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ABSTRACT 

Recycling of Continental Crust Captured in Pamir Xenoliths 

 

by 

 

Madeline Ellen Faith Shaffer 

 

Xenoliths that erupted in the SE Pamir of Tajikistan from 1000–1100°C and 90 km depth are 

exclusively crustal, providing a means of examining what happens to crust that founders into 

the mantle. 40Ar/39Ar dating of volcanic minerals indicates an eruption age of 10.0 ± 0.2 Ma. 

U-Pb + trace-element laser-ablation split stream inductively coupled plasma mass 

spectrometry of zircon shows that the xenoliths were likely derived from the crustal section 

into which they were intruded: the igneous xenoliths were derived from the Jurassic–

Cretaceous Trans-Himalayan Batholith, and the metasedimentary xenoliths are like the 

stratigraphic section that hosts the Batholith. Recrystallization of these zircons was extensive, 

yielding a range of dates down to 10 Ma. The zircons show distinct changes in Eu anomaly, 

Lu/Gd ratio, and Ti concentrations compatible with garnet growth and minimal heating at 

22−20 Ma, and then 200–300°C of heating, ~40 km of burial, and alkali−carbonate melt 

injection at 14−11 Ma. These dramatic changes are interpreted to coincide with foundering of 

the Pamir lower crust caused by tectonic thickening and northward rollback of the Asian 

slab. These xenoliths provide our only known record of the physical and chemical changes 

during the foundering continental crust. 
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I. Introduction 

 Recycling of continental crust into the mantle is among the most-important processes 

driving the chemical and physical evolution of Earth. Mechanisms of crustal recycling 

include arc subduction, sediment subduction, continent subduction, subduction erosion, and 

foundering [e.g., Hacker et al., 2015]. These processes dictate the rates and types of crustal 

chemical and physical evolution—and even more-fundamental issues such as the secular 

evolution of continental volume—but are only loosely understood. This limitation has led to 

a wide range of viewpoints on the efficiency of the recycling process. If, for example, 95% of 

continental crustal material that is ablated by subduction erosion is returned to the mantle—

as suggested by Scholl and von Huene [2007]—this process may destroy continental crust as 

fast as it is produced [Stern, 2010], and the eroded material comes from all crustal levels. 

Alternatively, if crustal material carried into the mantle by subduction erosion undergoes 

buoyancy-driven fractionation, the mafic material may return to the mantle, and the felsic 

material may be relaminated to the base of the crust [Hacker et al., 2011; Hacker et al., 

2015; Kelemen and Behn, 2016].  

 During the twilight of the geosyncline era and the dawn of the plate-tectonic revolution, 

Ringwood and Green [1966] realized that the basalt→eclogite transformation could drive 

crustal foundering, and Armstrong [1968] suggested that large-scale recycling of continental 

crust might occur by sediment subduction. Over the next few decades, crustal recycling via 

the foundering of gravitationally unstable lower portions of arcs [Herzberg et al., 1983; 

Arndt and Goldstein, 1989; Kay and Kay, 1991], and via sediment subduction [Hilde, 1983] 

became mainstream concepts. The importance of crustal recycling by subduction erosion was 

recognized next [Clift and Vannucchi, 2004;Scholl and von Huene, 2007], and—once the 
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abundance of ultrahigh-pressure (UHP) terranes became clear [Ernst, 2001]—continental 

foundering and subduction [Molnar and Gray, 1979] were recognized as important recycling 

processes. The most-recent form of crustal recycling that has been suggested is arc 

subduction [Tamura et al., 2010; Hacker et al., 2011, 2015; Kelemen & Behn, 2016].  

 These crustal recycling processes are of supreme interest for understanding the evolution of 

Earth for many reasons: 

• Selective removal of dense material changes the composition of Earth’s crust, leading to 

secular variation in composition, or long-term chemical differentiation. Such changes 

have implications for the thickness, thermal structure, radioactivity profile, and velocity 

structure of the crust [Herzberg et al., 1983; Arndt and Goldstein, 1989; Kay and Kay, 

1991; Jull and Kelemen, 2001; Behn and Kelemen, 2006; Kukkonen et al., 2008; Hacker 

et al., 2011; Lee, 2014].  

• Introduction of differentiated crust into the mantle produces local chemical 

heterogeneities in the mantle that may drive or affect melting, or enhance or diminish 

chemical buoyancy and thus gravity-driven motion [Allègre and Turcotte, 1986; Arndt 

and Goldstein, 1989; Kay and Kay, 1991; Lee, 2014]. 

• Continental crust is almost everywhere thinner than 50 km, suggesting that crust thicker 

than this is gravitationally unstable [Anderson, 2005] or weak [Sandiford, 2xxx]. 

• Changes in plate-scale forces resulting from the removal of dense material from the 

lithosphere can induce changes in plate motions [Molnar et al., 1993]. 

• Intracontinental subduction may be an integral part of continental orogeny [Burtman and 

Molnar, 1993]. 
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II. The Importance of Xenoliths  

 Our understanding of crustal recycling comes chiefly from i) geodynamic models [e.g., 

Gerya and Meilick, 2011], ii) large-scale box models that use isotopic systems to quantify 

recycling rates [Coltice et al., 2000; Simon and Lécuyer, 2005]; iii) exposed arc rocks, from 

which one can infer the magnitude and timescale of lower crustal foundering [Kelemen et al., 

2003; Ducea et al., 2013]; iv) geophysical images of foundering material [Zandt and 

Carrigan, 1993]; and v) xenoliths, which provide snapshots of processes at depth. Among 

these techniques, xenoliths provide our only actual samples of the materials and the physical 

and chemical processes involved in crustal recycling, and constitute our only way to verify or 

“ground truth” inferences made from geodynamic models, box models, exposed arcs, and 

geophysical images. For example, xenoliths provided the spectacular record of foundering of 

the Sierra Nevada arc lower crust and upper mantle [Ducea and Saleeby, 1996; Chin et al., 

2013], and the foundation for interpreting seismic wavespeeds as images of the recycling 

process [Zandt and Carrigan, 1993]. Despite the tremendous insight that xenoliths afford our 

understanding of crustal recycling, essentially all xenoliths from mantle depths are mafic or 

ultramafic, save two localities: one in the Pamir [Lutkov, 2003, 2005; Hacker et al., 2005] 

and one in Tibet [Chan et al., 2009]. These unusual xenoliths thus present a unique 

opportunity to understand the chemical and physical processes that attend crustal recycling.  

