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Dynamic Analysis of Large Linear Structure-Foundation
Systems with Local Nonlinearities

Abstract

The general framework for dynamic analysis of the structure-foundation systems with
inelastic constitutive equations is presented in this work. The analysis is based on added
motion approach, which is justified by the small displacement gradient theory we are
confined to. Motivated by the sound earthquake-resistant design philosophy, the general
formulation is specialized to account for local, predetermined nonlinearities in large linear

structural systems.

A new model for dynamic frictional contact analysis is fitted within the proposed
framework as a model problem for local nonlinearity. As opposed to the existing models
for the dynamic frictional contact, here presented model accommodates both dynamic and

quasi-static problems.

The consistent reduced representation of the linear part of the complete structure-
foundation system is obtained by utilizing a dynamic substructuring method. This is in
sharp contrast with the vast majority of ad-hoc simplified models used for the same pur-
pose. Modal truncation within each substructure (with adequate spectral content truncation

criteria) is used to enhance computational efficiency.

The non-proportional damping, which arises due to the local paraxial approximation of
radiation condition, is accommodated by efficient iterative procedure within the real Ritz
vector subspace. It was demonstrated that the proposed approach is far more efficient than

the adequatic one that utilizes the complex Ritz vector subspace.

A consistent formulation for the kinematic interaction problem, i.e. the deconvolution
analysis of free-field motion is also presented. The analysis is performed without a priori
imposing assumption on wave pattern. In addition, the models used for the kinematic
interaction are completely consistent with the ones later used for the inertial interaction,

which provides the direct recovery of the total stress field in the foundation substructure.
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Chapter 1
Introduction

1.1 Objectives of the Study

Considerable research has been conducted on the dynamic analysis of structure-
foundation systems, but the state-of-the-art today remains limited to linear analysis. The pri-
mary reason for that, beside tradition, is the wide spread use of the frequency domain
analysis techniques employed to facilitate the modeling of the foundation as semi-infinite
domain. The main objective of this study is to expand the analysis practice to nonlinear
problems. Accordingly, the general formulation of the structure-foundation model with ine-
lastic constitutive equations, opposite to standard practice, is given in the time domain.
Motivated by a sound design philosophy for the maximum credible earthquake, it was of
interest to further specialize the general formulation to account for localized nonlinearities
at a predetermined location in a large linear system. Various base isolation systems fit
naturally in that context. In particular, local nonlinearity at the structure-foundation inter-

face in the form of dynamic frictional contact is studied.

The versatility of the dynamic substructuring concept and modal truncation to reduce
the linear part of the total system to an easily manageable form prior to the nonlinear
response computation, is also evaluated. As a by-product of this work, a general setting for
linear analysis of structure-foundation systems is furnished. Consistency of the approach to
a reduced model generation is obtamed by representing the linear part of the complete sys-
tem by a reduced Ritz subspace, as opposed to the vast majority of ad-hoc simplified

models used for the study of the structure-foundation interaction.
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The main application of the derived approach is to earthquake engineering analysis,
hence the discussion is primary concerned with transient excitation. However, some con-
sideration is also given to the harmonic excitation and associated steady-state response. An
iterative procedure is provided to accommodate the non-proportional damping, that charac-
terizes structure-foundation interaction problems, within the real Ritz vector subspace
representation of the linear part. The proposed methodology is demonstrated to be more
efficient than the adequate one that utilizes the complex Ritz vector subspace representations

of the linear part.

1.2. Outline

After this outline, a short review of the existing methodology for the linear dynamic
analysis of structure-foundation systems is given, which concludes Chapter 1. The advan-
tages and the disadvantages of two existing approaches, continuum and discretized, are dis-

cussed.

In Chapter 2 the added motion approach which makes direct use of free-field motion
(i.e. the motion obtained in the site either by measurements or an independent study of the
site amplification) is formulated. The formulation is specialized for linear viscoelastic con-
stitutive equations and a discretization procedure that utilizes the finite element method.
Time domain analysis is used throughout. This inevitably implies an approximation in
enforcing the radiation condition in the semi-infinite foundation domain. Different ways for

approximate modeling of radiation condition are hence discussed.

A short parametric study of structure-foundation effect is presented in Chapter 3. The
analysis is performed on linear models of buildings and dams, to indicate a class of prob-

lems where interaction effect is significant.

The coordinate reduction s;hemes are studied in Chapter 4, with an aim to select the
set of optimal coordinates for the response computation. The principles of static correction
(or the mode acceleration) and the combination of the exact particular and the approximate
homogeneous solution are reevaluated with respect to the spectral content of excitation. The

load dependent Lanczos vector algorithm with the spectral content truncation criterion is
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crucial in this development. The direct application of the optimal subspace is further used
for the dynamic substructuring method. An efficient method that accommodates non-
proportional damping which arises in the discretized model is also discussed as an alterna-
tive to complex vector subspace generated by Lanczos vector algorithm with an indefinite

inner-product.

The general formulation for the nonlinear structure-foundation dynamic analysis is
presented in Chapter 5. We also point out the ill-posedness of the kinematic interaction
problem, which is an unavoidable part of general formulation. The specialization of the gen-
eral formulation to a linear viscoelastic foundation constitutive model is further considered.
Finally, the specialization to inelastic constitutive equations for the interface only, with the

rest of the complete system being linear, is furnished.

The inelastic interface constitutive equations are given in the form of a generalized
Coulomb law (that holds locally) for dynamic frictional contact, as discussed in Chapter 6.
The problem is first cast in the form of a variational inequality, and then, by a regulariza-
tion procedure, recast into a variational equality. The elastic compliance for the normal
interface is given in the form of the power law. The dissipation of energy in an impact
reflected by the coefficient of the restitution is accounted for by the local dissipative model
of the nonlinear viscoelastic form. The numerical procedures, the finite element discretiza-
tion and the step-by-step integration techniques are also discussed. A 2D-isoparametric 6-
noded dynamic frictional contact element is described. The element is limited to small dis-
placement (linearized kinematics), since the large sliding is not likely to cause only limited
nonlinearities. The proposed formulation of the dynamic frictional contact can be expanded
to accommodate large sliding of one body over another. To facilitate that, a 2D segment

element is developed.

Some closing remarks and possible future v-crk directions are given in Chapter 7.

1.3. Short Review of Existing Methodology

The structure-foundation interaction effect is one of the most active research areas in

the engineering community. Consequently, the list of references and more or less significant
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contributions to the present state-of-the-art would be too extensive for the scope of this
work. Instead, we limit ourselves to a short discussion of some prominent features of the
dynamic analysis of structure-foundation systems. For a more extensive, quite recent review

we refer to Ibrahimbegovic [1988].

There are two main modeling techniques, with a variety of minor modifications : the
continuum model and the discretized model. The modeling distinction relates to the founda-
tion component of the complete (structure-foundation) system. The common features of both
techniques are discussed first, and the advantages and the disadvantages of each of them are

examined later.

First, one has to point out that structure-foundation interaction is not the site effect or
soil amplification. The soil amplification denotes the transformation of an earthquake
motion field from the source (rupture) to the free-field motion (motion experienced by the
foundation without any structure on it). The soil amplification depends on the mechanical
properties of the foundation material, or on the constitutive model used to represent the
foundation material. The term amplification is somewhat misleading, since there is
amplification over the certain range of frequencies and decay over the others. Despite the
fact that in some cases the site amplification has a primary role in the dynamic response of
the structure-foundation system (e.g. 1985 Mexico City earthquake), its analysis is not car-
ried out in this study. For one reason, once the earthquake motion at the rupture is
"known", the site amplification analysis can be carried out in a straight-forward manner as

for any dynamic system under the forced vibrations.

Structure-foundation interaction denotes the influence that the presence of a structure
has on the change of the free-field motion. Namely, the free-field earthquake motion as
registered at a certain point will generally be different from the motion experienced by the
base of the structyre, even for the structures with negligible mass. The difference consists,
in general, of a filtering of translational motion and the occurrence of rotational com-
ponents. Since this effect, for given free-field motion, depends only on geometry (kinemat-
ics) of the structural basis shape, it is commonly called kinematic interaction. The free-field

motion is usually specified at a single point in the site (control poini), hence kinematic
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interaction actually represents deconvolution problem. Kinematic interaction is not present
only in the case of surface supported structures under vertically propagating seismic waves.
For the structures with non-negligible mass, the inertial forces on the structure will also
contribute to the change of free-field motion through structural deformation. This effect is

called the inertial interaction.

From the identification of kinematic interaction as a deconvolution problem, it
immediately follows that the linear constitutive model of the foundation has to be assumed
in order to make its solution possible. In addition, for the total stress recovery, the model
used for the solution of the kinematic interaction has to be consistent with the model used
for the solution of the inertial interaction. Very often this requirement is violated and the
kinematic interaction is carried out on the simplified foundation models. The consistent for-
mulation of the kinematic interaction is discussed shortly in Chapter 5 and the main part of

this work concentrates on the inertial interaction procedure.

Flexibly supported structures differ from the rigidly supported ones (the model result-

ing from neglecting structure-foundation interaction effect) mainly in two aspects :

(1) the foundation motion is generally different from the free-field motion (as discussed

for the kinematic and the inertial interaction)

(2) part of the vibrating structure energy is dissipated through the radiation of the waves
in a semi-infinite foundation medium.
Two main modeling techniques, the continuum and the discretized, differ in the way
in which the modeling of the foundation is performed and the radiation condition is

enforced.

Continuum Model

The early approach to the structure-foundation interaction cffect has favored contin-
uum model for the foundation. The structural model was oversimplified as a one-
dimensional (1D) ’stick’ model with a rigid surface foundation. Impedance (complex
stiffness) was obtained for various simple shapes of the rigid foundation and for the linear

elastic constitutive equations for the foundations under harmonic excitation, The boundary
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element method generalized the same approach to the flexible foundations. The boundary
element method can be recognized as a generalization of Treftz method for an approximate
solution of the governing partial differential equations (just as the finite element method is
the generalization of Ritz method). For the application of the boundary element method,
the shape functions are assumed to satisfy the governing partial differential equations
throughout the domain and the weighted residual approach is applied to enforce the boun-
dary conditions. The boundary element method has gone a long way from the first sys-
tematic engineering exposure (Brebbia [1978]) to the rigorous mathematical treatment (Her-
rera [1987]). However, its application is still limited to restrictive, highly idealized founda-
tion models (at most viscoelastic layered foundations). The main reason for that is the res-
trictive availability of the proper shape function that would satisfy all field equations
throughout the domain, i.e. Green’s function (see Stakgold [1979]). In particular, only a
linear constitutive law for the foundation material is allowed. On the other hand, the radia-
tion condition which represents dissipation of the energy through the wave propagation in
the semi-infinite foundation media, is automatically satisfied by virtue of the Green's func-
tion. Once a foundation impedance is obtained, dynamic analysis of the structure-
foundation system is performed utilizing the substructure method, which is based on enforc-
ing compatibility and equilibrium conditions along the structure-foundation interface. The
analysis is completely performed in the frequency domain which is dictated by the form of
Green’s function. Some recent modifications of this method are turned to an approximation
of Green's function so that the analysis can be performed in the time domain. It should be
stated that since utilizing the boundary element method discretization process is performed,
the name continuum method is somewhat misleading (really reminiscent of the first

approach).

Discretized Model

The essential characteristic of this model is that the governing partial differential equa-
tions are solved approximately by the assumed shape functions which are not Green’s func-

tion of the problem. Hence, the field equations are not satisfied exactly, but by the weighted
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residual approach (in projection to the chosen subspace), while the boundary conditions
(essential boundary conditions) are (within the shape functions representation). Thus, the
method faces no difficulties in handling the inelastic constitutive equations for the founda-
tion material, as well as anisotropy, non-homogeneity etc. However, the radiation condition
is not automatically enforced any more. Transmitting boundaries (or quiet boundaries) are
used for an approximate modeling of the radiation conditions. Different possibilities exist
for this purpose, as discussed in the next chapter. It should be pointed out that the perfect
absorption results of the transmitting boundaries are encountered only in a special case (for
incident wave perpendicular to the boundary). In the case of inelastic constitutive equations,
as the main interest of this study, one can expect that the dissipation of energy due to the
inelasticity should compensate and diminish the effect of the approximation of the radiation

condition.
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Chapter 2
Linear Dynamic Analysis : Structure-Foundation

Systems with Linear Viscoelastic Constitutive Equations

In this chapter, the preferred approach to the dynamic analysis of the structure-
foundation system is thoroughly discussed. The analysis is concerned with the linear viscoe-
lastic constitutive model that provides a consistent definition of the damping matrix in
discretized model. The analysis is limited to linearized kinematics. The added motion

approach is followed, as first suggested by Clough&Penzien [1975].

2.1. Boundary Value Problem in Elastodynamics

We start with the general considerations of the initial-boundary value problem in elas-
todynamics. The governing partial differential equations (yet referred as field equations)
hold throughout the domain Q which occupies the body reference configuration. Since we
limit ourselves to the linearized kinematics, small displacement gradient theory, the
difference between the deformed (current) configuration and the reference configuration can
be neglected. Also, as a consequence of the linearized kinematics, Cauchy stress measure
and infinitesimal strain measure can be used throughout. The stress principle 1, = Ci; n,
holds as a consequence of the linear momentum balance and the symmetry of stress tensor

0;j = 0;; as a consequence of the angular momentum balance (standard summation conven-

tion on repeated indices is used throughout).
The field equations that follow from our assumptions are th

-linearized kinematics

g = (uj+u;) ... forx e Q,t € (0,T] (2.1.1)
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where () ; is a partial derivative with respect to coordinate x;, i.e. (); =% (), and g;; are

the strain tensor components.

-equilibrium equations
cijj t pbi—pii; =0 ... forxe Q,t e (0,T] (2.1.2)

where the symmetry of the stress tensor is utilized.

-constitutive equations
O;j = Dy ijkl €kl + D| ijkl €y + oy ij e forxe Q,t e (0,T] (2.1.3)

where the first part represents the elastic stress contribution and the second part defines a
viscous stress contribution, while the third part is the initial stress. The usual assumption of
ellipticity (positive definiteness) for the elasticity tensor is Dg ;s €;j €n 2 a € &y (a > 0),
and the symmetry condition Dy ;i = Dy jix = Do ;. For isotropic linear elasticity the con-
stitutive tensor has the form Dy ;j, = A8;;6 + u(8;8;+8,8;). From thermodynamic con-
siderations (the second law of thermodynamics and Kelvin dissipative inequality, see Lub-
liner [1989]) it can be shown that D ;y &; €4 2 B &; €y. These constitutive equations
correspond to what is called linear viscoelasticity or a viscoelastic material with short
memory (see Duvaut&Lions [1976]), since the state of the stress at the moment ¢ depends
only on the deformation at the instant ¢ and at the immediately preceding instant. For iso-
tropic material, the tensorial form of D, is analogous to that of the elastic moduli, i.e.
Dy ju(t) = Bo(t)8;8y + PBi(£)(6x6;+8;8;). For a viscoelastic material with long
memory, the state of stress at the instant ¢ depends on the deformation at the instant ¢ and
also on the deformation at the times preceding ¢. Hence, the constitutive equations can be

stated as

-z,
e

{ dey
Cij = Dq ijkl €kl + .([ D| ,-jk,(x,t—t) ? dt + oy ij e forxe Q,t € 0,T] (2.1.9)

These equations complicate the semidiscrete equations of motion to the form of the

integro-differential rather than the differential equations, as will be shown in the next
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section.

The boundary conditions can be divided into the prescribed displacement boundary I',

and the prescribed traction boundary I',;
u; = u; ... forxeT,,t e (0T] (2.1.5)
L=Eo N =t .. forxe I';, t € (0,T]

where the Cauchy stress principle is used.

For the boundary conditions given completely on I', one solves the Dirichlet boundary
value problem and in opposite, for the boundary conditions specified on I', completely one
has to solve the Von Neumann boundary value problem. For the general problem we con-

sider mixed boundary conditions such thatI' =T, U T,

Initial conditions for the set of equilibrium field equations which are second order in

time are given as:
U; = Ug; ... forxe Q,t=0 (2.1.6)
l'l,'=l.lo" ..... fOl‘XGQ,I=0

The solution of the initial-boundary value problem, defined by (2.1.1) to (2.1.6), is dis-
placement, strain and stress fields u, € and o, that satisfy all equations. For the proof of
existence and uniqueness of its solution, one would have to be precise about the nature of
the functional space where the solution is defined. Instead, we derive a formally equivalent
variational problem and concentrate on the spaces where the solution of that problem lives
(formal equivalence relates to not specifying functional spaces in which the solution is
defined). The uniqueness of the solution to the stated initial-boundary value problem is

further discussed in Chapter S.
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Variational Problem

Starting with the equilibrium equation (2.1.2) we will get the weak form of the

differential equation by the weighted residual approach, which is defined by

I (aij.j + pb; - pii; ] w; dQ =0 (2.1.7)
Q

We want to rewrite the first of the three terms in the last equation utilizing the Gauss

divergence theorem (see Duvaut&Lions [1976] or Hughes [1987]):

J Oij.j Wi dQ = - J Oij W, j dQ + I (O’,‘j w; ) -dQ (2.1.8)
Q Q Q e

By the divergence theorem the second term on the right hand side in (2.1.8) becomes:

J (O’,I W‘)]dQ=JO'U nj w; dl"=Ir,~ w; dr (2-19)
Q " r r

where the last term is obtained by utilizing the stress principle.

The first term on the right hand side of (2.1.8) can be split into
1 1
- I Oij E ( Wi j + Wi ) dQ- I Oij E ( Wii— Wi )dQ (2.1.10)
Q Q

and further utilizing the well known tensor algebra result (e.g. Chadwick [1976]) that the

trace of product of symmetric (o;;) and antisymmetric (% (w; j — w;;)) tensor has to be

zero, only the first term of the equation (2.1.10) remains. Hence the weak form of (2.1.7)

can be rewritten as

.. 1
E[pu,- w; dQ + EI; Oij '2— ( wij+ Wi )dQ = i[ t; w; dT +t[pb,' w; dQ (2.1.11)

Until now, nothing has been assumed about the function w; (except integrability) and
it is conventional that at this point one impose the condition that w; = 0 on T, so that, in
variational interpretation of the weak form, function (4; + w;) belongs again to the same .

functional space, i.e. it satisfies the essential boundary conditions. After this, the first term
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on the right hand side of (2.1.11) can be split into two parts.

[twdQ=[fwdQ+ [ 6w dQ=0+ 7w dQ (2.1.12)
r T. T. T,
We can also recognize that gfj = % (w;,; + w; ;) by utilizing (2.1.1). By enforcing that

the constitutive equations (2.1.3) hold locally (at each point) we obtain the final weak form

of equilibrium equations:

I pu, w; dQ + I Dl ijkl éHE,"; dQ + I Do ijkl 8“8,‘7 dQ =

Q Q Q
[ 7w, dU + [ pb; w; dQ - [ 6 ; €} dQ (2.1.13)
T, Q Q

The examination of (2.1.13), where the highest derivative which appears is of order

one, shows that the functional spaces where the solution of (2.1.13) should be sought are

Sobolev spaces H' (spaces of finite energy) (see Lions&Magenes [1972])

Remark 2.1.1. The requirement that w; = 0 on I',, can be reformulated by imposing the res-

triction that w; lives in the same space as u; (i.e. that w; = u on T",) but then the vari-
ation w; has to be substituted by (w; - ;). Hence, we define the virtual displacement
as the difference of two kinematically admissible displacement fields. This form has
some advantages once we go to nonlinear analysis in the later chapters, where the
solution space is the convex set rather than the differentiable manifold (see Stakgold

[1979)).

Remark 2.1.2. For the special cases of an incompressible material model for the foundation
component, the weak form (2.1.13) must be modified by the weak form of constitutive
equations (2.1.3), which is further generalization towards the 3-field variational princi-

ple (Washizu [1982]). In that ( "~ nstitutive equations (2.1.3) must be substituted

by &;; = Co jjut Ou + Cy iju Ou + o jj-

2.2. Discretization
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The finite element method is the generalization of the Ritz method, where the basis for
the functional space in which the solution is sought is constructed by patching together
shape functions defined over a part of reference configuration Q called the finite element
and denoted .. It is a natural requirement that Q = U Q, should be satisfied, but for an
irregular shape of boundary I, that is not always the case. Instead, one has defined
Q" = U Q, as an approximation to the real domain Q. This represents a discretization error
which is usually disregarded in numerical computations. The variational problem (2.1.13)
in elastodynamics, within the finite element context, is solved by a semidiscretization pro-
cedure. Namely, the governing partial differential equations are first discretized in space
and transferred into a set of ordinary differential equations in time. A variety of techniques
from a rich mathematics literature on the subject can then be exercised to solve the set of

second order differential equations.

The semidiscretization procedure can be thought of as a restriction (projection) of the
complete functional space V where the solution of the boundary value problem lives onto a
space of functions V" spanned by chosen finite element polynomial shape functions, such
that V* ¢ V. Any constraint imposed on the functions in V (e.g. incompressibility
div u = 0) must be preserved in V"

Hence, we have a fundamental relationship (note that we extended summation conven-
tion over repeated indices for the semidiscrete quantities as well):

ui(x,0) = 3 uji(t) Ny(x) ... i=12,3 (2.2.1)

e

and by its differentiation with respect to time we get

wx,0) = Y uf(t) Ny(x) ... C% 11,23

e

ix,0) =Y ifj(r) Nyx) ... i=1,2,3

e

where u; (&;,ii;) are the components of the displacement (velocity, acceleration) at any point
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x € Q; N;(x) are the chosen shape functions at the node / and u[} (ai'},ii,-'}) are the nodal
values of the displacement (velocity, acceleration) in the semidiscretized model. To simplify
notation, we further drop the superscript h (reminder of semidiscretization procedure). To

avoid possible confusion in notation, all semidiscretized quantities carry upper case sub-
script (e.g. ()p).
The displacement vector for general 3D case is
ul(x’r)

u(x,?) = |uy(x,t) 2.2.2)

uz(x,t)
while the finite element nodal displacements are

uy ()
us(r) = |uy(r) (2.2.3)

u3(t)
The equations (2.2.2) and (2.2.3) are used to define the matrix notation for (2.2.1) as

ux,t) = Ay(x) ug(r) ... for l=1,2,...,N,,P 2.2.4)

where the summation index / goes over all the nodes (N,,) and A;(x) takes the form

As(x) = Nyx) I (2.2.5)

with I being the (3 x 3) identity matrix.

