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Some .Practical Consequences of the Asymptotic Radiance Hypothesis
by '
Rudolph W; Preisendorfer

Seripps Institution of Oceanography, University of California
La Jolla, California

ABSTR.}G?/

The asymptotic radiénce hypothesis asserts that the angular
distrib_utidn of radiance approaches a fixed form at great depths
in natural waters. A simple proof of this hypothesis is given,
Tﬁe following consequences .are dedu;:ed: the logarithmic deriva-
tives (with respect to depth 2Z ) of radiance values N(2,6, ¢)

approach, with increasing Z,a common fixed value A@m for all

‘directions (8,%) ; further, the logarithmic derivatives of

scalar irradiance hlcz) , its up-and downwelling components
h(2,+) and htz,-) , along with the derivatives of the up-and
downwelling irradiances H(Z,+) and H(z,~) all approach the
common limit /&., as depth increases, Further consequences are
that the classical Schuster two-flow equationsfor the light field

in natural waters become exact with increasing depth. These and

" related results are illustrated by examples drawn from the

special case of isotropic scattering. Finally, a formula is given
which allows an estimate of the depth at and below which the actual

radiance distributions differ from the asymptotic distribution . -

by no more than a preassigned amount.

Nvon

This paper represents results of research which has been
pported by the Bureau of Ships, U. S. Navy.
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INTRODUCTION

One of the simplest yet.most important experimental facts
one may cite about the light field in natural waters is its
behavior at great depths: the amount (radiant density) of
light docreases exponentially with increasing depth. This fact
holds irregardless of the external lighting conditions and the
optical state of the surface in any* homogeneous or evéntually

homogeneous optically deep nafural bod& of water, Furthermoro
£he logarithnic réte of decreasec #ppears to be governed only by
the inherent optical properties of the water. Over the years
the accumulated experimental and theoretical evidence has foun-

ded a firm basis for this fact,

The discussions in this note center on a related but vastly

'_ more striking experimental phenomenon, This phenomenon is asso-

ciated with the form of the angular distributions of light at
great depths in natural waters. Experimental evidence has
pointed to the existence of a limiting, or asymptotic, radiance
distribution which the radiance distributions appear to approach
as depth is indefinitely increased,.'Furthermore, as.in tho case
of radiant density, the oventual trend toward a regular behavior

at great depths is apparently complotely indepcndent of the

irrogular optical conditions usually extant at and near the supre
faco of the water, and dependent only on the inheront optical
properties of the medium,

v v . el
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The first definitive recognition of this phenomecnon appears
to have been made by L., V. Whitney, lv’vhi referred to the asymptotic
radiance distribution as the "characteristic diffuse light." On
the basis of his experimental evidence and that of others before

'hm'(sourcoé cited in references 1 and 2) he formulated what we

1 shall call the asymptotic radiance hypothesis. It may be stated
I
|

at a depth ¥ in an optically deep plane-parallel nedium approaches, -

with increasing Z , a characteristic form, represented by a func~

tion %le‘d’z, such that:

(1) 98,4 = 9(8,¢;) , i.c., g is independont

of & (or equivalently, the asymptotic radiance

distribution is represented by a surface of revo-

lution with vertical axis of symmetry);
SR (11) (8, #) is independent of the external lighting
3 [4]

conditions at the upper boundary of the medium;

(11i) 9(8,4) depends only on the inherent optical
[4

properties of the medium,

o 3
; It has beon proved that the hypothesis holds in all plane-

parallel media in which the phase function ,F=4mrz((of radiative

: 1y, v. 'Whitney, "The angular distribution of characteristic diffuse
* - light in natural waters," J. Harine Res, 4, 122-131 (1941).

