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Abstract: 

LBL-36359 

With a view towards implementation in microscopic transport simulations of heavy­
ion collisions, the properties of spin-isospin modes are studied in nuclear matter con­
sisting of nucleons and ~ isobars that interact by the exchange of 1r and p mesons. 
For a standard p-wave interaction and an effective g' short-range interaction, the 
dispersion relations for the spin-isospin modes, and the. associated amplitudes, are 
calculated at various nuclear densities and temperatures, within the random-phase 
approximation. Quantities of physical interest are then extracted, including the total 
and partial ~ decay widths and the ~ cross sections in the nuclear medium. The 
self-consistent inclusion of the ~ width has a strong effect on the ~ cross sections 
at twice normal nuclear density, as compared with the result of ignoring the width. 
Generally, the obtained quantities exhibit a strong density dependence, but are fairly 
insensitive to the temperature, at least up to T = 25 MeV. Finally, it is described 
how these in-medium effects may be consistently included into microscopic transport 
simulations of nuclear collisions, and the improvements over previous approaches are 
discussed. 

*This work was supported by the Swedish Natural Science Research Council, by the National 
Institute for Nuclear theory at the University of Washington in Seattle, and by the Direc­
tor, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics 
Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 



1 Introduction 

In recent years, large efforts have been devoted to the understanding of hadronic 
matter at high densities and temperature, created in collisions between two heavy 
nuclei at bombarding energies from a few hundred MeV per nucleon up to several Ge V 
per nucleon. A large number of energetic particles are produced in such collisions and 
they may be used as probes of the hot and dense phase of the reaction, since they 
were not present initially [1, 2, 3]. 

Particle production in heavy-ion reactions has been fairly successfully described 
by microscopic transport models, such as BUU and QMD [2, 3, 4, 5]. In these trans­
port models, the nucleons propagate in an effective one-body field while subject to 

. direct two-body collisions. Sufficiently energetic nucleon-nucleon collisions may agi­
tate one or both of the colliding nucleons to a nucleon resonance, especially ~(1232), 
N*(1440), and N*(1535). Such resonances propagate in their own mean field and may 
collide with nucleons or other nucleon resonances as well. Furthermore, the nucleon 
resonances may decay by meson emission and these decay processes constitute the 
main mechanisms for the production of energetic mesons [3]. 

The by far most important nucleon resonance is the ~(1232) isobar. It contributes 
substantially to the production of pions, kaons, anti-protons, and di-leptons, either 
directly via its decay, or indirectly as an intermediate particle [3]. The ~ isobar 
is also very important for the thermal equilibration of the reaction, by absorbing 
the kinetic energies of the nucleons. The transport descriptions normally employ the 
vacuum properties of the resonances and mesons, i.e. the needed cross sections, decay 
widths, and dispersion relations are taken according to their values in vacuum [4]. 
However, it is well known that the pion changes its dispersion relation in the nuclear 
medium, and that the ~ changes its decay width [6]. These in-medium properties 
have proven to be important to incorporate in the description of various reactions 
involving-isospin degrees of freedom, for example 1r-nucleus reactions [7, 8] and (p,n) 
and (3He,t) charge-exchange reactions [9, 10]. 

It is therefore reasonable to expect in-medium properties of 1r mesons and ~ iso­
bars to play an important role in transport descriptions of heavy-ion collisions. Some 
in-medium modifications have already been employed in calculations of heavy-ion 
collisions, both qualitatively [11] and by transport simulations [12, 13, 14]. Although 
the particular properties considered in those studies may not change much in more 
refined treatments [12, 13, 14], other properties can change significantly. More refined 
models have been used in various contexts, for example the self-consistent coupling 
of pions and ~-hole states in nuclear matter [15] and the calculation of the ~ width 
in nuclear matter [16, 17]. The purpose of the present investigation is to develop and 
employ such a refined model to derive several in-medium quantities that are useful 
for transport models, and to discuss their meaning and how they can be implemented 
consistently in dynamical simulations. 

It is important to recognize that the physical scenarios in heavy-ion collisions differ 
from those in charge-exchange and 1r-nucleus reactions, and therefore the effects of in­
medium properties may differ as well. Charge-exchange and 1r-nucleus reactions occur 
in a cold medium at relatively low density (in the surface). As larger densities are 
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probed in heavy-ion collision, the in-medium effects are expected to be enhanced. On 
the other hand, there are other mechanisms that may reduce the in-medium effects: 
the dense medium is usually hot as well, many individual baryon-baryon collisions 
and resonance decays are involved, and many of the observed mesonic particles have 
been created at the surface of the reaction zone and are thus less sensitive to the 
dense interior region. 

In infinite nuclear matter, a syf?tem of interacting 1r mesons, nucleons, and ~ 
isobars will couple to form spin-isospin modes. Some of these modes are collective 
and correspond to pion-like states (quasi pions), while other modes are non-collective 
in their character. While a free pion has only a pion component in its wave function, a 
collective pionic mode contains components from many ~N-1 and N N-1 states. The 
strength of the various components will vary with the momentum of the collective 
mode, and the energy will differ substantially from the energy of the unperturbed 
pion or ~N-1 states. On the other hand, non-collective modes are dominated by a 
single component of a baryon-hole state (N N-1 or ~N-1 ) and its energy is close to 
that of the corresponding unperturbed baryon-hole state. 

Our aim is to calculate the properties of the spin-isospin modes in infinite nuclear 
matter at various nuclear densities, PN, and temperatures, T. From these properties, 
we will also deduce a number of other physical quantities, such as decay widths and 
cross sections, which will depend on PN and T. In order to obtain a consistent de­
scription, it is important to calculate simultaneously the dispersion relation, the ~ 
width, and the cross sections. As new decay channels for the ~ are present in the 
nuclear medium, the~ width will differ from its vacuum value[16, 17]. However, some 
of these decay channels correspond in a transport description to ~-nucleon collisions 
and should be excluded from the ~ width in a transport description. Instead, it is 
important to take into account the in-medium properties for calculating ~-nucleon 
cross sections. It is also important to calCulate the dispersion relations and the ~ 
width simultaneously, because these quantities are interdependent. We have done 
this with an iterative procedure. In a subsequent paper we will present results from 
microscopic transport simulations of heavy-ion collision with the presently calculated 
in-medium properties having been implemented by means of a local density approxi-
mation, PN = PN(r) and T = T(r). . 

The effects of including the in-medium properties of pions and ~ isobars in descrip­
tions of heavy-ion collisions have been studied previously but only some particular 
aspect was considered, such as the ~ production cross section [12], the production of 
pionic modes [11], or the changed dispersion relations of the pionic modes [13, 14], 
rather than treating all of the aspects consistently within the same model (dispersion 
relations, ~width, and cross sections), as is done in the present paper. Furthermore, 
we have improved upon a number of approximations done in previous works. While 
the ~ width was excluded from a number of quantities in refs. [12, 13, 14], we have 
included the ~ width in a self-consistent manner.1 Some of the previous treatments 

1 We include the A width by an iterative proc~dure and refer to this as the self-consistent case. 
This nomenclature is not intended to suggest that the entire set of coupled equations for the in­
teracting hadons are solved self-consistently. Such truly self-consistent calculations were recently 
carried out with the A a.nd 1r degrees of freedom included, but ignoring the N N- 1 excitations [15]. 
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excluded the nucleon-hole channel and used a simplified expression for describing the 
continuum of D.-hole states [12, 13, 14], and the in-medium properties were calculated 
in cold nuclear matter in refs. [12, 11, 13, 14]. The avoidance of these approximations 
has important consequences for the dispersion relations, the D. width, and the cross 
sections. This will be further discussed in sec. 4, where we also will emphasize the 
importance of treating collective and non-collective spin-isospin modes in a consistent 
way within the model and will compare to previous treatments. 

Although our present study constitutes a more consistent way of incorporating 
in-medium effects into a dynamical transport description than what has been done 
previously, our treatment does rely on certain approximations. Thus, we limit our 
considerations to systems consisting of interacting nucleons, D. isobars, and 1r and p 
mesons, and we assume that only relatively few D. isobars and mesons are present. In 
addition to the increasing role played by higher resonances, there may also be other 
effects occurring at high densities that are not taken into account in our model, such 
as partial restoration of chiral symmetry. 

In sec. 2 we present the. model. While part of the formalism can be found in 
the literature (e.g. ref. [6]), there are also important differences from the traditional 
formalism. Therefore, to make the presentation as clear as possible, we include some 
steps that can be found elsewhere. In sec. 3, we motivate and discuss our choice 
of parameter values. The results are then presented in sec. 4 which also contains a 
discussion of the implementation of the in-medium quantities in transport simulations, 
and a comparison with previous works. Finally, our results are summarized in sec. 5. 

2 The model 

We will consider a system of interacting nucleons (N), delta isobars (D.), pi mesons 
( 1r ), and rho mesons (p ). In order to investigate the matter properties of the inter­
acting particles, we employ a cubic box with side length L; the calculated properties 
are not sensitive to the actual size, so we need not take the limit L --+ oo explicitly. 

The in-medium properties are obtained by using the Green's function technique, 
starting from non-interacting hadrons. The non-interacting Hamiltonian can be writ­
ten 

Ho = 'Lekbkbk + 'Lnw1r(qz)-R}1r1 + 'Lnwp(qn)P~Pn. (1) 
k I n 

Here the index k = (Pki sk, msk; tk, mtk) represents the baryon momentum, spin, and 
isospin. The spin and isospin quantum numbers, Sk and tk, take the values ~ and ~ 
for Nand D., respectively. The energy of baryon k moving in a (spatially constant) 
potential is denoted ek. The baryon creation and annihilation operators, bl and bkl 
are normalized such that they satisfy the usual anti-commutation relation, 

(2) 

In the pion part of H0 , the index l represents the pion momentum and isospin, l = 
(Pll AI = 0, ± 1), while the index n in the p term also includes the spin msn• The 
meson energies are given by 1iw1r,p = [m~.P + q2]112 respectively, and the creation and 
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annihilation operators of the pion are normalized such that they satisfy the usual 
commutation relation, 

(3) 

and analogously for the p meson operators, fi! and Pn. 
Note that the ~ isobar described by H0 has no decay width, r .c:. = 0. When the 

interactions are turned on, the ~ width will emerge and it will then automatically 
include also the free width. 

2.1 Basic interactions 

At the N 1r N and N 7r ~ vertices we will use effective p-wave interactions, VN1rN and 
VN1rt:., which in the momentum representation can be written as [18] 

1 1 
. (fic)2 [ 2mNc2 

]
2 JNN ..... +-

VN1!"N = 'l.C -L3 2 + yS --2 F1!"(q) (u·qcm) 7 • <P1r (q) 
mNc s m1!"c 

(4) 

1 1 
. (fic)2 [ 2m.c:.c2 

]
2 fN.c:. + ..... + +-

VN1!"t:. = 'l.C -L3 2 yS - 2 F1!"(q) (S •qcm) T • <P1r (q) + h.c.(5) 
m.c:.c + s m1!"c 

' 
In these expressions, ..jS is the center-of-mass energy in the N 7r system and q em is 
the pion momentum in the N 1r center-of-mass system, which in the non-relativistic 
limit is given by 

(6) 

where fiw and q is the pion energy and momentum, and pN· is the nucleon momentum 
in an arbitrary frame. The Pauli spin and isospin matrices are denoted u and 7, and 
s+ and f+ are spin and isospin ! to ~ transition operators normalized such that 
< ~' ~1St1 l!,! >= 1.2 The momentum representation of the pion field is taken as 

L312 fic 
<PHq) = J

2
fiw1!"(q) [11->.(q) + (-1)>.71-!>.(-q)] (7) 

The interactions contain a monopole form factor, 

· A;,- (m1!"c2 ) 2 

F1!"(q) = A;- (cq)2 ' (8) 

and the coupling constants are determined at (cq) 2 = (fiw) 2
- (cq) 2 = (m1!"c2 ) 2 

and ..jS = mNc2 or ..jS = m.c:.c2
• Apart from the factor 2mBc2 /[mBe2 + Js] the 

interactions VN1rN and VN1rA are obtained in the non-relativistic limit from the phe­
nomenological Lagrangians [18] 

( )
3/2 fNN ( ) - ..... -£N1rN - fie --2 F1!" q '1/JN/J.L/s 7 'I/JN8J.L ¢>1!" 

m1!"e 
(9) 

3/2 fN.c:. -J.L ..... + -
£N1rA = (fie) --2 F1!"(q) '1/J.r::. T '1/JNBJ.L <P1r + h.c. 

m1!"c 
(10) 

2For clarity, we generally employ bold-face characters to denote quantities with vector and tensor 
properties under ordinary spatial rotations, while arrows are employed to indicate the transformation 
properties under rotations in isospace. 
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The factor 2mBc2 
/[ mBc2 + JS] is a relativistic correction that takes into account 

that in relativistic calculations the energy denominators usually appear in the form 
2mBc2 

/[ (mBc2 )
2

- S ], while in non-relativistic calculations the form [ ffiBC2
- Vs]""""1 

usually appears [18]. With this correction, the correct relativistic form of a Breit­
Wigner resonance is obtained for the free ~ resonance [7]. 

The interactions at p meson vertices are less well determined than for 1r meson 
~ertices. Here we choose a form analogous to eqs. ( 4) and (5), 

. (1ic)k [ 2mNc' r r . -
(11) VNpN zc ----v- ffiNC2 + Vs N~Fp(q) (u x qcm)· [r · cf>P (q)] 

mpc 

. (1ic)k [ 2mac
2 r jP -+ +--

VNpA zc ----v-
ffiAC2 + Vs NA

2
Fp(q) (S+ X qcm)· [T • c/>p (q)] 

mpc 

+ h.c. (12) 

Apart from the factor 2mBc2 
/[ mBc2 + JS], these interactions can also be obtained 

as the non-relativistic limit of relativistic Lagrangians [18]. 
In addition we will also include effective short-range interactions at nucleon-hole 

vertices, again written in momentum space, 

VNN-',NN-' = (7) 3 

Y'rm (If:.~) 
2

IF.(q)l2 (u, • u,)(i'; · 7;) , {13) 

and the corresponding interactions obtained when one (or two) of the nucleons is 
replaced by a ~. The strength of the short-range interactions is determined by the 
correlation parameters g]v N, g]v A, and g'AA. If the form factor 

(14) 

is omitted, this interaction has vanishing spatial range, V rv 8( r 1 - r 2 ). 

