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Abstract

Computing slowly moving shocks with flux-di↵erencing schemes

by

Michael Lavell

The numerical error produced when computing slowly moving shocks in a

finite volume framework is studied. The error is a result of discretizing a thin

shock profile dynamic on the scale of spatial and temporal discretization. It

has been studied in great detail by many practitioners, but no fix has been

built to totally eradicate the problem unique to nonlinear hyperbolic systems. I

argue that current shock capturing schemes do not accurately resolve the non-

linear shock profile and this results in erroneous oscillations. I study numerical

tools used to pursue high-order accurate solutions of slow shocks, including a

hybridized upwind-biased slope limiter for the piecewise parabolic method, a

universal Osher Riemann solver, and a new weighted essentially non-oscillatory

(WENO)-type slope limiter. The e↵ectiveness of these tools are tested in two

hyperbolic systems: the Euler equations and the ideal magnetohydrodynam-

ics equations. The success of the upwind-biased slope limiter has been verified

against high-order accurate schemes such as WENO.
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1. Introduction

Advances in high-performance computing and computational mathematics

allow us to model physics with extreme precision. Subjects di�cult and ex-

pensive to study, such as astrophysical plasmas, confinement experiments, and

vehicle aerodynamics, are easily accessible thanks to computational fluid dy-

namics. Finite volume methods (FVM), also known as Godunov-type schemes

or flux-di↵erencing schemes, evolve volume-averaged conserved quantities across

a discretized domain to approximate flows. This is done by building approxi-

mating nth degree piecewise polynomials on each cell of the discretized domain,

extrapolating cell boundary values, and solving the Riemann problem at each

cell interface. These methods are very popular because of their ability to accu-

rately capture flows with sharp shocks and discontinuities.

Conservative systems, such as the Euler’s equations and ideal magnetohy-

drodynamics (MHD) equations, consider the evolution of conserved quantities

with varying complexity. The ability to capture gas dynamics governed by the

ideal MHD equations are of particular interest because of the inherently more

complex structures and environments they model. Eq.(1) is a conservative for-

mulation of the ideal MHD equations with the additional constraint r · ~B = 0.

8
>>>>>>>><

>>>>>>>>:

@⇢

@t

+r · (⇢~v) = 0

@⇢~v

@t

+r ·
⇣
⇢~v~v + ~I(P + 1

2

B2)� ~B ~B
⌘
= 0

@E

@t

+r ·
⇣
(E + P + 1

2µ0
B2)~v � ~B(~v · ~B)

⌘
= 0

@

~

B

@t

+r · (~v ~B � ~B~v) = 0

(1)

The quantities that define the ideal MHD equations are density ⇢, velocity ~v,

energy E, pressure P and magnetic field ~B. The constant µ
0

is the magnetic

permeability in a vacuum. The equation of state is given by

d

dt

✓
p

⇢�

◆
= 0, (2)

where � is the ratio of specific heats.
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Shocks are small regions of sharp gradients in which a gas property changes

from one equilibrium state to another. Numerically capturing the evolution

and interaction of these properties requires discretizing space and defining an

originally continuous profile at a finite number of points. Solutions to smooth

flows and flows with fast moving shocks generally behave well for most modern

numerical methods. A problem arises when a shock is dynamic on the scale

of the grid discretization and time step. This phenomenon is referred to as

the “slowly moving shock” problem. Numerically modeling a slowly moving

shock, or a shock that requires multiple time steps �t to cross a cell of size �x,

produces post-shock oscillations that pollute the numerical solution. Figure 1

illustrates slowly moving shocks in the ideal MHD equations and the full Euler

equations.

Shown in Figures 1a and 1b are numerical experiments of the Brio-Wu MHD

shock tube and in Figures 1c and 1d are numerical experiments of the hydro-

dynamics (HD) slow shock experiment. These tests will be constructed and

discussed in greater detail in Section 5. At t = 0.1, both experiments have a

left-running shock front that has been displaced by approximately �x = 0.3.

Thus, the shock speed is S ⇡ 0.03. The oscillations in the density profiles are

evident in (b) and (d). Notice in (d) that the oscillations persist in the WENO-Z

solution computed with Runge Kutta 4 (RK4) on a grid size of N = 2048. In-

creasing the order of spatial reconstruction or grid resolution does not converge

to the true solution, however the high-resolution WENO-Z solution is considered

a close approximation to the analytic solution.

The non-physical oscillations that develop upwind of slowly moving shocks

have been studied in great detail [1, 2, 3, 4, 5, 6, 7, 8, 9]. Most reconstruction

schemes produce unphysical oscillations in discontinuous solutions for nonlinear

hyperbolic systems, with higher-order accurate methods producing greater am-

plitude oscillations. Higher-order methods have less numerical dissipation, and

consequently, their solutions at slowly moving shocks maintain large amplitude

spurious oscillations. Multiple studies note the size of the error is dependent on

the nonlinearity of the problem and the speed of shock. Greater nonlinearity

2



(a) (b)

(c) (d)

Figure 1: (a) and (b) are the Brio-Wu MHD shock tube at t = 0.1 computed with PPM, a

grid size of N = 256, CFL= 0.8, the Roe Riemann solvers, and MC slope limiter. (c) and (d)

are the HD slow shock experiment at t = 0.1 computed with PPM, a grid size of N = 256,

CFL = 0.8, the Roe Riemann solvers, and MC slope limiter. The high-resolution WENO-Z

solution is computed with a grid size of N = 2048, CFL = 0.8, the Roe Riemann solvers, and

MC slope limiter.
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and slower shock speed result in larger oscillations.

It is important to overcome this problem for flow regimes dependent on small

scale structures and for methods computing steady solutions. Fine scale struc-

tures are vital to the overall study in modeling environments such as detonation

simulations, computational aeroacoustics, and turbulence. Seeking a steady so-

lution can require many time steps for a profile to converge to a true solution.

Erroneous oscillations that potentially pollute the solution profile will interfere

with a method’s ability to produce a stable solution that is to converge to a

physically correct weak solution.

2. Numerical methods for flux-di↵erencing schemes

An important set of methods for computational fluid dynamics are the flux-

di↵erencing schemes. These methods achieve robust solutions for solving smooth

and discontinuous flows governed by hyperbolic conservation laws. All conser-

vative systems can be written in the following form,

U
t

+r · F (U) = 0, (3)

where U is the state variable or vector, and F (U) is the analytical flux function.

