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Abstract

The affine motion of two-dimensional (2d) incompressible fluids can be reduced to
a completely integrable and globally solvable Hamiltonian system of ordinary differen-
tial equations for the deformation gradient in SL(2,R). In the case of perfect fluids,
the motion is given by geodesic flow in SL(2,R) with the Euclidean metric, while for
magnetically conducting fluids (MHD), the motion is governed by a harmonic oscillator
in SL(2,R). A complete description of the dynamics is given including rigid motions,
rotating eddies with stable and unstable manifolds, and solutions with vanishing pres-
sure. For perfect fluids, the displacement generically becomes unbounded, as t→ ±∞.
For MHD, solutions are bounded and generically multiply periodic and recurrent.
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0. Introduction

In this article we explore the affine motion of incompressible planar fluids surrounded by
vacuum. An affine motion is one whose deformation and velocity gradients depend only
on time. Under this assumption, the fluid equations reduce to a completely integrable and
globally solvable Hamiltonian system of ordinary differentiable equations for the deforma-
tion gradient in SL(2,R). The natural phase space is the 6-dimensional tangent bundle of
SL(2,R), which we regard as being embedded in R8 with the Euclidean metric. There are
three integrals of the motion corresponding to conservation of energy and invariance under
the left and right action of SO(2,R). We shall provide a complete description of all such
motions in terms of the values of the invariants in two cases: incompressible perfect fluids
(Euler equation) and incompressible magnetically conducting fluids (MHD).

Taking the unit disk as the reference domain, the time-dependent fluid domains arising
from incompressible affine motion are ellipses of constant area. The principle axes of these
fluid ellipses are determined by the eigendirections and eigenvalues of the stretch tensor.
Incompressible affine motion allows for compression along one axis and expansion along the
other, combined with rigid rotation.

Once the deformation gradient and fluid domains are known, the pressure, velocity, and
magnetic field, if present, are recovered through explicit formulae, taking into account the
boundary conditions. The sign of the pressure is preserved by the motion. There exist
special solutions whose pressure vanishes identically. In this case, the equations of motion
are linear, and solutions may be found explicitly.

The affine motion of incompressible perfect fluids in the plane is described by geodesic
flow for the deformation gradient in SL(2,R), echoing the classic result of Arnold on geodesic
flow in the space of volume preserving diffeomorphims [1]. By energy conservation, the
material velocity is bounded. However generically, solutions are unbounded, and in this
case, the diameter of the fluid domains grow linearly in time while approaching maximal
eccentricity. Additionally, there is an invariant manifold of initial data leading to rigidly
rotating fluid disks (eddies) of arbitrary angular velocity. These solutions are represented
by curves in SO(2,R). The manifold of rotational solutions is hyperbolic, possessing both
stable and unstable invariant manifolds. Solutions on these manifolds are semi-bounded,
and they decay exponentially to a rotating disk, as t→∞ in the stable case and as t→ −∞
in the unstable case. Unbounded solutions are asymptotic to straight lines in the space of
2 × 2 matrices. In the special case of vanishing pressure, solutions coincide with straight
lines in SL(2,R).

The affine motion of incompressible magnetically conducting planar fluids can be viewed
as a simple harmonic oscillator, constrained to SL(2,R), through the addition of a one-
parameter restoring force to the equations of geodesic motion. Here, all solutions are
bounded and, generically, multiply periodic and recurrent. There exist rigid solutions with
fluid ellipses of arbitrary eccentricity. Included among these are rotating disks of arbitrary
angular velocity. For sufficiently large angular velocities, the rotating disk solutions pos-
sess a stable/unstable manifold. Solutions on this manifold are homoclinic to a rotational
solution, with an exponential decay rate, as t→ ±∞.

The main results for MHD and perfect fluids are given in Sections 12 and 13, respectively.
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Up to that point, the exposition for the two cases is presented in parallel. The initial
sections are devoted to the algebraic and geometric properties of the phase space for the
system of ordinary equations describing the motion of the deformation gradient. In Section
3, these equations are derived from the fundamental fluid equations, and the global existence
theorem is presented. The integral invariants of this system are discussed in the following
section. We then devote considerable time discussing the sets in phase space with fixed
values of the invariants, and Sections 5 through 8 are thus independent of the dynamics.
The point of this discussion becomes apparent in Section 9. The equations of motion can be
projected onto the phase plane, and the essential features of the dynamics can be extracted
from the orbits of the projected system. Perhaps the most technical portion of the paper
involves the reconstruction, in Section 11, of the general flow from the solution in the phase
plane. Here we see the decisive influence of the rotation group SO(2,R) which induces a
monodromy for solution trajectories which pass through it. Notation will be introduced as
needed throughout the paper. For the convenience of the reader, a glossary appears in the
final section.

For initial data satisfying the Rayleigh-Taylor sign condition, local well-posedness for
the incompressible free boundary Euler equations with bulk vorticity was established in [2],
[6], [3], [7], [11], [4] and for the incompressible free boundary MHD problem in [5], [10]. The
use of affine deformations is a well-established tool in continuum mechanics, first introduced
in the context of the vacuum free boundary incompressible Euler system in [8], [9].

1. Matrix inner product space and groups

Definition 1.1. By M2, we denote the set of 2 × 2 matrices over R with the Euclidean
inner product

〈A,B〉 =
∑
i,j

AijBij = trA>B

and norm
|A|2 = 〈A,A〉 .

Lemma 1.2. For all A,B,C ∈M2,

〈AB,C〉 =
〈
B,A>C

〉
=
〈
A,CB>

〉
.

Definition 1.3. Define the following vectors in M2:

I =

[
1 0
0 1

]
, K =

[
1 0
0 −1

]
, M =

[
0 1
1 0

]
, Z =

[
0 −1
1 0

]
.

Lemma 1.4. The vectors I,K,M,Z are an orthogonal basis for M2. In particular, the set
of symmetric matrices is orthogonal to the set of anti-symmetric matrices.

Definition 1.5. The special linear group is given by

SL(2,R) = {A ∈M2 : detA = 1}

3
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and the special orthogonal group is

SO(2,R) = {U ∈ SL(2,R) : U−1 = U>}.

Lemma 1.6. For all A ∈M2 and U, V ∈ SO(2,R),

|UAV | = |A|.

The left and right action of SO(2,R) on M2 and on SL(2,R) is an isometry.

The subgroup SO(2,R) will play a special role in the sequel. Here is the first of several
characterizations that we shall repeatedly use.

Lemma 1.7. Elements of SO(2,R) are norm minimizers in SL(2,R). There holds

min{|A|2 : A ∈ SL(2,R)} = 2

and
SO(2,R) = {A ∈ SL(2,R) : |A|2 = 2}.

Proof. Given A ∈ SL(2,R), we have that

detA>A = 1,

and so the eigenvalues of the positive definite symmetric matrix A>A satisfy

λ1 ≥ λ2 > 0 and λ1λ2 = 1.

Therefore,
|A|2 = trA>A = λ1 + λ2 ≥ 2,

with equality if and only if A>A = I. Using the polar decomposition, there exists U ∈
SO(2,R) such that

A = U(A>A)1/2.

So by Lemma 1.6, |A|2 = 2 if and only if A = U .

Definition 1.8. Define the one-parameter family of rotations

U(σ) = exp(σZ) =

[
cosσ − sinσ
sinσ cosσ

]
, σ ∈ R.

Lemma 1.9. With the notation of Definition 1.8, we have

SO(2,R) = {U(σ) : σ ∈ R} .

Lemma 1.10.
SO(2,R) = {A ∈ SL(2,R) : [A,Z] = 0}.
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Proof. A matrix in SL(2,R) commutes with Z if and only if it has the form[
a −b
b a

]
, with a2 + b2 = 1.

Lemma 1.11. The cofactor map cof : M2 →M2 satisfies

cof A = ZAZ>.

It is symmetric and unitary.

Proof. The identity is easily verified. By Lemma 1.2, we have that

〈cof A,B〉 =
〈
ZAZ>, B

〉
=
〈
A,Z>BZ

〉
=
〈
A,ZBZ>

〉
= 〈A, cof B〉 .

and
〈cof A, cof B〉 = 〈A, cof cof B〉 = 〈A,B〉 .

Lemma 1.12. For any A ∈ M2, the vectors {AZ,ZA} and the vectors {A, cof A} are
orthogonal.

Proof. By Lemmas 1.2 and 1.4, we have

〈A,ZA〉 =
〈
AA>, Z

〉
= 0 and 〈A,AZ〉 =

〈
A>A,Z

〉
= 0,

for any A ∈M2. By Lemmas 1.2 and 1.11 together with what we have just proven, we have

〈cof A,ZA〉 = −〈Z cof A,A〉 = −〈AZ,A〉 = 0

and
〈cof A,AZ〉 = −〈cof AZ,A〉 = −〈ZA,A〉 = 0.

Lemma 1.13. For any A ∈M2, there holds

A cof A> = A> cof A = detA I.

In particular, we have

A−> = cof A, for all A ∈ SL(2,R),

and
SO(2,R) = {A ∈ SL(2,R) : A = cof A}.

Remark 1.14. We use the notation A−> = (A−1)>.

Lemma 1.15. For any A ∈M2, we have

2 detA = 〈A, cof A〉 .

Lemma 1.16. The determinant map det : M→ R is C∞ and

∂

∂A
detA = cof A.
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2. The geometry of SL(2,R)

Lemma 2.1. The vector cof A is normal to SL(2,R) at a point A ∈ SL(2,R), and the
tangent space to SL(2,R) at A is

TASL(2,R) = {B ∈M2 : 〈B, cof A〉 = trBA−1 = 0}.

TASL(2,R) is a three dimensional Euclidean inner product space in M2.

Proof. This follows from Lemma 1.16.

Definition 2.2. Define the special linear Lie algebra

sl(2,R) = TISL(2,R) = {L ∈M2 : trL = 0} = span{K,M,Z}.

Definition 2.3. Given A ∈ SL(2,R), we define the unit normal vector field

N(A) = |A|−1 cof A = |A|−1A−>.

Lemma 2.4. A ∈ SL(2,R) is normal to TASL(2,R) if and only if A ∈ SO(2,R).

Proof. This follows from Lemmas 1.13 and 2.1.

Definition 2.5. Define the tangent bundle

D = {(A,B) ∈M2 ×M2 : A ∈ SL(2,R), B ∈ TASL(2,R)}.

Lemma 2.6. D is a smooth 6-dimensional embedded submanifold of M2 ×M2.

Definition 2.7. Given A ∈ SL(2,R) \ SO(2,R) and Z as in Definition 1.3, define

τ1(A) = ZA+AZ,

τ2(A) = ZA−AZ,

τ3(A) =
|A|2

|A|4 − 4

(
A− 2

|A|2
cof A

)
.

We also define τ̂i(A) = τi(A)/|τi(A)|.

Remark 2.8. The choice of normalization for τ3(A) is motivated by Lemma 2.14 below.

Remark 2.9. In situations when the base point A ∈ SL(2,R) is fixed, we shall occasionally
find it convenient to write simply τi instead of τi(A).

Lemma 2.10. The functions τi(A) are smooth tangent vector fields, i.e.

τi : SL(2,R) \ SO(2,R)→ TASL(2,R), i = 1, 2, 3.

6
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Lemma 2.11. If A ∈ SL(2,R) \ SO(2,R), then gij(A) = 〈τi(A), τj(A)〉 defines the metric
on TASL(2,R) in local coordinates relative to the basis {τi(A)}. Explicitly, g(A) is given by

g(A) = diag

[
2|A|2 + 4, 2|A|2 − 4,

|A|2

|A|4 − 4

]
.

We also have that

〈A, τi(A)〉 = 0, i = 1, 2 and 〈A, τ3(A)〉 = 1.

Lemma 2.12. If A ∈ SL(2,R) \ SO(2,R), then the set {τi(A)}3i=1 spans TASL(2,R), and
for any B ∈ TASL(2,R), we have

B =
∑
i

ci τi(A), with ci = 〈B, τi(A)〉 /gii(A).

Corollary 2.13. If A ∈ SL(2,R) \ SO(2,R), then the set {τ̂i(A)}3i=1 is an orthonormal
frame in TASL(2,R).

The next lemma gives a convenient set of local coordinates for SL(2,R) \ SO(2,R).

Lemma 2.14. Define a mapping A : R2 × [1,∞)→M2 by

A(s) = U(s1 + s2) H(s3) U(s1 − s2), s = (s1, s2, s3) ∈ R2 × [1,∞)

with U(σ) as in Definition 1.8 and

H(σ) =
1√
2

[
(σ + 1)1/2 (σ − 1)1/2

(σ − 1)1/2 (σ + 1)1/2

]
.

Then

i. the range of A is equal to SL(2,R),

ii. 1
2 |A(s)|2 = s3,

iii. A(s) ∈ SO(2,R) if and only if s3 = 1, and

iv. the restriction
A : R2 × (1,∞)→ SL(2,R) \ SO(2,R)

is a local diffeomorphism with

∂i A(s) = τi(A(s)), i = 1, 2, 3.

Proof. Since detA(s) = detH(s3) = 1, we see that A(s) ∈ SL(2,R), for every s ∈ R2 ×
[1,∞). Moreover, by Lemma 1.6, |A(s)|2 = |H(s3)|2 = 2s3, so A(s) ∈ SO(2,R) if and only
if s3 = 1, by Lemma 1.7.

7



J. Roberts, S. Shkoller, and T. Sideris 2d incompressible fluids and flows in SL(2,R)

Let A ∈ SL(2,R). Using the polar decomposition, we can find a U ∈ SO(2,R) such that
A = U

√
A>A. Since

√
A>A is a symmetric matrix in SL(2,R), there exists V ∈ SO(2,R)

such that
V (
√
A>A)V > = diag

[
α, 1/α

]
= D, with α ≥ 1.

Finally, taking

W =
1√
2

[
1 −1
1 1

]
,

we have W ∈ SO(2,R) and WDW> = H(σ), for σ = (α2 + α−2)/2 ∈ [1,∞). Thus, we see
that

A = (UVW )H(σ)(W>V >),

with UVW, W>V > ∈ SO(2,R). By Lemma 1.9, this shows that the mapping

A : R2 × [1,∞)→ SL(2,R)

is surjective.
We next verify the formulas for the derivatives. Since

U ′(σ) = ZU(σ) = U(σ)Z,

we find that
∂iA(s) = τi(A(s)), i = 1, 2.

A simple calculation yields
H ′(σ) = τ3(H(σ)).

Therefore, by Lemmas 1.6, 1.10 and 1.11, we have that

∂3A(s) = U(s1 + s2)τ3(H(s3))U(s1 − s2) = τ3(A(s)).

Finally, by Lemma 2.11, {τi(A)}3i=1 is a frame in TASL(2,R), if A ∈ SL(2,R)\SO(2,R).
Thus, we see that the mapping

A : R2 × (1,∞)→ SL(2,R) \ SO(2,R)

is locally invertible.

Remark 2.15. The matrix H(σ) is a hyperbolic rotation. It will emerge as the main term
in the description of the motion in local coordinates.

Corollary 2.16. In local coordinates, 1
2 |A(s)|2 = s3, and hence, the metric g(A(s)) is a

function only of s3. It has the form

g(A(s)) = diag

[
4(s3 + 1), 4(s3 − 1),

s3
2(s23 − 1)

]
.

Remark 2.17. With abuse of notation, we shall sometimes write g(s3) instead of g(A(s)).

8
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Lemma 2.18. For s ∈ R2 × [1,∞), the coordinate map can also be expressed as

A(s) =

(
s3 + 1

2

)1/2

U(2s1) +

(
s3 − 1

2

)1/2

U(2s2) M,

and the normalized tangent vector fields have the form

τ̂1(A(s)) = 1√
2
U(2s1)Z,

τ̂2(A(s)) = − 1√
2
U(2s2)K,

τ̂3(A(s)) =
1

2

[(
s3 − 1

s3

)1/2

U(2s1) +

(
s3 + 1

s3

)1/2

U(2s2)M

]
.

Proof. The first statement follows from Lemma 2.14 by writing

H(σ) =

(
σ + 1

2

)1/2

I +

(
σ − 1

2

)1/2

M,

and then using the fact that
M U(θ) = U(−θ) M.

Differentiating the new expression for A(s) with respect to s yields alternate expressions
for τi(A(s)). The formulas for τ̂i(A(s)) follow after normalization.