2.2 Green's functions 

The interactions between N, ~' 1r and p will lead to the formation of spin-isospin 
modes which will carry the quantum numbers of the 1r or p mesons. The propagation 
of these spin-isospin modes can be represented by an appropriate Green's function. 
For this purpose, we define a Green's function 

iG(a, (3; t, t') = ~ < e{B!(t) B~(t')} > , (15) 

where e is a time ordering operator, and the brackets < . > denote either the 
expectation value of the interacting ground state (at zero temperature) or the thermal 
average (at finite temperatures). The interacting ground state is an eigenstate of the 
Hamiltonian, H, which consists of the noninteracting part H0 (given in eq. (1)) and 
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an interacting part defined by the interactions in eqs. ( 4-13). The "channel" indices 
a and f3 are used for convenience, so that the creation operator 

iJt (t) = eiHtf"h f3t e-iHt/h 
Ct a ' (16) 

represents either a 1r meson operator, 

(17) 

a p meson operator (defined analogously), or a two-baryon operator, 

At At A 
Bet = bka bza ? (18) 

which in the zero-temperature limit corresponds to creation of a N N-1 or fj.N-1 

state. 
At zero temperature the Green's function in eq. (15) can be written in the energy 

representation as 

iG( a, /3; w) . i: d( t - t') eiw(t-t') iG( a, {3; t, t') 
At A _ <L < WoiBalwv >< Wv~B13I\llo > 

v 1iw- 1iwv + Z1] 
A At iL < WoiBtJIWv >< Wv~Bal\llo > 

v 1iw + 1iwv - Z1] 

. X~(XE)* . (XEf(X~)t 
::::::: z ~ 1iw -1iwv + i1] - z ~ 1iw + nwv - i1] ' (

19
) 

where, as is usual, we have approximated the excited states IWv > by excited RPA 
states, IWv > ::::::: Q! l\llo >, generated by a generalized RPA operator, 

(20) 

and approximated the matrix elements by 

At At t At t < WoiBaiWv > = < Woi[Ba.' QvJIWo > :=::::: < <I>oi[Ba, Qv]I<I>o > , (21) 

with I<I>o > denoting the non-interacting ground state. 

2.3 RPA approximation 

We want to calculate the spin-isospin mode Green's function defined in equation (15) 
within the RPA approximation, symbolically 

The spin-isospin modes, here represented by the Green's function QRPA, will in this 
approximation be obtained as an infinite iteration of (non-interacting) pion, p meson, 
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nucleon-hole, and ~-hole states, represented by the diagonal Green's function G~, 
coupled with the interactions specified in eqs. ( 4-13) which here. are summarized by 
the symbolical interaction V. QRPA is graphically illustrated in fig. 1. As the lowest­
order Green's function we will, in the case a corresponds to a meson index, take 
G' - Grr,p or G' - G1r,p with o- + o- -' 

rr P . ) [ 1 + nrr,p nrr,p l c G +' (a, (3; w + ___ .;.;_____ u 
fiw - fiwrr,p + iry fiw + 1iw1r,p + i"l cx{3 

G_' a,(3;w + ---~-- u 7r P( ) = [ 1 + n1r,p n1r,p l c 
- fiw + fiwrr,p - iry fiw - 1iw1r,p - iry cxf3 

Note that the free 7r or p meson propagator, D~·P, is related to G~·P and a:·P by 

(23) 

(24) 

(25) 

(26) 

In nuclear collisions at beam energies up to about one Ge V per nucleon, which 
is the domain. of application that we have in mind, only relatively few mesons and 
isobars are produced and so the associated quantum-statistical effects may be ignored. 
Accordingly, we assume nt1 ~ 0, n1r ~ 0, and np ~ 0. Since we consider thermal 
equilibrium at a specified temperature T, the nucleon occupation probabilities are 

1 
n N ( k) = _1_+_e_(,-ek-_-JJ...,...) /=T (27) 

In the case a corresponds to a two-baryon index we take G~ = GNN-l or G~ = 
Gt1N-l, with 

[ 
. nN(kcx)- nN(lcx) l b 

fiw- ela + eka + iry · sign(w) cx{3 
(28) 

Gt1N-l (a, (3; w) nN(kcx) b 
fiw- ela + eka- :Et1N-t(eka + w, lex)+ iry cx{3 

nN(lcx) b 
fiw + eka - e1a + :Et1N-1 ( ela - w, kcx) - iry cx{3 ' 

(29) 

The Green's function Qt1N-
1 

has been calculated from 

where Gt1 is the full in-medium Green's function for the ~' containing the ~ self 
energy :Et1. We note that the quantity :Et1N-I in eq. (29) is identical to the ~ self­
energy :Et1 when Gt1N-l is calculated from eq. (31). However, as a first approximation 
when calculating QRPA, the quantity :Et1N-1 in eq. (29) can be ignored. The QRPA 
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obtained with this approximation can then in turn be used to calculate the 6. self­
energy. It is therefore convenient to use different notations in order to distinguish 
between the input ~.:lN-1 in eq. (29) and the calculated 6. self-energy ~.:l using QRPA. 

We will obtain two different, but equivalent, expressions for the Green's function 
GRPA, as defined by eq. (22). The first expression is based on a summation of the 
Green's functions in eqs. (26-29), according to the diagrams in fig. 1. The details of 
this derivation can be found in the literature, for example in refs. [16, 17), so in this 
paper we will only state the final expression in sec. 2.4. This expression is useful for 
calculating quantities like the total 6. width and different cross sections, involving a 
6. isobar, and will be used in section 2.4. 

The second expression is based on an expansion in RP A eigenstates. .For this 
purpose we will derive a set of RPA equations, equivalent to eq. (22). We will solve 
these equations to obtain eigenvectors and eigenenergies for the different spin-isospin 
modes. The eigenvectors will yield the amplitudes of the different components ( 1r, p, 
N N- 1

, f),.N- 1 ) forming the particular spin-isospin mode with the given eigenenergy. 
We will show that the eigenvectors form a complete orthogonal set, and we will 
expand the Green's function GRPA( a, ,8; w) on this set. This expression for GRPA wili 
be useful for calculating partial contributions to the total 6. width. Furthermore 
the RPA amplitudes of the different components will contain important information 
about the nature of the different spin-isospin modes. This will be further discussed 
in sec. 4.1. 

2.3.1 Interactions and operators 

It is convenient to rewrite the total Hamiltonian specified by eqs. (1-13) in the form 

(31) 

(32) 

(33) 

(34) 

The interaction V(3
) corresponds to the baryon-meson-baryon vertices in eqs. ( 4), 

(5), (11), and (12). In the spin-isospin summation the spin-longitudinal and th(;! spin­
transverse channels are orthogonal and do not mix. The interaction V(4 ) contains 
the effective short-range g' interaction (13) and is separated into a spin-longitudinal 
part and a spin-transverse part. In addition to these interactions, we also include an 
effective interaction, vjklj,;,1

, which for the 6.N-1 states includes the 6. self energy in 
our RPA formalism in a way analogous to eqs. (22) and (29). In the above expressions, 
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Vjkj'k' = Vjkj'k'- Vjkk'i' is formally an anti-symmetrized two-body matrix element, but 
the exchange term Vjkk'i' will be neglected in the calculations. 

The spin-isospin modes (or excited RPA states) i'lllv >are created by an operator 
Q!. For specified values of their momentum q, isospin .A, and spin 11 the associated 
energy can be obtained as a solution to the RPA equations. In the spin-longitudinal 
channel the spin is zero, while the spin-transverse channel has spin 1, with two non­
vanishing contributions, 11 = ±1, for the spin-projection along the q-axis. We take 

t r ~r r ~ t r ~ Qr(q, ).) = L xjk(q, .A)bjbk + L Zk(q, .A) 1rk- L:Wk(q, .A) 1rk (35) 
jk k k 

and 

(36) 

In appendix A we will restrict the summation over baryon and meson states in eqs. 
(35) and (36), by taking Xik ex: 8pj,pk+q, Zk ex: 8pk,q8>.k,>.., and Wk ex: 8pk,-q8>.k,->.· 

The RP A equations are obtained from the relation 

< [8Q, [H, Q~] >= fiw < [8Q, Qt] > , (37) 

with 8Q = b!bi, -ffr, n-;, Pn or pt, and where the brackets < · > as previously denote 
the thermal average (which at temperature zero becomes the expectation value in the 
interacting ground state). 

2.3.2 RPA equations 

The general structure of the RPA equations is similar in the spin-longitudinal and 
spin-transverse channels. We will therefore not write out the symbols land t in this 
section. Calculating the necessary commutation relations using < bkbk >= n(k), we 
obtain 

with 

( 

A(1) + A(2) NC 
ct n 

-CT 0 

AJi~'k' 
AJ~~'k' 

cjkr 

Drr 1 

Niki'k' 

-NC* ) ( NXv ) ( Nxv ) . 
0 zv = fiwv zv . 
D wv -wv 

[ei'- ek' + :Ei'k']8i'i8k'k 

[n(k)- n(j)]vJ~'ki' 
Vjrk 

fiw1r ( qr )8rr' 

[n(k')- n(j')]8i'i8k'k , 

(38) 

(39) 

(40) 
(41) 
(42) 
(43) 

where the matrix C has the properties Cikr = Ckir and Cikr = -CJkr after the 
spin-isospin summations have been performed. Because we have 

(44) 
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the matrix A(l) is non-Hermitian and so the usual RPA orthonormality relations do 
not hold. In order to construct an orthonormal set, we will use the solution of the 
equation obtained by replacing A(l) by (A(l))* . This corresponds to employing a bi-

. orthonormal set. The solutions of the auxiliary equation, as well as other quantities 
related to the auxiliary equation, will be denoted by a tilde symbol, 

(45) 

The RPA equations have the property that if w~,~ is a solution of eq. (38) then 
Wv = w~ is a solution of the auxiliary equation. The equations (38) also have the 
property that if (N X"', Z"', W"')T is a solution of (38) with the eigenvalue w~,~, then 

( 46) 

is a solution of (38) with the eigenvalue wJJ- = -w~,~. 
Taking into account the strong w dependence of E.!lN-1 in the matrix A(I), but 

neglecting other weak w dependences due to form factors and relativistic corrections, 
we obtain the orthonormality relation 

h~,~/1-sign(Rew~,~)=(XJJ-, z11-, w11-)t o 1 o o 1 o Z"' . 
( 

N 0 0 ) ( TJJJ.'"' 0 0 ) ( X"' ) 

0 0 1 0 0 1 W"' 
(47) 

Here the w dependence of E.!lN-1 is contained in the factor TJ'J{i'k'(titk, tjdk' ), which 
has the following non~vanishing elements 

jJ.,V ( 1 1 11) . 
T/jk,jk 22' 22 1 ' (48) 

jJ.,V ( 3 1 3 1) 
Tljk,jk 22' 22 (49) 

jJ.,V ( 1 3 1 3) 
T/jk,jk 22' 22 (50) 

While thew dependence of r .!lN-1 = -2Im E.!lN-1 is strong, thew dependence of Re 
E.!lN-1 is weak and can be neglected. It is convenient to take the quantity TJJJ-'"' in the 

• t £ JJ-,V [-JJ.]* 1/ "th approx1ma e orm TJjk,jk ~ TJjk T/jk w1 

(51) 

and ~jk = ( TJjk)*. With this approximation, the resolution of unity takes the form 

(52) 
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and an arbitrary vector F can be expanded as 

(53) 

We have checked numerically that the orthonormality and completeness relations, 
(47) and (52), with the approximation (51), are satisfied within an error less than 
3-4%. 

It is convenient to express the two-body Green's function as 

(
.N 0 0) (.N 

cRPA(w) = 0 1 0 G(w) 0 
0 0 1 0 

0 0) 
1 0 
0 1 

(54) 

.. 
where G(w) can be expanded on the RPA states as 

(55) 

When r( is unity3 we can use eq. (22) to determine the solution, 

"1-L ( ) _ 8 sign(Re Wv) 
g w - V,!J. 1iw - nwv + i8 sign(Re Wv) (56) 

After rewriting the expansion of QRPA as a sum over positive frequencies by using eq. 
(46), we arrive at the following expression for QRPA, 

cRPA(a, {3; w) = L [y~ (wv)aY~ (wv_)~ - y~(wv )aY~(w~)~l ' (57) 
Re w.,>O nw - nwv + ZTJ nw + nwv - ZTJ 

where Y> and Y< are short notations for 

and (58) 

At T = 0 this is the same expansion as in eq. (19), with the approximation in eq. 
(21). However, the expansion in eq. (57) also holds at finite temperatures. 

However, when TJ" is taken from eq. (51), with of.c..N-1/0nw =1- 0, the expansion 
of QRPA will no longer be diagonal in the channels v, p, i.e. g"•I-L ( w) =/:- g" ( w )hvw 
Therefore, in the present paper, the RPA expansion of QRPA will only be used when 
f .c..N-1 vanishes. 

It is straightforward to obtain the explicit solution of the RPA equations for 
the interaction specified by eqs. (4-13), but the notation is somewhat tedious. We 
therefore present the essential steps together with the final expressions in appendix 
A. 

