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Abstract |

This paper describes a method for incorporating layout parameters to better
meet performance constraints. We define an algorithm for synthesis of high-
performance designs and present a synthesis tool for use with custom layout gen-
erators. Experimental results indicate such an approach produces faster layouts
and permits greater area/time tradeoffs than traditional logic synthesis systems.
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1. Introduction

Logic synthesis tools help reduce design complexity, thereby increasing
productivity and reducing chip development time. They transform a
functionally correct design consisting of generic components into one that has
been optimized to meet a designer’s constraints for a given component library.
Numerous logic synthesis tools have been developed: LSS [JoTr86], SOCRATES
(GrBag86], LOGICIAN [BeOw87], MIS [BrRu87|, BOLD [BoHa87], DAGON
[Ke87], and MILO [VaGa88]. Commercially available tools include the Logic
Consultant [Kim87], the Synopsys Design Optimizer, and Silc Technologies
Silesyn. These tools incorporate synthesis and optimization techniques in their

design cycle.

Logic synthesis begins with basic functional or structural descriptions such
as boolean equations, gate-level schematics, or PLA formats. Descriptions are
collapsed into two-level SOP form and minimized to eliminate redundant terms.
Factorization can be employed to minimize the number of gates and
consequently the number of transistors. Finally, the design is converted to
technology-specific components, such as those in gate-array or standard cell

libraries, and optimization is performed to meet constraints for time and area.
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Conventional logic synthesis systems produce designs for gate array and
standard cell libraries. Such semi-custom libraries are popular for their
simplicity in layouf and the ability to use automatic layout tools. A major
weakness of the semi-custom approach is the larger area required for routing,
producing a lower layout density than custom methods. In addition, all
transistors are of the same size, capable of driving some expected average load.
This average load is usually greater than what is required, making cells larger
than necessary. When a larger load than the preset value must be driven, speed

1s sacrificed.

In order to achieve better layouts, more attention has been focused on tools
that offer custom layout. Custom layout permits greater control over layout
parameters, providing smaller area and faster designs than its gate-array or
standard cell counterparts. For example, Figure 1 shows three layouts for the
same logical function. The first layout was done using standard cells; the second
and third, using custom layout, were optimized for area and time, respectively,
by varying transistor sizing and complex gate formation. The second layout has
22% less area than the standard cell version and the third layout is 30% faster

than the standard cell version.

A number of layout generators that produce custom layouts from gate-level

input have been reported (TOPOLOGIZER [Kol85], LES [LiGa88], PAMS
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(a) Standard Cell Layout (b) Custom Layout for Area (c) Custom Layout for Speed

Figure 1: Standard Cell Layout vs. Custom Layout

[TsCe88], SOLO [BaAl88}, CLAY [KoLu88]). They offer improved routing, such
as through-the-cell instead of routing channels, generate cells dynamically
instead of having fixed libraries, and can size transistors as instructed by user
input, insteading of having a fixed size. With these improved layout capabilities,
new techniques are required to consider layout in the synthesis process and
manipulate layout parameters to produce higher-quality designs. Such
considerations have not been incorporated in previous synthesis systems. Hence
they fail to achieve optimal results when a custom layout is used. For example,

consider Figure 2 which shows two different implementations of the same logical
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function. The design in Figure 2(a) has been optimized specifically for area.
Figure 2(b) displays the implementation that has been optimized for time. Both
designs were produced using standard cell synthesis techniques. When the
layout was implemented in standard cells, the optimization achieved the desired
effect. However, when these implementations were run through custom layout
generators, the design of Figure 2(b) had the best speed AND the best area as

shown in Figure 2(c).

2. Parameters for Custom Layout

2.1. Complex Gates

Layout driven synthesis is not restricted to a fixed library of components.
In many cases multi-level Boolean functions can be implemented as a single
complex gate. Complex gates.have fewer connections and fewer transistors than
multiple gate implementations and hence may reduce area and improve
performance. An example of a complex gate is shown in Figure 3(a) and
contrasted with the multiple gate implementation in Figure 3(b) (with inverters
assumed to be pushed back to previous levels). Both implementations are shown

in the CMOS technology with cells having a P and N transistor section.