Remark 2.19. The rotation group SO(2,R) can be identified with the circle S1, and the
spheres |A(s)|2 = s3, with s3 > 1, can be identified with the 2-torus S1 × S1.

Remark 2.20. Note that Lemma 2.18 provides an extension of the normalized tangent vec-
tors τ̂i(A) to TASL(2,R) for A ∈ SO(2,R).

Lemma 2.21. In the local coordinates of Lemma 2.14, the Christoffel symbols depend only
on s3, and they have the form

Γijk(s3) = 1
2g
ii(s3)[δj3g

′
ki(s3) + δk3g

′
ij(s3)− δi3g′jk(s3)], s3 > 1,

where g′(s3) indicates the derivative in s3.

Proof. Since the metric is diagonal and depends only on s3, the result follows from the
general formula

Γijk(s3) = 1
2

∑
`

gi`(s3)[∂jgk`(s3) + ∂kg`j(s3)− ∂`gjk(s3)]

= 1
2g
ii(s3)[δj3g

′
ki(s3) + δk3g

′
ij(s3)− δi3g′jk(s3)].

Lemma 2.22. The cofactor map acts on the tangent basis as follows:

cof τ1(A) = τ1(A),

cof τ2(A) = −τ2(A),

cof τ3(A) = − 2

|A|2
τ3(A) +

1

|A|
N(A).

9
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Lemma 2.23. The orthogonal projection of M2 onto TASL(2,R) is given by

P (A) = I −N(A)⊗N(A).

Definition 2.24. Given (A,B) ∈ D, we define the shape operator

S(A)B = −dN(A)B = −
∑
a,b

Bab
∂

∂Aab
N(A).

Lemma 2.25. The shape operator may be expressed in the form

S(A)B = − 1

|A|
P (A) cof B.

Moreover, for each A ∈ SL(2,R), the shape operator is symmetric on TASL(2,R).

Proof. By direct computation and Lemma 1.11, we have

S(A)B = −
∑
ab

Bab
∂

∂Aab

cof A

|A|

= −cof B

|A|
+

cof A

|A|3
〈A,B〉

= − 1

|A|

(
cof B −

〈
A

|A|
, B

〉
cof A

|A|

)
= − 1

|A|
(cof B − 〈N(A), cof B〉N(A))

= − 1

|A|
P (A) cof B.

From this formula, we see that S(A) maps into TASL(2,R), and by Lemma 1.11, the veri-
fication of symmetry is immediate.

Lemma 2.26. If A ∈ SL(2,R) \ SO(2,R), then the vectors {τi(A)} are principal directions
in TASL(2,R) with corresponding principal curvatures

− 1

|A|
,

1

|A|
,

2

|A|3
.

Proof. The principal curvatures and directions are the eigenvalues and eigenvectors of the
shape operator. So this is an immediate consequence of Lemmas 2.22 and 2.25.

Definition 2.27. The second fundamental form

Π(A) : TASL(2,R)× TASL(2,R)→ R

is defined by
Π(A)[B1, B2] = 〈S(A)B1, B2〉 .

10
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Lemma 2.28. For vector fields V (A), W (A), the Riemannian connection ∇ is given by

∇V (A)W (A) = P (A)
∑
a,b

Vab(A)
∂

∂Aab
W (A).

Lemma 2.29. For vector fields V (A), W (A), Y (A), the curvature tensor is the map given
by

Y (A) 7→ R[V (A),W (A)]Y (A)

= Π(A)[W (A), Y (A)]S(A)V (A)−Π(A)[V (A), Y (A)]S(A)W (A).

Corollary 2.30. Relative to the orthonormal basis {τ̂i(A)}, the curvature tensor has the
coordinates

〈R(τ̂i, τ̂j)τ̂k, τ̂`〉 = Rijk` = λiλj(δjkδi` − δikδj`),

where {λi} are the principal curvatures.

3. The equations of affine motion

Definition 3.1. An incompressible affine motion defined on the unit ball B ⊂ R2 is a
one-parameter family of volume preserving diffeomorphisms of the form

x(t, y) = A(t)y, y ∈ B, t ∈ R,

with
A ∈ C0(R, SL(2,R)) ∩ C2(R,M2).

Here, B is the reference domain, and the domain occupied by the material (fluid) at
time t is

Ω(t) = A(t)B = {x ∈ R2 : |A(t)−1x|2 ≤ 1}.

Note that the fluid domain Ω(t) is an ellipse centered at the origin with principal axes de-
termined by the eigendirections and eigenvalues of the positive definite symmetric (stretch)
matrix (A(t)A(t)>)1/2.

Remark 3.2. By Lemma 2.14, (A(t)A(t)>)1/2 is similar to H(σ) where σ = 1
2 |A(t)|2, and so

the eigenvalues are given by
(
σ+1
2

)1/2 ± (σ−12 )1/2.
The spatial velocity field associated to an affine motion is defined by

u(t, x(t, y)) = ∂tx(t, y) = A′(t)y, y ∈ B,

or equivalently
u(t, x) = A′(t)A(t)−1x, x ∈ Ω(t).

Lemma 3.3. If A ∈ C0(R,SL(2,R)) ∩ C1(R,M2), then (A,A′) ∈ C0(R,D). In particular,
A′A−1 ∈ C0(R, sl(2,R)).

11
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This leads to the following definition.

Definition 3.4. Define the mapping L : D→ sl(2,R) by

L(A,B) = BA−1.

Remark 3.5. The spatial velocity gradient of an affine motion x(t, y) = A(t)y is given by
∇u(t, x) = L(A(t), A′(t)).

Lemma 3.3 suggests that the tangent bundle D is the natural phase space for affine
incompressible motion.

The equations of motion for 2d incompressible MHD surrounded by vacuum are

Dtu = −∇p+ b · ∇b
Dtb = b · ∇u
∇ · u = ∇ · b = 0,

in a space-time domain x ∈ Ω(t), t ∈ R. Here, Dt = ∂t+u·∇ is the material time derivative.
The equations are supplemented by the boundary conditions

p = 0 and b · n = 0 on ∂Ω(t),

where dot “ · ” denotes the inner product on R2. The free boundary is also assumed to
move with the fluid. We do not impose the Taylor sign condition, although that plays a
role in the general theory of local well-posedness.

Remark 3.6. When the magnetic field b vanishes identically, the system reduces to the
incompressible Euler equations.

Let us now assume that the velocity u(t, x) and the fluid domains Ω(t) arise from an
incompressible affine motion x(t, y) = A(t)y, as described above.

By Lemma 3.3, the velocity field is divergence free:

∇ · u(t, x) = trA′(t)A(t)−1 = 0, t ∈ R.

Let us write

b(t, x) = β(t)A(t)−1x and −∇p(t, x) = A(t)−>$(t)A(t)−1x,

with β,$ ∈ C2(R,M2). (As motivation, note that if we assume the other unknowns b and
p are also spatially homogeneous, then the PDEs imply that ∇p(t, x) and b(t, x) should be
homogeneous of degree one in the variable x.)

The equation for the magnetic field implies that

β′ = A′A−1β

from which it follows that

β(t) = A(t)A−10 β0, where A0 = A(0), β0 = β(0).

12
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The normal vector to ∂Ω(t) at a point x ∈ ∂Ω(t) has the direction of the vector
A(t)−>A(t)−1x. So the boundary condition implies that for all |y| = 1,

0 = b(t, x(t, y)) · n(t, x(t, y)) = β(t)y ·A(t)−>y = A−10 β0y · y.

It follows that A−10 β0 is anti-symmetric, and so there exists a constant c0 such that

A−10 β0 = c0Z.

Thus, we have shown that
b(t, x) = c0A(t)ZA(t)−1x.

As a consequence,
∇ · b(t, x) = c0 trA(t)ZA(t)−1 = c0 trZ = 0,

so that b is divergence free.
Since A(t)−>$(t)A(t)−1x is a gradient, the matrix A(t)−>$(t)A(t)−1 must be symmet-

ric. Thus,
∇p(t, x) = −1

2∇[A(t)−>$(t)A(t)−1x · x].

We find that
p(t, x) = 1

2

[
λ(t)−$(t)A(t)−1x ·A(t)−1x

]
,

for some scalar function λ(t). The other boundary condition implies that

0 = p(t, x(t, y)) = 1
2 [λ(t)−$(t)y · y],

for all |y| = 1. This forces
$(t) = λ(t)I,

and so
p(t, x) = 1

2λ(t)[1− |A(t)−1x|2].
Finally, from the velocity equation, we derive

A′′(t) = λ(t)A(t)−> +A(t)(c0Z)2 = λ(t)A(t)−> − c20A(t).

Thus, we have proven

Lemma 3.7. Suppose that

A ∈ C0(R, SL(2,R)) ∩ C2(R,M2).

Define

u(t, x) = A′(t)A(t)−1x,

b(t, x) = c0A(t)ZA(t)−1x, c0 ∈ R,
p(t, x) = 1

2λ(t)
[
1− |A(t)−1x|2

]
, λ ∈ C0(R,R),

and

Ω(t) = A(t)B.

Then u(t, x), b(t, x), p(t, x) solve the MHD system in Ω(t) if and only if

A′′(t) + c20A(t) = λ(t)A(t)−>. (3.1)

13
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Remark 3.8. An affine solution satisfies the Taylor sign condition if and only if λ(t) > 0.
We shall show later on (in Corollary 6.2) that the sign of this function is preserved under
the motion.

Remark 3.9. The equations of motion (3.1) are the Euler-Lagrange equations associated to
the Lagrangian L : M2 ×M2 × R→ R given by

L(A,A′, λ) = 1
2 |A
′|2 − 1

2c
2
0|A|2 + λ(detA− 1).

The scalar function λ(t) in (3.1) is a Lagrange multiplier which will now be identified.

Definition 3.10. Given a parameter value κ ≥ 0, define the Lagrange multiplier map
Λκ : D→ R by

Λκ(A,B) =
tr[L(A,B)2] + 2κ

trA−>A−1
=

tr[(BA−1)2] + 2κ

trA−>A−1
.

Lemma 3.11. Fix κ ≥ 0. If A ∈ C0(R,SL(2,R)) ∩ C2(R,M2) satisfies

A′′(t) + κA(t) = λ(t) A(t)−>, t ∈ R,

for some function λ ∈ C0(R,R), then

λ(t) = Λκ(A(t), A′(t)).

Proof. Since
A′(t) = L(A(t), A′(t))A(t),

we have
A′′(t) = L(A(t), A′(t))′ A(t) + L(A(t), A′(t)) A′(t).

It follows that

L(A(t), A′(t))′ = A′′(t)A(t)−1 − L(A(t), A′(t)) A′(t)A(t)−1

=
(
−κA(t) + λ(t) A(t)−>

)
A(t)−1 − L(A(t), A′(t))2

= −κI + λ(t) A(t)−>A(t)−1 − L(A(t), A′(t))2.

Taking the trace, we obtain

trL(A(t), A′(t))′ = trA(t)−>A(t)−1
[
λ(t)− Λκ(A(t), A′(t))

]
.

By Lemma 3.3, we have trL(A(t), A′(t)) = 0, which implies the result.

Definition 3.12. Given a parameter value κ ≥ 0, define the energy map Eκ : D→ [κ,∞)
by

Eκ(A,B) = 1
2 |B|

2 + κ
2 |A|

2.

Remark 3.13. Note that by Lemma 1.7, Eκ(A,B) ≥ κ
2 |A|

2 ≥ κ, for all (A,B) ∈ D.

14
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Theorem 3.14. Given a parameter value κ ≥ 0 and initial data

(A0, B0) ∈ D, (3.2)

the initial value problem

A′′(t) + κA(t) = Λκ(A(t), A′(t)) A(t)−>, (3.3)

(A(0), A′(0)) = (A0, B0) (3.4)

has a unique global solution A ∈ C0(R,SL(2,R))∩C2(R,M2). Additionally, D is invariant:

(A(t), A′(t)) ∈ D, for all t ∈ R,

and the energy is conserved:

Eκ(A(t), A′(t)) = Eκ(A0, B0), for all t ∈ R.

Proof. When κ = 0, this result was proven in Lemma 4 of [9]. The proof easily generalizes
to the case κ > 0, and it will be omitted.

Corollary 3.15. A curve A ∈ C0(R,SL(2,R)) ∩ C2(R,M2) is a geodesic in SL(2,R) with
the (induced) Euclidean metric if and only if it satisfies (3.3) with κ = 0.

Remark 3.16. We include constant solutions as geodesics.

Proof. A geodesic curve is one for which A′(t) is parallel along A(t). That is

DA

dt
A′(t) = 0,

in which the covariant derivative along A(t) is

DA

dt
= ∇A′(t) = P (A(t))

d

dt
.

Thus, A(t) is a geodesic if and only if

A′′(t) = λ(t)N(A(t)),

for some scalar λ(t). The result follows from Lemma 3.11.

4. Conserved quantities

Definition 4.1. Define the maps Xi : D→ R, i = 1, 2, by

X1(A,B) = 〈ZA,B〉 and X2(A,B) = 〈AZ,B〉 .

Remark 4.2. We shall frequently write X(A,B) for the ordered pair (X1(A,B), X2(A,B)).

15
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Lemma 4.3.

SO(2,R) = {A ∈ SL(2,R) : X1(A,B) = X2(A,B), for all B ∈ TASL(2,R)}.

Proof. Notice that

S ≡ {A ∈ SL(2,R) : X1(A,B) = X2(A,B), for all B ∈ TASL(2,R)}
= {A ∈ SL(2,R) : 〈[A,Z], B〉 = 0, for all B ∈ TASL(2,R)}.

Lemma 1.12 implies that [A,Z] ∈ TASL(2,R), so

S = {A ∈ SL(2,R) : [A,Z] = 0}.

Lemma 1.10 says this is equal to SO(2,R).

Theorem 4.4. If A ∈ C0(R,SL(2,R)) ∩ C2(R,M2) is a solution of the IVP (3.2), (3.3),
(3.4), then the quantities

Eκ(A(t), A′(t)) and Xi(A(t), A′(t)), i = 1, 2,

are invariant.

Proof. The first statement is just conservation of energy which was already noted in Theo-
rem 3.14.

Given Lemma 1.12, we can easily compute the derivatives:

d

dt
X1(A(t), A′(t)) =

d

dt

〈
A′(t), ZA(t)

〉
=
〈
A′′(t), ZA(t)

〉
+
〈
A′(t), ZA′(t)

〉
= −κ 〈A(t), ZA(t)〉+ Λκ(A(t), A′(t)) 〈cof A(t), ZA(t)〉
= 0,

and

d

dt
X2(A(t), A′(t)) =

d

dt

〈
A′(t), A(t)Z

〉
=
〈
A′′(t), A(t)Z

〉
+
〈
A′(t), A′(t)Z

〉
= −κ 〈A(t), A(t)Z〉+ Λκ(A(t), A′(t)) 〈cof A(t), A(t)Z〉
= 0.

Remark 4.5. Observe that by Lemma 1.6, the Lagrangian defined in Remark 3.9 is invariant
under the left and right action of SO(2,R):

L(A,B, λ) = L(UA,UB, λ) = L(AU,BU, λ),

for all (A,B, λ) ∈M2×M2×R and U ∈ SO(2,R). Therefore, we can deduce the invariants
Xi(A,B) from Noether’s theorem. For example, we have

X1(A,B) =
∂

∂σ

〈
∂L(A,B)

∂B
,U(σ)A

〉∣∣∣∣
σ=0

.
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Corollary 4.6. If A ∈ C0(R, SL(2,R)) ∩ C2(R,M2), then its vorticity W (t) satisfies

W (t) ≡ 1
2 [L(A(t), A′(t))− L(A(t), A′(t))>] = 1

2X2(A(t), A′(t))Z.

If A(t) is also solution of the system (3.3), then its vorticity is invariant.

Proof. Since W (t) is anti-symmetric, we can write W (t) = ω(t)Z, for some scalar function
ω(t). Then by Lemmas 1.4, 1.2, and 1.11, we have

2 ω(t) = ω(t) 〈Z,Z〉
= 〈W (t), Z〉

= 1
2

〈
L(A(t), A′(t))− L(A(t), A′(t))>, Z

〉
=
〈
L(A(t), A′(t)), Z

〉
=
〈
A′(t)A(t)−1, Z

〉
=
〈
A′(t), ZA(t)−>

〉
=
〈
A′(t), Z cof A(t)

〉
=
〈
A′(t), A(t)Z

〉
= X2(A(t), A′(t)).