Following an ordinary di↵erential equation discretization in time of Eq.(3),

the numerical solution at time t = tn +�t for a 1-dimensional problem can be

written

un+1

j

= un

j

� �t

�x
[F̂

n+

1
2

j+

1
2
� F̂

n+

1
2

j� 1
2
]. (4)

Here, F̂
n+

1
2

j+

1
2

is the numerical flux function at the cell interface x
j+

1
2
evaluated at

the half-time step advancement. FVM’s are also referred to as flux-di↵erencing

schemes because the numerical flux function is a sum of the average of analytical

fluxs of interpolated solutions and a di↵usive flux term resulting from solving

the Riemann problem at the cell interface. The numerical flux function takes

the form

F̂
n+

1
2

j+

1
2

= F̂
avg

+ F̂
di↵

. (5)
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F̂
avg

is an average of the analytical flux evaluated at the half-time step nodal

values, u
n+

1
2

j± 1
2
, and generally considers the algebraic average:

F̂
avg

=
1

2
(F

R

+ F
L

) =
1

2

⇣
F (u

n+

1
2

j+

1
2
) + F (u

n+

1
2

j� 1
2
)
⌘
. (6)

F̂
di↵

is computed by solving the Riemann problem at the cell interface and acts

as a stabilizing term to the average flux [10]. Computational cost and solution

accuracy are highly dependent on the numerical flux function chosen to solve

the Riemann problem and the degree of the polynomial chosen to extrapolate

the nodal values, un

j± 1
2
.

2.1. Model equations

In this section, several model equations are introduced that can be studied

with conservation laws: the scalar inviscid Burgers’ equation, the full Euler

equations, the isothermal Euler equations, and the ideal MHD equations.

2.1.1. The inviscid Burgers’ equation

The Burgers’ equation, written in conservative form, is a scalar nonlinear

partial di↵erential equation,

u
t

+ (
u2

2
)
x

= 0. (7)

Unlike systems of equations, no post-shock oscillations are produced when com-

puting slowly moving shocks in a scalar equation. This is because in the scalar

case the left and right state of the shock can be connected exactly by a single

wave solution.

2.1.2. The Euler equations

The full Euler equations consider the conservation of mass, momentum, and

energy in an inviscid and adiabatic gas. They are presented here in conservative

form. 8
>>>><

>>>>:

⇢
t

+ (⇢u)
x

= 0,

(⇢u)
t

+ (⇢u2 + p)
x

= 0,

E
t

+ (u(E + p))
x

= 0.

(8)
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The total energy E is the sum of kinetic and internal energies,

E = ⇢

✓
u2

2
+ e

◆
. (9)

An isothermal problem is considered to explore the phase space of the in-

ternal shock structure [3]. In the case of a simple gamma-law equation of state,

the dynamics in pressure can be eliminated by setting � to be approximately

one, i.e. � = 1.0001. The equation of state state reduces to being dependent

only on the density and speed of sound a:

p = ⇢RT = ⇢(RT̄ ) = ⇢

✓
p

⇢

◆
⇡ ⇢

✓
�p

⇢

◆
= ⇢a2. (10)

The third-order system reduces to the second-order system describing an isother-

mal gas: 8
><

>:

⇢
t

+ (⇢u)
x

= 0

(⇢u)
t

+ (⇢(u2 + a2))
x

= 0
(11)

Considering the same numerical experiment as the full Euler equations, the

discrete shock structure can be studied in the two-dimensional state space (⇢, ⇢u)

of the isothermal Euler equations. The phase plots of a discrete shock are created

by extracting the few points that lie within the shock region at a given time

tn. An experiment must be observed at many di↵erent time steps to create a

descriptive phase plot.

2.1.3. The ideal MHD equations

The ideal MHD equations describe the behavior of a charged gas in the pres-

ence of a magnetic field. The conservative MHD formulation Eq.(1) is equivalent

to substituting the following conservative variables and flux function into Eq.(3),

6



U =

2

6666666666666664

⇢

⇢u
x

⇢u
y

⇢u
z

B
y

B
z

E

3

7777777777777775

F (U) =

2

6666666666666664

⇢u
x

⇢u2

x

+ p⇤ �B2

x

⇢u
x

u
y

�B
x

B
y

⇢u
x

u
z

�B
x

B
z

B
y

u
x

�B
x

u
y

B
z

u
x

�B
x

u
z

(E + p⇤)u
x

�B
x

(B
x

u
x

+B
y

u
y

+B
z

u
z

)

3

7777777777777775

. (12)

In the MHD setting, total pressure is defined as p⇤ = p+ 1

2

| ~B|2.

Introducing dynamic magnetic fields to the hydrodynamic experiments al-

lows for the study of the evolution of compound structures. The previous two

model equations presented in Section 2.1.1 and Section 2.1.2 were described by

a convex flux function, i.e., F 00(U) is strictly positive or negative. Their exact

solutions are described by a Riemann fan where constant states are connected

by single waves. The flux function for the ideal MHD equations is non-convex,

and consequently, constant states can be connected by compound waves, e.g. a

shock connected to the tail of a rarefaction wave [11].

2.2. Construction of flux-di↵erencing schemes

The goal of FVM’s is to numerically solve conservative systems as written

in Eq.(3) [12, 13, 14, 15]. When Godunov first pursued solving the gas dynamic

equations, he looked at the nonlinear flow in a 1D shock tube problem [16]. This

consists of a discontinuous jump between two constant states and allows for the

study of the evolution of two nonlinear waves (a shock and a rarefaction) and a

contact discontinuity. Correctly predicting the interaction and propagation of

nonlinear waves is the foundation of computational fluid dynamics.

Godunov approximated the flow by splitting the continuous profile into a

large number of constant states and assuming piecewise constant states as an

accurate solution at each cell. He immediately obtained cell edge values and

the initial conditions for the Riemann problem by taking the piecewise constant

7



solution at the cell boundaries. By solving the Riemann problem and averaging

the results in a conservative fashion, he computed the evolution of constant

states exactly.

Figure 2: Godunov’s discretization. A continuous profile is divided into a finite number of

cells. The cell averaged quantity is the new cell value and initial condition to the Riemann

problem.

Many high-order methods, such as the piecewise linear method (PLM) [17],

the piecewise parabolic method (PPM) [18], the piecewise cubic method (PCM)

[19], the weighted essentially non-oscillatory (WENO) methods [20, 21, 22, 23],

and Gaussian Processes [24], are constructed in a similar fashion to advance

cell-averaged quantities, ū
j

, and predict nonlinear dynamics.

