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On Optimal Ergodic Interference Alignment
Chunhua Geng, and Syed A. Jafar

University of California Irvine, Irvine, CA 92697
Email: {chunhug, syed}@uci.edu

Abstract—The original ergodic interference alignment scheme
proposed by Nazer et al. requires symmetric channel phase dis-
tribution. In this paper, we investigate a new ergodic interference
alignment scheme which can achieve one half interference-free
degree of freedom (DoF) for arbitrary phase distribution. Even
for symmetric phase distributions, the new scheme achieves a
better high SNR offset than the original ergodic interference
alignment scheme, and depending upon the magnitude distribu-
tions it is shown that the SNR offset improvement with the new
scheme over the original scheme can be arbitrarily large. The
SNR offset optimal ergodic alignment scheme is based on results
in majorization theory.

I. INTRODUCTION

Introduced by Nazer et al. in [1], ergodic interference
alignment (IA) is the idea of opportunistically pairing com-
plementary channel states, e.g., in the K-user interference
channel, such that all interference is automatically aligned
and every user is simultaneously able to achieve the same
rate as if he had the channel to himself for half the time. An
important requirement of the original scheme of Nazer is that
the phase distributions must be symmetric, in order to ensure
that complementary channel states occur in approximately
equal proportions and therefore can be matched evenly. Let
us take a 3-user interference channel as an example. In the
channel use l1, the channel state is

H(l1) =

 h11(l1) h12(l1) h13(l1)
h21(l1) h22(l1) h23(l1)
h31(l1) h32(l1) h33(l1)

 (1)

where hrt t, r ∈ {1, 2, 3} is the channel coefficient from
transmitter t to receiver r. In another channel use l2, the
complementary channel state should satisfy the property that
the direct channel coefficients retain the same value but the
cross channel coefficients are the negatives of the original
state, i.e., in the original ergodic IA, the complementary
channel matrix for H(l1) is

Hc
orig =

 h11(l1) −h12(l1) −h13(l1)
−h21(l1) h22(l1) −h23(l1)
−h31(l1) −h32(l1) h33(l1)

 (2)

In these two complementary states, the transmitters repeat the
same symbol and each receiver adds the channel outputs. This
causes all interferences to be canceled, 1/2 DoF is achieved
for each user, and at any finite SNR the following rate is
achievable for each user [1]

Rorig =
1

2
E[log2(1 + 2|h|2P )] (3)

where P is the transmit power of each user, h is the desired
channel (hkk for the kth user), and the expectation is over h.

Since additive white Gaussian noise power is normalized to
unity, P may be interpreted directly as SNR. Since the ergodic
capacity of any user (with uniform power allocation) is

C = E[log2(1 + |h|2P )] (4)

the original ergodic IA scheme guarantees to each user the
same rate as if he had the channel to himself for half the
time. This is clearly a very strong guarantee and shows the
remarkable potential of ergodic IA. In [2], Jafar has shown that
the ergodic IA scheme is capacity optimal when the channel
magnitudes are held fixed.

The success of the ergodic IA relies on a critical assumption
that the channel phase distribution is symmetric, which means
that the complementary channel states will occur in equal
proportions and be matched evenly. Although this assumption
applies to a variety of real world channel distributions, like
Rayleigh distribution, it is not applicable universally.

In this paper, we develop a new ergodic IA scheme, which
can achieve one half interference-free degree of freedom (DoF)
in interference networks with arbitrary phase distribution. In
our proposed ergodic IA scheme, we define two channel
states as complementary if the direct channel realizations are
different and the cross channel realizations are identical. Thus
in our proposed scheme, the complementary channel matrix
for H(l1) is

Hc
new =

 h11(l2) h12(l1) h13(l1)
h21(l1) h22(l2) h23(l1)
h31(l1) h32(l1) h33(l2)

 (5)

where h11(l2) 6= h11(l1), h22(l2) 6= h22(l1) and h33(l2) 6=
h33(l1). Over the two complementary states, we can use a
repetition code and subtract one received symbol from an-
other. This new approach can also cancel interference without
cancelling the desired signals, thus achieving 1/2 DoF for
each receiver without the assumption of symmetric phase
distribution.

