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Abstract
Introduction.

The course of COVID-19 varies from asymptomatic to severe in patients. The basis for this range in
symptoms is unknown. One possibility is that genetic variation is partly responsible for the highly
variable response. We evaluated how well a genetic risk score based on chromosomal-scale length
variation and machine learning classi�cation algorithms could predict severity of response to SARS-CoV-
2 infection. 

Methods.

We compared 981 patients from the UK Biobank dataset who had a severe reaction to SARS-CoV-2
infection before 27 April 2020 to a similar number of age matched patients drawn for the general UK
Biobank population. For each patient, we built a pro�le of 88 numbers characterizing the chromosomal-
scale length variability of their germ line DNA. Each number represented one quarter of the 22 autosomes.
We used the machine learning algorithm XGBoost to build a classi�er that could predict whether a person
would have a severe reaction to COVID-19 based only on their 88-number classi�cation.

Results.

We found that the XGBoost classi�er could differentiate between the two classes at a signi�cant level
(I as measured against a randomized control and (n as measured against the expected value of a random
guessing algorithm (AUC=0.5). However, we found that the AUC of the classi�er was only 0.51, too low for
a clinically useful test.

Conclusion.

Genetics play a role in the severity of COVID-19, but we cannot yet develop a useful genetic test to predict
severity.

Introduction:
The course of COVID-19 varies from asymptomatic to severe (acute respiratory distress, cytokine storms,
and death) in patients.  The basis for this range in symptoms is unknown.  One possibility is that genetic
variation is partly responsible for the highly variable response to infection.

Human genetic variation can affect susceptibility and resistance to viral infections[1]. For instance,
variants in the gene IFITM3 affect the severity of seasonal in�uenza[2].  Patients hospitalized from
seasonal in�uenza had a particular allele of the gene IFITM3 at a higher rate than expected from the
general population. Laboratory work determined that this particular allele can alter the course of the
in�uenza virus infection.



Page 3/10

We have previously shown that chromosomal-scale length variation is a powerful tool to analyze genome
wide associations[3].  This method is particularly appealing for genetic risk scores because it includes
epistatic effects that might be missed with conventional genome wide association studies.  Others have
used machine learning in combination with copy number variation to predict cancer risk[4].

The purpose of this paper is to evaluate how well a genetic risk score based on chromosomal-scale
length variation and machine learning classi�cation algorithms can predict severity of response to SARS-
CoV-2 infection.  We evaluated this approach on a dataset of 931 patients who had a severe reaction to
COVID-19 in the early part of the 2020 global pandemic.  These patients had been previously genotyped
as part of the UK Biobank.

Methods:
Data was obtained from the UK Biobank under Application Number 47850.  First, we downloaded the “l2r”
�les from the UK Biobank.  Each chromosome has a separate “l2r” �le.  Each “l2r” �le contained 488,377
columns and a variable number of rows.  Each column represented a unique patient in the dataset, who is
only identi�ed by an encoded identi�cation number.  Each row represented a measurement at a different
location in the genome.  The values in the �le represent the log (base 2) of the ratio of measured intensity
measured in a microarray relative to the expected two copies at that location in the genome.

After downloading the “l2r” data from the UK Biobank, we computed the mean l2r value for a portion, we
chose 25%,  of the chromosome for each patient in the dataset.  This process produced a dataset where
each person was represented by a series of 88 numbers. Each number represents the length variation for
25% of the 22 non-sex chromosomes.  A value of 0 (log2 ration) represents the nominal average length of
that portion of the particular chromosome.  We call this dataset the chromosomal-scale length variation
(CSLV) dataset.

This CSLV dataset was matched with the UK Biobank COVID-19 dataset.  The COVID-19 data were
provided to UK Biobank by Public Health England.  UK Biobank matched the person in the Public Health
England data with UK Biobank’s internal records to produce the person’s encoded participant
identi�cation number.  The dataset we have, provided by UK Biobank contains the participant ID, date the
specimen was taken, laboratory that processed the sample, whether the patient was an inpatient when
the sample was taken, and the result (positive/negative) of the test.  The UK Biobank continues to update
the data approximately biweekly.

