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ABSTRACT
Biclustering is widely used in different kinds of fields including
gene information analysis, text mining, and recommendation sys-
tem by effectively discovering the local correlation between sam-
ples and features. However, many biclustering algorithms will col-
lapse when facing heavy-tailed data. In this paper, we propose
a robust version of convex biclustering algorithm with Huber
loss. Yet, the newly introduced robustification parameter brings
an extra burden to selecting the optimal parameters. Therefore,
we propose a tuning-free method for automatically selecting the
optimal robustification parameter with high efficiency. The sim-
ulation study demonstrates the more fabulous performance of
our proposed method than traditional biclustering methods when
encountering heavy-tailed noise. A real-life biomedical application
is also presented. The R package RcvxBiclustr is available at
https://github.com/YifanChen3/RcvxBiclustr.
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1. Introduction

Biclustering, which was first proposed by Hartigan et al. [11], tries to cluster rows and
columns of a data matrix simultaneously. Lately, biclustering methods have been applied
to a wide range of fields for data analysis and visualization such as biomedical data analy-
sis, text mining, and recommendation system. To elaborate, in the domain of biomedical
data analysis, researchers seek to identify patterns underlying the high-dimensional genetic
data, which illustrate the local correlation between gene expression and patients, thus
identifying subtypes of a certain disease [4,7,19,20,32,34]. In text mining, biclustering
algorithms can recognize similar document subgroups by the local correlation between
documents and words [9,10]. In recommendation system, biclustering can be used to dis-
cover the local correlation between a group of certain customers and a particular category
of products, and therefore improve the efficiency of recommendations [1,13].

In this paper, we focus on proposing a biclustering algorithm regardless of the heavy-
tailed noise. The proposed algorithm can be used to detect the local correlation in the lung
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cancer microarray data. Lung cancer has several different subtypes. Our goal is to identify
whether some genes have significant correlations with certain cancer subtypes. In other
words, are some genes responsible for causing or restraining certain kinds of lung cancer?
This is of great importance in both theoretical medical research and application. If we suc-
ceed in finding some significant correlations between genes and cancer subtypes, doctors
can use this result as a reference to further determine personalized treatment strategies
according to specific subtypes.

Recently, sparse biclustering has been increasingly popular in the field of statistics.
Meanwhile, this kind of algorithm has three subgroups of derivatives: sparse bicluster-
ing based on K-means, sparse biclustering based on SVD, and convex biclustering. Tan
andWitten [32] extended the one-way K-means to two-way, thus proposing the SparseBC
algorithm. However, since it is the derivative algorithm of one-way K-means, it shares the
same limitation as one-way K-means. SparseBC takes a greedy approach, so it is sensi-
tive to the initialization and can only reach a local optimal. Lee et al. [20] proposed a
biclustering algorithm, SSVD, based on SVD innovatively. Sill et al. [27] adapted a robust
tuning parameter based on SSVD and proposed the S4VD algorithm in consideration of
data perturbance. Nevertheless, none of the methods above solves the two primary prob-
lems: sensitivity to initialization and local optimal. Chi et al. [7] proposed the convex
biclustering algorithm (COBRA), which can be viewed as a convex optimization problem,
therefore global optimal can be guaranteed and sensitivity to initialization exists no more.
COBRA doesn’t need to designate the number of biclusters like SparseBC nor the number
of layers like SSVD. It only has one tuning parameter, the coefficient of penalty term, λ.
Consequently, the process of tuning the parameter is relatively trivial and efficient.

However, the effectiveness of COBRA will significantly reduce when the data contains
heavy-tailed noise. Specifically, the distribution of a random variable X with distribution
function F is said to have a heavy tail if the moment generating function of X, MX(t), is
infinite for all t>0, namely,

∫ +∞
−∞ etx dF(x) = ∞ for all t>0.Moreover, heavy-tailed noise

is inevitable in high-dimensional data, so it is unrealistic to expect high-dimensional data
in the fields of finance,macroeconomics, and biomedical to have sub-Gaussian distribution
[2,8,25,28,30]. Huber loss [15] was proposed to mitigate the negative influence of outliers
with the following form:

Lτ (a) =

⎧⎪⎨
⎪⎩
1
2
a2, |a| ≤ τ

τ |a| − 1
2
τ 2, |a| > τ

Notice that Huber loss is exactly squared error loss when |a| ≤ τ . The robustness comes
from the part that |a| > τ , where the absolute error loss serves as a buffer that controls the
rising speed of squared error loss. Huber regression is also proposed to address the heavy-
tailed noise problem [14]. Yohai and Maronna [38]; Mammen [23]; He and Shao [12] did
thorough research on the asymptotic properties of M-estimators. On the other hand, for
the non-asymptotic point of view, we refer to [6,18,29,31]. Liu et al. [21] proposed robust
convex clustering, which adapted the cost function and weight function of convex cluster-
ing into Huber loss, thus making it perform well when facing data containing heavy-tailed
noise. Based on this thought, we extend this idea into convex biclustering by replacing the
squared error term in the cost function and weight function with Huber loss.
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Yet, this adaptation introduces a new parameter, the robustification parameter in Huber
loss, τ , making not only the process of tuning the parameters time-consuming but also the
parameter hard to determine. Sun et al. [29] proposed the adaptive Huber regression for
robust estimation and inference whose robustification parameter is adapted to the sample
size, dimension, and moments. Wang et al. [35] proposed a tuning-free method for Huber
regression. Accordingly, we extend this idea into our method and put the tuning of τ into
the iteration of the algorithm. Therefore, the proposed algorithm won’t be needing to tune
the parameter τ manually when it comes to simulation and application, which speeds up
the process and increases the accuracy.

The rest of this paper is organized as follows. In Section 2, we propose a Robust Convex
BiClustering algorithm (RCBC). Section 3 proposes a tuning-free method for selecting a
desirable τ for the algorithm, and demonstrates the cross-validation procedure we use to
select the penalty parameter λ. Section 4 contains the result of our simulation study. In
Section 5, we implement RCBC on gene data for an application. And finally, the discussion
is in Section 6.

2. Robust convex biclustering

We seek to identify a checkboard pattern that reflects the local correlation between the
features and the samples. Let X ∈ R

n×p be a data matrix with n samples and p features
and U ∈ R

n×p be the estimated matrix generated by minimizing the following convex
optimization problem

Fλ,τ (U) = Lτ (X− U)+ λ
[
�W(U)+�W̃(UT)

]

where Lτ (X− U) =∑n
i=1

∑p
j=1Lτ (Xij − Uij), �W(U) =∑

i<j wij‖U·i − U·j‖2, and
U·i(Ui·) denotes the ith column(row) of the matrix U. The above equation is a fused lasso
problem in which the cost function represents how wellU approximatesX and the penalty
term tends tomake close elements fuse with each other from both directions. The nonneg-
ative tuning parameter λ controls the tradeoff between the cost function and the penalty
term. When λ = 0, Fλ,τ (U) reaches its optimal whenU = X. As λ increases, the close ele-
ments begin to coalesce, and the checkboard pattern starts to merge.When λ is sufficiently
large, U will tend to shrink into one bicluster with all the entries being a constant.

The cost function is a robust adaptation of squared error loss. In real life, data cannot
be perfect, and heavy-tailed noise, which has a significant negative influence on squared
error loss, is inevitable. Therefore, a robust version of convex biclustering will provide us
with wider application fields compared to the normal version. We choose the Huber loss
[15] to address the heavy-tailed noise.

The penalty term is the same as convex biclustering [7], and the weight function is also
adapted with Huber loss as follows:

wk
ii∗ = Ik(i,i∗)exp

⎧⎨
⎩−ξ

⎡
⎣∑
j∈D1

(Xi∗j − Xij)
2 +

∑
j∈D2

δ2

⎤
⎦

⎫⎬
⎭

where D1 = {j : |Xi∗j − Xij| ≤ δ}, D2 = {j : |Xi∗j − Xij| > δ}, and Ik(i,i∗) is the indicator
term which is 1 if i∗ is one of i’s k nearest neighbors and 0 otherwise. Note that by
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implementing the indicator function, we successfully make the weight function sparse.
The indicator function Ik(i,i∗) here significantly increases the efficiency and accuracy of
the algorithm by ignoring most of the useless uncorrelated rows(columns) and mak-
ing the weight function sparse. Likewise, simply substitute X with XT can we get w̃k

ii∗ .
This weight function has a valuable property that assigns greater weights to contami-
nated rows(columns) that belong to the same cluster than to rows(columns) that belong
to different clusters. In the later simulation and application sections, we set ξ = 0.001 and
δ = 1.345σ̂ , where σ̂ denotes the median absolute deviation (MAD) estimator of X, as
default.

