotion of

microplasmodia of Physarum polycephalum.We simultaneously perform particle image ve-

locimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the

stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we de-

velop a mathematical model of a motile cell which includes forces from the viscous cytosol,

a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our

experiments show that flow and traction stress exhibit back-to-front-directed waves with a

distinct phase difference. The model demonstrates that the direction and speed of locomo-

tion are determined by this coordination between contraction, flow and adhesion. Using the

model, we identify forms of coordination that generate model predictions consistent with

experiments. We demonstrate that this coordination produces near optimal migration speed
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and is insensitive to heterogeneity in substrate adhesiveness.

In Chapter 4, we measure the spatio-temporal distributions of the velocities of the

endoplasm and ectoplasm of migrating Physarum fragments, the traction stresses it gen-

erates on the substratum, and the concentration of free intracellular calcium. Using these

unprecedented experimental data, we classify migrating Physarum fragments according to

their dynamics, finding that they often exhibit spontaneously coordinated wave patterns

of flow, contractility and chemical signaling. We show that Physarum fragments exhibit-

ing symmetric spatio-temporal patterns of these quantities migrate significantly slower than

fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm ve-

locity and traction stress at the substratum suggest that forward motion of the ectoplasm

is enabled by a succession of stick-slip transitions, which we conjecture are also organized in

the form of waves. Combining our experiments with a simplified convection-diffusion model,

we show that the convective transport of calcium ions may be key for establishing and main-

taining the spatio-temporal patterns of calcium concentration that regulate the generation

of contractile forces.

In Chapter 5, we explored the mechanics of locomotion of the schistosome pathogen

under physiologically relevant conditions using self-designed experimental setups and de-

vices. We revealed, for the first time, that S. mansoni change the locomotion mechanisms

when facing different physiologically relevant mechanical challenges. S. mansoni exclusively

use their oral and ventral suckers generating forces to migrate in the environment without

confinement around their body. When subjecting to flow of varying magnitude, S. mansoni

actively adjust their grabbing strength via their suckers to remain attached to the substrate.

However, S. mansoni switched to a completely different locomotion strategy when crawling

through restrictive conditions by applying traveling waves of strong traction stress along

the body. Strikingly, we discovered the sucker action and body contraction wave can be

coordinated to achieve faster locomotion when migrating under restrictive environment.
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