This is invariant by Theorem 4.4, if A(t) solves (3.3).

Remark 4.7. For 2d incompressible perfect fluids (κ = 0), the material vorticity, i.e.
curl u(t, x(t, y)), is independent of time in general, however this does not hold in general
for MHD (κ > 0).

Corollary 4.8. Let A ∈ C0(R, SL(2,R))∩C2(R,M2) be a solution of the IVP (3.2), (3.3),
(3.4). Set Xi = Xi(A0, B0), i = 1, 2. Then A(t) is irrotational if and only if X2 = 0.

5. Invariant sets

Our goal in this section will be to characterize the data in D with given values of the
invariants. For this it is convenient to introduce the following notation.

Definition 5.1. Given parameter values κ ≥ 0 and

(E,X) = (E,X1, X2) ∈ [κ,∞)× R2,

define
D(X) = {(A,B) ∈ D : Xi(A,B) = Xi, i = 1, 2}.

and
Dκ(E,X) = {(A,B) ∈ D : Eκ(A,B) = E, Xi(A,B) = Xi, i = 1, 2}.

Remark 5.2. By Theorem 4.4, the sets D(X) and Dκ(E,X) are invariant under the flow of
(3.3).

17
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Remark 5.3. The family {D(X) : X ∈ R2} foliates D, and for each κ ≥ 0, X ∈ R2 the
family {Dκ(E,X) : E ≥ κ} foliates D(X).

Lemma 5.4. Fix κ ≥ 0. Let (E,X) ∈ [κ,∞) × R2. Suppose that A ∈ SL(2,R) \ SO(2,R)
and (A,B) ∈ D .

Then (A,B) ∈ D(X) if and only if

B =

3∑
i=1

ciτi(A), with c1 =
X1 +X2

g11(A)
, c2 =

X1 −X2

g22(A)
, c3 ∈ R.

In this case, c3 = 〈A,B〉.
Moreover, (A,B) ∈ Dκ(E,X) if and only if (A,B) ∈ D(X) and

E = κ
2 |A|

2 + 1
2

3∑
i=1

gii(A)c2i . (5.1)

with ci defined above.

Proof. The first statement follows immediately from Lemmas 2.12 and 2.11. The second
statement is equally simple

E = Eκ(A,B) = 1
2 |B|

2 + κ
2 |A|

2 = 1
2

3∑
i=1

gii(A)c2i + κ
2 |A|

2.

Lemma 5.5. Fix κ ≥ 0. Let (E,X) ∈ [κ,∞) × R2. Suppose that A ∈ SO(2,R) and
(A,B) ∈ D.

Then (A,B) ∈ D(X) if and only if X1 = X2 and

A = U(2s1), B = (12X1) U(2s1) Z + β U(2s2) M, (5.2)

with β ≥ 0, s1, s2 ∈ R.
Moreover, (A,B) ∈ Dκ(E,X), if and only if (A,B) ∈ D(X) and

E = κ+ 1
4X

2
1 + β2.

Proof. Using Lemma 2.14, write A = A(s1, 0, 1) = U(2s1). By Lemma 2.18, for B ∈
TASL(2,R), we have

B = c1U(2s1)Z − c2K + c3M.

Note that −K = ZM and take (c3, c2) = β(cos 2s2, sin 2s2). Then

−c2K + c3M = β(sin 2s2Z + cos 2s2I)M = βU(2s2)M,

so that
B = c1U(2s1)Z + βU(2s2)M.

18
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Now since A ∈ SO(2,R) and (A,B) ∈ D(X), we have

X1 = X2 = X2(A,B) = 〈AZ,B〉 = 2c1,

which yields the formula (5.2).
By (5.2), we have

|B|2 = 1
4X

2
1 |ZU(σ1)|2 + β2|MU(σ2)|2 = 2(14X

2
1 + β2),

and so if (A,B) ∈ Dκ(E,X), then

E = Eκ(A,B) = 1
2 |B|

2 + κ
2 |A|

2 = κ+ 1
4X

2
1 + β2.

The converse statements are easily verified.

Corollary 5.6. For every X ∈ R2, there exists (A,B) ∈ D(X) such that B 6= 0.

Proof. This follows from Lemmas 5.4 and 5.5.

6. The nonlinearity, revisited

Lemma 6.1. Fix κ ≥ 0. If (A,B) ∈ Dκ(E,X), then

Λκ(A,B) =
2(κ− detB)

|A|2
=

4E − 2X1X2

|A|4
.

Proof. Let (A,B) ∈ Dκ(E,X) ⊂ D, and put L = L(A,B) = BA−1. Then by Lemma 2.1,
trL = 0, and so the Cayley-Hamilton Theorem implies that

L2 + (detL)I = 0.

Taking the trace yields

trL2 = −2 detL = −2 detB detA−1 = −2 detB.

Also note that by Lemmas 1.13 and 1.11, we have

trA−>A−1 = |A−>|2 = | cof A|2 = |A|2.

According to Definition 3.10, this shows that

Λκ(A,B) =
2(κ− detB)

|A|2
,

which is the first statement.
Therefore, the result will follow if we can verify that

(κ− detB) =
2E −X1X2

|A|2
, for (A,B) ∈ Dκ(E,X). (6.1)
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To proceed, we temporarily assume that A ∈ SL(2,R) \ SO(2,R). Using Lemmas 5.4
and 2.22, we have

cof B = c1τ1(A)− c2τ2(A)− 2

|A|2
c3τ3(A) +

1

|A|
N(A).

Therefore, by Lemmas 1.15 and 5.4, we find that

2 detB = 〈cof B,B〉 = g11(A)c21 − g22(A)c22 −
2

|A|2
g33(A)c23.

Combining this with (5.1) to eliminate the term with c3, we obtain

|A|2(κ− detB) = 2E − 1
4g11(A)2c21 + 1

4g22(A)2c22 = 2E −X1X2,

as desired.
We now establish the identity (6.1) for A ∈ SO(2,R). In this case, we have that |A|2 = 2,

by Lemma 1.7, and X1 = X2 by Lemma 4.3, so we aim to show that

κ− detB = E − 1
2X

2
1 .

This now follows from Lemma 5.5 since

2 detB = 〈B, cof B〉
=
〈
1
2X1U(2s1)Z + βU(2s2)M, 12X1U(2s1)Z − βU(2s2)M

〉
= 1

4X
2
1 |U(2s1)Z|2 − β2|U(2s2)M |2

= 1
2X

2
1 − 2β2

= −2E + 2κ+X2
1 .

Corollary 6.2. For each κ ≥ 0, the set

{(A,B) ∈ D : Λκ(A,B) = 0}

is invariant under the flow of (3.3).

The next lemma gives another geometric interpretation of the nonlinear term.

Corollary 6.3. There holds

Λκ(A,B)A−> =

(
2κ

|A|
+ 〈S(A)B,B〉

)
N(A), (A,B) ∈ D.

Proof. By Lemmas 1.15 and 2.25, we have

−2 detB = −〈cof B,B〉 = |A| 〈S(A)B,B〉 .

The claim follows from Lemma 6.1 and Definition 2.3.
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7. Energy minimization in D(X)

Definition 7.1. By Corollary 5.6, D(X) 6= ∅, so for X ∈ R2 and κ ≥ 0, we may define

eκ(X) = inf{Eκ(A,B) : (A,B) ∈ D(X)}.

Lemma 7.2. If κ = 0, then e0(X) = 0, for any X ∈ R2. If X 6= 0, then the image of D(X)
under E0 is the open interval (0,∞). If X = 0, then E0(D(X)) = [0,∞).

Proof. Fix X ∈ R2. Let Aj be a sequence in SL(2,R) \ SO(2,R), with |Aj | → ∞. Fix c1, c2
and take c3 = 0 in (5.1). We obtain a sequence (Aj , Bj) ∈ D(X) such that E0(Aj , Bj)→ 0.
Thus, we see that e0(X) = 0.

Now, letting c3 range over all values in R, we observe that

(E0(Aj , Bj),∞) ⊂ E0(D(X)),

for each j. This shows that (0,∞) ⊂ E0(D(X)).
If X 6= 0, then for all (A,B) ∈ D(X), B 6= 0 and thus E0(A,B) 6= 0. This means that

E0(D(X)) = (0,∞).
Finally, take X = 0. Since (I, 0) ∈ D(0), we see that 0 = E0(I, 0) ∈ E0(D(0)), and we

conclude E0(D(X)) = [0,∞).

Lemma 7.3. If κ > 0, then for any X ∈ R2, eκ(X) ≥ κ with equality if and only if X = 0.
Moreover, Eκ(D(X)) = [eκ(X),∞).

Proof. Since Eκ(A,B) ≥ κ, for all (A,B) ∈ D, we have that eκ(X) ≥ κ.
If eκ(X) = κ, then for any ε > 0, there exists (A,B) ∈ D(X) such that 0 ≤ Eκ(A,B)−

κ < ε. It follows that
|B|2 ≤ 2ε and |A|2 ≤ 2 + 2ε/κ.

Therefore, we see that for i = 1, 2,

|Xi| = |Xi(A,B)| ≤ |A||B| ≤ ε1/2(2 + 2ε/κ)1/2.

Since ε > 0 is arbitrary, we get that X = 0.
On the other hand, if X = 0, then for any A ∈ SO(2,R), we have (A, 0) ∈ D(X). Thus,

we see that
κ ≤ eκ(0) ≤ Eκ(A, 0) = κ.

We have shown that eκ(X) = κ if and only if X = 0.
Take a sequence (Aj , Bj) ∈ D(X) with Eκ(Aj , Bj) ↘ eκ(X). By Lemmas 5.4 and 5.5,

we may assume without loss of generality that for each j, Bj lies in the span of τi(Aj),
i = 1, 2. Since κ > 0, this sequence is bounded in D(X). By compactness we obtain
an energy minimizer (A,B) ∈ D(X) where B lies in the span of τi(A), i = 1, 2. By
considering the family (A,B + B1) ∈ D(X), where 〈τi(A), B1〉 = 0, i = 1, 2, we see that
that Eκ(D(X)) = [eκ(X),∞).
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Lemma 7.4. If κ > 0 and X1 = X2, then

eκ(X) =

{
κ+ 1

4X
2
1 ,

1
8X

2
1 ≤ κ

(2κ)1/2|X1| − κ, 1
8X

2
1 ≥ κ.

Proof. If A ∈ SO(2,R), then by Lemma 5.5, we see that

min{Eκ(A,B) : B ∈ TASL(2,R)} = κ+ 1
4X

2
1 .

If A ∈ SL(2,R) \ SO(2,R), then by Lemma 5.4,

min{Eκ(A,B) : B ∈ TASL(2,R)} = κ
2 |A|

2 +
X2

1

|A|2 + 2
≡ f(|A|2).

Taking the infimum over ξ = |A|2 > 2, we obtain

inf{Eκ(A,B) : A ∈ SL(2,R) \ SO(2,R), B ∈ TASL(2,R)}

= inf
ξ>2

f(ξ) =

{
κ+ 1

4X
2
1 ,

1
8X

2
1 ≤ κ√

2κ|X1| − κ, 1
8X

2
1 ≥ κ.

Remark 7.5. The function defined in Lemma 7.4 is C1 in X1.

Remark 7.6. When κ > 0 and X1 = X2, we have

κ+ 1
4X

2
1 ≥ eκ(X),

with equality if and only if 1
8X

2
1 ≤ κ.

8. The reduced Hamiltonian

In this preparatory section we introduce the reduced Hamiltonian and investigate its level
curves in the phase plane. The connection with the dynamics will be made in Section 9.

Definition 8.1. Given values κ ≥ 0 and (E,X) ∈ [0,∞)× R2, define the polynomials

Pκ(x;E,X) =− 4κx(x2 − 1) + 4E(x2 − 1)

− 1
2(X1 −X2)

2(x+ 1)− 1
2(X1 +X2)

2(x− 1), x ∈ R,

and

Φκ(x, y;E,X) =
y2

2
− Pκ(x;E,X)

2x
, (x, y) ∈ R2.

Remark 8.2. The reader is cautioned that from now on x and y shall represent real numbers,
and not spatial and material points, as in Section 3.

Remark 8.3. We will see momentarily that if (A,B) ∈ Dκ(E,X), then the point (x, y) =
(12 |A|

2, 〈A,B〉) satsifies Φκ(x, y;E,X) = 0.
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Definition 8.4. Define the mapping P : D→ R2 by

P(A,B) =
(
1
2 |A|

2, 〈A,B〉
)
.

Lemma 8.5. The range of P is given by

P(D) = {(x, y) ∈ R2 : x > 1} ∪ {(1, 0)},

and for all (A,B) ∈ D, P(A,B) = (1, 0) if and only if A ∈ SO(2,R).

Proof. This follows by Lemmas 1.7 and 2.4.

Definition 8.6. For fixed parameter values κ ≥ 0 and (E,X) ∈ [eκ(X),∞)× R2, define

Cκ(E,X) = P(Dκ(E,X))

= {(x, y) = P(A,B) ∈ R2 : (A,B) ∈ Dκ(E,X)}.

Lemma 8.7. Fix values κ ≥ 0 and (E,X) ∈ [eκ(X),∞)× R2. There holds

Cκ(E,X) ⊂ P(D).

A point (x, y) with x > 1 belongs to Cκ(E,X) if and only if

Φκ(x, y;E,X) = 0.

The point (1, 0) belongs to Cκ(E,X) if and only if

Φκ(1, 0;E,X) = 0 and ∂xΦκ(1, 0;E,X) ≤ 0 (8.1)

if and only if
X1 = X2, and E ≥ κ+ 1

4X
2
1 . (8.2)

Proof. The first statement is a consequence of Definition 5.1.
Select any point (x, y) = P(A,B) ∈ P(D), with x > 1. By definition, (x, y) ∈ Cκ(E,X)

if and only if (A,B) ∈ Dκ(E,X). By Lemma 2.11, we find that

g(A) = diag

[
4(x+ 1), 4(x− 1),

x

2(x2 − 1)

]
.

The third coordinate c3 defined in Lemma 5.4 satisfies

c3 = 〈A,B〉 = y.

Therefore, Lemma 5.4 implies that (A,B) ∈ Dκ(E,X) if and only if

E = κx+
(X1 +X2)

2

8(x+ 1)
+

(X1 −X2)
2

8(x− 1)
+

xy2

4(x2 − 1)
,

which is in turn equivalent to the desired result Φκ(x, y;E,X) = 0.
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Now suppose that (1, 0) = P(A,B) ∈ Cκ(E,X). Then A ∈ SO(2,R) and X1 = X2, by
Lemmas 4.3 and 8.5. By the Cauchy-Schwarz inequality and Lemmas 1.6, 1.7, we have

X2
1 = 〈ZA,B〉2 ≤ |ZA|2|B|2 = |A|2|B|2 = 2|B|2 = 4(Eκ(A,B)− κ

2 |A|
2) = 4(E − κ).

Thus, (8.2) is true.
Next, suppose that (8.2) holds. Choose A ∈ SO(2,R) and using Lemma 5.5 set

B = (12X1) ZA+B1,

with
〈A,B1〉 = 〈ZA,B1〉 = 0 and 1

2 |B1|2 = E − κ− 1
4X

2
1 .

By Lemma 5.5, (A,B) ∈ Dκ(E,X), and so (1, 0) = P(A,B) ∈ Cκ(E,X).
It is immediate to verify the equivalence of (8.1) and (8.2).

Lemma 8.8. A point (x0, y0) ∈ Cκ(E,X) is a critical point of the Hamiltonian Φκ(x, y;E,X)
if and only if

x0 ≥ 1, y0 = 0, and Pκ(x0;E,X) = P ′κ(x0;E,X) = 0. (8.3)

Proof. Suppose that (x0, y0) ∈ Cκ(E,X) is a critical point of Φκ(x, y;E,X). Then (x0, y0) ∈
P(D), so x0 ≥ 1. By Lemma 8.7,

Φκ(x0, y0;E,X) = y20/2− Pκ(x0, E,X)/2x0 = 0.

Critical points are characterized by the equations

∂xΦκ(x0, y0;E,X) = (Pκ(x0;E,X)− x0P ′κ(x0;E,X))/2x20 = 0

and
∂yΦκ(x0, y0;E,X) = y0 = 0.

Thus, we see that (8.3) holds.
If (8.3) holds, then

Φκ(x0, y0;E,X) = 0 and ∇x,yΦκ(x0, y0;E,X) = 0.