When the channel phase is asymmetric, the original ergodic
IA cannot guarantee 1/2 DoF per user due to the occurrence
of unmatched states with probability bounded away from zero.
Since the new ergodic IA scheme presented in this paper
can achieve one half interference-free DoF for each user, the
improvement is in DoF, if the phase distribution is asymmetric.
If the phase distribution is symmetric, both schemes guarantee
1/2 DoF, but what about the high SNR offset (coding gain)?
Is the original ergodic IA optimal for high SNR offset?

When the phase distribution is symmetric, the original
ergodic IA can be seen as a special case of our proposed
scheme. We can achieve the same rate as the original ergodic
IA scheme, by requiring hkk(l2) = −hkk(l1). However, if the
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Fig. 1. The matching-up patterns for the original and optimal ergodic IA
schemes when the channel phase distribution is symmetric and the amplitude
has 2n discrete values ±a1,±a2, ...,±an, with equal probability.

phase is indeed symmetric, we ask three questions: 1) Is this
the best pairing of complementary states? 2) If not, then what
is the optimal pairing? 3) How much improvement can it offer
relative to the original ergodic IA? These are the questions that
we will answer in this work. The optimality metric that we
will use is the high SNR offset.

A. Overview of the Main Results

When channel phase distribution is symmetric, for question
1), we find that the original achievable rate in (3) is not optimal
for SNR offset, unless the channel magnitude is constant (in
which case it is capacity optimal). The difference between
the optimal pairing and original pairing is illustrated by a toy
example in Section III. Then for question 2), we find how
to match up direct channel values in complementary channel
states to achieve optimal ergodic IA. Here, we give a simple
example to explain the optimal matching-up pattern. For in-
stance, suppose the channel amplitude has 2n discrete values,
which are ±a1,±a2, ...,±an, with equal probability. In the
original ergodic IA, we match ai with −ai, ∀i ∈ {1, 2, ..., n}.
However, we prove that to achieve the optimal SNR offset, we
should pair ai with −an−i+1. The comparison of original and
optimal matching-up patterns is shown in Fig. 1. The related
proof for more general cases is given in Lemma 2 in Section
V, which is mainly based on majorization theory [3]. Then we
develop the achievable rate for the optimal ergodic IA scheme,
which is stated in Theorem 1 in Section V. Finally for question
3), we demonstrate the improvement of the SNR offset gained
by the optimal ergodic IA can be unbounded by an example
in Section VI.

II. SYSTEM MODEL

We consider the general K-user ergodic fading Gaussian
interference network, in which each node is equipped with
one antenna. At the rth receiver, the received signal in the lth

channel use is

Yr(l) =

K∑
t=1

hrt(l)e
jθrt(l)Xt(l) + Zr(l) t, r ∈ {1, 2, ...,K}

(6)
where Xt(l) is the transmitted symbol of transmitter t,
Zr(l) is the additive white Gaussian noise at receiver r, and

hrt(l)e
jθrt(l) is the channel coefficient between transmitter t

and receiver r. In this paper, the local noise power is normal-
ized at each receiver, and the transmit power of each transmit-
ter is denoted as P , i.e, E[|Xt|2] ≤ P , ∀t ∈ {1, 2, ...,K}. We
assume that all channel coefficient values are time-varying,
i.i.d., drawn from a continuous distribution, and the channel
phase θrt(l) and strength hrt(l) are independent. Throughout
this paper, the symmetric phase distribution implies p(θ) =
p(θ + π) for all phase term θ. Global channel knowledge is
available at all transmitters and receivers.

In the K-user interference network, there are K independent
messages W1, W2,...WK , and the message Wk transmitted by
transmitter k is intended for receiver k only. Let Rk(P ) denote
the achievable rate for message Wk. Then the DoF of message
Wk is defined as dk = limP→∞Rk(P )/ log2(P ).