In layout driven synthesis, the optimizer has great flexibility in deciding

which gates to combine into a single gate. The type of complex gates formed is
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Figure 2: Custom Layout Results Using Synthesis for Standard Cells
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limited mainly by the buildup of capacitance, the load the gate must drive, and
the transistor speed. As more transistors are placed in series, the resistance and
parasitic capacitance of the gate increase, resulting in longer delay times. In
CMOS, where gates have an N and P transistor section, carrier mobility in P-
type transistors is twice as slow as N-type transistors. NOR gates, which have
P-type transistors in series, can be 2 to 3 times slower than gates with N-type
transistors in series (such as NAND gates). This makes it beneficial to limit the
number of transistors that a complex gate has in series and parallel. In CMOS,
fewer P-type transistors should be allowed in series than N-type transistors.
Hence, a compromise must be made between the solution consisting of only
single gates and the solution involving complex gates with a large number of
transistors. As a general rule, complex gates with few transistors are desired
along paths where timing is critical while complex gates with more transistors

are desired in sections where area is most important.

2.2. Transistor Sizing

Another concern in custom layout is transistor sizing. As discussed in
[FiDu85], [He87], [Ci87], and [ObKa88], choosing proper transistor sizes is kéy to
circuit performance. Figure 4 demonstrates how changes in transistor size affect
speed. Increasing the size of transistors in Gate B improves its speed. However,

the larger transistors create a larger capacitive load for Gate A. This slows
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down Gate A and hence the entire path unless Gate A’s transistors are increased
based upon the new load. The size vs delay relationship is a convex curve as in
Figure 4(b). Thus sizing a gate’s transistors excessively large can increase the
total path delay if the transistor sizes of the gates that drive it are not increased

as well.

Transistor sizing gives greater control over area/speed tradeoffs. For
example, in CMOS where NOR gates tend to be slower than NAND gates,

synthesis systems try to avoid using NORs or use NORs with fewer inputs.

Total
Path
Delay

\
7
Transistor Size of Gate B

Figure 4: Effect of Transistor Sizing on Path Delay
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Layout driven synthesis systems can increase the size of the P transistors,
thereby improving speed (i.e., making the gate as fast as a NAND) at the

expense of increased transistor area.

Since transistor sizing is not variable in standard cells there is no need to
consider load when using complex gates. However, for custom layout, gates
must be combined in such a way to avoid a number of problems. For example,
as the load a complex gate drives increases, transistor sizes must be made larger
to prevent a decrease in speed. Larger transistors require strips with greater
height creating the problem shown by the two layouts in Figure 5. The first
layout consists of seven NAND gates. In the second layout the final three NAND
gates have been combined into a complex gate. Both designs drive an output of
.1 picofarads (roughly 2-4 fanouts). Even though the transistor area for the
complex gate is less than that for the individual gates, total area has been
increased. One can see from Figure 5(b) that a tall cell in a strip is not
compatible with shorter cells, generating wasted space along the top and bottom
of the channel. In addition, larger transistor sizes increase the load for all gates
in the preceding stage, requiring them to be increased in size if the present speed
is to be maintained. This creates a chain reaction affecting all preceding stages
that can significantly increase the area. The design of Figure 5(b) is slower than
that of Figure 5(a). The delays could be made equal by using even larger

transistors sizes, resulting in a much larger area for the same delay. Hence the
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Figure 5: Effect of Large Transistor Sizes in Complex Gates

formation of complex gates should be dependent upon the load. Single gates or

conplex gates with few transistors should be used to drive heavy loads. In
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general capacitive loads are larger closer to output pins and smaller closer to
input pins. This indicates that complex gates with a larger number of
transistors can be created near input pins, while fewer transistors should be used

in complex gates near output pins.

2.3. Placement and Routing

Control over component placement is important as cells along paths having
critical delays should be placed close to one another. This prevents long wires
from connecting them and introducing further delays. Further, large size gates
should be placed on the edges of the floorplan since routing is sparse near
boundaries. Same size gates can be placed in the same row to reduce wasted
space from uneven cells. This increases the routing but decreases overall area.

Such a scheme could have been used to correct the problem of Figure 5(b).

A related concern is in routing. Routing should be performed on critical
components first to ensure that they get the shortest paths. In addition, long
wires should be placed in the metal layer for better speed. A synthesis program
can aid layout by assigning priorities for the layout program, indicating which

components need to be placed close together or which cells are similar in size.
2.4. I/O Positioning

Placement of I/O pins also is crucial for quality layouts. Pins can be placed
near the modules having critical timing or placed in a position that reduces
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overall routing and saves area. They must be kept well distributed to prevent
congestion in the center of the module and wasted space around the boundary of
the module. Thus information on good I/O positioning can help layout tools

create faster or more dense layouts.

