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Abstract

The human brain is asymmetrically lateralized for certain functions (such as language processing), 

to regions in one hemisphere relative to the other. Asymmetries are measured with a laterality 

index (LI). However, traditional LI measures are limited by a lack of consensus on metrics used 

for its calculation. To address this limitation, source-based-laterality (SBL) leverages an 

independent component analysis (ICA) for the identification of laterality specific alterations, 

identifying covarying components between hemispheres across subjects. SBL is successfully 

implemented with simulated data with inherent differences in laterality. SBL is then compared to a 

voxel-wise analysis utilizing structural data from a sample of patients with schizophrenia and 

controls without schizophrenia. SBL group comparisons identified 3 distinct temporal regions and 

one cerebellar region with significantly altered laterality in patients with schizophrenia relative to 

controls. Previous work highlights reductions in laterality (i.e. reduced left gray matter volume) in 

patients with schizophrenia compared to controls without schizophrenia. Results from this pilot 

SBL project are the first, to our knowledge, to identify covarying laterality differences within 

discrete temporal brain regions. The authors argue SBL provides a unique focus to detect 

covarying laterality differences in patients with schizophrenia, facilitating the discovery of 

laterality aspects undetected in previous work.

Keywords

Independent Component Analysis; Voxel-based Morphometry; Brain Laterality; Schizophrenia

Introduction:

Alterations in gray matter in patients with schizophrenia (SZ) have been frequently reported 

in studies analyzing functional and structural MRI data and meta-data 1–10. Many of these 

alterations are weighted towards the left hemisphere, leading researchers to suggest 

schizophrenia may produce alterations in brain laterality in SZ compared to controls with no 

diagnosis of schizophrenia (CON)10–23. However, many of the findings upon which this 

hypothesis is based center on the outcome of regional or whole-brain voxel/vertex-based 

methods, which may not be ideal for assessing laterality-specific conclusions. Traditionally, 

such changes can be assessed by calculating a single laterality index (LI) for each subject, 

using the equation 1:

LI = f QLH − QRH
QLH + QRH

eq (1)

Where Q is the quantity of the MRI metric of interest (e.g. blood oxygenation level 

dependence [BOLD] percent signal change, gray matter volume, cerebral blood-flow 

volume), LH and RH represent Q for the left and right hemisphere respectively, and f 
represents a scaling factor, usually 1 or 10024–27, with positive values indicating left-

hemispheric dominance and negative values indicating right-hemispheric dominance. Many 

toolboxes are available to calculate the LI of neuroimaging data28,29 utilizing this formula. 

Unfortunately, the laterality calculation itself has limitations.
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One of the most notable limitations of the LI calculation is a lack of consensus on what 

metric should be used for Q, with suggestions including: voxel intensity24,26, weighted 

sums30, mean signal change31,32, average correlation coefficients33, F-values34, t-
values35,36, and weighted t-values37–39 alone or those which survive certain thresholds27. 

The use of t-values is problematic because negative t-values can lead to significant 

misinterpretations of the output (which can be mitigated by using absolute values)27,40. 

Furthermore, whole-brain vs region of interest (ROI) approaches may yield very different 

results based on ROI selection and thresholding27. Thresholds within specific ROIs may not 

be appropriate for some populations in which these functions are altered or have shifted (e.g. 

stroke, tumor), while whole-brain analyses may lack the ability to identify specific brain 

regions or patterns of variation across multiple brain regions. Additionally, researchers often 

choose to omit the cerebellum from laterality analyses due to contralateral connections of 

the cerebellum and cortex biasing LI measures27,39,41–43. Ironically, the advantages of ROI 

and/or cluster/vertex wise analyses are also their greatest flaws. For example, while ROI-

based approaches (such as those implemented in Freesurfer44–51 and similar packages), 

produce stable results with larger effect sizes, in populations where differences may be focal 

or variable (i.e. hand regions of the primary motor cortex in piano players vs non-piano 

players), differences may vanish when values are averaged over unnecessarily large 