For the adequate discretization of the stress divergence term in (2.1.13), we define the
mapping of the strain tensor (with 6 independent components) to a vector (6 x 1). The
order of the components is arbitrary and we choose

€n €2

T
€= | & £ &n - €= (En €32 €33 2812 2623 2€3 ) (2.2.6)

€31 €32 €33



Ch. 2 15

This automatically defines the map of the stress tensor from the requirement of energy

conjugate quantities.

O O12 O3 r
O = | 031 Op Oz - o= (0’11 O2; 033 012 O3 O3 ) (2.2.7)
O3 O3 O33
By utilizing (2.2.6) and (2.2.5), the mechanical part of the internal energy density in
the tensor representation 1/2 r ( ¢ € ) = 1/2 o;¢;; has a matrix representation counterpart
as 126’ € =12 O;E;.

The strain displacement relationship can be presented in matrix notation as

(N, 0 0
0 N O
0 0 Njj uy(r)
E= Bl u; = NI,Z Nl,l 0 uy(t) (2.2.8)

0 Nys Npy u3 (1)
Nis 0 Np

and the constitutive fourth order tensors (in (2.1.3)) are mapped into (6 X 6) matrices with

the general form

Dy Dy Dyss Dz Dyzs Dy
D33y Diy33 Dija Doy Daps

D3333 Di3j2 Dizz Dz
D= D312 D3 D23y (2.29)

symm. D3333 Dy33

Since we utilize the Galerkin method, the functional space of the variations coincides
with the space in which the solution is sought (in di'sgqlized form it is the space V"),
Hence all the equations (2.2.1) through (2.2.8) directly apply, with u;(r) substituted by

w;(¢). Some other choice for the projection subspace is also possible (e.g. Petrov-Galerkin

method).
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Hence, the semidiscrete weak form (2.1.13) can be rewritten in the matrix notation as

wi(r) {jlp Ny N; dQ (1) + [ BT D; B, dQ (1) + [ B] Dy B, dQ u,(:)] =
Q Q Q
wl(1) { [ATtdar+ [AfpbadQ- [ B] o0 dQ} (2.2.10)
T. Q Q

where indices /,J = 1,2,...,N,,p.

In (2.2.10) above, we denote the mass matrix by
M = [Ip Ny N; dQ (2.2.11)
Q
the damping matrix

Cy = [B]D, B, dQ (2.2.12)
Q

the stiffness matrix

Ky = [ B Dy B, dQ (2.2.13)
Q

the load vector

fi1)= [ AJtdr+ [ATpbdQ - [ B] 6pdQ (2.2.14)
T, Q Q

and collect all nodal displacement vectors (same for velocities and accelerations)
T
u(t) = [ ul|u2,u31..u”uz,uy..um.um.um,] (2.2.15)
For *... ‘ndependent values of arbitrary components of w(¢), we can then conclude that
M u() + Cu(r) + Ku(r) =1(r) (2.2.16)

which is a set of the semidiscrete equations of motion.

Remark 2.2.1. For the constitutive equations of the linear viscoelastic material (or viscoe-

lastic material with short memory) one has a consistent way to determine the damping
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matrix from the material constitutive parameters, which are known a priori. However,
a common practice in structural engineering is to determine the damping properties
from experiments on the complete structural system and then to furnish the particular
form of the damping matrix that uncouples the equations of motion (e.g. Rayleigh
damping or Caughey series, see Caughey [1960]). This defines the so called propor-
tional damping matrix C. The proportional form of C can be directly computed from
specified modal damping ratios as shown by Wilson&Penzien [1972]. For many sys-
tems (we will deal with) a consistent definition of damping does not lead to propor-

tional damping, i.e. we have systems with non-proportional damping.

Remark 2.2.2. For the constitutive equations (2.1.4) of the viscoelastic material with the
long memory, one would obtain a set of integro-differential equations of motion in the
form

du(t)
dt

M ii(r) + [ C(t-1) dt + K u(s) = f(r)
0

Step-by-step Integration Techniques

The extensive consideration of the different possibilities for the solution of the semi-
discrete equations (2.2.16) is given in Wilson [1977]. For loading of short duration (impulse
loading) step-by-step numerical procedures are usually the most effective. However, for
loading of long duration (such as earthquake loading) mode superposition is the appropriate

numerical method.

Further discussion of different numerical procedures and the ways to enhance their
efficiency is left for later chapter. Here we limit ourselves to a short discussion of
Newmark-Wilson ux_xiﬁed algorithms .to solve a set of semiditscrete qu?nofgs (2.2.16) for the
general form of loading f(¢). For a more thorough discussion we refer‘ to Bathe&Wilson
[1976] or Belytcshko&Hughes [1983]. The main purpose of this disc;;ssion is to serve as
the logical closure to a full discretization of the equations of motion. Newmark algorithms

are a 2-parameter (conventional 8 and y) family given by
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. At? . .
U =u g+ Aru ) + EN [ (1=2B) iig; + 2B 1))

U = Uy + Ar [(1-9) iy + 7 1Qy)] (2.2.17)
Mi.ik+CI'lk+Kllt=f‘.

where u,, 0, and ii, are approximations for u(r;), u(#) and ii(¢;), respectively. Equation
(2.2.17% is simply the equation of motion in terms of the approximate solution. The
Wilson-6 algorithm is related to the 2-parameter Newmark family by a special choice of

the parameter @, which can be identified in the equation

where u;,q¢, ;49 and i, are approximation for u(sy,+6Ar), (7, +6Ar) and ii(r,+60Ar)

respectively.

For the special choice of parameters B=1/4 and y=1/2, the Newmark algorithm is
equivalent to trapezoidal rule for the corresponding first order system (see Hughes [1987]).
By the celebrated Dahlquist theorem (see Gears [1971]) the trapezoidal rule is the highest
order (second order) A-stable linear multi-step method. Hence, one can do no better than
that. However, some improvements of the dissipative properties over higher frequencies are
in some cases desirable, since the trapezoidal rule has spectral radii equal to one over all
frequencies. Different suggestions have appeared in the literature, but the dissipation proper-
ties (at the expense of reducing order) can be achieved by different selections of the param-
eters B and y than for the trapezoidal rule (average acceleration method). In that case, one
has to worry about proper selection of parameters B and y to preserve the stability property
with:

saconditional stability

1
2[32722
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-conditional stability

1
v2 5

1
ﬁ<57

2 21172
(v/2 - B)At

where the conditional stability criterion is given for one (modal) equation with frequency w

and damping ratio & = ﬁ
m

If we utilize equations (2.2.17), the discretization process of the equations of motion
can be completed. For convenience, the discretized set of equations and the complete algo-

rithm are summarized in Table 2.2.1.

Table 2.2.1. Unified Newmark/Wilson step-by-step algorithm

A. Initial Computations
1. Form stiffness matrix K, mass matrix M and damping matrix C
2. Initialize ug, 1y and iiy

3.  Select step size Ar and parameters B, y and 6, and compute integration constants

1 Y

a as=050At(--2)
" B(OAry? * B
a = —L ag=Ar(1-7)

BOA:r

1 .

= = At

a BOA? as Y
a3=&5—-1 ag=(05~-p)Ar?



Ch. 2 20

a; = -1 09=BA12

™ [

4. Form effective stiffness matrix : K = K + @M + a,C

5. Triangularize K=LDLT

B. For Each Time Step

1. Calculate effective load at time 1,.5 = f;_; + 6 At
fivo =fioy + 6 (Fx — fiy) + M (agugy + a2l + aziigy) +
C (ajug_y + agu,_; + asii;_y)
2. Solve for displacements at time ;.6 = #;_; + 6 At
LDLT Ui = i‘k+6
3. Calculate acceleration, velocity and displacement at time 1, = #,_; + At
temp, = dg (Ug4g — Uioy) — @2 Uy — a3 U4

(temp, — U,_;)

temp, =

P2 P
temp, = temp; + ii,_,
i, = temp,

U, = U;_) + agil;_; + atemp,

U = U,y + Ar 0, + agii,_| + agtemp,

2.3 Added Motion Approach
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The added motion method for the dynamic analysis of structure-foundation systems is
* based on the additive split of the total motion field into two motion fields : the free-field
motion (motion of the foundation with no structure on it) and the added motion field (due to
addition of a structure). The additive split of the total motion field is justified by the linear-
ized kinematics (small displacement gradient theory) we consider in this work. The evalua-
tion of the structural component behavior within the added motion approach is still straight-
forward, since for the structural component of structure-foundation system the added motion
is the same as the total motion. On the other hand, the evaluation of the foundation com-
ponent behavior becomes more complicated. However, the deconvolution analysis in

kinematic interaction is greatly simplified.

For the derivation of the added motion approach, we refer to system presented on Fig-
ure 2.3.1. By definition, the free-field motion is determined considering the foundation part
by itself. The semidiscrete equations of motion (utilizing notation from previous section)

are then
Mf V() + Cf v(t) + Kf v(t) = fﬁ(t) 2.3.1)

where My, C; and K, are mass, damping and stiffness matrices of the semidiscretized foun-
dation model; v(¢), v(¢) and ¥(r) are free-field displacement, velocity and acceleration vec-

tors, and f (1) is far-field boundary loading (due to earthquake ground motion).

By addition of a structure to the foundation component, a complete structure-

foundation system is formed. The equations of motion for the complete system to the same

far-field boundary loading f (1) can be stated as
[M,+M,] (i‘r(t)-i-ii(t)) + [c,+c,] [vu)+n(:)] +
[K, +K; ] (vr +u@) ) =50 2.3.2)

where u(t), u(r) and ii(¢) are added motion displacement, velocity and acceleration vectors,
and M;, C; and K, are structural mass, damping and stiffness. The rest of the matrices and

vectors are the same as in (2.3.1). Note that in the equation (2.3.2), the brackets stand for
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the matrix assembly process, while the braces stand for vector addition. To clarify further
the structure of equation (2.3.2), we present a partitioned form for all the matrices and vec-
tors with a remark that the structure degrees of freedom (dofs) carry subscript s, founda-
tions dofs subscript f, while interface dofs (dofs common to both structure and foundation)

carry subscript i.

-free-field motion : -added motion : -far-field boundary loading :
0 u,(r) 0
v(t) = | v;(2) u(r) = | ui(r) fr(r) = 0
vy(r) u(r) fr(r)
-structure mass matrix : -foundation mass matrix :
M; M; 0 0 0 0
M,= | M, M{ 0 M= |0 M{ M; (2.3.3)
0 0 O 0 M; Mj
-structure damping matrix : -foundation damping matrix :
Cis Ci 0 00 O
C,=|C, C5 0 C,=|0CL Cy
0 0 O 0 C; Cq
-structure stiffness matrix : -foundation stiffness matrix :
K:s K.ri 0 0 0 0
K,= K, K 0 K;=|0Kf K
0 0 O 0 K; Kp

Combining equations (2.3.1) and (2.3.2) we get
[M,+M,] [’\"(r)+ii(r)) + [C,+C,] (v(:)+n(:)) +

[K, +K, ] vy + utry ] = M, (1) + C; ¥(r) + K, V(1) 2.3.4)
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and after cancellation we get
[M,+Mf] (1) + [c,+c,] a(r) + [K,+K,] u(r) =
-M, V(1) - C; v(1) - K; v(1) (2.3.5)

If we denote the mass, damping and stiffness of the complete interacting system as M,
C and K respectively, and take advantage of the sparsity in the partitioned matrix quantities

of (2.3.3), the equation (2.3.5) can be rewritten as

M;i C.ri K.u'
Mi@)+Cu(@®)+Ku@)=- | Mj; | v;(e) - | C§; | vi(r) = | K] | vi(£)(2.3.6)
0 0 0

Note that by the solution of the equations (2.3.6), only the added motion field will be
obtained. For the structure, the added motion field represents the total motion field (see par-
titioned equations (2.3.3)); hence the added motion formulation in the form (2.3.6) is ami-
able to dynamic analysis of structure-foundation systems with the nonlinear constitutive
equations for the structural component as will be elaborated in later chapters. The impor-
tant advantage of the formulation (2.3.6) is that the excitation is directly specified as the
free-field motion i.e. the motion measured at the control point. For surface supported struc-
tures, this has the additional advantage of eliminating the need for the deconvolution phase
in the structure-foundation dynamic analysis. The formulation (2.3.6) does not place any
limitation upon the choice of interface, and any of the possibilities presented on Figure
2.3.2. is eligible. For embedded structures with the interface specified as either a rigid or a
flexible boundary, the free-field interface motion has to be determined from the specified
motion at the control point to account for the kinematic interaction. In order to eliminate
the scattering problem related to this approach, partitioning of the system in the manner of
so-called volume meth¢ ..:: be used (see Lysmer [1978] or Bayo&Wilson [1984]). The
same approach can be extended to the formulation of the structure-foundation model
presented herein. The structure matrices in (2.3.6) for the interface dofs are then formu-
lated from the difference of the physical properties of the structure and the foundation for

the embedded part.



Ch. 2 24

If the equations (2.3.6) are to be used for structure-foundation dynamic analysis, the
free-field velocities and displacements have to be obtained by integrating given acceleration
record. For linear systems (and as shown in later chapters for systems with inelastic inter-
face only), this inconvenience can be avoided by further separating the added motion field

into its dynamic and pseudo-static components:
u(r) = uy(r) + upy(r) (2.3.7)

The pseudo-static motion represents the motion of the complete system produced by the
free-field displacements imposed at the interface dofs, when the dynamic effects are

neglected. By definition it can be computed from the equations (2.3.6)

Ksi
K up(t) = = K | vi()
0
up,(r) = R v;(1) (2.3.8)
K:i
R=-K'! | K
0

where R is referred to as the influence coefficient matrix.

If we introduce (2.3.7) and (2.3.8) into the added motion formulation (2.3.6) (and

neglect the damping proportional forcing function), the new formulation is furnished

Msi

M iid(I) +C ild(I) +K lld(t) =- MR+ Mf, V,'(f) (239)
0

For both embedded structures and structures supported at the ground surface, the
assumption of the free-field motion of the same value at each interface nodal point, further
simplifies the equations of motion (2.3.9). In this case, the pseudo-static displacements of
the structure due to unit displacement at the interface dofs (2.3.8%) are rigid body displace-

ments. Hence, one recovers the standard form of the equations of motion for the rigid base

earthquake ground motion :
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M ijd(f) +C I:Id(t) +K ud(t) = - M, Rrb Vl'(t) (2.3.10)

where M is the structure mass matrix given by (2.3.3%) and R,, is the rigid body transfor-
mation matrix (a set of rigid body displacements for unit displacement at the structure
basis).

To recapitulate, the added motion approach in the form (2.3.10) separates the total
motion field into the dynamic and pseudo-static added motion for the structure and into the
dynamic, pseudo-static and free-field motion for the foundation component. However, the
assumption on the constant free-field motion over all interface dofs simplifies the stress
recovery in the structure, i.e. the solution of the equation (2.3.10) is sufficient for that pur-

poses.

2.4. Transmitting Boundaries

To demonstrate the conceptual principle of the local transmitting boundaries, we can

first concentrate on the scalar wave equation in the half-space domain:

?w  Pw  *w
52 " a2 5 =0 ,forx20 (24.1)

The general solution of (2.4.1) has the form

w=We@Gr+tnyte) (24.2)

where (x,y,t) and (§,n,w) are dual variables.

After substitution of (2.4.2) into (2.4.1) we obtain characteristic equation
(-0?+E*+n?)W =0 (24.3)
which can be factorized into

(g-sz—nz)(;+«/m2—n2)w=o 2.4.4)

Hence, from (2.4.4), the special families of solutions to the wave equation (2.4.1)

representing the waves traveling to the left are given by the plane waves
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w=We (Go-n’xsorsny iy 2 n250, >0 (2.4.5)

If the pair (n,w) is held fixed (one wave), one first order differential boundary condi-

tion which annihilates w on the boundary x = 0 has the form

dx

[ 4 _ et - nz] Wixzo =0 (2.4.6)

More generally, the wave trains traveling to the left can be represented by
wix,yt) = [ [ e Colnixrertan won e) dide (2.4.7)

where W(0,n,0) is Fourier transform in the (y,r) variables. We note that, by the Fourier
inversion formula, w(0,y,t) is given by the inverse Fourier transform of the amplitude func-
tion W(0,n,w). By superposition of the calculations for (2.4.6) the boundary conditions

which exactly annihilate the wave train traveling to the left of the form (2.4.7) is given by

[ % - [fearren i Joln? Won.0) dndo | =0 (2.4.8)
lx=0

which is analogous to

d 9% 9°

dx o> 9y?

Wix=0=0 (2.4.9)

Next goal is to establish a local approximation to the perfectly absorbing boundary

condition (2.4.9). We take the symbol of the boundary condition from (2.4.9) given by

d . n
— i - (2.4.10)
N n?
and approximate it at normal incidence (n=0). Using the approximation 1= —Fp=0=
P

2

1+ O(n—;) and realizing that i w corresponds to % we obtain
w
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Ist approximation
ad )
[ - E] Wireo =0 (2.4.11)
Using the next approximation (the first Taylor or Pade) to the square root

n’ n’ n'
1- F“’:o =1- ﬁ + O(F) in (2.4.10) and multiplying by iw we obtain the

symbol

2

. d 2_ M
—_— + —
lwax (0] 2

and this yields boundary conditions of

2nd approximation

9* _ 9° + a°
dxdr 912 209y?

Wir=0 =0 (2.4.12)

We can deliver higher order Taylor series approximations to the square root in
(2.4.10), but it turns out that they all yield unstable boundary values (see Kreiss [1970]).
The sequence of these approximations represent the paraxial boundary. The first approxi-
mation boundary, which corresponds to a viscous dash-pot, is devised earlier from engineer-
ing considerations by Lysmer&Kuhlemeyer [1969]. Since the boundary is frequency
independent, it is directly applicable to the time domain analysis. Zienkiewicz et al. [1986]
have discussed generalization of the viscous boundary for the cylindrical shape of the far-
field boundary in 3D applications. Recent parametric studies (see Cohen&Jennings [1983]
or Wolf [1986]) have shown that, once the transmitting boundaries are placed 1.5 wave
lengths away from the source, all different enhance:.ents of the viscous boundary are really

unnecessary, since they all yield almost identical results.

To demonstrate that the same concept discussed for the wave equation (2.4.1) directly
applies to elasticity problems, we further specialize the constitutive equations (2.1.3) to
linear elasticity, and limit our discussion to plane strain problems. The equations (2.1.1) to

(2.1.3) can be recast in the form
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u,-Eju,-Ejpu,-Epu, =0 (2.4.13)
where
[ u ] 03 0
u= E,=
v 0 c,2
, 01 2 0
Ex=(ci-¢c}) |0 Ep = )
0 C4

and c, is the dilatational wave velocity (c; = 4/ %); ¢, is the shear wave velocity

(¢ = ,J—%- ); with A and pu as Lame parameters, v as Poisson ratio and p as the mass den-
sity.
If we assume the solution to the elasticity equations (2.4.13), for both displacement

components u and v, in the form (2.4.2), we obtain the characteristic equation

(10*-E;E2-E;p & n -Epn?) =0 (2.4.14)

| %

Guided by the procedure for the paraxial boundary for the scalar wave equations
(2.4.1), we perform factorization of the characteristic equation (2.4.14) above and use Tay-

lor series expansion on both terms

(1(2)-B,-B; (1) - B, (1y)
(/)] (/)] [

(I (i) - By - Bs (ﬂ') - B¢ (l)2 ) =0 (2.4.15)
@ w @

| %

To obtain the matrices B;,i=1,..,6, we first substitute the first root of (2.4.15) into w:«

(2.4.14) and get

(I-Ey B,)(%)°+(-E]2 B, -E;B B, -E;B;B )(%)I +
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(-Ex;+E;;B,-E; B B;-E| B;B, -E|, B}) (-'c%)2 + 0((%)3) = 0(2.4.16)

Setting the coefficients of (%)‘ ,i=0,1,2 equal to 0, we get

1 1
— 0 0 — -
4 4 Cy 5 Cq 0
B, = 1 By = =(cs=¢c;) | By=-
0o — — 0 0 C4——Cs
CS CJ

The same procedure for the second root of (2.4.15) gives By = —B|, Bs = B; and B; = -B;.

The first root of the characteristic equation represents a body wave propagating in the
positive x direction. If we want to recover the differential equation governing that wave we

would have:

I* approximation

3 10 ca 0
I(;)—B1=0 - 01l®=1|o , E=0

which corresponds to the differential equation

10 U, ca 0 U x
01 v, )] |0 ¢ vV,

which is exactly in the form of the Lysmer&Kuhlemeyer [1969] standard viscous boundary.

=0 (2.4.18)

2" approximation

10| , ca 0 01
01|@ |0 |60 ()| o|n0=0

which corresponds to the differential equation

Sap

o

o 10 Uy g 0 U b 01 Uty
. 01 Vel |0 ¢ Ve —(ca—cd | 1 ¢ V. =0 (2419
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Third order approximation is also supplied in Cohen&Jennings [1983], but, just like for the
wave equation (see Enquist&Majda [1977]), it proves to be unstable. Some ways in which
the instability of the third approximation can be eliminated are discussed in

Cohen&Jennings [1983].

Finite Element Implementation

The paraxial approximation to the transmitting boundary conditions within the discre-
tized model (discussed in section 2.3), is utilized as a part of the domain  where the
governing "equilibrium” equations are given by the first (2.4.18) or the second paraxial
approximation (2.4.19). For the first paraxial approximation, or the standard viscous boun-
dary, the simple lumping procedures can be successfully utilized for the 4-noded element
(see Lysmer&Kuhlemeyer [1969]). For the higher order element a consistent discretized
form of the viscous boundary yields a 3-diagonal form of the damping matrix C. Some
lumping techniques that provide a diagonal form of C are discussed in Chew [1985], analo-
gous to the mass matrix lumping. However, the consistent lumping procedure, which we use
in this study, is provided by the nodal point quadrature rule (e.g. Simpson rule for 9-node

element)

For the finite element discretization of the second paraxial approximation (2.4.19), a
special transition 4-node element is devised by Cohen&Jennings [1983], in which one pair
of nodes is assembled with the standard elasticity equilibrium equation, while for another
pair of nodes, the field equations corresponds to the second paraxial approximation (2.4.19).
Beside the nonstandard assembly procedure, the additional inconvenience arising from the
second paraxial approximation is the nonsymmetry of the damping matrix C, which

corresponds to a discretization of the second term in (2.4.19).