2.2.1. Finite volume discretization

For systems defined on [x
0

, x
m

] for t > 0, the spatial domain is discretized

such that x
j

= x
0

+j�x for j = 0, . . . ,m, and the temporal domain is discretized

such that tn = n�t for n � 0. At t = 0, the system is defined as u(x, 0) = u
0

(x).

For t > 0, un

j

= u(x
j

, tn) is defined at the center of each cell I
j

= [x
j� 1

2
, x

j+

1
2
].

The following methods converge to a weak solution for a Courant number CFL <

1; and, the methods are stable, consistent, and have a conservative form if

the numerical solution converges to a weak solution of the conservation law

[12, 13, 15].

8



Consider a system with spatial discretization defining each cell value as the

cell-averaged quantity, ūn

j

. The control volume in the space-time domain is

defined as

[x
j� 1

2
, x

j+

1
2
]⇥ [tn, tn+1], (13)

and the cell-average quantity is obtained by integrating Eq.(3) over the control

volume,

ūn

j

=
1

�x

Z
x

j+1
2

x

j� 1
2

u(x, tn)dx. (14)

See the appendix for more details.

2.2.2. Reconstruction polynomials

This section will describe the formulation of a spatially monotonic recon-

struction polynomial,

p
j

(x) =
nX

k=0

c
k

(x� x
j

)k, (15)

defined uniquely at each cell and used to construct the cell interface values. The

degree of the polynomial, n, determines the spatial order of accuracy to be n�1.

The polynomial must satisfy two constraints: p
j

(x) must be monotonic on I
j

;

and the new left and right states u
j± 1

2
must lie between the neighboring volume-

averaged quantities, i.e. ūn

j�1

 un

j� 1
2
 ūn

j

and ūn

j

 un

j+

1
2
 ūn

j+1

. Once the

unique polynomial is determined, the cell edge nodal values un

j� 1
2
= p

j

(x
j� 1

2
)

and un

j+

1
2
= p

j

(x
j+

1
2
) are computed.

The leading constraint for the approximating polynomial is p̄n
j

= ūn

j

, where

p̄n
j

=
1

�x

Z
x

j+1
2

x

j� 1
2

p(x, tn)dx. (16)

By evolving integral quantities, Eq.(4) is constructed and the key property of

FVM’s is achieved. See the appendix for a more detailed derivation of a volume-

averaged quantitiy and Eq.(4).

An nth-order spatial reconstruction polynomial requires n constraints to

uniquely determine the n constants c
k

. In the third-order PPM, the constants

9



c
1

, c
2

, and c
3

in Eq.(15) are uniquely determined for the following conditions:

8
>>>><

>>>>:

1

�x

R
p
j

(x)dx = ūn

j

,

p
j

(x
j� 1

2
) = un

L,j

,

p
j

(x
j+

1
2
) = un

R,j

.

(17)

The approximate interface values, un

L;R,j

, are computed in a separate step which

constructs two fourth-order polynomials �± over four cells centered at x
j± 1

2
that

conserve cell average quantities.

�± =
3X

k=0

a±
k

(x� x
j± 1

2
)k (18)

The approximate left and right interface values are

un

L,j

= ��(x
j� 1

2
) = a�

0

and un

R,j

= �
+

(x
j+

1
2
) = a+

0

(19)

where

a±
0

=
1

2
(ūn

j�1+s

+ ūn

j+s

)� 1

6
(�ūn

j�1+s

��ūn

j+s

) (20)

with s = 0 for a�
0

and s = 1 for a+
0

. A complete derivation of the constants a
k

can be found in most modern FVM textbooks [18, 25].

A total variation diminishing (TVD) slope limiter is a tool used for pursuing

monotone preserving reconstruction profiles.

�TVDūn

j

= TVD
⇥
ūn

j+1

� ūn

j

, ūn

j

� ūn

j�1

⇤
(21)

In Section 4, new TVD methods are introduced and implemented to reduce

oscillations near slowly moving shocks. For completeness, the minmod slope

limiter and the original van Leer monotonized central di↵erence (MC) limiter

[26] are defined:

�TVDūn

j

=

8
><

>:

minmod
⇣

ū

n
j �ū

n
j�1

�x

,
ū

n
j+1�ū

n
j

�x

⌘
, minmod,

minmod
⇣

ū

n
j+1�ū

n
j�1

2�x

, 2
ū

n
j+1�ū

n
j

�x

, 2
ū

n
j �ū

n
j�1

�x

⌘
, MC limiter.

(22)

For two arguments, the minmod function returns zero if a new local extremum

is created (i.e. the left and right states are opposite signs), otherwise it returns

10



the value of lesser magnitude.

minmod(u
L

, u
R

) =

8
>>>><

>>>>:

u
L

if |u
L

| < |u
R

| and u
L

u
R

> 0,

u
R

if |u
R

| < |u
L

| and u
L

u
R

> 0,

0 if u
L

u
R

< 0.

(23)

2.2.3. Characteristic tracing

To achieve second-order accuracy in time, the edge values un

L;R,j

are ad-

vanced by �t/2 yielding u
n+

1
2

L;R,j

. This is done by averaging the solution over

[tn, tn+1], where the solution at tn+1 is calculated by tracing characteristics

back in time to the known solution at tn. The new temporally evolved and

spatially averaged values at the half-time step, u
n+

1
2

L;R,j

, will be used as the ini-

tial conditions to the Riemann problem to compute numerical fluxes F̂
n+

1
2

j± 1
2

in

Eq.(4).

Eq.(3) is rewritten as

@U

@t
+

@F

@U

@U

@x
= 0. (24)

Since the system is hyperbolic, by definition the Jacobian matrix @F

@U

can be

reduced to a diagonal matrix with real entries �(k) for each kth wave.

@F

@U
= R⇤L (25)

Eq.(25) is a singular value decomposition of the Jacobian matrix into the prod-

uct of R, a square matrix whose columns are the right eigenvectors ~r(k), ⇤, a

diagonal matrix consisting of the eigenvalues �(k), and L, a square matrix whose

rows are the left eigenvectors ~l(k). Let w(k)(x, t) be the kth wave characteristic

variable and kth entry of vector W . Then, the characteristic variables can be

written

W = R�1U = LU, (26)

and the conservative formulation is rediscovered by projecting w(k) to the con-

servative space,

u(x, t) =
mX

k=1

~r
k

w(k)(x, t). (27)

11



The eigenvector projection reduces the coupled nonlinear system to a decou-

pled system of linear advection equations in terms of the characteristic variables,

W
t

+ ⇤W
x

= 0. For each kth wave and each cell j, the problem reduces to

@w
(k)

j

@t
+ �

(k)

j

@w
(k)

j

@x
= 0. (28)

The eigenvalue �(k)

j

of the Jacobian matrix is the characteristic speed of the kth

wave at cell j.