3This is generally the case when f t!..N-1 is independent of w, and in particular when f t!..N-1 

vanishes identically, as in our reference case. 
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2.4 The ~ self energy and ~ cross sections 

In this section we will derive expressions for the .6. self energy l:Ll and the cross 
sections o-(1 + 2 --t 3 + 4) where 1-4 represent baryons. These quantities can be 
expressed by an effective interaction that is obtained by inserting QRPA between two­
baryon states, as illustrated in fig. 2. We will denote this effective interaction with 
M(34, 12). It is convenient to write the spin-isospin matrix elements as a separate 
factor and define the quantity M1·t(34, 12) by 

M 1·t(34, 12) = t91·t(31)(t91·t(24))* M1·t(34, 12) , (59) 

where the spin-isospin matrix elements, with 1=2=4=N and 3=.6., in the spin­
longitudinal (l) and the.spin-transverse (t) channels are written 

t91(31)(t91(24))* < ms3 I(S+•q31)ims1 >< ms4i(u·q24)im.s2 > 
-++ ~ 

< mt31 T lmtt > · < mt41 r lmt2 > (60) 
t9t(31)(t9t(24))* < ms3 I(S+ X q31)lms1 > · < ms4 i(u X q24)ims2 > 

-++ ~ 

< mt3i T imtt > · < mt41 7 lmt2 > · (61) 

When (JRPA is expressed as a sum of non-interacting Green's functions, the effec­
tive spin-isospin interaction M(34, 12) becomes 

M1(34, 12) ( f311f) 2 [D1rF;q;tr(34, 12) + F:g~tr(34, 12)] 
m1rc 

(62) 

1:d;4 D p2 2 (3 2) 131124 p2 I (34 12) 
( 2)2 P pqeff 4,1 +( 2)2 g9eff ' · mpc m1rc 

(63) 

The expression of the quantities D1r,p, q;f£(34, 12) and g~f£(34, 12) are somewhat lengthy 
and are therefore given in appendix B. 

Alternatively M(34, 12) can also be expressed using the RPA expansion in eq. 
(57), 

M1·t(34, 12) { 
h1•t(31; v)h1·t(24; v) _ h1•t(31; v)h1·t(24; v)} 

I: n n z,t . n n z,t . 
Re wl,t>O W- Wv + ZTJ W + Wv - 'tTJ 

~ . 

(64) 

The factor h(j k, v) is obtained from the interactions at the vertex consisting of 
baryons j and k, and the spin-isospin mode v. The interactions to be used de­
pend on the non-interacting states that the mode is made up of and must therefore 
be multiplied by the amplitude of the corresponding state. For example, 

h1(jk, v)t91(jk) = k [Z1(v) + W 1(v)] + L VJk,mn x~n(v) ' (65) 
2nw1r mn 

where VJ?rk is defined in (4) and (5), \tik,mn is defined in (13), and the amplitudes 
Xtnn, Z 1

, W 1 are defined in eq. (35). From appendix A we obtain the amplitudes 
(Xmn, Z, W) as the solution of the RPA equations. These expressions are also some­
what lengthy and they are therefore relegated to appendix B. 
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2.4.1 The total ~ width 

The ~ self energy .EA. is calculated according to the diagrams in fig. 3, by taking into 
account all the diagrams corresponding to the ~ decaying into a spin-isospin mode 
and a nucleon, which then again form a ~- Since the spin-longitudinal and spin­
transverse channels are orthogonal we can treat them separately. The spin-isospin 
summation gives, for a spin average over the external ~ spin states, a factor 1/3 in 
the spin-longitudinal channel, and a factor 2/3 in the transverse channel. 

The contribution to the ~ self energy in the spin-longitudinal channel can be 
expressed as (see also ref. [17, 16]), . 

1 i ( 1ic) 
3

""' joo d1iw - z ) N ) .EA.(EA.,PA.) = 3 L ~ -oo 27!" M (~N, N ~ G (Et::. -1iw,pb.- q . 

By writing the nucleon propagator GN as 

1 - nN(PN) nN(PN) . 
E- eN(PN) + i7J + E- eN(PN)- i7J 

E t ) . + 2?rinN(PN )8(E- eN(PN )) , 
-eN PN + Z'TJ 

(66) 

(67) 

we can carry out the w integration in (66) by performing a Wick-rotation [16, 19], 
and we obtain the expressions for the~ width, r t::. =-21m .Et::., as 

r~(EA,PA) = Im ~ (7) 3 

~ [6(£)- n(p"- q)) M1(t.N, N t.) . (68) 

where the energy available for the spin-isospin mode is given by 

(69) 

In the same way we obtain the contribution to r A. from the transverse channel, 

(70) 

2.4.2 Specific ~ channels 

The total ~ width, r t::. = r~ + r~, gives the transition probability per unit time for 
the ~ resonance to decay to any of its decay chan,nels. In a transport description one 
explicitly allows the ~ resonance to decay into specific final particles. Consequently, 
one needs not only the total ~ width (which is the sum of all decay channels) but 
also the partial widths governing the decay into specific RPA channels. These decay 
channels consists of a nucleon and one of the spin-isospin modes. Since we have 
access to all the amplitudes of a given spin-isopsin mode on the different unperturbed 
states, it is possible to derive an expression for the partial contribution to r b. from 
the ~ decay to a specific mode v. The right-hand side of fig. 3 shows a diagrammatic 
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representation of such a process. The partial .D. width for a .D. decay to a nucleon and 
a spin-longitudinal mode v becomes · 

where iiN = 1- nN, and the spin-isospin summation gives a factor Mr = 1/3 in the 
spin longitudinal channel and 2/3 in the spin-transverse. This expression is identical 
to the contribution from one of the v terms in eq. (68), if the RPA form (64) is used 
for M(34, 12) and Im Wv = 0. If the r ~N-1 is taken to be zero in the calculation 

· of the spin-isospin modes the energies Wv will be real. In this case the summation 
over modes v in eq. (64) corresponds to a summation over physical decay modes, 
.D. -l- N + v, when the .D. width is calculated from (68). 

When the .D. width is included self-consistently in the calculation of the spin-isospin 
modes the energies Wv will be complex, Im Wv < 0. This implies that the energy of 
the spin-isospin mode v no longer is distinct, but instead has a Breit-Wigner-like 
distribution with a width 2 Im nwv centered around Re nwv. To obtain the partial 
decay width to the mode v, r~, we therefore need to "sum" over all possible energies 
of the mode v, using that the probability to find the mode v in the energy range 
between e and e + de is given by the factor 

1 Im liwv d 
1r ( e - Re nwv )2 + (Im nwv )2 e . 

(72) 

The expression for the partial .D. width is thus modified to 

f~(E~,p~) - Mr j (~:~3 de jh1(.D.N, e)J 2 [1- nN(P~- q)] 

1 Im nwv 
X - ( - R n )2 . (I 1i )2 27rb(E~- eN- e) 

7r e e Wv + m Wv 

2Mr j (~:~3 Jh1(.D.N, e)J 2 [1- nN(P~- q)] 

X Im nwv I . (73) 
( e - Re nwv )2 + (Im nwv )2 

e=Et:. -eN . 

Unfortunately the expression (73) cannot be used directly since we do not calculate 
'the amplitudes of different modes with real energy e, but rather the amplitudes of 
a single mode having a complex energy nwv. Therefore the amplitudes X~n' zv 
and wv will be complex quantities and thus also h(.D.N,wv)· However, the squared 
amplitudes 

v xv ( -v j(v )* 
'flmn mn 'flmn mn ' zv ( zv)* ' and 
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have very small imaginary parts. We can therefore obtain a good approximation for 
h(D.N, e) by taking 

h(D.N, e)'!91(jk) ~ h~(jk, v)'!9 1(jk) = ~ [(1(v)+!V1(v)]+ L Vjk,mn e~n(v)' (74) 
. 2nw~ mn 

with 

emn [ Re 7J~nX~n(~~nX~n)*] 112 
(75) 

( [ Re zv(Wll)* r/2 ' (76) 

!V [ Re wv(w~~)*r/2 . (77) 

We have numerically compared the total width obtained by summing the partial 
widths based on this approximation, with the correct total width based on eqs. (62), 
( 63), ( 68), and ( 70). We find, in the range of invariant D. masses m from 1000 MeV I c2 

to 1400 MeV I c2
, that the approximation of the partial widths somewhat over-predicts 

the total width at low invariant masses and somewhat under-predicts it at large 
invariant mass. The relative error is between 0% and 20% depending on m. To 
improve our approximation we therefore multiply the approximate partial widths4 by 
a factor ct::..(Et::..,Pt::..), depending only on the D. energy and momentum, to obtain the 
correct total width when all partial widths are summed over. The uncertainty of the 
partial widths obtained by this procedure should thus be quite small. 

In a transport description where collective modes are propagated as quasi particles 
one will need a cross section for the inverse process v + N -t ~. This cross section 
is obtained analogously t~ the partial ~ width in (71). When a D. with mass m is 
created in the v + N collision the cross section is written 

where the factor p3 (m2
), defined in eq. (83), takes into account the finite width of the 

~' and the spin-isospin factor MvN is 213 in the spin-longitudinal channel and 413 
in the spin-transverse channel for the process if j + p -t D.++. 

2.4.3 Inelastic nucleon-nucleon and D.-nucleon cross sections 

Next we will derive the formulas for calculating cross sections for the processes 

N + N -t ~ + N and N + D. -t N + N . (79) 

We will start by writing down the S-matrix for the processes of interest. The pro­
cedure is very similar to the procedure for deriving :Et::.,. We will first present the 
formalism in the spin-longitudinal channel and then generalize to the spin-transverse 
channel. 

4The partial width r~N-
1 

is not multiplied by cA since the amplitudes and energies of the 
nucleon-hole modes are real and do not depend on r AN-1. 
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In what we will refer to as the direct term, we consider baryon 1 colliding with 
baryon 2. Baryon 1 will after the collision appear as baryon 3, while the incoming 
baryon 2 becomes 4 after the collision, see fig. 2. Baryon 2 may be either a N or a 
.6. depending on the process, and in the same w~y may baryon 3 be a .6. or aN. We 
denote the transferred energy and momentum by wn and qD, respectively, with 

(80) 

We also take into account the exchange process where baryons 3 and 4 are inter­
changed. 

The cross section is obtained from 

L
3 

( L )
3 

3 ( L )
3 

3 2 2 da = w Vrel 2n-1i d P3 27rn d P4P3( m3)dm3 ' (81) 

where the transition probability per unit time is given by 

(82) 

S Ji is the total scattering matrix of the process and L\.t is here a finite time interval 
which will tend to infinity at the end of the calculation. The function p3 ( m~) takes 
into account the finite width of the .6. when baryon 3 is a .6., 

2 { 8 ( m~ - m ~) , 3 = N 
p3(m3) = 1. m.6.r.6.(ma) 3 _ .6. 

1r (m~-m~..)2+m~r6 (m3 )2 ' -

(83) 

In contrast to the calculation of the .6. self-energy the spin-isospin summation is 
not performed in the S-matrix, so the spin-isospin matrix elements need to be kept. 
In addition, an overall energy and momentum conserving 8-function is included, and a 
factor jmic2 /ei for each external baryon. We also get a contribution from the short­
range interaction, eq. (13), acting directly between the vertices 3 ~ 1 and 4 ~ 2. 
Taking this into account we can write down the contribution from the direct term in 
the spin longitudinal channel to the S-matrix 

The contribution from the exchange term is obtained by interchanging baryon 3 and 
4, which gives 

(85) 

The expression for Skis identical to Sb with the replacements: wn --+WE, qD --+ qE, 
31 --+ .41 and 24 --+ 23. 

The total S-matrix can now be written 

(nc) 3 

M II [mi~2] t 
L i=I,4 eJ 

(86) 
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with 
M = M 1(34, 12) + M 1(43, 12) + Mt(34, 12) + Mt(43, 12) , (87) 

where the expressions for Mt in the spin-transverse channel are obtained analogously. 
Summing over final states and averaging over initial states, we obtain the differ­

ential cross section in the center-of-mass system as 

From this differential cross section we can also write down an invariant cross section, 

a(j 2 1 1 1 j 2 "' 
1 1

2 II 2 ) (. 2 ) 
d(-t) = (nc) 2s + 1 2s + 1411" J2 dm3 L;- M ( mic P3 m3 . 

1 2 spm J=l,4 

(89) 

In these expressions we have used that the relative velocity Vrel can be be expressed 
by means of the relativistic invariant 

(90) 

3 Parameter values 

The .6.-hole model with 1r and p meson exchange and an effective g' short-range in­
teraction contains a number of parameters. Although these can presently not be 
determined uniquely, it is possible to use existing experimental. information to put 
a number of constraints on the parameters, thus limiting the range of their values. 
In this section we will present our choice of parameter values together with a discus­
sion and a motivation of this choice. For convenience, all the parameter values are 
summarized in table 1. 

For the 1r and p coupling constants, f'NN, f'Ntl, ffvN, ffvtl, we choose their values 
such that they are consistent with 1r-absorption data on the deuteron, i.e. according to 
the range of possible values in ref. [20]. For the 1r coupling constants this together with 
the condition that our model reproduces the value of the free .6. width at resonance, 

(91) 

fixes the value of f'NN = 1.0 and f'Ntl = 2.2. For the p coupling constants we 
follow ref. [20] and relate Jj.m and ffvtl according to the quark model relation, Hvtl = 

)72/25ffvN· However, the value of ffvN is not fixed by the work in ref. [20], but is only 
constrained to be in an interval of possible values, approximately 5.6 :S ffvN :S 7.8. 
In our work we choose the value ffvN = 6.2 from this interval. This value has also 
been used in other studies related to the present work, e.g. in ref. [12]. With this 
choice we are able to reproduce free cross section for the process p + p -t .6. ++ + n, 
if we adjust the remaining parameters (essentially g') appropriately. This is not the 
only choice of ffvN that can reproduce these cross sections, but for other choices of 
ffvN the remaining parameters would have to be readjusted. 
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Closely related to the values of the coupling constants are the values of the cut-off 
factors, A-rr and Ap, in the monopole form factors that are included in the interactions 
used at the vertices with a 1r or p meson. In ref. [20] the values A-rr = 1.2 Ge V and 
Ap 2: 1.5 GeV were used. In our work we take a somewhat lower value of the pion 
cut off factor, A-rr = 1.0 Ge V, and we take Ap = 1.5 Ge V, to achieve a relatively fast 
cut off in the numerical integrations. 

When we calculate the dispersion relations, i.e. find the energy-momentum rela­
tion nw( q) for the different spin-isospin modes, we will also find modes with nw( q) 
close to [( cq )2 + A!,pP/2. These modes arise from the singularities in the form factors, 

(92) 

In the case of the pion, these singularities can be seen as the coupling of the pion 
to a heavier meson when the pion is spatially close to the nucleon, like in the elec­
tromagnetic case where the pion couples to the photon via a p meson, see e.g. ref. 
[6]. However, our model, with the monopole factors determined in the space-like 
sector (clql > nw), is not appropriate to describe the physics near the singularities 
of the form factors where their true behavior may deviate substantially from the 
monopole form. To avoid this difficulty we exclude the "form factor" like modes 
(nw( q) I"V [( cq )2 + A!,p]ll2

) from the dispersion relations when calculating physical 
quantities, like cross sections and the ~ width, so that the form factors only contribute 
by their numerical values along the other spin-isospin modes. 