 

III. Geological Setting 

 The Pamir are the northwestern extent of Earth’s largest, archetypal continent-collision 

zone, the Cenozoic India–Eurasia orogenic belt (Fig. 1). The collision zone has an extensive 

history [e.g. Burtman and Molnar, 1993; Schwab et al., 2004; Schmidt et al., 2011; 
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Robinson, 2015; Kufner et al., 2016] that includes at least three postulated Cenozoic 

foundering events: two breakoffs of the subducting Indian slab [Negredo et al., 2007; 

Replumaz et al., 2010; DeCelles et al., 2011], and one event involving foundering of the 

Asian slab [Kufner et al., 2016] and/or lower crust [Hacker et al., 2005; Gordon et al., 2012; 

Schmidt et al., 2011].  

 A few dozen meter- to decameter-scale diatremes, volcanic necks and shallow dikes pierce 

the surface of the southeastern Pamir Plateau. Known as the Dunkeldik suite, these volcanic 

rocks range from ultrapotassic tephrite to tephriphonolite [Malz, 2011], syenite and 

carbonatite, and locally carry abundant cm- to dm-sized xenoliths [Dmitriev, 1976; Lutkov, 

2003; Lutkov, 2005]. The xenoliths are extremely unusual: they are crustal rocks 

metamorphosed at ultrahigh temperature (>1000°C) and mantle depth (90 km) [Ducea et al., 

2003; Hacker et al., 2005; Gordon et al., 2012]. Apart from a single occurrence of much 

smaller—but otherwise similar—xenoliths in southern Tibet [Chan et al., 2009], these 

xenoliths are one-of-a-kind: no other continental-crust xenoliths from such high pressures 

and temperatures are known. They alone can tell us what happens during the recycling of 

continental crust. 

 These Pamir xenoliths are especially valuable for four reasons. 1) Unlike crustal rocks that 

were subducted to mantle depths and exhumed in ultrahigh-pressure metamorphic terrains, 

the xenoliths preserve fresh minerals and textures developed at extreme mantle conditions. 2) 

Because the xenoliths were erupted only 10 Myr ago [this study, Ducea et al., 2003], 

geophysical investigations of the Pamir crust and mantle [Mechie et al., 2012; Schneider et 

al., 2013; Sippl et al., 2013] help place the formation and eruption of the xenoliths in a 

geodynamic context not possible in older orogenic belts. 3) The xenoliths were erupted near 
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high-grade gneiss domes composed of the same rock types (Fig. 1) [Gordon et al., 2012], 

which evolved coevally with the xenoliths and were exhumed shortly after the xenoliths were 

erupted [Schmidt et al., 2011; Stübner et al., 2013b; Hacker et al., in press].These gneiss 

domes can be used as a reference for the type of crust from which the xenoliths might have 

been derived prior to foundering. 4) The xenoliths are large and contain large and abundant 

U- and Th-bearing accessory minerals that can be used to establish timing of events [Ducea 

et al., 2003; Kooijman et al., 2017]. 

 Here we use zircon to quantify the chronology of P-T conditions experienced by the 

xenoliths before and during this foundering event. This study seeks to: i) define the P-T and 

metasomatic evolution of crustal xenoliths during a recycling event; ii) reconstruct the series 

of events that led to foundering via delamination beneath the Pamir; iii) estimate the size of 

the foundered material and its rate of foundering; and iv) discuss the implications for the late 

Cenozoic evolution of the Pamir.  

 

IV. Xenolith Description 

 The Pamir xenolith suite used for this study includes 85 eclogite- and granulite-facies rocks 

ranging in composition from basalt to granodiorite to pelite, plus phlogopite–garnet 

pyroxenite and websterite [Lutkov, 2003; Lutkov, 2005]. Our sample collection consists of 

29% mafic igneous rocks, 18% pelitic, 10% ultramafic, 41% intermediate-composition 

quartzofeldspathic rocks of igneous or sedimentary provenance, and 2 minettes. The volcanic 

host rock is strongly enriched in LILE (e.g., 7–8 wt% K2O and La = 1000x chondrite) and 

depleted in HFSE (with arc-type Nb, Ta, and Ti anomalies) [Malz, 2011]. Its major- and 

trace-element compositions suggest low degrees of melting of phlogopite-bearing garnet 
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lherzolite at ~4 GPa (130 km depth) in the presence of ~10% “sediment” component [Malz, 

2011]. 

 Major-element thermobarometry, pseudosections, and oxygen-isotope thermometry 

indicate that the granulite-facies xenoliths reached temperatures of ~875–1000°C and 

pressures of ~1.8–2.3 GPa, and the eclogite-facies rocks reached ~1000–1100°C and ~2.5–

2.8 GPa [Hacker et al., 2005; Gordon et al., 2012] (Fig. 2). These pressures equate to depths 

of 65–80 km and 85–95 km; the eclogite-facies rocks were certainly erupted from depths 

well below the present-day Moho (60–70 km; Mechie et al., 2012], and the peak pressures 

suggest that the granulite-facies rocks likely were as well. The hottest xenoliths have textures 

indicating melt injection (represented now by crystallized K-feldspar + ternary carbonate), 

dehydration melting of biotite, and growth of eclogite-facies minerals in the presence of melt 

[Hacker et al., 2005].  

 The quoted temperatures are quite high for crustal rocks and presumably reflect a 

combination of conductive heating and magma injection prior to eruption; they do not reflect 

heating during eruption because the length scales of elemental zoning in the minerals are 

incompatible with the short duration of the eruption (1–10 days) [Hacker et al., 2005]. The 

pressures quoted for the eclogite-facies rocks were derived from net-transfer reactions with 

both positive and negative Clapeyron slopes and cannot be artifacts of inaccurate temperature 

determinations [Hacker et al., 2005; Gordon et al., 2012].  