III. RATE OPTIMIZATION PROBLEM OF ERGODIC
INTERFERENCE ALIGNMENT - A TOY EXAMPLE

For symmetric phase distribution, when P is relatively large,
the achievable rate of original ergodic IA can be written as

Rorig =
1

2
E[log2(1 + 2|h|2P )] ≈ 1

2
E[log2(2|h|2P )] (7)

As it turns out, while 1/2 DoF is achieved per user, the above
achievable rate is not optimal for SNR offset. It is possible to
achieve 1/2 DoF per user and a better SNR offset through a
different matching rule for desired channels. We explain the
intuition through a toy example below.

We assume the phase distribution is symmetric, and the
channel amplitude has 4 discrete values h1, h2, h3 and h4,
each with probability 1/4. When P is large enough, in order to
achieve 1/2 DoF no values would be matched up with itself.
x1, x2, x3, x4, x5 and x6, which take the value of 1 or 0,
denote whether h1 is matched up with h2, h1 with h3, h1
with h4, h2 with h3, h2 with h4, and h3 with h4, respectively.
For example, if x1 = 1, it means that h1 is matched up with
h2, and x1 = 0 represents that h1 is not paired with h2. The
achievable rate R of ergodic IA can be optimized by binary
linear programming (BLP) in (8) on the top of next page.

We can use some classic BLP methods, like linear
programming-based branch-and-bound algorithm, to maximize
R. For instance, when h1 = −2, h2 = −1, h3 = 1,
and h4 = 2, we can get the optimal rate is 1

2 log2(
9
2P ).

The original achievable rate in (7) is only 1
2 log2(4P ). The

difference between the optimal and original solution lies in
the matching-up procedure of direct channel values in the
complementary channel matrices. In the original solution, 1
is matched up −1 and 2 is matched up with −2. However,
in the optimal solution, 1 is matched up with −2 and 2 is
matched up with −1.

Remark 1: We can extend the toy example to general cases
easily. For instance, if the channel has 2N discrete channel
values with equal probability, when P is relatively large the
achievable rate is

R =
1

2
log2

P

2
+

1

2N
log2(

N∏
i=1

y2i ) =
1

2
log2

P

2
+

1

N
log2(

N∏
i=1

yi)

(9)
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maxR =
1

4
x1 log2(1 +

(|h1 − h2|)2

2
P ) +

1

4
x2 log2(1 +

(|h1 − h3|)2

2
P ) +

1

4
x3 log2(1 +

(|h1 − h4|)2

2
P )

+
1

4
x4 log2(1 +

(|h2 − h3|)2

2
P ) +

1

4
x5 log2(1 +

(|h2 − h4|)2

2
P ) +

1

4
x6 log2(1 +

(|h3 − h4|)2

2
P )

≈1

4
x1 log2(

(|h1 − h2|)2

2
P ) +

1

4
x2 log2(

(|h1 − h3|)2

2
P ) +

1

4
x3 log2(

(|h1 − h4|)2

2
P )

+
1

4
x4 log2(

(|h2 − h3|)2

2
P ) +

1

4
x5 log2(

(|h2 − h4|)2

2
P ) +

1

4
x6 log2(

(|h3 − h4|)2

2
P )

=
1

4
[

6∑
i=1

xi log2
P

2
+ 2x1 log2(|h2 − h1|) + 2x2 log2(|h3 − h1|) + 2x3 log2(|h4 − h1|) + 2x4 log2(|h3 − h2|)

+ 2x5 log2(|h4 − h2|) + 2x6 log2(|h4 − h3|)]

=
1

2
[log2

P

2
+ x1 log2(|h2 − h1|) + x2 log2(|h3 − h1|) + x3 log2(|h4 − h1|) + x4 log2(|h3 − h2|)

+ x5 log2(|h4 − h2|) + x6 log2(|h4 − h3|)]
s.t. x1 + x2 + x3 = 1 x1 + x4 + x5 = 1 x2 + x4 + x6 = 1 x3 + x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ∈ {0, 1}

(8)

where yi is the Euclidean distance between the matched up
direct channel coefficients in the complex plane.