ROIs52,53. This risk considerably increased when large smoothing kernels are applied to the 

data (see Scarpazza et al., [2015] for a brief review)54. In addition, such analyses risk 

considerable reductions in power relative to the number of ROIs, as multiple comparisons or 

models would need to be performed for each ROI or ROI pair. While Freesurfer44,46–51 is 

capable of vertex-wise corrections within masks (see http://freesurfer.net/fswiki/

BuildYourOwnMonteCarlo for documentation and Patriquin et al. [2016]55 for an example 

of implementation) as opposed to ROIs from atlases, this approach rarely seems to be used. 

However, even when voxel/vertex-wise analyses are implemented, the choice of correction 

and sample size could lead to vastly different results between studies due to the power 

requirements for voxel/cluster wise corrections27,56–59. As such, ROI and voxel agnostic 

methods would significantly improve laterality inferences in MRI data.

Our goal in this work was to develop an improved measure of laterality that exhibits 1) 

agnosticism regarding to the size/shape/cluster extent of a region, 2) laterality-specific 

pattern identification rather than region-specific identification, 3) robustness to patterns of 

alteration in the absence of a priori regions. To that end, the authors propose a novel solution 

to analyzing laterality by directly estimating covarying networks from homotopic mirror 

images via ICA, called source-based laterality (SBL). SBL is an extension of source-based 

morphometry (SBM), which utilizes a multivariate, ICA-based approach to identify 

interrelationships across voxels in anatomical analyses such as gray matter maps in voxel-

based-morphometry60. In lieu of utilizing a gray matter map, SBL utilizes a homotopic 

subtraction of right and left voxels from gray matter hemispheres, implemented by flipping 

the right hemisphere and subtracting it from the left, producing a single, voxel-wise 

difference image between the two hemispheres. The resulting hemispheric difference image 

for each participant is then analyzed across participants using spatial ICA. In this manner, 

ICA solutions are specific to laterality-based components which covary between 

hemispheres across subjects. The authors argue the SBL approach provides a unique 
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approach to detecting covarying laterality differences between SZ and CON participants, 

enabling researchers to capture subtle alterations in cortical symmetry that are not identified 

by traditional voxel or ROI based approaches.

As a proof of concept, a simulation of gray matter difference maps is used to demonstrate 

the robustness in the identification of spatial covarying patterns using SBL. SBL is then 

applied to difference images of gray matter volume maps from patients with SZ and CON 

from the function biomedical informatics research network (FBIRN)61,62. The authors 

hypothesize gray matter difference images leveraged by SBL will identify alterations in 

structural gray matter laterality in SZ compared to CON participants (demonstrated in 

previous literature2–6,8–10,13–23,63–72), and structural network covariance (SNC) while 

retaining spatial specificity and statistical power unavailable to voxel or ROI based 

approaches.

Methods:

Simulation:

Data Generation: Step 1 included the generation of a 400×400 2D images with 1mm 

dimensions containing 3 asymmetric ROIs (ROI 1 area = 2188mm2, ROI 2 area = 757mm2, 

ROI 3 area = 347mm2) to serve as sources. Step 2 included source generation, with Source 1 

(ROI 1) consisting of an inverse hyperbolic tangent transformation of a normally distributed 

vector of 2188 values centered on a mean of 0 with a standard deviation of 0.27, with 0.5 

added as a constant. Source 2 (including ROIs 2 and 3) also consisted of an inverse 

hyperbolic tangent transformed vector with an added constant of 0.5, but of 1104 values 

with a mean of 0 and a standard deviation of 0.4, all of which were multiplied by a value of 

0.1. Gaussian noise was generated across the remaining values in the image mask using a 

normal distribution centered at a mean of 0 and a standard deviation 0.15. Example images 

produced with this process are displayed in Figure 1. Step 3 generated 300 2D images with 

the specified source parameters, with 150 representing “controls” and 150 representing 

“patients.” For each simulated control, weights for source 1 were chosen randomly from 

values between 0.5–0.8, and 0.2–0.4 for source 2. For each simulated patient, weights for 

source 1 were randomly chosen between 0.2–0.4, and 0.8–1 for source 2. Finally, ground 

truth weights were recorded for each source to assess the accuracy of the SBL component 

weightings.