The exact solution to the system of linear advection equations is a family of

characteristic lines. The solution to each equation is self-similar, i.e. w(x, t) =

w(x/t). Consequently, the characteristic line can be used to predict the solution

at future time as long as no shock emerges. The exact solution of the edge

value at the next time step, w(x
j+

1
2
, tn+1), is found by considering each kth

characteristic at tn that reaches the cell interface in time �t. As derived in

the appendix, the explicit solution for the mth component of the right half-time

step is

v
n+

1
2

R,j:m

=
X

k;�

(k)
j >0

1

�
(k)

j

�t

Z
x

j+1
2

x

j+1
2
��

(k)
j �t

~r
(k)

j:m

~l
(k)

j

· ~p
j

(x)dx. (29)

A similar solution exists for the left half-time step, and establishes the initial

conditions for the Riemann problem at each interface x
j± 1

2
.

2.2.4. The Riemann problem

After discretizing the domain and building reconstruction polynomials, the

dispersive flux term, F̂
di↵

, is calculated by solving the Riemann problem at

each cell boundary. The initial condition for the Riemann problem consists of

two states connected by a single jump satisfying the Rankine-Hugoniot jump

condition �F = S�U , which states the change in flux is proportional to the

change in state according to the shock speed S. At t = 0, the left half of the

domain takes constant value U
L

and the right half of the domain takes constant

value U
R

.

u(x, 0) =

8
><

>:

U
L

, x < 0

U
R

, x > 0
(30)
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The exact solution is a set of nonlinear waves and leads to a set of nonlinear

algebraic equations. Pursuing the exact solution at each cell interface is compu-

tationally expensive because it generally involves an iterative method. The orig-

inal first-order Godunov’s method computes the exact solution with U
L

= U
j

and U
R

= U
j+1

[16], and modern methods devise means of approximating the

nonlinear wave interaction.

For example, Roe’s method [27] finds an approximate Jacobian matrix,

Ã(U
L

, U
R

), to compute

F̂
di↵

= �1

2
Ã�U. (31)

The average Jacobian flux matrix must satisfy the following three conditions:

Ã has a set of real eigenvalues and right eigenvectors, and Ã(U,U) = @F

@U

, and

Ã is conservative across discontinuities, i.e.

F (U
R

)� F (U
L

) = Ã(U
R

� U
L

). (32)

The flux function of Roe is then defined as

F̂
di↵

= �1

2

X

k

l(k)|�(k)|r(k) · (U
R

� U
L

). (33)

On the other hand, Osher’s scheme [28, 29, 30] considers a path integral �

in state space uniquely determined by the Riemann problem,

F̂
di↵

= �1

2

Z
UR

UL

@F

@U
dU = �1

2

KX

k=1

.

Z

�

(k)

r(k)�(k)d↵(k) (34)

The initial condition of the characteristic variable w(k) determines the char-

acteristic variable ↵(k). The appropriate linear sum of ↵(k)’s rediscovers the

conservative form, i.e.

U
L

=
X

k

↵(k)r(k), U
R

=
X

k

�(k)r(k). (35)

The original Osher-Solomon method requires calculating solutions within each

characteristic field, and an additional sonic point for genuinely non-linear fields.

Dumbser and Toro [31] choose to integrate along a line segment  split at points

13



s
j

with appropriate weights w
j

according to a Gauss-Legendre quadrature rule

of size G. The e↵ectiveness of the universal Osher Riemann solvers given by

F̂
di↵

= �1

2

0

@
GX

j=1

!
j

|A( (s
j

))|

1

A (U
R

� U
L

). (36)

will be presented in Section 5. See appendix for more details on the construction

of Eq.(36).

3. Slowly moving shocks

Since it was first observed by Woodward and Collela in 1984 [1], many

practitioners have studied the error generated by slowly moving shocks. In this

section, I will address each of these case studies and build a working framework

to analyze the problem mathematically.

3.1. History

When presenting their construction of PPM [18], Woodward and Colella

observed low-amplitude post-shock oscillations were produced when the speed

of the shock became small relative to the upwind flow speed. In the compan-

ion paper, the authors presented a detailed discussion of strong-shock calcu-

lations using 2-dimensional di↵erence schemes for compressible hydrodynamics

[1]. Three approaches were proposed to address post-shock oscillations: in-

troducing artificial viscosity, using a linear hybridization of high- and low-order

accurate flux functions, and pursuing nonlinear solutions to Riemann’s problem.

The first approach smears the sharp shock over multiple cells by adding viscos-

ity and heat di↵usion to the system. In the second approach, using high-order

methods in smooth flows and low-order methods near discontinuities captures

a sharp discontinuity with minimal oscillations by utilizing the di↵usive prop-

erties of low-order methods. The authors stated that since the wavelength of

the oscillations are many cells wide, the error due to such oscillations cannot be

su�ciently dampened by the second approach. The third approach, pursuing

nonlinear solutions to Riemann’s problem, implies the use of Godunov’s method
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[16] and conservation laws. As discussed in Section 2.2, the use of interpolation

polynomials, characteristic tracing and approximate Riemann solvers is compu-

tationally complex. However, the authors showed that the explicit nonlinearity

of Godunov’s method can achieve accurate results for smooth flows and narrow

structures.

The next major study, conducted by Roberts [5], analyzed the internal struc-

ture of the discrete shock and discussed the discrepancy between the numerical

shock structure and the exact shock curve. Roberts examined performances of

the first order Godunov method, Roe’s flux function, and Osher’s flux function

in flows containing a slowly moving shock, or flows where the ratio of the shock

speed to the maximum wave speed in the domain is ⇠ 1/50. He claimed the

discrete shock solution must lie exactly on the shock curve in order to eradicate

the production of oscillations. He supported his argument by noting the success

of Osher’s flux function, a method that calculates the intercell flux by consider-

ing an integral path in phase space. Unlike the Roe or Godunov schemes which

recognize shocks if the Rankine-Hugoniot condition is satisfied, Osher’s scheme

is formulated in such a way that left and right states of a shock are connected

by a compound simple wave path. Therefore, through Osher’s formulation, no

two states are connected by a shock, more of the internal structure is preserved,

and the discrete shock structure lies closer to the Hugoniot curve. In the scalar

case, such as Burgers’ equation, there can be a 1-shock connecting the left and

right states. This satisfies Roberts condition for no oscillations, and as will be

seen in Figure 3, there are no upwind running waves produced at the slowly

moving shock.