The short-range interaction contains the correlation parameters 9NN' 9/v~::., and 
9't::.~::., and the cut-off factor A9 , and is an effective interaction that simulates more 
complicated interactions at short range, like exchange of heavier mesons and exchange 
of two or more mesons. Taking this interaction according to eq. (13) and excluding the 
form factor (A9 ---+ oo ), this interaction becomes a b interaction in coordinate space, 
and is thus the simplest form of a short-range interaction. By including the form factor 
(A9 < oo), we take into account the finite size of the interacting particles. In reality, 
the effective short-range interaction may have some additional q-dependence via the 
g'-parameters, and may also depend on the nuclear density. However, in the present 
study we neglect such complications and take constant values for the g'-parameters. 
The values of 9NN' 9/v~::., 9't::.~::., and A9 , are not well known. Our preference is therefore 
to take A9 equal to either A-rr or Ap, in order to reduce the number of free parameters, 
and then vary the g' parameters to fit certain experimental data. For numerical 
reasons, it is more convenient to take A9 = Ap than A9 = A-rr· For A9 = A-rr the 
singularity of F9 would lie close to the p-like branch in the spin-transverse channel, 
and because of the interaction between these two modes the p-meson mode would 
be substantially changed, and it would be difficult to exclude the "form factor"-like 
mode from the dispersion relations. To avoid these problems it is therefore convenient 
to take A9 = Ap. 

The value A9 = 1.5 Ge V is a larger value than was used in ref. [17] were the ~ 
width in nuclear matter and its contribution from different decay modes was discussed .. 
In that work A9 = 1.0 Ge V was used. A g' set with a small cut-off factor should 
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approximately correspond to a set with somewhat smaller g' values with a larger cut­
off factor. This implies that the numerical values of the g' parameters in this work 
and ref. [17] are only approximately similar. However, this does not affect how r~t 
depends on the g' parameters, as was discussed in ref. [1 7]. 

To determine the values of the g' parameters we calculate the p+p -+ .6. ++ +n 
cross section in vacuum with our model. Keeping the previously discussed parame­
ters fixed, we adjust 9N A to reproduce existing data. In fig. 4a we present calculations 
of dujdcos(O) at center-of-mass energy JS = 2.314 GeV together with experimen­
tal data from ref. [21]. We find that we reproduce the angular dependence of the 
cross section well. In the calculations we have used the value g'tv A = 0.38. The cross 
section depends rather strongly on g'tv A, so therefore this value is quite well deter­
mined in our model. In fig. 4b we present du / dt for the same parameter set, but 
with JS = 2.513 GeV, together with experimental data from ref. [22]. We note that 
in ref. [22] events with t or u equal to a given value were in the same bin. Thus, 
the experimental values have in fig. 4b been divided by a factor of two. Also at this 
energy the experimental data is reasonably well reproduced, except for the exper­
imental peak value at t ~ -0.06 GeV2

• In fig. 5 we present the calculated total 
cross section as a function of JS, together with two parameterizations and experi­
mental data. The solid curve is our calculation, the dashed is the parameterization 
from VerWest-Arndt [23], and the dash-dotted line is a simple parameterization often 
used in BUU calculations [24]. The data points were estimated from fig. 2 of ref. 
[23] and can be found in references therein. As can be seen in fig~ 5, we reproduce 
the energy dependence of the total cross section quite well, and substantially better 
than the simple parameterization from ref. [24]. At large Js we under predict the 
experimental points somewhat. Increasing g'tv A while keeping all other parameters 
fixed will increase the total cross section, but also flatten the angular distribution in 
dujdcos(O). Decreasing g'tvA will reduce the total cross section and also flatten the 
angular distribution. 

The fit of the .6. ++ cross section can be maintained if both jP and 9N A simulta­
neously are increased. For example, for ffvN = 7.2, ffvA = 12.2 and 9NA = 0.46 an 
equally good fit is obtained. However, the contributions from the spin-longitudinal 
and the spin-transverse channels are changed. For ffvN = 6.2 (g'tvA = 0.38) these 
two channels contribute approximately equally, while at ffvN = 7.2 (9NA = 0.46) the 
contribution to the cross section comes mainly from the transverse channel. 

The cross section u(p + p-+ .6. ++ + n) does not depend on the correlation param­
eters 9'tvN· and g'AA, so these remain undetermined by fitting u(p+ p-+ .6. ++ +n). We 
can obtain some constraints on 9NN and g'z::.A by calculating the .6. width in nuclear 
matter at zero temperature, and identifying - r~t /2 with the imaginary part of the 
.6.-nucleus optical potential. In the .6.-hole model first developed for 1r-nucleus scat­
tering [25] the authors used a .6.-nucleus optical potential with distinct contributions 
to the imaginary part, 

(93) 

The spreading potential was adjusted to fit the experimental results. For 12C Vspread 
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was found to be approximately 

Vspread ~ [23 ± 5- i(43 ± 5)] p: MeV , 
PN 

(94) 

and rather independent of energy in the interval 100 MeV :::; T1r :::; 250 MeV. Also 
in microscopic calculations of the ~-nucleus optical potential [26] the authors have 
found that the imaginary part of the spread!ng potential is rather independent of 
energy, -40 :::; Im(Vspread) :::; -20 MeV, in the interval 50 MeV :::; pt,.c :::; 400 MeV 
for a ~ on mass shell. Figure 6 shows the quantity [r~t- r~ee + bT~auli]/2, which 
corresponds to the spreading potential. The results for two 9't.t. values, 0.25 and 0.35 
are presented, using 9NN = 0.9. We have performed the calculations presented in fig .. 
6 at PN = 0.75pfJv to compare [16, 27] with the empirical values of ref. [25]. The~ 
energy and momentum are estimated from the relations 

(95) 

where q is the pion momentum determined from the pion kinetic energy T1r = nw'Tr( q )­
m7rc2. The calculations shown in fig. 6 also inch! de a binding correction of 20 MeV. 
The ~ width varies only slightly with 9NN' but depends quite strongly on 9At.., see 
ref. [17]. By comparison to the empirical points, it is seen that 9At.. is quite well 
determined to be in the approximate interval 0.25 to 0.35. We have chosen to present 
our remaining results for the value 9At.. = 0.35 

A value of 9NN ~ 0.5-0.9 is often used in the literature. Some constraints on 
9NN can be obtained from the low-energy ( q ~ 0) Gamow-Teller response, as seen 
for example in (p,n) reactions. Several years ago there were reports that only 60% of 
the expected strength was found among the low-lying states. It was suggested that 
the low-energy strength is due to a strong coupling with ~N-1 states, but the effect 
may equally well be explained by couplings to two-particle-two-hole states (see for 
example the review by Bertsch and Esbensen [28]). A value of 9NN ~ 0.9 is consistent 
with a rather weak coupling between low~lying Gamow-Teller modes and the ~N-1 

states, while a smaller value, 9NN ~ 0.6, leads to a renormalization by almost 40% of 
the low-lying GT strength due to the coupling to ~N-1 states. The significance of 
the g' parameters is discussed further in ref. [17] in connection with the calculation 
of the ~ width. 

Since we perform our calculations at a constant density we will describe the nu­
cleons by letting them propagate in a constant potential VN. In addition we take 
into account corrections in the nucleon energies, because of their interaction with the 
surrounding medium, by taking an effective nucleon mass as 

. mN = mN[1 + C_E_t1 . 
Po 

(96) 

This density dependent form is obtained in the extended Seyler-Blanchard model 
discussed in ref. [29, 30] and leads to m'N = 0.7718mN at normal nuclear density, p = 
Po· That model employs an effective nucleon-nucleon interaction, with a Yukawa force 
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modulated by a quadratic momentum dependence and an explicit density dependence, 
and is solved self-consistently within the Thomas-Fermi approximation. The model 
gives a good description of average properties of standard nuclear matter [29, 30]. 

The .6. isobars propagate in the same manner in a constant .6. potential. For 
the modification of the real part of their energies, due to their interaction with the 
medium, we follow previous work on 1r-nucleus scattering [26, ~1], nuclear photo 
absorption [32], and nuclear response in the .6. region [33, 34], and take Vt.- VN ~ 25 
MeV at normal nuclear density. Note that in our formalism the potentials only enter 
as the difference Vt. - VN. This difference is found to be rather independent of the .6. 
energy and momentum [26]. The quantity Vt.- VN may be expected to vary somewhat 
with the nuclear density but in the present study we will use Vt. - VN = 25 MeV also 
at twice normal nuclear density. 

4 Results and discussion 

In this section we present and discuss our results. For various specified densities 
and temperatures; we calculate the spin-isospin modes formed in symmetric nuclear 
matter. In sec. 4.1 we exhibit their dispersion relations, i.e. the energy-momentum 
relation w(q), as well as their composition in terms of the unperturbed states. From 
these quantities, we calculate the width of the .6. isobar (sec. 4.2) and the cross sections 
for collisions involving a .6. (in sec. 4.3). Furthermore, we discuss in sec. 4.4 how the 
results could be incorporated in transport simulations of heavy-ion collisions, such as 
those carried out with the BUU model. In sec. 4.4 we also discuss previous studies 
that have included some in-medium effects in transport calculations. 

The hadrons are confined within a periodic cubic box with side length L, and the 
coordinate system is aligned such that q, the momentum of the mode considered, is 
parallel to the z axis, q = qz. Since the box is finite, the momenta take on only 
discrete values, 

(97) 

where ix, jy and iz are integers. The energy of an unperturbed nucleon-hole state is 
given by 

. q2 qp 
nWNN-1 = EN(P + q)- EN(P) =-+ _z ' (98) 

. 2mN mN 
and for an unperturbed .6.-hole state (taking r t. = 0 for simplicity), 

q2 qpz 
'hwt.N-1 = Et.(P + q)- EN(P) ~-+-+ mt.- mN. (99) 

2mt. mt. 

Since the energies nWNN-1 and nWt.N-1 depend only on Pz (and not Px and Py), it 
suffices to specify the quantum number iz in order to characterize aN N-1 or .6.N-1 

state. In reality the .6.N-1 states have also a p2 dependence, via the .6. width and the 
term p2 /2mt.- p2 j2m'N which is neglected in eq. (99). We have taken this dependence 
into account approximately by making the replacement 

(100) 
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with the variance of the transverse momentum given by 

· 2 • _ j d?p1. . ) 2 I j Jlpl_ ( . ) < pl. > (pz, T, PN) - (2n-)2 nN(P, T, PN Pl. (21r )2 n~ p, T, PN , (101) 

where nN is the nucleon occupation probability given in eq. (27). 
When calculating quantities like the energies and amplitudes of the spin-isospin 

modes, the total and partial 6. widths, and 6. cross sections, one can take the width 
r ~N-1 in the Lindhard function <P~ (see eq. (122)) to be either identical to zero or 
equal to the total 6. width calculated self-consistently by an iterative procedure. In 
this section we will present results for both cases. We will refer to the former case as 
the reference case and to the latter as the self-consistent case. 

4.1 Spin-isospin modes 

From eq. (126) we calculate the energies of the spin-isospin,modes that are formed in 
the interacting system, i.e. their dispersion relations. Figs. 7 a and 7b display the real 
part of the dispersion relations for the self-consistent case at normal nuclear density, 
PN = p~ = 0.153 fm-3

, and zero temperature, T = 0 MeV. In fig. 7a a number of 
different modes in the spin-longitudinal ( n-like) channel are apparent. Some of those 
are non-collective N N-1 modes (solid lines), which at zero temperature have their 
energies within the region 

0 < Re nw < L_+qpF 
2m'N m'N' 

q < 2pF, 

q2 qpF < Re nw < L_+qpF q > 2pF. (102) -----
2m'N m'N 2m'N m'N' 

Since we are presenting our results for a box normalization with a finite side length L, 
we obtain a discrete number of non-collective N N- 1 modes. The total number of spin­
isospin modes within the region (102) depends on Land tends towards a continuum in 
the limit L --+ oo. In fig. 8a we show the N N- 1 component of the squared amplitude 
for all the modes at a fixed momentum, q = 300 MeV I c. It is clearly seen that all 
the squared amplitudes of the modes in theN N-1 region, 0 ~ fiw ~ 185 MeV, are 
dominated by a single N N- 1 state (specified by Pz) and thus have a non-collective 
character. Another feature of the non-collective modes is that their energies are very 
close to the energies of the corresponding unperturbed states. 

Similarly, a number of non-collective 6.N-1 states emerge in fig. 7a which, for a 
fixed q and at zero temperature, have their energies constrained to a band, 

The absence of collectivity is seen in fig. 8b where for all modes in the 6.N-1 region, 
except a few in the upper half of the region, a single component (specified by Pz) 
dominates each mode. The remaining modes show some collective behavior, but are 
mostly dominated by only two components. In fig. 7 the solid curves show those 6.N~ 1 
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modes that have a contribution larger than 0.5 from one or 0.9 from two components, 
while the remaining modes are represented by dot-dot-dot-dashed lines to indicate 
that they carry some collective strength. Also here the perturbed energies are close 
to the corresponding unperturbed ones. 

In addition, two collective modes are visible in fig. 7 a. The lower one, represented 
by a dot-dashed line, starts at nw = m1rc2 at q = 0 and continues into the i3.N-1 

region around q ~ 330 MeV I c. This mode is in the sequel be referred to as ?i\. The 
upper collective mode, displayed as the dot-dot-dashed curve, starts slightly above 
nw ~ ffiA,C2 - ffiNC2 at q = 0 and approaches nw1r = [(m1rc2 )2 + (cq)2]lf 2 at large q. 
This mode is denoted ii-2 • Fig. 8c gives an impression of the structure of th~ ii-1 and 
ii-2 modes: the squared amplitudes of the pion and the sum of all N N- 1 and i3.N-1 

components are shown for a fixed momentum, q = 300 MeV I c. It is seen that the 
collective modes have contributions from all three types of interacting states, while the 
non-collective modes have only contribution from one type of state. Furthermore, we 
see from fig. 8a and 8b that the total N N- 1 and i3.N-1 contributions to the collective 
modes are made up from small contributions from all of the individual N N-1 and 
i3.N-1 states, respectively. . 