So (x0, y0) is a critical point of Φκ, and by Lemma 8.7, (x0, y0) ∈ Cκ(E,X).

Corollary 8.9. If (κ,E,X) 6= 0, then the set Cκ(E,X) can contain at most one critical
point of Φκ(x, y;E,X).

Proof. By Lemma 8.8, critical points in Cκ(E,X) correspond to double roots of Pκ(x;E,X),
a nonzero polynomial of degree at most 3, so there can be at most one critical point.

Lemma 8.10. Fix κ > 0, X ∈ R2. The set Cκ(E,X) is a singleton if and only if
E = eκ(X). In this case, Cκ(eκ(X), X) = {(x0, 0)}, where (x0, 0) is a critical point of
Φκ(x, y; eκ(X), X) and a minimum in P(D).
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Proof. Suppose that E < eκ(X). Then Cκ(E,X) = ∅, and so by Lemma 8.7

Φκ(x, y;E,X) 6= 0, for all x > 1, y ∈ R.

Since κ > 0, we have Φκ(x, 0;E,X)→ +∞, as x→ +∞, and as a consequence

Φκ(x, y;E,X) > 0 for all x > 1, y ∈ R.

By continuity, we obtain

Φκ(x, y; eκ(X), X) ≥ 0, for all (x, y) ∈ P(D).

Since
Φκ(x, y; eκ(X), X) = 1

2y
2 + Φκ(x, 0; eκ(X), X),

we see that
Φκ(x, y; eκ(X), X) > 0, for all (x, y) ∈ P(D), y 6= 0.

Thus, by Lemma 8.7 we have that

Cκ(eκ(X), X) ⊂ {(x, 0) : x ≥ 1}.

Additionally, Lemma 7.3 assures us that Cκ(eκ(X), X) = P(Dk(eκ(X), X)) 6= ∅.
If (x0, 0) ∈ Cκ(eκ(X), X) for some x0 ≥ 1, then

0 = Φκ(x0, 0; eκ(X), X) ≤ Φκ(x, y; eκ(X), X), (x, y) ∈ P(D).

This says that (x0, 0) is a minimum value for Φκ(x, y; eκ(X), X). It follows that

∂xΦκ(x0, 0; eκ(X), X) = 0, if x0 > 1

and
∂xΦκ(x0, 0; eκ(X), X) ≥ 0, if x0 = 1.

On the other hand, if x0 = 1, then by Lemma 8.7,

∂xΦκ(x0, 0; eκ(X), X) ≤ 0.

We conclude that
∂xΦκ(x0, 0; eκ(X), X) = 0, for all x0 ≥ 1.

This shows that (x0, 0) must be a critical point of Φκ(x, y; eκ(X), X). Since κ > 0, there can
be only one critical point in Cκ(eκ(X), X) by Corollary 8.9, and so this set is a singleton.

Now suppose that Cκ(E,X) is a singleton. By Lemma 8.7 and definition of Φκ(x, y;E,X),
if (x, y) ∈ Cκ(E,X), then (x,−y) ∈ Cκ(E,X). So it must be that

Cκ(E,X) = {(x0, 0)}, for some x0 ≥ 1.

By Lemma 8.7, we have that

{x > 1 : Φκ(x, y;E,X) = 0} ⊂ Cκ(E,X) = {(x0, 0)}.
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This implies that Φκ(x, y;E,X) does not vanish on the connected open set

{(x, y) : x > 1, x 6= x0}.

Using the fact that limx→∞Φκ(x, 0;E,X) =∞, we conclude that

Φκ(x, y;E,X) > 0 for all x > 1, x 6= x0, y ∈ R. (8.4)

Since Cκ(E,X) 6= ∅, we have that E ≥ eκ(X). We claim that

Ē < E implies Cκ(Ē,X) = ∅. (8.5)

Given this claim, we would have Ē < eκ(X) so that

E = sup{Ē : Ē < E} ≤ eκ(X),

thereby showing that E = eκ(X), as desired.
Assume Ē < E, and let us now proceed to verify (8.5). Write

Φκ(x, y; Ē,X) = 4(E − Ē)(x2 − 1)/2x+ Φκ(x, y;E,X). (8.6)

By (8.4), the equation (8.6) implies that

Φκ(x, y; Ē,X) > 0, for all x > 1, y ∈ R.

Thus, by Lemma 8.7, we discover that

Cκ(Ē,X) ⊂ {(1, 0)}.

If X1 6= X2, then Φκ(1, 0; Ē,X) = (X1 −X2)
2 > 0 so that (1, 0) /∈ Cκ(Ē,X) and (8.5)

holds in this case.
Next, suppose that X1 = X2. Then

Φκ(1, 0; Ē,X) = Φκ(1, 0;E,X) = 0,

and by (8.4), we see that
∂xΦκ(1, 0;E,X) ≥ 0.

Thus, by (8.6), we find that

∂xΦκ(1, 0; Ē,X) = 4(E − Ē) + ∂xΦκ(1, 0;E,X) > 0.

By Lemma 8.7, we conclude that (1, 0) /∈ Cκ(Ē,X), and again (8.5) holds.

For convenience, we summarize the relationship between the exceptional point (1, 0) and
the sets Cκ(E,X).

Corollary 8.11. Fix X ∈ R2.
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i. (1, 0) ∈ Cκ(E,X) if and only if X1 = X2 and E ≥ κ+ 1
4X

2
1 .

ii. (1, 0) ∈ Cκ(E,X) is a critical point of Φκ(x, y;E,X) if and only if X1 = X2 and
E = κ+ 1

4X
2
1 .

iii. {(1, 0)} = Cκ(E,X) if and only if κ > 0, X1 = X2 and E = κ+ 1
4X

2
1 = eκ(X).

Proof. The statement (i) was shown in Lemma 8.7, and (ii) follows from Lemma 8.8. In
the next result we shall see that C0(E,X) is either empty or unbounded. Thus, (iii) is just
Lemma 8.10.

Lemma 8.12. At each point (x, y) ∈ Cκ(E,X) such that ∇Φκ(x, y;E,X) 6= 0, the set
Cκ(E,X) is a locally smooth curve.

The sets Cκ(E,X) are closed and connected subsets of P(D).
If C0(E,X) 6= ∅, then it is unbounded.
If κ > 0, then Cκ(eκ(X), X) is a singleton, and for E > Ē ≥ eκ(X), Cκ(E,X) is a

closed curve enclosing Cκ(Ē,X) \ {(1, 0)}.

Proof. By Lemma 8.7,

Cκ(E,X) \ {(1, 0)} ⊂ {(x, y) : Φκ(x, y;E,X) = 0, x > 1},

so the smoothness of Cκ(E,X) away from critical points of Φκ(x, y;E,X) in the region
{x > 1} follows by the implicit function theorem. If (1, 0) ∈ Cκ(E,X) is not a critical
point of Φκ(x, y;E,X), then by Lemma 8.7, ∂xΦκ(1, 0;E,X) < 0, and the implicit function
theorem provides a smooth local parameterization of Cκ(E,X) of the form (x(y), y), |y| � 1,
with

x(0) = 1, x′(0) = 0, x′′(0) = −1/∂xΦκ(1, 0;E,X) > 0,

describing a curve contained in P(D).
To prove the other statements, we consider the cases κ = 0 and κ > 0 separately.
Suppose that κ = 0. If E = 0 and C0(0, X) 6= ∅, then by Lemma 7.2, we have X = 0.

By definition, Φ0(x, y; 0, 0) = 1
2y

2, and so by Lemma 8.7,

C0(0, 0) = {(x, 0) : x ≥ 1},

which is a closed, connected, and unbounded set. If E > 0, then P0(x;E,X) → ∞, as
|x| → ∞. By Lemma 8.7,

C0(E,X) ⊂ {(x, y) : Φ0(x, y;E,X) = 0, x ≥ 1},

so P0(x;E,X) must have real roots x1(E,X) ≤ x2(E,X). Since

P0(1;E,X) = −(X1 −X2)
2 ≤ 0,

it follows that x1(E,X) ≤ 1 ≤ x2(E,X). If x1(E,X) = 1 < x2(E,X), then ∂xΦ0(1, y;E,X) <
0, and by Lemma 8.7, (1, 0) /∈ C0(E,X) and so

C0(E,X) = {(x, y) : y2 = P0(x;E,X)/x, x ≥ x2(E,X)}.
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This also holds when x1(E,X) < 1 ≤ x2(E,X) or when x1(E,X) = x2(E,X) = 1. Thus,
C0(E,X) again is a closed, connected, and unbounded set.

Now suppose that κ > 0. Note that Pκ(x;E,X)→ ∓∞, as x→ ±∞ and Pκ(1;E,X) =
−(X1−X2)

2 ≤ 0. So if Cκ(E,X) 6= ∅, then Pκ(x;E,X) must have three real roots (counting
multiplicity) with

x1(E,X) ≤ 1 ≤ x2(E,X) ≤ x3(E,X).

By Lemma 8.7, (1, y) ∈ Cκ(E,X) if and only if

y = 0 and ∂xΦκ(1, 0;E,X) = −1
2P
′
κ(1;E,X) ≤ 0.

It follows that

Cκ(E,X) = {(x, y) : y2 = Pκ(x;E,X)/x, x2(E,X) ≤ x ≤ x3(E,X)}. (8.7)

Thus, Cκ(E,X), κ > 0, is a simple closed closed curve and a closed, bounded, and connected
set.

We note that for E > Ē ≥ eκ(X), we have

Pκ(x;E,X)− Pκ(x; Ē,X) = 4(E − Ē)(x2 − 1) > 0, x > 1.

Thus, the enclosure claim is a consequence of (8.7).
The fact that Cκ(eκ(X), X) is a singleton was shown in Lemma 8.10.

Remark 8.13. Observe that (with the exception of Corollary 6.2) the results in Sections
5 through 8 are purely algebraic. We now make the connection with the dynamics of the
system (3.3).

9. Reduction to the phase plane

If A ∈ C0(R; SL(2,R)) ∩ C2(R;M2), then (x(t), y(t)) = P(A(t), A′(t)) is a C1 planar
curve. We now show that given a solution A(t) of the system (3.3), its phase plane curve
P(A(t), A′(t)) satisfies a Hamiltonian system.

Theorem 9.1. Fix κ ≥ 0 and (E,X) ∈ [eκ(X),∞)×R2. Suppose that A ∈ C0(R,SL(2,R))∩
C2(R,M2) is a solution of (3.2), (3.3), (3.4) with initial data in Dκ(E,X). Put

(x(t), y(t)) = P(A(t), A′(t)).

Then
x′(t) = ∂yΦκ(x(t), y(t);E,X) = y(t)

y′(t) = −∂xΦκ(x(t), y(t);E,X),
(9.1)

and the solution orbit satisfies

(x(t), y(t)) ∈ Cκ(E,X), (9.2)

for all t ∈ R.
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Proof. By Theorem 4.4, we have (A(t), A′(t)) ∈ Dκ(E,X), for all t ∈ R, and thus, (9.2)
follows by definition of Cκ(E,X).

The first equation of (9.1) holds because

x′(t) = (12 |A(t)|2)′ =
〈
A(t), A′(t)

〉
= y(t)

and ∂yΦκ(x, y;E,X) = y.
To verify the second, we compute using (3.3), Definition 3.12, and Lemma 6.1

y′(t) = x′′(t)

=
〈
A′′(t), A(t)

〉
+ |A′(t)|2

=
〈
−κA(t) + Λκ(A(t), A′(t))A(t)−>, A(t)

〉
+ |A′(t)|2

= −κ|A(t)|2 + 2Λκ(A(t), A′(t)) + |A′(t)|2 (9.3)

= −2κ|A(t)|2 + 2Eκ(A(t), A′(t)) + 2Λκ(A(t), A′(t))

= −4κx(t) + 2E +
2E −X1X2

x(t)2
.

A short algebraic manipulation using Defnition 8.1 confirms that

−4κx+ 2E +
2E −X1X2

x2
=
xP ′κ(x;E,X)− Pκ(x;E,X)

2x2

= −∂xΦκ(x, y;E,X),

for all (x, y) with x ≥ 1, which completes the verification of (9.1).

Remark 9.2. Observe that (9.1) has a Hamiltonian structure. The key result (9.2) will allow
us understand the behavior of the orbits (x(t), y(t)) of (9.1) corresponding to solutions of
(3.3) by studying the sets Cκ(E,X).

Remark 9.3. When κ = 0,

x′′ =
2E(x− 1)2 + (4Ex−X1X2)

x2
≥ 0

with equality if and only if x = 1, X1 = X2, 4E = X2
1 , (cf. Lemma 13.1).

Corollary 9.4. Fix κ ≥ 0 and (E,X) ∈ [eκ(X),∞)×R2. For any initial data (x(0), y(0)) ∈
Cκ(E,X), the IVP for (9.1) has a unique global solution (x, y) ∈ C1(R,R2) with (x(t), y(t)) ∈
Cκ(E,X), for all t ∈ R.

Proof. Given (x(0), y(0)) ∈ Cκ(E,X), use Lemma 8.7 to find data (A0, B0) ∈ Dκ(E,X)
such that

P(A0, B0) = (x(0), y(0)).

Let A ∈ C0(R, SL(2,R)) ∩ C2(R,M2) be the solution of (3.2), (3.3), (3.4) with this data.
By Theorem 9.1, (x(t), y(t)) = P(A(t), A′(t)) is the desired solution.
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Remark 9.5. While the quantity Φκ(x(t), x′(t);E,X) is conserved along all solutions of the
reduced system (9.1), we emphasize that only the portion of the zero level set in Cκ(E,X)
corresponds to solutions of the full system (3.3).

Lemma 9.6. Fix κ ≥ 0, (E,X) ∈ [eκ(X),∞)× R2, with (κ,E,X) 6= 0.
If Cκ(E,X) does not contain a critical point of Φκ(x, y;E,X), then it is a smooth curve

in R2 consisting of a single orbit of (9.1).
If Cκ(E,X) contains a single critical point p of Φκ(x, y;E,X), then each component of

Cκ(E,X) \ {p} is a smooth curve in R2 consisting of a single orbit of (9.1).
If γ is a nontrivial orbit of (9.1) in Cκ(E,X), then either γ is a closed orbit or its alpha-

and omega-limit sets are subsets of {p}, where p is a critical point in Cκ(E,X).

Proof. Since (κ,E,X) 6= 0, Cκ(E,X) can contain at most one critical point of Φκ(x, y;E,X),
by Corollary 8.9.

Suppose that Cκ(E,X) contains no critical points of Φκ(x, y;E,X). Then the orbit
through each point of Cκ(E,X) is open in Cκ(E,X). Since Cκ(E,X) is connected, it can
contain only one orbit. If Cκ(E,X) contains a critical point p of Φκ(x, y;E,X), then the
same argument is valid on each component of Cκ(E,X) \ {p}. These nontrivial orbits are
C1 curves, by (9.1).

Let γ be a nontrivial orbit in Cκ(E,X). Since Cκ(E,X) is a closed set, it contains ω(γ),
the omega-limit set of γ. If ω(γ) 6= ∅, then it is an invariant set for (9.1). If γ ∩ ω(γ) 6= ∅,
then γ ⊂ ω(γ). In this case, γ must be a closed orbit. Here’s the proof: We can write

γ = {ϕ(t) = (x(t), y(t)) : t ∈ R},

for some solution (x(t), y(t)) of (9.1). ϕ(0) is not a critical point, so by the implicit function
theorem, there exists an ε > 0 and a neighborhood N of ϕ(0) such that

{ϕ(t) : t ∈ (−ε, ε)} = {(x, y) ∈ R2 : Φκ(x, y;E,X) = 0} ∩N.

Since ϕ(0) ∈ ω(γ), there exists a sequence tj → ∞ such that ϕ(tj) → ϕ(0). Thus, since
ϕ(t) ∈ Cκ(E,X) for all t ∈ R, there exists a tj > ε such that

ϕ(tj) ∈ {(x, y) ∈ R2 : Φκ(x, y;E,X) = 0} ∩N.

It follows that there exists τ ∈ (−ε, ε) such that γ(tj) = γ(τ). This proves that γ is a closed
orbit.