 The first LA-ICP-MS dataset on the xenoliths [Ducea et al., 2003]—constituting of 19 

zircons analyzed in two thin sections—revealed that one xenolith is a Cretaceous igneous 

rock and a second was derived from Eocene sediment. These data require that the Pamir 

xenoliths were derived from Asian crust and not Indian crust, as the latter lacks Cretaceous 
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magmatic rocks. It is a strong argument against derivation of the xenoliths by subduction 

erosion because the leading edge of the upper plate (in Pakistan and India) is an accreted 

slice of India [Hodges, 2000; Yin and Harrison, 2000]. The xenoliths more likely reached 

mantle depths by foundering of Asian crust or intracontinental subduction of Asian crust 

[Hacker et al., 2005; Kufner et al., 2016]. Furthermore, Gordon et al. [2012] noted that most 

of the xenoliths are compositionally similar to the Pamir Barrovian domes, implying that the 

xenoliths may represent foundered Pamir lower crust [Gordon et al., 2012].  

The Pamir have widespread gneiss domes that expose high-grade Cenozoic rocks with bulk 

compositions and igneous, detrital, and metamorphic mineral dates similar to those of the 

xenoliths [Robinson et al., 2004; Robinson et al., 2007; Schmidt et al., 2011; Stearns et al., 

2013; Stübner et al., 2013a; Stübner et al., 2013b; Rutte et al., 2017a; Rutte et al., 2017b]. 

The dome nearest the xenolith site, Shakhdara dome (Fig. 1), is dominated by Cretaceous 

plutonic rocks intruded into a Paleozoic clastic-dominated sedimentary section. Monazite, 

zircon, titanite, and garnet dates indicate that prograde metamorphism associated with crustal 

thickening in that dome began at 30 Ma and peaked around 16 Ma [Schmidt et al., 2011; 

Stearns et al., 2013; Stübner et al., 2013b; Hacker et al., in review]. The thickening (Fig. 3) 

led to the development of migmatitic gneisses (700–825°C and ~1.4–1.6 GPa; Fig. 2) 

[Schmidt et al., 2011; Hacker et al., in press] and may have contributed to a gravitationally 

unstable root. At 12 Ma—just prior to the xenoliths’ eruption—exhumation of the gneiss 

domes began, reaching the surface by ~3 Ma (Fig. 3.3) [Stübner et al., 2013a; Stübner et al., 

2013b]. The dome exhumation and the foundering of the Pamir xenoliths may have been 

coeval processes resulting from crustal thickening—with the base of the crust recycling into 

the mantle and partially erupted as xenoliths, and the middle−lower crust rising to the 
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surface. The P-T evolution of the xenoliths addresses the timing of these events, and reveals 

a coeval process of exhumation and foundering.  

 

A. Petrography 

The xenoliths contain mineral assemblages of garnet + alkali feldspar + quartz + rutile ± 

phlogopite (Fig. 4A-C) [Lutkov, 2003; Lutkov et al., 2005; Hacker et al., 2005; Gordon et 

al., 2012]. Xenoliths with significant kyanite and/or quartz (and detrital zircon; see below) 

are inferred to be metasedimentary. Xenoliths with high clinopyroxene/feldspar ratios range 

from quartz monzonite to granodiorite to tonalite in composition; more-mafic rocks (that lack 

inherited zircon; see below) are most likely igneous, whereas the more-felsic 

quartzofeldspathic rocks (some of which have inherited zircon) may have igneous or 

sedimentary protoliths. Most of the minerals are interpreted to be refractory remains after 

extensive melt extraction, but phlogopite, K-feldspar, and ternary Fe-Mg-Ca carbonate in 

some rocks may have been magmatically injected prior to eruption (Fig. 4D).  

The two minette xenoliths (DK28 and DK36) are porphyries, with phenocrysts of alkali-

feldspar and high-Ti phlogopite set in a carbonate groundmass with accessory apatite and 

zircon (cf. Rock, 1980; Fig. 4F). DK28 contains one 500 µm garnet surrounded by a 50 µm 

corona of clinopyroxene (Fig. 4E) that may be a xenocryst. 

 

V. Methods 

Zircon from 30 eclogite-facies xenoliths was analyzed in thin section for U-Pb dates and 

REE-Ti concentrations to reconstruct the foundering process. Zircon was first located and 

labeled in thin section using back-scattered electron (BSE) imaging on an FEI Quanta 400f 
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scanning electron microscope. The zircons were then imaged with cathodoluminescence 

(CL) to reveal zoning and internal textures. Inclusions in zircon were investigated by BSE 

and energy-dispersive spectrometry on the FEI instrument; carbonate inclusions were 

subsequently analyzed by wavelength-dispersive spectrometry on a Cameca SX-100 

electron-probe micro-analyzer. U-Pb dates and REE-Ti concentrations were measured using 

LASS (laser-ablation split-stream inductively coupled-plasma mass spectrometry) [Kylander-

Clark et al., 2013]; the laser spots were 15 µm in diameter, the laser fluence was 100% of 3 

mJ, and the laser repetition rate was 4 Hz. BSE + CL images were used to guide placement of 

the laser beam into specific zircon compositional zones to minimize mechanical mixing. 

Zircon 91500 [Wiedenbeck et al., 1995] was used as the primary U-Pb reference material, 

and GJ1 zircon [Jackson et al., 2004] was used as a secondary U-Pb reference material to 

assess accuracy. For elemental concentrations, GJ1 [Liu et al., 2010] was employed as the 

primary reference material, and unknown elemental concentrations were normalized to a Zr 

concentration of 43.1 wt%. For quality control, the reference material 91500 was used as a 

secondary standard and yielded concentrations within 10% of published values. The raw U-

Pb and trace-element data were reduced using Iolite version 2.5 [Paton et al., 2011]. All 

analyses were conducted at the University of California, Santa Barbara. 

A total of 1521 zircon spots were analyzed from 30 thin sections (Table 1). The data from 

each ablation spot were assessed with particular care to identify which data came from 

homogeneous zircon, and which did not. Data that i) show downhole zoning, ii) came from 

spots straddling more than one CL zone, iii) are strongly discordant, or iv) have low 

206Pb/204Pb ratios were rejected from the dataset. The data were also screened to remove non-

zircon analyses by removing those with unusual LREE or Ti abundances. The fewest data 
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were rejected from the non-pelite xenolith zircon cores, and the most were rejected from 

metasedimentary xenolith zircon cores, chiefly because the former are larger and less 

recrystallized. Conversely, relatively few data from the metasedimentary zircon rims were 

discarded compared to the non-pelite xenoliths. The final dataset consists of 1119 analyses.  

Following Rubatto [2002], Kelly and Harley [2005], Timms [2011], and Taylor et al. 