For either case of the paraxial boundary, the discretized damping mat " has a non-
proportional form (i.e. it is not related to neither stiffness nor mass matrix). _.ence, special

techniques for the dynamic analysis have to be considered. This is done in Chapter 4.
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Remark 2.4.1 In the discretized method, one should also mention the infinite element idea,
(see Zienkiewicz et al. [1986]) as a possibility of enforcing the radiation condition.
The idea is based on the use of an approximation to Green’s function (e.g. exponential
decay) as the shape function in the infinite finite element (i.e. the element that extends
to infinity in at least one direction). The main advantage of the infinite element is its

easy implementation within the standard finite element computer program.
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Figure 2.3.1 - Structure-foundation system and free-field
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Figure 2.3.2 - Structure-foundation interface possibilities
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Chapter 3
Parametric Study :

Structure-Foundation Interaction Effect

The main intention of this chapter is to indicate the class of problems where the
interaction effect in dynamic analysis of the structure-foundation system is important. Since
only qualitative results are sought, the analysis is performed utilizing some simplifying
assumptions as discussed further. Two different types of structures have been considered :
a typical high rise building (representative of flexible structures) and a concrete gravity dam
(representative of stiff structures). The analysis is performed on reduced systems generated
by Ritz vectors (as will be elaborated in the next chapter) with the SAP80 computer pro-
gram (Wilson [1980]). In current practice, it is common to use time-history analysis with
an artificially generated, spectrum-compatible, single ground motion. This approach neglects
the fact that a smooth design response spectrum represents ensemble average of responses
to different ground motions (see Clough&Penzien [1975]) and is a probabilistic description
of an earthquake as a stochastic process (Lin [1967]). In addition, the time-history
approach has been favored to accommodate the non-proportional damping that characterizes
the problems under considerations. We employ the response spectrum approach (see Wil-
son et al. [1981]), since only the qualitative results are sought. This requires that consistent
non-proportional damping be approximated by equivalent proportional damping. One possi-
bility (Warburton&Sony [1977]), to simply neglect the off-diagonal terms in modal damping

matrix, is easily adopted in our computations.

Remark 3.0.1 The response spectrum approach can be retained even for the non-
proportional form of damping as demonstrated by Igusa&DerKiureghian [1983].
However, this requires generation of a complex Ritz vector basis which can be rather

inefficient in applications to the problem on hand, as demonstrated in the next chapter.
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3.1. Buildings

The primary interest of this parametric study is to establish the importance of the
interaction effect for typical high rise buildings. To favor possible interaction effect, the
study is performed with a foundation material that corresponds to soft soil deposits in Mex-
ico City. A typical 2D frame is selected from a ten story office building damaged in 1985
Mexico City earthquake. The finite element models of the frame-foundation systems are
presented on Figure 3.1.1. The models frbl and frb2 are fixed base and simply supported
frame models without the foundation, and ff1 and ff2 are frame foundation systems with
different extent of the foundation domain, such that 80% and 90% of the total mass of the

complete system is the mass of the foundation.

The free-field motion response spectra are calculated from the acceleration history of
the 1985 Mexico City earthquake (SCT component SOOE) and presented in Figure 3.1.2.
The basic response quantities, fundamental period, frame base shear and top displacement,

are used for the comparisons in dynamic analysis of the models in Figure 3.1.1.

Table 3.1.1. Parametric Study of Frame-Foundation Interaction

Model Period (sec) | Ratio | Base Shear (kN) | Ratio | Top Displ. (m) | Ratio

frbl 1.674 0.976 6132 0.873 0.477 0.852
frb2 1.716 1.000 7026 1.000 0.560 1.000
fr1 1.750 1.020 7649 1.089 0.604 1.079
fr2 1.752 1.021 7696 1.095 0.609 1.088

It is obvious that the interaction effects for the soft structure such as the high rise
building (fundamental period 1.674 - 1.752 sec.) are overall insignificant. There is almost
pno difference between the models with different foundation extent (ff1 and ff2), once we
have included the foundation extent that yields the dominant mass of the foundation in the

complete system. We also note that the structure-foundation interaction effect may actually
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increase response quantities, depending upon the particular earthquake record that analysis
is performed for (although one should state this with caution, since the radiation damping is
not modeled properly). This is even more pronounced for the parametric study presented in
the Table 3.1.2. The analysis is performed on the finite element model ff1 with different

mechanical properties for the foundation material.

Table 3.1.2. Parametric Study of Foundation Flexibility

Model Shear Mod. (kN/mz)‘Mass Dens. (kg/m’)L’eriod (s:c)|Base Shear (kN)Top Displ. (m)

frb2 - - 1.716 7026 0.560
ff1 600000 1600 1.750 7649 0.604
ffla 130000 1500 1.922 10716 0.856
ff1b 39000 1300 2.316 9245 0.609

To demonstrate the influence of a choice of a particular earthquake spectrum, a further
parametric study compares the result for 1952 Taft earthquake (component S96E) with the
equivalent ones for design earthquake presented on Figure 3.1.3. The equivalent design
earthquake is constructed under the recommendations of Tentative Lateral Force Require-
ments of Seismology Committee of California [1985] for the same peak ground acceleration
of 0.1794 g (at 3.74 sec) as for the Taft earthquake. The analysis is performed for the
models frbl and ff1. The results, presented in Table 3.1.3., indicate a reduction in response

due to the interaction effect (inverse to results in Table 3.1.1.), with approximately the same
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ratio for both the Taft and the equivalent design earthquake.

Table 3.1.3. Parametric Study of Sensitivity to Choice of Response Spectrum
Model Period (sec) Base Shear (kN) Top Displacement (m)
- - Taft earth. | Design earth. | Taft earth. | Design earth.
frb2 1.716 1950 1737 0.148 0.121
ff1 1.750 1872 1730 0.138 0.117
Ratio 1.020 0.960 0.996 0.938 0.967

3.2. Gravity Dams

To demonstrate the interaction effect for the stiff structures, further parametric study is
performed on the gravity dams. The model of the dam used in this analysis is similar to the
Pine Flat Dam analyzed for hydrodynamic effects on dams by Chakrabarti&Chopra [1973].
In this analysis, hydrodynamic effects are completely disregarded (only hydrostatic pressure
is considered). The finite element models drb, dfl - df4 are presented on Figure 3.2.1.
The largest model of the dam includes a total of 1154 degrees of freedom. The material

properties for the dam and the foundation are given the same values : Young’s modulus
22150 MN/m?, mass density 2.5 kN sec?/ m* and Poisson ratio 0.25.

The first parametric study is performed on models of the dam-foundation system

shown in Figure 3.2.1, which include different portions of foundation. The results of this
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analysis are presented in Table 3.2.1.

Table 3.2.1. Parametric Study of Dam-Foundation Interaction

Model Found. Ext.h’eriod (sec)RatioBase Shear (kN)RatioTop Displacement (m)Ratio

drb 0 0.335 [1.000 25078 1.000 0.030 1.000
dfl 1.0 0.398 |[1.188 32889 1.311 0.043 1.428
df2 1.6 0411 |1.227 32160 1.282 0.043 1.418
df3 2.5 0426 [1.272 32705 1.304 0.042 1.392
df4 3.0 0.437 [1.304 32210 1.284 0.042 1.384

In this case, the interaction effect is much higher than in the case of the high rise

buildings. It appears that even the model with the foundation extent of the order of the dam

base width yields almost converged values of the response quantities. This corroborates

similar conclusions in Clough et al. [1984].

The sensitivity to the choice of a particular earthquake record (Taft earthquake) versus

adequate smoothed design response spectrum is presented in Table 3.2.2.

Table 3.2.2. Parametric Study of Sensitivity to Choice of Response Spectrum
Model Period (sec) Base Shear (kN) Top Displacement (m)
- - Taft earth. | Design earth. | Taft earth. | Design earth.
drb ¢ - .22639 25078 0.031 0.030
dfl 0.398 29051 32889 0.038 0.043
Ratio 1.188 1.283 1.311 1.226 1.417
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The results presented by Clough et al. [1984] are obtained by utilizing the approxima-
tion of a massless foundation. This approximation was introduced so that the standard com-
puter program they used could account for the structure-foundation interaction effect, ade-
quate to formulation (3.3.10). To clarify the effect introduced by this approximation, we

performed adequate analysis consistent with formulation (3,3.10). This comparison for

model ff1 is presented in Table 3.2.3.

Table 3.2.3.  Comparison of Consistent and Approximate Added Motion Formulations

Quantity Massless Foundation Consistent Model Ratio

T, 0.396 0.398 1.005

P T, 0.195 0.204 1.046
e T, 0.160 0.178 1.113
r T, 0.111 0.138 1.243
i Ts 0.070 0.103 1471
o Ts 0.067 0.093 1.388
d T, 0.051 0.086 1.686
Ty 0.048 0.082 1.708

(sec) Ty 0.040 0.078 1.950
Tio 0.036 0.071 1.972

Base Shear | Taft earth. 29627 29051 0.981
(kN) Design ear. 34211 32889 0.961
Top Displ. | Taft earth. 0.038 ey 0.038 1.008
(m) Design ear. 0.044 "~ 0.043 0.995
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The response quantities in Table 3.2.3. obtained by two procedures, consistent and
approximate, are in a very good agreement. However, this is mainly the consequence of the

good approximation properties of the load dependent Ritz vectors utilized.
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Chapter 4
Numerical Procedures :

Linear Dynamic Analysis

The discretized models for dynamic analysis of structure-foundation systems com-
monly encountered in engineering practice have many dofs. To reduce the computational
effort for the loading of long duration (such as earthquake loading) the modal analysis is
usually used (see Wilson [1977]). In the process of selection of proper coordinate reduction
scheme for the class of problems on hand, one has to consider two non-standard problems.
First, the flexibility of the foundation (especially for 3D problems) requires a large subspace
for modal analysis if eigenvectors are used. This problem can be successfully handled by
the load dependent Ritz vector basis. Second, one has to account for the non-proportional
damping form. Two methods based on complex and real Ritz vector basis are presented and
compared. The techniques discussed in the first part of this chapter are then fitted within
the context of dynamic substructuring, as a prelude to dynamic analysis of large linear sys-

tem with local nonlinearities.

4.1. Coordinate Reduction Scheme - Modal Truncation

For the dynamic analysis of the linear systems, transformation to modal coordinates is
usually performed, enhancing the computational efficiency by the modal truncation (Wilson
[1977]). In other words, an approximate solution of the complete set of equations is sought
by projecting them onto a subspace spanned by the chosen basis vectors. Rayleigh-Ritz
approximations based on the static deflected shape (see Clough&Penzien [1975] or Agnosto-
poulos [1982]), eigenvectors of the complete system (Bathe&Wilson [1976], Wilson&Itoh
[1983]) and Krylov subspace (Nour&Clough [1984]) are three possibilities for generation of

such a subspace. The quality of results obtained by this approximation depends on how



Ch. 4 45

well the spatial distribution and the frequency content of loading are represented in the
chosen subspace. It was observed (Nour&Clough [1984], Leger& Wilson [1987]) that the
good representation of the loading spatial distribution within the generated Krylov subspace,
improved results significantly with respect to adequate computation done by eigenvectors.
Some truncation criteria for the loading representation within the generated Krylov subspace
are developed, but no proper reference to possibly different frequency (spectral) content of
excitation is given. Hence, we discuss the spectral content truncation criteria, which rely on
concepts of the static correction (see Madox [1975] or Hansten&Bell [1979]). In passing,
we also demonstrate the analogy of the static correction and mode acceleration (Cornwell et

al. [1983]) methods.

Modal Dynamic Analysis of Linear System

The semidiscrete equations of motion for the linear system as given by (2.2.16) are
Mi(t)+Cu()+Ku@)=1)="1, g(1) 4.1.1)
Usual coordinate transformation (or projection onto subspace) is

u,(t) = ®, y() (4.1.2)

where @, = [ o 6> ... 0,,,] is a set of projection vectors in Rayleigh-Ritz approximation
(Clough&Penzien [1975]) and y(r) = ( y1,¥2....¥m )" is a set of truncated modal coordinates.

If ®,,, as the eigenvectors of the associated undamped system to (4.1.1) (that neglects

C), are to be employed in transformation (4.1.2), then the general linear eigenvalue problem

given below has to be solved first.

Ko, -Q2M®, =0 (4.1.3)

Introducing the transformation (4.1.2) into the equations (4.1.1) new set of differential equa-

tions is defined on the subspace

§(1) + C,p, y(1) + Q2 y(1) = f,,(1) (4.1.4)
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where
Mo, =1
®.ceo,=C, (4.1.5)
@ K @, = Q2 = diag (0}
&7 (1) = 1,(1)

If, for the moment, we consider only a proportional damping matrix (e.g. Rayleigh
damping), the equation set (4.1.4) can be restated in the uncoupled form, since : C,, = diag
(2 §; o; ). However, this is not a crucial restriction for the present considerations. In the
next section we consider the efficient ways to solve the coupled set of modal equations for a
non-proportional damping by both mode summation and mode acceleration methods.
Remark 4.1.1. More generally, the uncoupled form of the equations of motion (4.1.4) can

be obtained if the damping matrix C shares the same eigenvectors of (4.1.3). Caughey

[1960] gives the power series for C=M Y a; (M~ K)/ that yields the uncoupled
jsSn

modal equations of motion. By the spectral decomposition theorem (see Parlett

[1980]), j - th powers of mass M and stiffness matrix K can be computed as :
. " . '. I3
M/ = Z ¢ ¢/ K = Z w? o o]
i=l i=1
As generally n-dimensional, the loading vector can be represented in the complete set
of modal coordinates as

() =K®yn)=3S K& 5+ 3 K 5(0) = fn(r) + £(0) 4.1.6)
1 =]

i=m+l1

where f,,(7) is the loading representation in m-dimensional subspace spanned by ®,, vector
basis, while f;(z) (with /] = n—m) is the loading component orthogonal to that subspace, due
to the orthogonality property of the eigenvectors. Therefore, the response obtained in the

selected subspace will not contain contribution of the loading component f;(t). The
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methods we discuss differ in the way by which an approximation for the loading component

f,(t) is provided.

(a) Static Correction and Mode Acceleration

The static correction concept (see Madox [1975] and Hansten&Bell [1979]) is one way
to account for the normal component of the loading f,(r) in an approximate static fashion.
Successful application of the static correction concept requires the proper account of the

frequency content of the loading. This we address in the next section.

One modal equation in the completely uncoupled set (4.1.4) can be written

i) + 2 & w; yi(r) + o y (1) = f;(t), i=12,..n 4.1.7)

For usual modal truncation dynamic response is computed by the solution of the equa-
tion (4.1.7) for a number of equations m smaller than the complete set n. For the rest of
the modal equations (m>n) the solution is obtained as the static response that follows from
the equation (4.1.7) disregarding inertial and damping forces. Hence the complete response

by the static correction method is readily obtained as:

n

u(t) =) & ¥+ Y — & fi(t) = Z ® (1) + Z — ¢; ¢/ (1) (4.1.8)
i=1

i=m+] a)z i=m+] wz
or rearranging the summation
n 1 m l
u@) =Y — ¢, ¢/ 1)+ Y & | y(®) - — fi()) (4.1.9)
i=l g? i=1 o?

The first part of the equation (4.1.9) represents the spectral decomposition of the

inverse of stiffness matrix, since by the spectral theorem (Parlett [1980]) it holds :
n B
K'=) w?e; ¢f (4.1.10)
i=1

where ¢;,; are the solutions for eigenpairs of the complete set of equations (4.1.3) i.e. for

m=n. For the sake of compact notation we introduce



Ch. 4 48

m

- f ¢ — filt) = - > L g ¢700) = - @, Q7 @7 f = - K;' (1) (4.1.11)

i=1 o? i=l @

Hence, we arrive to computational form of the equation (4.1.9)
un)y =y ¢ yi(r)+ (K" - K;! ] f(1) (4.1.12)
i=1

Analogy of the static correction method (Hansten&Bell [1979]) to the mode accelera-
tion (Cornwell et al. [1983]) can be easily demonstrated by rewriting the modal equation

(4.1.7) in the form :

28 . i(1)
- L yi(r) - é yi(r) = yi(1) - 10 (4.1.13)

(O] ,‘2 ' w‘.z

and further employing the relation (4.1.13) in the equation (4.1.9) we arrive at mode

acceleration method (Cornwell et al. [1983]) given by :

yi(r) 28 yi()
+

u(r) =K' f(r) - i ¢, (4.1.14)
i=1

w.
w,-2 ‘

(b) Combination of Exact Particular and Approximate Homogeneous Solution

Another possibility for improving the approximation properties of a subspace formed
by the exact eigenvectors is stated by Borino&Muscolino [1986] in application to the sys-
tem of first order differential equations. The transformation of equations (4.1.1) to first
order system (size 2nx2n) is introduced as a standard way to deal with the non-proportional
damping. Here we derive the equations in direct application to second order system (size
nxn) and leave the discussion of am ¢.!i:izat way to handle non-proportional damping
within so formed subspace for the next sectin.

Solution of the set of linear ordinary differential equations, which, from mathematics

standpoint, the semidiscrete equations of motion are, can always be obtained as a direct

summation of the solution of an appropriate set of homogeneous equations and a particular
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solution. In the computational sense, this approach could be considered if a particular solu-
tion is easily obtained. One case like that is for the piece-wise linear excitation with the
fixed spatial loading distribution which has direct application to the dynamic analysis of

structural system under earthquake excitation (specified as discrete acceleration record).

Namely, if the loading variation in the equation (4.1.1) within one step is
f(1)=f0 (00"'01’] , f(f)=foa] (4.1.15)

The particular solution of the equations (4.1.1) for the loading variation in (4.1.15) is

then
u, () = K™ f(r) - K™ C K™ (1) (4.1.16)

which could be checked by the direct substitution of (4.1.16) into the equations (4.1.1).

Solution of the homogeneous equations set can be approximated from the subspace as
the difference between the complete solution and a particular solution for reduced set

4.1.4):

-first the solution in modal coordinates
Y (1) = Ym(t) = Ymp(t) = Ym(t) — Q2 £(1) + Q57 Cp, ;7 £,,(1) 4.1.17)
-transformation to global coordinates
Un(t) = @, Yui(1) = ®p, (1) = ®py Q2 @7 (1) +
®, ;2 ] C ®, 0;2 &7 i) (4.1.18)

By utilizing the compact notation introduced by (4.1.11) again and combing the equa-

tions (4.1.16) and (4.1.18) we can get the final form for the computational purposes
u() =Y ¢ v+ (K-' - K;,') f(r) - [K" CK'-K; CcK; ) f(r14.1.19)
i=1

The equation (4.1.19) differs from the static correction equation (4.1.12) only by the

additional third term on the right hand side. It was observed in Borino&Muscolino [1986]
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that in the case of a small time step employed usually in dynamic response computation due
to earthquake excitation, the contribution of this term was very small and additional compu-

tational expense arising due to the inclusion of this term may not be justified.

(c) Load Dependent Vector Algorithm

In the first version of the load dependent algorithm (Wilson et al [1982]), the complete
analogy existed in the computational process to Lanczos algorithm with full orthogonaliza-
tion (Lanczos [1950]). However, the idea has initiated from the static correction concept,
not from the intent of eigenvalues computation. Further modification of the algorithm in
Leger&Wilson [1987] put higher emphasis on the role of the initial static deflected shape
which has been updated and added to the basis optionally, but without the adequate refer-
ence 1o excitation spectral content. In this modification of load dependent vector algorithm
we refer to the spectral content of excitation to properly account for the static correction
concept. The analogy that exists between the Lanczos algorithm with the selective orthogo-
nalization and the load dependent vector algorithm used herein is utilized in defining
orthogonalization strategy.

The load dependent vector algorithm we use, is the same as the original proposed by
Wilson et al. [1982], except that the reorthogonalization procedure is performed with

respect to previous two vectors only :

-set starting vector
Fo = K-' f

Q=0 (4.1.20)

By = NriMr,

q=ro/ B
-for j=12,...m

fj=K'Mgq;-q;. B,
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=qM#,

r‘=fl.—ql. Q; (4.1.21)

Bjn1 = Ur}.M rj

Qjs1 =T/ Bjs

The algorithm given above will produce a set of Lanczos vectors Q, =
[.K'Mq,. ..., (K" M)™! q,] which spans Krylov subspace. Alternative possibility
to span Krylov subspace is by Ritz vectors ¥, (approximation for eigenvectors of the large

system) that can be determined after the solution to standard eigenvalue problem for

T, = QI MK~ M Q,, is obtained.

TnZ=A,2Z, ZTZ=1, A,=Q;
¥, =Q,2. ¥, =0, 4.1.22)

The load dependent vector algorithm, as defined by the equations (4.1.20) and
(4.1.21), can be carried out only in the exact arithmetics. In numerical computations the
accumulation of roundoff errors has similar effect like in inverse iteration Stodola method
used for computing several fundamental eigenvalues (Clough&Penzien [1975]). Emor
analysis, first performed by Paige [1971] and later elaborated by Parlett [1980], hinges upon

following two statements :

- measure of approximation for eigenpair (¢;,w?) by Ritz pair (y;,4,)

IK "M ;= w4 = [IBjs1 Q1 €J2lM =

ﬁjﬂ ‘}. z|
-measure of orthogonality of Ritz vector and Lanczos vector

_ const. € K™Y M),

| v/ M qju; (4.1.23)

T
Bj+ €; zl
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where :

el [00..01) and /iq;/m =q] Mg, =1

Namely, convergence of Ritz value (occurring when the right hand side of (4.1.23')
becomes very small) will cause the loss of orthogonality between Lanczos vectors and Ritz
vector, (note that the inner product (4.1.23%) becomes equal to the quotient of roundoff error

€ and a very small value). In that case, we have to perform selective orthogonalization (see

Parlett [1982]). As soon as eigenvalue A; = w;>

converges (at step j, say), we compute the
corresponding Ritz vector y; = ¢;, and orthogonalize against it the new Lanczos vector
q;4+ (and also q;,, at the next step). Orthogonalization also has to be performed with
respect to previously converged Ritz vectors (The reason for that is given by the second
part of Paige theorem). This task requires monitoring stabilization of eigenvalues of tridi-

agonal matrix T; at each step j. For this we use the scheme developed previously by

Parlett& Nour [1985].