After analyzing the formula of robust convex biclustering, we now come to the phase of
solving it. Notice that if the penalty term only has regularization in one direction instead of
penalizing both rows and columns, the solution will be much easier with the Alternating
Direction Method of Multipliers (ADMM) [5]. However, penalizing both directions is of
necessity. Dykstra-like proximal algorithm (DLPA) [3] was proposed to tackle this kind of
problem by iteratively solving two convex optimization problems.

Typically, DLPA solves problems with the form

min
U

1
2
‖X− U‖2F + f (U)+ g(U)

where f and g are lower semicontinuous and convex function, and ‖ · ‖F is the Frobenius
norm. Let f = λ�W, g = λ�W̃. The extension from squared error loss to Huber loss is
natural as the latter is also convex. The proximal mapping in the original DLPA algorithm
thus becomes

argmin
U

Lτ (X− U)+ λ�W(U)

which happens to be the formula of robust convex clustering.
Therefore, the thought of our algorithm is straightforward. Informally, we just perform

one-way robust convex clustering algorithms to rows and columns respectively in one iter-
ation and then iterate until convergence. Yet, some details still need to be clarified. Let
U(m) and R(m) be the estimated mean matrix at themth iteration ofX andXT respectively.
P(m) reflects the discrepancy between U(m) and RT(m), and likewise, Q(m) reflects the dis-
crepancy between UT(m) and R(m). To make things clear, U(m), P(m) ∈ R

n×p while R(m),
Q(m) ∈ R

p×n. Instead of simply clustering rows and columns in each iteration, we actually
cluster U(m) + P(m) and R(m) +Q(m). Additionally, the stop criterion is trivial. The iter-
ation will stop until ‖U(m) − RT(m)‖F < ε, where ε > 0 is the tolerance of this iteration
which is efficiently small. The pseudocode of our algorithm is shown in Algorithm 1.

The one-way robust convex clustering algorithm is almost the same as Liu et al. [21]
proposed except for the weight function which is adjusted to be sparse as we mentioned
before. Typically, this one-way algorithm solves the constrained optimization problem

min
U,W∈Rn×p,V∈R(n2)×p

Lτ (X−W)+ λ
∑
i<j

wij‖Vij‖2

subjectto Ui =Wi and Ui − Uj = Vij for all i < j

where V is an
(n
2
)× p matrix, and Vij denotes the ijth row of matrix V. Let E be an

(n
2
)×

nmatrix and (EU)ij = Ui − Uj. Consequently, the corresponding augmented Lagrangian
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Algorithm 1 Robust Convex Biclustering Algorithm
1: Initialization: U(0)← X,R(0)← XT ,P(0)← 0,Q(0)← 0,m← 0
2: repeat
3: m← m+ 1
4: R(m)← Robust_Convex_Clustering(UT(m−1) + PT(m−1))
5: P(m)← P(m−1) + U(m−1) − RT(m)

6: U(m)← Robust_Convex_Clustering(RT(m) +QT(m−1))
7: Q(m)← Q(m−1) + R(m) − UT(m)

8: until ‖U(m) − RT(m)‖F < ε

Output: U(m)

function will be

F(U,W,V,Y,Z) = Lτ (X−W)+ λ
∑
i<j

wij‖Vij‖2

+ ρ

2
‖V-EU+Y‖2F +

ρ

2
‖W-U+Z‖2F (1)

where U,W,V are primal variables, Y ∈ R(n2)×p,Z ∈ R
n×p are dual variables, and ρ is

a nonnegative tuning parameter for the ADMM algorithm. The update procedure for
U,W,V,Y, and Z is as follows:

U(m) =
(
ETE+ I

)−1 [
ET

(
V(m−1) − Y(m−1))+W(m−1) + Z(m−1)]

W(m)
ij =

⎧⎨
⎩

[
Xij + ρ

(
U(m)
ij − Z(m−1)

ij

)]
/(1+ ρ),

ρ

1+ ρ

∣∣∣Xij −
(
U(m)
ij − Z(m−1)

ij

)∣∣∣ ≤ τ

Xij + soft
(
U(m)
ij − Z(m−1)

ij − Xij, τ
ρ

)
, o.w.

V(m)
ij =

⎡
⎣1− λwij

ρ‖U(m)
i − U(m)

j − Y(m−1)
ij ‖2

⎤
⎦
+

(
U(m)
i − U(m)

j − Y(m−1)
ij

)

Y(m)
ij = Y(m−1)

ij − ρ
(
U(m)
i − U(m)

j − V(m)
ij

)

Z(m) = Z(m−1) − ρ
(
U(m) −W(m)

)
(2)

where soft(a, b) = sign(a)max(|a| − b, 0) is the the soft-thresholding operator, and [a]+ =
max(a, 0). The detailed derivation of the one-way algorithm can be found in Appendix.