Source-Based Laterality: SBL was performed on the 300 simulated subtraction maps 

implemented within the group ICA of fMRI toolbox (GIFT; http://mialab.gsu.edu/software/

gift)73 utilizing group-level PCA, spatial ICA with infomax, and calculation of individual 

spatial maps using PCA-based back-reconstruction to identify 3 independent components, 

resulting in loading parameters for each component in the simulated group data60.

Real data:

Demographic Information: T1 weighted images from 326 participants, 167 participants 

with SZ (M/F: 129/38) and 159 (M/F: 113/46) CON from 7 imaging centers: The Mind 

Research Network (MRN), Duke University, University of California Los Angeles (UCLA), 
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University of California Irvine (UCIrvine), Neuroimaging Center of University of California 

Irvine (NICIrvine), University of Iowa (UIowa), and the University of Minnesota Medical 

School’s Center for Magnetic Resonance Research (UMCMRR). Participants provided 

informed consent in accordance with institutional review board requirements of each 

participating university. The Edinburgh Handedness Inventory (EHI)74 was collected to 

assess the dominant hand from each participant as an additional variable of consideration 

when assessing laterality. Briefly, the EHI scores responses regarding hand use for 10 

different tasks, and assigns ambidexterity, left, or right hand dominance based of the decile 

from the totaled hand use during each task74. The scale ranges from −100 (completely left 

dominant), +100 (completely right dominant), with a median of −28 ≤ LI < 48 indicating 

ambidexterity74. An interactive example of the questionnaire can be found at the 

Organization for Human Brain mapping at: http://www.brainmapping.org/shared/

Edinburgh.php. Detailed descriptions of data processing, storage protocols, and participant 

anonymization can be accessed at the main FBIRN portal on neuroimaging tools and 

research collaboratory (NITRC) at https://www.nitrc.org/projects/fbirn/, or queried directly 

through http://schizconnect.org following registration. BIRN protocols designate identifying 

information (i.e. gender, age, subject ID, ect) cannot be directly shared without registering 

with the BIRN initiative.

Patients with SZ did not display significant differences between controls on age (Age Range 

= 18–68 yrs, Mean Age = 38.19±11.39, W = 14169, p = 0.29, gender composition (χ2 = 

1.3176, p = 0.25), or handedness (χ2 = 1.9454, p = 0.39 [Monte-Carlo w/2k]). These 

statistics are summarized in Table 1. Site-wise differences in participant sex approached 

significance (χ2 = 11.9, df = 6, p = 0.06), but no significant differences in the representation 

of diagnostic groups (χ2 = 1.07, df = 6, p = 0.98) were present.

Image Parameters and Quality Analyses: High-resolution T1 Siemens MP-RAGE 

were collected from 284 patients on six 3T Siemens Tim® Trio Systems (MRN, UCLA, 

UCIrvine, NICIrvine, UMCMRR, and UIowa). MP-RAGE parameters were TR/TE/

TI=2300/2.94/1100 ms, flip angle=9°, resolution=256×256×160. The remaining 42 T1 

images were acquired using a 3T General Electric (GE) Discovery MR750 scanner using a 

GE IR-SPGR sequence (TR/TE/TI=5.95/1.99/450 ms, flip angle=12°, 

resolution=256×256×166). Images from all sites covered the entire brain with field of view 

(FOV)=220 mm2, with 324 of the scans utilizing voxel dimensions=0.86×0.86×1.2 mm3, 1 

scan using dimensions=0.9×0.9×1.2 mm3, and one using 1mm3 isometric voxels. All scans 

utilized the sagittal scan plane, GRAPPA/ASSET acceleration factor=2, and number of 

excitations=1.