If q ∈ Cκ(E,X) \ γ is not a critical point, then its orbit, call it η, is an open subset
of Cκ(E,X). This implies that η ∩ ω(γ) = ∅, and so q /∈ ω(γ). Therefore, we have either
γ∩ω(γ) 6= ∅, in which case γ is closed, or ω(γ)∩γ = ∅, in which case ω(γ) can only contain
critical points of Φκ(x, y;E,X) in Cκ(E,X). The same argument applies for α(γ).

10. Special solutions

Equilibria

Lemma 10.1. Fix κ ≥ 0. A solution of (3.2), (3.3), (3.4) is an equilibrium if and only the
initial data satisfies (A0, B0) ∈ Dκ(κ, 0).

30



J. Roberts, S. Shkoller, and T. Sideris 2d incompressible fluids and flows in SL(2,R)

Proof. First, we note that

D0(0, 0) = {(A,B) ∈ D : A ∈ SL(2,R), B = 0},

and for κ > 0,
Dκ(κ, 0) = {(A,B) ∈ D : A ∈ SO(2,R), B = 0}.

Moreover, if A(t) = A0 is an equilibrium solution, then A′(t) = 0 = B0.
Suppose first that κ = 0. If A(t) is an equilibrium solution, then (A0, B0) = (A0, 0) ∈

D0(0, 0). Conversely, if (A0, B0) ∈ D0(0, 0), then B0 = 0 implies that Λ0(A0, B0) = 0, and
so A(t) = A0 is an equilibrium solution of (3.3).

Now suppose that κ > 0. Then A(t) = A0 is an equilibrium solution of (3.3) if and only
if

κA0 = Λκ(A0, 0) cof A0.

By Lemma 6.1, this is equivalent to

κA0 =
4Eκ(A0, 0)

|A0|4
cof A0 =

2κ

|A0|2
cof A0.

Taking the norm of both sides gives |A0|2 = 2, so that A0 ∈ SO(2,R). Conversely, by
Lemma 1.13, we see that A0 is an equilibrium solution if A0 ∈ SO(2,R). Thus, when
κ > 0, all equilibrium solutions correspond to initial data (A0, 0) with A0 ∈ SO(2,R), i.e.
(A0, B0) ∈ Dκ(κ, 0).

Remark 10.2. By Lemmas 7.2 and 7.3, equilibrium solutions of (3.3) are those which mini-
mize the energy over D.

Rigid motion

Definition 10.3. A solution A(t) of the system (3.3) shall be called rigid if (x(t), y(t)) =
P(A(t), A′(t)) is an equilibrium solution of (9.1), or equivalently, if P(A(t), A′(t)) = (x, 0)
for some constant x ≥ 1.

Remark 10.4. Equilibrium solutions of (3.3) are also rigid solutions.

Remark 10.5. If A(t) is rigid with 1
2 |A(t)|2 = x, for some constant x ≥ 1, then the fluid

domains are ellipses with principal axes of fixed lengths, i.e. z 7→ A(t)z is a rigid motion
(cf. Remark 3.2).

Lemma 10.6. A solution of the IVP (3.2), (3.3), (3.4)

A ∈ C0(R,SL(2,R)) ∩ C2(R,M2)

with initial data (A0, B0) ∈ Dκ(E,X) is rigid if and only if P(A0, B0) is a critical point of
Φκ(x, y;E,X) in Cκ(E,X).

In particular, initial data (A0, B0) ∈ Dκ(eκ(X), X), κ > 0, yields a rigid solution.
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Proof. If A(t) is rigid, then

P(A(t), A′(t)) = (x0, 0) = P(A0, B0) ∈ Cκ(E,X)

is an equilibrium solution of (9.1). Thus, (x0, 0) is a critical point of Φκ.
Next suppose that (x0, 0) = P(A0, B0) is a critical point of Φκ in Cκ(E,X). By Corollary

9.4, (x(t), y(t)) = (x0, 0) is the unique solution of (9.1) with data (x0, 0). Let A(t) be
the solution of the IVP (3.2), (3.3), (3.4) with initial data (A0, B0). By Theorem 9.1,
(x(t), y(t)) = P(A(t), A′(t)) solves (9.1) with data (x0, 0). Thus, P(A(t), A′(t)) = (x0, 0),
and so A(t) is rigid.

The final statement is a consequence of Lemma 8.10.

Next, we consider the special case of rigid motion in SO(2,R) which will play a special
role in what follows.

Lemma 10.7. Fix κ ≥ 0. The following statements are equivalent:

i. The function A(t) is a solution of (3.3) in

C0(R,SL(2,R)) ∩ C2(R,M2)

whose initial data satisfies

(A0, B0) ∈ Dκ(E,X), with X1 = X2, E = κ+ 1
4X

2
1 ,

and A(t0) ∈ SO(2,R), for some t0 ∈ R.

ii. The function A(t) is a rigid solution of (3.3) in

C0(R,SL(2,R)) ∩ C2(R,M2)

with A(t0) ∈ SO(2,R) for some t0 ∈ R.

iii. The function A(t) is a solution of (3.3) in

C0(R,SO(2,R)) ∩ C2(R,M2).

iv. The function A(t) is given by

A(t) = U
(
1
2X1t+ θ

)
= exp

[(
1
2X1t+ θ

)
Z
]
,

for some θ, X1 ∈ R.

Proof. We shall prove the implications cyclically.
Suppose that (i) holds. The conditions on the invariants (E,X) imply that Pκ(1;E,X) =

P ′κ(1;E,X) = 0. By Lemma 8.8, (1, 0) is a critical point of Φκ(x, y;E,X) in Cκ(E,X), and
so it is an equilibrium solution of (9.1). Since A(t0) ∈ SO(2,R), Lemma 8.5 says that
P(A(t0), A

′(t0)) = (1, 0). By Theorem 9.1, P(A(t), A′(t)) is a solution of (9.1), and by
uniqueness, it must be equal to the equilibrium solution (1, 0). Thus, A(t) is rigid.
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Suppose next that (ii) holds. SinceA(t0) ∈ SO(2,R), Lemma 8.5 says that P(A(t0), A
′(t0)) =

(1, 0). Since A(t) is rigid, we have

P(A(t), A′(t)) = P(A(t0), A
′(t0)) = (1, 0),

for all t ∈ R. Thus, A(t) ∈ SO(2,R) for all t ∈ R, Lemma 8.5.
Suppose next that (iii) holds. Differentiating the identity

A(t)A(t)> = I,

we find that A′(t)A(t)> is anti-symmetric. Note that since A(t) ∈ SO(2,R), we have

L(A(t), A′(t)) = A′(t)A(t)−1 = A′(t)A(t)>

is anti-symmetric. Thus, using Corollary 4.6 and Lemma 4.3, we obtain

L(A(t), A′(t)) = 1
2X2Z = 1

2X1Z,

and so, we see that
A′(t) = 1

2X1ZA(t).

The explicit solution is

A(t) = exp
[
1
2X1(t− t0) Z

]
A(t0) = U

(
1
2X1t

)
U
(
−1

2X1t0
)
A(t0).

Since A(t0) ∈ SO(2,R), we may use Lemma 1.9 to write

U
(
−1

2X1t0
)
A(t0) = U(θ),

for some θ ∈ R. This leads to the desired formula.
If (iv) statement holds, then (i) follows by direct calculation using the explicit formula

for A(t).

Remark 10.8. Observe that solutions in SO(2,R) are periodic.

Remark 10.9. Even and odd dimensions are fundamentally different. There are no nontrivial
solutions of the equation (3.1) in the form A(t) = exp(Wt) with W anti-symmetric in odd
dimensions.

Definition 10.10. For each X1 ∈ R, define

R(X1) = {(U, 12X1ZU) : U ∈ SO(2,R)}.

Lemma 10.11. For each κ ≥ 0 and X1 ∈ R, R(X1) coincides with the orbit of a rigid
rotational solution of (3.3).

If X = (X1, X1) and E = κ+ 1
4X

2
1 , then R(X1) ⊂ Dκ(E,X).

Additionally, R(X1) = Dκ(E,X) if and only if E = eκ(X).
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Proof. Let κ ≥ 0 and X1 ∈ R. Set A(t) = U
(
1
2X1t

)
, t ∈ R. By Lemma 10.7 (iv), A(t) is a

rigid rotational solution of (3.3). Its orbit

(A(t), A′(t)) =
(
A(t), 12X1A(t)

)
is equal to R(X1), since, by Lemma 1.9, A(t) parameterizes SO(2,R).

The second statement follows from Lemma 10.7 (i).
Finally, we show that the inclusion is an equality if and only if E = eκ(X).
Note that P(R(X1)) = {(1, 0)}. Thus, we have

{(1, 0)} = P(R(X1)) ⊂ P(Dκ(E,X)) = Cκ(E,X). (10.1)

If E > eκ(X), then Cκ(E,X) is not a singleton, by Lemma 8.10, and we see that Dκ(E,X)\
R(X1) 6= ∅.

If, on the other hand, E = eκ(X), then Cκ(E,X) is a singleton, and (10.1) implies
that Cκ(E,X) = {(1, 0)}. If (A,B) ∈ Dκ(E,X), then P(A,B) = (1, 0). By Lemma 8.5,
A ∈ SO(2,R), and by Lemma 5.5, B = 1

2X1ZA, since E = eκ(X). This shows that
(A,B) ∈ R(X1), and so Dκ(E,X) ⊂ R(X1).

Remark 10.12. Later, we shall see that the invariant manifolds R(X1) are hyperbolic, (cf.
Corollaries 12.6 and 13.9).

Solutions with vanishing pressure

Lemma 10.13. Let (A0, B0) ∈ Dκ(E,X) with 2E −X1X2 = 0.
If κ = 0, then

A(t) = B0t+A0

is the solution of (3.2), (3.3), (3.4) in C0(R,SL(2,R)) ∩ C2(R,M2).
If κ > 0, then

A(t) = (cos
√
κt)A0 + 1√

κ
(sin
√
κt)B0

is the solution of (3.2), (3.3), (3.4) in C0(R,SL(2,R)) ∩ C2(R,M2).

Proof. Let A ∈ C0(R, SL(2,R))∩C2(R,M2) be the solution of (3.3) with data in Dκ(E,X).
If 2E −X1X2 = 0, then by Lemmas 4.4 and 6.1, we have that

Λκ(A(t), A′(t)) = 0, for all t ∈ R. (10.2)

The formulas follow directly by solving the IVP for the linear equation resulting from (3.3)

A′′ + κA = 0.

Remark 10.14. The condition 2E−X1X2 = 0 implies equation (10.2) which in turn implies
that the pressure vanishes, by Lemmas 3.7 and 3.11.
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Remark 10.15. When κ > 0, the solution A(t) is T -periodic, with 2T = π/
√
κ, while

|A(t)|2 = 1
2(1 + cos 2

√
κt)|A0|2 + 1√

κ
sin 2
√
κt 〈A0, B0〉+ 1

2κ(1− cos 2
√
κt)|B0|2

is T -periodic. Cκ(E,X) is an ellipse given by:

y2 + 4κ(x− E/2κ)2 = 4κ+ E2/κ−X2
1 −X2

2 .

By the Cauchy-Schwarz inequality and the condition 2E − X1X2 = 0, we have |Xi| ≤
E/
√
κ = X1X2/(2

√
κ). We see that |Xi| ≥ 2

√
k, and therefore the right-hand side is

nonnegative:
1

4κ
(X2

1 − 4κ)(X2
2 − 4κ) ≥ 0.

Remark 10.16. When κ = 0, A(t) is a line in SL(2,R). C0(E,X) is a parabola given by:

y2 − 2X1X2x+X2
1 +X2

2 = 0.

11. Reconstruction

We now show that solutions A(t) of the system (3.3) can be recovered from knowledge of
its phase plane curve P(A(t), A′(t)) and its initial data (3.2), using local coordinates. The
proof is complicated by the coordinate singularity on SO(2,R).

In order to avoid repetition, we enforce the following standing assumption throughout
this section:

(A)
The parameter κ ≥ 0 and the invariants (E,X) ∈ [eκ(X),∞)×R2 are fixed,
and the initial data satisfies (A0, B0) ∈ Dκ(E,X).

Lemma 11.1. Suppose that (A) holds. If A0 ∈ SL(2,R) \ SO(2,R), then there exists

s(0) = (s1(0), s2(0), s3(0)) ∈ R2 × [1,∞)

such that
A0 = A(s(0)) and 1

2 |A0|2 = s3(0),

where A(s) was defined in Lemma 2.14. Moreover, there holds

B0 =
X1 +X2

g11(A0)
τ1(A0) +

X1 −X2

g22(A0)
τ2(A0) + 〈A0, B0〉 τ3(A0).

If A0 ∈ SO(2,R), then
X1 = X2, E ≥ κ+ 1

4X
2
1 ,

and there exists
s(0) = (s1(0), s2(0), s3(0)) ∈ R2 × [1,∞)

such that
A0 = U(2s1(0)), 1

2 |A0|2 = 1 = s3(0),
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and
B0 = 1

2X1 U(2s1(0)) Z + β U(2s2(0)) M,

with
β =

(
E − κ− 1

4X
2
1

)1/2
.

Proof. This is just a summary of the results contained in Lemmas 2.12, 5.4, and 5.5.

Lemma 11.2. Suppose that (A) holds. There exists a unique curve s = (s1, s2, s3) ∈
C2(R,R2 × [1,∞)) such that (s3(t), s

′
3(t)) solves (9.1) with initial data (s3(0), s′3(0)) =

P(A0, B0) and (s1(t), s2(t)) solves

s′1(t) =
X1 +X2

4(s3(t) + 1)

s′2(t) =


X1 −X2

4(s3(t)− 1)
, if X1 6= X2

0, if X1 = X2,

(11.1)

with initial data (s1(0), s2(0)) defined by Lemma 11.1.
If A ∈ C0(R, SL(2,R)) ∩ C2(R,M2) solves the IVP (3.2), (3.3), (3.4) with initial data

(A0, B0), then P(A(t), A′(t)) = (s3(t), s
′
3(t)).

Proof. The existence and uniqueness of a solution (x, y) ∈ C0(R,R2) to (9.1) with initial
data P(A0, B0) is given Corollary 9.4. Since the first equation of (9.1) says that x′(t) =
y(t), we can label the solution as (s3, s

′
3). The proof of the corollary also shows that

P(A(t), A′(t)) = (s3(t), s
′
3(t)).

We know that (s3(t), s
′
3(t)) ∈ Cκ(E,X), for all t ∈ R. If X1 6= X2, then s3(t) > 1,

by Lemma 8.7, so the right-hand sides of (11.1) are well-defined known functions. The
solutions s1 and s2 are obtained by integration.

Remark 11.3. The value of s3(0) is consistent in Lemmas 11.1 and 11.2.

Lemma 11.4. Suppose that (A) holds. Let s ∈ C0(R,R2× [1,∞)) be the curve constructed
in Lemma 11.2. If, on some open interval I, there holds s3(t) > 1, then A◦s(t) solves (3.3)
on I.

Proof. Define
Ā(t) = A ◦ s(t).

Since s ∈ C2 and s3(t) > 1 on I, we see by the definition given in Lemma 2.14 that

Ā ∈ C0(I, SL(2,R)) ∩ C2(I,M2) and s3(t) = 1
2 |Ā(t)|2.

Thus, we have that
Ā(t) ∈ SL(2,R) \ SO(2,R), t ∈ I,

by Lemma 1.7. It also follows that

s′3(t) =
〈
Ā(t), Ā′(t)

〉
, t ∈ I,
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and so by definition, we have

P(Ā(t), Ā′(t)) = (s3(t), s
′
3(t)), t ∈ I.

By Corollary 9.4, (s3(t), s
′
3(t)) ∈ Cκ(E,X), and so

(Ā(t), Ā′(t)) ∈ Dκ(E,X) = P−1(Cκ(E,X)), t ∈ I. (11.2)

In the following calculation, we suppress the dependence of functions upon the indepen-
dent variable t in order to simplify the formulas. All calculations are valid on the interval
I where we have assumed that s3 > 1. Since the metric g(Ā) depends only on s3 = 1

2 |Ā|
2,

we shall write g(s3) for g(Ā) = g(A ◦ s), with abuse of notation.
Using the Christoffel symbols from Lemma 2.21 and the second fundamental form of

Definition 2.27, a standard geometric calculation yields

Ā′′ =

3∑
i=1

s′′i +

3∑
j,k=1

Γijk(Ā)s′js
′
k

 τi(Ā) +

3∑
j,k=1

Π[τj(Ā), τk(Ā)]s′js
′
kN(Ā).