3. Strategies for Layout Driven Synthesis

There are several strategies for controlling complex gate formation and

transistor sizing.

One simple strategy is to form complex gates first and then size the
transistors. During the complex gate formation stage, transistors are assumed to
be unit sized. For example, in a 3 micron CMOS technology all NFETs and
PFETSs would initially be given a size of 3 microns. The weakness of this strategy
is that transistor sizes do not influence complex gate formation and thus create
complex gates with many large transistors. This unnecessarily increases the

layout area.

Using a second strategy, transistors are sized first and then the complex
gates created. With this approach more realistic transistor sizes are used in
deciding how to form complex gates. Those gates with small transistor sizes are
used to build complex gates; those with large sizes are mostly left untouched.
The new complex gate’s transistor size is based upon the largest transistors of

the gates that were merged. When this new complex gate is inserted, the gates
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that drive it may be driving larger transistors than they were before. Since
these gates must drive a larger capacitive load, they are now undersized if the

present speed is to be maintained.

The third and most complicated strategy involves forming complex gates
and sizing transistors at the same time. Before a decision is made to create a
complex gate, all gates that the new complex gate will drive must be processed.
That is, no changes in transistor sizes or complex gates can be made along any
paths that can be reached from the output of the new complex gate. Doing so
could change the load that the complex gate is required to drive, resulting in the
problems encountered in the second strategy. After a new complex gate is
created, all gates that drive it are resized. This approach will presumably

provide the best results.

4. Algorithm for Layout Driven Synthesis

We present an algorithm for producing high-performance CMOS custom
layouts. Our algorithm consists of four phases as shown in Figure 6. The input
is a set of boolean equations. These equations are first minimized and then
factored by MISII to make use of common terms. Parameters for the maximum
number of NFETs and the maximum number of PFETs allowed in series are
provided for the next phases to place limits on the size of complex gates created.

In the second phase, the algorithm reduces the number of levels along the
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Figure 6: Algorithm for Layout Driven Synthesis

longest paths by performing balanced factoring. This technique attempts to
partially collapse the critical path then refactor so as not to exceed the

maximum number of transistors allowed per gate. The algorithm’s third phase
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then performs technology mapping by combining gates into complex gates. The
fourth phase sizes the transistors, producing a design that can be passed to a

custom layout generator.

4.1. Time Optimization

The general idea of timing optimization is to perform a limited collapse of
nodes along the critical path. This requires some duplication of logic, creating a
design with greater breadth and shorter depth. Some logic along critical paths
can be removed and added along non-critical paths. More than just a partial
collapse is required, however, to produce high-performance designs. We employ
a.Aba.la,nch factoring method that addresses the problem of how many transistors
to place in each gate. Gates are factored to get the number of inputs per gate
that achieves the best speed rather than attempting to reduce the number of

transistors.

Three operations are used to reduce the number of levels: distribute,
extract, and merge. These operations are shown as applied to a graph of
operator nodes in Figure 7. Distribution transfers logic across other nodes,
allowing some logic to be shifted to non-critical paths. Extraction removes non-
critical inputs from a node, reducing the delay through the node. Merging
combines two nodes having the same operator. Only two critical nodes should

be merged in order to reduce the delay. Use of the three operations is illustrated
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in Figure 8. Figure 8(a) is a design of five levels. Distributing node 2 over node
3 produces the design of Figure 8(b) which has one fewer level. Using the extract
operation then on node 4 balances out the paths through that node (Figure
8(c)). Node 2 can be merged into node 0 (Figure 8(d)) and an extract operation
applied to node 0 (Figure 8(e)) to balance the path lengths. In this manner,

critical paths can be shortened by shifting logic to non-critical paths.

The input equations which have been minimized and factored are converted
into a tree structure similar to that in Figure 8. Nodes may have only as many
inputs as the number of transistors allowed in series. I performing the
optimization at a node creates a new longest path or requires the addition of too
many nodes, the optimization will not be performed. We perform the timing
optimization going from inputs to outputs. Duplication of logic through
distribute operations is preferred closer to input pins as there are fewer gates to
be duplicated. Also transistor sizes are smaller closer to the inputs and
duplicated logic can be placed in complex gates with more transistors. These

factors help to contain the extra area that results.
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AN 3{% .