Spectral Content Truncation Criteria

Spectral content truncation criterion is easily obtained for the loading of the special

form separable in space and time :
f(r) =1, g(2) 4.1.24)

The special form of loading given in (4.1.24) is required for successful application of
load dependent vector algorithm. It also enhances the computational efficiency for the static

correction method, since the first term in the equation (4.1.9) has to be obtained only once

and can be used throughout if scaled appropriately by the value g(s;).
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(a) Static Correction and Mode Acceleration
The easiest loading case that enables proper account of the static correction is har-

monic excitation (e.g. g(¢) = sin @ r). For that loading we consider one modal equation :

§i(1) + 2 & ; §i(t) + of yi(t) = fo; sind ¢ (4.1.26)

with a particular solution given :

yi(t) = foi 107 sin [Et - 6,-] (4.1.27)
N -8+ as)’
e-=tan“2§iﬁi B
‘ 1-p? e

. . 2] . . . .
For different values of ratio § = — maximum dynamic response is plotted on Figure
w

L

4.1.1 versus maximum static response (——
()

From Figure 4.1.1, the spectral truncation criteria for the harmonic excitation and

usual values of damping in engineering structures follow as :

. w . . . R
(i) For ® < 0.25 static correction will give excellent results

(ii) For 0.25< £ < 1.25 static correction will always improve results but not always con-
©

siderably

(iii) For — > 1.6 static correction, if applied, will yield incorrect results that overestimate
w
“*  the response
It should be stated that for the harmonic excitation the static correction method need

not be used. The exact steady-state response can be obtained directly by

y = b, sinwr + b, coswr (4.1.28)
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where
-1
b,=(K5+62CK;'C) fo
b, =-& K;' Cb, (4.1.29)

K._=K-a’M

@

For the general excitation form g(r) some measure of spectral content has to be
obtained to provide similar truncation criteria as in the case of the harmonic excitation.
Fourier amplitude spectrum is one possibility to provide the measure of total vibrational
energy at the end of the specified time period (see Hudson [1979]). Fast Fourier transform

(Clough&Penzien [1975]) should be used for efficient computation.

Another measure of the spectral content of excitation common in earthquake engineer-
ing is the response spectrum. Pseudo-velocity response spectrum (Hudson [1979]) provides
the maximum strain energy measure over the excitation spectrum. Adequate measure for
strain energy arises in random excitation theory in terms of power spectra density (see Lin

[1967]).

The spectral content truncation criteria for the general excitation form are discussed

further within presentation of some numerical results.

(b) Load Dependent Vector Algorithm

The choice of starting vector as static deflected shape to fixed loading spatial distribu-
tion is what separates load dependent vector algorithm we use from Lanczos algorithm with
selective orthogonalization (Parlett [1980]). For the dynamic response computation, the
static vector will prevent generation of eigenvectors orthogonal to loading and will also util-
ize the static correction concept. To provide the analogy to the static correction cc..ii_° ‘he
convergence of Ritz values within the dominant frequency range should be obtained, while
the static correction (chosen as starting Lanczos vector) will be retained in the subspace

spanned by nonconverged remaining Ritz vectors.
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Hence, in the load dependent vector algorithm we use one termination criterion is the
convergence of all eigenvalues within specified interval. Another truncation criterion is

ensurance of good representation of loading spatial distribution within truncated subspace.

Numerical Results

Example 4.1.1 - Two degrees of freedom system

The first numerical example that we present here aims to clarify the role of frequency
content of the loading excitation in the context of static correction method. The simple two
degrees of freedom model presented on Figure 4.1.2 is used with the loading variation

specified first as the harmonic sinusoidal function.

The error in the approximate maximum response for the displacement at node 2, (com-

puted by one mode only and one mode supplemented with the static correction for the

second mode), is presented in Table 4.1.1, for the different values of exciting frequency @.
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The exact response is computed by utilizing the equation (4.1.28).

Table 4.1.1 Ratio of —2eect” X2approx
X2approx.
Freq. (rad/sec) | One Mode Only Stat. Cor.

5 0.0526 0.0005

10 0.0439 0.0018

15 0.0248 0.0023

20 0.0035 0.0005

25 0.0426 0.0084

30 0.1318 0.0487

35 0.2298 0.0952

40 0.4142 0.2024

45 1.4707 0.9844

50 11.9550 9.4474

100 0.4972 47082

It is obvious that the results obtained for practical system analysis completely rein-
force the spectral content truncation criteria (i), (ii) and (iii). For this example with w, =
51.17 rad/sec for all harmonic excitation with the frequency @< 25 rad/sec the static correc-
tion yields the results that are within 1% from the exact. For the harmonic excitation with
@ = 100 rad/sec the static correction actually introduces larger errors than if completely
omitted. However, this case of high exciting frequency is of rare occurrence in practical
engineering problems and benefits of the static correction are almost always ensured (when
the proper account to the spectral content of excitation is taken in modal transformation).

To provide the spectral content truncation criteria for general excitation form (ade-

quate to (i),(ii) and (iii) for harmonic excitation) a series of simulated earthquake motions is
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generated from filtered white noise given by Kanai-Tajimi filter with one-sided power spec-

tra density as :

4 2.2 2
cog+4§gwgco

G(w) = Gy (4.1.30)

[cox2 - a)z] i +4 682 a)gzco2
The values of dominant frequency w, and damping ratio &, for the filter are varied
over the range of frequencies specified on Figure 4.1.3.
The time variation of the loading is computed from decomposition of normal station-
ary process by
N

i, = Y A2 A0 G(w;) cos (co,- t+ ¢,-) 4.131)

i=0
where ¢, is uniformly distributed random phase in the interval (0,2x).

To demonstrate the analogy between these simulated earthquake motions and the real
earthquake records in application to our problem, the computation is repeated for ground
acceleration records of 1952 Taft earthquake and 1985 Mexico City earthquake. Fourier
amplitude spectra (as the measures of energy) for these earthquake records are presented on

Figures 4.1.4 and 4.1.5.

The displacement at node 2 and the force in element 2 are both computed by one
mode contribution only and by one mode supplemented with the static correction for second

mode and divided by the appropriate exact response quantity (for 2 modes included). The
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results of this analysis are given in Table 4.1.2.

Table 4.1.2 Ratio of Approximate and Exact Maximum Response
Simulated earthquake Node 2 Displacement Elem. 2 Force
w, (rad/sec) ‘53 1 Mode/Exact | St.Cor./Exact | 1 Mode/Exact | St.Cor./Exact
2n 0.3 0.972 0.995 0.837 0.989
4r 0.5 0.971 1.009 0.799 0.994
S5n 0.6 0.963 0.976 0.758 0.840
Mexico earthquake 0.987 0.999 0917 0.991
Taft earthquake 1.038 1.033 0.748 0.919

Obviously, from the Table 4.1.2 above, for earthquake record that can be characterized
as narrow band random process (such as Mexico City earthquake or simulated earthquake
by filter with w, = 2x, §; = 0.3) the static correction concept applied adequately with
respect to excitation frequency content yields excellent approximate results all within 1%
from the exact solution. However, in the case of broad band random process (such as Taft
earthquake or simulated earthquake by filter with w, = 5, §, = 0.6) the static correction

concept certainly improves results but does not make them accurate.

From the analysis to simulated earthquake motions we can state that for the general

loading form spectral content truncation criterion (i) can be even further relaxed to :

@i") for all the modes with @ 2 two times the maximum frequency of interest in general
excitation spectrum the static correction will provide excellent approximation to the

exact response.
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Example 4.1.2 - Truss structure

The second example is a truss structure presented on Figure 4.1.6. It is similar to the
one analyzed previously by Lanczos vectors (Nour&Clough [1984]), which are just a
different basis for the same Krylov subspace we use spanned by Ritz vectors. The structure
has 100 degrees of freedom with 170 two dimensional truss elements. The fundamental

period is chosen as T} = 1. sec.

The excitation used in computation is simulated earthquake motion with power spectra
densities presented on Figure 4.1.3 for filter characteristics w, =4, §, =0.5. The
analysis of this example should indicate the relation of the frequency content and the load-
ing participation as two different cut-off criteria in generating the Krylov subspace in the

case of earthquake excitation.

The spatial representation of the loading within generated Krylov subspace is defined
in Leger&Wilson [1987] for general loading form and earthquake excitation. For earth-
quake excitation participating mass is currently used method (specified by the API recom-
mended practise for planning designing and constructing fixed offshore platforms [1980] as

90%). It is defined by Leger&Wilson [1987] :

€jm = [ 1- [ M. M ) ] x 100 (%) (4.1.32)
where

M;=rTMr; (4.1.33)

Mjn,=r]MW¥, ¥] Mr,

and r; is influence vector (Clough&Penzien [1975]) that accounts for direction of earth-

quake excitation.

For general loading form it is recommended in Leger&Wilson [1987] that error in

representation of loading spatial distribution be computed as :



€jm = {WJ X 100 (%) (4.1.34)
where

fim=MW¥Y, ¥, f (4.1.35)
and

The error norm for general loading spatial representation (4.1.34) indicates that exact
eigenvectors subspace will not ensure convergence if the loading is applied at massless

degree of freedom.

Two fixed loading distributions were used : one that corresponds to "directional” mass
for horizontal earthquake ground motion and another, that corresponds to wave loading on
offshore platform, specified as horizontal concentrated force at second story level. All
damping ratios are given the constant value that equals 2%. The results of the analysis are

presented in Tables 4.1.3,4,5 and 6.

The maximum response for top story displacement and axial force in bottom story
diagonal element were computed within the Krylov subspace generated by different number
of Ritz vectors and compared with the exact solution (computed with all 100 vectors used).
Computation is performed by employing the exact solution for piece-wise linear excitation

of simulated earthquake specified at Ar = 0.01 sec. The results of the analysis are given
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next.
Table 4.1.3 Ratio of Approximate and Exact Maximum Response
Loading Earthquake Concentrated Force
No. of Vectors Top Disp. Ax. Force Top Disp. Ax. Force

4 0.988 1.049 0.780 1.984

5 0.998 0.959 0.990 0.924
10 1.000 1.001 0.993 0.961
15 1.000 1.001 0.998 0.986
20 1.000 1.001 0.998 0.987

Frequency spectrum of matrix pencil (K,M) for the first 19 eigenvectors as well as the

highest frequency are given in Table 4.1.4.

Table 4.1.4 Frequency Spectrum of Matrix Pencil (K,M)
No. o; (rad/sec) |No.| w; (rad/sec) |No.| w; (rad/sec) |[No.| w; (rad/sec)
1 5.323 6 35.416 11 49.165 16 59.641
2 11.749 7 35.514 12 54.183 17 60.807
3 15.625 8 43.775 13 54.945 18 63.086
4 29.115 9 47.143 14 55.515 19 63.485
5 KRR 10 48.568 15 57.974 100 | 180.83

The number of converged frequencies (and exact eigenvectors) as well as the highest

Ritz value (frequency approximation referred yet as spectrum end ®,) within the Krylov

subspace generated in computations we performed are given in Table 4.1.5 bellow for
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different numbers of vectors.

Table 4.1.5 Number of Converged Frequencies and Spectrum End &,,
Loading Earthquake Concentrated Force
No. of Vectors | No. Conv. Freq. o, (rad/sec) No. Conv. Freq. @,, (rad/sec)
4 0 46.743 0 41.957
5 1 63.686 0 68.812
10 2 119.188 3 111.122
15 4 146.335 3 133.300
20 S 163.435 4 142.156

For different numbers of vectors retained in generated Krylov subspace we summarize
errors in representation of the loading spatial distribution in Table 4.1.6. For the concen-
trated force, the error in spatial distribution of loading is given by the equation (4.1.34),

while for horizontal earthquake excitation the error in representation of "directional” partici-

-
¥
sl

)
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pating mass is stated as defined by equation (4.1.32).

Table 4.1.6 Errors in Spatial Loading Representation
Loading Earthquake Concentrated Force

No. of Vectors ejm (%) ejm (%)

4 0.96 73.00

5 0.94 49.36

10 0.62 491

15 0.40 0.29

20 0.36 0.01

100 0.00 0.00

For loading distribution in the form of directional mass for horizontal earthquake
almost exact displacements (within 1% from the exact solution) are obtained with only 4
Ritz vectors. However, for the same accuracy of the axial force recovery as many as 10
vectors are needed. On the other hand, the participating mass as an spatial distribution
truncation criterion indicate that errors sholud be less then 1% for all vector sets. Hence,

the participating mass can be overly optimistic criterion for accuracy of stress recovery.

For the concentrated force where the different measure for loading spatial distribution,
as defined in (4.1.34), is used, the accuracy of force recovery is better related to error norm.
Accurate approximate solution for this case requires the set of 15 Ritz vectors. It is impor-
v note the large overestimate of axial force value which occurs for the set of 4 Ritz
vi.. urs in modal transformation (Table 4.1.3). This reinforces the truncation criterion (iii),
since in this case the static correction (used as a starting vector) is applied to the modes
below the frequency range of interest. The similar phenomenon is previously noted in

Agnostopoulos [1982].



Ch. 4 64

In both loading cases, the convergence of eigenvalues within a range of interest (for
this case of excitation = 15 rad/sec) is encountered coincidentally with the satisfaction of
truncation criterion for spatial representation. This result is very important since it indicates
that for the excitation characterized by narrow band spectrum only the spatial representation
needs to be monitored in the progress of algorithm. Hence, the original load dependent vec-
tor algorithm (Wilson et al. [1982]), with full orthogonalization and spatial truncation cri-

terion only, is quite sufficient in the case of narrow band earthquake and wave loading.

Remark 4.1.2. The primary objective of this section was to generate a subspace for
dynamic analysis to loading of special form separable in space and time which has

direct application to earthquake excitation. To accommodate a general loading form,
k

vector function f(¢r) can be expressed in Fourier series form : f(r) = 2 f jo &;(r) and
j=1

each series component treated separately. Block Lanczos method (see Nour&Clough
[1985]) is ideally suited for such a case. To provide good quality of results engineer-
ing judgment has to be exercised in constructing the loading series form for a particu-

lar problem.

4.2. Method for Non-Proportional Damping

Several possibilities exist, as given by Clough&Mojtahedi [1976], to treat the non-
proportionally damped dynamic linear system by mode superposition procedure within the
framework of real eigenvector basis. Rigorous procedure to devise the coordinates that
uncouple equations of motion utilizes complex vector basis for modal transformation given

by Foss [1958] or Veletsos& Ventura [1986].

Recent research (see Wilson et al. [1982], Nour&Clough [1984] and Lagar&Wilson
[1987]) indicated superiority of Lanczos algorithm for use in Rayleigh-Rit[zﬁ Bfa&edure for
generéting vector basis for mode superposition in the case of proportional dam%mg Itis to
be expected that fast convergence properties of Krylov subspace for the dynamic analysis

will be retained in the case of linear systems with the non-proportional damping.
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Two procedures for generating real and complex vector basis by Lanczos algorithm
are compared in this section. The real vector basis is generated by the Lanczos algorithm
with selective orthogonalization (see Parlett [1980]), and numerical integration of modal
equations coupled by velocity proportional forces is performed by an efficient iterative pro-
cedure described further. The complex vector basis is generated by the Lanczos algorithm

described in Chen&Taylor [1988].

Modal Summation for Non-Proportional Damping

The set of vectors @, generated either as the exact eigenvectors or Ritz vectors by
using only stiffness and mass matrix will not uncouple equations of motion transformed in
modal coordinates due to coupling of velocity proportional forces in the case of the non-
proportional damping.

In this case, the modal equations (4.1.7) can be rewritten as

m
yi(e) + Z; Cm, 3;(t) + @} yi(1) = fi(1), i=1.2,..m (4.2.1)

J

To uncouple the set of modal equations, we introduce an additive split of coupled

modal damping matrix
C, =C, +C = diag (2 £, a),-) + € 4.2.2)
and modal equation (4.1.7) can be restated

Filt) + 2 & @; 3i(1) + of yi(1) = fi(t) = Y, Cij yi(1), i=12,...m (4.2.3)
j=1

The equation set (4.2.3) is then solved by iterative procedure. Departure from a similar
idea in Claret&Filho [1989] at this stage is that we employ the exact solution for piece-wise

linear loading variation of uncoupled equations of motion in the form :

5O + 2 & o, 30 + 0 yB1y = firy = 3 5 3E0) | i=12,.m (4.2.4)
j=1
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One application of this procedure is apparently to structural dynamic analysis for
earthquake excitation, where ground acceleration is specified as discretized record. From the
analogy between Jacobi and Gauss-Seidel iteration in the solution of system of linear equa-
tions, computational variant of equation (4.2.4) can be written as :

=1 m
#0 +2 & 0, 300 + @ P = fin) - X 63N - Y €y yPun2s)
j=

j=i+l

where new values for velocities are substituted as soon as they are computed. Some numeri-
cal experiments for the system with dominant response in lower modes indicated that one
iteration sweep is often enough. The complete summary of the numerical algorithm is given
in Table 4.2.1.

Table 4.2.1.- Algorithm for the Integration of Modal Equations for Non-Proportionally

Damped System

A. Initial Computations :

1.Precompute exponential and trigonometric expressions for constant time step At = t; — 1

B, = e 5 A cos wp; At

e~5°A! sin wp; At

B;,

B. For each time step (At = #; — #o) :

1. Set initial condition for iteration process
yO (1) =y (10)

2. Couipute loading

_ Ji() = fi(to)

fit)=a+bt, where:a=fi(ty) b AT

C. Iterate through the number of modes :
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1. Compute off-diagonal damping forces

[é y""”(r))‘. =c+d1t
2. Update loading

a't=a-c , b =b-d

3. Compute coefficients

Ax =y (tg) — Ao
1 .
Ay=— |y (1)) + & o, Ay — A
Wp;
4. Compute the new values for displacements and velocities
¥ (1) = Ag+ Ay At + AsB;| + Ay B),
¥ () =4+ [ wp; A3 - & w; Az] B;| - (a’Di Ay +§; (0.'43] Bj;

5. Check convergence

it |39 - 3¢ | 1[50, < et

Further results on algorithm performance and its extension to periodic loading are

given in Ibrahimbegovic&Wilson [1988].

Mode Acceleration Summation

Here presented algorithm can be fitted within the static correction framework. First,

the equation (4.1.8) should be rewritten as
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L 1 & yi(t

w =3 6 | L fostn -1 3 3,0 - 22

i=] w? (0"2 j=1 wlz
. i ‘. fio 8(®) (4.2.6)

i=m+1 (0"2
or rearranging summation

- 1 L 1 & yi(t)

w0 =Y ¢ fiogm-3 & [ 3 C 30 - 2 @27)
i=l g2 i=1 w? Jj= o?

By further using definition of f;(r) from equation (4.1.5%) and additive split of modal

damping matrix C,, from equation (4.2.2), we can rewrite the equation (4.2.7) as

n m 2§ yi(1) yi(t)
u(t) =) RN O Se 0 _ 3
i=1 (0" i=1 ; (0,2

o}

Y og | =3 &5 4.2.8)
i=1 j=

By utilizing the spectral decomposition theorem (see Parlett [1980]), the first term on
the right hand side of the last equation can be rewritten as the inverse of stiffness matrix
multiplying loading vector. Hence, we arrive at the final form of the equations for the mode

acceleration method applied in our case of non-proportionally damped system

2& ¥ 2 S ¢
i yi()  Hiw)| 3 o 1 Y & yi(n|@.29
w; 2 i=1 2 j

un)=K'fog(t)- Y ¢
i= o; w J=

The first ter— ~n the right hand side of the equation (4.2.9) is the static response to
fixed spatial variz::  of loading that needs to be obtained only once and directly scaled by
an appropriate value of excitation at specified time g(;). The second term is the standard
mode acceleration form (see Cornwell et al. [1983]) for proportional damping case that can

be computed with high accuracy by utilizing here proposed procedure, as opposed to
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inaccuracies associated with computation of acceleration by Newmark family integration
schemes. For the purpose of accommodating computation of this term, the proposed algo-

rithm has to be expanded by one equation only :

-in predictor form :
¥ (1) = - & o; 301y) - op; ( wp; Ay = §; o; Az) B;;
- op; ( wp; Az + & ©A; ) B, (4.2.10)
-in corrector form :

O = fio 8(1) = 0? YO = 2 & w; 30(1y) (4.2.11)

The third term in the equation (4.2.9) is computed as the intermediate value in the
algorithm presented in Table 4.2.1 and can be accumulated in indexed variable for later use

in summation process.

Complex Vector Basis

Theoretical basis for formation of the complex vector basis that will uncouple equa-
tions of motion (4.1.1) for the case of non-proportional damping is introduced three decades
ago by Foss [1958]. Additional publications (e.g. Veletsos& Ventura [1986]) tried to pro-
vide some physical insight into the use of complex vector basis aiming to raise the popular-
ity of the method in engineering community. However, beside the lack of physical under-
standing, an equally important reason for the rare use of complex vector basis is that the
method tends to be computationally very expensive for practical large systems. Quite
recently devised Lanczos algorithm in Chen [1987] for the solution of quadratic eigenvalue

problem can ease the burden of large computational expense.

Only a short summary of the algorithm we use to generate complex vector basis is
given here. For more thorough discussion the reader is referred to Chen&Taylor [1988].
To generate the complex vector basis, second-order differential equations are

transformed into a first-order one (see Frazer et al. [1946]) as
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Adi(n)-Baw) =T@) (4.2.12)

where

CM -K 0
M 0 B=1 9o M (4.2.13)
and
u(r) - f(r)
i) = ! ] f(r) = ! 0 4.2.14)

A variant of the standard Lanczos algorithm can be constructed (see Chen [1987]) to

generate an A-orthogonal set of vectors by applying the Gram-Schmidt orthogonalization
procedure on the Krylov subspace spanned by [§;, D§;, D°q, ,..., D™ '§,], where
D = B! A and §; is a starting vector. The three-term recurrence formula now is

Yi+1 je1 = Fjsy =B A §; - a; § - Bj_1 G- (4.2.15)

The dimension of the Lanczos vectors §; here is 2n instead of n. However, the cost of
computing these Lanczos vectors is not doubled because the structure of the matrices A and

B can be exploited.

After m steps, we have the Lanczos vectors Q,,, =[q, ..., Gu ] satisfying the fol-

lowing relation

Q. AQ. =4, (4.2.16)
and
QTAB'AQ, =A, 7. 4.2.17)

where A,, is an mxm diagonal matrix with the diagonal elements &; being 1 or -1, and 'T‘,,,

is a tridiagonal matrix :
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Y2 ay B
T, = L (4.2.18)

Ym-1 Cm-1 Pm-1
YM am

The Ritz vectors are computed from ¥,, = Q,, S,,. where S, is the solution for eigen-

vectors of the following eigenproblem :

A,T,S,=A,S, 6; (4.2.19)

o~

By using the transformation 1(z) = ¥,, §(r), we can obtain the uncoupled form of the

equations of motion
i) -6;5,(1)= f,‘(t) (4.2.20)

where both the 91' and the f j(l) are complex-valued for underdamped modes.

For the piece-wise linear variation of excitation, the exact solution of equation (4.2.20)

can then be utilized in computational process.