IV. CHANNEL QUANTIZATION

Since in real world the channel distribution is continuous,
we need to quantize the channel coefficients first and then pair
up matrices based on the quantized channel values. Hereafter,
for notational convenience, we denote the quantized value of
hrt(l) as ĥrt(l). We only focus on the case of symmetric phase
distribution.

First, we choose a threshold value hMAX for channel
coefficients. If any channel amplitude in channel state matrix
is larger than hMAX , we declare an error. The complex
plane up to distance hMAX from the origin is divided into
2N arches with equal probability according to the channel
amplitude distribution (If the channel phase is distributed
between [0, 2π), the complex plane would be divided into N
rings with equal probability). Then these arches are further
divided into M equal segments based on phase distribution.
To ensure that both ĥrt (the quantized value with phase θ)
and −ĥrt (the quantized value with phase θ + π) correspond
to valid quantization cells, we constraint the number of angles
M to be even. Therefore all the segments in the quantization
have equal probability. Each segment is called a quantized cell
which is represented by its centroid. The maximum distance
between any two points in one quantized cell is denoted as δ.
The quantization scheme is illustrated in Fig. 2.

Remark 2: The quantization procedure is quite similar with
that in [1] except one difference: in [1], each quantized cell
has the same probability of occurring as any other cell within
the same ring. Here we require that all the quantized cells have
the same probability in the whole complex plane.

When hMAX is sufficiently large, by taking larger and
larger values for N and M , we can achieve the target rate
in the limit with an infinitesimal probability of error using a
good code [1]. After quantization, we also know that when
the number of channel uses is large enough, the sequence

Fig. 2. Quantization of channel coefficients with amplitude less than hMAX

when the phase distribution is symmetric, i.e., p(θ) = p(θ + π). Here each
quantized cell has equal probability of occurring and is represented by its
centroid.

of quantized channel matrices is strong typical with high
probability [1], which implies that the empirical distribution
of channel matrices is close to the probability distribution.
Therefore, nearly all the channel matrices can be matched.
Due to limited space, interested readers may refer to [1] for
details.

The effects of quantization errors can be bounded by the
following lemma in [1].

Lemma 1 (Lemma 1 in [1]:) Let h[l1], h[l2],..., h[ln] be
channel coefficients with magnitude less than hMAX . For any
an ∈ C,

|
N∑
n=1

anh[ln]| ≤ |
N∑
n=1

anĥ[ln]|+ σ

N∑
n=1

|an|

|
N∑
n=1

anh[ln]| ≥ max{0, |
N∑
n=1

anĥ[ln]| − σ
N∑
n=1

|an|}

(10)
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V. OPTIMAL ERGODIC INTERFERENCE ALIGNMENT FOR
SYMMETRIC PHASE DISTRIBUTION

In order to achieve the optimal ergodic IA when the channel
phase is symmetric, first we need to find the optimal matching-
up pattern for complementary channel matrices to get the
optimal achievable rate for high SNR offset.

From (9) we know that the achievable rate of ergodic IA is
dependent on the product of distances between the matched-up
direct channel values in complementary states. We can match
the quantized cell ĥα with phase θ up with a cell ĥβ with
any phase in the complex plane. However, when the phase is
symmetric, we can always find a quantized cell ĥγ with the
phase θ+π, which has the same absolute value as that of ĥβ ,
guaranteeing that the distance between ĥα and ĥγ is not shorter
than that between ĥα and ĥβ . Therefore, the optimal matching-
up pattern requires that all the quantized channel values with
phase θ should be paired with (subtracted from) the ones with
phase θ + π. Then we also know that if the channel phase
is symmetric, the specific phase distribution would not affect
the achievable rate of the optimal ergodic IA scheme. Hence
hereafter we only consider one pair of specific channel phases:
θ and θ + π.