Billet and Toro [4] addressed the loss of monotonicity behind slowly moving

shocks. They supported the previously constructed argument that the dissipa-

tion in Godunov’s scheme is proportional to the wavespeed. Near slowly moving

or nearly stagnant shocks, this speed is necessarily very small, and consequently,

there is insu�cient dissipation to remove the erroneous oscillations. Their pro-

posed solution is to identify the location of the slowly moving shock and in that

localized region use a low-order method. In order to identify the location of the
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slowly moving shock, Billet and Toro constructed a shock parameter G, which

will be defined in Section 3.2. Their explicit definition is useful for identifying

the locations of slowly moving shocks, but post-shock oscillations are not gen-

erated solely by slowly moving shocks. Rather, slower shocks produce longer

wavelength and larger amplitude oscillations. Similarly, it can be shown that

higher frequency oscillations are generated by increasing the grid resolution.

Focusing on slow or steady shocks in the Euler equations, Jin and Lui [6]

studied the e↵ects of unsteady numerical viscosity. Their analysis emphasized

the initial spike in the momentum profile and the upwind running waves that

carry mass to compensate for the spike and conserve momentum. It is noted

that the periodicity of the momentum peaks are related to the solution of a

traveling wave and the time it takes for the shock to cross a grid cell. The shock

profile is not continuously defined within each period and is unsteady. The

authors pointed to this as the source of downstream waves and the polluted

solution for all future time. They proposed the use of systematically monotone,

TVD, or essentially non-oscillatory methods.

Arora and Roe [3] studied post-shock oscillations by comparing the perfor-

mance of the first order Godunov method, Roe’s flux function, and Osher’s flux

function. They determined that a period of a slowly moving shock’s oscillations

are approximately equal to the time T it takes for the shock to cross a cell

T =
�x

|S| , (37)

where �x is the size of the mesh spacing and S is the speed of the shock. The

wavelength of the oscillation is �
0

=
����x

S

�� where � is the speed of the wave

carrying downwind oscillations. Clearly, decreasing the shock speed will increase

the wavelength of the error. A change in sign of the wavespeed associated

with the shock will necessarily expose the strength of the weaker waves not

associated with the shock. However this does not restrict the error to such

flows; they observed that fast shocks exhibited the same error with much smaller

e↵ects. The authors claimed the root cause of the error is that numerical schemes

solving the Riemann problem produce a full set of multiple waves of non-zero
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strength, all of which contribute wave properties (i.e. oscillations) that travel

with di↵erent non-zero wave speeds. However, a mathematically valid solution

should require only a single shock wave moving between the left and right states

of the shock along the Hugoniot curve, which is not the case for general nonlinear

systems. According to the authors’ argument, systems with linear or monotone

Hugoniot curves will not produce oscillations. The authors concluded that there

is no complete cure to the problem, and proposed the Osher flux function as

one suitable means of reducing the error.

Karni and Canic [2] study the modified equations of two first-order finite

di↵erence methods displaying di↵erent behaviors in phase space and in the

post-shock region. The first method experiences vanishing viscosity near the

discontinuity at which point lower order terms get activated as they are compa-

rable in strength. This approach disrupted the solution and was not successful.

The better behaved second method was considered as a traveling wave solu-

tion to a modified equation of the numerical scheme. While there was a close

agreement between the numerical orbit of a fast shock and the traveling wave

solution, the numerical orbit of a slow shock did not display the same proper-

ties. It was found to have a low order source term inside the shock layer. This

term projected a perturbation onto the cross characteristic wave families, where

solutions to the fast shock remained tangent to the shock characteristics.

Stiriba and Donat observed noise in the first time steps of a shock calculation

and the immediate deviation of the numerical orbit from the Hugoniot curve

[9]. This is a result of the solution of the Riemann problem generating a full

set of waves in all characteristic fields within the shock layer. The authors

achieved a first-order accurate scheme by considering the local propagation of

characteristics in the construction of an intermediate state to be used in the flux

function. By building a flux function in such a fashion, the authors successfully

dampened post-shock oscillations.

Sikolis et. al. [8, 32] investigated the discrete shock structure computed by

a variety of high resolution shock capturing schemes. While they successfully

eliminated first-order error in a 2⇥ 2 system by introducing a viscosity matrix,
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they did not claim to have built a robust solution for future slowly moving

shock capturing schemes. They studied the modified equation derived through

Taylor series expansions, and as was observed in earlier studies, the phase plots

of the modified equations at a slow shock deviated significantly from the exact

shock curve. Because they observed di↵erent behavior in post-shock regions for

modified equations with similar phase plots, the authors suggested that studying

numerical phase space orbits is not the best tool for addressing discrete shock

structures.

The most recent study of slowly moving shocks by Johnsen et. al. [7, 33, 34]

described means of controlling the artificial viscosity coe�cients to ensure suf-

ficient numerical dissipation. The error was divided into two types: a start-up

error associated with the initial momentum spike, and the subsequent unphys-

ical post-shock oscillations. The authors reduced downstream oscillations by

enforcing a lower limit on the wavespeed associated with the wave crossing the

shock and reduced the e↵ect of cross characteristic waves perturbing the solu-

tion. Bounding the wavespeed is a powerful technique for introducing di↵usion

to the numerical scheme [10].

3.2. A formal definition

In this section a formal definition is presented for the existence of a slowly

moving shock based on a shock parameter comparing upwind and downwind

characteristics associated with the shock. The definition was introduced by

Billet and Toro [4].

A k-shock exists between the left state u
j

, and right state u
j+1

, if the shock

speed is intermediate to the eigenvalues, in the following fashion:

�
(k)

j+1

< S < �
(k)

j

, and (38)

�
(k�1)

j

< S < �
(k+1)

j+1

. (39)

Let �
L

= �
(k)

j

and �
R

= �
(k)

j+1

, then for a wave with a k-shock and positive

shock speed S > 0:

1 >
S

�
L

>
�
R

�
L

⌘ G. (40)
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And for a wave with a k-shock and negative shock speed S < 0:

1 >
S

�
R

>
�
L

�
R

⌘ G. (41)

The shock parameter G is defined as

G ⌘ �
downwind

�
upwind

(42)

and a slowly moving shock exists between the left and right state if G < 0.