Numerical Results

Two typical dynamic systems with the non-proportional damping are analyzed : the
flexible mechanical system with concentrated dampers and the structure-foundation interac-

tion problem for a model of gravity dam.

Example 4.2.1. Mechanical system with concentrated damper

The first example studied is a frame structure presented on Figure 4.2.1. The structure

is modeled by a discrete model of 10 beam elements (each with length equals 1 m) with a

total of 24 degrees of freedom. Young’'s modulus for the beam material is taken as 500

N/m>, while the mass density, the section area and inertia are specified of unit value. The

damping coefficient of the concentrated damper equals 10 N sec/m.
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This structural model could be considered as a representative of a control system or a
passively damped space structure. Due to the model flexibility its frequency spectrum spans

from 7.64 rad/sec as the lowest frequency to 1097.49 as the highest.

To ensure that the non-proportional damping arising from the damper attached to node

3 is less than critical (underdamped system), the procedure described in Inman&Andry
[1980] is used. Namely, positive definiteness of the matrix (2 K2 - C) is checked (where :
f{ = M-I/Z K M—l/l' é = M—l/2 C M—IIZ)'

The structure is analyzed previously by Chen&Taylor [1988] within the framework of
complex Ritz vectors and eigenvectors that are generated from the first order system
(4.2.12). The analysis in Chen&Taylor [1988] is performed for the loading variation
specified as step function. Equivalent computations were performed in
Ibrahimbegovic&Wilson [1988] by utilizing real valued subspace generated either by the
exact eigenvectors or Ritz vectors directly from the set of the second order differential
equations. Two sets of 4 and 10 exact eigenvectors and 4 and 10 Ritz vectors generated
from both the second and the first order system are used in the analysis and compared with
exact solution (obtained with all 24 vectors included). The same computation is repeated

for another loading variation specified as 1952 Taft earthquake described in section 3.1.

The plots for the horizontal displacement at node 8 computed by different number of
real vectors and complex vector pairs are given on Figure 4.2.2 for the step function load-

ing variation and on Figure 4.2.3 for Taft earthquake.

From the plots presented on Figure 4.2.3 we observe that the results computed within
the subspace spanned by either 10 pairs of complex vectors or 10 real vectors are very simi-
lar, although in theory different vectors are generated. That applies both to the eigenvectors
and Ritz vectors and to both kinds of loading we used. The reason for that is partly due to
the low values of the equivalent damping ra:»< ¢-n average 2% for all the modes) that is
computed from the non-proportional damping matrix neglecting off-diagonal terms (see
Warburton&Sony [1977]). However, even for larger values of the non-proportional damp-
ing, it is reasonable to assume that the convergence rates for both vector bases, complex

and real, will be in a very good agreement. This we demonstrate in the second example.
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For the computation performed utilizing a set of 4 real Ritz vectors or 4 pairs of com-
plex Ritz vectors, much better approximation to peak response is obtained than for the ade-
quate computation done by eigenvectors. To illustrate that, we present the ratios of peak
response computed by the different numbers of real vectors and complex vector pairs versus
the exact solution. These results are given for both kinds of loading, step function and Taft

earthquake, in Table 4.2.1.

Table 4.2.1 Ratios of Maximum Response for Different Vector Bases

Versus Exact Solution

Complex Vector Basis

No. Vect. Step Function Taft Earthquake
4 eig. v. 0.754 0.830
4 Ritz v. 1.019 1.057
10 eig. v. 1.044 1.016
10 Ritz v. 0.992 0.994

Real Vector Basis

No. Vect. Step Function Taft Earthquake
4 eig. v. 0.775 0.850
4 Ritz v. 0.928 1.057
10 eig. v. 1.046 1.017
10 Ritz v. 1.011 0.999
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Example 4.2.2. Dam-foundation interaction

The structure-foundation model for concrete gravity dam described in section 3.2. is
used in this example. The finite element model of the dam-foundation system is given on
Figure 3.2.1. Rayleigh damping is used to account for energy dissipation due to material
damping in dam and foundation material, constructed with the second (frequency equals
13.27 rad/sec) and the fifth mode (frequency equals 21.39 rad/sec) chosen as control modes
with modal damping ratio value equals 5%. Consistent transmitting boundaries, constructed

as discussed in section 2.4., give rise to non-proportional damping matrix.

The presence of overdamped modes which are property of wave propagation problems,
as described by Wolf [1985], can be checked by the procedure described in Inman& Andry
[1980], applied directly to the truncated set of equations in modal coordinates. In all the
runs we performed both the complex and the real vector basis yielded the same number of
overdamped modes, i.e. they both followed the same pattern. Hence this procedure to
establish the number of overdamped modes can be used for modal analysis that utilizes
complex vector basis to a priori indicate the problems that may occur in that case (see

Chen&Taylor [1988]).

The computations are performed for two loading variations as in example 4.2.1. : step
function and Taft earthquake. Two sets of 5 and 10 real vectors and complex vector pairs

in vector basis generated by both eigenvectors and Ritz vectors are used in computations.

As a measure for computational efficiency CPU times spent in different phases of the
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analysis performed on VAX II/GPX workstation are presented in Table 4.2.2

75

|
Table 4.2.2 CPU Times for Complex and Real Vector Basis (sec)
Complex Vector Basis

No. Vect. Lanczos Vec. Ritz Vec. Modal Equations
5 eig. v. 1935.98 285.80 0.43
SRitz v. 570.23 27.70 0.43

10 eig. v. 2797.90 594.95 0.90

10 Ritz v. 1037.83 86.55 0.90

Real Vector Basis
]

No. Vect. Lanczos Vec. Ritz Vec. Modal Equations
5 eig. v. 255.33 26.50 1.93

5 Ritz v. 71.97 4.31 1.89

10 eig. v. 391.12 52.80 4.82

10 Ritz v. 138.80 9.55 4.73

The extraction of a number of complex Ritz vector pairs requires on the average 7.75
times more effort than for the adequate number of real vectors. On the other hand, for the
solution of modal equations the average CPU time ratio is inverse to the value above, which
reflects the advantage of uncoupled equations set in the case of complex vector basis. How-

ever, the effort involved in modal equations solution is overall insignificant.

For both programs FEAP (see Taylor [1977]) and SAP (see Wilson [198.;}. trat we
used to generate complex and real vector basis respectively, common computational expense
of factorizing stiffness matrix required 220 CPU sec (without use of optimal equation

numbering routine). Hence, from Table 4.2.2 it is obvious that generating Ritz vector basis
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of 10 real vectors which yields excellent approximation to dynamic response, is merely half

the effort adequate to static response computation.

To develop further appreciation for the efficiency resulting from the selection of load
dependent real Ritz vector basis in modal transformation, a complete comparison of CPU
time for the different phases of dynamic mode superposition analysis versus static analysis
is performed. Discretization of dam model on Figure 3.2.1 resulted in 1154 equations with

the average band-width of 104. The comparison is performed for two sets of S and 10 real

H IEAL
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Ritz vectors, and presented in Table 4.2.3 below.

Table 4.2.3 CPU Times for Real Vector Basis and Static Solution (sec)
Solution Phases Static Solution 5 Ritz Vec. 10 Ritz Vec.
input 10.97 10.96 10.93
form element stiffness 45.88 45.67 45.52
form structural stiffness 11.87 11.88 11.92
factorize struct. stiffness 220.30 220.25 220.03
Lanczos vectors - 71.97 138.80
Ritz vectors - 4.31 9.55
modal equations (100 steps) - 1.89 4.73
Liisplacemem history (10 nodes) - 2.02 3.96
stress history (10 elements) - 446.76 461.60
nodal displacement 5.87 - -
nodal stress (10 elements) 4.78 - -
total time 299.67 815.71 907.04

From Table 4.2.3 above, we can note that the total solution process for the case of
dynamic analysis triples the effort of the static solution process. This seemingly unfavor-
able ratio results from the solution strategy of nodal stress recovery by time history of
stress, which essentially requires repetition of the same computation as in the static loading
case for each time step. However, for design purposes only maxi - i values of stress and
displacement are of interest. To obtain design values for earthquake input one can use
response spectrum approach for the case of non-proportional damping as introduced by
Igusa and DerKiureghian [1983]. Since the time for recovery of maximum values for stress

and displacement by CQC method is only slightly larger than the adequate computation for
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the static loading case, the ratio of dynamic and static analysis reduces to 1.5.

The horizontal displacement at the dam tip computed for the set of 5 real vectors and
5 complex vector pairs is plotted on Figure 4.2.4 and for 10 vectors and vector pairs on

Figure 4.2.5, together with the "exact” response obtained by the set of 100 real vectors.

For both vector basis, real and complex, remarkable approximation properties are

encountered for use of Ritz vectors. This is illustrated in Figures 4.2.4 and 4.2.5 and Table

424,
Table 4.2.4 Ratios of Maximum Response for Different Vector Bases
Versus Exact Solution
Complex Vector Basis

No. Vect. Step Function Taft Earthquake

5 eig. v. 1.121 1.029

5 Ritz v. 1.061 1.033

10 eig. v. 1.054 1.025

10 Ritz v. 1.007 1.017

Real Vector Basis

No. Vect. Step Function Taft Earthquake

5 eig. v. 1.030 0.951

5 Ritz v. 0.965 0.987

10 eig. v. 0.969 0.978

10 Ritz V. ‘5% 0.996 1.007 l

Both the eigenvector and Ritz vector bases possess equivalent fast convergence pro-

perties for nodal displacement computation.
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Error norm for loading spatial representation can be computed as given in

Leger&Wilson [1987] by :

I-MYY¥NHf
I esll2 = A T ) //zx 100 (%) (4.2.21)

Error norm defined by the equation (4.2.21) is presented in Table 4.2.5 for different

numbers of real eigenvectors and real Ritz vectors used in modal transformation.

Table 4.2.5.- Error Norm for Spatial Loading Representation
No. Vect. Error Norm (%)

10 eig. v. 52.677

10 Ritz v. 24.396

100 Ritz v. 15.873

Spatial representation of the loading with truncated vector basis is much better for the case
of Ritz vector basis. Consequently, stresses and forces recovery is much more accurate
within vector basis spanned by Ritz vectors constructed by load dependent algorithm. To
illustrate that, dam structure base shear force computed by the appropriate numbers of Ritz

vectors and eigenvectors is presented on Figure 4.2.6.

Remark 4.2.2 Krylov subspace keeps its advantageous approximation properties versus the
exact eigenvector subspace in the case of the non-proportionally damped system. This

is enhanced in the case of broad band excitation.

Remark 4.2.3 The selection of proper real load dependent Ritz vector basis for the modal
transformation, combined with an efficient  ~d for maximum stress recovery,
reduces the total effort required for the dynam wysis to only 1.5 times of an ade-

quate static analysis of the same problem.

Remark 4.2.4 For the cases studied, the real vector basis yields comparable accuracy and

convergence properties as adequate complex vector basis, but requires much smaller
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CPU time for total solution. Possible room for use of complex vector basis is still left
in analysis of structural systems under the loading with time variation given as large
piece-wise linear steps, where high accuracy can be ensured by employing the exact

solution.

4.3. Dynamic Substructuring

In this section, techniques for coordinate reduction and non-proportional damping, dis-
cussed in sections 4.1. and 4.2., are fitted within the framework of dynamic substructuring.
Dynamic substructuring is yet called component mode synthesis, which reflects the basic
idea that originated from the need to simplify dynamic analysis of a complex structure by
relating independent analysis of its components. An extensive review of dynamic substruc-
turing methods can be found in Craig [1981]. Most of the work on dynamic substructuring
was motivated by eigenvalue problem solution; however, Wilson&Bayo [1986] on the
analysis of small examples have demonstrated that the concept can be applied with success

in dynamic response computation as well.

Two basic versions of dynamic substructuring are recognized (see Craig [1981]) with
respect to the selection of vector basis for component (substructure) representation : fixed
interface modes and free interface modes. Naturally, combinations of these two are also
possible. Dynamic substructuring can be thought of as an extension of the Galerkin method
to discretized system. Namely, the semidiscrete equations of motion (3.2.16) are projected
onto the subspace spanned by the interface modes and the component modes of the sub-
structures. If only the interface modes are retained in the subspace basis, Guyan reduction

(see Guyan [1965]) is recovered.

The basic transformation which uses the fixed interface modes and no component

modes for one dynamic substeucture is

u;(r) Rl
u() | = |1 |0
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and if component modes ¥ are included

u;(r)
u () | -

where u; and y; are substructure finite element internal dofs and their generalized Ritz coor-

yi(r)
u,(r)

¥ R
01

] =T u)(r) 4.3.1)

dinates representation, while u, are finite element dofs retained for the analysis of total sys-

tem. Transformation matrix R = —-Kj;! K, is again influence coefficient matrix of pseudo-
static transformation (2.3.8). For the high accuracy of dynamic response computation, the
set of component modes ¥ has to be constructed following the considerations of section
4.1. The efficiency of computation in dynamic analysis of the complete system is again
enhanced by modal truncation, ie, capitalizing on the fact that dynamic response of each
component is represented by a small number of generalized Ritz coordinates
(dim(y;) << dim(u;)).

By utilizing the transformation (4.3.1) on the semidiscrete equations of motion of a

single component (in the form (2.2.16)), we can restate the equations of motion as

M)+ C u()+K ul(r)=1'() (4.3.2)
where
yi(1)
uy(r) = [u,(r)]
and

I ¥YTM,R + ¥'M,,

M'= 433
RTM,¥ + M,,¥ RTM,R + MR +R™M, + M,, 4.3.3)

¥iC,¥ ¥7¢ +¥7C,
RTC,',"P + Cn‘l’ RTCiiR + C,,'R + RTC,', + C,,.
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K'=

Q> 0
0 R'K,R+K,R+R’K, +K,,

¥T1(r)

fins= [R’f.-(r) +£,0)

where component modes W are mass orthonormalized. The submatrix Q7 in matrix K* is a

diagonal matrix with some of the elements equal to squares of natural frequencies of the

substructure with fixed interface, while another non-zero submatrix of K* is computed by

static condensation of internal finite element dofs.

For an arbitrary non-proportional form of damping matrix C, this choice of component

modes ¥ will not yield diagonal form of the upper left submatrix in C*. However, a

straightforward extension of the algorithm described in section 4.2. can be introduced to

correct this deficiency. Additive split of upper left submatrix of C* to diagonal and off-
diagonal part introduces pseudo-force term that ought to be handled iteratively, but also
yields diagonal form of that submatrix of C*. Hence, all the matrices in (4.3.3) have an

arrow, fill-in free structure. For the nonlinear analysis, the iterative procedure introduced

with the additive split of submatrix in C',is just a part of the iterative solution of nonlinear

set of equations that arises in implicit step-by-step scheme we utilize.

Retained dofs for any substructure are related to global dofs by assembly matrix A

such that

u(t)=A ug(t) 4.3.49)

A is usually Boolean matrix, or in particular identity. However, some other forms of A are
possibly useful in some applications (e.g. rigid body transformation matrix in large interface

sliding as discussed in the next chapter), Hence, the complete form of transformation for a
.

single substructure is

yi(?)
u,(r)

10

=T | g A

u(r)

[“.‘(f)

] =T, ug(r) (4.3.5)
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Remark 4.3.1. Dynamic substructuring method (as Galerkin procedure for discretized sys-
tem) provides a consistent way of reducing the number of dofs of the semidiscretized
model for the dynamic analysis of the complete system. One can think of it as two-
step Galerkin procedure. For some problems (usually with simple domains and
mechanical properties of material), it may be possible to select the global shape func-
tions over large parts of the domain (or the whole domain), thus reducing the number
of dofs with a one-step Galerkin method (Ritz method). For some applications along

these lines we refer to Mote [1971].

Remark 4.3.2. Usual application of the dynamic substructuring method is an extension of
static condensation algorithm as given by Clough&Wilson [1979] or Bathe& Gracewski
(1981]. Namely, the transformation (4.3.1) is used within step-by-step algorithm to
reduce the linear part of the effective stiffness matrix (see Table 2.1.1). For here pro-
posed dynamic substructuring, linear part of effective stiffness matrix is represented by
a diagonal submatrix with a significantly smaller dimension due to modal truncation.
Even for the step-by-step integration of the linear system, the reduced cost of forming
effective load vector at each step (see Table 2.1.1) will compensate for the cost of
extracting a number of component mode shapes, especially for the loading of long
duration (e.g. earthquake loading). For the nonlinear analysis, if step-size control
implicit integration scheme is utilized (desirable for the dynamic contact problem we
consider in Chapter 6), and Newton method solves a set of nonlinear equations at each
time step, than the performance of the dynamic substructuring method that we employ
will be even more enhanced compared to the standard dynamic substructure method,
since the reforming and refactorizing of effective stiffness matrix will dominate the

computational expense.
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Cross—-section Inertia = 1 m*

Cross-section Area = 1 m?

Young’s Modulus = 500 N/m?

Mass Densiry = 1 kg/m?
Damping "oeﬁciem = 10 Nsec/m
J(t) = 1000 N ( Meaviside function )
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Figure 4.2.1 - A damped dynamic system



Ch. 4

1.2

(m)

HOR. DISPL. AT NODE 8
o
'S

o
o

(m)

HOR. DISPL. AT NODE 8

o
o

o
o

4 real eigenvectors and 4 complex eigenvector pairs

89

P\ B
i\ RN
- ,' \ - - / \‘ '7'\\
" ‘---‘\\\ / \\ l/ \\
i \ i ‘\\‘\\ Il, \\\
l " \\ ( \\\ / SN
| ! ] \, !
! ) /
‘ “ [ \\ /1
11 W f————— EXACT SOL®TION
| \‘I‘ "l
t" N J— REAL VECTOR BASIS
COMPLEX VECTOR BASIS
!
' ! | M 1 T T T T T
0.0 0.4 1.2 1.6 2.0

0.8
TIME (sec)

4 real Ritz vectors and 4 complex Ritz vector pairs

EXACT SOLUTION

----------- REAL VECTOR BASIS
- — — — COMPLEX VECTOR BASIS

T | T

1.6

" 0.4 " 08 Y
TIME (sec)

Figure 4.2.2.a - Horizontal displacement at node 8 for step function

2.0



Ch. 4

10 real eigenvectors and 10 complex eigenvector pairs
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Chapter §
Nonlinear Dynamic Analysis : Structure-Foundation

Systems with Inelastic Constitutive Equations

5.1. General Formulation

Dynamic analysis of a structure-foundation system can be formulated as a standard
problem, if the complete system includes the source of earthquake excitation. However, for
seismic excitation, many uncertainties in the source mechanism and in the geological
parameters along the transmission path and, most of all, the sheer size of this model, require
a different approach. Namely, the earthquake motion is usually recorded at a single point,
commonly referred to as control point. The control point has to be selected at the boundary
of the model, either the foundation surface or bedrock boundary (see Roesset& Yim [1987]).
Some measurements of spatial variation of the earthquake ground motion (control motion)
are also provided (SMART array of measuring instruments at Taiwan). Hence, starting with
the known motion at the control point, the free-field motion is recovered by the deconvolu-
tion process of kinematic interaction. The kinematic interaction problem is governed by the
following initial-boundary value problem: the equations (2.1.1), (2.1.2) and (2.1.3) stand for
kinematics, equilibrium and constitutive equations. However, as opposed to boundary condi-

tions (2.1.5) a new set of boundary conditions is specified as
u; = u; = uf? ti=0;;n=0 forxeTIy, I'ycT (5.1.1)

where u{? is the free-field motion at the free surface boundary I'y,, which is valy a part of

the complete boundary I'.

The question we want to address further is whether the boundary value problem

specified above has a unique solution. First, we give the uniqueness argument for the
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standard boundary value problem in elastodynamics (Chapter 2.1) specialized for linear

elasticity : suppose there are two solutions to standard boundary value problem i.e. two dis-

placement and stress fields (u(",0{") and (u®,06'®) that satisfy all the field equations (2.1.1)

to (2.1.3) as well as the boundary conditions (2.1.5) and the initial conditions (2.1.6).

Uniqueness follows if we make the difference between these two solutions (for any quantity

¢ difference is ¢ = ¢ — ¢") equal to zero. This difference is governed by the following

initial-boundary value problem:

-linearized kinematics

-equilibrium equations

G, —pPu; =0 ... forxe Q,re (0,T]
-constitutive equations

Gij=Diju €y ... forxe Q,te€ (0,T]
-boundary conditions

u,=0 ... forxeT,,t e (0,T]

=0;;n=0 ... forxe I'y, t € (0,T]
withI'=T, UT,.
-initial conditions
u; =0 ... forxe Q,t=0
;=0 ... forxe Q,tr=0
Or, the boundary conditions (5.1.5) can be rewritten as

u; 6’,] n; = 0o ... forxeTl, re (O,T]

g = % ( 17,"]' + 17]'.,' ) R forxe Q,t e 0,T]

(5.1.2)

(5.1.3)

(5.14)

(5.1.5)

(5.1.6)

5.1.7)
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The virtual work equation (weak form of equilibrium equations) is now

[ @ &ijnjdT - [ pii; 4; d2 =0 (5.1.8)
r Q

and by Gauss divergence theorem applied to the first term of (5.1.8) we can rewrite it as
o} V Q

or, using Leibnitz rule for the differentiation of a product and utilizing the constitutive
equations (5.1.4) it is further
I (6,',-‘,' - p 17, ] u, dQ + I Dijlcl E,'j £, dQ=0 (5.1.10)
Q Q
The first term in (5.1.10) equals zero by the equilibrium equation (5.1.4). Hence, it
follows that the second term of (5.1.10) also has to be equal to zero. By the ellipticity
(positive definiteness) of elasticity tensor D, it follows that the strain field is uniquely
defined. From the constitutive equations (5.1.3) it follows that the stress field is also unique,

while from the governing kinematics (5.1.1) it follows that the displacement field is unique

apart from arbitrary rigid body displacements.

If we now want to extend the uniqueness result of the standard boundary value prob-
lem to boundary value problem that describes kinematic interaction, the key difficulty to be

faced is the lack of boundary conditions in the form (5.1.7). Namely, it holds
17,' 6',1 nj =0 ... for x € I"f, c l". t € (O,T] (5.1.11)

while on the rest of the boundary I" no condition of the form (5.1.11) can be stated; conse-
quently, the boundary value problem that governs kinematic interaction has more than one
solution. Stakgold [1979] refers to the problems with non-unique solution as ill-posed (as
opposed to well-posed). The ill-posedness of the kinematic +:iz;yaction problem is usually
eliminated by placing restrictions upon the wave pattern (motion properties). In particular,
vertically propagating seismic shear waves are often assumed. Some parametric studies of

different choices for assumed wave pattern are performed by Wolf [1985].
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Instead, we present a more consistent way to solve the kinematic interaction by impos-
ing an appropriate assumption on non-prescribed boundary conditions. The discussion is
left for the next section, where the elastic constitutive equations for the foundation material
are assumed. For the inelastic constitutive equations of the foundation material, the decon-
volution analysis of kinematic interaction is not possible. In this case, the free-field motion
of the system in general represents an irreversible process. Hence, the prospective of a suc-
cessful deconvolution process of the kinematic interaction is limited to a linear elastic part
of constitutive relations. Otherwise, an arbitrary assumption on bedrock boundary motion

has to be introduced.

