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Abstract 

Studies have shown that individual differences in word reading 

can be observed for both skilled and novice readers. Several 

factors that could cause individual differences including 

reading experience, reading capacity, and oral language have 

been investigated. However, little is known about the influence 

of reading instruction on individual differences in reading. 

Given that early reading, training is critical to help children 

become proficient readers, the influence of reading instruction 

on subsequent reading behaviours should also be well 

understood. Thus, in this study, we investigated the 

relationships between reading instruction and individual 

differences in reading using computational models of reading. 

The model was exposed to a sound-focused, meaning-focused 

or balanced training scheme. We quantified the model’s 

reliance on accessing semantics for reading, as an index of 

individual differences in semantic reliance (SR). The 

simulation results demonstrated that the degree of SR depended 

on reading instruction. Meaning-focused training resulted in 

higher SR, and that was followed by balanced training and then 

sound-focused. Moreover, SR was able to predict the model’s 

word reading performance and interacted with other 

psycholinguistic reading factors including frequency, 

consistency, and orthographic neighbourhood size. 

Keywords: reading instruction; individual differences; 
semantic reliance; computational modelling; word learning. 

Introduction 

Reading is a critical language skill allowing us to 

communicate with symbols and to spread knowledge widely. 

However, the process of training children (novice readers) to 

become skilled readers is nontrivial. That is because learning 

to read requires children to master mappings between 

orthographic (O), phonological (P), and semantic (S) forms 

of words. For decades, the issue concerning what is effective 

early reading instruction has been a hot topic in reading 

literature (e.g., Nation, 2009; Rayner et al., 2001; Taylor, 

Davis, & Rastle, 2017). For learning to read English words, 

there are two primary types of reading instruction. One is 

phonics-style training, in which children are instructed to 

learn intensively about the relationships between print and 

sound. The other one is meaning-focused training, in which 

children are instructed to learn intensively about the 

relationships between print and meaning. 

The basis of phonics-style training originates from the 

nature of the English writing system. There are relatively 

systematic spelling-to-sound mappings than spelling-to-

meaning mappings. Consequently, phonics-style training can 

help children exploit the systematicity of letters and sounds 

and is easier to learn. Various evidence from experimental, 

neuroimaging (Taylor, Davis, & Rastle, 2017), and 

computational studies (Chang et al. 2020) have shown that 

phonics-style training is superior to meaning-focused training. 

For instance, using an artificial word learning paradigm, 

Taylor et al. (2017) demonstrated that participants receiving 

orthography-to-phonology (OP) focused mappings achieved 

better accuracy and speed in reading compared to those 

participants receiving orthography-to-semantics (OS) 

focused mappings. The benefit of phonics training was not 

only observable in the reading-aloud task but also in the 

reading comprehension task. In a subsequent study using 

computational modelling, Chang et al. (2020) further 

demonstrated that oral language skills were critical to the 

transfer effect of phonics training in reading.  

The advocate of meaning-focused training lays on the 

ultimate goal of reading, which is to access the meanings of 

words. Although spelling-to-meaning mappings are difficult 

to master, there are still some morphological regularities (e.g., 

bake, baker) in the mappings. Children are capable of 

learning semantic categories from orthography without the 

involvement of phonology (Nation & Cocksey, 2009). Thus, 

it might be better for children to acquire the OS relationships 

earlier rather than later during learning to read. 

While substantial work has been done to investigate the 

effectiveness of different types of reading instruction, not 

enough is known about the influence of reading instruction 

on subsequent reading behaviours. Critically, whether the 

vestige of early reading instruction could be observed in 

mature reading or not and if so, how does it influence 

individuals’ reading behaviours? These are the central issues 

that we would like to address in this study using 

computational models of reading.    

Individual Differences in Reading 

Multiple lines of studies have investigated variability in 

individuals’ reading behaviours (Davies et al., 2013; 

Hoffman, Lambon Ralph, & Woollams, 2015; Woollams et 

al., 2016; Siegelman et al., 2020, 2022). Woollams et al. 

(2016) demonstrated individual differences in the degree of 

semantic reliance (SR) when reading words that have 

inconsistent spelling-to-sound mappings (e.g., pint). Adult 

readers with high SR tended to read slower than those with 
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low SR, and the effect was moderated by consistency and 

imageability. These individual differences in reading are not 

only observed in adults but also in children. A recent study 

using a large cohort of children has demonstrated that 

children who showed higher sensitivity to OP regularities 

generally performed better in reading tasks than those with 

lower sensitivity to OP regularities (Siegelman et al., 2020). 