2 L. V. Whitnoy, "A general law of diminution of light intensity

in natural waters and the percent of diffuse light at different
3 depths," J. Opt. Soc. dnm. 31, 7L4-722 (1941). '

3 R, W, Proisendorfer, "A proof of the asymptotic radiance hypothesis," .
SIO Reference 58-57, Scripps Institution of Ocecanography, Univer-
sity of California, La Jolla, California, (1958). : :

as follows: The angular form of the radiance distribution N(Z,6,¢) )

e e e e o
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transfer theory) approaches a lirit with increasing depth. The

proof has been designed to also cover closely related phenomena

in the ficlds of ncutron tmnsport theory and astrophysical optics. -

The conplomentary rolations between the present approach ard the
fonmal approaches used in neutron transpor: theory are doveloped
in dotail in reference 3. A sinplor proof_ which makes use of

the experinentally docunented eventual exponential behavior of
radiant density and which is furmulated explicitly for the hydro-

logical optics context also has ecn devised.h

Tho.practical consequences dsrivable from the hypothesis
arc of gfeut importance to the cxperimeﬁtal studies of the optical
properties of natural waters. We particularly have in mind the
consequences for the directly observable quantities in optically
deep natural hydrosols, and for certain useful simple models usod
to describe thé light fields in such media, The details of the
necessary groundwork for the present discussion have been developed

556,7

in some earlier notes,

b R, W. Preisendorfer, "On thc existence of characteristic diffuse -

light in natural wators," SIO Reference 58-59, ibid. (1958) .

5 R. W. Preisendorfer, A model for radiance distributions in
natural hydrosols," SIO Reference 58-42, ibid. (1957).

6

R, W, Proisendorfer, "Unificd irradiance equations," SIO
Reference 58-43, ibid. (1957). ‘

7 R
R. W, Proisendorfor, "Directly observable quantities for light

fields in natural hydrosols, SIO Refcrence 58-46, ibid. (1957).

/

i~ Fre el B S Rad R

e e D ———

ol r Wi oty Py

S 2 ST 2

S,

~-F B




BASIC FORMULAS .
The' Irradiance Quartet

The radiance function N is tho basic radiometric quantity
in terms of -which all others can be defined. In particular the
downwelling and upwc.lling irradiences H(2,~) and H(Z,+) at
depth Z in a natural hydrosol arc given by: \

H(z,-) = -_L_ N(2,8,%) cose da , (1)

and

H(z,+) = L_ N(z,8.¢) cose o0 ,
-—-+ .

(2)

where , for the present purposcs, we define == . as the collec-
tion of all dowrnward (or inward) directions (©,¢) : Wa2< 8,
O%= ¢ < 2W ; and =4 is the collection of all upward (or
outward) directions (g,¢) : 0= T/2 , 0P <2 , whoero O

is measured as usual from thé outwlard nomal to the mediun. We

define = = =T U =_ . For brovity we have written,
dL = sinaded¢.

In addition to H(Z,+) and H(2,~) , underwater optical
exporinents usually considor the follominé dowmwolling and



which is the scalar irradiance 2t dopth 2 ( h(z) is cqual to

the product of the speed of light ¥~ and radient density ALR)
at depth 2 ), '

The four quentities H(Z,*) , h(2,%) form tho nucleus

of 2 set.of modern cxperimental quantitics used to document tho

_SIO Ref. 58-60 -6 -
upwolling scalar irradiances:

hez,-) = S‘E-N(z,e,f) di, ' i (3)
ond

hea,+) = f__ N(2,0,9) da ,' | ) ()

=, - -
ard thotr sm h(@)
hezy = hez,-) + hez,+), (s)

light field in natural wators. Of course, & caonplcte documentation

is obtaincd only through a systcma.ticl determinnticn of the radiance

voluos N(Z,8,¢) at all dopths : 2 and over all
dircctions (®,¢) - o o .

-
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The D and R Functions

~ In the absence of detailed knowledge of N(2,6,)

.the basic quartet of irradiance functions defined above can be

uscd to durive nost of the information needed for the solution

‘of underwator visibility problems, and image and flux transmission

problens in general, In particular, an oxcellent index of the

‘shape of tho radianco distributions at depth Z is given by the

distribution functions D(z,% ) defined as:

})(2,1‘) - (6)
Hz X

D(z,%) =

Furthermore, information about the reflectance prOpert\ieé of tho
wator at depth Z is furnished by a study of the .mt.iq: h