After the kinematic interaction problem is solved (or bedrock motion assumed), the
dynamic analysis of the structure-foundation model is transformed into the standard prob-
lem. Suppose that the inelastic constitutive equations for both the structure and the founda-

tion are given the general form
Cij = 6ij(ex.€n) (5.1.12)

where G;; is tensor function that relates the stress tensor components to strain and strain

rates.

For linearized kinematics, the rest of the equations for the standard boundary value

problem (2.1.1) to (2.1.6) are the same.

Remark 5.1.1 For the inelastic constitutive equations, it may not be possible to relate the
total stress directly to total strain and strain rates. Usually, the relation between the
rates (or the increments) of strain and stress components is specified instead. In that
case, the same considerations given further would apply, but in incremental fashion.
One model that complies with the constitutive equations (5.1.12) is the deformational
theory of ﬂgqﬁfeity (see e.g. Hill [1950]). It is well established that the deformational
theory of plasticity is not suitable for constitutive equations of metals. However, some
modification of the deformational theory of plasticity give good results for soil, con-

crete and other brittle materials (see Lubliner [1989]).
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Thus, the equivalent variational problem, following the procedure described by (2.1.7)

to (2.1.11) is

Jp u, w; aQ + J- &ij(ekl’ékl) 8;; dQ = I ?, w; dar + I P b,‘ w; aQ (5.1.13)
Q Q T Q

By further utilizing the matrix notation introduced in section 2.2, we can write the

equivalent matrix form of (5.1.13) above

wi(t) { My; iy (e) + rp(uy(e)u,(0) = £,(1) } 1,J =12,.,N,, (5.1.14)
where the only new notation is introduced for the internal force vector

r(uy(0),a,(1) = [ Bf o(u(1),i,(1)) dQ (5.1.15)
Q

Again, for the independent components of w(z), the complete set of semidiscrete equations

of motion is given as
M ii'(r) + r(u'(r).u'(r)) = fg(r) (5.1.16)

In the equations (5.1.16), the motion field u’(r) carries superscript ¢ to denote a total

motion of the complete structure-foundation system. The total motion field u’() can not be
separated to simplify a computational procedure, as we did in section 2.3, because of the
nonlinear form of the dependence of the internal force upon the total motion, i.e.
r(u’(r),u'(r)).

For the solution of the set of semidiscrete equations (5.1.16) either explicit or implicit
step-by-step integration schemes can be utilized (see Belytschko&Hughes [1983]). For the
explicit integration scheme only conditional st::-.  is achieved, however, the reward is
linear set of equations at each time step. In a case of a diagonal form of the mass matrix M,
the explicit scheme becomes very efficient. The implicit integration schemes grant uncondi-
tional stability, but require the solution of a set of nonlinear equations at each time step.

For the large structure-foundation system, the implicit schemes are prohibitively expensive.
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However, if the nonlinearities are limited to a small part of the complete system, the impli-

cit schemes become competitive again.

5.2. Formulation for Linear Viscoelastic Foundation

If the constitutive equations for the foundation material are specialized to linear

viscoelastic, then the set of semidiscrete equations of motion (5.1.16) can be restated as
[M,+M,] (‘V(r)+ii(r)] + [Cf] [e(:)+u(:)) +
[Kf ] [v(r) + u(r) ] + r(u(e),u(r)) = fu(r) s.2.1)

where we used again the notation defined in section 2.3.

Note that we introduced the additive split of the total motion u'(r) into the free-field
motion v(¢) and the added motion u(¢). This is consistent with both the linear foundation
(superposition allowed for linear constitutive equations) and the nonlinear structure (added
motion is equal to total motion). We also recall that the free-field motion is governed by
equations (2.3.1). Hence, by combining the equations (2.3.1) and (5.2.1) above, an

expanded form of the semidiscrete equations of motion of the complete system is given

M:: M:i 0 .. .
i [0 % (aw] (% O (wo
M, M;+M{ M i(r) | + [0 Cl Cg () | + |0 K K u;(r) | +
ry(u(r),u(r)) M,; C,; K,
riu@)u() | == | ML | ¥(e) = | C; | vi(r) = | Ki | vi(1) (5.2.2)
0 0 0 0

where the free field motion v;(7) is defined for the traction free interface of the foundation
and the structure (as presented on ﬁigure 2.3.1).

The form of the equations of motion (5.2.2) is also obtained by Bielak&Cristiano
[1984], from somewhat different considerations of the standard dynamic substructure con-

cept, i.e. looking at the structure and the foundation as different substructures. For that
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reason, the traction free interface for the free field motion is not correctly recognized and a
somewhat loose definition of the interface force in the free-field appears in the formulation

analogous to (5.2.2).

Remark §.2.1 The computational efficiency in the dynamic analysis of the structure-
foundation system (whose motion is governed by equations (5.2.2)) can be enhanced
by application of dynamic substructuring concept, as discussed in section 4.3. Namely,
the foundation substructure can be represented by reduced number of generalized Ritz
coordinates. This is elaborated in the next section, where both the foundation and the

structure have linear constitutive equations and only the interface is inelastic.

If the constitutive equations for the structure are given in linear viscoelastic form, then
from (5.2.2) we recover the semidiscrete equations of motion (2.3.6). Note again that, by
the solution of equation (5.2.2), only the added motion field for the complete system is
obtained. For the structure this represents the total motion, hence, the stress recovery is
directly available even for the structure with the nonlinear constitutive equations. However,
if the stress in the foundation is of interest, then first the total motion field of the foundation
component has to be recovered. For that reason, it is important that the model of the foun-
dation for the kinematic interaction is adequate to the model of the foundation for the iner-
tial interaction. One way to perform kinematic interaction on the same model used later for

inertial interaction is presented next.

Kinematic Interaction

For the structure-foundation system with the inelastic constitutive equations for the
structure and the linear viscoelastic constitutive model for the foundation, we describe
further one way to perform the kinematic interaction deconvolution, without imposing a
priori assumption on wave patte; ich is the approach usually taken (see e.g. Wolf
[1985]). Instead, we make an assumy.ion on the distribution of prescribed displacement u(r)
along the boundary I',. Namely, for boundary value problem governing kinematic interac-
tion, along the free surface boundary I'j, traction is known (prescribed) to be zero, i.e. I’y

= I'y. To transform the boundary value problem which governs the kinematic interaction
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into the form of well-posed standard boundary value problem in elastodynamics (section
2.1), the rest of the boundary (aside from 1",,) is turned into I', boundary, where displace-

ments are prescribed
u(x,t) = u(z) forxe T,

or, to be consistent with the free-field notation
u(r) = v (1)

where v,(1) is the free-field motion along the remainder of the boundary I" apart from the
free surface. From the specified motion at the control point v, (), we can determine the
variation of motion v,(z) at the boundary T',, by the deconvolution process. In order to
make the deconvolution possible, the number of components of v,(?) (in the semidiscretized
model of the foundation used for that purpose), has to match the number of components of
measured motion at the control point.

Let us assume that the time history of only one component of acceleration at the con-
trol point is specified as ¥,(¢). That will give us only one condition to solve for unknown
input motion at the base. For that reason, we assume that the model of the foundation in the
free-field is excited by imposing rigid base motion v,(t).

The semidiscrete equations of the motion in the free-field are then
Mf V() + Cf v(t) + Kf v(t) = fﬁ'(t) = Mf r .\;x(l‘) (5.2.3)

where the equation (5.2.3) has the same meaning as the previously used form (2.3.1). In this
case, however, we make an assumption on tl): s';:eciﬁc form of the far-field forcing function
as given in (5.2.3), as a rigid base motion v'(t) multiplied by the "directional" mass of the
foundation, My r. |

The set of the semidiscrete equations of motion (5.2.3), can be further projected onto
the Ritz vector subspace of the foundation by utilizing modal transformation, and again,
enhancing the computational efficiency by modal truncation. Hence, one modal equation

(assuming proportional damping) is
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Fi(0) + 2&8iw; Yi(t) + of y(1) = wI Mpr V(1)  i=12,.,m<n (5.2.4)

Or, if we transform the equation (5.2.4) into the frequency domain, by the application of the

Fourier transform
Hi(®) Y{(®) = w[ M;r V(®) (5.2.5)

where Y;(@) and f’g(cT)) are Fourier transform pairs to y;(t) and Ve(t) (@ and ¢ being dual

variables), while

H/(®) = 0} - @ + 2if;0;® (5.2.6)

is impedance (complex stiffness); and adequately, compliance (complex flexibility) can be

determined as

2 , —
w? - @& - 2w,

G(®) = (5.2.7)
Nwi-a%? + 470t
Using the equations (5.2.6) and (5.2.7), (5.2.5) can be rewritten as
Y(®) = Gi(®) w] Mjr Vy(®) (5.2.8)

Further, by differentiation (corresponds to multiplication by i@) of (5.2.8) we get
¥i(®) = -8° G{(®) vf M; r V(@) (5.2.9)

By mode superposition analysis, the component of the acceleration vector at the con-

trol point in finite element coordinates (ch - subscript cp denotes measured component)

can be recovered fron ibe specified accelerations at each of the generalized Ritz coordinates
.. ” .
V@) = Y vi, Yi(®) (5.2.10)
i=]

By utilizing the equation (5.2.9), we can restate the new form for relative acceleration

component at the control point
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ch(ﬁ) = —Z{ Vi, o> G;(@) V,-T M/r Vg((T)) =T, Vg(ﬁ) (5.2.11)

The total acceleration at the control point (usually measured), will be the direct sum-
mation of its dynamic component, defined by the equation (5.2.11) above, and its pseudo-

static component
Vep(@) = Ty V(@) + 1 V(@) = T, V(@) (5.2.12)

Hence, for the measured total acceleration at the control point, the base acceleration

directly follows from (5.2.12)

V(@) = T; L, V() (5.2.13)

and further, the time history of the base acceleration can be obtained by the inverse Fourier

transform applied to (5.2.12).
V() = | V(@) e do (5.2.14)

where the fast Fourier transform is used in the computation of (5.2.14) above.

Once the base acceleration is known, the site amplification, given as the standard

dynamic analysis problem, concludes the kinematic interaction phase of the analysis.

It is important to notice that we have solved the kinematic interaction problem wirthout
the assumed wave pattern. In addition, the model for the kinematic interaction is completely
consistent with the model for the inertial interaction; hence, it is easily possible to recover
the complete motion field in the foundation (superimposing free-field motion determined
from kinematic interaction and added motion determined from inertial interaction), which is

needed if the stress state in the foundation is of interest.

We presented the deconvolution process for the case where only one component of
acceleration is measured at the control point. For the case when all 3 components are meas-

ured at the control point, the procedure given above is easily generalized. In that case,

compliance G (@) in the equation (5.2.7) is a 3x3 matrix G(@), given as the inverse of the
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3x3 impedance matrix, H(®). For any particular frequency @, 3x3 matrices would appear

instead of scalar quantities in (5.2.8) to (5.2.13) above. The time history for the base
motion acceleration V,(f) is obtained componentwise by the inverse Fourier transform of
V (D).

If the spatial variation of the free-field motion is known over the whole free surface
(e.g. using the data from SMART array of measuring instruments), then we may abandon
the assumption of the rigid base input v (r), and obtain the spatial variation of the base

motion (or, spatial distribution of the prescribed displacement over boundary I",), consistent

with the measured variation along the free surface.

5.3. Formulation for Inelastic Constitutive Equations for Structure-Foundation Interface

The equations (5.2.2) can be further reformulated if only the interface constitutive
equations are considered as inelastic, while the structure and the foundation are governed by
the linear viscoelastic constitutive equations. In this case, the total motion field for the
interface dofs on the foundation side (Figure 5.3.1), according to formulation (5.2.2) is split
into the free-field motion and the added motion field. By the solution of (5.2.2) only the
added motion field in the foundation is obtained. However, for the inelastic constitutive

equations of the interface, the total motion field is normally required.

Instead of recovering of the total motion field for the foundation, we propose the addi-
tive split of the added motion for the structure (equal to total motion of the structure) into
the motion introduced by the structure interface motion identical to foundation interface free
field motion and the remaining part (see Figure 5.3.1). If the assumption of a constant
free-field motion over all interface dofs is introduced (equivalent to rigid base assumption),
then the motion caused by the free-field motion represents the rigid body motion, and the
corresf . z.x1" stress field is zero for both the interface and the structure. In opposite, if the
variation of the free-field motion along the structure-foundation interface is assumed, the
stress field will be nonzero in both the structure and the interface. However, from the
specified variation of the free-field motion, this stress field can be easily obtained (state

determination), even for the inelastic interface constitutive equations, and further introduced
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in the formulation (5.2.2) as the initial stress in the interface.

Practically, the split of the structure added motion is equivalent to the split of the total
motion into the pseudo-static and the dynamic components for the linear structure-
foundation system, although the motivation in the case currently discussed is different. The

basic transformations that follow from the above discussion are:

-equality of the interface motion for the structure and the foundation

vi(r) = vi(p) (5.3.1)
-additive split of the structure motion

w'(r) = u(r) + u, (1) (5.3.2)

-where by definition
u, (1) = -K K,; vi(r) = R v{(1) (5.3.3)

where (5.3.1) is introduced into (5.3.3).

For the linear viscoelastic constitutive equations for the structure, it also hold that
r(u(r).u(r)) = K ug(r) + Cy5 u5(r) + K ui(r) + C; 0,(r) (5.3.4)

Hence, by introducing (5.3.1) to (5.3.4) into the equations of motion (5.2.2), we can

rewrite the equations of motion

Mii(s) + Cu(r) + Ku(e) + r(u(e),a(r)) = M Vi) (5.3.5)

Where the expanded form of the matrix and vector quantities in the equations of motion

(5.3.5) for the complete structure-foundation system (for clarity) is given further:

-displacement vector (equivalent for velocity and acceleration) e
Emin ~:'" -

u,(r)
uj(e)

uf(r)
llf(f)

u(t) =
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-mass matrix of the complete system

M, M; 0 0
Mis Mfl 0 0

0 0 ML M;
0 0 M; M;

-damping matrix of the complete system

C,C, 0 o0
C;, C5 0 o0
0 0 CL C4

0 0 C;Cy

-stiffness matrix of the complete system

K, K; 0 0
Ks Ki 0 0
0 0 K/ K;

-interface internal force

r(u(r),u(r)) =

(0

0

\

0 0 K; K;

ri(u;(¢),0,(2))
r{(u(r),a(z))

1

/

-external force vector - "directional” mass

Msi

M;;
0
0

110

(5.3.6)
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To enhance the computational efficiency, the dynamic substructuring concept discussed

in section 2.3, is applied to the equations (5.3.5). The basic transformation for the dynamic

substructure:
-structure
ur) ¥, R; y(1)
= . (5.3.7)
ui(r) O L lun
-foundation
us(r) ¥, Ry | | yp(n)
= ) (5.3.8)
uf(r) O L] |

where ¥, and ¥, are sets of Ritz vectors (subspace basis) for the structure and the founda-
tion, respectively, R; and R, are the corresponding pseudo-static transformations, I; is the
identity matrix of the dimension equal to number of interface dofs, and y,(r) and ys(r) are

sets of generalized Ritz coordinates for the structure and the foundation. Relations (5.3.7)
and (5.3.8) are completely equivalent to (4.3.1%), if the appropriate dofs are recognized.

Introducing transformations (5.3.7) and (5.3.8) into the weak form of the equations of
motion (5.3.5) and utilizing the additive split of the non-proportional damping matrix C; =

diag(28;wy) + C ¢ (as discussed in section 4.2) we get new form of the equations of motion

M® (1) + €7 a"(1) + K u'(r) + r°(ui(0),i(1)) = TT M ¥{(1) = &} y,(1) (5.3.9)

Where expanded forms of the matrix quantities in (5.3.9) are given further:

-displacement vector (equivalent for velocity and acceleration)

ys(1)
ys(1)

uj(t)

uf(r)

w'(e) = (5.3.10)



Ch. S 112

-mass matrix of the complete system

0
I: 0 ?ZM,,R,'!"PIM“' T T
RIMu?:"'M.u'\P: 0 RIM,,R,-{-M_,,-R,-{-RIM‘-J'PM{; 0
™ ¥, +M ¥ R’M R +M R +RM;+M]
0 RiMy¥, +M ¥ 0 MR +MR+R M+ M;;
-damping matrix of the complete system
diag (2§,CD,) 0 ‘I’I C::R:""FZC.W‘ T 0 T
C. - 0 diag(zéfwf) 0 'l’fCﬂ-R{)'l"l’fCﬁ
RIC”?:"'C.H"P: T RIC::R:+CsiR:+RICi:+C?i T T 1
-stiffness matrix of the complete system
Q; 0, 0 0
K'=| 0% 0 0
0 0 p7K, R,+K, R +RTK, +K?, 0
00 T T
0 RIK ;R +K R +R7K;+K/,
-interface internal force
(0 \
L o 0
r (u(r),u;(1)) =
ri(u(r),u(r))
| r(n).a) |
-expanded form of force vector
M 0
. 0:4' éf
-T" IMR + vi(t) - (1
M M=o |3® a L
0 0

where
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Y. 0 R,O0
o ¥70 Ky
T=19 o 1, o
0 0 o I,

and I, and I, are identity matrices of the dimension equal to the number of generalized Ritz

coordinates for the structure and the foundation, respectively (this follows from mass ortho-

normalized subspace basis); Q2 and Q} are approximations for the squares of the natural
frequencies of the structure and the foundation components (this follows from the property
of Lanczos algorithm); while the rest of the quantities have the same meaning as in (5.3.5)

to (5.3.8).

The semidiscrete equations of motion (5.3.9) can be further solved by utilizing step-
by-step methods, i.e. fully discretizing them. The implicit Newmark algorithm family is
used for that purpose, as discussed in the next chapter, where we concentrate on the case of
dynamic frictional contact. This requires the solution of the nonlinear set of equations at
each time step. A possible way to avoid the need to solve the nonlinear equations is by the
use of an explicit method. However, since the "mass" matrix in (5.3.9) does not have diago-
nal form, no big advantage is to be gained and unconditional stability is to be lost. The
task of solving a set of nonlinear equations is greatly simplified by first reducing the size of
the linear part of the complete system by employing generalized Ritz coordinates, and
second by reducing the linear part to its Schur complement (see Duff et al [1986]), i.e. prior

to the solution of the nonlinear equations set, the static condensation is performed on the
effective stiffness matrix K

[ K2 - Ky K7 Ky, ] (5.3.11)

l:(n l:(nz
K2 Ky

where the static condensation is made trivial by the diagonal form of K, of all matrices in

(5.3.9), and consequently the effective stiffness matrix K. For the step-by-step algorithm
with variable step size (requirement of efficient solution for dynamic frictional contact), the

linear part of the effective stiffness matrix has to be reformed and refactorized quite often.
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Computation of Schur complement (5.3.11) of the linear part is much more efficient for the
equations of the form (5.3.9) than for the complete set (5.3.5) where the linear part is
represented in the finite element coordinates (Bathe&Gracewski [1981]). Hence, the initial
cost of formulating the Ritz vector subspace for both the structure and the foundation is
likely to be compensated for, especially for loading of long duration (e.g. earthquake load-
ing). In addition, the number of operations used to form the effective load vector is also

significantly reduced, since dim(y,)«dim(u;) and dim(y,)<«dim(u )

The formulation presented herein can be further expanded to account for large inter-
face sliding of the structure over the foundation. We consider only the shape of interface
that yields very small rotations of the sliding structure. Hence, the motion of the origin of
the reference frame attached to the structure and the motion of the structure with respect to
that reference frame are directly additive. In addition, the motion of the structure with
respect to this reference frame is a small displacement gradient motion, so the concept of
dynamic substructuring, as discussed in section 4.3, directly applies. The origin of the mov-

ing reference frame can be made to coincide with one of the interface nodes. Let us denote

the motion of the origin (equal to the motion of that interface node) as u?(r). With the
assumptions we introduced, the structure equations of motion with respect to the moving

reference frame are

C.r.r C.ﬂ'

u,(r) — ad(r) [x,, K,.l u,(r) - ud(r)
Ci.t CS +

a,(r) - 0%(r) Kis ks | | wite) - w¥n)

i M || () - adr)

[f,(t)] _ [M,, M;.-] () (5.3.12)

W) Me Mg | |6k

where u%r) = (%(r) ud(r))7 is the rigid body motien: of the structure introduced by the
sliding interface motion equal at each node to the motion of a selected interface nodal point.

Since u®(r) represents rigid body motion, no internal force that corresponds to it appears in

(5.3.12)
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Since the motion of the structure with respect to the moving reference frame is
governed by small displacement gradient theory, the dynamic substructuring transformation,

adequate to the one from section 4.3, is given

u (r) - ul(r)

(5.3.13)
u;(t) - ud(r)

‘PJ RJ
0 I u,(1)

y(r) ]

where the pseudo-static transformation matrix R, and the Ritz vector basis ‘¥, are as given
in (5.3.7); ys(?) is set of generalized Ritz coordinates for the structure motion with respect
to the moving reference frame; and u,(z) is a set of the retained finite element dofs of the
structure. The retained coordinates u,(¢) are related to the global interface coordinates
through the rigid body transformation matrix A (see (4.3.4)). Hence, the complete transfor-

mation for the structure as a dynamic substructure under the large sliding is

u,(r)
uj(r)

Introducing the transformation (5.3.14) into the weak form of the equations of motion

ys(1)

¥; R;
=Alo 1| |um

=T, u,(r) (5.3.14)

(5.3.12) for the structure, the dynamic substructure version is obtained
M’ iy (1) + C*u, + K uy(r) = (1) (5.3.15)

where M”, C* and K" are again of the form (4.3.3), but the force vector f°(r) now has an

additional term that follows from the equations (5.3.12).

To facilitate implementation of large sliding within the context of the dynamic
analysis of the structure-foundation system, a 2D segment dynamic contact element is
described in the next chapter. However, it should be pointed out that if large sliding is

allowed for, it is not likely that >nly limited (interface) nonlinearities will occur.