[2015], pressure was determined qualitatively by observing changes in two aspects of zircon 

trace-element composition: i) Eu/Eu* related to plagioclase stability, and ii) HREE slope—

expressed as a Lu/Gd ratio—related to garnet stability. The expectation is that foundering of 

the xenoliths caused i) plagioclase breakdown that released Eu that could be consumed by 

zircon, and ii) garnet growth that reduced the amount of HREE that could be incorporated in 

zircon.  

 Temperature was determined from zircon Ti concentration using the Ferry and Watson 

[2007] calibration with its approximate pressure dependence of 50ᵒC/GPa; the Hofmann et al. 

[2014] calibration yields temperatures on average 43°C hotter. Temperatures were calculated 

for equilibration at both 1 GPa and 2 GPa. All the rocks contain the saturating phases quartz 

and rutile, and pseudosection calculations indicate that rutile was stable in most of the 

xenoliths at >1.2 GPa. Even if rutile was not present during the low-pressure evolution of the 

xenoliths, the reduced aTiO2 afforded by the presence of ilmenite [Ghent and Stout, 1984] or 

titanite [Kapp et al., 2009] has a minor effect on temperature (<50°C). 

 40Ar/39Ar dating was completed at Stanford University via stepwise degassing in a 

resistance furnace. The results were calculated using the decay-constant data and monitor 

ages of Renne et al. (2010). 

 



11 

VI. Results 

A. 40Ar/39Ar geochronology 

Phlogopite, leucite, and amphibole from the host volcanic rock, a porphyritic fergusite 

[Dmitriev, 1976], yielded a weighted mean 40Ar/39Ar date of 10.03 +0.23/-0.12 Ma, at 97.9% 

confidence. This is interpreted as the eruption age of the Dunkeldik ultrapotassic magmatic 

suite. 

 

B. Zircon Zoning 

 Each thin section contains 5–60 zircons. The zircons are 50 to 200 µm in diameter, chiefly 

anhedral, and occur as matrix grains and inclusions—the latter hosted almost exclusively in 

garnet. They have different types of CL zoning, including oscillatory zoning, ghost zoning, 

flat-CL response, and metamict zones [Corfu et al., 2003]. The zircons in the pelite xenoliths 

typically have small (5–15 µm diameter) cores with large (>25 µm wide) CL-flat rims 

(Fig.5E–H). Zircons in non-pelite xenoliths have large (40–100 µm diameter) oscillatory 

zoned cores with thin (micron-scale) flat-CL rims (Fig. 5A–D). In nearly all rocks, the 

oscillatory zoning in the zircon cores is variably replaced by irregularly shaped domains with 

either CL-flat (Fig.5C) or ghost zoning (Fig.5D); some of these replacement domains are 

preferentially developed along cracks or specific crystal sectors (Fig.5C). We interpret the 

oscillatory zoning to be igneous and the other types of zoning to be metamorphic—realizing 

that the “metamorphic” zoning was likely produced above the solidus in the presence of a 

mixed silicate–carbonatite fluid/melt [Hacker et al., 2005]. Zircons from the minette 

xenoliths are large (~100 µm average) and have complex oscillatory zoning reminiscent of 
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kimberlitic zircon [Corfu et al., 2003] (Fig. 5I–L). Sample DK25—an igneous sample—

contains some zircon similar to that in the minettes. 

 

C. U-Pb Zircon geochronology 

 The measured U-Pb isotopic ratios, uncorrected for common Pb, are summarized Table 1 

and Figure 6; the complete data suite is presented in Supplemental Figure 1. Data from 

matrix zircon are shown in black, and data from zircon included in other minerals (almost 

exclusively garnet) are red. Some data are concordant, and some are not. Some data are 

clearly discordant because of the presence of common Pb, whereas other data indicate the 

presence of inherited components (assuming the composition of common Pb is not unusual); 

the latter are green.  

 The concordant dates range from 159 ± 6 Ma to 10 Ma. The oldest concordant dates in a 

majority of samples are 159–107 Ma; almost universally, these Jurassic–Cretaceous dates 

come from zircon cores (Fig.5). Discordant isotopic ratios derived from zircon cores and 

indicative of inherited zircon are present in six samples; their upper intercept dates (projected 

from 10 Ma) range from 1691 Ma to 405 Ma. Additional similar zircon may be obscured by 

the presence of common Pb. 

 The Miocene dates come almost exclusively from zircon rims (the youngest date from a 

zircon included in garnet is 12 Ma). In the non-minette xenoliths, these dates are 15.8 ± 0.7 

Ma to 10.6 ± 0.4 Ma, but in many of these samples—particularly those with large datasets—

the Miocene dates form a slightly older cluster (shown as “mean dates” in Figure 6 and 

Supplement Figure 1) of 14.9 Ma to 13.7 Ma 
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 Minette xenolith zircon (as well as zircon with similar shapes and zoning from DK25) yield 

dates solely between 12 Ma and 10 Ma, with single populations yielding intercept dates of 

10.9 ± 0.1 Ma to 10.4 ± 0.1 Ma (Figure 7). 

 

D. Trace-element behavior 

 In the non-minette xenoliths, the zircon cores have REE abundances and patterns with 

strongly negative Eu/Eu* anomalies and positive HREE slopes (~100-10,000 times 

chondrite) typical of crustal, magmatic zircon [Hoskin and Ireland, 2000] (Fig. 8). In 

contrast, the zircon rims (with a few exceptions in Figure 8A) have reduced Eu/Eu* 

anomalies and flat HREE slopes that are typical of high-pressure metamorphic rocks 

recrystallized in the presence of garnet and absence of plagioclase [e.g., Root et al., 2004; 

Kylander-Clark et al., 2013]. The minette xenolith zircons are enriched in LREE relative to 

all the other zircons, and have HREE slopes that are intermediate between the cores and rims 

of the other xenoliths; xenolith DK25 has zircon cores with REE patterns like the non-

minette zircons, and zircon rims with REE patterns similar to the minettes. 

The differences in zircon trace-element patterns are correlated with U-Pb date (Fig.9). 

This was first reported by Kooijman et al. [2017], who used a small, preliminary dataset; the 

different conclusions presented here are based on ten-fold larger dataset. The two-orders-of-

magnitude change from HREE-rich to HREE-depleted zircon corresponds with 22–20 Ma U-

Pb dates (Fig. 9A). The change from a strongly negative Eu anomaly to a less-negative or 

positive Eu anomaly corresponds to zircon with 14 Ma U-Pb dates (Fig. 9B).  