R(z,-) = B m
RH(z,-) SRR
which is the experimental counterpart to the classical Rg for-
rmula as given by the Schuster two-flow analysis of the light fiold._" '
In fact, the D and R functions defined above, and the
functions defined bolow are all either modern experimental counter-
parts or logical mctcﬁsions of the tools provided by the

clessical two-flow theory of the light fiold in natural hydrosols,

As notod above, the background of these quantities'ia congidorod

4
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in detail clsewherc',r so that the preseqt discussion nced not
_dwell further on their definitions and interrclations. We are
concaorned here only with the behavior éf these quantities at
' groat depths in media satisfying the rgquirement of the asynp-
totic radiance hypothosis. '

The K~ Functions
The cssentially cxponential behavior of the irradiance

quantities dofined above supplies the motivation for the fol:_l.oi-

ing definitions:

- =l d Hz, )
Ket) = 155 T us ®
S dhes
. zﬁcz,t) = hez, +) Lz .‘(9)
=1 dhez) | :
ez = h(z) . ol (10)

~ If the various irradiance quantities vary exactly in an
exponential manner at all depths, then the corresponding
y K ~functions would b§ constant .i‘unct.ions cach agsuming a fixod -
valuc at all depths. In general, however, the depth-dopendenco.l
of those quantitios undorgo irregular behavior beforo the
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exponential features eventually emergo. The preceding dofinitions

arc designed to characterize the depth-dependence of the irradiances

under all conditions,

Ono of the main consequences dorived from the asymptotic
redianco hypothesis asscrts that the five KK -functions defined
above -all tend to a common limit with increasing depth. We pro- _'
pare tho groundwork leading to this conclusion by introducing .

a final K -function, nomely that associated with the radiance '

function itself,

-1 dNz,8é)

Kez,e,#) = Tze 9 dz (1)
Just as each of the various irradiance quantitiocs may be
exprossed in terms of radiance, so can its corresponding K- ‘
function bo expressed in tems of the IK-function for radiance:
S___ N(Z,8,¢) IK(Z,6,¢) cose dLL
K(z»i‘) = Af-i‘ __ '
' , s
g___ N(z,8,4) cose ollL \
=¥ ;
L.-,b N(Z8,9) K(Z,0,)dfL - , .
bz 1) = = — ., (3)

=

L Nezied) dQ

(12
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_-N(2,6,¢) K(2,0,¢)d0L
/&cz\ = S"-" ' ' - ()

L NCZ, 8,80 d L

A Reformilation of the Hypothesis

The | -function K(Z,6,4) for radiance is of fundamental
importance in the present discussion of the asymptotic radiance
hypothesis. In fact it is the function which gives rise to that
formn of the hypothesis which is most amenable to exact mathematical o
analysis, The desired reformulation reads as follows: for

each (6,4)€ = . the function K(2: 9, #) has a limit, as

Z>o o and this limit is independent of (6,¢#) . In symbols:

/%m=_l.mz_,a, K(2,8,%)

exists for every (6,4) & = , and is independent of (8,¢ ).

The preceding formulation is made plausible by the following

, Observations: For every depth 2 , N(26,4)may be represented
exactly by

| - 2
N(216,4) = N(O, 8, ¢) e’xp{"fo k(z/o,p)d 2},

a . Suppose there is some depth Zy below which we have (&8, ¢)=«g¢,

a fixed number for all (8,¢) o Then

N(20,4) = N(0,6,¢) exp { S (2! 9,4>) ol}, —j‘ K(E, B,ﬂJZ}

| = N(20,0,4) exp { -~k (2- zn}
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Let

3,(20|9,¥)= N(zoge, ) exP{ &oz'o} )

then for all 2 = Z.,

. -Bo 2
N(i'a)¢)= 3(20,9,¢) e e (15)

t

It follows that below Z, , N(2Z,8,#) has a fixed angular .

structurc given by 3 (Z.,8, #). .
The Basic Transfor Equations

One final relation necded below is the refornulation of
tho cquation of trensfer in terns of the - K ~function for
radianco, This is e2sily obtained from the standard form of the

transfer equation for stratified source-freo plano-'parallel media:

dN(2,8, 41 _

-~ Ccos®
ol 2

— o(2) N(Z,8,8) + Ny (2,8,4) ;

whore

Ny (2,8,8) = S c‘ci"'; 8,¢;6,4) Nc'z,vf;#’) di. .