The criteria for testing and interpretation of results in the UK Biobank COVID-19 data has evolved.  A
positive test in this dataset earlier than 27 April 2020 was a good indication that the person had severe
disease.  During this initial period of the pandemic, SARS-CoV-2 testing was only performed on
symptomatic people and this particular dataset only includes people tested in a hospital.  After 27 April
2020, NHS instructed hospitals to test all non-elective patients admitted, including asymptomatic
patients.  The UK Biobank dataset released after 27 May 2020 includes “pillar 2” positive test results. 
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These “pillar 2” tests include people in hospitals for non-elective procedures and staff screening. These
results can include asymptomatic patients.

Table 1. We segmented the dataset into three overlapping
subsets.    The first, which we called “1930” contained all UK
Biobank participants born after 1930 who had a severe reaction
to SARS-CoV-2 infection before 27 April 2020.  The two subsets
contained people born after 1940 and after 1950.

Dataset Number
1930 (< 90 years of age) 981
1940 (< 80 years of age) 880
1950 (<70 years of age) 468

Using the CSLV-COVID-19 dataset, we selected all people who tested positive before 27 April 2020 and
labelled these as people having a severe reaction to COVID-19.  We segmented these into three
overlapping datasets, as shown in Table 1.  We constructed an age-matched control group of the same
size that had an identical age pro�le as those in the severe reaction group.  The age-matched control
group was selected from the entire UK Biobank dataset, excepting those few who had a severe reaction to
COVID-19.  Since only a small fraction of the people in the UK Biobank had a severe reaction to COVID-19,
we could rerun the analysis with a different age-matched control group many times to build up statistics. 
We chose this method of selecting the control group based the �nding that severe reactions to COVID-19
are both a strong function of age and uncommon (only about 20% of those infected with SARS-CoV-2
require ICU admission even among those in their 70s)[5,6].

We used the H2O machine learning package in R to create XGBoost[7] models that were trained to
classify a person in the dataset, consisting of those who had a severe reaction and age-matched controls,
based solely on their chromosomal-scale length variation data. 

Results:
The results are presented in Figure 1 and Table 2.  As Figure 1 shows, we found a signi�cant difference
between all three age groupings and their corresponding random controls.  This �nding indicates that
germ line genetics of the infected patient, as represented by the set of chromosomal-scale length
variation numbers, is correlated with the severity of COVID-19. 

            Figure 1 and Table 3 also show that the AUC (area under the curve of the receiver operating
characteristic curve) for the XGBoost classi�cation model was about 0.51, but still signi�cantly greater
than 0.50. A classi�cation model with an AUC of 0.51 is just slightly better than guessing.

Table 2.   We compared the difference in mean AUC values
between the various datasets using a t-test.    The datasets
consisting of people born after 1930, 1940, and 1950 all showed
significant differences with the corresponding random control.  
Those three datasets also showed significant differences between
the mean AUC and 0.5.   The three random controls did not show
a significant difference between the mean AUC and 0.5, as

d l f d l f
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expected.  An AUC value of 0.5 represents a random classification
test, one in which the algorithm is no better than guessing.

    p-value of t-test
1930 data 1930 random
1940 data 1940 random
1950 data 1950 random
0.5 1930 data
0.5 1940 data
0.5 1950 data
0.5 1930 random 0.1
0.5 1940 random 0.4
0.5 1950 random 0.08

 
Table 3.  The mean and standard deviation of the area under the
curve of the receiver operating characteristic curve was recorded
after each of the 100 different XGBoost classification models.
 Each run used a different set of people who did not have a severe
reaction to COVID-19.   The mean AUC for all three datasets was
well described by a normal distribution, as confirmed by a
Shapiro normality test.

  Mean AUC SD AUC
1930 data 0.515 0.017
1940 data 0.516 0.019
1950 data 0.511 0.030

 

Discussion
The two conclusions of this study are divergent.  First, a genetic difference exists between those who
have the most severe course of COVID-19 and the general population. Second, we were not able to exploit
this difference to develop a clinically useful test to distinguish between people who will experience a
severe course of the disease and those who will not.  We could only demonstrate a genetic risk test with
an AUC of 0.51, just slightly above 0.50 which represents random guessing.