This is a strict definition that is rarely met in numerical experiments, and

fortunately, unnecessary to meet in order to study post-shock oscillations. In-

stead of enforcing G < 0, previous studies restrict the shock parameter to G ⌧ 1

for identifying slowly moving shock regions [33]. This restriction satisfies a sim-

ilar definition stated by previous studies, i.e., a slow shock exists if the ratio of

shock speed to maximum wave speed is close to zero or negative [3, 5].

4. Modern slope limiters

The literature has mixed reviews on the e↵ectiveness of high-order accu-

rate TVD slope limiters for reducing post-shock oscillations. Roberts [5] and

Jin & Lui [6] claim the use of TVD concepts accentuate the error. Roberts

demonstrated that the use of the ‘minmod’ slope limiter preserves the down-

stream oscillations for a longer distance. More importantly, he argued the TVD

property only applies to scalar equations and is completely dependent on the

underlying low-order scheme being truly monotone. In contrast, Striba & Do-

nat [9] argued that high-order schemes using TVD and ENO logic to extend

low-order methods do not necessarily amplify or preserve the oscillations. They

implemented an ENO piecewise polynomial reconstruction [35] and achieved

similar results to Roberts and Jin & Lui. In another simulation employing the

piecewise hyperbolic method, an extension of an ENO-type reconstruction in-

troduced by Marquina [36], the author saw a significant improvement in the

treatment of post-shock oscillations. They concluded the use of TVD and ENO

methods do not necessarily amplify or preserve the oscillations.
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In this section, an upwind-biased slope limiter [37] and a new slope limiter

that calculates a fourth-order approximation of the slope are introduced. The

two methods define the flux limiter �TVD formulation to be used in the PPM

construction of the left and right Riemann states, i.e. (u
L

, u
R

). In PPM, the

pair (u
L

, u
R

) is given as Eq.(43), which are fourth-order accurate interface values

and used in the Riemann problem to compute upwind fluxes.

u
L

=
1

2
(ū

j�1

+ ū
j

) +
1

6
(�TVDū

j�1

��TVDū
j

)

u
R

=
1

2
(ū

j

+ ū
j+1

) +
1

6
(�TVDū

j

��TVDū
j+1

)
(43)

Here, �TVD is any conventional slope limiter such as MC, minmod, or van Leer.

The first method studied is an upwind-biased slope limiter [37]. This scheme

places greater emphasis on upwind information in an attempt to maximize the

strength of the shock characteristic and minimize the strength of the downwind

running characteristic families. The second slope limiter considers a high-order

approximation of the slope at the shock using WENO-type logic. This method

considers a fourth-order approximation of the slope derived during the construc-

tion of the piecewise cubic method [19], a fourth-order reconstruction method.

4.1. Upwind-biased slope limiter

The post-shock oscillations are a product of upwind running waves of non-

vanishing strength that are not associated with the shock wave. To reduce

the strength of these waves, Lee favored upwind information in slope limiting

calculations [37]. The upwind-biased slope limiter formulation is as follows:

�upu
i

=

8
>>>><

>>>>:

�TVDu
i�1

, if u
x

> 0,

�TVDu
i

, if u
x

= 0,

�TVDu
i+1

, if u
x

< 0.

(44)

The new upwind-biased slope limiter is employed locally at cells that are tagged

as slowly moving shock cells. A cell is detected as a slowly moving shock if there

is a change in sign of the eigenvalue associated with the shock wave across either

of the cell boundaries of the jth cell. At cell j, define �SL

j

as the characteristic
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speed of the left-going shock and �SR

j

as the characteristic speed of the right-

going shock. Then, upwinding is implemented if any of the three following

conditions are met:

1. �SR

j�1

> 0 and �SL

j+1

< 0, or (45)

2. �SR

j�1

> 0 and �SL

j

< 0, or (46)

3. �SR

j

> 0 and �SL

j+1

< 0. (47)

Numerically speaking, one of these conditions is met so long as the solution is

not a pure rarefaction wave. As illustrated in the Section 5, introducing this

bias increases numerical dissipation and reduces the strength of the oscillations.

4.2. WENO-type slope limiter

PCM [19] can be thought of as an extension of combining PPM and WENO-

JS [21]. The method yields a fourth-order accurate method by considering a

cubic piecewise reconstruction polynomial on each cell. In order to determine

the unique reconstruction polynomial at each cell, an additional constraint is

required to calculate the constant c
3

in the third-degree polynomial

p
j

(x) = c
0

+ c
1

(x� x
j

) + c
2

(x� x
j

)2 + c
3

(x� x
j

)3. (48)

As shown in [38], the constant is determined to be

c
3

=
4

�x3

�
u
R,j

� u
L,j

��xu0
c,j

�
, (49)

where the left and right Riemann states, u
R,j

and u
L,j

, are determined using

the standard WENO build [35, 20, 39, 23], which achieves fifth-order accurate

spatial reconstruction with sharp shock transitions. The undetermined value,

u0
j

, is a fourth-order accurate approximation of the slope at cell j and a natural

link to constructing a new slope limiter.

AWENO-type reconstruction method is used to approximate u0(x
j

, tn). The

process begins with building two third-degree polynomials defined on a five point

stencil centered around cell j:

�±(x) =
3X

k=0

a±
k

(x� x
j± 1

2
)k. (50)
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The constants a±
k

are determined by maintaining volume averaged quantities

on each cell as written in Eq.(51) and Eq.(52), and uniquely determine the

polynomials �±.

1

�x

Z

Ik

��(x)dx = ūn

k

, for j � 2  k  j + 1 (51)

1

�x

Z

Ik

�
+

(x)dx = ūn

k

, for j � 1  k  j + 2 (52)

Taking their derivatives and the linear constant weights �± = 1/2 provides a

scheme for the construction of the approximate derivative,

u0
j

= ���
0
�(xj

) + �
+

�0
+

(x
j

), (53)

however linear weights produce oscillatory behavior. To achieve a non-oscillatory

scheme, nonlinear weights w± are computed based on the smoothness of polyno-

mials �± over their respective four cell stencils. See [20] for details of derivations

of the linear and nonlinear weights.