The Ti abundances, and Ti-in-zircon temperatures (Fig. 9C,D) of inclusion and matrix 

grains from all xenoliths also show distinct changes with respect to U-Pb date: i) zircon with 
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dates older than 20 Ma give temperatures of 800–850ᵒC (depending on pressure); ii) zircon 

with 20–15 Ma dates may be 50ᵒC hotter; zircon with 14–11 Ma dates yield temperatures up 

to 1150ᵒC (including DK25 and the minettes). 

 

E. Zircon inclusions 

Seventy-six mineral inclusions in zircon from 12 samples were studied. The inclusions are 

2–30 µm in diameter and typically in zircon cores. The inclusions in all rock types other than 

minette are dominantly ternary (Ca−Na−K) feldspar, alkali feldspar, and apatite. Igneous-

protolith xenolith zircons also have minor quartz, biotite, hornblende, and ternary 

(Ca−Mg−Fe) carbonate inclusions; metasedimentary zircon also contain kyanite and ternary 

carbonate. Zircon in the two minette xenoliths and in DK25 contain phlogopite, alkali 

feldspar, apatite, and ternary carbonate. The ternary carbonates display micron-scale 

compositional zoning of Mg and Ca (Fig. 10), and are all included within Miocene zircon 

zones. They are compositionally identical in composition to the ternary carbonates reported 

by Hacker et al. [2005], which were interpreted to be derived from unmixing of a carbonate-

rich alkalic melt [Lee & Wyllie, 1998]. That alkalic melt might have been derived by small 

degrees of melting of a mantle source metasomatized by unknown processes of unknown 

age, or it might have been derived by melting of a mechanical mixture of foundering Pamir 

crust (i.e., the xenoliths or like material) and mantle peridotite. 

 

VII. Discussion 

A. U-Pb & Trace-elements 
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Interpreting trace-element and U-Pb data for zircon at temperatures as high as those 

experienced by the Pamir xenoliths requires careful consideration. For example, to interpret 

the Ti concentration and the U-Pb date from a single spot within a zircon as a T-t datum 

requires that both developed at the same time and that neither has been reset. The Pamir 

zircons have radii of 20–50 µm and may have been held at a temperature of 800°C for 100 

Myr. The characteristic lengthscale, LTi = SQRT(2Dt), for Ti diffusion in undamaged zircon 

for this temperatures and timescale is <<1 µm as determined from laboratory data [Cherniak 

and Watson, 2007], implying that the Ti-in-zircon temperatures were not affected by volume 

diffusion. The same is true for Pb, Yb, and Dy, for which laboratory diffusivities [Cherniak 

et al., 1997; Cherniak, 2000] yield characteristic lengthscales smaller than the zircons in the 

Pamir xenoliths (Fig. 11).  

 A more serious concern is posed by the high temperatures experienced by the xenoliths in 

the few million years prior to eruption. The U-Pb–Ti data in Figure 8 imply that the Pamir 

zircons experienced temperatures up to 1100°C for 1–4 Myr. These high temperatures are in 

accord with those inferred for the hottest xenoliths from garnet, clinopyroxene, and feldspar 

compositions [Hacker et al., 2005], meaning that they are not simply the result of 1100°C 

zircon crystallizing during melt infiltration. The characteristic lengthscale for Ti diffusion at 

1000–1100°C and 1–4 Myr is still very small compared to zircon size (Fig. 11), implying, 

again, that the Ti-in-zircon temperatures were not affected by volume diffusion—and 

therefore are accurate representations of temperatures experienced by the xenoliths. Not so 

for Pb and Yb, however, which have laboratory diffusivities at these temperatures ~3 orders 

of magnitude faster than Ti, and, consequently, much longer diffusive lengthscales (Fig. 11). 

If the temperature reached 1000–1100°C for 1–4 Myr, the laboratory data indicate LPb = 20–
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250 µm, LDy = 5–115 µm and LYb = 15–300 µm, enough to strongly modify U-Pb dates, Dy, 

and Lu/Dy ratios in zircon cores.  

 The zircon CL zoning and U-Pb date spot distributions lend additional insight to the 

question of how to interpret the trace-element + U-Pb data. 1) Some zircons have well-

preserved, submicron-scale zoning visible in CL, and the CL-visible boundaries between the 

older core domains and the younger, Miocene rims are locally sharp. Dy is the main CL-

active element in zircon [Mariano, 1989], and LDy is 5–115 µm for 1000–1100°C and 1–4 

Myr (Fig. 11), implying that volume diffusion of Dy should have erased fine-scale CL 

zoning. 2) Some zircons have old U-Pb core dates and young rim dates, and others have 

young U-Pb core dates and old rim dates (e.g., Fig. 5d). Moreover, there is no simple 

relationship between U-Pb date and laser spot position within a grain (Fig. 12). Both of these 

observations are counter to the expected results of volume diffusion of Pb, particularly if LPb 

is 20–250 µm for 1000–1100°C and 1–4 Myr. Thus, the preservation of CL zoning and the 

heterogeneous preservation of U-Pb dates indicates that either the laboratory data describing 

volume diffusion do not apply to these zircons [Kramers et al., 2009], or the duration of 

heating was << 1 Myr (Fig. 11). 

 The CL zoning and U-Pb date distributions in Figure 5 make it clear that—although 

volume diffusion of Pb may not have been important—some other mechanism caused Pb and 

Dy mobility in many grains. The mechanism that permitted this in situ zircon 

recrystallization is unknown, but may have involved corrosive mixed silicate–carbonate fluid 

that invaded portions of zircon that were cracked, contained more crystal defects, or were 

subject to higher deviatoric stress; all of these are possible in a rock undergoing the type of 

extreme metamorphism experienced by these xenoliths. Textural evidence of in situ 
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recrystallization is more pronounced in the metasedimentary xenoliths, and may be related to 

the colder solidi typical of such rocks. 

 A few zircon included in garnet are older than matrix zircon in the same rock (e.g., DK1 

and DK33), indicating that garnet may have effectively shielded the zircon from 

recrystallization. In general, however, matrix zircon and included zircon do not have 

different dates, indicating that garnet typically was not an effective shield of zircon. 