The sensitivity to OP or OS regularities is also crucial for the 

effectiveness of reading intervention. Children with high 

sensitivity to OP regularities and low sensitivity to OS 

regularities tend to receive better gains from phonologically-

weighted intervention programs. (Siegelman et al., 2022). 

So what might cause these variabilities in reading for adults 

and children? Several potential factors have been considered 

including reading experience (Andrews, 2015; Yap, Balota, 

Sibley, & Ratcliff, 2012), reading capacity (Dilkina, 

McClelland, & Plaut, 2008; Plaut, 1997), and oral language 

skills (Chang, 2023; Siegelman et al., 2020). Individuals who 

receive intensive reading experience, have abundant 

processing resources in the reading system, and have good 

oral language skills can generally develop high-quality 

orthographic, phonological, and semantic representations, 

and efficient reading pathways (mappings between 

representations). Thus, the development of representations 

and the use of reading pathways would seem to be key to 

driving individual differences in reading.     

Within the connectionist view of reading (Seidenberg & 

McClelland, 1989; Harm & Seidenberg, 2004; Plaut et al. 

1996), learning to read could be achieved via multiple 

pathways, depending on the division of labour along direct 

and indirect pathways to access phonology or semantics from 

orthography. Previous modelling work has shown that 

reading instruction could shift the division of labour of 

reading pathways in the system (Chang et al., 2020). 

However, it remains unknown whether the change in the 

division of labour resulting from reading instruction could be 

a potential source of individual differences in reading. 

Another relative and important question is what is the impact 

of reading instruction on subsequent reading behaviours.  

Hence, the present study was designed to tackle the issues 

of individual differences in reading by systematically 

manipulating reading training and investigating its impact on 

subsequent reading behaviours in a computational model of 

reading. Specifically, we developed a fully implemented 

triangle model of reading and implemented three reading 

schemes with different focuses of reading instruction: OP 

focused, OS focused, and OPOS balanced. The OP focused 

model received three times as much training on the OP 

mappings, the OS focused model received three times as 

much training on the OS mappings, and the OPOS balanced 

model received an equal amount of training on the OP and OS 

mappings as a baseline model. Following Chang (2023), we 

derived SR based on the division of labour of OP and OS 

pathways as an index of individual differences in the model. 

We then investigated the relationships between the model’s 

SR and different training regimes, and how it interacted with 

other psycholinguistic reading effects using a reading-aloud 

task. 

Lastly, although computational modelling is an important 

tool for investigations of the mechanism underlying the 

reading process and functions, training a large-scale model 

such as a fully implemented triangle model of reading used 

here is often computationally expensive and time-consuming. 

That can also potentially limit the use of the model to simulate 

a large cohort of individuals, as in behavioural investigations 

(e.g., Siegelman et al., 2020). Therefore, to alleviate the 

training burden, in this study, we also utilised software 

optimisation techniques to speed up training processes. The 

details can be found in Method.    

Method 

Model Architecture 

   The model architecture, shown in Figure 1, was exactly the 

same as the one used in previous modelling work (Chang et 

al., 2020; Monaghan et al., 2017). It had three key processing 

layers: orthography (O), phonology (P), and semantics (S). 

There were 364 units in the orthographic layer, 200 units in 

the phonological layer, and 2446 units in the semantic layer. 

All three layers were connected to each other, but in between, 

they were connected with a hidden layer. Both hidden layers 

in the PS pathway and SP pathways had 300 units. Whereas 

both hidden layers in the OP and OS pathways had 500 units. 

There were additional attractor layers, consisting of 50 units, 

in phonology and semantics layers to enhance their 

phonological and semantic features respectively. 

Additionally, the semantic layer had a context layer, 

consisting of four units, to handle homophones. The hidden 

layer between them had ten units. 

 

 

 
 

Figure 1: The architecture of the model. 

Training Procedure 

   The model was trained on 6,229 English monosyllabic 

words. The training process included oral language training 

and reading training. The oral language training included four 

interleaving tasks: an oral vocabulary task (40% of trials), a 
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meaning naming task (40% of trials), two tasks to develop a 

stable phonological attractor (10% of trials), and a semantic 

attractor (10% of trials) respectively. For the oral vocabulary 

task, the model was trained to map from phonological to 

semantic (PS) representations. During training, each 

phonological form of words was clamped for eight network 

times and then its semantic representation was generated by 

the model. For the meaning naming task, the model was 

trained to map from semantic to phonological (SP) 

representations. Each semantic form of words was clamped 

for eight network times and then its phonological 

representation was generated by the model. For the 

phonological attractor task, the model was trained to map 

between phonological to phonological representations (PP) to 

stabilise the representations. Each phonological 

representation was presented to the model for two network 

times and the model cycled the activation for the next six 

network times to recreate the input representation. The 

training procedure for the semantic attractor task was 

identical to that used for the phonological attractor task 

except that the model was trained to map semantic to 

semantic representations (SS). 