The smoothness indicators �± are defined as

�± =
3X

s=2

 
�x2s�1

Z

Ij


ds

dxs

�±(x)

�
2

dx

!
. (54)

The nonlinear weights are then defined as

w± =
w̃±

w̃� + w̃
+

(55)

where

w̃± =
�±

(✏+ �±)m
, for WENO-JS (56)

w̃± = �±

✓
1 +

✓
|�

+

� ��|
✏+ �±

◆
m

◆
, for WENO-Z. (57)

Here, ✏ is a very small positive number introduced to eliminate the chance of

dividing by zero. In smooth flows, �’s are small and the nonlinear weights are

equivalent to the linear weights. Flows with sharp discontinuity produce large

�’s, and the nonlinear weights approach zero so long as the other polynomial is

relatively smooth.
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A linear combination of candidate slopes is considered in Eq.(58) and the

weight to each is a nonlinear function of the grid values based on local smooth-

ness determined by Eq.(54). The fourth-order accurate approximation of the

slope u0
j

is

u0
j

= w��
0
�(xj

) + w
+

�0
+

(x
j

). (58)

An undivided slope limiter is constructed based on the approximate slope in

Eq.(58):

�wenou
j

⇡ �x
@u(x

j

, tn)

@x
j

⇡ �xu0
j

. (59)

In Section 5, the performance of the WENO-type slope limiter in the HD

slow shock experiment and in the Brio-Wu MHD shock tube is demonstrated.

It achieves accurate solutions similar to the slope limiters of minmod, MC, and

van Leer, but with greater computational complexity.

5. Results

In this section numerical experiments and results are presented. A variety

of experiments for hydrodynamics and magnetohydrodynamics are performed

in which the codes ability to capture smooth and discontinuous flows is tested.

Upwinding with PPM [18] and the universal Osher Riemann [31] solver will

be compared with the fifth-order WENO-Z method [23] computed with RK4

temporal advancement to provide an accurate solution in space and time. A

courant number of CFL = 0.8 was used in all of the simulations.

5.1. Burgers’ equation

The first numerical experiment considers a left-going slowly moving shock

in the Burger’s equation. This experiment was designed by Billet and Toro [4]

to produce a shock with speed S = �0.02.

u =

8
><

>:

0.96 if x < 0.5,

�1.0 if x > 0.5
(60)
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For scalar equations, any two states U
L

and U
R

can be connected by a sin-

gle wave. Consequently, internal shock points are computed exactly and no

downstream running waves pollute the solution, as is the case with systems of

equations. This is demonstrated in Figure 3.

Figure 3: The slowly moving shock problem for the scalar Burger’s equation at t = 0.2 using

PLM with the MC slope limiter. The numerical solution is plotted with the analytic solution.

5.2. Hydrodynamics

5.2.1. Sod’s shock tube

Sod’s shock tube problem [40] is studied to observe the numerics ability to

capture a shock, rarefaction, and contact discontinuity. This problem sets up

an initial left and right state with high density and pressure on the left half of

the domain.

(⇢, u, p) =

8
><

>:

(1, 0, 1) if x < 0.5,

(0.125, 0, 0.1) if x > 0.5
(61)

The experiment takes outflow boundary conditions, a ratio of specific heats

� = 1.4, and is observed at t = 0.2. As illustrated in Figure 4, a shock,

rarefaction, and contact discontinuity evolve from the initial boundary of the
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two states. Figure 4b shows a zoom-in on the oscillations behind the right-

running contact discontinuity. Upwinding and the WENO-type slope limiter

accurately capture the physics and may lead to an improved solution.

(a) (b)

Figure 4: Sod’s shock tube problem at t = 0.2 computed with PPM on a grid size of N =

128. (a) Density and Mach number are plotted for the Roe and Osher Riemann solvers with

and without upwinding. (b) A zoom in on the shock front in the density profile exposes

minor oscillations are produced behind the contact discontinuity. The WENO-Z with RK4

experiment was calculated on a grid size of N = 2048 and is a close approximation to the

analytic solution.

5.2.2. The Shu-Osher problem

The next numerical test is the Shu-Osher problem [41]. This problem consists

of initializing a Mach 3 shock wave at �4.0 on the domain [�4.5, 4.5]. As the

shock propagates across the domain it encounters small sinusoidal perturbations

in a nearly constant density field. Two post-shock wave sets are produced with

one set having twice the frequency of the other. The experiment takes a ratio

of specific heats of � = 1.4 and outflow boundary conditions, and is observed at

t = 1.8.

(⇢, u, p) =

8
><

>:

(3.8571, 2.6293, 10.3333) if x < �4.0,

(1 + 0.2 sin(5x), 0, 1) if x > �4.0
(62)

The results for Roe, Roe with upwinding, Osher, and Osher with upwinding

are computed with PPM and the MC slope limiter on a a grid size of N = 256.
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The results for WENO-Z with RK4 are computed with the MC slope limiter

on a grid size of N = 2048. As illustrated in Figure 5, upwinding has little

e↵ect on the code’s ability to capture the shock and high-frequency density

perturbations.

(a) (b)

Figure 5: The Shu-Osher problem at t = 1.8. The experiments are computed with PPM and

MC slope limiter on N = 256 and compared to WENO-Z with RK4 on N = 2048.

5.2.3. Two-blast

By creating a pocket of low pressure between two regions of high pressure,

the two-blast experiment produces strong shocks and discontinuities [1].

(⇢, u, p) =

8
>>>><

>>>>:

(1, 0, 1000) if x < 0.1

(1, 0, 0.01) if 0.1 < x < 0.9,

(1, 0, 100) if x > 0.9

(63)

In Figure 6, the results for upwinding in the HLL and universal Osher Riemann

solvers at t = 0.38 are presented. It is evident the Osher solver out performs the

HLL solver, however, upwinding does not necessarily achieve a more accurate

solution. The density spike at x = 0.8 is closer to the high-resolution WENO-Z

solution, but the solvers without upwinding maintain a sharper spike at x =

0.65. It is expected that the low-resolution experiments do not maintain as

sharp of peaks as the WENO-Z solution in Figure 6.
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(a) (b)

Figure 6: The two-blast problem at t = 0.038. The HLL and Osher Riemann solvers are used

in conjunction with the MC slope limiter with a grid size of N = 128. The high-resolution

solution was computed with the HLLC Riemann solvers with the MC slope limiter on a grid

size of N = 1024.

5.2.4. Slow shock problem

The following slow shock experiment, introduced by Roberts [5] and repeated

by Billet & Toro [4], is designed to produce a left-running slow shock with

speed S = �0.03. The right state is obtained from the Rankine-Hugoniot jump

condition and by enforcing a = 1.0 across the domain.