3. Tuning parameters

3.1. Tuning-freemethod for selecting τ

The proposed RCBC has a convincing performance in dealing with heavy-tailed noise.
However, the newly introduced robustification parameter τ brings challenges to tuning
the hyperparameters with two-dimensional grid search and cross-validation, as tuning two
parameters will be much more computationally demanding compared to just tuning one.
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In order to speed up the process of selecting the optimal parameters, we proposed a tuning-
free method for selecting τ .

An empirical selection for τ in Huber’s original proposal is τ = 1.345σ , which retains
95% of the asymptotic efficiency of the estimator for normally distributed data [16]. Our
proposed τ is more correlated to the data thus being called data-driven and adaptive. In
robust regression problems, a desirable τ should adapt to sample size n, dimension p, and
moments v for an optimal trade-off between bias and robustness [29]. Our biclustering
problem can also be viewed as a high-dimensional regression problem solved by fused
lasso.

Lτ (vec(X)−D× vec(U))+ λ

⎡
⎣∑

i<j
wij‖U·i − U·j‖2 +

∑
i<j

w̃ij‖UT·i − UT·j‖2
⎤
⎦

where vec(X), vec(U) ∈ R
np×1 are vectors that come from stretching thematrices, andD ∈

R
np×np is an identity matrix that serves as the design matrix of the regression problem.
Therefore, the formation of our biclustering problem is almost the same as the high-

dimensional adaptive Huber regression in [35] which is guided by non-asymptotic devi-
ation analysis. Accordingly, we add a procedure for automatically updating τ in the
original RCBC algorithm, namely updating τ and solving one-way clustering problems
of two directions simultaneously in one iteration. Using the previous estimatedU(m−1), we
compute τ (m) as the solution to

1
np− s(m−1)

np∑
i=1

min{(vec(X)i − vec(U(m−1))i)2, τ 2}
τ 2

= log(np× np)
np

(3)

where s(m−1) = min{‖V‖0r , ‖Ṽ‖0r},V ∈ R(n2)×p, Ṽ ∈ R(p2)×n, and ‖ · ‖0r represents the
number of rows of a matrix that not all elements are 0. See the detailed derivation and
desirable statistical properties of Equation (3) in [35].

The pseudocode for this tuning-free version of RCBC is given in Algorithm 2.

Algorithm 2 Robust Convex Biclustering with Tuning-Free Method
1: Initialization: U(0)← X,R(0)← XT ,P(0)← 0,Q(0)← 0,m← 0
2: repeat
3: m← m+ 1
4: Update R(m),P(m),U(m),Q(m) as Algorithm 1
5: Update τ (m) based on Equation (9)
6: until ‖U(m) − RT(m)‖F < ε

Output: U(m)

3.2. Tuning λwithmissing data

Our proposed RCBC algorithm has only one tuning parameter λ, which is also our advan-
tage in the process of selecting the tuning parameter compared to other algorithms. As for
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the method of selecting the parameter of this unsupervised problem, we refer to the classic
missing data method [7,32,36,37], which can recast biclustering as a supervised learning
problem. Here, it is detailed as Algorithm 3:

Algorithm 3 Selecting tuning parameter λ with missing data
1: for all candidate λ do
2: for k = 1 : T do
3: Randomly set np/T elements of the matrix to be missing
4: Impute the mean of non-missing values to construct a new matrix Xk

5: Perform our proposed algorithm on Xk

6: Calculate the mean squared error

∑
Xij is missing

(Xij −Mij)
2

np/T

whereM is the estimated bicluster mean matrix
7: end for
8: Calculate the average of the T mean squared errorsMSEλ

9: end for
10: Select the optimal λ based on the lowestMSEλ

Normally, T in Algorithm 3 is set to be 10 to perform 10-fold cross-validation.

4. Simulation

In this section, we compare the performance of our tuning-free biclustering algorithm
(TF-RCBC), our non-tuning-free biclustering method (RCBC), COBRA [7], and spBC
[32] in ten simulation settings. Our proposed methods are available as an R package at
https://github.com/YifanChen3/RcvxBiclustr. COBRA and spBC can be implemented in
R packages cvxbiclustr and sparseBC respectively on CRAN.