CON vs SZ: Image quality metrics on each participant were calculated using virtual python 

3.6 environment of MRIQC 0.11.075. Group comparisons revealed significant differences 

between patients with SZ and CONs in the coefficient of joint variation (W = 15940, p = 

0.002, r = 0.17), higher contrast-to-noise ratio t(322.62) = −3.7636, p = 0.0002, d = −0.42, 

higher average data smoothness (FWHM) (W = 11471, p = 0.03, r = 0.11), and greater 

intensity non-uniformity parameters (INU) t(318.46) = −3.9682, p = < 0.0001, d = −0.44, 

CI95%−0.07 −0.02, in controls compared to SZ patients, but higher entropy focus criterion 
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t(322.9) = 4.39, p = < 0.0001, d = 0.48, CI95%: 0.01 0.03, gray matter residual partial volume 

error, t(324) = 2.69, p = 0.007, d = 0.30, CI95%: 0.15 0.61, white-matter maximum-intensity 

ratio (W = 11474, p = 0.03, r = 0.12), and initial ICBM asymmetric tissue probability map 

overlap (W = 7745, p = < 0.001, r = 0.36) were found in SZ patients compared to controls 

However, no significant differences between patients and controls in gray matter signal-to-

noise ratio (W = 12742, p = 0.5) were found. These results are summarized in 

Supplementary Figure 1.

Comparisons by Data Acquisition Site: Site-wise analyses of image quality metrics 

identified differences on coefficient of joint variation, Kruskal-Wallis χ2 = 91.175, df = 6, p 
< 0.001, gray matter signal-to-noise ratio F(6, 319) = 39.81, p < 0.001, ώ2 = 0.42, entropy 

focus criterion, F(6, 319) = 39.81, p < 0.001, ώ2 = 0.32, INU correction parameters Kruskal-

Wallis χ2 = 111.46, df = 6, p < 0.001, and average smoothness Kruskal-Wallis χ2 = 129.37, 

df = 6, p < 0.0001. However, no significant differences were found for contrast-to-noise 

ratio, gray matter residual partial volume error, or overlap with the initial ICBM asymmetric 

tissue probability map. These comparisons are also summarized in Supplementary Figure 2 

a–e.

Image Processing and Analysis:

Gray matter volume maps were computed from all T1 images using the SPM12 voxel-based 

morphometry “new segmentation” pipeline (build 6906)76–79. The pipeline includes 

segmentation based on priors for 6 tissues classes, normalization to the MNI 152 template, 

and modulation of gray matter maps the Jacobian determinant to preserve tissue volume. 

Once processed through SPM, gray matter maps were smoothed with a 10mm FWHM 

Gaussian kernel. Gray matter maps were then re-registered from the asymmetric template in 

SPM to a symmetric MNI template in FSL 80,81 version 6.0.0 using ANTs82,83 with nearest 

neighbor interpolation. Following smoothing and re-normalization, each map was mirrored 

using AFNI’s (Version AFNI_18.3.01)84 3dLRflip, and the mirror was subtracted from the 

original smoothed image, and a mask of all positive values of x (left hemispheric) was 

applied to the difference image to generate a laterality map.

Voxel-wise Analysis: The laterality map computed using difference images were 

analyzed using voxel-based morphometry implemented in SPM12 (version 7487). Ordinary 

least-squares regression was performed at each voxel with the following factors: Diagnosis 

(CON vs SZ), Gender (M vs F), Handedness (R, L, Ambidextrous), and Site of data 

acquisition. Comparisons between CON and SZ were computed on the residuals with all 

other factors treated as nuisance regressors.

Source-Based Laterality: Previous SBL work in whole-brain information from the same 

data utilized Akaike’s information criterion85 to suggest a 30-component model for source 

based morphometry analysis60. As such, a similar 30 component solution was computed 

from the 326 laterality maps utilizing entropy bound minimization (EBM)-ICA86, an 

algorithm which is able to capture more flexible source distributions (e.g. sub-Gaussian, 

symmetric, or skewed) compared to approaches like infomax87,88 and selection of the best 

run from 20 for component stabilization.
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Multiple regression: Component weights which are visually identified to be local to gray 

matter were regressed onto diagnostic status (SZ vs CON), handedness, and data acquisition 

site. The 30 regressions were multiple comparison corrected using a 5% false discovery rate 

(FDR)89.