(b) Extract Operation

SN0

(c) Merge Operation

Figure 7: Critical Path Reduction Operations
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Algorithm 1: Balanced Factoring

{restructure critical paths}
Let
V be the set of vertices in the design;
CP be the set of vertices along the critical path;

procedure balanced_factor(V)
begin
CP, = find_critical_path(V);
can_improve = TRUE;
while (can_improve)
balance(V, CP))
CP, = find_critical_path(V);
if (CP, = CP,) then
can_improve = FALSE
else
CP = CP,;
end
end
end

{Redistribute Logic Along the Critical Path}
Let
D[”,j be the cumulative delay at node i of design V;
Damp‘ be a delay reduction constraint;
AN['.] be the increase in number of nodes due to optimization of node i;
A aceept be an area increase constraint;
procedure balance(V, CP)
begin
for alli € CP
V.., = distribute(V, i, i+1);
Voo = extract(V,_ , i+1);
View = merge(V, ., i+1,i-1);

V.o = extract(V, , i-1);

new

if(D['.M - D[‘._ LVhew] > Dmep‘) and (AN, < A) then

June 18, 1989
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V .

new’

V:
end
end
end

{Distribute node i over node i+1}
Let
S, be the set of input nodes to node i;

procedure distribute(V, i, c)
begin

remove c from S
Forallj € S,
if operator(i) = operator(j) then
Forallk € S,
| = duplicate_tree(k);
add1to S I
end
extract(V, j);
else
m = duplicate_tree(i);
remove j from S_;
addmto §S,;
add jto S ;
extract(V, m);
end
end
addcto S_ ;
end

{Remove Non-Critical Inputs From Critical Nodes}
Let
CD,; be the cumulative delay at the critical input of node i;
S; be the set of inputs of node i;
T, be the transistor limit constraint
P be the delay percentage

June 18, 1989



procedure extract(V, i)
begin
input_cnt = T;
sort S; by delay (worst delay to least delay)
if (length(S;) > 1) then
k = node_duplicate(i);
end
if (length(S;) > T) then
For all j € S,
if (input_cnt = T, and length(S;) > 1) then
n = node_duplicate(i);
add n to S,;
k = n;
input_cnt = 1
else
input_cnt = input_cnt + 1;
end
add j to S;
remove j from S;;
end
end
num_inputs = 0;
T,=S;
k = node_duplicate(i);
Forallj € S,
iij < (P * CD,) then
add j to S;
remove j from S;;
num_jnputs = num.inputs + 1;
end
end
if (num_inputs > 1) then
add k to §;;
else
5 =T;
end

end

June 18, 1989
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{Combine Critical Nodes}
procedure merge(V, N, N, )
begin
i (operator(N;) = operator(N,_,))
Forallj € N,
remove j from N;

add jto N,_;

end
end

end |

4.2. Technology Mapping

The third phase involves technology mapping. To perform the mapping,
estimates of the gate delay times are made in order to identify the critical path.
Each gate is converted to a NAND/NOR gate and assigned a delay based upon
the number of NFETSs in series, the number of PFETs in series, and the load
that the gate must drive. The critical path is found using a method similar to

that discussed in [YeGh88].

The next step is complex gate formation. The algorithm forms complex
gates first along the critical path. The combining algorithm goes from input pins
to output pins, which tends to produce large complex gates near the inputs and
small complex gates at the outputs (as there are fewer gates left to combine).
Complex gate formation is restricted by the user entered parameters for
maximum transistors in series, the number of fanouts that the gate must drive,

and the amount of slack. We have found that single gates or complex gates in
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which the critical path passes through only one gate level of the complex gate

are best along the critical path. Figure 9 shows an example demonstrating this

with actual delay times in a 3 micron CMOS technology. The complex gate

formed in Figure 9(b) has only a small effect on the delay through the critical

path. However, the complex gate achieves a reduction of active transistor area

(routing area is not included). Figure 9 also shows that if the critical path ran

from A to F, the complex gate should not be formed. For purposes of

comparison in this example, it is assumed that all inverters that must be added

to some inputs of the complex gate (for the designs of Figure 9(a) and Figure

9(b) to be equivalent) are pushed back to the previous stages.

Rise | Fall | Avg.

Ny ;| | Tie] tme] e
\ :D):D':"EE-'W A>F | 83|77 | 80
C->P ss | 40 4.75

@ Active Transistor Area: 96um?