Although the AUC we found here is too low to be clinically useful, several avenues for improving the AUC
exist.  We were constrained by the data available to compare those who had a severe reaction to COVID-
19 with the general population, but the general population probably contains a substantial number of
people who would also have a severe reaction to COVID-19.  A better approach would be to compare
those who had a severe reaction to COVID-19 with those who were asymptomatic or had a mild reaction. 
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Simply having a much larger number of patients who had a severe reaction might also lead to an
increase in AUC. 

Changes in our feature selection and classi�cation algorithm might also improve the AUC. Our feature
selection algorithm that transformed “l2r” data into our �nal chromosomal-scale length variation data
took averages over each quarter of a chromosome.  We could instead include smaller chromosome
segments.  Generally, we need the number of features to be much less than the number of observations
(patients). So, an increase in the number of observations would allow an increase in the number of
features. Also, an alternative machine learning algorithm might improve the AUC.  Different algorithms
perform differently on different classes of problems and XGBoost generally performs well on tabular
data[8].  We did a brief test of different algorithms before choosing XGBoost as the best solution for this
problem.  But, for instance, a deep learning algorithm might have better performance with proper tuning.

Our results add to the recent work done by others on the link between genetics and severity of COVID-19. 
For instance, one study from the Netherlands identi�ed four young men from two different families who
had severe symptoms of COVID-19 and no preexisting medical conditions.  Detailed genetic studies
revealed that these four men all had a rare loss of function variant of TLR7, which lies on the X-
chromosome[9]. 

A detailed study of this UK Biobank COVID-19 dataset found that Black and Asian patients were at a
signi�cantly higher risk of testing positive compared to white patients [10].  This study also attempted to
derive a polygenic risk score.  However, when they applied the polygenic risk score to a hold-out group,
they found that the mean score was indistinguishable between the group of people who had tested
positive and the group that had no positive test.  In comparison, our work found that these two groups are
distinguishable with a genetic risk score, but only very slightly. We measured the AUC at 0.51.  They [10]
do not report an AUC, but an indistinguishable test is the equivalent of an AUC of 0.50.

Other more comprehensive metastudies have identi�ed one speci�c genetic component behind the
severity of COVID-19.  For instance, one study of COVID-19 patients who experienced respiratory failure at
seven hospitals in Italy and Spain found a fairly strong association in a cluster of genes lying on part of
chromosome 3 and a borderline association in chromosome 9 encompassing the ABO blood group locus
[11].  The “ANA_B2” June 2020 results posted by the COVID-19 Host Genetics Initiative [12,13], also
indicate a strong association in Chromosome 3, but fail to reproduce the association in chromosome 9. 
The COVID-19 Host Genetics Initiative “ANA_B2” study compares hospitalized COVID-19 patients to the
general population and are mostly derived from patients in Europe and Brazil. Neither study attempted to
derive a genetic risk score.

This study has several weaknesses.  First, we cannot attribute the severity of COVID-19 to particular
genetic variants. This study only �nds correlations and does not establish a cause and effect. Second,
while it is possible that these correlations relate to underlying biology, it is also possible that the
correlations are related to ancestral differences that translate to socio-economic differences.  COVID-19
severity is known to be correlated with racial/ethnic background[14,15].  The small effect that we
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measured might be simply due to the larger complex effect of racial/ethnic disparities in COVID-19
severity.

Conclusion
In conclusion, we found a signi�cant difference exists between the structural genomics of those patients
in the UK Biobank who had a severe reaction to the SARS-CoV-2 virus and the general UK Biobank
population.  However, a test based upon this difference would not be clinically useful in its present state
since it had an AUC of 0.51.
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This boxplot �gure presents the results of the machine learning predictions. We created three different
datasets, one which includes all patients less than 90 years old, the second includes every patient less
than 80 years old, and the third with every patient less than 70 years old. These are indicated as the
oldest birthyear “data”. Each dataset included an equal number of patients with a “severe reaction” to
COVID-19 and an equal number of age matched people drawn from the general UK Biobank population,
“normal”. For comparison, we took those three datasets and randomly permuted the status (“severe
reaction” or “normal”) and repeated the process. This randomly permuted dataset is labelled oldest
birthyear “random”. For each dataset, we repeated the whole process 100 times, each time with a different
set of age matched people from the general UK Biobank population.