After oral language training, all weights between the 

phonological and semantic layers were frozen. The model 

was continued to learn to read by learning the mappings 

between orthographic, phonological, and semantic 

representations for one million trials. A word was presented 

twelve network times in each trial. Importantly, the training 

process had three focused training: OP focused, OS focused, 

and OPOS balanced. For OP focused training, the model was 

trained under a 3:1 regime, where OP trials outnumbered OS 

trials by three times; for OS focused training, OS trials were 

three times more than OP trials. For OPOS-balanced training, 

the model was presented with the same number of OP and OS 

trials. 

For both oral language training and reading training, the 

same training parameters were applied. For each training trial, 

a word was randomly selected according to its frequency 

(Marcus, Marcinkiewicz, & Santorini, 1993). The model’s 

error (i.e., differences between target representations and 

output activations generated by the model) was calculated at 

the last network time. During training, backpropagation 

through time was used to optimise weights by reducing the 

differences. The learning rate was set to 0.05. To simulate 

variability in each reading training condition, ten versions of 

the OP focused models, the OS focused models, and the 

balanced models were trained with different initial weights. 

Testing Procedure 

   During each training iteration, an error score was computed 

in terms of the Euclidean distance between the generated 

feature and the target feature. In the reading training phase, 

error scores were displayed per 5000 iterations and we 

exploited the scores at the end of training to discuss response 

times among models. High error scores in computational 

models resembled long response times (Seidenberg & 

McClelland, 1989).  

   For validating phonological output, the answer was 

considered correct only if its 8 phonological slots, which 

consisted of 200 units, were all exactly the same as the ones 

in target outputs. To test semantic output, we calculated the 

Euclidean distance of the generated output and the words in 

our corpus. The answer was deemed correct if the smallest 

distance found was the distance with the target word. 

Model Training Acceleration 

The MikeNet simulator (Harm & Seidenberg, 2004) has 

been widely deployed in the computational studies of reading 

(e.g., Chang et al., 2020; Harm & Seidenberg, 2004; 

Monaghan et al., 2017).  MikeNet is written in the C 

programming language and is designed for large-scale neural 

networks. It is fast and can hold very large example files 

without taking up too much memory. The proposed model 

was developed in the MikeNet simulation environment. A 

training procedure for the target model with deep layers 

usually takes days or weeks due to the intensive computation 

requirement in computing backpropagation error scores and 

updating weight connections. To accelerate the training 

process, we leveraged two high-performance C libraries, 

Math Kernel Library (MKL) and Basic Linear Algebra 

Subprograms (BLIS), targeting the Intel and AMD processors 

respectively. Both libraries contained optimised math 

routines commonly used for software performance 

optimizations in the science, engineering, and financial 

applications on x86 microprocessors. We tuned the training 

performance by replacing the matrix-vector multiplication 

algorithms with the cblas_sgemv() API for machines with 

Intel CPUs and the bli_sgemv() API  for those with AMD 

CPUs.  

 

Table 1: Speedup ratios on Intel processors. 

 

Iteration Time Raw 

(sec) 
Time Opt. 

(sec) 

Ratio 

100 1.22 0.34 3.62 

1000 11.14 3.21 3.47 

2000 22.18 6.40 3.47 

3000 33.29 9.74 3.42 

10000 113.16 32.36 3.50 

 

 

Table 2:  Speedup ratios on AMD processors. 

 

Iteration Time Raw 

(sec) 
Time Opt. 

(sec) 

Ratio 

100 0.96 0.25 3.82 

1000 9.01 2.32 3.89 

2000 18.03 4.58 3.93 

3000 27.22 6.87 3.96 

10000 91.38 23.33 3.91 

 

  Table 1 illustrates the execution time of the simulation with 

software optimization using the Intel MKL library. The oral 

language phase of the proposed model was used as a 
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benchmark to demonstrate the effectiveness of the software 

optimization. Training iterations ranged from a hundred to ten 

thousand. In Table 1, the column of Time Raw denotes the 

time required to finish training using the original MikeNet, 

while the column of Time Opt. records the time required with 

software optimization. Speedup ratios are calculated by 

dividing the times in the Time Raw column over those in the 

Time Opt. column. All ratios are greater than 3.4 among the 

different numbers of iterations. Similarly, Table 2 illustrates 

the execution time with software optimisation using the AMD 

BLIS.  It shows an even more promising result with software 

optimization. All ratios are greater than 3.8. 