Fig. 8d shows the squared amplitudes of the different components on the lower col­
lective mode as a function of q. For small q the pion component dominates, while the 
i3.N-1 component becomes dominant at around q ~ 330 MeV I c. At q ~ 500 MeV I c 
the lower collective mode has lost almost all of its collective character. 

In fig. 7b we present the modes in the spin-transverse channel. ·The dispersion 
relations for the non-collective modes are very similar to the relations in fig. 7 a, while 
the collective p-meson like modes are different. There are two visible collective modes 
in fig. 7b, one dominated by the p-meson component is starting at nw = mpc2 at 
q = 0. This curve is represented by a dot-dashed curve and is denoted jj1 . The other 
one of ~-hole character is denoted f>2 and is displayed as a dot-dot-dashed line. This 
one starts slightly above nw ~ mAc2 - mNc2 at q = 0 and continues into the ~N-1 

region around q ~ 200 MeV lc where it gradually looses itscollective character. 
The dispersion relations presented in fig. 7 can also be calculated with r D.N-1 = 0, 

which gives purely real energies, Wv· The spin-isospin modes are then built up by 
stable ~ isobars having a fixed mass mA and so each mode will have a distinct 
energy. The self-consistent inclusion of the ~ width has several consequences. The 
existence of a Breit-Wigner like distribution of~ masses implies that the unperturbed 
~N-1 energies no longer will be distinct, but also have a Breit-Wigner distribution 
with width r AN-1. This in turn leads to the same effect for the spin-isospin modes, 
where Re nwv represents the centroid of the distribution and 2 Im nwv is its width. 
The ~ width also governs the decay rate of the isobar. Accordingly, the ~ isobars 
will have finite life times and so will the spin-isospin modes. The decay out of a mode 
will then occur by the process v-+ ~N-I, where the~ will decay further. Thus Im 
nwv contains information about the life time of the mode v, before it disintegrates 
due to the decay of one of its constituent ~ components. 

The dispersion relations for the reference case, f aN-1 = 0, are qualitatively similar 
to the real part of the eigenenergies obtained in the self-consistent case, Re nwv, with 
differences mainly in the collective modes. When going from r AN-1 = 0 to the self-
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consistent treatment, the strength of the interaction between the states effectively 
weakens. This occurs because the inclusion of r t:J.N-1 = r~t causes the strength 
of the ~:::J.N- 1 states to be smeared out in the Breit-Wigner like distribution. As a 
consequence, for a fixed q, the energy of the pionic mode ii-1 is somewhat raised and, 
by the same token, the energy of the upper mode ii-2 is lowered. The changes in energy 
is 0-50 MeV, depending on q and with the largest difference for large q. 

The imaginary parts of the eigenenergies nwv are presented in figs. 7 c and 7 d. 
The energies of the non-collective nucleon-hole modes are purely real, while the non­
collective I::J.-hole modes have imaginary parts that are close to half the corresponding 
widths r t:J.N-1. For both collective mod~s, we find a large imaginary part, I Im nwvl, 
when the ~:::J.N- 1 components dominate the mode, and a smaller imaginary part when 
the mode is dominated by the meson component (compare fig. 7c and 8d). This 
implies that the collective modes will have longer life times when they are more 
meson-like than when they are ~:::J.N- 1 -like. 

In fig. 9a we present Re nwv for the self-consistent case at twice normal nuclear 
density at zero temperature, and in fig. 9b at normal density and temperature T = 
25 MeV. 5 Comparing the dispersion relations at normal (fig. 7) and double density 
(fig. 9), we see that the main differences occur for the two pionic modes. The enhanced 
interaction at 2p~ makes the two collective modes repel each other more strongly, 
which causes a lowering of the mode ii-1 and a concomitant rise in ii-2. Another feature 
in fig. 9a is that the non-collective N N-1 and ~:::J.N- 1 modes cover a larger region in 
the (w, q) plane since the nucleon chemical potential is larger at PN = 2p~ than at 
PN = p~. At T = 25 MeV (fig. 9b) the collective modes ii-1 and ii-2 are very similar 
to the modes at T = 0 MeV (fig. 7), but there are many more non-collective modes. 
This is because the nucleon occupation probability, eq. (27), at finite temperatures 
allows the occupied nucleon-state to be found above the Fermi surface. 

4.2 ~ decay width 

The total !::J. decay width in the nuclear medium, r~t, can be calculated according to 
eqs. (68) and (70). In fig. 10 we show the total !::J. width for various nuclear densities 
and temperatures. The width is presented as a function of the invariant !::J. mass, 
m = [E,i- (cpt::,.) 2]112 jc2

, for a fixed !::J. momentum, Pt::. = 300 MeV/c. Fig. lOa 
displays fA for the reference case, f t::.N-1 = 0, while fig. lOb shows f~t when f t::.N-1 
is calculated self-consistently, f t::.N-1 = f~t. 

The most noticeable difference between r~t in the nuclear medium at normal 
nuclear density (solid curve) and in vacuum (dotted curve) is that in vacuum r~t = 
r~ee starts to increase from zero at the threshold m = mN + m'lT, while in the medium 
r~t can be finite also form < mN + m'lT, since the !::J. isobar can decay into a nucleon 
and a non-collective nucleon-hole mode, !::J. --+ N + N N-1 . These modes have lower 
energies and the decay can thus occur below the free threshold. These effects are seen 
in fig. 11, where also the partial contributions to the total !::J. width are presented. We 
also see that at PN = p~, T = 0 MeV, the total width in the medium, r~t, is larger 

5We limit our considerations of excited matter to rather moderate temperatures, because of the 
applications we have in mind. 
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than r~ee up to m ~ 1400 MeV I c2
• This effect is also mainly due to the new decay 

channels present in the medium, both .6. -+ N + N N- 1 and also .6. -+ N + -D.N-1 

which begins to contribute at m ~ 1200 MeV I c2
• 

Another feature seen, in comparing r~ee with r~t at PN = p~, is that r~ee 
increases more steeply than r~t. This is an effect of the effective nucleon mass 
m'N < mN at PN > 0. A .6. isobar with energy Etl = [(mc2

)
2 + (cp.6 _)2]112 decays into 

a spin-isospin mode v and a nucleon N, and energy conservation yields Etl = nwv+eN. 

By lowering m'N the nucleon energy eN will be enhanced and thus the energy nwv 

of the mode v is reduced. This leads to a lower momentum of the mode v in the .6. 
decay, which in turn leads to a lower .6. width. . 

The large enhancement of r~t in fig. 10 at invariant masses up tom ~ 1250 MeV I c2 

for PN = 2p~ occurs because the contributions from the nucleon-hole modes are pro­
portional to the nuclear density, but it also reflects the fact that our parameter set 
leads to pion condensation at dens1ties just above 2p~, as is manifested by the oc­
currence of a spin-isospin mode lying in the region of nucleon-hole modes with a 
small real energy and a non-vanishing imaginary energy. As is also seen in fig. llb, 
almost all the contribution to r~t comes from the nucleon-hole channels. The onset 
of pion condensation can be pushed up in density by increasing the values of the g' 
parameters. g)vtl and g~tl' for example by making them density dependent. 

Increasing the temperature to T = 25 MeV has very little effect on the total .6. 
width. However, as seen in in fig. 11, the partial widths are considerably changed. In 
fig. lla we see that at zero temperature there are mainly four contributions to the 
total width form::; 1400 MeVIc2 : non-collective NN- 1 and .6.N-1 modes (long and 
short dashed curves, respectively) and the two collective modes ii-1 and ii-2 (dot-dashed 
and dot-dot-dashed curves, respectively). At low invariant mass the only energetically 
possible decay modes are the non-collective N N-1 modes. For m 2: 1100 MeV lc2 

the .6. has enough energy to to decay to the mode ii-1 and a nucleon above the Fermi 
surface. This becomes the dominating contribution to r~t from m ~ 1140 MeV lc2 

up to m ~ 1320 MeV I c2 . The non-collective .6.N-1 modes start to contribute at 
m ~ 1200 MeV I c2 and they become dominant at m 2: 1320 MeV I c2

• Accordingly, at 
zero temperature and normal nuclear density a .6. near resonance (m ~ mfl) mainly 
decays into a nucleon and the pionic mode ii-1 , and the magnitude of the partial width 
r;: is comparable to the free width. In addition, the partial width for decay into 
any of the non-collective nucleon-hole modes is approximately half of the free width, 
while the partial widths of the remaining decay channels are small at m ~ mfl. At 
the temperature T = 25 MeV the situation is quite different. Concentrating still on 
a .6. near resonance, we find that the non-collective N N-1 and .6.N-1 modes give 
approximately equal and dominant contributions, while the contribution from the 
pionic mode is smaller. So, even though the probability for the .6. to decay is the 
same at T = 0 MeV and T = 25 MeV, there will be very few decays to the pionic 
mode in the latter case. 

There are mainly two reasons for the reduction of r;: at finite temperature. The 
first is that the mode ii-1 loses its collective strength at a lower q value at finite 
temperatures, as compared to zero temperature. The second is that it is energetically 
possible for the .6. isobar to decay into non-collective .6.N-1 modes at lower .6. energies 
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at T = 25 MeV than at T = 0 MeV. This is because there exits !:J.N-1 modes with 
lower energy at T = 25 MeV than at T = 0 MeV, and because the nucleon formed 
in the tJ. decay can have energy less than ep at finite temperatures. With several 
more decay channels contributing to r~t at T = 25 MeV the contribution from f~1 

is reduced, since the total width is almost unaffected by the change in temperature. 
The decomposition into partial widths corresponding to specific spin-isospin modes 

vis unambiguous when r AN-1 vanishes. However, in some cases it is not possible to 
determine uniquely the nature of a specific mode v. One such case is when the collec­
tive mode v enters the non-collective tJ.N-1 region and loses its collective strength. 
This transition is of course. gradual and there is some arbitrariness involved in de­
termining when the mode is no longer collective. This gives rise to a corresponding 
(small) uncertainty in the value of the partial widths f~1 and f~N-

1

• Furthermore, 
the interaction between the pionic mode and the non-collective !:J.N-1 modes gives 
rise to some collective strength among a few of the tJ.N-1 modes for certain small 
intervals of the momentum q, see fig. 7. It may be debated whether the contribution 
from these collective modes to f~t should be associated with f~N-1 , f~, or some­
thing else. In figs. 11 and 12 we have indicated the contribution from all such cases 
by error bars on the partial widths. 

From the spin transverse channel we get a contribution to r~t from the non­
collective N N-1 and tJ.N-1 modes, and two collective modes jh and p2 . However in 
the range of invariant masses presented in figs. 11 and 12 the contributions r~ and 
r~ are negligible or small and therefore not displayed in the figures. The partial 
quantities ffN-

1 
and f~N-

1 

contain. contributions from both spin longitudinal and 
transverse channels. 

In fig. 12 we present the partial widths based on eq. (73) with the approximation 
(74), where the tJ. width is included self-consistently. In fig. 12a the partial widths 
are shown at zero temperature and normal nuclear density. Comparing the widths 
for a decaying tJ. near resonance (m ~ mA) with the reference case r AN-1 = 0 in 
fig. lla, we see that f~ is substantially reduced, ffN-

1 
is rather unaffected, while 

we get a substantial contribution from the r;; partial widths. The relatively large 
value of r;; already at m ~ mA occurs because it is now energetically possible to 
form the mode ?r2 , since it may exist at lower energies, as compared to the case with 
r AN-1 = 0. The reduction of r~ is understood from the facts that the total width 
is rather unaffected by the inclusion of f~N-

1 

= f~t and that new competing decay 
channels have opened up. 

4.3 .6. cross sections 

In this section we present results for cross sections for the processes 

(104) 

and 
iri + N ~ tJ. , j = 1, 2 , (105) 

where ?rj denotes the collective spin-isospin mode in the spin-longitudinal (pion like) 
channel. 
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In vacuum the cross sections for the two first processes will depend on the trans­
ferred energy and momentum, (w, q), in the relativistically invariant form w 2

- q 2
• 

It is therefore convenient to perform the calculations in the center-of-mass system of 
the colliding particles, where the total cross section only will depend on the total en­
ergy, .JS, of the colliding particles. In the medium, however, the spin-isospin modes, 
and thus the effective interaction, no longer depend on (w, q) in the invariant form 
w2

- q 2
, see fig. 7. This implies that the total cross sections, apart from depending on 

the total center-of-mass energy, will have additional dependences on the momenta of 
the colliding particles. However, since our formalism for calculating the isospin modes 
and the effective interaction is non-relativistic, the calculations should be performed 
in the rest frame of the medium (where the spin-isospin modes are calculated). In or­
der to study the medium effects, we wish to compare to experimental and calculated 
cross sections in vacuum. In this section we therefore calculate and present all cross 
sections for the special case that the center-of-mass system of the colliding particles 
is identical to the rest frame of the medium. 

In fig. 13 we present the differential cross section do- j d cos( Bern) for the process N + 
N -7 !::,.+Nat a center-of-mass energy of vs = 2314 MeV. The figure shows different 
combinations of density and temperature. The calculations of fig. 13a correspond to 
r t::..N-1 = 0, while the results of fig. 13b represent the self-consistent case. Comparing 
the results in the nuclear medium with the results in vacuum (dotted curve), we 
find that in normal nuclear matter at zero temperature, fig. 13, the cross section 
is somewhat enhanced at forward and backward angles and slightly suppressed at 
cos( Bern) ~ 0. The enhancement at forward and backward angles occurs because the 
pionic mode 7i"1 is lowered in the medium, see fig. 7. The scattering matrix contains 
terms proportional to [1iw- 1iwv(q)]-1 for each spin-isospin mode, see eq. (64). The 
dominant term in the sum over the modes v is the pionic mode v = 7i"1 , and its 
energy 1iw1 ( q), keeping q fixed, decreases. when the nuclear density increases. Hence 
the difference 1iw - 1iw1 ( q) becomes smaller at forward or backward angles, and the 
cross section is enhanced in the medium. This effect is also responsible for the large 
enha:r;tcement of the cross section at twice normal nuclear density seen in fig. 13. At 
the temperature T = 25 MeV the differential cross section is only slightly reduced as 
compared to zero temperature. 