To evaluate the quality of the clustering results, we use the following metrics: the Rand
index (RI), the adjusted Rand index (ARI), and the variation of information (VI). The RI
[26] is the most popular measure of the similarity between two data clusterings. Neverthe-
less, the RI can’t ensure a result that is close to 0 when the clustering is utterly arbitrary.
Accordingly, we also use the ARI [17], which corrects the flaws of RI in some way. The
Rand index takes values in the range of 0 to 1, and a value that is close to 1 indicates good
agreement between the two partitions. The ARI takes values from -1 to 1, where 1 indi-
cates perfect agreement, 0 indicates random agreement, and -1 indicates complete different
between two clusters. Additionally, we compared clustering results using the VI [24]. The
VI is a criterion derived from information theoretic principles for comparing two cluster-
ings of a data set. The closer its value is to the minimum value of 0, the higher similarity
between the true classification situation and the clustering result.

https://github.com/YifanChen3/RcvxBiclustr
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Throughout our simulation studies, we simulate a 100× 100 data matrix with a

checkerboard bicluster structure, where xij
i.i.d∼ N(μrc, σ 2) and σ = 2. To assess the per-

formance as the number of column and row clusters varied, we generated data with
different numbers of biclusters. The first case is the generation of data using 4× 4 biclus-
ters, where μrc took on one of 21 equally spaced values between −5 and 5, namely
μrc∼Uniform{−5,−4.5, . . . , 4.5, 5}. And the second case is the generation of data using
5× 5 biclusters, where μrc took on one of 25 equally spaced values between -6 and 6,
namelyμrc∼Uniform{−6,−5.5, . . . , 5.5, 6}. To investigate the robustness and the effective-
ness of these biclustering algorithms, we simulated the heavy-tailed randomnoise from the
following five distribution settings and added it to each element of the data matrix:

• Cauchy distribution C(γ , x0) with γ = 1.5 and x0 = 0
• Log-normal distribution LN(μ, σ 2) with μ = 0 and σ = 2
• T distribution t(ν) with degree of freedom ν = 1
• Pareto distribution Pareto(xm,α) with scale xm = 1 and shape α = 2
• Skewed generalized t distribution [33] sgt(μ, σ 2, λ, p, q), where mean μ = 0, variance

σ 2 = q/(q− 2) with q = 2.5, shape p = 2, and skewness λ = 0.75

As for the parameters in the weight function, we simply set k = 5 for both column weight
and row weight. Also, we set τ = 1.345σ̂ , where σ̂ denotes the median absolute deviation
(MAD) estimator of X, in the non-tuning-free method’s weight function. We calculated
the average mean and standard deviation of RI, ARI, and VI for 50 repeated runs of our
proposed methods, COBRA, and spBC. The results for different simulation settings are
summarized in Table 1.

Table 1 demonstrates the average mean and standard deviation of RI, ARI, and VI in
50 replicated runs. To make things clear, although all of our simulation settings are heavy-
tailed distributions, the level of heaviness is different. Accordingly, we can separate all five
heavy-tailed distribution settings into two groups: low noise group and high noise group.
Low noise group contains Pareto distribution and skewed generalized t distribution, while
high noise group contains Cauchy distribution, log-normal distribution, and t distribution.
In low noise scenarios, even COBRA and spBC, which don’t have robust properties, can
have a not bad performance.However, when the tails of the noise are becoming increasingly
heavier, like in high noise group, COBRA and spBC will hardly be able to recover checker-
board patterns and consequently collapse. Despite the poor performance of COBRA and
spBC, our proposed RCBC shows a consistently desirable and robust performance in both
low and high noise scenarios. Also, we can see that the effectiveness of tuning-free and
non-tuning-free RCBC is very close and similar to each other. Later, we will show an image
example of different types of the collapse of COBRA and spBC, along with our proposed
RCBC’s good performance.

Figure 1 can give us an intuitive illustration of COBRA and spBC’s bad performance
when facing the data matrix contaminated by extremely heavy-tailed distributions. The
estimated mean matrix of COBRA (Figure 1(b)) is almost the same as the original data
matrix (Figure 1(a)), which represents the collapse of COBRA in high noise scenario.
Moreover, the estimated mean matrix of spBC (Figure 1(c)) is literally a constant matrix,
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Table 1. Results of tuning-free robust convex biclustering (TF-RCBC), non-tuning-free robust convex
biclustering (RCBC), COBRA, and spBC in five different distributions of heavy tail noise and two different
settings of checkerboard patterns.