According to the channel quantization procedure in Section
IV, for any specific phase pair θ and θ + π, we divide the
channel amplitude value into 2N segments. The quantized
value for each segments are denoted as {ĥ1, ĥ2, ..., ĥ2N}.
We assume that Re{ĥ1} < Re{ĥ2} < ... < Re{ĥ2N}
without loss of generality. If we define two vectors ~HA =
(|ĥ1|, |ĥ2|, ..., |ĥN |) (the phases of ĥ1, ĥ2,...,ĥN are all θ),
and ~HB = (|ĥN+1|, |ĥN+2|, ..., |ĥ2N |) (the phases of ĥN+1,
ĥN+2,...,ĥ2N are all θ + π), then the elements in ~HA should
always be paired up with those in ~HB to achieve the optimal
ergodic IA. When we complete the matching-up procedure, we
get N positive variables {y1, y2, ..., yN}. From (9), we know
if we intend to maximize the achievable rate R, we need to
maximize y =

∏N
i=1 yi. The following lemma tells us how

to match up the direct channel coefficients further to get the
optimal rate.

Lemma 2: Vectors A and B include N random positive real
numbers {a1, a2, ..., aN} and {b1, b2, ..., bN} respectively. We
assume that a1 < a2 < ... < aN and b1 < b2 < ... < bN
without loss of generality. If we add A and B pairwise and
then get their product, (a1 + bN )(a2 + bN−1)...(aN + b1) is
always the largest, i.e. (a1 + bN )(a2 + bN−1)...(aN + b1) ≥
(ai1 + bj1)(ai2 + bj2)...(ajN + bjN ), where i1 6= i2 6= ...iN ,
j1 6= j2 6= ...jN , and i1, i2 ... iN ∈ {1, 2, ..., N}, j1, j2 ...
jN ∈ {1, 2, ..., N}.

Proof: The proof is based on inequalities via majorization
[3], which is shown in the Appendix A. �

Based on the above Lemma, we know that when yi =
|ĥN+i| + |ĥi| = |ĥN+i − ĥi| where i ∈ {1, 2, ...N}, the
product y achieves the largest value. Therefor the matching-
up pattern to achieve the optimal rate for SNR offset is: ĥi
should always be matched up with ĥN+i, ∀i ∈ {1, 2, ...N}.
The optimal matching-up pattern when θ = 0 is shown in Fig.
3.

Then we can get the achievable rate for the optimal ergodic

Fig. 3. The optimal matching-up pattern for symmetric phase distribution
when θ = 0: ĥi is matched up with ĥN+i, ∀i ∈ {1, 2, ...N}. Here each
quantized cell in this figure has equal probability and is represented by its
centroid.

IA scheme.
Theorem 1: When the channel phase distribution is sym-

metric and P is large, the achievable rate for the optimal
ergodic IA is

Ropt =
1

2
log2

P

2
+

∫ 1

0

log2(F
−1(x)+F−1(1−x))dx (11)

where F (h) is the cumulative distribution function (cdf) of
the channel amplitude h, and F−1(x) is its inverse function
with values between [Hmin, Hmax]. Hmin and Hmax denote
the minimal and maximal absolute value of channel amplitude
respectively.

Remark 3: If the domain of the probability distribution
function (pdf) of channel amplitude p(h) is unbounded, i.e.
Hmax →∞, the second term in (11) is an improper integral.
We can easily prove that if E(h) is bounded, as it is invariably
in practice, the second term is convergent. Therefore, for
almost all the channel distributions of interest in the real world,
(11) is convergent.