By Definitions 2.7 and 2.3, we have that for any A ∈ SL(2,R) \ SO(2,R)

A =
1

g33(A)
τ3(A) +

2

|A|
N(A) and cof A = |A|N(A).

It follows that

Ā′′ + κĀ− Λκ(Ā, Ā′) cof Ā

=
3∑
i=1

s′′i +
3∑

j,k=1

Γijk(Ā)s′js
′
k

 τi(Ā) +
κ

g33(Ā)
τ3(Ā)

+

 3∑
j,k=1

Π[τj(Ā), τk(Ā)]s′js
′
k +

2κ

|Ā|
− |Ā|Λκ(Ā, Ā′)

N(Ā).

From this we see that Ā satisfies (3.3) on I if and only if the system

s′′i +
3∑

j,k=1

Γijk(Ā)s′js
′
k = 0, i = 1, 2

s′′3 +
3∑

j,k=1

Γ3
jk(Ā)s′js

′
k +

κ

g33(Ā)
= 0

3∑
j,k=1

Π[τj(Ā), τk(Ā)]s′js
′
k +

2κ

|Ā|
− |Ā|Λκ(Ā, Ā′) = 0

holds on I.
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By (11.2), (Ā, Ā′) ∈ Dκ(E,X), so Lemma 6.1 tells us that

Λκ(Ā, Ā′) =
2E −X1X2

2s23
.

Using Lemmas 2.21 and 2.26, we find that our system is equivalent to

s′′i +
g′ii(s3)

gii(s3)
s′is
′
3 = 0, i = 1, 2 (11.3)

s′′3 −
g′11(s3)

2g33(s3)
(s′1)

2 − g′22(s3)

2g33(s3)
(s′2)

2 +
g′33(s3)

2g33(s3)
(s′3)

2 +
κ

g33(s3)
= 0 (11.4)

− g11(s3)

2s3
(s′1)

2 +
g22(s3)

2s3
(s′2)

2 +
g33(s3)

2s23
(s′3)

2 +
κ

s3
− 2E −X1X2

2s23
= 0, (11.5)

where as mentioned above g(s3) = g(Ā) = g(A ◦ s) and g′(s3) indicates the derivative in s3.
The equations (11.3) hold thanks to the definitions (11.1). Again using (11.1), we find

after some computation that (11.5) is equivalent to the equation Φκ(s3, s
′
3;E,X) = 0, which

holds by Lemma 8.7, since (s3, s
′
3) ∈ Cκ(E,X) and s3 > 1. Finally, (11.4) is equivalent to

the equation

s′′3 + ∂xΦκ(s3, s
′
3;E,X) +

g′33(s3)

g33(s3)
Φκ(s3, s

′
3;E,X) = 0, (11.6)

which holds by (9.1) and the fact that Φκ(s3, s
′
3;E,X) = 0. Thus, we have verified that

Ā = A ◦ s solves (3.3) on I.

Remark 11.5. Define the Lagrangian

L(s, s′) = L(s3, s
′) = 1

2

3∑
i=1

gii(s3)(s
′
i)
2 − κs3,

and the Hamiltonian

H(s, p) = H(s3, p) = 1
2

3∑
i=1

p2i
gii(s3)

+ κs3.

Then (11.3), (11.4) are equivalent to

d

dt
Ls′i(s, s

′)− Lsi(s3, s
′) = 0, i = 1, 2, 3. (11.7)

With the Legendre transformation pi = gii(s3)s
′
i, (11.7) is equivalent to

s′i = Hqi(s, p), p′i = −Hsi(s, p), i = 1, 2, 3.

We note that

g33(s3)Φκ(s3, s
′
3;E,X) = H(s3, X1 +X2, X1 −X2, g33(s3)s

′
3)− E.

Thus, the equation p′3 = −Hs3(s, q), is equivalent to (11.6).
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Theorem 11.6. Suppose that (A) holds, and let

A ∈ C0(R,SL(2,R)) ∩ C2(R,M2)

be the solution of (3.2), (3.3), (3.4) with initial data (A0, B0). Let s ∈ C0(R,R2 × [1,∞))
be the curve constructed in Lemma 11.2.

If (1, 0) /∈ Cκ(E,X) or if (1, 0) ∈ Cκ(E,X) is a critical point of Φκ(x, y;E,X), then

A(t) = A ◦ s(t), for all t ∈ R.

Proof. By Corollary 9.4, we have (s3(t), s
′
3(t)) ∈ Cκ(E,X), for all t ∈ R. If (1, 0) /∈

Cκ(E,X), then s3(t) > 1, for all t ∈ R.
If (1, 0) ∈ Cκ(E,X) is a critical point of Φκ(x, y;E,X), then (1, 0) is an equilibrium

solution of (9.1). Thus, if (s3(t0), s
′
3(t0)) = (1, 0), at a single time t0, then s3(t) = 1, for all

t ∈ R. Otherwise, (s3(t), s
′
3(t)) ∈ Cκ(E,X) \ {(1, 0)}, and we obtain s3(t) > 1, for all t ∈ R.

If s3(t) = 1, for all t ∈ R, then A(t) ∈ SO(2,R), for all t ∈ R, so X1 = X2, by Lemma
4.3. By Lemma 10.7, we have that

A(t) = U(12X1t+ θ),

for some θ ∈ R. Since
U(θ) = A(0) = U(2s1(0)),

we may take θ = 2s1(0).
On the other hand, we can calculate the function s1(t) directly from (11.1), and we find

s1(t) = 1
4X1t+ s1(0).

Since s3(t) = 1, the formula in Lemma 2.14 reduces to

A ◦ s(t) = U(s1(t) + s2(t)) I U(s1(t)− s2(t)) = U(2s1(t)).

This shows that A(t) = A ◦ s(t), for all t ∈ R, when s3(t) = 1.
Now let us assume that s3(t) > 1, for all t ∈ R. Define

Ā(t) = A ◦ s(t).

By applying Lemma 11.4 on the interval I = R, we see that

Ā ∈ C0(R,SL(2,R)) ∩ C2(R,M2)

is a solution of (3.3).
We now check the initial data of Ā. By Lemma 11.1 we have

Ā(0) = A ◦ s(0) = A0.

By Lemmas 2.14 and 11.1, we have

Ā′(0) = (A ◦ s)′(0) =
3∑
i=1

s′i(0)τi(A ◦ s(0)) =
3∑
i=1

s′i(0)τi(A0).
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From (11.1), we see that

s′1(0) =
X1 +X2

g11(A0)
and s′2(0) =

X1 −X2

g22(A0)
.

Moreover, s′3(0) = 〈A0, B0〉, by definition. Thus, from Lemma 11.1 we find that Ā′(0) = B0

Having shown that Ā solves (3.3) with the same initial data as A, we conclude that
Ā = A ◦ s = A, by uniqueness of solutions to the IVP.

Lemma 11.7. Suppose that (A) holds. Suppose that (1, 0) ∈ Cκ(E,X) and (1, 0) is not a
critical point of Φκ(x, y;E,X). Let

A ∈ C0(R,SL(2,R)) ∩ C2(R,M2)

be a solution of (3.2), (3.3), (3.4) with initial data (A0, B0).
If κ = 0, then there exists a unique t0 ∈ R such that

P(A(t0), A
′(t0)) = (1, 0).

If κ > 0, then P(A(t), A′(t)) is periodic with minimum period T > 0. Morevoer, there
exists a unique t0 ∈ R such that 0 ∈ [t0, t0 + T ) and

{t ∈ R : P(A(t), A′(t)) = (1, 0)} = {tj = t0 + jT : j ∈ Z}.

Proof. By Lemma 9.6, Cκ(E,X) consists of a single smooth orbit

(x(t), y(t)) = P(A(t), A′(t)).

Thus, by Lemma 8.12, there exists t0 ∈ R such that (x(t0), y(t0)) = (1, 0). If κ = 0, this
orbit is unbounded, so it is not closed, and t0 is the unique time with this property. If
κ > 0, then the orbit is closed and therefore periodic with minimal period T > 0. Since T
is a minimal period, we have that the set {t0 + jT}, j ∈ Z, coincides with the set of times
t where (x(t), y(t)) = (1, 0). We can redefine t0, if necessary, so that 0 ∈ [t0, t0 + T ).

Theorem 11.8. Suppose that (A) holds, and let

A ∈ C0(R,SL(2,R)) ∩ C2(R,M2)

be the solution of (3.2), (3.3), (3.4) with initial data (A0, B0). Let s(t) ∈ C0(R,R2× [1,∞))
be the curve constructed in Lemma 11.2.

If (1, 0) ∈ Cκ(E,X) and (1, 0) is not a critical point of Φκ(x, y;E,X), then

A(t) = (cof)n(t)A(s(t)),

where n(t) = 0, 1 is the piece-wise constant right continuous function with n(0) = 0 and
jump discontinuities on the set {tj} from Lemma 11.7.
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Proof. Define Ā(t) = (cof)n(t)A(s(t)). The goal is to prove that A = Ā, using the same
uniqueness argument as in the proof of Theorem 11.6.

Note that s ∈ C2(R), and so A ◦ s ∈ C0(R; SL(2,R)). Since the cofactor map leaves
SL(2,R) invariant, we see that cof A ◦ s ∈ C0(R; SL(2,R)), as well. Thus, Ā is continuous,
except possibly at the points {tj}. However, at the points {tj}, we have s3 = 1, and so by
Lemma 1.7, A ◦ s(tj) ∈ SO(2,R). By Lemma 1.13, A ◦ s(tj) = cof A ◦ s(tj), so we see that
Ā ∈ C0(R; SL(2,R)).

Examining the definition of A◦s, we see that this function could fail to be differentiable
at the times tj when s3(tj) = 1, because of the term

√
s3(t)− 1.

Let us suppose first that κ = 0. Then by Lemma 11.7, there exists a single time t0 ∈ R
such that s(t0) = 1. Assume that 0 ∈ [t0,∞) so that

Ā(t) =

{
cof A ◦ s(t), t < t0

A ◦ s(t), t ≥ t0.

(If 0 ∈ (−∞, t0), then the cofactor would be applied on the other interval.) Now s3(t0) = 1
is a minimum value for s3, so s′3(t0) = 0 and s′′3(t0) ≥ 0. Since (1, 0) is not a critical point of
Φκ(x, y;E,X), Pκ(x;E,X) has a simple root at x = 1, by Lemma 8.8. Since (s3(t), s

′
3(t))

satisfies (9.1), we have s′′3(t0) = −P ′κ(1;E,X)/2 6= 0. Thus, s′′3(t0) > 0, and we can write

s3(t)− 1 = α(t)(t− t0)2, α ∈ C2, α(t0) = 1
2s
′′(t0) > 0. (11.8)

Thus, α(t) is strictly positive in a neighborhood of t = t0. From this we see that the function

√
α(t)(t− t0) =

{
−
√
s3(t)− 1, if t < t0√

s3(t)− 1, if t ≥ t0

is C2 in a neighborhood of t = t0. (If t0 ∈ (−∞, 0), then the signs of the two terms above
would be reversed.) This shows that

1√
2


√
s3(t) + 1

√
α(t)(t− t0)√

α(t)(t− t0)
√
s3(t) + 1


=

{
cof H(s3(t)), if t < t0

H(s3(t)), if t ≥ t0
= (cof)n(t)H(s3(t)).

(11.9)

This function belongs to C2 for t near t0. Finally, we conclude that

Ā(t) = U(s1(t) + s2(t)) (cof)n(t)H(s3(t)) U(s1(t)− s2(t))

belongs to C2(R,M2).
If κ > 0, then the set {tj} is countable and a repetition of the argument of the previous

paragraph near each tj again shows that Ā ∈ C2(R,M2).
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Next, we show that Ā solves (3.3).
Suppose that s3(t) > 1 on some open interval I. Then by Lemma 11.4, A ◦ s ∈

C0(I; SL(2,R)) ∩ C2(I,M2) solves (3.3) on I. Since the cofactor map leaves solutions of
(3.3) invariant, we see that cof A ◦ s also solves (3.3) on I. Therefore, Ā solves (3.3) except
on the at most countable set of isolated points {tj}. Having shown that Ā ∈ C2(R,M2), it
follows that Ā solves (3.3) on R.

It remains to verify that A and Ā share the same initial data.
If A0 /∈ SO(2,R), then according to Lemma 11.1, our choice s(0) gives Ā(0) = A◦s(0) =

A0. Also, by Lemmas 11.1 and 11.2, we have

Ā′(0) = (A ◦ s)′(0) =

3∑
i=1

s′i(0)τi(A0) = B0.

If A0 ∈ SO(2,R), then P(A0, B0) = (s3(0), s′3(0)) = (1, 0). By Lemma 11.1, we have

A0 = U(2s1(0))

and
B0 = (12X1) U(2s1(0)) Z + β U(2s2(0)) M,

with
β =

(
E − κ− 1

4X
2
1

)1/2
.

Since s3(0) = 1, we have t0 = 0, and so

Ā(0) = A ◦ s(0) = U(2s1(0)) = A0.

Going back to the formula (11.9), we have

Ā(t) = 1√
2
U(s1(t) + s2(t))


√
s3(t) + 1

√
α(t) t√

α(t) t
√
s3(t) + 1

U(s1(t)− s2(t)),

for 0 ≤ t < T , where by (11.8), (11.6)

α(0) = 1
2s
′′
1(0) = −1

2∂xΦκ(1, 0;E,X) = 1
4P
′
κ(1;E,X) = 2β2.

Since X1 = X2, we have s2(t) = s2(0), by (11.1). As in Lemma 2.18, this can be written as

Ā(t) =

(
s3(t) + 1

2

)1/2

U(2s1(t)) + t

(
α(t)

2

)1/2

U(2s2(0)) M,

0 ≤ t < T . Since Ā is C2, it is enough to compute its right derivative at t = 0:

Ā′(0) = U(2s1(0)) Z 2s′1(0) + β U(2s2(0)) M = B0,

by (11.1), as desired.

Corollary 11.9. A solution A(t) of (3.3) is symmetric if and only if s1(t) = jπ/2, for
some j ∈ Z.
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12. MHD

In this section, we focus on the case where κ > 0. The next result summarizes the properties
of the orbits Cκ(E,X) of (9.1) when κ > 0. Recall that these orbits are contained in the
set

P(D) = {(x, y) : x > 1} ∪ {(1, 0)}.

Lemma 12.1. Fix κ > 0.

i. If X1 6= X2, then:

a. Cκ(eκ(X), X) = {(x0, 0)} where x0 > 1 and (x0, 0) is a critical point of the Hamil-
tonian Φκ(x, y; eκ(X), X), and

b. for all E > Ē ≥ eκ(X), Cκ(E,X) is a nontrivial closed orbit of the system (9.1) in
P(D) \ {(1, 0)} enclosing Cκ(Ē,X). (See Figure 1)

Figure 1: Level curves Cκ(E,X) in the case X1 6= X2, with κ = 1/4, X1 = −X2 = 1,
E = eκ(X), 1, 1.2, 1.4.
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ii. If X1 = X2 and 1
8X

2
1 ≤ κ, then:

a. eκ(X) = κ+ 1
4X

2
1 ,

b. Cκ(eκ(X), X) = {(1, 0)} and (1, 0) is a critical point of the Hamiltonian Φκ(x, y; eκ(X), X),

c. for all E > Ē > eκ(X), Cκ(E,X) is a nontrivial closed orbit of the system (9.1) in
P(D) containing {(1, 0)} and enclosing Cκ(Ē,X) \ {(1, 0)}. (See Figure 2)

iii. If X1 = X2 and 1
8X

2
1 > κ, then:

a. 3κ ≤ eκ(X) = (2κ)1/2|X1| − κ < E∗ ≡ κ+ 1
4X

2
1 ,

43



J. Roberts, S. Shkoller, and T. Sideris 2d incompressible fluids and flows in SL(2,R)

Figure 2: Level curves Cκ(E,X) in the caseX1 = X2, κ ≥ 1
8X

2
1 , with κ = 1/4, X1 = X2 = 1,

E = eκ(X), 1.05 eκ(X), 1.1 eκ(X), 1.15 eκ(X).
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b. Cκ(eκ(X), X) = {(x0, 0)} where x0 > 1 and (x0, 0) is a critical point of Φκ(x, y; eκ(X), X),

c. for all E∗ > E > Ē ≥ eκ(X), Cκ(E,X) is a is a nontrivial closed orbit of (9.1) in
P(D) \ {(1, 0)} enclosing Cκ(Ē,X),

d. Cκ(E∗, X) is a nontrivial closed curve in P(D) containing {(1, 0)} and enclosing
Cκ(Ē,X) \ {(1, 0)} for E∗ > Ē ≥ eκ(X), (1, 0) is a critical point of the Hamiltonian
Φκ(x, y;E∗, X), and Cκ(E∗, X) \ {(1, 0)} is a homoclinic orbit,

e. for all E > E∗, E > Ē ≥ eκ(X), Cκ(E,X) is a nontrivial closed orbit in P(D)
containing {(1, 0)} and enclosing Cκ(Ē,X) \ {(1, 0)}. (See Figure 3)

Proof. This is an application of Lemmas 7.4, 8.10, and 8.12.