RI ARI VI

4× 4 TF-RCBC Cauchy 0.9976 (0.0026) 0.9784 (0.0239) 0.0341 (0.0330)
log-normal 0.9995 (0.0007) 0.9955 (0.0059) 0.0094 (0.0121)

t 0.9995 (0.0005) 0.9961 (0.0046) 0.0080 (0.0088)
Pareto 0.9998 (0.0003) 0.9979 (0.0028) 0.0048 (0.0059)
sgt 0.9997 (0.0003) 0.9972 (0.0030) 0.0059 (0.0060)

RCBC Cauchy 0.9982 (0.0025) 0.9836 (0.0230) 0.0284 (0.0357)
log-normal 0.9981 (0.0029) 0.9826 (0.0266) 0.0291 (0.0395)

t 0.9989 (0.0018) 0.9902 (0.0163) 0.0173 (0.0255)
Pareto 0.9998 (0.0002) 0.9980 (0.0021) 0.0046 (0.0045)
sgt 0.9994 (0.0008) 0.9947 (0.0070) 0.0108 (0.0130)

COBRA Cauchy 0.9374 (0.0002) 0.0015 (0.0009) 0.7156 (0.0084)
log-normal 0.9375 (0.0001) 0.0009 (0.0006) 0.7109 (0.0069)

t 0.9360 (0.0016) 0.0052 (0.0025) 0.7278 (0.0130)
Pareto 0.9522 (0.0280) 0.6074 (0.1195) 0.3487 (0.0820)
sgt 0.9593 (0.0438) 0.7696 (0.1942) 0.1792 (0.1353)

spBC Cauchy 0.0624 (0.0000) 0.0000 (0.0000) 1.0000 (0.0000)
log-normal 0.0624 (0.0000) 0.0000 (0.0000) 1.0000 (0.0000)

t 0.0624 (0.0000) 0.0000 (0.0000) 1.0000 (0.0000)
Pareto 0.7386 (0.3202) 0.6787 (0.1920) 0.4350 (0.3195)
sgt 0.9848 (0.0248) 0.9203 (0.1147) 0.0572 (0.0823)

5× 5 TF-RCBC Cauchy 0.9995 (0.0008 0.9931 (0.0105) 0.0109 (0.0158)
log-normal 0.9990 (0.0016) 0.9867 (0.0221) 0.0196 (0.0284)

t 0.9996 (0.0009) 0.9942 (0.0118) 0.0091 (0.0161)
Pareto 0.9997 (0.0002) 0.9963 (0.0030) 0.0068 (0.0055)
sgt 0.9998 (0.0004) 0.9973 (0.0047) 0.0048 (0.0081)

RCBC Cauchy 0.9996 (0.0005) 0.9947 (0.0064) 0.0087 (0.0093)
log-normal 0.9983 (0.0022) 0.9769 (0.0316) 0.0330 (0.0412)

t 0.9995 (0.0014) 0.9935 (0.0197) 0.0094 (0.0257)
Pareto 0.9997 (0.0002) 0.9967 (0.0027) 0.0058 (0.0046)
sgt 0.9995 (0.0007) 0.9934 (0.0112) 0.0096 (0.0137)

COBRA Cauchy 0.9600 (0.0001) 0.0021 (0.0012) 0.6642 (0.0083)
log-normal 0.9600 (0.0001) 0.0012 (0.0007) 0.6616 (0.0067)

t 0.9589 (0.0015) 0.0070 (0.0034) 0.6765 (0.0189)
Pareto 0.9815 (0.0080) 0.7199 (0.0967) 0.2422 (0.0616)
sgt 0.9961 (0.0038) 0.9560 (0.0429) 0.0191 (0.0180)

spBC Cauchy 0.0399 (0.0000) 0.0000 (0.0000) 1.0000 (0.0000)
log-normal 0.0399 (0.0000) 0.0000 (0.0000) 1.0000 (0.0000)

t 0.0399 (0.0000) 0.0000 (0.0000) 1.0000 (0.0000)
Pareto 0.8290 (0.2748) 0.7235 (0.1481) 0.3388 (0.2904)
sgt 0.9847 (0.0162) 0.8531 (0.1409) 0.0899 (0.0787)

Notes: Each simulation is replicated 50 times, and the means are shown along with the standard deviations in the
parenthesis. In each distribution of each setting, the best performance is bolded.

which represents another type of collapse of spBC. These two types of collapse of the biclus-
tering algorithms can also be reflected by Table 1 where the ARI of COBRA is close to 0
and the ARI of spBC is utterly 0 in high noise scenarios. Additionally, Figure 1 also demon-
strates how our proposed RCBC perfectly recovers the underlying checkerboard patterns
in this data matrix.