Rise | Fall | Avg.

ran | Tie) time| Tie

A->F 156 | s.0 10.3

C->F 34150 4.2

®) Active Transistor Area: 72um?

All transistors have size 12um2

Figure 9: Area/Delay Considerations for 2-Level Complex Gates
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Gates along the non-critical paths are combined into complex gates in the
fourth phase. The worst case path to each output is processed first to prevent
the initial combining from being along the short paths. Figure 10 shows the
delay and area for a complex gate with more transistors than Figure 9. It
demonstrates that complex gates with more transistors are slower for some
paths, but yield a savings in transistor area. Note that the complex gate of
Figure 10(b) could be made just as fast as its individual gate implementation.
This would require larger transistor sizes, however, and hence the complex gate
consumes a larger layout area in order to match the delay. Therefore, paths
with much smaller delays than the critical path can have complex gates with

more transistors.

Algorithm 2: Complex Gate Generation

{combining gates into complex gates}
Let t be sink node and s be source node in the graph;
Ci be the input capacitance of vertex i associated with all the fanout pins;
Si be the slack of vertex i (required delay - actual delay);
C_high and C_low be the fanout constraints;
S_small and S_large be the slack constraints;
Q be a set of vertex.

PROCEDURE combining(V,Q)
BEGIN
FOR (i=t tosin Q)
BEGIN
IF (mark[i]=false)
BEGIN
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A->F | 1544 8.56 | 12.00
C->F | 11.11] 3.56 7.33
D->F | 511333 | 422

®) Active Transistor Area: %6um?

All transistors have size 12um2

Figure 10: Area/Delay Considerations for 3-Level Conplex Gates

IF (Ci > C_high OR Si < S_small)
combine gates into two level three input complex gate;
ELSE IF (Ci > C_ow OR Si < S_large)
combine gates into two level four input complex gate;
ELSE
combine as many gates as possible into complex gate;
mark[i] = true;{where i is in V}
END;
END;
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4.3. Transistor Sizing

The fourth phase is transistor sizing. Transistor sizing is performed first on
the critical path to ensure optimal sizes for speed. Transistors in gates along
non-critical paths can then be sized. The N and P transistor sizes are chosen to
achieve equal rise and fall times for the gate. The sizing algorithm proceeds
from outputs to inputs basing size upon the capacitive load that must be driven.
To achieve nearly optimal sizes for speed we examine the gate to be sized and its
preceding stage. The graph of a gate’s transistor size plotted against total path
delay is a convex curve [He87]. We examine the effect of sizing on both gates,
thus considering two curves. The point where these two curves intersect is the
transistor size chosen. Further details of the transistor sizing algorithm can be

found in [WuVG89].

Algorithm 3: Combine-Then-Size Strategy
{This algorithm is to combine gates into complex gates, and then to size the transistors to obtain
optimum speed}

Let V,E be the vertex and edge sets of the graph G;
where V is the set of all gates in G;
and E is the set of all connections between gates in G;
Let Vecritical be the vertex set of the critical path;

BEGIN
restructure_longest_path(V,Vcritical);
find_critical_path(V,Vcritical);

{combine gates along critical path}
combining(V,Vecritical);
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{combining gates along non-critical paths}
combining(V,V);

{size transistors along critical path}
transistor_sizing(Vecritical,V);
{size transistors along non-critical paths}
transistor_sizing(V,V);
END u

5. Results

Our synthesis tool is currently running on SUN 3 workstations under the

UNIX operating system. Synthesized designs with complex gates and sized

transistors are passed to LES for layout generation and then to GDT! [BuMa85]
for simulation and comparison. We have run a number of examples and
éompa.red our results with those of MISII (OCTTOOLS release 2.0). They are
shown in Table 1. To achieve a fair comparison, the output of MISII (which does
not size transistors) was run through our transistor sizing routine before passing
it on to LES. The LES layout was passed on to GDT to perform the simulation.
The results for our layout driven synthesis algorithm (LDS) were obtained by
first minimizing and factoring the design using MISII, then applying the timing
optimization, complex gate formation, and transistor sizing before passing the
circuit to.LES and GDT. Tables 2 and 3 displays a number of MCNC

benchmark examples with comparisons to MISII (OCTTOOLS release 3.1).