v

et o
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' By moans of the definition of K(2,06,¢) , tho above equa-

. tion nay be rewrittén as:

Ny (2,8,9¢)
N(Z,©,¢) = - 9
<2 + K(2e,4)cos6

which is the canonical form of the cquaticn of trensfor,

The equation of transfer governing K(Z,0, ¢’) is also
oasily found. From (16), the definition. of K(2,8,¢) , and

tho following definition of an analogous K ~function: .

| at20.¢) = N;L,e,ﬁ) mﬁﬂ)?’,' a7
where
.Nz.(i..e,.ﬂ - N;,:(z,a,ﬂ-/;u;) , | a8
wo havo:
dRriz,e,#l [ ez,6,4)~ Kq (2:0.1] [Kezeé)+ e«zl'seco](;m)

dz

6)
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This formulation is analogous to the following formulation

of tho equation of transfer fér N(z2,0, 4’) in which

N1(3,9,¢) is used:

dN(z,8,¢)
dz

= [Q(z,9,¢)~ Ns ¢2,6,¢)] [+ x(2)seco)]

Theso formulations point up the following physical signifi-

cance of tho equilibrium radiance N, ond its K -function K.‘ : fo:r6>"z'
9

‘wo obsorve that if N(2,6,4)S Ng(2,8,4) then dN(z,0, ¢)/dz2 Z O.
Thi‘s' follows immediately from thc preceding cquaticn., Thus N ; 8 >7l’/2‘,
always tonds toward the equilibrium radiance N% . Now a B

. sinilar phenomenon exists betwecn K and KZ . To soe this,

wo obsorve that the socond factor on the right in (19) has the

property that

K(Z,8,¢) + X(2) Seco < O

for 211 Z and all downward directions (©,¢) . Therefore if
K(2,0,4) S Kq(2,0,6) thon dk(z,0,6)/dz 2 O s showing
that K always tends toward K.% for these dircctions. This

++ property of the functioy K(Z,0, #] q Ip_rovidesltho key to a
rigorous pro;f of the axistence of an zi'.s‘xymptot.i,c radiance distrie
bution. An oxanple of such a usc of (19) is given in tho final

soctions balow,’
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CONSEQUENCES FOR DIRECTLY OBSERVABELE QUANTITIES

The Equation for the Asymptotic Radiance Distribution

An application of the asymptotic radiance hypothesis to
(16) yiolds tho formula for the asymptotic radiance distribution
% - In view of the heuristic discussion leading to (15) and c
tho statemont of tho hypothesis interns of K(Z,9,¢) , we |

soo that
glod) = lmy ., 20,4) =lm,__ Nzo,8 expff 2}

adsts for ell (o, ¢) « . Hence multiplying cach side of (16)
WG’CP{,&O}} and j:assing to the limit as Z~»® , wo have

\ | L
= _ pedioid aieigydn

4
I+ (Z) coso
whero

Al6¢; 8] #') =lm; ,,, 410 e,¢;e:47)'/ac(£)“?

L Ry = hrp}_,,,, Kez,0,4) .
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and#*
ol = Ile..’w O(-(g) .
The intogral equaticn (20) has the property that the val_uqa

of its solution 3 arc independent of f . Thus wo moy set

2.(9,45\ = 51.7: %.(8),

and (20 ) may bo simplified to read:

-
< e, o (8 sme‘d
%.(9)-: | ' 2 Sa':-o‘F (o5 0 '3 ( ) a- (a)

| + (’%‘2) cose

vhoro we have sct
e«
£ 4 £2(8,8;054) dg’.
-0

The function '30 defines the asymptotic radiance distribu-

(O)te:,ac) - ZJTW- g

tion. Conditions (i), (ii), and (iii) of the asymptotic radirnce .
hypothecsis arc satisfied by the function 3 o As dotermined by the

cquation ( 21). A graph of 3 is clearly a surface of revolution
with vertical axis (in the coordinate system’ of the plo.nc-para:llel