Measuring SR based on the Division of Labour 

  Division of labour can help us understand how the model 

relies on each reading pathway in the system. Following 

Chang et al. (2020), a lesioning technique was adopted. To be 

specific, to isolate the contribution from the OP pathway, the 

OSP pathway was lesioned, and the Phonological sum 

squared error (SSE) was recorded. The reverse procedure was 

used to obtain the unique contribution from the OSP pathway. 

It is assumed that a large Phonological SSE indicates the 

lesioned pathway is critical (i.e., high contribution) while the 

intact pathway supports the function poorly (i.e., low 

contribution). Hence, the reciprocals of Phonological SSE 

obtained from the OP and OSP pathways were computed to 

indicate the proportion of contribution across the pathways. 

The identical procedure was used to obtain the contribution 

across the OS and OPS pathways except that Semantic SSE 

was computed instead. The SR was quantified by dividing the 

contribution of the OS pathway by the sum of the OP and OS 

pathways. 

Results 

   At the end of oral language training, the model achieved an 

accuracy rate of 96.4% on the meaning naming task and an 

accuracy rate of 93.7% on the oral vocabulary task. At the end 

of reading training, the OP focused model, the OS focused 

model and the OPOS balanced model were able to accurately 

produce 99.84%, 99.32%, and 99.8% of phonological 

representations and 92.74%, 98.81%, 97.21% of semantic 

representations on the reading task, respectively. 

The relationship between reading instruction and 

SR 

   The procedure for generating SR in the model was done for 

each of the 30 simulations with different approaches to 

reading instruction (OP focused, OS focused, or balanced). 

The result showed that SR ranged from 0.022 and 0.192 (M 

= 0.072, SD = 0.041). The relationship between reading 

instruction and SR was investigated by using a simple 

regression analysis with training focus as a predictor and with 

SR as a dependent variable. The simple regression model 

produced an R2 value of 19.1% (Adjusted R2 = 13.1%), p 

= .058. The SR generated from the OP model (M=0.053) was 

not significantly different from that generated from the 

balanced model (M = 0.067), p = 0.43. The SR difference 

between the balanced model and the OS model (0.096) was 

marginally significant, β = 0.003, p = 0.1. However, there was 

a significant SR difference between the OP and the OS 

focused models, β = 0.043, p < 0.05. 

Exploring SR effects in the model 

In the model, reading aloud was simulated by mappings of 

OP representations (Plaut et al., 1996; Harm & Seidenberg, 

2004). To examine SR effects, a series of linear mixed-effect 

models (LMM) was conducted. LMMs were fitted using the 

lme4 package in R (version 4.2.1, 2022). The SSE for words 

correctly pronounced by the model was used as a proxy for 

behavioural response times (RTs). For the LMM analysis, a 

set of psycholinguistic variables including word frequency 

(WF), orthographic neighbourhood size (ONS) (Coltheart et 

al., 1977), rime consistency (RC) (Glushko, 1979), 

concreteness (CON) (Brysbaert, Warriner, & Kuperman, 

2014) and SR were included as predictors. Phonological SSE 

was included as a dependent variable. Outliers including 

words that the model misread, and SSE greater than three 

standard deviations from the mean were discarded. 

Furthermore, words without measures for all psycholinguistic 

variables were not considered. The data preprocessing 

procedures removed 0.242% of the observation points, 

leaving 157,428 observation points for analysis. Phonological 

SSE was log-transformed because the distribution was right-

skewed. All the variables were scaled in order to obtain 

standardised coefficients in LMM. 

As a baseline model, WF, ONS, RC, and CON were first 

included as fixed factors to predict Log Phonological SSE. 

Adding SR to the baseline model as a full model resulted in a 

significant improvement of model fit, χ2(2) = 17.29, p < .001, 

compared to the baseline model. The result is shown in Table 

3. The effects of WF, ONS, RC, and CON were consistent 

with behavioural findings reported in several mega studies of 

word reading (Balota et al. 2004; Cortese & Khanna, 2007). 

Words were responded to more quickly if they were higher in 

frequency, higher in concreteness, had more consistent 

spelling-to-sound mappings, and had more orthographic 

neighbourhood size. Critically, larger SR was associated with 

more phonological SSE, β = 0.109, t = 4.84, conceiving as 

slower RTs, which is consistent with behavioural studies 

(Siegelman et al. 2020; Woollams et al., 2016). 