Proof of Theorem 1: In the proposed ergodic IA scheme,
over the two complementary channel matrices, the cross
channel coefficients have the same quantized values, and the
quantized values of the direct channel coefficients are different.
According to Lemma 1, for direct channels, when the optimal
matching-up pattern is applied, we have

|hrr(l1)− hrr(l2)| ≥ max{0, |ĥrr(l1)− ĥrr(l2)| − 2σ}
= |ĥN+i|+ |ĥi| − 2σ

(12)
For cross channels we have

|hrt(l1)− hrt(l2)| ≤ |ĥrt(l1)− ĥrt(l2)|+ 2σ = 2σ ∀t 6= r
(13)

so the total interference power is at most 4σ2(K − 1)P .
Therefore, the SINR at receiver r is at least

SINRr ≥
(|ĥN+i|+ |ĥi| − 2σ)2P

2 + 4σ2(K − 1)P
(14)

Then we intend to set up the relationship between the
channel quantized value ĥi and the cdf of channel amplitude
F (h). we assume that the channel amplitude h is divide into N
segments, and h̃i is the centroid of segment i ∈ {1, 2, ..., N},
which is utilized to represent the quantized segment. We
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define 4 = 1
N . The relationship between quantized channel

amplitude h̃i and the cdf F (h) can be expressed as

F (h̃i) =
2i− 1

2N
=

2i− 1

2
4

h̃i = F−1(
2i− 1

2
4)

(15)

Due to phase symmetry, we have the following equations for
∀i ∈ {1, 2, ..., N} according to the channel quantization,

|ĥi| = h̃N−i+1

|ĥN+i| = h̃i
(16)

Then the achievable rate of optimal ergodic IA can be written
as (17) on the top of next page.

When N → ∞ and M → ∞, σ → 0, and finally we can
obtain

Ropt =
1

2
log2

P

2
+

∫ 1

0

log2(F
−1(x)+F−1(1−x))dx (18)

�
Remark 4: Compared with the original ergodic IA, the

optimal scheme can potentially achieve an unbounded SNR
offset improvement. An example (Example 3) is given in
Section VI.

Then according to Theorem 1, we can obtain the achievable
rate for the optimal ergodic IA scheme when both the channel
phase and amplitude distributions are symmetric. Here, sym-
metric amplitude means for any channel coefficient hejθ, there
exists a point h0ejθ, satisfying h0 = 1

2 (Hmin + Hmax) and
p((h0 − i)ejθ) = p((h0 + i)ejθ) for any i ≤ h0 − Hmin. A
typical example of symmetric phase and amplitude distribution
is the uniform distribution [−Hmax,−Hmin]∪ [Hmin, Hmax].

Corollary 1: For channels with symmetric amplitude and
phase distributions, when P is large, the achievable rate for
the optimal ergodic IA is

Ropt =
1

2
log2(2h

2
0P ) (19)

Proof: This corollary can be obtained straightforwardly from
Theorem 1. When both the channel amplitude and phase are
symmetric, for any x ∈ [0, 1], log2(F

−1(x) +F−1(1− x)) =
log2(Hmax +Hmin) = log2(2h0), so the optimal rate in this
case is

Ropt =
1

2
log2

P

2
+

∫ 1

0

log2(2h0)dx =
1

2
log2(2h

2
0P ) (20)

�
Remark 5: Interestingly, it is worthwhile noticing that when

the phase and amplitude are both symmetric, the achievable
rate for the optimal ergodic IA scheme is only related with the
value of h0, and independent of the specific channel amplitude
probability distribution function p(h).

VI. EXAMPLES AND DISCUSSIONS

Example 1 (Uniform Distribution): The achievable rates of
both optimal and original ergodic IA schemes for uniform
amplitude distribution [−10000 −10]∪[10 10000] are shown
in Fig. 4. In this figure, the upper bound derived in [1] is based
on the MAC bound.
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Fig. 4. Achievable rates per user for symmetric phase and uniform amplitude
distribution (Hmax = 10000, Hmin = 10)
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Fig. 5. Achievable rates per user for Rayleigh distribution

Remark 6: Furthermore, when the phase distribution is
symmetric and the amplitude distribution is uniform, we find
that the SNR offset between the optimal and original ergodic
IA is only dependent on the ratio of Hmax and Hmin. With
Hmax/Hmin approaching infinity, the SNR offset between
these two schemes can be up to about 2.67 dB. The proof
in given in the Appendix B.

Example 2 (Rayleigh Distribution): When the channel distri-
bution is Rayleigh, the achievable rates for different schemes
are shown in Fig. 5, from which we can find that when SNR
is relatively large, the perform gain of the optimal scheme is
more than 1 dB compared with its original counterpart.