nediun), Furthernore, the structure of j and tho value of J§

A

arc conplotely deterniined by the phaso functu.n y (,&m/.,( pl'*.ys

*
For most practical situaticns, thc medium is hcmogcneous or

oventually homogencous, so that this limit exists. actually,’
ts noted cbove, the asymptotic radiance distributicn exists
whenover hm 2z, 0"/t exists, without necessarily requiring
that tho individual limits lmgwe o and himp p ot
oxist,: This moro geonoral situation is discusscd in roference 3.
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the role of an cigenvalue of the cquatiom (21)). Thus Go
is determined completely by the inherent optical properties

of the mediun by mcans of equation (21) and therofore is indo-

pondont of the wxternal lighting conditions,

Tho Limits of the K-Functicne

* Fron tho relations (12) - (14), and tho statcment of the

hypothosis, wo ccnclude that

by e k(2,2 =

'mli—hv ./2(3,1‘ = &'a" .‘ .

l'mi‘"’ }(3‘ = /gw ,ll

The limit ( 24) is interpreted as follows: tho logarithide
derivative (with réspect to 2 ) of scalar irradiance }'1(_2)
ovont;xally approaches the commen linit JZQ of the logcorithmic
dorivatives of rediance distribution N(z,8,¢) o Tho lirdt
(23) shows that the logarithmic derivatives of the up-cnd down=
wolling irradiances (which arc measurably distinct at all emall

(22)

(23)

)

/
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" ropresonted iquite generally in terms of tho K-functions and tho

whoro
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depths Z ) approach a cormon value, namely /&a, o A sgimilar
intorpretation holds for the K -functions of the up-and down-

woiling scalar irradiancos.
The Linits of the Dand R Functions
Fron (6) and tho hypothesis, we have irmediately:

L 9.(8) sing de
D(E) = lmy, ., D(2)T) = -  (25)
' ‘ 3 '3,(9)[:\: cose]smede
+ ' o

1

whoro

R M S A

& w2

In an earlier note7it was shown that R(2,~) can be

!

distribution functions as follows:
. CK(Z~) - a(z,-)
R(E,—) d . §
. K(2,+) + a(z,+)

QA(2,t) = D@ t)acz) 3

i
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and whore Q(2) 1is tho valuc of the volume absorption functicn

" of tho mediun at depth 3 . It follows that

Ra; = llmz....,. R(2,-)

oxists and is given by

'R,,‘- ] 7..‘ )

whore

a(t) = lmf\z_,w a(zZ,t) = hm - D(Z,'t)q(&)nolt)ao

Z~
Further lirit reclations may be detormined by sy;stcma.'ticalli
going through the set of diroctly observablé quantities dis-. .
" cussed in roference 7., The preceding results will serve to - |
illustrate the general procedurc of obtaining the desired limit

cxprossions,

Wo observe that (26) is similar'/to the classical cxpression ‘
for R, as given by the Schuster two-flov; equations. This
similarity is not coincidental; it is, rather, 2 conscquonce of
tho fact that undor tho asymptotic radiance hypothesis, the
gonoral two-flow equaticns becone oxact v&th i.ncroaaing dopth, _
Wo now consider this fact in more dotail, |




!
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CONSEQUENCES FOR SOME SIMPLE THEORETICAL MODEXS
The Two-Flow Analysis of the Light Field

In an earlior 1nvostiga.tion63 study of theo classical cqua- '
- ticns for H(2,+) aond H(Z,—) showed thak thesc cquations
vicre @ct if and only if the distribution funcxicns D(2Z ;)
.and D(2,~)  were indepondent of depth. Under tho asymptotic
radiance hypothesis it was sceen that tho distribution functions
become independent of depth at great depths (cf (25)). It
follows that the. cﬁuations for H(Z,-H and H(2,~) bocome axact

ot groat depths whenever the hypothesis holds,

, In the same investigation a formulation of the equations
for H¥(2,+)  and H¥(z,~) (the irradiances associated
with diffuse 1ight) was made in which cach strean of flux was .
assigned a fixed distribution factor D¥(4+) , D¥(=) (the
two-D thceory). This formulation was ;justified on the basis of
experimental ovidence which showed that D(Z,+) and D(2,~)
wore ossentially fixed (generally distinct) constants.  In

tho light of the prosenf; .analys.is , the uso ‘of the two-D theory :
is thus given further justification c.n theoretical grounds when=

cver the asymptotic radiance hypothesis holds,

The two~D model gives explicit formlas for H¥¢Z,+)
and H*( 2,-) "o In viow of the preceding obsorvations, those
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expressions become exact with increasing depth Z . Using the

oquations developed in reforence 6 one may show that for every '

dopth Z ,- K

H¥(2 =) = N°¢(/J.,,-')[e"-‘°? e ) an

(" <
9 & Fo

H*(Z,ﬂ.- N°* [C(}lo,-)a_ ) =~ C(po,+) e‘d!/./.]'