Remark 5.3.1 If we want to expand our considerations for large sliding along the interface
such that the finite rotations of the structure are also possible, the equations of motion,
in spite of the assumptions of small strains, will become nonlinear due to the coupled

inertia terms in the presence of Coriolis acceleration. Hence, the concept of dynamic
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substructuring as discussed in section 4.3 does not apply any more. An alternative
approach of setting equations of motion in an inertia reference frame will uncouple the
inertia terms to a standard linear form. However, the nonlinear coupling effect will
remain in the internal force terms (see Simo& VuQuoc [1985]), which again eliminates

the dynamic substructuring we used.
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s S
u () u(t)
[ ] - >
u (t) = added motion
v (t) = free-field motion Structure
§ f
vi t)= Vi“) ¢ 1»——>Vi5“)
f
* — Vv (1)
1
. f
] Foundation v(t) u (t)

Figure 5.3.1 - Structure-foundation system with inelastic interface -
additive split of total motion field



Ch. 6 118

Chapter 6
Dynamic Frictional Contact

6.1. Variational Inequality

It has been long recognized that the natural way of vibration isolation, in the case of
maximum credible earthquake, is achieved by permitting the uplifting of the structure (see
Huckelbridge&Clough [1977]). To generalize such an isolation concept, the dynamic fric-
tional contact is addressed as a model problem of nonlinearity which occurs at the
structure-foundation interface, i.e. a structure can both uplift and slide. The uplifting (con-
tact) phenomena are intrinsically nonlinear in nature (even if the contacting structure and
the foundation are described by linear constitutive equations), since the contact area is
changing in time; consequently they are not handled trivially. The first approach to the
study of the uplifting phenomena utilized ad-hock simplified single dof models (Meek
[1974]), or excluded the foundation interaction (Huckelbridge&Clough [1977]), both with
the intent of getting manageable computational models. We, however, keep the consistency
in formulating the reduced model which includes the foundation interaction effect by utiliz-
ing dynamic substructuring concept. The formulation is given as discussed in section 5.3,
but the interface constitutive equations are specialized to the case of dynamic frictional con-
tact. The general formulation is first cast as a variational inequality (in the spirit of
Duvaut&Lions [1976]),"and later, by a regularization procedure, recast into a variational
equaliry. However, in our ‘interpretation, the regularization procedure is put into proper
continuum mechanics context, that correspond to transition from perfectly-plastic to elasto-
plastic material. To account for energy dissipation that should supplement elastic power

law for normal penetration interface, the simple nonlinear viscoelastic model is suggested.
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Energy dissipation mechanism for tangential interface is governed by Coulomb law. The
analysis is restricted to small displacement gradient theory, since for large sliding it is not

reasonable to expect local nonlinearities only.

On the other hand, motivated by another class of contact problems in the large dis-
placement motions, the finite element solution was considered by Hughes et al. [1976],
Simo et al. [1984], Landers&Taylor [1985] and Ju et al. [1987]. The analysis is based on
various versions of Lagrange multipliers method used to enforce non-penetration condition
of the two bodies in contact, i.e. perturbed Lagrangian (Simo et al. [1984], Ju et al. [1987])
and augmented Lagrangian (Landers&Taylor [1985]). Application of Lagrange multipliers
method to the solution of evolution equations for two contacting bodies leads to a system of
differential algebraic equations (DAE), which are very difficult to solve. Some considera-
tions of the solutions of DAE that rely strongly on the methods of nonlinear programming

are given by Lotstedt [1984].

The common drawback of all non-penetration models, based on Lagrange multiplier
techniques, is that they do not properly account for the reduction of the frictional force in
dynamic versus static contact, i.e. ad-hoc reduction of coefficient of friction is normally
used instead. It is a fundamental contribution of Tolstoi [1967] to point out that no distinc-
tion should be made between the static and the kinematic coefficient of friction. The reduc-
tion of the frictional force in dynamic frictional sliding is rather the consequence of the
reduction of the normal force due to the interface high frequency vibrations in the normal
direction, than of the reduction of the coefficient of friction. Hence, the penetration condi-
tion and the associated normal interface dof have to be incorporated in the model for
dynamic frictional contact. This, in return, leads to penalty method, where non-penetration
condition is enforced approximately by supplementing, essentially, very stiff spring to
ensure diminishing of the relative displacement of contacting nodes (see Carey&Oden
[1983]). The main difficulty associated with the penalty method is the proper choice of the
penalty parameter, to prevent ill-conditioning of tangent operators (some considerations are
given by Nour&Wriggers [1986]). Another approach to prevent ill-conditioning of tangent

operators is suggested earlier by Wilson [1975], who introduced relative dofs for the contact
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elements. It is important to note that relative dofs should be defined in possibly rotated
coordinate system that yields the uncoupled form of tangent operators for the contact ele-
ment. One way to incorporate the contact element with relative dofs into the mesh of stan-
dard finite elements (with absolute dofs) leads again to Lagrange multipliers methods.
Instead, we adopt the approach of the penalty method for relative dofs of the contact ele-
ment, where the penalty parameter has associated physical meaning of normal interface
compliance. It should be emphasized that relative dofs fit naturally within the proposed
split of structure total motion field (see (5.3.2)), since structure reference motion causes no

contact stress.

By the experiments performed on the contacting machined surfaces, Burdekin et al.
[1978] demonstrated that a good model for the normal interface compliance has the form of
power law. This form of the normal interface compliance is furnished as the limit for the
summation of elastic compliances of the individual asperities. If linear height distribution
of asperities is assumed, quadratic relationship between penetration and normal stress is
obtained. Similarly, different distribution of asperity heights results in different powers in
constitutive law for the normal interface. The same model given by power law is adopted
by Oden&Martins [1985] for the finite element analysis of stick-slip motion of machined
interfaces. In this study, the same concepts are applied to dynamic contact of the structure
and the foundations. Although the mechanical characteristics of the material for the struc-
ture and the foundation are generally quite different from those of the metals, the model for
the interface under adequate range of stress can be expected to perform in a very similar

fashion in both cases, since the same mechanism of asperities compression is triggered.

Initial-Boundary Value Problem

Sincem\gehzdom linear viscoelastic constitutive equations for both the structure a- : ‘=
foundation, tHé field equations of standard boundary value problem, discussed in section 2.1
directly apply. Namely, (2.1.1), (2.1.2) and (2.1.3) stand for kinematics, equilibrium and
constitutive equations. Initial conditions, specified by the equations (2.1.6) are also

unaffected. The only change is in the boundary conditions. The complete boundary T is
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partitioned as I" = I', \ I', (U T’ Prescribed displacement boundary conditions on I', and
prescribed traction boundary conditions on I', are again given by the equations (2.1.5).
However, the boundary conditions on the contact boundary (al/l x € T',) are now introduced

as
c,=-C, <u,>™
lo, | =C <u>™ u,=-2 o, (6.1.1)
lo, | <C, <u>™ 4,=0

where < . > is standard Macauley bracket (i.e. <x> = x if x > 0, and <x> = 0 if x < 0), and
u, is normal interface deformation (approach), while u, is the rate of tangential interface
deformation. Normal interface deformation (approach) u, is determined as the difference
between the relative normal displacement A and the initial normal gap g (see Figure 6.1.1).
The equations (6.1.1) stand for penetration power law for normal interface and gen-
eralized Coulomb law for tangential interface, i.e. if m, = m, standard Coulomb friction law

is recovered with the coefficient of friction given as C,/C,.

The contact boundary T, can be further divided into a part Il where the body is in
contact with rigid media, and a part I'? where two bodies (parts of the body) come in con-

tact, as presented on Figure 6.1.2. However, if u, and 4, on T2 are defined with the
difference of the adequate displacement components (relative displacement) of the two
bodies in contact, the same methodology applies for both types of the boundary T

Steps taken to derive the variational problem that is formally equivalent to the given

boundary value problem are the ones that follow virtual power method derivation :
&
- - Multiply the equilibrium equation (2.1.2) by an admissible velocity function (v; ~ i)

(v, 4; € V) and integrate over the domain . As noted by remark 2.1.1, kinematically
admissible velocity function is formed as the difference of two velocity fields that satisfy all

prescribed boundary conditions, i.e. both &; and v; € V in the previously defined notation
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(see section 2.1). In variational interpretation, since the solution space for this problem
(due to inequality in (6.1.1)) is the convex set rather than the differentiable manifold (see

Stakgold [1979]), the total variation is constructed by utilizing the convexity property.

Namely, if &, v, € V, then also [&; + e(v;=4;)] € V. Weak form, (6.1.2) below,

corresponds to the first variation %J | e=0 = O of adequate functional J.
J-(O','j.j'l'f,'—Pl'l.,') (V,'—l.l"]dg=0 (61.2)
Q

Use Gauss divergence theorem on the first term on the left hand side in above and the con-

stitutive equations (2.1.3), and get

J' oij (v,- - ai] dQ = - J Do jju € €y dQ2 +
a Q

J Dy jjiy €&ij €y dQ2 + .[ Cij h; [ Vi — U ) ar (6.1.3)
Q r
And further

JDOijkl €;j € dQ+JD|ijk1 & €y dQ'*'_[P i; (V.'“"i) aQ =
Q Q Q

;I;f‘ (vi - i ) aQ + l o, n [vi - u,-) dT (6.1.4)

Let us consider the last term in the equation above; Integration can be split over the

different portions of the boundary I" and the specified boundary conditions utilized.
].[O','j Rj (V,‘- u,) dr:f.[ ajj n}' (V,"— ll,) dl"+lj O','j Ilj [V,'— u,] ar

+ I O','j nj (V,' - u,) dar (6.1.5)
T,

<

We take a closer look at the terms on the right hand side of the equation above. The first

term drops out because of admissibility of functions v; and &; (they both satisfy essential

boundary conditions on I',)). The second term can be obtained from specified traction on I',
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(with o;; n; = t;). The third term we further split into the parts for normal penetration

interface (p) and tangential friction interface (j)
j 0',')' "j [V" - u,) dl"=p + _] (6.].6)
T.

where

p= J C,, <u,,>""' n; ( v, — u,) dar
I.

jS=[Ci<u>™ g 1 v 1dT + [ € <u,>™ 4 1 iy | 4T (6.1.7)
T. r.

and n; and r; are the components of normal and tangent vectors on the boundary I',..

If we take p and j parts of the variational formulation to the left hand side of (6.1.4), we

get variational inequality

IDOijkI E;j Ext dQ'*'leijkl &;j €y dQ"’JP i; (Vi - f‘i) aQ -
0 Q o

_[ C, <u,>™ n; (v,- - 1'4,-] dar + j C,<u,>™ t; 1 v; 1 dT’ -

I'.. rc

[ Co<up™ s Vi1 dT 2 [ [v,.-a,-) aQ+ [ 1 (v,.-a,-) dT"  (6.1.8)
T. Q T,

In order to simplify notation we introduce
do [U,V -u ) = j DOijkl 8,'j éu aQ
Q
a; [u,v - ll) = j Dl ijkl 8,, éu dQ
Q

b(ii,v—i:]=jpii,~(v,~—it,~)d9 (6.1.9)
Q

j(u,v) =_[C,<u,,>""t,- v, | dT
rr
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p(u,v—it) =JC,,<u,,>""n,- [v,-—ia,-) dr
I.

Hence, the variational inequality can be restated as

o (- ) +ar (i) + (9 =i) i) = s{uoi) -

p[u,v—it)zil;f,-(v,-—it,-)dQ+f[?,-(v,-—i¢J dar (6.1.10)

6.2. Regularization Procedure

One approach to obtain the solution to variational problem (6.1.10) leads to regularization
of friction functional j. The regularization procedure uses a perturbed friction functional for-
mulation with respect to (virtual) velocity field. Namely, nondifferentiable friction func-
tional is substituted by differentiable convex friction functional (Figure 6.2.1).

dje (i)

u

Utilizing the property of convex function j.(v) — jg(u) 2 ( Ve=u ) , the variational

inequality is transformed to the variational equality.

ao(u,v—il]+a|(u,v—i4)+b[ii,v—it]+ 'y

p(u,v—il]=_[f,-(v,-—l't,-]dﬂ+j?,-(v,——it,-)dl‘ (6.2.1)
and, if needed, kinematically admissible velocity function can be denoted as w; = v;—u;

(with w; = 0 on T,)), so that the familiar form of virtual power method is recovered.

The regularization procedure is first introduced by Lions&Magenes [1972] in the study
of elliptic problems. In the present context, the regu’ s .z:on procedure is used by
Duvaut&Lions [1976] to prove the existence and the uniqueness of the dynamic frictional
contact for the linear viscoelastic bodies and the regularized friction condition, under the
prescribed time history of normal stress at the contact boundary I'.. Standard Feado-

Galerkin procedure was used. Their proof is extended by Martins&Oden [1987] to account
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for normal interface compliance given in the form of power law (6.1.1'). Klarbring et al.
[1988] extended that work to the general implicit form of penetration compliance and ade-
quate incremental and rate problems utilizing subgradient notion introduced by Moreau

[1974].

For a particular choice of regularization procedure given by Oden&Martins [1985]

(Figure 6.2.1), the regularization of friction functional with respect to sliding velocity is

{
2
e[il a-L12xXLy i ixi<e
£ 3 ¢
2(x) = 1 (6.2.2)

e(—l—x-l—-—) iflxl 2e
e 3

where € is the regularization parameter.

By pairing of energy conjugate quantities (Lubliner [1989]), the derivative of the regu-

larized friction functional gives the expression for tangential stress (Figure 6.2.2).

e-1x,x ifIxl <e
E E
YX) = | sen(x) if Ixl 2 ¢

or, in notation we introduced, friction stress in Oden&Martins [1985] model is
FIRLLLE L TR PP
N

-—— m,
01 = =G <u>™ | Con(it if lal 2 ¢ (6.2.3)

The regularization procedure, as introduced by Duvaut&Lions [1976], relies on the
infinitesimal value of regularization parameter & that the perturbed problem would approach
the original problem. Tn, Practical computations, however, the value of regularization param-
eter £ has to be finite. Hence, the value of the just described regularization procedure as a
computational tool is questionable. Two drawbacks can be pointed out :

(1) It corresponds to stating constitutive equations for the interface in the form of non-

linear elasticiry (viscoelasticity), since the unique relationship between the roral stress
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and the roral sliding velocity is given; dissipation and path-dependence properties of

friction are not correctly represented.
(2) Tangential friction stress depends on sliding velocity ("strain rates”) only; hence, no

transition to accommodate quasi-static problems is possible.

In our work we take more physical approach which relies on the equivalence of the
interface constitutive equations (6.1.1) to non-associated rigid plasticity. In our interpreta-
tion, the regularization procedure then accounts for the elastic part of deformation, i.e. per-
forms the transition from rigid plastic to elasto-plastic material. In other words, the regulari-
zation of the solution field is performed as opposed to the regularization of the variation
field in previously described procedure.

If we follow the general internal variable theory (see Lubliner [1989]), we can recog-
nize (6.1.1%) as the evolution equation for the internal variable u, (with the physical mean-

ing of being relative slip of two contacting bodies along the common tangential plane).

Yield condition can be recovered by combination of (6.1.1') and (6.1.1%) for the common

case of m, = m, as

C
fomo) =10, 1 - C—‘ lo, 1 =0 (6.2.4)

n

However, from the evolution equation of the internal variable u,, it follows that flow poten-

tial is given as
1
8(0,,0,) = = sgn(c) o} (6.2.5)

Since the yield criterion (6.2.4) and the flow potential (6.2.5) are of different form, the con-

stitutive equations for the interface have the form of non-associated plasticity.

It is generally accepted (see Lubliner [-. ) that, for the small displacement gradient

theory, an additive split of elastic and inelastic strain components holds. In our case, we
defined u, as an equivalent to the inelastic strain component (4, — u}). In addition, additive

to it, we can define the elastic strain component of u;, so that the toral tangential
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deformation is given as
uo=af+oul (6.2.6)

The existence of the elastic component is demonstrated by the experiments on
machined surfaces (see Burdekin et al. [1978]). However, since in large interface sliding,
the elastic component is very small compared to the inelastic one, the idealized Coulomb
law is generally given in the form of (6.1.1). Here, as a regularization procedure of the
idealized Coulomb law, the elastic part of the tangential interface compliance is furnished.
To be consistent with the experimental results of Burdekin et al. [1978], a particular choice
for the regularization procedure, i.e. a particular form of the constitutive law for the elastic

part of deformation is given as

lufl wf
) — 6.2.7)
3 €

o, =-C <u>™ (2~

For clarity, we further summarize regularized constitutive equations for the contact

interface

-constitutive equations for the elastic part
On = — Cp <up>™ (6.2.8)

uy

e
lug |

m
c,=—-C,<u,>"(2-
t ! n € €

-additive split of the elastic and the inelastic deformation components

u, = uf + ul (6.2.9)

Up = uy

L0 oy

-evolution equation for the inelastic’ déformation component

" 0 iff<O
u = (6.2.10)

Ao, iff=0
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where f is "yield condition" given by (6.2.4).

The equations (6.2.9) and (6.2.10) in combination with yield condition (6.2.4) can be
recognized as the constitutive equations of contact interface in the standard form of non-
associated plasticity, as suggested by Michailowski&Mroz [1978]. However, the important
difference is the nonlinear compliance for the elastic deformation part given by (6.2.8) for

both the normal and the tangential interface dofs.

Once we defined the relationship of stress and deformation (6.2.8), we can formulate
our problem completely in the strain space as suggested by Naghdi&Trapp [1975]. In par-

ticular, for m, = m,, yield criterion has a simple form

lufl = € (6.2.11)

The strain space formulation in our case, which is analogous to perfect plasticity (no har-
dening), has the computational advantages of providing the stability of the solution under
displacement control. Displacement driven return mapping algorithm for integrating the
constitutive equations is naturally fitted within the proposed model. This is elaborated in

section 6.4.

6.3. Normal Interface Dissipation Law

The power law introduced as the constitutive model for normal penetration interface
has one deficiency, which we propose to correct in this section. Namely, the material
model does not account for energy dissipation that occurs in contact of two bodies due to
permanent deformation of asperities. However, since this mechanism is too complex to be
modeled accurately, the simpler approach is taken. In rigid body dynamics, energy dissipa-
tion in contact of two bodies is introduced by the coefficient of restitution (see Meriam
[1966]), given by the ratio of - : /e velocities of two bodies after and before the instant
they come in contact. If the tituc of the contact of two bodies is much larger than the fun-
damental period of either of them, the contact problem solution of Hertz (see Love [1950])
is furnished, that considers only ideally elastic bodies. It is shown in many experiments

(see Goldsmith [1960]) that the assumption of ideally elastic bodies in Hertz solution does
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not apply, especially for the materials such as soil or concrete which one might consider
when focusing on dynamic analysis of the structure-foundation systems. Hence, energy dis-
sipation mechanism should be supplemented. For this we generalize the dissipative model
of Hunt&Crossley [1975], which relies on measured data for the restitution coefficient of
different materials. The experimental results for the coefficient of restitution, as given by
Goldsmith [1960], show the linear dependence on relative velocities of two bodies in con-

tact.

For the normal interface constitutive power law the proposed dissipation mechanism
will have the form of nonlinear viscous damping. For contact constitutive equations (6.1.1)

the dissipative term has the form
O = B, <u>" u, (6.3.1)

where B, and /, are the constitutive coefficients, and u, and u, are the normal components
of (relative) displacement and velocity at the point of contact. If /, is chosen of the same

value as m, in (6.1.1'), then the simple relation for B, is given as
3
B" = '5 C’l ‘n (6.3.2)

where 1) is the slope of the line that represents the relation between the coefficient of resti-
tution and velocity.

The normal interface dissipative model (6.3.1), in return, introduces additional term in
the variational inequality (6.1.10), and the same term in its regularized version, variational

equality (6.2.1), since the regularization is not concerned with the normal interface dofs.

d (u,,,il,,,w) = [ B, <u,>" i, w, T (6.3.3)
T. R

sielar’

The hysteresis loops produced by this dissipation law in free vibrations are presented

on Figure 6.3.1, for different values of the initial relative velocity.

Remark 6.3.1 Motivated by Hertz solution of the contact problem, Hughes et al. [1976]

have supplied impact condition within the discretized non-penetration model,
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consistent with one-dimensional wave propagation. For that purpose, special impact
and release conditions are incorporated within the framework of step-by-step Newmark
algorithm. Further expansion of that model to explicit step-by-step algorithm and
large displacements is performed by Hallquist et al. [1985]. Since the penetration

contact model is proposed in this work, equivalent considerations are not necessary.

6.4. Discretization

For certain mesh (h) the approximate displacements, velocities and accelerations at

each time r are the elements of the finite-dimensional approximation subspace V, c V,

constructed by the finite element method.
h . h «h
ui (X,I), ui (xat)v ui (X,t) € Vh (6'4‘1)

The finite element version of the variational equality (6.2.1) then becomes : Find the func-

tion t — ul(r) of [0,T] = V,, such that
ao(ug,w") +a1(|'|£',w"] +b(ii£',w") +j€"(ué',w") -p[ué‘,w")

= j f whdQ + j? wh dT (6.4.2)
Q )

To simplify notation, we further drop the subscript € (reminder of regularization process)

and the superscript A (reminder of semidiscretization process).

Within each element Q” (e = 1,2,...,N.,,, ) the components of displacements, veloci-

ties and accelerations are expressed as

o

ubox) . a(r) Ny)

i
.

N'n
(1) = Yty (r) Ny(x) (6.4.3)
I=1
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N

i(x,0) =Y iy (t) Ny(x)
I=1

where i = 1,2,...Ny,, and N,, is a number of element nodes.

If we introduce the approximation (6.4.3) in variational equality (6.4.2) and group equations
for each component of variational velocity vector w;, the problem is transformed to the

standard finite element semidiscretized equations
M ii(r) + C u(r) + K u(r) + j(u(r)) = pu(r)) = (1) (6.4.4)
with initial conditions given
u0) = vy, u0) = ug

where we utilized again the matrix notation introduced in section 2.1, i.e. u(t), u(¢), ii(r)
are column vectors of nodal displacements, velocities and accelerations respectively; M is
standard mass matrix given by (2.2.11); C is standard damping matrix given by (2.2.12); K

is standard stiffness matrix given by (2.2.13); f(r) is consistent load vector given by

(2.2.14); and p [u(r)) is vector of consistent nodal normal residual on T',, while j (u(l)] is

vector of consistent nodal tangential friction residual on I'.. The element contributions to
nodal residual vectors for normal and tangential interface on I', are given further in section

6.5 for 6-noded contact element.