Alternatively, some of the garnet may have grown after the youngest zircon inclusions—i.e., 

as late as 13 Ma. This last possibility is supported by the presence of major-element zoning 

in garnet and by the preservation of carbonate with fine-scale zoning in some garnet cores 

(Fig. 2k in Hacker et al. [2005]). 

 Thus, our interpretation is that the youngest dates in each sample represent the last time 

zircon either grew de novo or underwent in situ recrystallization; the most-common time for 

this was 14–11 Ma. The Jurassic–Cretaceous, 159–107 Ma, dates in a majority of samples 

are similar to the Cretaceous batholith exposed in the southern Pamir [Schwab et al., 2004; 

Stearns et al., 2013]; these may be viewed as minimum igneous crystallization ages. Upper 

intercept dates in the 1691 Ma to 405 Ma range in some samples are best interpreted as 

minimum ages of inherited grains; these dates are similar to the dates of zircons reported 

elsewhere in the Pamir [Schwab et al., 2004; Rutte et al., 2017b]. In each sample, all the 

dates that are younger than the oldest concordant date and older than Miocene are very likely 

geologically meaningless dates that resulted from fine-scale, heterogeneous recrystallization 

in the Miocene. The interpretation that one xenolith was derived from Eocene sedimentary 

rocks [Ducea et al., 2003] is wrong, as is the conclusion that there was punctuated zircon 

recrystallization [Kooijman et al., 2017]. 
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 When in the Miocene did this partial recrystallization occur? The clusters of 14.9 Ma to 

13.7 Ma zircon dates in the most-analyzed samples might provide an older boundary because 

they are not skewed toward younger dates. The 10.9 ± 0.1 Ma to 10.4 ± 0.1 Ma dates for the 

minette and DK25 zircons must be a younger bound. Thus, the Miocene partial 

recrystallization was likely ~14 Ma to 11 Ma. 

 The heterogeneous zircon recrystallization means that the time-dependent relationships 

exhibited by Lu/Gd, Eu/Eu*, and Ti-in-zircon must be carefully evaluated. Simplest to 

consider is Ti: volume diffusion of Ti is unlikely to have occurred, and yet the U-Pb dates 

could have been variably reset to younger dates by Pb mobility (Fig. 11). The 800°C Ti-in-

zircon temperature of all the >14 Ma dates may simply represent igneous crystallization 

conditions during the Jurassic–Cretaceous or even earlier. The abruptness of the 14 Ma Ti 

increase (Fig. 9C,D) makes Pb resetting of ≤ 14 Ma data less probable, and is compatible 

with the Ti increase actually occurring at 14 Ma. The same logic applies to the marked drop 

in Lu/Gd ratio at 22–20 Ma and the marked increase in Eu/Eu* at 14–11 Ma.  

By combining the T-t record of Figure 9 with the P-T path of Figure 2, we reconstruct the 

P-T-t path of the Pamir xenoliths in Figure 13. From Figure 9, we take the Ti-in-zircon 

concentration to have been 5–10 ppm at ≥15 Ma, 50–80 ppm at 14 Ma, and 80–90 ppm at 11 

Ma. The implication is that the xenoliths were heated ~200°C between 15 Ma and 14 Ma, 

and then sank ~20 km downward from 14 Ma until eruption at 10 Ma. The two-orders-of-

magnitude change from HREE-rich to HREE-depleted zircon that corresponds with 22–20 

Ma U-Pb dates may reflect thermally driven garnet growth; this coincides exactly in time 

with the 21–19 Ma dates for peak-pressure metamorphism in the Shakhdara dome (Fig 13; 

Hacker et al., in press). The change in Eu anomaly at 14 Ma—if it reflects the breakdown of 
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plagioclase (gray boundary in Fig. 13)—coincides with the 30–40 km increase in depth at 

14–11 Ma inferred from P-T and Ti-in-zircon data.  

 

B. Metasomatism/Magmatism 

Nearly all the xenoliths show evidence of metasomatism by an ultrapotassic + carbonatitic 

melt. The uncommonly high mode of alkali feldspar and phlogopite is suggestive of K 

addition, particularly in the mafic rocks. At least one xenolith contains euhedral garnet and 

clinopyroxene projecting into K-feldspar—compatible with growth into a potassic melt 

(Figure 2L in Hacker et al. [2005]). Some xenoliths also contain carbonate as a matrix phase 

(e.g., Figure 2C in Hacker et al. [2005]) or as an inclusion in garnet and zircon. Numerous 

zircons contain additional inclusions of alkali feldspar and high-Ti biotite. These zircon 

inclusion types are in 14–11 Ma zircon, compatible with alkaline magma injection at that 

time.  

The two minettes, DK28 and DK36, may be direct samples of this melt. We calculated the 

bulk composition of DK36 from point-counted mineral modes and mineral compositions 

measured by electron microprobe (Table 2); the rock is more potassic than any of the 

ultrapotassic volcanic rocks in the Dunkeldik suite studied by Malz [2011]. In fact, it is so 

potassic that it may be a partial cumulate. Minettes are calc-alkaline lamprophyres that 

commonly include porphyritic phlogopite and a sanidine + carbonate groundmass [Le Maître, 

2002]. They originate from partial melting of peridotite that interacted with crust, and are 

commonly associated with carbonatite [Rock, 1980; Rock, 1984; Niu et al., 2017]. Whether 

the Asian mantle from which the Pamir minettes were derived inherited its crustal signature 

from crustal assimilation remains unresolved, but the occurrence of a garnet xenocryst in 
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DK28 is compatible with the former, as are the biotite breakdown textures in Figure 2A and 

2B of Hacker et al. [2005] indicating that melting of the Pamir xenoliths was generating 

potassic melt.  

The textures and trace-element abundances of zircon in xenolith DK25 provide strong 

support for the interpretation of the minettes as eruption-related magmatic rocks. DK25 has a 

mineral assemblage similar to the igneous xenoliths, and contains zircon with Cretaceous 

cores overgrown by Miocene rims, just like most of the other xenoliths. Additionally, some 

zircons in DK25 resemble the peculiar textures and REE-behavior of the minette xenoliths: 

they exhibit skeletal and convoluted zones, and are enriched in LREEs with a relatively flat 

HREE slope. Furthermore, the inclusions in DK25 zircon include ternary carbonate, high-Ti 

biotite, and alkali feldspar (particularly within zircon zones that have minette-style REEs).  