Clinical Correlations: Weights from SZ patients were extracted from components 

associated with diagnostic status. Spearman’s ρ partial correlations across diagnosis-specific 

components were performed with positive, negative, and total positive and negative 

syndrome Scale (PANSS; 90 to probe brain/behavior relationships in patients with SZ.

SNC Calculations: Mixing matrices for components associated with diagnostic status 

totaling 6 comparisons, were correlated with one another to measure the inter-relationship 

between covarying networks, or SNC, using a partial correlation to account for data 

acquisition site. Contrasts were adjusted for multiple comparisons using a Holm 

correction91, as an FDR of 5% for 6 comparisons is not an integer (0.03) to examine 

relationships between components.

Results:

Toy example:

The GIFT ICA pipeline generated three components as anticipated. These included: 

component 1 (which was resembled source 2), component 2 (which resembled source 1), 

and a third component labelled as noise due to its appearance (see Figure 2). Images 

displaying the components from the simulated data are summarized in Figure 2. 

Comparisons of loading parameters for the simulated CON vs SZ groups identified a 

significantly greater (W = >0, p < 0.0001, r = 0.865) component weightings for component 1 

(source 2) in simulated CONs (median = 0.98) compared to simulated SZ (median = 

−0.995). The opposite relationship was apparent in component 2 (source 1), with simulated 

CON exhibiting a significantly greater (W = 22500, p < 0.0001, r = 0.865) median 

component weights (median = 0.99) compared to simulated CONs (median = −0.99).

Voxel-wise analysis on laterality maps:

No voxels survived a 5% voxel-wise FDR89 correction (t(316)=4.814, k=14.22). If the cluster 

extend threshold is removed, a small number of subcortical and frontal regions are present, 

but these regions appear in regions more associated with dura and CSF and are likely 

artifact. See Figure 3 for uncorrected image results.

SBM component analysis on laterality maps:

Each of the 30 components from the SBM were visually inspected to flag components as 

“possible source” or “possible artifact.” The former category included regions within the 

cortical mask, while the latter included ringing around the mask and the inclusion of non-

cortical regions. No components exhibited patters defined as “possible artifact,” so loadings 

from all 30 components were retained for subsequent analyses. An interactive image in html 

constructed with papaya (build 782a193, https://rii-mango.github.io/Papaya/) may be found 

in Supplementary Material 1. Of the 30 performed regressions, 10 of the models reached 
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statistical significance after a 5% FDR correction for multiple comparisons. However, only 4 

of the component weights (component 7, 16, 28, and 30 were significantly influenced by 

participant diagnostic status (CON vs SZ). Components significantly related to diagnosis are 

displayed in Figure 4A, while contrasts are displayed in Figure 4B. F-values, p and corrected 

p values, adjusted R2, and partial omega squared values for each are summarized in Table 2. 

Post-hoc Wilcoxon rank-sum tests92 identified significantly greater cerebellar component 

weights in CON compared to patients with SZ (W = 16216, p < 0.001, r = 0.19, CI95% 0.17 

0.57), but significantly reduced weights in CON participants compared to patients with SZ 

in superior temporal component, (W = 11586, p < 0.05, r = 0.11 CI95% −0.45 −0.003), 

STG/MTG/Postcentral component (W = 11416, p < 0.03, r = 0.12, CI95% −0.44 −0.03), and 

middle temporal gyrus (W = 10357, p < 0.001, r = 0.19, CI95% −0.61 −0.17). Component 

spatial maps were thresholded at a Z score of 3, (displayed in Figure 4A), and average 

difference scores for laterality maps for each subject were compared. Differences reflected 

those displayed by component weights, with CON participants displaying right laterality, 

and SZ participants displaying left laterality. It should be noted that the weights from 

component 7 suggest an increase in CON and a reduction in SZ, but the degree to which 

right lateralization is present in CON participants is greater than the degree of left 

lateralization in SZ patients. Weights for components 16, 28, and 30 similarly mirror mean 

distributions in which CON participants display reduced weights compared to SZ patients, 

but this is relative to right-lateralization (expressed as negative numbers). The ICA based 

approach highlights the relationship between the two groups agnostic to the direction.