Four interactions were conducted to investigate the 

influence of SR on the reading effects in the model. SR by 

WF, ONS, RC, or CON was added into the full model 

separately as a fixed factor. Adding WF x SR to the model 

resulted in a significant improvement, χ2(1) = 9.97, p < .01. 

Adding ONS x SR resulted in a significant improvement, χ2(1) 

= 8.55, p < .01. Adding RC x SR also resulted in a significant 

improvement, χ2(1) = 60.49, p < .001. Adding CON x SR 

resulted in a marginally significant improvement, χ2(1) = 2.74, 

p < .1. Figure 2 illustrated the largest interaction effect for 

RC x SR. 
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Table 3: Linear mixed-effect model fitted to phonological 

SSE produced by the model. All predictors were scaled. 

 

 β t 
95% Confidence  

Interval 

WF -0.21 -27.26 (-0.22, -0.19) 

ONS -0.17 -22.98 (-0.18, -0.16) 

RC -0.11 -14.26 (-0.12, -0.09) 

CON -0.04 -5.71 (-0.06, -0.03) 

SR 0.11 4.84 (0.06, 0.15) 

 

Note: An effect was considered significant at the p < .05 level 

if its t-value was greater than 1.96 (Baayen, 2008). 

 

 

 
 

Figure 2. The interaction between rime consistency (RC) 

and semantic reliance (SR) 

Discussion 

   Research in reading instruction generally focuses on 

investigating the (dis)advantages of using phonics-style or 

meaning-focused training for reading acquisition (Davis, 

2013; Taylor et al. 2017). In this study, we focused on 

investigating the impact of different types of reading 

instruction on individual differences in reading aloud. 

Specifically, we utilised triangle connectionist models of 

reading to investigate whether different approaches to reading 

instruction could lead to different degrees of reliance on the 

semantic pathway and its interactions with other 

psycholinguistic factors that have previously been shown to 

be critical for reading aloud. 

    The simulation results demonstrated that a model which 

focused on print-to-meaning (i.e., the OS focused training 

model) showed the greatest reliance on the semantic pathway 

for reading aloud, whereas a model which focused on print-

to-sound (i.e., the OP focused training model) showed the 

least and a model trained with balanced OP and OS mappings 

(i.e., the OPOS balanced training model) was in between. In 

English, the OP mappings are broadly systematic while the 

OS mappings are relatively arbitrary. As the model can learn 

the regularities of OP mappings, the reliance on the 

phonological pathway is very effective, especially for the 

reading-aloud task. Even so, by manipulating different types 

of reading instruction, the use of OP and OS reading 

pathways could be shifted. The finding was consistent with 

previous modelling work (Chang et al., 2020). Here we 

further demonstrated that the shift of reading pathways could 

be reformulated into the degree of semantic reliance as a 

source of individual differences in reading.    

    By using LMM analyses, we demonstrated that the model 

replicated a range of standard reading effects including 

frequency, consistency, orthographic neighbourhood size, 

and concreteness as observed in behavioural studies (Balota 

et al. 2004; Cortese & Khanna, 2007). More importantly, the 

SR derived from varying different types of reading 

instruction was able to predict model performance on reading 

aloud. The result is consistent with recent behavioural 

(Siegelman et al. 2020; Woollams et al., 2016) and 

neuroimaging evidence (Hoffman et al., 2015). Models with 

higher SR produced more phonological SSE compared to 

those with lower SR. That was because the semantic pathway 

was less efficient for reading aloud. When the semantic 

pathway was used more (i.e., high SR) in the model, more 

errors were observed. The degree of SR also has an impact on 

reading behaviours in the model. We observed that SR 

interacted significantly with word frequency, consistency, 

orthographic neighbourhood size, and marginally with 

concreteness. In particular, as in Figure 2, the largest 

interaction effect was observed between SR and consistency, 

in which models with high SR showed stronger consistency 

effects than those with lower SR.  

   While the present study has demonstrated the relationships 

between reading instruction and SR, the effect was not 

particularly strong. It is likely that we have a relatively small 

sample of simulations compared to a large cohort of 

participants generally used in behavioural studies of 

individual differences in reading. Thus, the present study can 

be improved by training more samples of simulations. With 

our speed-up training process, it is possible to train hundreds 

of models at a similar scale of behavioural mega-studies (e.g., 

Siegelman et al. 2020) to generate a wider range of variations 

in SR and enhance statistical power. Another future work 

could be conducted to investigate the change in SR over the 

time course of learning to read.    

    In summary, our simulation results demonstrated that 

reading instruction could shift the division of labour between 

alternative reading pathways in the system, resulting in 

individual differences in reading behaviours. 
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