C. Tectonic Implications 

The xenoliths imply a Cenozoic evolution of the Pamir that matches several tectonic 

models. Cenozoic contractional deformation of the Pamir crust is inferred to have been 

driven by viscous coupling with the northward underthrusting Indian slab [Stübner et al., 

2013; Sippl et al., 2013b; Stearns et al., 2015; Kufner et al., 2016; Rutte et al., 2017]. 

Breakoff of that slab at ~25–20 Ma is presumed to have initiated large-scale extension within 

the Pamir crust. Afterward, when Indian mantle lithosphere resumed northward 

underthrusting of Asia at ~20 Ma, re-coupling of the slab with the Pamir crust is inferred to 

have driven additional N-S shortening, causing the rheologically weak Pamir crust to thicken 

dramatically and induce rollback of the Asian slab [Schneider et al., 2013; Sippl et al., 2013a, 

2013b]. Garnet growth in the xenoliths at 22−20 Ma coincides with the time of this 

contraction. Sometime thereafter, the critically thickened Pamir crust became gravitationally 
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unstable and began to founder. The >200°C heating recorded in the xenoliths at ~14 Ma is 

likely to have taken place while the foundering was in progress. In terms of the size of 

foundered material, if we assume that the xenoliths were all derived from a single foundering 

sphere of crust that was heated solely by conduction, we can estimate the length scale of the 

sphere from the observation that heating from 800°C to >1000°C required ~1 Myr (15–14 

Ma). The approximation x=2*SQRT(Kt), and a thermal diffusivity K = 10–6 m2/s, yields a 

radius of ~10 km.  

If the pre-Cenozoic Pamir crust was only 35–40 km thick, the accommodation of 900 km 

of Cenozoic convergence not only produced the present 70-km thick crust, but also led to 

another 40 km of ‘excess’ crust that was either extruded laterally or recycled into the mantle 

[Schmidt et al., 2011]. The Pamir xenoliths may be just the tiniest glimpse of vast amounts of 

crustal recycling in the western India−Asia collision zone. 

 

VIII. Conclusions 

Miocene granulite- and eclogite-facies xenoliths from the Pamir of Tajikistan provide a 

unique and spectacular record of foundering of continental crust to mantle depths of 90 km. 

Coupled U-Pb dates and trace-element abundances measured by laser-ablation split stream 

inductively coupled plasma mass spectrometry reveal the evolution of the xenoliths. The 

xenoliths were derived from mixed sedimentary−igneous crust like that exposed today in 

gneiss domes nearby. At 22−20 Ma, the xenoliths passed into the garnet stability field with 

minimal heating. At 14−11 Ma, the xenoliths were heated 200−300°C, buried to depths of 90 

km depth—20−40 km below the present Moho—and invaded by ultrapotassic/carbonatitic 

melt. At 10 Ma the xenoliths were erupted. The 14−10 Ma evolution is interpreted as the 
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response to foundering of a ~20 km wavelength instability of the Pamir lower crust created 

by large-scale Cenozoic crustal thickening and northward rollback of the Asian mantle from 

beneath the Pamir.  
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Figure 1. The Pamir are the western extent of the Tibetan Plateau. They are underlain in the North by 

a S-dipping Asian slab that is seismic (epicenters from Sippl et al. [2013] shown by the colored dots), 

and in the south by a flat-slab segment of the Indian plate. Gneiss domes (pink) expose high-grade 

Cenozoic rocks throughout much of the Pamir. The xenoliths (star symbol) in the SE Pamir were 

erupted from mantle depths.  

 
 

 
Figure 2. Calculated pressures and temperatures for the eclogite-facies xenoliths (green lines) and 

high-pressure granulites (blue lines); each line represents the position of a single reaction. Gray 

arrow: probable PT path. Modified from Gordon et al. [2012]. 
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Figure 3. Hypothetical evolution of Pamir orogen. 
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Figure 4. Representative photomicrographs from the Pamir xenoliths. A) K-rich meta-igneous 

xenolith DK10, with injected carbonate veins among relict kyanite, garnet, alkali feldspar, and 

clinopyroxene. B) Meta-pelite DK20_2 with very coarse kyanite, garnet, and alkali feldspar, 

interstitial rutile, and fine-grained carbonate percolating along grain boundaries. C) Meta-igneous 

xenolith DK3 shows rutile enclosed in garnet, with clinopyroxene and kyanite. D) Mafic xenolith 33* 

exhibiting crystallization of phlogopite along clinopyroxene and garnet grain boundaries after melt 

injection. E) DK28 with phenocrystic alkali feldspar and phlogopite, and a garnet xenocryst with a 

corona of clinopyroxene and “trail of biotite. F) Minette DK36 with globular alkali feldspar, 

castellated phlogopite, and carbonate groundmass [Kretz, 1983]. See also Figure 2 in Hacker et al. 

[2005]. 
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Figure 5. Textures of xenolith zircon. Red circles are 15-um LASS spots and U-Pb dates (Ma). A-D) 

Igneous protolith xenoliths have subhedral – anhedral grains with oscillatory zoning; metamict 

domains; recrystallized, complexly shaped domains with CL-flat or ghost zoning; and thin, CL-flat 

rims. C & D exhibit a transition of magmatic textures to bright CL “ghost-zoning,” associated with 

Paleogene U-Pb dates. E-H) Meta-pelite xenolith zircons are typically anhedral, with poorly 

preserved to non-existent cores surrounded by wide, CL-flat rims. I-L) Minette zircons are irregular 

and skeletal, with multiple oscillatorily zoned domains and convoluted recrystallized domains. Scale 

bars are 50 microns. 
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Figure 6. Tera-Wasserburg diagrams for xenolith zircon U-Pb data. Two samples with relatively few 

data are not included. Zircon that occur as inclusions in other minerals (mostly garnet) are red; matrix 

grains are black. Zircons that may be inherited are indicated with green text. Ages in Concordia 

shown in blue. 
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Figure 7. Tera-Wasserburg diagram for minette zircon U-Pb data. 
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Figure 8. Chondrite-normalized REE for each xenolith type, plus sample DK25. Boggy Plain 

plutonic zircon average REEs included for reference to typical zircon REE behavior [Hoskin & 

Ireland, 2000]. Cooler colors represent older zircon ages; warmer colors represent younger ages. 