Example 3 (Unbounded SNR offset over Original Ergodic
IA): We assume that the channel distribution is p(1) =
p(−1) = p(τ) = p(−τ) = 1/4, where τ is an arbitrary
large positive real number. The achievable rate of the original
ergodic IA is

Rorig =
1

2
log2

P

2
+

1

2
+

1

2
log2 2τ (21)
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Ropt =
1

2
log2

P

2 + 4σ2(K − 1)P
+

N∑
i=1

1

2N
log2[(|ĥN+i|+ |ĥi| − 2σ)2]

=
1

2
log2

P

2 + 4σ2(K − 1)P
+

N∑
i=1

1

N
log2(h̃i + h̃N−i+1 − 2σ)

=
1

2
log2

P

2 + 4σ2(K − 1)P
+

N∑
i=1

log2[F
−1(i4− 1

2
4) + F−1(N4− i4+

1

2
4)− 2σ]4

(17)

and the achievable rate of the optimal ergodic IA is

Ropt =
1

2
log2

P

2
+ log2(τ + 1) (22)

We assume the optimal and original ergodic IA achieve the
same rate at SNR P1 and P2 respectively, then

1

2
log2

P2

P1
= log2(τ +1)− 1

2
log2 τ − 1 ≈ 1

2
log2 τ − 1 (23)

As τ approaches infinity, P2/P1 also approaches infinity.
Therefore, the SNR offset between the optimal and original
ergodic IA schemes 10 log10(P2/P1) is unbounded.

VII. CONCLUSION

In this paper, we develop a new ergodic IA scheme which
can achieve one half interference-free DoF for each user when
the channel phase distribution is either symmetric or asymmet-
ric in K-user interference channel. Further we investigate the
matching-up pattern of direct channel values in complementary
states in order to achieve optimal ergodic IA, which can obtain
the optimal SNR offset over the original scheme. Then the rate
of optimal ergodic IA for symmetric channel phase distribution
is developed. We also demonstrate that compared with the
original ergodic IA scheme, the SNR offset improvement of
the optimal scheme can be unbounded.

APPENDIX

A. PROOF OF LEMMA 2

Proof: For any vector X = (X1, X2, ..., XN ) of real com-
ponents, we denote the vector with decreasing or increasing
Xi as

~X↓ = (X[1], X[2], ..., X[N ])

~X↑ = (X(1), X(2), ..., X(N))
(24)

where X[1] ≥ X[2] ≥ ... ≥ X[N ] and X(1) ≤ X(2) ≤ ... ≤
X(N). We also let ~X represent the vector with any order of
elements in X . Based on the majorization theory [3], we know
that

~X↓ + ~Y↑ ≺ ~X + ~Y (25)

where X ≺ Y implies that

i∑
n=1

X[n] ≤
i∑

n=1

Y[n] i = 1, 2, ..., N − 1

N∑
n=1

X[n] =

N∑
n=1

Y[n]

(26)

Then, according to majorization, we also have

~X ≺ ~Y ⇒
∏
i

Xi ≥
∏
i

Yi (27)

Therefore, the proof is completed. �

B. PROOF OF REMARK 6

Proof: We denote Hmax and Hmin as a and b for simplicity
in the following proof. For symmetric channel phase and
uniform amplitude distribution, we assume that when the
optimal and original schemes achieve the same rate in high
SNR regime, the required SNR for these two schemes are P1

and P2 respectively, then
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we denote x = a
b . Through some manipulations, we get
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As x→∞,

lim
x→∞

1

2
(log2

P1

P2
) = lim

x→∞
log2[

x+ 1

2
(
1

x
)

x
x−1 ] + In(2)−1

= (In2)−1 − 1

≈ 0.443
(30)

Therefore, when x → ∞, P2

P1
→ 20.886, and the SNR offset

between the optimal and original ergodic IA is then

10 log10(
P2

P1
) ≈ 2.67 (31)
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