. (29

Obsorve that we have sct L- —,&__ R wherc_/g-is given
in refercnce 6. The physical setting associated with (27) and -
(28) is an infinitely doep plane-parallel slab irradiated by
collimated flux incident at the upper bcundary at an angle B, = @ncCcOS ‘u,
fron the outward normal. The response to an arbitrary incident
distribution is cbtained by integrating (27) and (28) over = o o
CCH,.-_Q:) are constants determined by'the optical paraneters
and boundary cdrxditions; and , |

g (1) = 13 X2,

Ko

where Q(t) ere as dofined in (26). The obscrvable irradiances

H(Z,%) aro, by definition,

Hez,2) = HO(&HE) + H¥Cz,x) ,



where
. . Ho(2’+) =0

H.c‘zl“)"'Nonoe / .
The preceding model yields the following prediction of the limit
of R(i,"') :

| Hez,+) 9-)  fp—00d
R ™ “MZ-’w R(Z,*) = lumz_,w Wz, 3- = - &m.‘.a(-}) 7‘_.

which is equal to (26, fhe exact limit given b&. general radiative
transfer theory., These observations show that in ar\v' medium in o
which the asymptotic radianqe hypothesis holds, 'if we restrict our- .
selves to the class of all possible two-flow models of the light -
field, the model which attains maximal accuracy is'.that éiven by the

two-D theory.
Critique of Whitney's "General Law"

After conjecturing that the radiance distributions assume a
fixed shape at great depths, L. V. Whitney made use of the conjec- .
ture to deduce a so-called "general law of the diminuation of light

' 2
intensity in natural waters." An examination of the differential

equations formulating this law reveals that they are incomplete:
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théy fail to account for the contribution to the downwelling irra-
diance by the back-scattered fraction of.the upwelling irradiance.

As a result, the solutions of the differential equations are generally
inadequate to: cope with the contribution from one half of the light
field, namely the component associated with the upwelling flux, PFur-
thermore, some (convenient, but incorrect) assumptions were made about
the depth rate of change of the mean free path for unscattered light
a£ various depths. On this basis the equations weré integrated;, hold--
ing the mean frec path for directly transmitted light fixed. Both

of these inadeqpacies of an otherwiselsatisfactory theory have been
remedied in the twﬂ-D theory of the light field. The equations

(27) and (28) represent the concomitant effects of Soth up-and down
weiliﬁg streams, Furthermore; the awkwardness of stemming from the
change with depth of the mean free path of directly transmitted

light has been avoided by considering only collimated incident flux

of radiance N°® at the upper boundary,

The Simple Model for Radiance Distributions
R 4
: 5 . '

In an earlior note a simple model for radiance distributions
was derived from the classical two-flow analysis of the light field.
In viow of the preceding observations, it is concluded that the pro-
posed simple model of reference 5 becomes oxact with increasing

L

depth in all media in which the asymptotic radiance hypothesis holds,
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EXAMPLES

Yo conclude with some examples drawn from the case of a
plane-parallel medium which exhibits isotropic scattering and in
which the asymptotic rediance hypothcsis holds. In this way wo
obtain some general ideas about the shape of ?o , and the order
of magnitudes of the quantities D(¥) , Ro » and /&m ¢
one may expect in real medim., Finally, it is possible to give, in
the present context, a simpgle heuristic proof of the hypothesis, and-
~ at the same time derive a formula which will provide a means of -

' dotermining the depth in a medium below u}mch ,aaympf;éticit.y has* *
essentially boen attained. | - |

’

The Standard Ellipsoid

When scattering is isotropic, the phase function takes on

the form:

L8, ¢;0,8) = B, = 4/t

where _4, is the total scattering coéfﬁéient. Using this phaseo
function in (21), we see that 3019) takes on a pafbicularly simple

:t‘orm9

%o

ST ' .
. I+ecose - (@9)

Joto) = :'zg.,
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where

€= ha/fot ,
and

119
Y= L"?-(O)smeole. - |
Physical significance can be attached to g,'o by r'étﬁfning to tho
definition of ;(e ,¢) and integrating over = . The rosult
is :
3" = hmz-ooo he2) e%w Z.
Henco if there is some.depth Zo below which one may consider that .

for practical purposcs asymptoticity has been attained, then the

preceding rolation can be written:

L 2,

]

Fo = hiz.) e

Expression (29) defines a prolate spheroid of revolution wtpse
axis of symmétry is vertical. The eccentricity of the ellipspid
is €= 8o /ot . This ellipsoid may serve as a convenient
reference against which distributions from real media may be com-
pared. To effect a comparison one must know the &J, and &
of tho medium. Since ‘€ and &, ..'are.generaily rclated, it
sufficos in principle to know only -.a'\f, ‘and the phase function.
This is illustrated below after a necessary preliminary discussion
of D() and Roo .« |

\ [y}
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Expressions for P(1) and Roo

By means of (25 and (29) we find that

€ In(1*e) |
€ F In(1X€) :
Furthermore, from (7) and (29) (i.e., (29) replaces N(Z,8,b)
in (7)), wo have: ' ' R
R. = In(i1+e) ~ e | |
. lnG-e) + € (1)

Tho samo result could be obtained by using (26) and the preceding

forms for D(X) .

Values of D(%) and Ro as functions of €, O< &L

arc given in Table I. It is casy to verify that for the extreme

values O and 1 of & the corresponding values of D (%) .

and. P . are:

l'm ¢ ~>o

0(¥) =2 o .'H‘%ﬁqi@w." |-
he =~ _ R
l'me—»n D (+) =Z':"T"‘-2~) =2.259 ‘lme_.,,‘ Re . O

I\M‘»g D(-) = |
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TABLE I

DISTRIBUTION AND REFLECTANCE FACTORS : v
I'OR STANDARD ELLIPSOID

€ D) O(+) Reo
0,100 T 1,966l 2,0319 - ' 0.8750
0,200 1.9286 . 2,0622 0,7640
0.300 1,8881 2,0911 0.6642
0.400 1.8,38 2,1185 . 045733
0.600 1,7381 2,1692 0.4110
0,700 1.6722 2.1928 0.,3361
0.800 1.5906 2,2157 . 0.2622
0.900 1.4775 2.2377 0.1841
0,950 1.3911 2.2,,83 0.1379

Table II of roference 6 gives values of D (2,*) for a
real medium under varying external conditions. A comparison of these
real values with those summarized in Table I above -reveals the fo‘llow-'. |
'ing information: the O(Z,— ) values are significantly less than
the standard D(—) values; the D(Z,+) vaiues are significantly |

greater than the standard D(-i-) values. Since ali natural wat,ers'
exhibit anisotropic scattering we can infer the following features of .
the structure of asymptotic radiance distributions in all natural
waters: when compared with the standard ellipsoid, thé plots of

?“ (8) for real media must necessarily be narrower in the angular
range Q> X/2 (downwelling light) and must necessarily be bmad?r' .
-in the angular range 05—_1(‘/2; (upwelling 1ight), -

[
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The amount of departure of the j,(e) for a real medium from the -
standard ellipsoid may be taken as a measure of the anisotropy of

scattoring in the medium,
The Determination of &

The quantity € =,Q,, [ot is fﬁnctional]y related to _a;a .
In the case of isotropic scattering the relation is well known and
of a particularly simple structx.tre..8 In general, &€ is detemined
by viewing it as an eigenvalue of the integral equaticn (20).
‘There is an alternate way, however, to characterize ¢ which,
while not the rmost analytically direct way, is perhaps of greatest
value in generating an insight into the physical significance of €
end also of supplying a link between € and the direetly observa-
ble quantities of the light in real media. This alternate charac- °
terization of € stems from the following funct.ioﬁal relation
which holds between K(Z,t) and the various scattermg and absorp- .