Crustal xenoliths (left) show depletion in HREEs among the younger zircon zones, as well as changes 

in Eu/Eu*. Typical Eu/Eu* for older analyses are similar to Boggy Plain zircon. Minette REEs (upper 

right) show enriched LREEs and less variable REE abundances, and little to no Eu anomaly. DK25 

(above) shows older zircon with REEs similar to crustal xenoliths, and younger zircon with REEs 

similar to minettes. 
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Figure 9. Lu/Gd, Eu/Eu*, Ti concentration, and inferred temperature in zircon. The CL images show 

locations of 15-um LASS spots, and highlight the differences between zircon core and rim 

compositions. Numbered spots correspond to those represented on the figures; the four colors 

represent the four different types of xenolith. A) Lu/Gd ratio; all types of xenolith show significant 

depletion in HREE at ~20 Ma. B) Eu/Eu* changes from strongly negative Eu anomalies to 

neutral/positive anomalies near 20 Ma. C&D) Ti-in-zircon temperatures are ~800-850C until ~14 Ma, 

when they increase to >950-1000C. Heavy black lines in A & B are running averages. 
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Figure 10. (left) Micron-scale zoning in a ternary carbonate inclusion visible with BSE; energy-

dispersive spectrometry showed that the zoning in correlated with changes in Mg/Ca. (right) Ca-Mg-

Fe ternary diagram showing compositions of the carbonate inclusions in both this study and Hacker et 

al. [2005]. 
 
 

 
Figure 11. Laboratory diffusion distances of Ti, Dy, Yb, and Pb in zircon over 1-4 Myr [Cherniak, 

1997; Cherniak, 2000]. 
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Figure 12. Relationships between zircon age and distance of LASS analysis from zircon rim. No 

distinct correlation is visible. 

 
 

 
Figure 13. Pressure and temperature evolution of Pamir xenoliths. 
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Table 1. Summary of U-Pb data. 
sample Protolith oldest concordant 

zircon 

youngest 

zircon 

summary of dates  

DK1 mafic, igneous  107–82 Ma inclusions 

in garnet  

11.8 ± 0.9 Ma distribution of dates from 107 to 11 Ma 

DK2 mafic, igneous  159 ± 6 Ma 14.2 ± 0.5 Ma bimodal Cretaceous and Miocene 

DK3 igneous(?). Minor kyanite 108 ± 2 Ma; n=3 55 ± 2 Ma entirely Cretaceous  

DK4 igneous(?). Minor kyanite

  

119 ± 4 Ma 27 ± 1 Ma mostly Cretaceous 

DK6 mafic, igneous  128 ± 4 Ma 11.2 ± 0.5 Ma distribution of dates from 128 to 11 Ma 

DK9 igneous(?). Minor kyanite

   

148 ± 5 Ma 11.1 ± 0.4 Ma bimodal Cretaceous and Miocene 

DK10 metasedimentary(?). 

Inherited zircons of different 

age.  

107 ± 3 Ma 11.9 ± 0.8 Ma distribution of dates from 107 to 12 Ma. Two 

older spots, projected from 10 Ma, have 1691 

and 1420 Ma upper intercept dates 

DK11 igneous(?). Minor kyanite

   

145 ± 5 Ma 12.0 ± 0.4 Ma bimodal Cretaceous and Miocene 

DK14 igneous(?). Minor kyanite 

and inherited zircon. 

85 ± 2 Ma 12.1 ± 0.7 Ma few data. Oldest spot, projected from 10 Ma 

has 679 Ma upper intercept date 

DK15 metapelite  25 ± 3 Ma 11.1 ± 0.4 Ma almost entirely Miocene. Oldest spot, projected 

from 10 Ma, has 731 Ma upper intercept date 

DK18  igneous. Intermediate 

composition. 

136 ± 7 Ma 15.8 ± 0.7 Ma bimodal Cretaceous and Miocene 

DK19 igneous(?) 58 ± 3 Ma 10.2 ± 0.8 Ma few data 

DK20 metapelite  92 ± 6 Ma 10.6 ± 0.4 Ma almost entirely Miocene. Oldest spots, 

projected from 10 Ma, have 487 and 405 Ma 

upper intercept dates 

DK22 igneous(?). Minor kyanite

 .  

121 ± 4 Ma 12.0 ± 0.8 Ma bimodal Cretaceous and Miocene 

DK25 minette-like  70 ± 4 Ma 9.8 ± 0.8 Ma distribution of dates from 465 to 10 Ma 

DK28 Minette 11.8 ± 0.7 Ma 10.0 ± 0.4 Ma youngest single population: 10.6 ± 0.1 Ma 

DK31 mafic, igneous    few data 

DK33 metapelite  15 ± 1 Ma 12.3 ± 0.4 Ma mostly Miocene. Oldest spots, projected from 

10 Ma, have 1400 and 1226 Ma upper 

intercept dates 

DK35 metasedimentary(?)  18 ± 1 10.6 ± 0.6 Ma mostly Miocene. Oldest spot, projected from 

10 Ma, has 496 Ma upper intercept date 

DK36 minette 11.2 ± 0.4 Ma 9.9 ± 0.4 Ma youngest single population: 10.4 ± 0.1 Ma 

DK60 igneous(?). Minor kyanite

   

119 ± 4 Ma 13.6 ± 0.6 Ma mostly Cretaceous  

 

 

 
Table 2. DK36 minette bulk-rock composition, compared to Dunkeldik ultrapotassic volcanic rocks 

[Malz, 2011], and minette global average [Rock, 1991]. 

sample SiO

2 

Al2O

3 

TiO

2 

FeO

* 

Mn

O 

Mg

O 

Ca

O 

Na2

O 

K2

O 

PO4 CO

2 

H2

O 

tota

l 

DK36 48.2 17.0 1.8 4.6 0.0 4.6 4.3 1.1 11.0 1.4 4.4 1.4 94.1 

Dunkeldik 

volcanics avg. 

45.9 11.7 0.98 6.5 0.13 4.3 10.7 0.73 7.7 1.4 -- -- 90.0 

Minette global 

avg. 

51.5 12.8 1.3 7.3 0.12 7.1 6.7 2.0 5.6 0.9

5 

2.0 2.1 99.4 
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Supplemental Figure 1. Tera-Wasserberg diagrams for xenolith zircon U-Pb data. 
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