We also compare the speed of our proposed tuning-free method and non-tuning-free
method. Figure 2 is a boxplot reflecting the speed of two algorithms which are rerun 10
times with LN(0, 22) noise. Although the tuning-free method is a little bit slower than the
non-tuning-free one because of some extra iterative procedures in the algorithm, it does
save a lot of time when selecting the optimal parameters by CV (cross-validation). The
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Figure 1. Example of the performance of four compared algorithms when the data matrix is contam-
inated by t distribution with degree of freedom being 1. (a) Original data matrix. (b) Result matrix of
COBRA. (c) Result matrix of spBC. (d) Result matrix of RCBC.

Figure 2. Boxplot of the speed of our proposed tuning-free method and non-tuning-free method. Row
label represents the time needed for running an algorithm in seconds. Column label represents the num-
ber of rows (n) and columns (p) of the data matrix at the same time. Note that in this simulation, all the
data matrices are square matrices, i.e. the number of rows equals the number of columns.

CV procedure with missing data is very computationally demanding. Therefore, reducing
the number of tuning parameters from two to one is great computational simplicity and
efficiency.

5. Application

We now consider applying our proposed RCBC to real-life microarray data. In this appli-
cation domain, we are trying to simultaneously cluster genes and cancer subtypes. To be
specific, biclustering algorithms help to identify genes that are significantly expressed for
certain cancer subtypes. Lung cancer gene expression data is a very popular and classic
example in biclustering problems [7,20,32]. The dataset contains 56 samples and 12,625
genes. All 56 subjects can be divided into the following four subgroups:

• Normal: normal subjects(Contains 17 samples)
• Carcinoid: pulmonary carcinoid tumors (Contains 20 samples)
• Colon: colon metastases (Contains 13 samples)
• Small Cell: small cell carcinoma (Contains 6 samples)
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Figure 3. Heatmap of the result from our proposed RCBC on a subset of the lung cancer data consisting
of the 250 genes with the highest variance. Column label is the cancer subtype.

Wehave selected the 250 genes with the greatest variance.When it comes to performing
our algorithm on the data, we set k = 10 for row weight and k = 8 for column weight. A
heatmap of the result of our proposed method is shown in Figure 3.

Figure 3 vividly illustrates our success in finding the local correlation between cancer
subtypes and genes. Checkerboard patterns emerge, we can easily identify three biclus-
ters and assign each of them to normal subjects, pulmonary carcinoid tumors, and colon
metastases respectively. To elaborate, the genes in the lower part have a larger mean in
pulmonary carcinoid tumors, which may be interpreted as highly expressed in this can-
cer subtype. Likewise, the genes in the middle and upper part have larger means in colon
metastases and normal subjects respectively, which may represent the high expression in
these two subtypes respectively.

Moreover, in order to verify the robust feature of RCBC in the application, we add t(1)
noise and Pareto(1, 2) noise to the lung cancer gene expression data. Then, we implement
COBRA and RCBC both with k = 5 for row weight, k = 8 for column weight on t(1)
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Figure 4. Comparison of the performance of COBRA and RCBC on lung cancer gene expression data
with heavy-tailed noise. Column label is the cancer subtype. (a) Heatmap of COBRA with t(1) noise. (b)
Heatmap of RCBC with t(1) noise. (c) Heatmap of COBRA with Pareto(1, 2) noise. (d) Heatmap of RCBC
with Pareto(1, 2) noise.

contaminated data and k = 5 for rowweight, k = 7 for columnweight on Pareto(1, 2) con-
taminated data. Hopefully, we will still see our proposed RCBC more or less outperform
COBRA. We report the result of these two algorithms in Figure 4.

From Figure 4, we can see that while COBRA almost collapse on heavy-tailed gene
expression data, RCBC could still have a desirable performance on the same dataset. We
can still easily identify biclusters that demonstrate the local correlation of lung cancer sub-
type and gene expression. Furthermore, the detailed correlation between genes and cancer
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subtypes is almost the same as the result on the original uncontaminated dataset. There-
fore, we can say that although the data contains heavy-tailed noise, RCBC is still robust
and accurate.