Including the !::,. width self-consistently, via r b..N-1 in eq. (122), reduces the cross 
section only slightly at normal density, fig. 13b, but to a significant degree at twice 
normal density, fig. 13b. This is because the pionic mode is regularized by the imag­
inary part of the pion optical potential. As a consequence, the pionic mode has no 
longer a single well-defined energy, but instead there is a Breit-Wigner-like distri­
bution of possible energies cent~red around Re 1iw1 with a width 21m 1iw1 • In the 
former case, when the pionic mode had a well-defined real energy, w1 , the transferred 
energy and momentum comes close to this energy, which causes a large enhancement 
of the cross section, but in the latter case the transferred energy and momentum will 
only be close to some of the possible energies around Re 1iw1 and thus only pick up 
a fraction of the total strength in the pionic mode. Technically, this is 'taken care 
of by the imaginary part of 1iw1 which increases the difference 1iw - 1iw1 ( q) in the 
self-consistent case. The reason why the effect of including r b..N-1 = r~t is so much 
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larger at PN = 2p~ than at PN = p~ is mainly that the transferred energy w is closer 
to Re wi at 2p~, but also that Im wi is larger at 2p~. The magnitude of Im WI 
depends on the magnitude of r~t and at 2p~ the width r~t is larger than at p~. 

In fig. 14 we present the total cross section for the process N + N -t ~ + N 
as a function of the center-of-mass energy Js of the two colliding nucleons. The 
different curves correspond to different densities and temperatures. Fig. 14a displays 
O'tot for f b.N-1 = 0, while fig. 14b shows O'tot for the case when f b.N-1 is included self­
consistently. In fig. 14a we notice that the total cross section is enhanced by a factor 
2-3 at twice normal nuclear density, as compared to the value in vacuum, while at 
normal nuclear density the cross section is similar to the vacuum value with only minor 
changes. As for the differential cross section, the enhancement of O'tot at PN = 2p~ 
originates in the softening of the pionic mode. The self-consistent inclusion of r tJ.N-1 

has two major effects. At normal nuclear density the cross section is enhanced in 
the threshold region ( Js ~ 2.1 GeV) and somewhat reduced at energies Js ~ 2.2-
2.4 GeV. This effect arises from the possibility of creating~ isobars with masses lower 
than mN + m1r in the nuclear medium and it is technically included by taking the~ 
width in eq. (83) from the nuclear matter calculations presented in sec. 4.2. At twice 
normal density the cross section is reduced at energies Js ~ 2.2-2.4 GeV by about 
10mb, as compared to the when case rtJ.N-1 = 0, while it is enhanced significantly in 
the threshold region. The origin of the reduction has already been discussed above 
in connection with the discussion of the differential cross section. The enhancement 
at low Js occurs because the ~ width is very large at low ~ energies (see fig. 10). 
The increase of the ~ width at low ~masses and PN = 2p~ is partly an effect of the 
system being close to the onset of pion condensation. The associated enhancement of 
O'tot is consistent with the picture that when the system is close to pion condensation 
the ~ isobars having low energy quickly decay into low-energy pionic;: modes in the 
N N-I region. The effects at 2p~ may be quantitatively changed somewhat by taking 
into account Re :Eb. and its density dependence. 

The total cross section for the reverse process N+ ~ -t N + N is presented in fig. 
15 for a~ with mass m = 1230 MeV/c2 . As in fig. 14, part (a) presents the results 
for r b.N-1 = 0 and part (b) corresponds tor b.N-1 = r~t. Similar features as in fig. 14 
are noted in fig. 15. The vacuum cross sections are only slightly reduced at PN = p~, 
but for r tJ,.N-1 = 0 greatly enhanced at PN = 2p~ while r b.N-1 = r~t leads to a 
cross section of similar magnitude at all presented densities for m = 1230 MeV. 
Furthermore, we note that u( N + ~ -t N + N) is singular at threshold. This 
singularity originates from the factor IPII/ 12 in the cross section, eq. (88), which in· 
theN+~ center-of-mass system becomes proportional to 1/IPII when Js -t mi +m2 • 

As this limit is approached, IPII will tend to zero and hence the cross section grows 
infinite. Finally, we note that the cross sections at~ masses m < 1230 MeVjc2 are 
smaller than at m = 1230 MeV j c2 . 

In fig. 16 we present, for various nuclear densities and temperatures, the cross 
section for the process p+1fj -t ~ ++' when r b.N-1 is included self consistently. In 
figs. 16a and 16b we present the results for the lower pionic mode, 7fb and in figs. 16c 
and 16d for the upper pionic mode, 7f2 . The factor p3 (m2), defined in eq. (83), is in 
figs. 16a and 16c calculated from the free~ width, while the total width in nuclear 
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matter has been used in figs. 16b and 16d. 
The cross sections are presented as a function of the invariant .6. mass, m, which 

is equal to the total energy in the p+?rj center-of-mass system. The cross sections 
show a strong resonance peak at m ~ mt. for all densities and temperatures. This 
shape is in eq. (78) determined by the factor p3(m2

). The magnitude of the cross 
section is determined by this factor and the factors lh1·t(.6.N,w11 )1 2 and Vretfc. In 
vacuum, where only the real pion dispersion relation exists in the spin longitudinal 
channel, the factor lh1

1
2 is proportional to (cq) 2 11iw1r(q). At finite densities the pion 

contribution to lh112 will be mixed with contributions from .6.N-1 and N N- 1 states 
which depend very weakly on the momentum and are approximately proportional 
to 9't.t.PN and 9Nt.PN, respectively. On the lower pionic mode the pion component 
dominates for low q values, while the .6.N-1 components dominate at larger q, see fig. 
8d. Therefore, the cross section for the lower pionic mode at finite densities will be 
similar to the vacuum cross section for small values of q or m, while it will be smaller 
than the vacuum value for larger q. This is seen in fig. 16a, where the cross sections 
at finite densities deviates from the vacuum values for m 2::: 1200 MeV I c2 . At normal 
nuclear density and zero temperature the momentum q is approximately 270 MeV I c 
at the resonance peak, m ~ mt.. At this momentum the .6.N-1 component in the 
pionic mode is quite substantial, see fig. 8d. At twice normal density the contribution 
from the .6.N-1 component is approximately doubled, which is the main reason for 
the decrease of the cross section at the resonance peak. Moreover, the value of the 
relative velocity will be changed at finite densities. There are two competing effects 
on the lower pionic mode. The velocity of the pionic mode is lower in the medium, as 
compared to a pion in vacuum, since 1iw1 increases less steeply with q than 1iw1r· On 
the other hand, the velocity of the nucleon will be larger, since m = mt. = eN( q )+1iw1 

is obtained at a larger value of q, because 1iw1 is lowered in the medium. The net 
results are seen in figure 16. At finite temperatures the cross section is similar to the 
case of zero temperature .. 

In fig. 16b we have used the .6. width in the nuclear medium to calculate the factor 
p3 (m2

), rather than the free width, used in fig. 16a. In the nuclear medium the .6. 
width is larger than the free width up to invariant masses around 1400 MeV lc2

• This 
explains the reduction of all cross sections at the resonance peak in fig. 16b relative 
to fig. 16a, since at the resonance peak the factor p3 (m~) is proportional to 1lf t>.· 

Note also that the cross sections for the lower pionic mode in fig. 16b are substantially 
enhanced for low invariant masses. Also here the effects at 2pfJv may be quantitatively 
changed somewhat by taking into account Re L:t. and its density dependence. 

On the upper pionic mode the relation of the strength of the pionic and .6.N-1 

components are opposite, and thus the cross section will approach the vacuum value 
at large q, while it will be smaller at low q, see figs. 16c and 16d. Note also that the 
invariant .6. mass will always be -larger than mt. on this mode, since 1iw2 starts just 
above mt.l c2 

- mN I c2
• In the limit q -+ 0 the cross section diverges, since in this 

limit also the relative velocity approaches zero. 
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4.4 Implications for transport descriptions 

In this section we discuss how our results could be incorporated in a dynamical trans­
port simulation of a heavy-:-ion collision, and some of the consequences this could lead 
to. We will carry out this discussion within the framework of a standard quasipar­
ticle description that propagates nucleons ( N), delta isobars (A), and pions ( 1r) as 
ingredients and we will refer to this as the "standard" transport description. In such 
a model, many of the A and 1r properties, such as decay widths, cross sections, and 
dispersion relations are usually taken as the properties in vacuum. In this section we 
will discuss how the vacuum properties can be replaced by in-medium properties in 
a consistent way. 

In a transport simulation of heavy-ion collisions, a nucleon-hole (N N-1
) excitation 

is produced by promoting a nucleon from below to above the Fermi surface. This can 
occur as a result of the nucleon colliding with another particle. The new N N-1 state 
is then by construction non-collective and unperturbed, i.e. its energy is given by 
Eparticle- Ehole· Thus the non-collective N N-1 spin-isospin modes that we have found 
in nuclear matter are already incorporated in the standard transport description. But 
the energy of theN N-1 state is given by the respective quasiparticle energies and so 
it is not quite correct and should in principle be slightly changed, in accordance with 
the energies of the non-collective N N-1 modes presented in sec. 4.1. However, the 
energies of the non-collective N N-1 states are only slightly shifted from the respective 
unperturbed energies, and it should thus be a good approximation to neglect this 
change of the energy. Similarly, the non-collective AN-1 modes in sec. 4.1 correspond 
in a transport description to the conversion of an individual nucleon to a A isobar. 

The incorporation of the two collective spin-isospin modes is more involved. These 
modes can be regarded as separate particles of pionic character, 7r1and 7r2 , and treated 
in a manner analogous to the standard treatment of the pion. Since the pion is then 
fully included in the description, it should no longer be treated explicitly. The prop­
agation of the two collective pionic modes is governed by the effective Hamiltonians 

ill( r, q) 
il2 (r,q) 

Re nwl (q; PN( 1' ), T( 1' )) 

Re nw2( q; PN( r ), T( r)) (106) 

where nwl and nw2 are the energy-momentum relations for the lower and upper 
collective modes discussed in sec. 4.1 and displayed in fig. 7a for PN = P'k and T = 0. 
Note that the spatial dependence of il1 ( r, q) is incorporated by representing PN( r) 
and T( r) as local quantities. Moreover, in the collision term the process for the 
production and absorption of pions in the standard description, A ~ N + 1r, should 
be replaced by the two distinct processes 

A ~ N + 7r1 and A ~ N + 7r2 • (107) 

The A decay is governed by the A decay width in the medium to these two specific 
channels, f'~. These partial widths, presented in sec. 4.2, should be employed in the 
same manner as the free width, i.e. they describe the probability for the A isobar to 
decay into a nucleon and a pion. The only difference is that several collective pionic 
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modes are available in the final state. The reverse processes in (107) are characterized 
by the cross sections that were ~iscussed in sec. 4.3. 

The self-consistent inclusion of the ~ width in the calculation of the spin-isospin 
modes encompasses decay processes like 

However, since such processes are already explicitly contained in the transport simu­
lation by processes like 

ifj + N ---+ ~ ---+ N + ifk , 

it would not be correct to include the entire self-consistent ~ width when calculating 
the collective modes to be used in the transport description. Instead it is more correct 
to use the results obtained with r t::.N-1 = 0, both for the energies of the modes, fiwj, 
and for the partial~ widths to be used in the decays~ ---+ N +ifj. Still, it is important 
to use the self-consistent width when calculating the cross sections for processes like 
N + N ---+ ~ + N, where t,he spin-isospin modes provide an intermediate effective 
interaction. 

Although the collective pionic modes can thus be effectively treated as ordinary 
particles, the fact that their wave functions contain components from 1r, N N-1 and 
~N-1 states makes it difficult to picture them in a physically simple manner. Fortu­
nately, their specific structure is irrelevant, as as long as these quasiparticles remain 
well inside the nuclear medium. First when such a quasiparticle penetrates a nuclear 
surface and emerges as a free particle is it physically meaningful to determine what 
kind of real particle it is. The gradual transformation of the collective quasiparticle is 
automatically taken care of within the formalism, because as the density is lowered, 
PN ---+ 0, the pionic modes will acquire 100% of either the pion component or the 
~N-1 component, depending on w and q. That is to say, they will turn into either 
a free pion. or an unperturbed ~N-1 state. There remains the practical problem of 
how to represent an unperturbed ~N-1 state when PN ---+ 0. However, we anticipate 
that only a very small fraction of the pionic modes will emerge as unperturbed ~N-1 

states. For the lower pionic mode, it is only for large q that the ~N-1 component 
will dominate at low densities, but at large q the lower pionic mode starts gradually 
to lose its collective character and there is therefore a low probability for creating the 
lower pionic mode at large values of q, see fig. 17. On the other hand, for the upper 
mode it is at low q that the ~N-1-component will dominate. In cold nuclear matter 
the ~ decay at low energies (which corresponds to low q) is strongly reduced, because 
the nucleon produced in the decay is Pauli blocked. In an actual heavy-ion simulation 
this reduction is smaller, but we still expect that the number of upper pionic modes 
at low q values will be quite small. These effects will be further investigated and 
reported in a subsequent paper. 

As was discussed in sec. 4.2 the partial decay width f'~ is reduced at T = 25 MeV 
compared toT= 0. Thus in a heavy-ion collision there will be very few pionic modes 
if1 created in the hot region, while in colder regions the ~ isobars near resonance 
decay mainly into the pionic modes. In sec. 4.2 we also found, at twice normal 
nuclear density, a large enhancement in the~ width at m ~ 1200 MeV, signaling the 
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onset of pion condensation. Although our parameter set leads to pion condensation 
at PN > 2p~ for an equilibrated infinite system, it is not clear that the effect will be 
seen in a nuclear collision, since the region where such high densities may be created 
is rather small, and exists for a only short time. These effects will also be further 
investigated. 