Newmark Algorithm for Structural Dynamics

To fully discretize the finite element form of the variational equality on hand we
choose Newmark family of algorithms. Let us partition the interval [0,T] into M intervals
of length At such that 0=ty,ty,...t,...0s=T. We make appro)ffélaﬁon to the velocities and
accelerations at time r, (same as in (2.2.17)) by expressing’ til;mas functions of the dis-

placements, velocities and accelerations at time ¢, and of the displacements at time 7, by

the following relation
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uk—B—A(uk-ukI)+(1-E)ukl+At(l—"2'B')ukl (6.4.5)
.. 1 . 1 ..
uk:ﬁlAtz (“k-“k—l)—muk-l_('Z_B_l)uk-l

where B and y are so-called Newmark parameters and u, = ul(z,), etc. is used in foregoing

if no confusion is likely to arise.

Introducing the above relation in variational equality we obtain variation equality at time 7,

1

B Az Mu, + ﬁ—A Cu, +Ku, = puy) + ju) = f,, (6.4.6)
where
- 1 1 . 1 ..
fi=f,+M [muk_,+ﬁuk_,+(g- l)u,‘_,J +
Y “kl*‘(""-l)“kl*‘m(“——l)“kl
B At B 2p

The discretized variational equality (6.4.6) above can be further put into the operator form

-pu) +ju) -f,=0  (64.7)

re(ug) =

pA

Let f((u,,) = Dri(u,) € l(V,,,V,:) be derivative of the map r, at u, € V,. Then the

Newton iteration method is

-1
ufi*h = uf) - [ f((uf’)] r,(uf) (6.4.8)

where : i=1,2, ... ,N,,, is the iteration counter. Thus, at each iteration i, the following sys-

ter:: -/ 1ear equations has to be solved.

(l‘c(ui,“)) (ui"*” - uf)) = —r,(u}") (6.4.9)

or, in a simplified notation (6.4.9) can be rewritten as
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K Aul) = —rf) (6.4.10)

In order to ensure quadratic convergence properties of Newton method consistent tangent

matrix has to be supplied at each iteration given as follows:

. ; ad . dj :
Ki”=;M+LC+K+N—uk)IQ)+J&(—:k)Ii’) (6.4.11)

B Ar? B At du

Return Mapping Algorithm

The linearization of contact residual requires that the solution algorithm for integrating
constitutive equations provides a closed form expression for tangent moduli. Namely, it

holds

. ar(uk) .
e(i) o 87 (i
K§ 5 ¢

>=jBT-ai’-|s;'>Bdr=jBT Cr1{) B dI’ (6.4.12)
r. O€ r.
where r is either normal interface residual p or tangential interface residual j, B is appropri-

ate strain-displacement matrix, and Cy is the tangent moduli.

Next, we present the derivation of tangent moduli for both normal penetration and
tangential friction interface within the framework of return mapping algorithm, as well as
the complete procedure for integrating constitutive equations of regularized Coulomb fric-
tion. The return mapping algorithm is operator split method (see Chorin et al. [1978],
hence, it is first order accurate (since the splitted operator parts do not share the same set of
eigenvectors). For the presentation of the logic of the return mapping algorithm, we refer
to Figure 6.4.1. The return mapping algorithm is displacement driven: given the displace-
ment (strain) increment (the best guess), one first computes the elastic trial state of stress
(see Figure 6.4.1). The initial guess for displacement increment, within the framework of
dynamic analysis, is given by the chosen predictor for the: step-by-step il{’tiégll%tf'hg scheme
(see Taylor [1988]). The first part of the operator split methodology is then performed,
assuming that for the given displacement increment the trial state of stress is elastic. In our

case, where the elastic compliance has nonlinear form, the tangent moduli are computed by
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linearizing the equations (6.2.8) to obtain

Ao, Com,<u,>™" 0 [ Au,
A | = % 6.4.13)
!

Au,
If the trial state of stress satisfies the yield condition (6.2.4) then the trial is successful and

C,m<u,>™"'(2- )_e_ C<u,>™(1-

the step is completed, with the tangent moduli for the next iteration given by (6.4.13)

above. Note that, by this approach, unloading is automatically accommodated.

However, if the trial state of stress violates the yield condition (6.2.4), the return map-
ping algorithm is introduced to enforce consistency condition and bring the stress state
down to the yield surface. In our case, consistency condition is easily enforced by keeping
the same value of normal stress as in the trial state, while the tangential stress is obtained
by vertically projecting the trial stress onto the yield surface (Figure 6.4.1). The tangent

moduli for the next iterate is then obtained as

Au,
Au,

Ac, Cpym,<u,>™! .
= 1) (6.4.14)

Ao,

Cym,<u,>™ 'sgn(uf)

A step-by-step procedure of return mapping algorithm is presented in Table 6.4.1

below.

Table 6.4.1 - Return Mapping Algorithm for Friction

1) Known state at r,_,; elastic normal w;l,_, = u,l,_, and tangential deformation u/l,_,
and inelastic tangential deformation u!!,_,

2) Given displacement increment Au'"; where the first iterative value of Au'® is set by

chosen predictor

3) Compute the total elastic and inelastic deformation, assuming the elastic trial step
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Uy = uply_y + Aul? Aul? = Au® . n
ufly = ufly_y + Auf? Auf = Aut |t
uly = ujly_

and compute the trial values for stress

o,lr == C, <u,l r>™

lu/lrl  ufly
olr=-C, <u,l>™ (2~ . )e

4)If lo,171 < C,/C, <u,l>™ "™ lo,l7| then

accept trial for final values
u, I k= Uy, | T

u

le = uilr

ule=ulr
and supply elastic tangent matrix for the next iterative step from (6.4.13)

else

perform return mapping algorithm to enforce consistency condition
Un I k= Up I T

e sgn(Auf?)

ugl

Auf® — (Ul = ufley) + ujl iy

uily
compute stress values for residual computation

anlk =Gn|7'

135
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o, =—-C,J/C, o, sgn(uily)

and supply inelastic tangent matrix for the next iterative step from (6.4.14)
endif

5) Check convergence; if necessary go to step 2) and repeat.

Remark 6.4.1 Within the context of quasi-static fully nonlinear contact problem, the return
mapping algorithm was proposed by Ju et al. [1987]. The solution procedure was

based on perturbed Lagrangian formulation.

6.5. Dynamic Frictional Contact - 2D Isoparametric 6-noded Element

The geometry and the kinematics of 6-noded contact element are described by the
same quadratic polynomial (isoparametric element). Higher order interpolation for the con-
tact element is selected to better approximate different boundary shapes. For the setting

presented on Figure 6.5.1, the geometry of the contact element is given as
3
X = z N; x; (6.5.1)
I=1

where N, are standard shape functions in the form of Lagrange polynomials

0.5 (1-&) - 0.5 (1-¢2) for I=1,4
N =4 (1-&% for 1=2,5 (6.5.2)
0.5 (1+&) - 0.5 (1-£2) for I=3,6

The set of three nodes {x;, /=1,2,3} that supports geometry interpolation (6.5.1), can be
chosen to belong to one or the other body in contact, or to be a linear combination of
corresponding nodes dependent upon the relative stiffness of the bodies in contact. For

small displacement gradient theory, the choice of the nodes is immaterial.

The components of the normal vector n and tangential vector t are then computed
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.3
dx; = z Nl.§ Xy dé dx, = z Nl.§ Xay dé dx = ‘delz + dXzz

l=| l=]

ny dx, dx,

h dXZ de
‘=l e T a

If we further introduce the nodal vectors N; and T,

n, Ny

ny Ny

4 N;

Ni = N,

T, = (6.5.4)

the element contribution to the nodal residual for normal and tangential interface on I', are

pi = [ N; 0, dT (6.5.5)
)

if’=[ T, dr (6.5.6)
)

Utilizing consistent linearization procedure (see Hughes&Pister [1978]) for both pene-

tration (6.5.5) and friction residual (6.5.6), the consistent stiffness matrices can be written

K} () is tangent stiffness matrix resulting from the linearization of penetration contact resi-

dual

Kjy® = [ €, m, <uf?’>™ ' N; NJ dT (6.5.7)
T.

K. ) is tangent stiffness matrix resulting from the linearization of friction residual, for elas-

tic

bug ) us )

€

T; NJ dT +

Kif = [ € m<uf>™" (2
rr
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laf D1 5

[ ¢ <ufd>™ (1-———) = T, T] dT (6.5.8)
. € €
and inelastic phase
Kif O = | €, my <ufP>™" sgn(uf ) T, N dT (6.5.9)

r.

Due to the nature of the Coulomb friction law employed in the constitutive equations for
frictional contacte, the tangent stiffness matrix for tangential interface is non-—symmetric.
For the class of problems with the linearized kinematics we are confined to, all the contact
tangent operators have rank—one matrix form, inherent in plasticity problems. This is quite
natural consequence of the equivalence between the regularized constitutive friction law

employed and the non-associated perfect plasticity.

For the normal interface dissipation model, discussed in section 6.3, the tangent opera-

tors have the additional terms given as

K} ) is the tangent stiffness matrix resulting from the linearization of the normal interface

dissipation residual with respect to displacements

Kjy® = | By 1, <uf™>"" al’ Ny NT ar (6.5.10)
rt

C? ) is the tangent damping matrix resulting from the linearization of the normal interface

dissipation residual with respect to velocities

cyi = p—zt [ Bn<uf®>" N, NJ ar (6.5.11)
I

Numerical Examples
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Example 6.5.1 - Forced membrane vibrations of elastic slab

Forced vibrations under harmonic excitation (@ = 30000 rad/sec) of axially loaded

homogeneous elastic slab are studied in the first example. Young's modulus of the slab is
1.4x10° kN/cm?, Poisson ratio 0.3, mass density 7x107%, and the dimensions of prismatic

slab are 16x4x1 cm. Taking advantage of symmetry, only half of the slab is modeled by

the finite elements. The finite element model of the slab and the imposed boundary condi-
tions are presented on Figure 6.5.2. Frictional contact boundary, with C, = 108, C, =
3x10” and m, = m, = 2, is imposed by precompressing the slab along the length with initial
approach u, = 0.0005 cm. This example is adopted from Oden&Martins [1985] to compare

the performance of here proposed model versus there proposed regularization procedure.

To match approximately the elastic compliance to Oden&Martins [1985] case, the regulari-
zation parameter is given value € = 1073,

Tangential displacements at the contact boundary are presented on Figure 6.5.3 for the
midpoint and the free end point, for the cases where the normal interface force is kept con-
stant and where the normal dof is considered. The adequate Oden&Martins [1985] model
performance is presented as well. It is evident (fig. 6.5.3) that Oden&Martins [1985] model
does not correctly represent the dissipative properties of friction, while here presented
model is characterized by asymptotically quadratic amplitude decay during the sliding

phase, which is the property of Coulomb damping mechanism for this model problem.

The time history of the normal interface stress at the free end point (Figure 6.5.4) cor-
roborates experimental findings of Tolstoi [1967]. The tangential interface stress (Figure
6.5.4) also exhibits fast oscillation trend observed in experiments. The fast interface vibra-
tions can be eliminated by introducing the normal interface damping. Consequently, the
tangential stress smoothing is aciicved the same way. Distribution of the normal interface
stress along the slab is given on Figure 6.5.5 at different instants, together with adequate

distribution of the tangential frictional stress.

Hysteresis loops of the tangential frictional stress for here proposed regularized fric-

tional contact model are plotted on Figure 6.5.6 for both the constant and the variable
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normal contact force. The same loops are produced for Oden&Martins model and presented
on Figure 6.5.7. Since the analysis is performed for harmonic excitation with the frequency
very close to resonance with the first mode of the slab, displacement and velocity at any
point are 90 degrees out of phase. Consequently, the results obtained by Oden&Martins
model are of acceptable accuracy. If the excitation has the general form, so that all the fre-

quencies are excited, the disagreement would be much more pronounced.

Example 6.5.2 - Uplifting of the dam

The analysis of the dam-foundation model presented on Figure 3.2.1 is extended for
the case when the uplifting of the dam occurs. Only the uplifting effect is considered; the
tangential sliding is assumed to be restricted either by embedment or otherwise. Material

properties for the dam and the foundations are again those described in section 3.2. Material

properties for the contact boundary are specified as C, = 108MN/m? and m, = 2. To model
maximum credible earthquake, Taft earthquake record, already used in section 3.2, is arbi-
trarily scaled by 3. In addition, since we are considering nonlinear problem, all the load
cases are considered simultaneously, starting from the deformed configuration under the
influence of dead load. In this study only hydrostatic water pressure is considered, while
hydrodynamic effects are completely disregarded. Both the dam and the foundations are
represented by a set of 10 Ritz vectors, which by the previous analysis (see section 4.2),
proved to carry most of the information. The non-proportional damping, which arises from
the paraxial approximation to radiation condition, is accounted for by the iterative procedure
discussed in previous chapters. The equilibrium position of the dam-foundation system
under the static load only is determined from the analysis of the complete system
represented in FE coordinates (ll§4 gofs). It is interesting to point out that the computa-
;.

tional effort for this analysis is almost the same as for the dynamic nonlinear analysis on

consistently reduced model (approximately 8000 CPU sec. on VAX II/GPX workstation).

The displacements at the dam top and the bottom are plotted in Figure 6.5.8 for both
cases where the uplifting of the dam is permitted and prevented. Over the certain range of

frequencies response amplification occurs due to the uplifting, but in the part of strong
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shaking beneficial isolation effects of the uplifting are evident. To asses the stress field in
the dam, the difference of the horizontal displacement at the dam top vs. the bottom as well
as the vertical stress time history at the dam bottom are plotted on Figure 6.5.9. If we
assume that the dam is made of low quality concrete, say MB20 (which is consistent with

the choice for Young'c modulus for the dam material), then the allowable compressive
stress is 8 MPa ( 8000 kN/m?) and the allowable tensile stress is 0.8 MPa ( 800 kN/m?).
Hence, if the uplifting of the dam is allowed for, no cracking of the dam body would occur.

That is not the case if the uplifting is prevented (see Figure 6.5.9)

6.6. Dynamic Frictional Contact - 2D Segment Element

As discussed in closure of Chapter S, here presented model for the frictional contact
can be expanded to accommodate large sliding of the structure across the foundation. How-
ever, to be able to retain the reduced representation of the structure by generalized Ritz
coordinates, we limit our consideration to the shape of the interface that yields only small
rotations of the sliding structure (e.g. flat interface). Motion of the structure is then again

small displacement gradient motion, if moving reference frame is used for its description.

The constitutive model for the normal penetration interface and the local Coulomb
friction law for the tangential interface are retained in this consideration. Moreover, for

large sliding, Coulomb friction is more realistic constitutive model.

However, for large sliding, node-to-node contact element (such as the one presented in
section 6.5) can not be used to properly describe kinematics. Instead, the contact segment
element is defined by generalizing the approach suggested by Simo et al. [1984] to higher
order elements. For the implementation of this segment element into the finite element
computer program, slideline logic, such as the one given by Hallquist et al. [1985], should
be developed. Namely, the program should . ..bie to identify the current position of the
contact boundary I', and reformulate the profiies of the tangent matrices accordingly.

Hence, beside the slideline logic computational algorithm, the only thing needed for
implementation of segment element is reformulating kinematics. For that we refer to Figure

6.6.1, where a part of the contact boundary T, is depicted, together with a typical segment
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element. The segment element is defined by 2 edges of 2D, say 9-noded, elements with
quadratic variation of displacement field which is specified by nodes x} and x?, and their

adequate orthogonal projections X} and i?, as shown on Figure 6.6.1. To clarify our nota-
tion, we state that superscript relates to the body in contact (e.g. 1 for foundations, and 2

for the structure), and subscript relates to the node number.

The new nodal points X} and X} are given as the intersection of the orthogonal projec-

tion of the nodes x7 and x} (respectively) onto the straight line joining the corresponding
nodes on the bodies 1 and 2 with the corresponding edges of the bodies 1 and 2 (see Figure

6.6.1). The choice of particular projection is motivated exclusively by resulting

simplifications of computational algorithm. Essentially, any choice for i,' and ii that results

in unique partition of the contact boundary I, into the contact segments, is eligible.

The position of new nodal points i} and if can be found by the algorithm given below

() xjeT}
=1 S £y ol 1 S £\ yl
=Y NE)x, F =Y NE)y (6.6.1)
I=1 I=1
(ii) X) on the line through x3
¥ - yi=a @ - xp (6.6.2)

where N; are Lagrange polynomials given by (6.5.2) and « is determined by the pair of

nodes which enclose the projected node X; (e.g. @ = (y3 =y )/(xJ—x]) for the setting on

Figure 6.6.1).

The equations (6.6.1) and (6.6.2) represent determinate system of 3 equations with 3

unknowns ( %, 7/, £). However, if we substitute (6.6.1) into (6.6.2) only one quadratic

equations in & needs to be solved. The closed form solution for different cases can be
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easily found, e.g. for the node i} on Figure 6.6.1 it holds £ = (b+¥b3-4ac)/2a; where
a = (y] =2y} +y§)-a(x] =2x} +x}), b=l -y)-akx]-x}) and
¢ = 2(y; ~y{)-2e(x] =x{).

— —2 .
Once, all the x} and Xx; are known, segment element nodes can be determined as

xj=(1-B)x} + B X} (6.6.3)

or
xj = (1-B) x} + B X} (6.6.4)

where choice of B € [0,1] depends on relative stiffness of two contacting bodies.

The contact segment element is now completely determined by the choice of its three

nodal points, and usual quadratic interpolation can be defined
3
X’ = Y Ny&)xj (6.6.5)
I=1

which provides smooth contact between two bodies.

Further definition of kinematics, (normal and tangent, initial gap and current gap), fol-

lows exactly the development presented in section 6.5 for node-on-node contact element.

~ Remark 6.6.1 We defined kinematics for the contact segment with the quadratic displace-
ment field, which is probably the highest order dictated by the efficiency of the com-
putations. For the linear displacement field (2-noded segment element), considerations

of Simo et al. [1984] can be used.
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Reference configuration

Body B ,
foy R
!
o
gl A Initial contact configuration
Current configuration
Body B 1
‘0 l.ll,l
[
),

Body B srigid surface)

to- initial asperities height

t - height of compressed asperities
u,- approach

/\- relative normal displacement

g - initial gap

Figure 6.1.1 - Initial gap, normal displacement and penetrating approach
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contact boundary r
u

e

Rigid Foundation

contact boundary r (!

Figure 6.1.2 - Geometry of elastic bodies in contact
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Friction functional j (x)

jx)=|x]|
Regularized friction
functional Coz(x)
x(3eps-|x|)/3eps’ if |x|< eps
z2(x)= .
(3|x|-eps)/3 if |x|> eps
[
J(x)
z (x)
i)
z (x)
- €ps (1(1] eps
Relative velocity x

Figure 6.2.1 - Regularization of friction functional
(Oden&Martins [1985])
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Derivative of regularized friction functional y (x)
x(2eps-|x|)/eps if |x| < eps

yx) =
sgn (x) if [x] > eps

‘ y(x)

- eps

eps
Relative velocity x

Figure 6.2.2 - Derivative of regularized friction functional
(regularized friction stress)
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(i) - elastic trial

(ii) - plastic corrector

T St Frictional stress Ct /C ]
1
S,S)|
n t T (i)

(i)
(Sn,styl K

S,S

‘n t” k-1
Normal stress Sn

Figure 6.4.1 - Return mapping algorithm for integrating

regularized friction constitutive equations
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Relative normal displacement :

u=(u- u;)@n - g
i= 1,2,3

j= 4,5, 6

n - normal vector
t - tangent vector
g - initial gap

Figure 6.5.1 - 6-noded isoparametric contact element
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Figure 6.5.2 - Finite element model of elastic slab
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variable normal contact force
--------- - constant normal contact force
— = = - Oden and Martins mode!

2.5E-004

2.0E-004

1.5E-004

5.0E—-005

3.4E-021

displacement (cm)

-5.0E-005

1 atefiassatesssldosastoenaslonealag

—1-DE—DO4 LI A L L N B N T 1515 tr1&rr171 ™ r 75 757171
OE+00 1E—004 2E—004 3E-C

time (sec)

Horizontal displacement at the mid—point

variable normal contact force
----------- constant normal contact force
— = — = Oden and Martins model

1.5E-004

1.0E-004

5.0E-005

1.7E-021

displacement (cm)

2 ¢ 2 ¢ 0 o o 2 01 ¢ ¢ 3 3 0 g2 3

-5o°E-005 rTgs ¢ irfrrr. rn1r7vrrrr).Trr)orrrrr v, 1111
OE+00 1E-004 . 2E-00 SE-C
time (sec)

Figure 6.5.3 - Horizontal displacement at free end and mid-point
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Figure 6.5.4 - Normal and tangential stress at the free end
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Figure 6.5.8 - Horizontal displacements at dam tip and dam bottom
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Contact Boundary

body 2 (structure)

contact boundary 2

contact boundary 1 body 1 (foundation)

Typical segment element O projected nodes
@ body nodes
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Figure 6.6.1 - Segment contact element - planar case
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Chapter 7
Closure

The consistently reduced model for the dynamic analysis of large linear system with
local nonlinearities provides the rational approach to the earthquake-resistant design of
structure-foundation systems. In addition, the efficiency of the method gives a solid basis to
place the design procedure into the context of random vibrations theory, which accounts
properly for the stochastic nature of earthquake excitation. However, more experimental
results (along the directions pointed by Huckelbridge&Clough [1977]) should be obtained

for verification of both deterministic and stochastic computational model.

Beside the non-deterministic nature of excitation, one should also consider the
different probability distributions of contact asperities to devise stochastic constitutive
model for the frictional contact, whose deterministic model is presented in this work. Some
work in this area is already initiated by Oden&Pires [1984] for quasi-static contact problem.
Any computation in non-deterministic framework requires enormous effort. For that reason
only oversimplified models are mostly studied. However, based on the efficiency of here
presented formulation, the extension of stochastic dynamic analysis to more elaborate

models seems feasible.

Motivated by the remarkable convergence properties of the approximate solution
obtained within reduced Ritz vector subspace and the low computational cost of load depen-
dent vector algorithm used for its generation, one is tempted to expand the same concepts to
fully nonlinear problems. Projection subspace in that case would change form step to step.
However, an efficient update procedure could be devised, which carry over the information

form the previous steps to the current time. Some work in this area is initiated in the
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context of static problems with the nonlinear kinematics (see Noor&Peters [1980]), utilizing

the notion of path derivative to provide the update of the projection subspace.

Within the proposed framework for dynamic analysis of large linear structure-
foundation system with local nonlinearities, a different nonlinearity source other than the
dynamic frictional contact can be addressed. In particular, the performance of some of the

base isolation devices could be examined within the proposed framework.
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