Correlations with Clinical Measures:

Partial Spearman ρ correlations accounting for site of data acquisition did not reveal any 

significant relationship between components for total positive or general total PANSS 

scores. One statistically significant negative correlation between total negative PANSS 

symptoms and component 7 was identified which survived a Holm 91 correction for multiple 

comparisons (ρ = −0.20, p = 0.009, Holm-p = 0.03). When extracting average gray matter 

volumes relative to the component, this translates to an increase in right lateralization 

(negative values) associated with less negative symptoms in patients with SZ. No other 

statistically significant relationships were identified for components 16, 28, and 30 with 

PANSS negative symptoms scores. The relationship is described in a spearman plot 

generated using the fifer (v1.1) package in R93 (see Figure 5).

Structural SNC:

Pearson correlations between the mixing matrices from components 7, 16, 28, and 30 

identified a significant negative relationship between component 7 and component 30 which 

survived a Holm correction91 for multiple comparisons (r = −0.2, Holm-p = 0.002). 

Significant uncorrected correlations between component 16 and 28 with component 30 were 

identified (r = 0.12, p = 0.03 and r = −0.17 p= 0.03 respectively), but these results did not 

survive correction for multiple comparisons (Holm-p = 0.13). A nodal illustration of the 

structural SNC matrix with nodal connections are displayed in Figure 6.
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Discussion:

We demonstrate a novel approach to assess structural laterality within the brain. SBL 

provides advantages over traditional approaches to studying brain laterality in that it does 

not require apriori selection of an ROI, preserves spatial information within the data, and 

identifies covarying patterns of laterality alterations in lieu of potentially skewed voxelwise 

quantifications which identify differences irrespective of covariation in results. As a 

demonstration of the utility of SBL, the technique was applied to a cohort of participants 

with SZ relative to controls. This comparison revealed alterations in multiple covarying 

networks including left middle and superior temporal regions, and the planum temporale 

consistent with extensive SZ literature2–6,8–10,13–23,63–72. An exception to this trend is 

altered subcortical asymmetry in schizophrenia from meta-analyses such and Okada et al., 

(2016)94. Okada et al. (2016)’s meta-analysis of structural laterality of subcortical regions 

from 2564 data sets across 78 studies identified significant differences in LI specific to the 

globus pallidus and no other subcortical regions. However, it should be noted that even when 

effect-size weighted meta-analytic methods are considered, meta-analyses may be 

influenced by publication bias, where effects within the literature which do not fail-to-reject 

the null hypothesis are not reported95–97. While not 100% reflective of the literature, tools 

are available to provide estimates of such biases97–101. In addition, it is important to keep in 

mind that atlas-based ROI and data-driven ROIs have different advantages. To the degree an 

entire region is changing in volume, an ROI approach may provide enhanced sensitivity. 

However, if changes are variable across the ROI, more focal, or vary across individuals, a 

data-driven approach will likely perform better under these circumstances. Given these 

possibilities and the relatively small effect sizes reported for CON vs SZ individuals across 

studies (≤ 0.3, see Okada (2016) supplementary table 10), subcortical alterations in laterality 

may have been negligible to a degree they were not detected in SBL. It will be important to 

leverage multiple analytic approaches to capture changes via a pluralistic lens.