6. Discussion

In this paper, we proposed a robust version of convex biclustering (RCBC) to deal with
the heavy tail noise in real life. The robust property is achieved by substituting the square
loss with the Huber loss. Additionally, we proposed a tuning-free method for selecting
the robustification parameter τ in order to speed up the procedure of finding the optimal
parameters. We’ve shown that in extremely heavy tail scenarios, our proposed algorithm
outperforms its ancestor COBRA to a large extent. Also, we manifested the feasibility of
applying our algorithm to real-life biomedical data.

Despite the excellent result of our simulation study, there are some aspects to be
improved. First, the speed of our algorithm is not very competitive compared to other
biclustering algorithms. Accordingly, there could be some improvement in the derivation
of optimization. Second, our proposed method does not allow for overlapping biclusters,
i.e. each element in the data matrix can only be in one bicluster. However, although some
advantages exist for overlapping biclusters in certain contexts [22], it is very complex and
hard to interpret [32].
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Appendix. Derivation of (2)

In (1), we already have the augmented Lagrangian function. We recast the function here again:

F(U,W,V,Y,Z) = Lτ (X−W)+ λ
∑
i<j

wij‖Vij‖2

+ ρ

2
‖V-EU+Y‖2F +

ρ

2
‖W-U+Z‖2F

By the ADMM algorithm, the update for U,W,V,Y and Z can be derived as follows:

(a) Derivation for the update of U:

U(m) = argmin
U

F
(
U,W(m−1),V(m−1),Y(m−1),Z(m−1))

This optimization problem can be write as:

min
U

ρ

2
‖V-EU+Y‖2F +

ρ

2
‖W-U+Z‖2F

The solution to this problem is trivial by taking the matrix derivative of U:

U =
(
ETE+ I

)−1 [
ET(V+ Y)+W+ Z

]

(b) Derivation for the update of W:

W(m) = argmin
W

F
(
U(m),W,V(m−1),Y(m−1),Z(m−1))

Ignore the uncorrelated variables, and the problem is equivalent to

min
W

Lτ (X−W)+ ρ

2
‖W-U+Z‖2F

We can solve the above problem element-wise:

min
Wij

Lτ (Xij −Wij)+ ρ

2
(Wij − Uij + Zij)2

(i) When |Xij −Wij| ≤ τ :
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The Huber loss will become square error loss, so the corresponding problem will be:

min
Wij

1
2
(Xij −Wij)

2 + ρ

2
(Wij − Uij + Zij)2

Take the derivative ofWij and set the first order derivative of the above formula to be
0 can we get

Wij = Xij + ρ(Uij − Zij)
1+ ρ

Take this result into the condition |Xij −Wij| ≤ τ , we can have a more useful
condition:

ρ

1+ ρ

∣∣∣Xij −
(
U(m)
ij − Z(m−1)

ij

)∣∣∣ ≤ τ

(ii) When |Xij −Wij| > τ , or equivalent to ρ
1+ρ |Xij − (U(m)

ij − Z(m−1)
ij )| > τ :

The corresponding optimization problem will become:

min
Wij

τ |Xij −Wij| + ρ

2
(Wij − Uij + Zij)2

We can rewrite it into the form that can be easily solved by the soft-thresholding
operator:

min
Wij−Xij

1
2

[
(Wij − Xij)− (Uij − Zij − Xij)

]2 + τ

ρ
|Wij − Xij|

Thus

Wij = Xij + soft
(
Uij − Zij − Xij,

τ

ρ

)

where soft(a, b) = sign(a)max(|a| − b, 0) is the the soft-thresholding operator.
(c) Derivation for the update of V:

V(m) = argmin
V

F
(
U(m),W(m),V,Y(m−1),Z(m−1))

By ignoring the uncorrelated variables and rewrite the problem row-wise, we have:

min
Vij

λwij

ρ
‖Vij‖2 + 1

2
‖Vij − (Ui − Uj)+ Yij‖22

which can be viewed as a group lasso problem with the following solution:

Vij =
[
1− λwij

ρ‖Ui − Uj − Yij‖2
]
+

(
Ui − Uj − Yij

)

where [a]+ = max(a, 0)
(d) Derivation for the update of Y and Z:

Y(m)
ij = Y(m−1)

ij − ρ
(
U(m)
i − U(m)

j − V(m)
ij

)

Z(m) = Z(m−1) − ρ
(
U(m) −W(m)

)
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