Remark 12.2. Cases (ii) and (iii) of Lemma 12.1 can also be characterized by X1 = X2 and
E > κ+ 1

4X
2
1 or E = eκ(X), respectively, by Lemma 7.4.

Theorem 12.3. Let κ > 0 and (E,X) ∈ [eκ(X),∞)× R2. Let

A ∈ C0(R,SL(2,R)) ∩ C2(R,M2)

be a solution of (3.2), (3.3), (3.4) with initial data (A0, B0) ∈ Dκ(E,X).

i. The solution A is constant if and only if X = 0 and E = κ.

ii. The solution A is non-constant and rigid if and only if X 6= 0 and either E = eκ(X)
or A0 ∈ SO(2,R) and E = κ+ 1

4X
2
1 > eκ(X).

Proof. This is an application of Lemmas 10.1, 10.6, and 10.7.
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Figure 3: Level curves Cκ(E,X) in the case X1 = X2, κ <
1
8X

2
1 , for the values κ = 1/4,

X1 = X2 = 2, E = eκ(X), .95E∗, E∗, 1.1E∗, E∗ = κ+ 1
4X

2
1 .
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The next results concern the homoclinic orbit in case (iiid) of Lemma 12.1 .

Theorem 12.4. Let κ > 0. Suppose that (E,X) ∈ [eκ(X),∞)× R2 satisfies

X1 = X2 and E = κ+ 1
4X

2
1 > eκ(X).

Let A ∈ C0(R, SL(2,R))∩C2(R,M2) be a solution of the IVP (3.2), (3.3), (3.4) with initial
data (A0, B0) ∈ Dκ(E,X) \ R(X1), (cf. Lemma 10.10). Then there exist phases θ± such
that for 0 < λ < 1

2(X2
1 − 8κ)1/2, the solution satisfies

lim
t→±∞

eλ|t|
∣∣∣∣ djdtj [A(t)− U

(
1
2X1t+ θ±

)]∣∣∣∣ = 0, j = 0, 1.

Proof. The assumptions on the parameters put us in case (iiid) of Lemma 12.1, and in
particular, we have κ < 1

8X
2
1 . The Hamiltonian Φκ(x, y;E,X) has a critical point at (1, 0),

the set Cκ(E,X) \ {(1, 0)} is a nontrivial homoclinic orbit, and since A0 /∈ SO(2,R),

{P(A(t), A′(t)) : t ∈ R} = Cκ(E,X) \ {(1, 0)}.

Set (x(t), y(t)) = P(A(t), A′(t)). Then we have

x(t)↘ 1 and y(t)↗ 0, as t→∞,

and
x(t)↘ 1 and y(t)↘ 0, as t→ −∞.

We shall prove the result for t→∞, the other case being nearly the same.
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Using Definition 8.1, (9.1), and the condition on (E,X), we find that

x′(t) = y(t) = −
(
Pκ(x(t);E,X)

x(t)

)1/2

= −
(
X2

1 − 4κ(x(t) + 1)

x(t)

)1/2

(x(t)− 1), t� 1.

(12.1)

Fix 0 < λ < 1
2(X2

1 − 8κ)1/2 and choose t0 � 1 such that(
X2

1 − 4κ(x(t) + 1)

x(t)

)1/2

> 2λ, t ≥ t0.

Then
x′(t) ≤ −2λ(x(t)− 1), t ≥ t0,

and we obtain the estimate

0 < x(t)− 1 ≤ (x(t0)− 1) exp[−2λ(t− t0)], t ≥ t0.

Applying this in (12.1) yields

|x′(t)| . exp[−2λ(t− t0)], t ≥ t0.

Using the notation from Lemma 2.14, it follows that

∣∣∣∣ djdtj [H(x(t))− I]

∣∣∣∣ =

∣∣∣∣∣∣∣∣
dj

dtj


√

x(t)+1
2 − 1

√
x(t)−1

2√
x(t)−1

2

√
x(t)+1

2 − 1


∣∣∣∣∣∣∣∣ . exp(−λt),

for t ≥ t0, j = 0, 1.
We now use Theorem 11.6 to reconstruct A(t). Define (s1(t), s2(t)) according to Lemma

11.2. Then since X1 = X2, we have s2(t) = s2(0) and

s1(t) = s0(0) +

∫ t

0

X1

2(x(σ) + 1)
dσ

= 1
4X1t+ s0(0) + 1

4X1

∫ t

0

−x(σ) + 1

x(σ) + 1
dσ

= 1
4X1t+ 1

2θ+ + 1
4X1

∫ ∞
t

x(σ)− 1

x(σ) + 1
dσ,

where
1
2θ+ = s0(0) + 1

4X1

∫ ∞
0

−x(σ) + 1

x(σ) + 1
dσ.

Thus, we have ∣∣∣∣ djdtj [s1(t)− (14X1t+ 1
2θ+)

]∣∣∣∣ . exp(−λt), t ≥ t0, j = 0, 1.
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It follows that∣∣∣∣ djdtj [U(2s1(t))− U(12X1t+ θ+)
]∣∣∣∣

=

∣∣∣∣ djdtj [U(2s1(t)− 1
2X1t− θ+)− I

]
U(12X1t+ θ+)

∣∣∣∣
. exp(−λt), for t ≥ t0, j = 0, 1.

By Theorem 11.6, we obtain

A(t) = U(s1(t) + s2(0)) H(x(t)) U(s1(t)− s2(0)).

The desired estimates follow after writing

A(t)− U(12X1t+ θ+) = U(s1(t) + s2(0)) [H(x(t))− I] U(s1(t)− s2(0))

+ U(2s1(t))− U(12X1t+ θ+).

Remark 12.5. The total phase shift is given by the expression

θ+ − θ− = −1
4X1

∫ ∞
−∞

x(σ)− 1

x(σ) + 1
dσ.

Corollary 12.6. Let κ > 0. Suppose that

X1 = X2 and E = κ+ 1
4X

2
1 > eκ(X).

Then R(X1) ⊂ Dκ(E,X) corresponds to the orbit of the rigid rotation U
(
1
2X1t

)
. The set

Dκ(E,X)\R(X1) is a stable and unstable manifold for R(X1). Every solution orbit (A,A′)
in Dκ(E,X) \ R(X1) is homoclinic to R(X1), that is,

lim
|t|→∞

eλ|t| dist[(A(t), A′(t)),R(X1)] = 0,

for some λ > 0.

Proof. This follows from Lemma 10.11 and Theorem 12.4.

Remark 12.7.
⋃
X1∈RR(X1) is a normally hyperbolic invariant manifold.

Theorem 12.8. If A(t) is a solution of the IVP (3.2), (3.3), (3.4) such that the quantity
1
2 |A(t)|2 is T -periodic for some T > 0, then the solution has the form

A(t) = U(ω1t)Â(t)U(ω2t),

where Â(t) is is T -periodic if (1, 0) /∈ Cκ(E,X) and 2T -periodic if (1, 0) ∈ Cκ(E,X). The
frequencies are defined by

ω1 + ω2 =
2

T

∫ T

0

X1 +X2

g11(A(t))
dt
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and

ω1 − ω2 =


0, X1 = X2

2

T

∫ T

0

X1 −X2

g22(A(t))
dt, X1 6= X2.

Proof. Define (s1(t), s2(t)) as in Lemma 11.2 and ω1, ω2 as above. Since gii(A(t)) is T -
periodic, i = 1, 2, the functions

s′1(t) + s′2(t)− ω1 and s′1(t)− s′2(t)− ω2

are T -periodic and have mean zero over the interval [0, T ]. Hence, their antidervatives

s1(t) + s2(t)− ω1t and s1(t)− s2(t)− ω2t

are T -periodic. It follows that

U(s1(t) + s2(t)) U(−ω1t) and U(s1(t)− s2(t)) U(−ω2t)

are T -periodic.
Now going back to Theorems 11.6 and 11.8, we find that

Â(t) = U(−ω1t)A(t)U(−ω2t)

is T -periodic if (1, 0) /∈ Cκ(E,X) and 2T -periodic if (1, 0) ∈ Cκ(E,X).

Remark 12.9. The result shows that there is monodromy when the solution A(t) passes
through SL(2,R).

Remark 12.10. Note that the result holds for rigid solutions. In this case, the quantity
|A(t)| is constant and thus T -periodic for all T ≥ 0. Any value of T > 0 can be used in
computing the frequencies.

Theorem 12.11. Let A(t) be a solution of the IVP (3.2), (3.3), (3.4) such that the quantity
|A(t)| is T -periodic for some T > 0.

For every N ∈ N, there exists `(N) ∈ {1, . . . , N2} such that

|A(2`(N)T + t)−A(t)| ≤ 8π|A(t)|/N, for all t ∈ R.

If A(t) is rigid, then either A(t) is periodic or the range of A(t) is dense in the sphere
of radius |A0| in SL(2,R).

Proof. By Theorem 12.8, we may write

A(t) = U(ω1t)Â(t)U(ω2t),

in which Â(t) is 2T -periodic. (If A(t) does not pass through SO(2,R), then we know that
Â(t) is T -periodic.)
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For every x ∈ R, there is a unique k ∈ Z such that

{x} ≡ x− 2πk ∈ [0, 2π).

Consider the set of N2 + 1 ordered pairs{
({ω12jT}, {ω22jT}) : j = 0, 1, . . . , N2

}
contained in the square [0, 2π)× [0, 2π). Partition this square into N2 congruent subsquares
of side 2π/N . By the pigeonhole principle, two of these ordered pairs belong to the same
subsquare. It follows that there exist k, `(N) ∈ Z such that 0 ≤ k < k + `(N) ≤ N2 and

|{ωi2kT} − {ωi2(k + `(N))T}| ≤ 2π/N, i = 1, 2.

Thus, there exist mi ∈ Z such that

|ωi2`(N)T + 2πmi| ≤ 2π/N, i = 1, 2.

Define
τi = ωi2`(N)T + 2πmi.

For i = 1, 2 and t ∈ R, we have using Definition 1.8 and the mean value theorem

|U(ωi2`(N)T + t)− U(t)| = |U(ωi2`(N)T )− I|
= |U(τi)− I|
=
√

2[(cos τi − 1)2 + sin2 τi]
1/2

= 2(1− cos τi)
1/2

≤ 2|τi|
≤ 4π/N.

For any t ∈ R, we have

A(2`(N)T + t) = U(ω1(2`(N)T + t))Â(2`(N)T + t)U(ω2(2`(N)T + t))

= U(ω12`(N)T )U(ω1t)Â(t)U(ω2t)U(ω22`(N)T )

= U(τ1)A(t)U(τ2).

We now estimate as follows

|A(2`(N)T + t)−A(t)| = |U(τ1)A(t)U(τ2)−A(t)|
= |[U(τ1)− I]A(t)U(τ2) +A(t)[U(τ2)− I]|
≤ |U(τ1)− I||A(t)||U(τ2)|+ |A(t)||U(τ2)− I|
≤ 2(4π/N)|A(t)|.

This proves the first statement.
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If A(t) is rigid, then |A(t)| = |A0|, and so by Theorem 12.8

A(t) = U(ω1t)A0U(ω2t) = U({ω1t})A0U({ω2t}).

If ω1 and ω2 are rationally dependent, then A(t) is periodic. The curve

t 7→ ({ω1t}, {ω2t})

represents linear flow on the torus. If ω1 and ω2 are rationally independent, then it is well-
known that the image of the curve is dense in the square [0, 2π)× [0, 2π). By Lemma 2.14,
the set

{UA0V : U, V ∈ SO(2,R)}

coincides with the sphere of radius |A0| in SL(2,R). Thus, the range of A(t) is dense in this
sphere.

Remark 12.12. The only solutions A(t) for which |A(t)| is not periodic are those which
are homoclinic to a rigid rotation. Thus, the result shows that, generically, solutions are
recurrent.

Remark 12.13. Since
|A(t)| ≤

[
2
κEκ(A(t), A′(t)

]1/2
and the energy is conserved, Theorem 12.11 shows that

|A(2`(N)T + t)−A(t)| . 1/N, for all t ∈ R.

13. Perfect fluids

Lemma 13.1. Fix κ = 0 and (E,X) ∈ (0,∞)× R2. Let

A ∈ C0(R,SL(2,R)) ∩ C2(R,M2)

be a solution of the IVP (3.2), (3.3), (3.4) with initial data in D0(E,X). The quantity
x(t) = 1

2 |A(t)|2 satisfies

x′′(t) =
2E(x(t)− 1)2 + 4Ex(t)−X1X2

x(t)2
. (13.1)

Moreover, x′′(t) ≥ 0, for all t ∈ R, and if there exists t0 ∈ R such that x′′(t0) = 0, then
x(t) = 1 for all t ∈ R.

Proof. Equation (13.1) is just a restatement of (9.3) in the case κ = 0. Using the Cauchy-
Schwarz inequality, we obtain

|X1X2| = | X1(A(t), A′(t)) X2(A(t), A′(t)) | ≤ |A(t)|2|A′(t)|2

= 4x(t)E0(A(t), A′(t)) = 4Ex(t).
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From this we see that x′′(t) ≥ 0, for all t ∈ R.
If x′′(t0) = 0 for some t0 ∈ R, then E(x(t0)− 1)2 = 0. Since E > 0, we have x(t0) = 1.

This implies that A(t0) ∈ SO(2,R), so we must have X1 = X2 by Lemma 4.3. But then
x′′(t0) = 0 implies that 4E = X2

1 . By Lemma 10.7, A(t) is a rigid solution in SO(2,R) for
all t ∈ R, and therefore, x(t) ≡ 1.

Lemma 13.2. Fix κ = 0 and (E,X) ∈ [0,∞)× R2.
We have C0(0, 0) = {(x, 0) : 1 ≤ x < ∞}, and each point (x, 0) ∈ C0(0, 0) corresponds

to an equilibrium solution of (9.1).
If X1 = X2 6= 0 and E = 1

4X
2
1 , then C0(E,X) is the union of an equilibrium solution

{(1, 0)} of (9.1) and two semi-bounded orbits. (See Figure 4)
In all other cases, C0(E,X) is a single orbit which is unbounded as t → ±∞. (See

Figures 4 and 5)
The point (1, 0) belongs to C0(E,X) if and only if X1 = X2 and E ≥ 1

4X
2
1 .

Figure 4: Level curves C0(E,X) in the case X1 = X2 = 1, E = E∗/2, E∗, 2E∗, E∗ = 1
4X

2
1 .
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�
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�

E∗/2

E∗

2E∗

Proof. As already shown in Lemma 8.12, the sets C0(E,X) are unbounded, and the set
C0(E,X) consists of a single orbit unless it contains a critical point of Φ0(x, y;E,X). This
occurs when (E,X) = (0, 0) and when X1 = X2, E = 1

4X
2
1 , by Lemma 8.8. Lemma 8.7

gives the condition for (1, 0) ∈ C0(E,X).

Theorem 13.3. Let A ∈ C0(R,SL(2,R)) ∩ C2(R,M2) be a solution of the IVP (3.2),
(3.3), (3.4) with initial data (A0, B0) ∈ D0(E,X). If supt>0 |A(t)|2 = ∞, then there exist
A∞, B∞ ∈M2 such that for t > 0, j = 0, 1, 2,∣∣∣∣ djdtj [A(t)− (B∞t+A∞)]

∣∣∣∣ . (1 + t)−1−j . (13.2)
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Figure 5: Level curves C0(E,X) in the case X1 = −X2 = 1, E = 1/8, 1/4, 1/2.
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If Ā∞, B̄∞ ∈M2 is any pair such that

lim
t→∞
|A(t)− (B̄∞t+ Ā∞)| = 0, (13.3)

then (Ā∞, B̄∞) = (A∞, B∞).
The vectors A∞, B∞ satisfy

E0(A∞, B∞) = 1
2 |B∞|

2 = E > 0, X(A∞, B∞) = X,

and

〈B∞, cof A∞〉 = detB∞ = 0, detA∞ =
X1X2

2E
.