The results of this pilot SBL approach are the first, to our knowledge, to identify laterality 

differences within paired, but discrete regions of the temporal lobe. The covariation of 

separate subregions within the temporal lobe in the real data may reflect separate sources 

discrete to the numerous functions recruited by the temporal lobes, and relationships these 

regions have with laterality alterations present in patients with SZ compared to TD 

participants. While additional work will be required to validate such brain/behavior 

relationships, this highlights the unique advantage of SBL over traditional approaches in that 

discrete covarying networks are identified.

The earliest work by Wernicke implied that these regions were critical to language, which 

has since expanded to include many aspects of social cognition102,103. Previous work has 

suggested left anterior portions of the STG/MTG are key for language integration, while 

posterior STG/MTG are key to speech production and other cognitive functions in a graded 

manner102,103. It is entirely possible that components 16, 28, and 30 were separated based 

on this graded topology, though future studies will be needed to evaluate this hypothesis. 

Additional behavioral data specific to each language domain (e.g. word generation, 

integration, phoneme clustering) would be necessary to confirm this hypothesis. Previous 

literature and the results presented here would suggest alterations in left-lateralized regions 
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specific to language may explain some of the negative symptoms of schizophrenia, however, 

the significant relationship between negative PANSS scores and the cerebellum may hint 

towards a rarely explored avenue of research in SZ.

The cerebellum has similarly been linked to language and social cognition. Right cerebellar 

resection from cranial fossa tumors produce deficits in complex language tasks and speech 

alterations ranging from mutism to dysarthria104–106. These symptoms are not unlike some 

of the negative symptoms described in the PANSS90. Previous work has suggested 

alterations within Purkinje cells and associated proteins within the cerebellum are altered in 

individuals with schizophrenia, but the impact is not fully understood107,108. Furthermore, 

most of these experiments have focused on motor function, a fraction of which is measured 

by PANSS negative symptom scores. Diffusion weighted imaging tractography studies in 

humans suggest physical connections are present between the cerebellum and contralateral 

MTG109. Additionally, previous work has also found VBM based reductions in white matter 

within temporal regions in patients with SZ110. Gray matter volume SNC results between 

the cerebellum and temporal regions may reflect alterations within this pathway.

While this theory is bolstered by the significant negative relationship between negative 

PANSS symptom scores and the cerebellar component, the relatively small effect sizes for 

diagnosis for the components (pώ2 = 0.012–0.035), suggests the effect may not be very 

strong within the modality of structural MRI. We argue that future work using multimodal 

difference maps (e.g. diffusion anisotropy, fMRI) with fusion approaches such as joint ICA 

or independent vector analysis (IVA) may be able to capture a structural and functional 

interaction(s) within patients with SZ and other populations.

The SBL approach has advantages over traditional ROI and voxel-based approaches in that it 

is can identify covarying spatial laterality patterns, possesses much greater statistical power 

regarding the number of multiple comparison corrections both for ICA components and a 

reduction in the total voxels tested, and is relatively easy to implement within the framework 

of existing ICA tools. SBL component weights appear to reflect differences in hemispheric 

differences scores (translating to laterality), which can serve as a useful tool for post-hoc 

volumetric analyses at the ROI or voxel-level. Further work will be required to evaluate the 

SBL approach for assessing laterality, but these factors suggest the SBL approach is a 

promising direction studying brain laterality.

Limitations:

While the SBL approach does provide the advantage of localization to covarying regions 

across hemispheres, interpreting the direction of alterations requires more refinement. In the 

mirror image, negative values are indicative of greater volume in the right hemisphere, 

positive values in the left hemisphere, and relative differences of 0 indicate a lack of 

laterality. The ICA implementation used for the SBL approach will flip signs when 

estimating components as demonstrated in Figure 4A & 3B. As such, component weights 

(positive or negative) must be carefully calibrated to represent the direction of lateralization. 

This is especially important regarding the cerebellum, as the contralateral connections with 

the cortex may affect the interpretation of the results. As stated in the discussion, the authors 

have suggested that multi-modal data fusion analyses 111 may be able to provide additional 
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information regarding the validity/utility of these effects, and this research venue is 

recommended prior to any definitive conclusions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A) Top Figure: Simulated source 1 (single sphere, red), and source 2 (double sphere, blue). 