The calculations of r a presented in figs. 10-12 take account of the Pauli blocking 
of the nucleon in the ~ decay ~ --+ N + v. In a transport description the Pauli 
blocking of the nucleon is treated explicitly and should thus not be included in the 
width of the ~. In fig. 17 we present the total and partial widths, without Pauli 
blocking of the nucleon, at different temperatures for the reference case (f aN-1 = 0). 

The total ~ decay width, has apart from the partial contributions r~, also the 
partial contributions r~N-1 and r~N-1 • The partial width r~N-1 gives the probabil­
ity for the~ to decay into a nucleon and a N N-1 state. In a transport description, 
this implies that we initially have a ~ and after the decay process we have two nu­
cleons above the Fermi surface and a hole left in the Fermi sea. But this is the same 
process as if the ~ would collide with a nucleon below the Fermi surface to give two 
nucleons above the Fermi surface. This process is normally already included in the 
collision term in a standard transport description, and the probability for such a col­
lision is given by the cross section for the process ~ + N --+ N + N. In a transport 
description it is therefore not correct to both include a ~ decay according to r~N-1 

and a collision term with ~ + N --+ N + N. Instead, the correct procedure should 
be to exclude r~N-

1 

and modify the cross section u(~ + N --+ N + N) to be the 
in-medium cross section. Calculations of such in-medium cross sections is discussed 
in sec. 4.3. In the same way, r~N-

1 

should be excluded in a transport description, 
and u(~ + N--+ ~ + N) be the in-medium cross section. 

As mentioned in the introduction, the in-medium effects on the cross section for 
N +N--+ ~+N have previously been investigated in ref. [12]. That work corresponds 
to zero temperature, T = 0, and taking r aN-1 = 0 in ella, eq. (122). Our results in 
figs. 13 and 14a are in qualitative agreement with those of ref. [12], i.e. a large 
enhancement of the cross section at high nuclear densities caused by a lowering of 
the pionic mode. However, as was also pointed out but not pursued in ref. [12], the 
imaginary part of the pion optical potential regularizes this effect. This is seen by 
comparing parts a and b of figs. 13 and 14, where it is shown that the cross section at 
twice normal nuclear density is considerably different if the ~ width is in.cluded self­
consistently in the formalism. This points towards .the importance of incorporating 
the ~ width consistently within the model for obtaining the correct magnitude of~ 
cross sections at large nuclear densities. 

Since the N + ~ --+ N + N cross section is not experimentally known one has 
traditionally in transport descriptions used the N + N --+ ~ + N vacuum cross section 
and detailed balance. As pointed out by previous authors, for example [35, 36] it is 
then important to take into account the finite width of the ~' i.e. use an expression 
according to 

du(N + ~ --+ N + N) 
an 

_l_Pl 1 du(N + N--+ ~ + N) 
Nc p[ p3(m2) d0dm2 
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where Pi and pr are magnitudes of the initial and final momenta in the center-of-mass 
system of the N D. system, Nr is a spin-isospin factor and p3 ( m2

) is defined in eq. 
(83). The condition in eq. (108) is automatically satisfied within our formalism. 

In refs. [13, 14] the authors included some medium effects of the pionic modes. In 
these works a simple form of the pion polarization function I17!" were used. This simple 
form originates from approximating the continuum of non-interacting D.N-1 states to 
a single state with energy nwc.. = me.- mN + ( qc )2 /2m c., and neglecting the nucleon­
hole states. When the interaction between the D.N-1 state and the pion is turned 
on two collective states emerge (but contrary to our model, no non-collective D.N-1 

states are left). This approximation leads to some differences as compared to the 
more complete treatment in this paper. As seen in fig. 7, the lower collective mode 7i"1 

disappears (i.e. loses its collective strength) when it enters the non-collective D.N-1 

region. This is not the case for the approximation used in [13, 14], where the lower 
pionic mode exists for all momenta q. Furthermore, the change in the dispersion 

. relations nwv( q ), relative to the relations in vacuum, are somewhat overestimated 
when the approximate form of the polarization function I17!" is used, as compared the 
the more complete treatment in this work. Finally, no justification was given for the 
omission of the D. width in the pion polarization function. 

To avoid the problem of how to treat a non-interacting D.N-:1 state penetrating 
the nuclear surface (i.e. when PN -+ 0) in the transport description, the authors in 
[13] derive effective dispersion relations corresponding to asymptotically free pions 
or D.N-1 states. However, the energies in the effective dispersion relations are quite 
different from the original ones, especially for large momenta q. At q ~ 700 MeV /c 
the difference is as large as 150-200 MeV. 

In ref. [13] the authors propagate only the collective mode that corresponds to 
the asymptotically free pions ( 7r2 ). The other collective mode is identified with the 
propagation of individual D. isobars. This appears to be incorrect, since (as we have 
argued) the propagation of individual isobars should be identified with the (remain­
ing) non-collective D.N-1 states, and both collective modes should be treated on an 
equal footing in the transport description. The authors in ref. [13] also used the en­
ergy of the collective mode that corresponds to the asymptotically free D.N-1 states 
( 7i"2 ) to estimate the density dependence of the D. potential. This had a large effect 
on their results. However, our calculations show that the non-collective D.N-1 modes 
have their energies very close to the unperturbed energies, and thus change very little 
with the nuclear density. We therefore feel that it is inappropriate to use the proper­
ties· of the collective modes to deduce any density dependence of the D. potential to 
be used for the explicit propagation of uncoupled D. isobars. 

The authors of ref. [14] do treat the two collective modes on an equal footing, prop­
agating both of them as quasipions in accordance with the dispersion relation implied 
by their model, and their model also contains explicit propagation of uncoupled D. 
isobars. They found that only a small fraction of the quasipions approach free D.-hole 
states as they penetrate the nuclear surface. These quasipions were approximated by 
on-shell pions at the surface, by changing the momenta of the quasipions. 

Furthermore, in ref. [14] the authors calculated partial widths for the D. decay to 
a nucleon and a quasipion. The authors state that there are also contributions to the 
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total ~ width from decay processes as ~ --+ N + N N-1 an4 ~ --+ N + ~N-1 , which 
are not taken into account since these processes are already included in the transport 
simulations. However, by using the simple form of the pion polarization function, 
the ~N-1 continuum is compressed to a single state. But this state contains all the 
strength of the ~N-1 continuum, and therefore the partial ~width for this channel 
will also contain some contribution from the ~ --+ N + ~N-1 decay. 

Neither of the works [13] nor [14] have taken into account any modifications of 
cross sections for processes involving a ~-

5 Summary 

We have investigated the properties of spin-isospin modes in an infinite system of 
interacting nucleons, ~ isobars, and 7r and p mesons at various densities and temper­
atures. The aim has been to derive and discuss quantities that can be incorporated 
in a transport description of a heavy-ion collision, by use of a local density and tem­
perature approximation. 

· Within the random-phase approximation we have derived dispersion relations for 
the spin-isospin modes and the amplitudes of the their components. While the dis­
persion relations yield the energy-momentum relation of each mode, the character of 
the modes is determined by the amplitudes of the different components~ In both the 
spin-longitudinal and spin-transverse channels, we find two collective modes, while 
the remaining modes are non-collective in their nature (except in limited regions in q 
for a few specific modes). The non-collective modes correspond in a transport descrip­
tion to propagation of uncoupled nucleons and ~ isobars, while the collective modes 
correspond to propagation of quasimesons. These quasimesons can be incorporated 
in a transport description in a manner analogous to how real pions have been incor­
porated in standard treatments based on vacuum properties. One notable feature of 
the lower pionic mode in the spin-longitudinal channel is that it gradually loses its 
collective character when it enters the region of of non-collective modes. This implies 
that a ~ isobar with sufficiently high energy cannot decay to this mode. Previous 
works [13, 14] that included some in-medium effects employed a simpler model for 
the collective modes. In that simpler model the lower collective mode exists for all . 
momenta q and can thus be excited by a decaying ~ at any energy, in contrast to our 
more refined results. 

The decay of a ~ isobar into a nucleon and a spin-isospin mode is governed by 
the partial .6. decay widths. Therefore, we have calculated total and partial ~ decay 
widths within the model. At twice normal density the total ~ width is significantly 
enhanced at low .6. energies. However, this enhancement is mainly associated with 
the decay to non-collective nucleon-hole modes, while instead the partial width for 
the decay to the lower pionic mode n-1 is reduced. This ·effect is also different from 
the previous works [13, 14] where the nucleon-hole chaimel was neglected in the 
calculation of r ~. At finite temperatures up to T = 25 MeV the total ~ width is 
almost unaffected, while the partial widths change somewhat with T. The dependence 
is stronger when f ~N-1 = 0 than for the self-consistent case, f ~N-1 = f~t. 
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The partial ~ widths representing decay to non-collective modes correspond in 
transport models to processes like ~ + N ----+ N + N. Since these processes are already 
explicitly included in the transport description, these partial widths should be igno.red, 
while the corresponding cross sections should contain the in-medium modifications. 
Examples of such in-medium cross sections have been presented. At center-of-mass 
energies y's ~ 2.3 Ge V, we have for the reference case r t:J.N-1 = 0 found a large 
increase in CT(N +N.----+ ~+N) at PN = 2pCfv as compared with PN = pCfv, in agreement 
with ref. (12]. However, this effect is substantially reduced in the self-consistent 
treatment, r t:J.N-1 = r~t. Instead, the cross section is significantly enhanced at low 
center-of-mass energies, ( y's '"" 2.0 - 2.2 GeV). This was not investigated in ref. 
(12]. Furthermore, the cross section of the process ~ + N----+ N + N is reduced ~hen 
r t:J.N-1 is included self-consistently, compared to when r t:J,.N-1 is zero. We have found 
that all the calculated cross sections are almost independent of temperature up to 
T = 25 MeV. ' 

In a forthcoming paper we will incorporate the in-medium effects presented in this 
paper into a microscopic transport model. We will study the importance of the these 
in-medium properties in heavy-ion collisions and compare to the previous treatments 
(12, 13, 14]. We expect that the ~ production will be enhanced, especially at low 
center-of-mass energies of the colliding nucleons, but we also expect that the~ decay 
to a pionic mode will be somewhat reduced. This could lead to a faster thermalization 
of the system and possibly slightly less real pions produced. The net effect, however, 
is difficult to predict without an explicit transport simulation, since an average over 
different densities and temperatures will be taken, and the pionic modes that will 
escape the system as real pions will be produced mainly at the nuclear surface where 
the in-medium effects are small. 

The model presented in this paper constitutes a more consistent way of obtaining 
and incorporating in-medium effects in transport descriptions of heavy-ion collisions 

. than previous works (12, 13, 14]. However, also in the model presented in this paper 
some approximations and assumptions have been made, and there is room for fur­
ther improvements. We expect that our model will be applicable in transport models 
up to moderately large bombarding energies of about 1 Ge V per nucleon, since it is 
assumed within that the density of ~ isobars and pions is relatively small. Further­
more, we have so far not included any density dependence of the coupling constants, 
g' correlation parameters, form factors, and meson masses, such as may result from 
a possible partial chiral restoration, since we feel that such effects are not very well 
known, at the present stage. 
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A Solution to the RPA equations for spin-isospin 
interaction 

In this section we show how to obtain the eigenenergies of the RPA equations (38) in 
the spin longitudinal channel using the interactions defined by eqs. (4) to (13). The 
eigenenergies in the spin transverse channel is obtained analogously. 

We wish to find an spin-isospin excitation propagating with momentum q and 
isospin >.. To such a spin-isospin mode that has a momentum q, only the baryon 
pairs that has the relative momentum q will contribute. For this purpose we need 
to restrict the summation over all baryon states in eqs. (35) and (36) to those that 
will have the relative momentum q. In the same way we restrict the sum over meson 
states to those with momentum q and isospin >.. Therefore we take 

Xik -7 Xik(w, q, >.) bpj,pk+q , 

Zr -7 Z(w, q, ..\) bqr,q b>.r,>. , 

Wr -7 W(w, q, ..\) bqr,-q b>.r,->. · 

(109) 

(110) 
(111) 

In qcm (eq. (6)) we will neglect the term PN (1iw)/(mNc2 + 1iw) which is small in 
N N-1 or I:::!..N-1 states, since the hole momentum PN is small, and take 

(112) 

Furthermore we take 

With these approximations we can make the ansatz, 

(114) 

We consider the case when x(3/2, 3/2; q; >., w) = 0. We then write x(1/2, 1/2) = xN, 
x(1/2, 3/2) = x(3/2, 1/2) = xll., and analogously for other quantities. The RPA 
equations can then be written in the matrix form 

(115) 

and 

z 1 [MNvN(/!NxN + Mll.vll.(/!ll.xll.] 
Tiw-rr - Tiw -rr -rr · 

(116) 

w 1 [MNvNepN xN + Mll.vll.epll.xll.] 
Tiw-rr + Tiw 1r 1r 

(117) 
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with 

(118) 

v~(q,w) (119) 

(120) 

where a, f3 = N, ~'and where we have defined the Lindhard functions 

(1ic) 3 
n(p)-n(p+q) 

- L ~ (p + q)2/2m'N- p 2 /2m'N -1iw 
(121) 

([>~(w, q) 1 3 3 1 (1ic) 3 
{ n(p) n(p)} 

- <I>(2'2;w,q)+<I>(2'2;w,q)= L ~ be!N +be:;_N (122) 

with 

p2 
c~ = mN + 2m* ± 1iw; 

N 
~m=m~-mN; ±_ ± 

p~- p q. (125) 

The numerical factors MN = 4 and M~ = 16/9 originates from the spin-isospin 
summation. 

The eigenenergies are obtained from 

(126) 

with the approximation r ~N-1 ( Ch + 1iw) ~ r ~N-1 ( Ch + Re 1iw ). The eigenenergies of 
the auxiliary equations are obtained from 

(127) 

Since the normal RPA equations (38) and the auxiliary RPA equations differ only in 
the matrix A(l)' we can use the relationships ([>N (w*) = <I>N (w )*' wa.B(w*) = wa.B(w )*' 
and cl>~(w*) = <I>~(w)* to show that if w is a solution of eq. (126), then w = w* is a 
solution of eq. (127). 