If detB0 = 0, then (A∞, B∞) = (A0, B0) ∈ D(E,X) and

A(t) = B0t+A0.

Proof. Suppose that A is a solution in Dκ(E,X) with supt>0 |A(t)|2 =∞. Set (x(t), y(t)) =
P(A(t), A′(t)). Then supt>0 x(t) =∞, and so there exists t0 > 0 such that x′(t0) > 0. Since
x(t) is not identically equal to 1, Lemma 13.1 implies x′′(t) > 0, for all t ∈ R. It follows
that x′(t) ≥ x′(t0) > 0, for t ≥ t0, and consequently, x(t) → ∞, as t → ∞. From (13.1),
there exists t1 > 0 such that

x′′(t) ≥ E > 0, t ≥ t1.

After integration, this leads to the lower bound

x(t) ≥ 1
2E(t− t1)2 + y(0)(t− t1) + x(0), t ≥ t1,

and thus,
|A(t)|2 & (1 + t)2, t ≥ 0.
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Since A(t) solves (3.3), we obtain from Lemma 6.1 that

|A′′(t)| . |A(t)|−3 . (1 + t)−3, t ≥ 0.

Thus, by Lemma 6 of [9], we can write

A(t) = B∞t+A∞ +A1(t),

with

B∞ = B0 +

∫ ∞
0

A′′(s)ds,

A∞ = A0 −
∫ ∞
0

∫ ∞
s

A′′(σ)dσds,

A1(t) =

∫ ∞
t

∫ ∞
s

A′′(σ)dσds.

Note that our estimate for |A′′(t)| implies that∣∣∣∣ djdtjA1(t)

∣∣∣∣ . (1 + t)−1−j , t ≥ 0, j = 0, 1 , 2,

thereby proving (13.2).
If (13.3) holds, then using (13.2), we find that

lim
t→∞
|(B∞ − B̄∞)t+ (A∞ − Ā∞)| = 0,

and uniqueness of the states (A∞, B∞) follows from this.
Applying (13.2), we find

E = 1
2 |A
′(t)|2 = 1

2 |B∞ +A′1(t)|2 = 1
2 |B∞|

2 +O(t−1), t > 0.

Sending t→∞ shows that E = 1
2 |B∞|

2.
For the other invariants, we have

X = X(A(t), A′(t)) = X(B∞t+A∞ +A1(t), B∞ +A′1(t))

= tX(B∞, B∞) +X(A∞, B∞) +O(t−1).

By Lemmas 1.2 and 1.4, we see that X(B∞, B∞) = 0, and so letting t → ∞ we obtain
X = X(A∞, B∞).

Since A(t) ∈ SL(2,R), we get from Lemma 1.15

2 = 2 detA(t)

= 〈A(t), cof A(t)〉
= t2 〈B∞, cof B∞〉+ 2t 〈A∞, cof B∞〉

+ 〈A∞, cof A∞〉+ 2t 〈B∞, cof A1(t)〉+O(t−1)
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= 2t2 detB∞ + 2t 〈A∞, cof B∞〉
+ 2 detA∞ + 2t 〈B∞, cof A1(t)〉+O(t−1).

This implies that

2 detB∞ = 〈B∞, cof B∞〉 = 0, 〈A∞, cof B∞〉 = 0,

and

2 detA∞ + lim
t→∞

2t 〈B∞, cof A1(t)〉 = 2.

Using the formula for A1(t), l’Hôpital’s rule, (3.3), Lemma 6.1, and (13.2), we find that

lim
t→∞

tA1(t) = lim
t→∞

1
2 t

3A′′1(t) = lim
t→∞

1
2 t

3A′′(t) = (2E −X1X2)
cof B∞
|B∞|4

.

From this follows

detA∞ = 1− 2E −X1X2

|B∞|2
=
X1X2

2E
.

If detB0 = 0, then by Lemma 6.1, we get 2E −X1X2 = 0. Lemma 6.1 then says that
Λ0(A(t), A′(t)) = 0, for all t ∈ R. So the equations of motion simplify dramatically to
A′′(t) = 0, and from this we see that A(t) must be linear in t.

Remark 13.4. If (A0, B0) ∈ D and detB0 = 0, then A(t) = B0t + A0 is a geodesic line in
SL(2,R), by Lemma 10.13.

Remark 13.5. In Theorem 13.3, if detB0 6= 0, then A∞ /∈ SL(2,R), and hence (A∞, B∞) /∈
D.

Remark 13.6. An analogous result holds when supt<0 |A(t)|2 =∞.

Theorem 13.7. Let A ∈ C0(R,SL(2,R)) ∩ C2(R,M2) be a non-rigid solution of the IVP
(3.2), (3.3), (3.4) in D0(E,X).

If supt>0 |A(t)|2 < ∞, then X1 = X2 6= 0, E = 1
4X

2
1 , the orbit (A(t), A′(t)) belongs to

the set
Ws(X1) = {(A,B) ∈ Dκ(E,X) : 〈A,B〉 < 0},

and there exists a phase θ+ such that for every 0 < λ < 1
2 |X1|,∣∣∣∣ djdtj [A(t)− U

(
1
2X1t+ θ+

)]∣∣∣∣ . exp(−λt),

for all t ≥ 0, j = 0, 1.

Proof. Since the solution A is non-rigid and semi-bounded, Lemma 13.2 implies that X1 =
X2 6= 0 and E = 1

4X
2
1 . By Lemma 13.1, we have

x(t)↘ 1 and y(t)↗ 0, as t→∞.
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Thus, y(t) = 〈A(t), A′(t)〉 < 0, t ∈ R, and so the solution orbit (A(t), A′(t)) lies in Ws(X1).
Since the phase plane orbit (x(t), y(t)) lies in C0(E,X), we have Φ0(x(t), y(t);E,X) = 0,
t ∈ R. Using Definition 8.1, (9.1), and the condition on (E,X), we find that

x′(t) = y(t) = −|X1| x(t)−1/2(x(t)− 1), t ∈ R.

Given 0 < λ < |X1|/2, choose t0 large enough so that

|X1| x(t)−1/2 ≥ 2λ, t ≥ t0.

Then
x′(t) ≤ −2λ(x(t)− 1), t ≥ t0.

From this we obtain the estimates

0 < x(t)− 1 ≤ (x(t0)− 1) exp[−2λ(t− t0)],

|x′(t)| . exp[−2λ(t− t0)],

for t ≥ t0. The rest of the proof proceeds exactly as in Theorem 12.4.

Remark 13.8. There is an obvious companion result in the case when supt<0 |A(t)|2 < ∞
for the set

Wu(X1) = {(A,B) ∈ Dκ(E,X) : 〈A,B〉 > 0},

with X1 = X2 and E = 1
4X

2
1 .

Corollary 13.9. For 0 6= X1 ∈ R and E = 1
4X

2
1 , the sets Ws(X1) and Wu(X1) are stable

and unstable manifolds for R(X1).

14. The picture in TASL(2,R)

Several special situations have emerged: the existence of stable and unstable manifolds for
R(X1), the existence of solutions with vanishing pressure, and the existence of rigid solu-
tions. Here we shall attempt to visualize the corresponding tangent directions in TASL(2,R)
for a fixed point A ∈ SL(2,R).

Let us first assume that A ∈ SL(2,R) \ SO(2,R). By Lemma 5.4, we can represent an
element B ∈ TASL(2,R) using the normalized frame {τ̂i(A)} from Definition 2.7 as

B =
∑
i

ci τ̂i(A),

in which

c1 =
X1 +X2√

g11
, c2 =

X1 −X2√
g22

, with Xi = Xi(A,B), gii = gii(A).
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The metric g was given in Lemma 2.11. Thus, we have

X1 = 1
2(
√
g11 c1 +

√
g22 c2) and X2 = 1

2(
√
g11 c1 −

√
g22 c2). (14.1)

We also have
E = Eκ(A,B) = 1

2 |B|
2 + κ

2 |A|
2 = 1

2

∑
i

c2i + κ
2 |A|

2. (14.2)

By Lemma 6.1, solutions with vanishing pressure are characterized by the condition
E = 1

2X1X2. Using expressions (14.1), we find that

E = 1
8(g11 c

2
1 − g22 c22).

From (14.2), this leads to the relation

c21 − c22 −
2

|A|2
c23 = 2κ.

Thus, the set
{B ∈ TASL(2,R) : Eκ(A,B) = 1

2X1(A,B)X2(A,B)}

is a two-sheeted hyperboloid when κ > 0, and a cone when κ = 0. The region of positive
pressure is connected, and the region of negative pressure has two connected components.

The critical point (1, 0) for (9.1) corresponds to the family of rotating solutions. The
homoclinic orbits produce a stable/unstable manifold characterized by the conditions X1 =
X2 and E = κ+ 1

4X
2
1 . Here, we have c2 = 0, and so

E = κ+ 1
16g11 c

2
1.

Thus, in local coordinates, the set

{B ∈ TASL(2,R) : Eκ(A,B) = κ+ 1
4X1(A,B)2, X1(A,B) = X2(A,B)}

is given by
1
8g22 c

2
1 − c23 = κ

2g22.

This describes a hyperbola in the τ̂1, τ̂3 plane with two branches, each contained within
one of the components of negative pressure. The limiting solution is a rotation of the
form U(12X1t + θ), by Lemma 10.7. Since X1 and c1 have the same sign, we see that the
branch with c1 > 0 corresponds to counterclockwise rotation in the limit. When κ = 0,
the hyperbola degenerates to a pair of lines through the origin. Parameter values c3 < 0
along these lines correspond to stable directions while values c3 > 0 correspond to unstable
directions.

By Lemmas 8.8 and 10.6, the set

{B ∈ TASL(2,R) : (A,B) is initial data for a rigid solution of (3.3)}

is equal to
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{B ∈ TASL(2,R) : (x, y) = P(A,B) satisfies y = 0, Pκ(x;E,X) = 0, P ′κ(x;E,X) = 0}.

The condition Pκ(x;E,X) = 0 is the same as (14.2). Now y = c3 = 0, so we have

E = 1
2(c21 + c22) + κx.

The condition P ′κ(x;E,X) = 0 is equivalent to

8Ex = 4κ(3x2 − 1) + 1
2g11c

2
1 + 1

2g22c
2
2.

We find that the local coordinates (c1, c2, 0) of B must lie on the ellipse

c21
g11

+
c22
g22

= κ/2.

This intersects the hyperboloid of data with vanishing pressure at four points. The ellipse
shrinks to the origin as κ→ 0. See Figures 6 and 7.

Figure 6: Distinguished directions in TASL(2,R) for a fixed A ∈ SL(2,R) \ SO(2,R), with
κ = 1/2. The branch of pressureless directions in the half space c1 < 0 is not shown.
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Vanishing pressure

Homoclinic

Homoclinic

τ̂3(A)

τ̂2(A)
τ̂1(A)

When A ∈ SO(2,R), we have

B =
3∑
i=1

ciτ̂i(A) with ci = 〈B, τ̂i(A)〉 .

This yields

c1 = 1√
2
X1, c2 = − 1√

2
〈B,U(2s2)K〉 , c3 = 1√

2
〈B,U(2s2)M〉 ,
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for an arbitrary s2 ∈ R. We have

E = κ+ 1
2

3∑
i=1

c2i = κ+ 1
4X

2
1 + 1

2

3∑
i=2

c2i .

The pressureless solutions are described by the equation

c21 − c22 − c23 = 2κ,

which is consistent with taking the limit as A→ SO(2,R).
The rigid solutions are given by E = κ+ 1

4X
2
1 , or equivalently c2 = c3 = 0. The segment

|c1| ≤ 4κ along the τ̂1(A) axis arises as the limit A → SO(2,R). The portion |c1| > 4κ
corresponds to the limit set of the homoclinic orbits.

Figure 7: Distinguished directions in TASL(2,R) for a fixed A ∈ SL(2,R) \ SO(2,R), with
κ = 0. The cone of pressureless directions in the half space c1 < 0 is not shown.
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15. Glossary of notation

Symbol Reference Description

M2 1.1 vector space of 2× 2 matrices over R
〈·, ·〉 1.1 Euclidean inner product on M2

SL(2,R) 1.5 special linear group
SO(2,R) 1.5 special orthogonal group
I,K,M,Z 1.3 orthogonal basis vectors in M2

U(σ) 1.8 parameterization of SO(2,R)
cof 1.11 cofactor map

TASL(2,R) 2.1 tangent space at A ∈ SL(2,R)
sl(2,R) 2.2 special linear Lie algebra
N(A) 2.3 unit normal to TASL(2,R)
D 2.5 tangent bundle / phase space

τi(A) 2.7 tangent vectors at A ∈ SL(2,R) \ SO(2,R)
τ̂i(A) 2.7, 2.18 unit tangent vectors at A ∈ TASL(2,R)
g(A) 2.11 metric on TASL(2,R)
A(s) 2.14 local coordinates on SL(2,R) \ SO(2,R)

Γijk(s) 2.21 Christoffel symbols

P (A) 2.23 projection of M2 onto TASL(2,R)
S(A) 2.25 shape operator
Π(A) 2.27 second fundamental form
∇VW 2.28 Riemannian connection
L(A,B) 3.4 velocity gradient map
Λκ(A,B) 3.10 nonlinearity / Lagrange multiplier
Eκ(A,B) 3.12 energy
Xi(A,B) 4.1 invariant quantities
D(X) 5.1 invariant set

Dκ(E,X) 5.1 invariant set
eκ(X) 7.1 minimum energy

Φκ(x, y;E,X) 8.1 Hamiltonian for phase plane dynamics
Pκ(x;E,X) 8.1 used in defining Φκ

P(A,B) 8.4 projection of D into phase plane
Cκ(E,X) 8.6 level set in phase plane
R(X1) 10.10 invariant manifold of rotational solutions
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applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble),
16(fasc. 1):319–361, 1966.

[2] Demetrios Christodoulou and Hans Lindblad. On the motion of the free surface of a
liquid. Comm. Pure Appl. Math., 53(12):1536–1602, 2000.

[3] Daniel Coutand and Steve Shkoller. Well-posedness of the free-surface incompressible
Euler equations with or without surface tension. J. Amer. Math. Soc., 20(3):829–930,
2007.

[4] Daniel Coutand and Steve Shkoller. A simple proof of well-posedness for the free-surface
incompressible Euler equations. Discrete Contin. Dyn. Syst. Ser. S, 3(3):429–449, 2010.

[5] X. Gu and Y. Wang. On the construction of solutions to the free-surface incompressible
ideal magnetohydrodynamic equations. ArXiv e-prints, September 2016.

[6] Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free
surface boundary. Ann. of Math., 162(1):109–194, 2005.

[7] Jalal Shatah and Chongchun Zeng. Geometry and a priori estimates for free boundary
problems of the Euler equation. Comm. Pure Appl. Math., 61(5):698–744, 2008.

[8] Thomas C. Sideris. Spreading of the free boundary of an ideal fluid in a vacuum. J.
Differential Equations, 257(1):1–14, 2014.

[9] Thomas C. Sideris. Global existence and asymptotic behavior of affine motion of 3D
ideal fluids surrounded by vacuum. Arch. Ration. Mech. Anal., 225(1):141–176, 2017.

[10] Y. Sun, W. Wang, and Z. Zhang. Well-posedness of the plasma-vacuum interface
problem for ideal incompressible MHD. ArXiv e-prints, May 2017.

[11] Ping Zhang and Zhifei Zhang. On the free boundary problem of three-dimensional
incompressible Euler equations. Comm. Pure Appl. Math., 61(7):877–940, 2008.

Compliance with Ethical Standards

Funding sources have been acknowledged. There are no potential conflicts of interest. The
research did not involve human participants and/or animals.

60


	0 Introduction
	1 Matrix inner product space and groups
	2 The geometry of SL(2,R)
	3 The equations of affine motion
	4 Conserved quantities
	5 Invariant sets
	6 The nonlinearity, revisited
	7 Energy minimization in D(X)
	8 The reduced Hamiltonian
	9 Reduction to the phase plane
	10 Special solutions
	11 Reconstruction
	12 MHD
	13 Perfect fluids
	14 The picture in TASL(2,R)
	15 Glossary of notation