Bottom Two Figures: For controls (middle) source 1 is primarily positive while source 2 is 

primarily negative. For patients (bottom) intensities are negative for source 1 and positive for 

source 2. Intensities for raw laterality images are bound between 0.5 and −0.5 for 

visualization. B) Average difference maps by group are displayed for the left hemisphere 

(top most figure), source 1 (middle figure), and source 2 (bottom figure). Values above 0 

(black line) indicate greater volume in the left hemisphere, while values below 0 indicate 

greater GM volume in the right hemisphere. C) Breakdown of independent component 

analysis utilizing the formula X[data] = A[Mixing Matrix] * S[Source Matrix]. Simulated 

difference images (X) are provided and decomposed into component weights (A) and a 

source matrix (S).
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Figure 2: 
Component estimations resolved from SBL on simulated data. The estimation of source 1 

(left) has a distribution and appearance and distribution similar to source 1. The component 

estimated for source 2 (middle) similarly has a distribution and appearance nearly identical 

to source 2, also occurring across multiple regions. The third estimation (right) represents a 

component estimated from sections of Gaussian noise generated as part of the simulated 

data.
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Figure 3: 
Statistically significant voxels after a 5% FDR correction (t(314) = 4.861), with no cluster 

thresholding (k = 0). Warm colors indicate CON > SZ, while cool colors indicate SZ > 

CON. The model used for this analysis treats age, gender, handedness, and data acquisition 

site as nuisance variables. Results are flagged with red circles for visualization.
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Figure 4: 
A) Components significantly associated with CON (Blue) vs SZ. These include component 

7 (red/cerebellum), 16 (blue/superior temporal), 28 (green/postcentral, superior, and middle 

temporal), and 30 (yellow/middle temporal). B) Participants with SZ (red violin) displayed 

significantly lower weightings in component 7 compared to CON participants (blue violin), 

but participants with SZ displayed significantly greater weightings in components 16, 28, 

and 30 compared to CON individuals. C) Average difference score for thresholded (Z = 3) 

components. Zero on the graph is indicated by a dotted line. Positive values indicate greater 

gray matter volume in left hemisphere (L), while negative values indicate greater gray matter 

volume in the right (R) hemisphere. For component 7, participants with SZ exhibit greater 

left hemispheric gray matter, while CON participants exhibit right laterality. For components 

16, 28, and 30, gray matter is larger in the right hemisphere, but the volume is significantly 

increased in the patients with SZ compared to CON participants. Hemispheric displays are 

organized relative to participants with SZ.
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Figure 5: 
Spearman Rank correlation between the residuals of PNASS total negative symptom scores 

and laterality component 7 weights when accounting for differences in acquisition sites. The 

line is the linear correlation between ranks for residuals of component 7 weights and total 

negative symptoms from the PNASS. The histograms on the x and y axis illustrate the 

(skewed) distributions of the residuals of the variables accounting for data acquisition site.
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Figure 6: 
Structural FNC matrix of components 7, 16, 28, and 30 (left). Nodal illustration of all 4 

components, with structural connectivity between component 7 and 30 (* on matrix and 

cyan on nodal illustration) statistically significant following a Holm correction for multiple 

comparisons.
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Table 1.

Participant demographic information and comparisons

SZ Patients Typical Controls Test Statistic p-value

Age Range 18–62 19–60 W = 14169 0.29

M/F 129/38 113/46 χ2= 1.32 0.25

Handedness R/L/A 152/11/4 151/6/2 χ2= 1.95 0.39

Median PNASS Negative 14 Range: 7–39

Median PNASS Positive 14 Range: 7–33

Note:

*
Indicates statistical significance at or below the 0.05 level.

W represents the rank-difference statistic from a Wilcoxon rank-sum test.

χ2 Represents the goodness-of-fit from a Pearson chi-squared test.
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