! GDT is a registered trademark of Silicon Compiler Systems.
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) Com- Area Time
Desi; .
en plexity () (ns)
% %
o Gates MISIT DS improve.- MIST LDs improve-
ment ment
P147 18 72,341 | 62,129 141 11.84 | 11.26 49
P151 17 62,304 | 62,708| -0.8 1655 | 11.33 3Ls
F1 2 76903 | s1.000] 337 17.11 | 1150 3238
F2 29 128,040 | 81,510 363 2111 | 1261 40.3
zdmlc 64 330,038 | 270,150 | 18.1 26.28 | 1256 s2.2

Table 1: Custom Layout Comparison Between MISII the LDS Algorithm

Table 2 compares custom layout results, Table 3 was generated using the MCNC
standard cell library. Because of the size of these designs, we did not obtain
actual layout results but used estimates for time (which we have found to be
within £10% of the actual value) and the active transistor area (not including
the routing area). The following commands were used to perform the logic
synthesis in MISII.

source script

rlib les_cus.lib

map -m.75

phase -g

speed_up -w 0
map -m.75

The script used is the standard script provided with OCTTOOLS release 2.0.
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. Active Transistor Area Time
Desian (unf ) (ns)
% %
MiSIl  LDs  increase B Misi  LDs TP
gsymmi | 16848 | 16,884 02 45.03 41.61 77
z4ml 5,340 6,636| 24.2 20.16 16.69 17.2
b9 7,764 | 14820| 918 2587 | 20.68 20.1
#51m-hd 8676 | 12,168 402 33.35 26.30 21.1
51m 10,944 14,184 296 29.65 25.18 15.1
att12 6,564 11,040| 682 45.95 23.76 483

Table 2: Comparison of Custom Layouts Using MCNC Benchmarks

Area Time
Design
% %
MiSI  LDS  increase B misi  LDS e

9symml 382 465 217 19.6 15.4 214
z4mi 119 116 2.5 10.1 6.6 347
b9 237 338 4286 89 8.4 56
f51m-hdl 216 284 315 10.8 10.7 09
f51m 269 295 9.7 111 11.3 -1.7
att12 218 256 17.4 14.4 116 19.4

Table 3: Comparison of Standard Cell Layouts Using MCNC Benchmarks
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We found that it produced superior results for timing than the standard script
in OCTTOOLS release 3.1. The technology file les_cus.lib contains delay and
area estimations for gates in the SCMOS 3 micron technology. Our algorithm
also uses this table to perform delay estimations. Generally synthesis with
layout constraints produced designs up to 48 percent faster with an average of
30 percent more area. The area for our designs could be reduced by performing
area optimizations along the non-critical paths. Currently no area optimizations
are performed. Tables 2 and 3 demonstrate that our algorithm improves

performance for both standard cell and custom layout designs.

Figure 11 displays a composite graph showing our ability to perform
ai'ea/ time tradeoffs. Our results are normalized against standard cells whose
reference point is shown at time = 1, area = 1. Several points are noted on the
graph. Point A shows that synthesis considering layout produces designs with
smaller area and faster speed. Point B illustrates the capability to save even
more area while having a larger delay than the standa.rd‘ cell synthesis approach.
Similarly, Point C shows thaf speed can be improved further at the expense of
area. The dashed section of the curve ends when the minimal transistor sizes
are used (PFET size = 2, NFET size = 1). This part of the curve shows
expected results as we have not actually tested this. Another observation is that
using custom layout, the speed can be kept speed constant while varying the

output load (fanout). Of course, there is an associated increase in the area. As
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Figure 11: Composite Graph of Experimental Results

the fanout increases in standard cells, however, the speed is decreased.

6. Conclusion

We have noted that higher-quality layouts can be produced by taking
layout parameters into account during the synthesis process. Traditional logic
synthesis techniques work well for layouts using standard cells but achieve less
than optimal results for custom layouts. They fail to consider layout parameters
like transistor sizing and complex gate formation. We implemented an algorithm
for high-performance CMOS designs that incorporates these parameters and
compared our results with those of a traditional logic synthesis system, MISII.

Our results demonstrate speed improvements for both custom and standard cell
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layout Further, layout driven synthesis has greater control over area/time
tradeoffs. Future research is needed to refine the interaction of factorization,
complex gate formation, and transistor sizing to produce superior results.
Improvements should include: (a) re-examining timing after the initial transistor
sizing phase and desizing transistors along non-critical paths to reduce area and
power, (b) using the combine-and-size strategy instead of our combine-then-size

strategy, and (c) performing area optimization along non-critical paths.
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