From the normalization condition ( 4 7) we obtain 

±1 = MNTJNXNXN + M~TJ~X~X~ + Z*Z- W*W = 
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with 

(1ic) 3 
n(p)- n(p + q) 8 

- L Lp [(p+qF - L -1iw)2 = 81iw ~N(w, q) 
2mj.; 2mj.; . 

TJN(w,q) 

TJ~:.(w,q) 

where 8vgtr 1 81iw ~ o. 

(he) 3 
L { n(p)[1 + i8f t:.N-1 (ch + Re 1iw,p~:.)/281iw] 

L p [<5e!NJ2 . 

n(p)[1 + i8f AN-t(ch- Re 1iw,p~:.)/281iw]} 
[ c5e:;:N)2 

8 
81iw ~~:.(w, q) ' 

(128) 

(129) 

(130) 

The quantities of the auxiliary equations are related to the ordinary quantities by 

xb(w*)* = xb(w), b = N,!::.; Z(w*)* = -Z(w), W(w*)* = -W(w). 
(131) 

It is straightforward to show that the solutions defined by eqs. (114), (116), (117), 
(126) and (128) satisfies eqs. (38), and that the corresponding auxiliary solutions 
solves the auxiliary equations. 

B The effective spin-isospin interaction 

A spin-isospin mode exchanged between the two-baryon states 31 and 24, as in fig. 
2, acts like an effective interaction. In this appendix, we derive an expression for 
the effective spin-isospin interaction M(34, 12), which consists of exchange of all the 
spin-isospin modes present in our RPA approximation. This effective interaction then 
appears naturally in the calculations of the !::.. width and !::.-cross sections, as presented 
in sec. 2.4. M(34, 12) is of the form 

(132) 

where the spin-isospin matrix elements, 19 1•t(31), are defined in eqs. (60) and (61). 
As before we will present two different expressions for M(34, 12). The first orig­

inates from the summation of non-interacting Green's functions according to the 
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diagrams in fig. 1, while the second expression originates from the RPA expansion in 
eq. (57). The first expression becomes 

(133) 

.Nrt(34, 12) (134) 

With 

q = P3 - PI = P2 - p 4 ' (135) 

the dressed pion, D-rr, and p-meson, Dp, propagators are written 

with the polarization functions 

and 

-(cqJ2 F; m; [ (Rfl i~N) 2 XN + (R~ i~A) 2 XA 
idet mp iNN iNA 

+ F: 8g~ XN XA] . (138) 

The form factors F-rr,p and F9 , depend on the transferred energy and momentum q = 
(nw, cq ), and are defined in eqs. (8) and (14). The relativistic corrections appearing 
in (4), (5), (11), and 12) are here denoted R01

, with 

RC?'(q) 2. = 2m 01 c
2 

' m0/c2 + .JSi a=N,~. (139) 

The index i denotes that center-of-mass energy yfS originates from an internal vertex, 
and is thus approximately taken 

(140) 

Furthermore qi is the N1r center-of-mass momentum at an internal vertex, and is 
approximated by 

ffiNC2 

qi = ffiNC2 + nw q . (141) 

The susceptibilities X01 are defined from the Lindhard functions in eqs. (121) and 
(122), 

a=N,~ 
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In the expressions of D1r,p there also appears the renormalization factor 

and we have used the short hand notation 

I I ( I )2 
9NN9ilil - 9Nil 

(Ri )2 I + (Ri )2 I 2Ri Ri I il 9NN N 9ilil - N il9Nb. 

(Ri )2 I (i:Vil) 
2 

+ (Ri )2gl (i:VN) 
2

- 2Ri Ri gl ffvNffvil 
il 9NN j-;r N ilil j-;r N il Nil j-;r j-;r 

Nil NN NN Nil 

The quantity q;ff consists of four terms 

with 

q;f£(34, 12) = ta(34, 12) + ta1 (34, 12) + t10(34, 12) + tn (34, 12) , 

to(34, 12) -

t10(34, 12) 

+ 
ta1 (34, 12) -

tn (34, 12) 

+ 
+ 
+ 

+ 

n31 R24 .n- q31. q24 ' 

R 3lp2 
9 [ I N I il 

-(q31. qJ f. 9N,24 R; XN + 9il,24 R; Xil+ 
det 

8g~ RI
4 F: XN Xil] , 

tia(21,43), 
p4 2 

9 qi [ I I (RN)2 2 I I (Ril)2 2 
-J.2 9N,31 9N,24 i XN + 9il,31 9il,24 i Xil + 

det 

( I I I I )RilRN + 9N,31 9il,24 + 9il,31 9N,24 i i Xil XN 
c I ( I R24 I n31) RN p2 2 
ogl 9N,31 i + 9N,24 It£ i 9 XN Xil 
c I (I R24 I n3l)RilF2 2 ogl 9il,31 i + 9il,24 It£ i 9 XN Xil 

(89~ )2 RJl R~4 p4 x2 x2] 1,, 9Nil' 

where the relativistic correction at the external 1r-j k or p-j k vertex is taken as 

with 

(144) 

(145) 

.(146) 

(147) 

(148) 

(149) 

(150) 

(151) 

(152) 

(153) 

In this paper we only take into account 1r or p vertices with either two nucleons or one 
nucleon and one ~' and there is no ambiguity of which mass to substitute for mjk· 

The notation R1k means that the relativistic correction originates from an internal 
vertex, but the baryon mass appearing in Rr4 is determined from the baryons at the 
external j k vertex, 

(154) 
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The N1r (N p) center-of-mass momentum in the external 1r-jk (p-jk) vertex is given 
by 

qik = 1i + 2 Pi- Pk · w mkc 
(155) 

Finally, the quantity 9~ff(34, 12) is given by 

I (34 12) I Fff [ I I I I F2 I c I ] 9eff , = 931,24- --:r- 9N,319N,24XN + 9t:l.,319t:l.,24Xt:l. + g931,24 u91 XNX!:l. · (156) 
Jdet 

Alternatively, M(34, 12) can be expressed using an expansion in RPA eigenstates, 

{ 
h1,t(31; v)h1,t(24; v) _ h1,t(31; v)h1,t(24; v)} 

_MI,t(34, 12) = "" 
~ 1i 1i l,t + . 1i + 1i l,t . 

R l t Q WD - Wv ZT] WD Wv - ZT] 
e w; > 

!31!24 F2 I + ( m7!'c2)2 g 934,12 · (157) 

The factors h1,t(jk; v) are motivated in eq. (65) and can, using the RPA soiution in 
appendix A, be explicitly expressed as 

h1't(jk, v;w, q) = L Ma<Pa(w~t)xa(w~t) [(qjk•qi)v;'jk(w) 
· a=N,t:l. 

21i Do ( l,t) jk ( ) a ( l,t)] 
- w1!',p 11',p wv v1!',p w v1!',p wv , (158) 

where the quantities Xa and v1!' are defined in appendix A, and 

(159) 
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mN = 940 MeV fc2 9tvN = 0.9 fNN = 1.0 HvN = 6.2 
mll. = 1230 MeV/ c2 9tvll. = o.38 fNll. = 2.2 ffvll. = 10.5 
m1r = 140 MeV fc2 g~ll. = 0.35 f'J.ll. = 0 ff:..ll. = 0 
mp = 770 MeV fc2 A9 = 1.5 GeV A1r = 1.0 GeV Ap = 1.5 GeV 
Po = 0.153 fm -;j vll. - VN = 25.0 MeV miv = mN/[1.+ 0.4049(pfpo)] 

Table 1: Parameter values used in the numerical calculations. 
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Figure 1: 
Diagrammatic illustration of the microscopic structure of the Green's function QRPA 

for a spin-isospin mode. A given spin-isospin mode (wiggly line) consists of dressed 
1r or p mesons (long-dashed) and dressed baryon-hole excitations. The center row 
shows how a dressed meson is built from the corresponding free meson (short dashed) 
and dressed baryon-hole excitations. The double (solid-dashed) line in the dressed 
baryon-hole bubble can represent either a nucleon or a D. isobar, as illustrated in the 
bottom row, where a single solid line represents a nucleon and a double solid line 
represents a D. isobar. 

Figure 2: 
Diagrammatic representation of the effective spin-isospin interaction M(34, 12). 

Figure 3: 
Diagrammatic representations of the D. self energy :E~ (left-hand side) and the partial 
width r~ (right-hand side). 

Figure 4: 
Differential cross sections in vacuum for the process p+p ---r D.++ +n, in the pp center­
of-mass system. In (a) is shown da-j d cos( 0) for vfS = 2.314 Ge V, while (b) shows 
da-jdt for Js = 2.513 GeV. The solid curve is the full cross section, da-jd cos(Ocm), the 
dashed curves are the direct and exchange contributions from the spin-longitudinal 
channel, and the dash-dotted curves are the contributions from the spin-transverse 
channel. There are also contributions from mixed direct and exchange terms; these 
are included in the full cross section but not displayed since they are small. The data 
points originate from refs. [21, 22], but have here been estimated from figs. 5 and 8 
of ref. [37]. 

Figure 5: 
The total cross section in vacuum for the process p+p ---r D.++ +n, in the pp center­
of-mass system as a function of Js. The solid curve is our calculation, the dashed is 
the parameterization from VerWest-Arndt [23], and the dash-dotted line is a simple 
parameterization often used in BUU calculations [24]. The data points were estimated 
from fig. 2 of ref. [23] and can be found in references therein. 

, Figure,6: 
The quantity [r~t - r~ee + or~auli] /2, calculated at the density 0. 75p~ and for two 
different values of the parameter g~~; the D. energy and momentum are related to 
the pion kinetic energy T-rr by eq. (95). The displayed quantity may be compared with 
the spreading potential in ref. [25]. The empirical points were originally determined 
in ref. [25], but have here been estimated from fig. 12 of ref. [16]. 
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Figure 7: · 
The dispersion relations for the spin-isospin modes in infinite nuclear matter at normal 
nuclear density and zero temperature. Parts (a) and (b) show the real part of fiwv 
in the spin-longitudinal and spin-transverse channel, respectively. The corresponding 
imaginary parts are presented in (c) and (d). The non-collective modes are shown by 
solid curves, while collective modes are represented by either a dot-dashed curve ( i 1 

or p1 ), a dot-dot-dashed curve (i2 or p2 ), or a dot-dot-dot-dashed curve (see text). As 
a reference, the free pion dispersion relation fiw1r(q) = [(m7rc2 )2 + (cq)2]112 is included 
as a dotted curve. 

Figure 8: 
Squared amplitudes for the spin-isospin modes displayed in fig. 7 a, for q = 300 MeV/ c: 
the individual N N- 1 components (a), the individuali:::!..N-1 components (b), and the 
pion component together with the sum of all N N-1 and I:::!..N-1 components (c). 
Moreover, for the lower collective mode i 1 is shown the q dependence of the pion 
component and the total NN-1 and I:::!..N-1 components (d). 

Figure 9: 
Same as fig. 7a, but for the density PN = 2p~ and the temperature T = 0 MeV in 
(a) and for PN = p~ and T = 25 MeV in (b). 

Figure 10: 
The total!::!.. width r~t calculated either with r t::..N-1 = 0 in eq. (122) (a) or with r t::..N-1 

included self-consistently (b), for a variety of scenarios: PN = 0, T = 0 (dotted), 
PN = p~, T = 0 (solid), PN = 2p~, T = 0 (short-dashed), PN = p~, T = 25 MeV 
(long-dashed}, and PN = 2p~, T = 25 MeV (dash-dotted). 

Figure 11: 
The total!::!.. width r~t and its partial contributions from different spin-isospin modes. 
The solid curve represents the· total width, the long-dashed line is the contribution 
from the non-collective N N-1 modes, the short.:.dashed line is the contribution from 
the non-collective I:::!..N-1 modes, the dot-dashed line is the contribution from the 
lower pionic mode it, and the dot-dot-dashed line is the contribution from the upper 
pionic mode i 2. The calculations have been made with f~::..N-1 = 0 in eq. (122) and 
for: PN = p~, T = 0 (a), PN = 2p~, T = 0 (b), PN = p~, T = 25. MeV (c), and 
PN = 2p~, T = 25 MeV (d). The error bars indicate the estimated uncertainty 
associated with the classification procedure (see text). 

Figure 12: 
Similar to fig. 11, but with r t::..N-1 included self-consistently in eq. (122). 
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Figure 13: 
Differential cross section do-/ d cos( Ocm) for the process p+p-+ ~ ++ + n in the nuclear 
medium, in the pp center-of-mass system at the energy .JS = 2314 MeV, calculated 
either with f6.N-1 = 0 (a) or with f6.N-1 = f~t (b), for the following scenarios: 
PN = 0, T = 0 (dotted), PN = p~, T = 0 (solid), PN = 2p~, T = 0 (short-dashed), 
PN = p~, T = 25 MeV (long-dashed), and PN = 2p~, T = 25 MeV (dash-dotted). 

Figure 14: 
Total cross section o-( .JS) for the process p+p -+ ~ ++ + n for either r 6-N-1 = 0 in 
eq. (122) (a) or with r 6-N-1 included self-consistently (b). The notation is the same 
as in fig. 13. 

Figure 15: 
Same as in fig. 14, but for the reverse process n +~ ++ -+ p + p, for a ~ with mass 
m = 1230 MeV /c2, with either r 6-N-1 = 0 in eq. (122) (a) or with r 6-N-l included 
self-consistently (b). 

Figure 16: 
Total cross section o-( JS = m) for the process p+?rj -+ ~ ++ with f 6-N-1 included 
self-consistently and for .the following scenarios: PN = 0, T = 0 (dotted), PN = p~, 
T = 0 (solid), PN = 2p~, T = 0 (short-dashed), PN = p~, T = 25 MeV (long-dashed), 
and PN = 2p~, T = 25 MeV (dash-dotted). Parts (a) and (b) are for the lower pionic 
mode ii\, while parts (c) and (d) are for the upper pionic mode 7r2 • The open squares 
represent the empirical total cross section for 7r+p scattering and are estimated from 
fig. 2.2 in ref. [6). The factor p3 (m2) in eq. (83) was in (a) and (c) calculated from 
the free~ width, while the total width in nuclear matter was used in (b) and (d). 

Figure 17: 
Same as in fig. lla and 11c, but the intermediate nucleon in the~ decay is not Pauli 
blocked. 
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