tion functions of an arbitrary medium7:' ;

b(z,-) - Lez,+)

| = -

kez,-) — a(z-) [KC2,+) + a(2,4+)

- R
S. Chendragokhar, Radiative Transfer (Clarendon Press, Oxford, 1950), n19.
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As depth is incrcased each tem tends toward a well defined '

Unit, so that as Z->o , the above relation tends to

| = b(~) b c+)
B = P-Ya L, + D) &
This may be rewritten as
I = - = — 2 (3@ .
€~ (1-WIDEY . - €+ (=@ DH) ‘

\ .

whic_h is the peneral characteristic equation for € , Here

S £l8d;0,4') o10') .d.h'] d.0

+

* S B ?0(9')6'059'01-0"

’
; .

In the case of isotropic scatteringy

0

peH) = o,

‘.'ml



' complotoly rigomus.
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and (32) reduces to the following simple form after the explicit
axpressions for D(¥) , as given by (30), are substituted in it:

~ 2€ _ .
- . ' \
nLT=e :

This is the wcll known characteristic equation for &€ in the iso=.
tropic case, As ":"o varies from O to 1, & varies from 1 to O,

Hence, for all wo, 0SS W, = I; o< €=|, Whenever scattering is . °

- present, i.e., whenever &Wo > O | » then the useful inquality

Ko< o¢ holds. Actually, the inequalitios 0% R/l € | hold
in gemara.l.,3 This fact is made plausible by an inspection of (21)
keeping in mind that the function g is bounded in all plwsical]y
meaqingful situations, so that the denominator cannot vanish,

An Heuristic Proof of the Hypothesis

lle now present a brief argument which makes plausible the

asscrtion of the hypothesis, namely that K(2,9,¢) — /&. for all.

- (9,d) o For simplicity we will assume that the space is homo=

goncous and that scattering is isotnoﬂico . The resuiting line of

argunent, while restrict.ed to this special setting, can be made-
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Under tho present assumptions, we see that (18) may be written

Ng(Z6,4) = 3z @ hez),

so that

Kq (2,8, 4) = ey,

Thus (19) reduces to

dl«:.e.ﬂ - [“(2,9‘;) -/Vztz)][Kci;BM) + o(SE'CG].
Z ‘ .

The preceding discussion of this equation showed that K(Z ,9)¢')' .
always tends toward &(g) for dowrward diroctions. Hence if ,Q(E)
approaches a limit, [K(Z,8,¢) | also. tends toward this limit,

More explicitly, suppose therc is some depth Zo below which 43(5! )
is osscntially constaﬁt_ and equal to ,&,,, . Then the above
oqua.tion.is a simple Riccati equation for [{(2Z,8, ) whose gencral

) solution is:-

/&w + «seco C cxp{(,go-&- dsecg)z}‘ :
K(zlel¢) = . —— ) (3“)

- C e.xp{(,z.,-*-(seca)é}

where

K(o,8,4) ;"/??w
K(0,8, #) + ASeco
Sinco Lo ' - L

o

Ao + ot seco < O



"'
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for all §>T/2 , it follows immediately from (3;) that
(imz e Kiz,0,8) = 5

for all © > m/2 - This means that the shape of the downwelling

radionce distribution becomes fixed at great depths. It followa

that the roflected upwelling radiance distributicn also becames .
fixed, so that the shape of the entire radiance distribution
becomes fixed at great depths. |

A Criterion for Asymptoticity

According to (3), (Z,06, é)approaches 4. with least speed
when §= T (1.c., for the directly downward directian).
Hence when K(2,7w,#) has come within a given distance of /&., ’
We can conclude that the other values K(2,0,4) , '-u.'/z €< 0<T

- 8ro within tho same neighborhood of _ . From (34) it follows
_that

- - S =) 2
<an 4,),3._.,2& “)CMP{( =l }

1= C epp {(&.,-«x;z} 5

Thus a preassigned value of the difference on the left side

dotermines an associated value of Z . Although (35) is exact

" only at great depths, and applies only in the present (isotropic)

contaxt, it nevertheless supplies a useful approximate method for
ostinating the dopths at which K(2,T, 16) 4o  has attained a given.

smell value,