(⇢, u, E) =

8
><

>:

(1, 3, 6.2858) if x < 0.5

(9.4864, 0.2446, 17.2238) if x > 0.5
(64)

The experiment takes outflow boundary conditions and a ratio of specific heats

� = 1.4, and is observed at t = 0.1. In Figures 7a and 7c, large amplitude

oscillations are seen behind the slowly moving shock front in density, velocity,

and pressure. Once upwinding is applied, there is successful dissipation of the

error in all three state variables as evident in Figure 7b and Figure 7d. The

performance of the WENO-type slope limiter is demonstrated to be comparable

to standard TVD slope limiting methods in Figure 8. It is further illustrate in

Figure 9 that upwinding e↵ectively introduces numerical dissipation in regions

of slowly moving shocks and achieves a more accurate solution.
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(a) (b)

(c) (d)

Figure 7: The slowly moving shock problem for the full Euler equations at t = 0.1. The

solution for (a) Roe, (b) Roe with upwinding, (c) Osher, and (d) Osher with upwinding are

computed on a grid size of N = 128 with PPM and the MC slope limiter. These results are

compared to WENO-Z computed with RK4 on a grid size of N = 2048.
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(a) (b)

Figure 8: (a) The performance of the WENO-type slope limiter is presented in the hydrody-

namics slow shock experiment with PPM and Roe on a grid size of N = 256. (b) A zoom-in

on the oscillations in pressure for the slope limiters of WENO-type, MC, minmod, and van

Leer exposes a shift in the location of the oscillations for the new slope limiter.

5.3. Magnetohydrodynamics

5.3.1. MHD shock tube

Next, a simple MHD shock tube experiment introduced by Ryu et. al. [11]

is studied to confirm our codes ability to capture all MHD wave structures. The

initial conditions are

(⇢, u
x

, u
y

, u
z

, B
y

, B
z

, p) =

8
>>>>>>>><

>>>>>>>>:

(1.08, 1.2, 0.01, 0.5, 1.01554, 0.564189, 0.95)

if x < 0.5,

(1, 0, 0, 0, 1.128379, 0.564189, 1)

if x > 0.5.

(65)

The experiment takes a ratio of specific heats � = 1.6666 and is observed at

t = 0.2. Figure 10 shows the presence of a contact discontinuity, left- and

right-going fast shocks, and left- and right-going slow shocks. It is interesting

to note upwinding does not maintain as sharp of features, rather, it e↵ectively

introduces more artificial viscosity.
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Figure 9: A zoom-in on the oscillations in the hydrodynamics slow shock experiment observed

at t = 0.1. The experiments were computed with the universal Osher Riemann solvers on a

grid size of N = 128 with the MC slope limiter (green and blue) and the WENO-type slope

limiter (red). The high-resolution solution is computed with WENO-Z, RK4, and a grid size

of N = 2048.
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(a) (b)

(c) (d)

Figure 10: The MHD shock problem at t = 0.2. Solutions are computed with the Riemann

solvers of (a) Roe, (b) Roe with upwinding, (c) Osher, (d) Osher with upwinding. PPM

and the MC slope limiter are used on a grid size N = 128. The high-resolution solution is

computed with WENO-Z and RK4 on a grid size N = 2048.
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5.3.2. Brio-Wu MHD shock tube

The Brio-Wu shock tube problem [42] is studied to test the numerics ability

to capture compound structures and reduce oscillations near a slowly moving

shock in MHD. The initial Riemann problem has the left and right states

(⇢, u
x

, u
y

, u
z

, B
y

, B
z

, p) =

8
><

>:

(1, 0, 0, 0, 1, 0, 1) if x < 0.5,

(0.125, 0, 0, 0,�1, 0, 0.1) if x > 0.5.
(66)

The experiment takes a ratio of specific heats � = 2.0 and is observed at t = 0.1.

Advancing the numerical solution produces a fast rarefaction, a slow compound

wave, a contact discontinuity, and a slowly moving shock with shock speed

S ⇡ �0.3. As seen in Figure 11, erroneous oscillations pervade the solution for

the Roe and Osher Riemann solvers computed with PPM and the MC slope

limiter on a grid size N = 128. The error is reduced when computing the slope

limiters with an upwind bias. See Figures 11b, 11d, and 12.

By changing the strength of the tangential magnetic field component B
y

,

the speed of the right-going shock is changed. It is evident from Figure 13 that

the size of the oscillations are a function of the shock speed. As the tangential

magnetic field strength increases from zero to one and the shock speed decreases,

the oscillations increase in amplitude and wavelength.

In Figure 14a, the WENO-type slope limiter’s ability to capture MHD

physics is demonstrated. Its performance in slowly moving shock regions is

comparable to the slope limiters of minmod, MC, and van Leer as illustrated in

Figure 14b.

6. Discussion

6.1. Study in phase space

An e�cient means of studying the numerics ability to capture the true

physics is through a study in phase space. In this section, the numerical so-

lution of the isothermal Euler equations is compared to the exact shock curve
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(a) (b)

(c) (d)

Figure 11: The Brio-Wu MHD shock tube problem at t = 0.1. The solutions for (a) Roe, (b)

Roe with upwinding, (c) Osher, and (d) Osher with upwinding are computed on a grid size

N = 128, and compared to WENO-Z with RK4 computed on a grid size of N = 2048.
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Figure 12: The Brio-Wu shock tube problem. A zoom in on the oscillations in Mach number.

The experiment used a grid size of N = 256.

(a) (b)

Figure 13: Mach number for the Brio-Wu MHD shock tube problem with varying B
y

. The

solution for (a) Osher, (b) Osher with upwinding are computed with PPM and MC slope

limiter on a grid size of N = 400. As the transverse magnetic field strength is increased, the

shock speed decreases and the oscillations become more severe.
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(a) (b)

Figure 14: (a) The performance of the WENO-type slope limiter is presented in the Brio-Wu

shock tube problem with PPM and Roe on a grid size of N = 256. (b) A zoom-in on the

oscillations in Mach number for the WENO-type, MC, minmod, and van Leer slope limiters.

determined by the Hugoniot locus. The Hugoniot locus is constructed by con-

sidering the set of equilibrium states that can be connected to an adjacent state

by a discontinuity satisfying the Rankine-Hugoniot jump condition.

The Rankine-Hugoniot jump condition states the change in flux is propor-

tional to the change in state with the constant of proportion being the shock

speed. Fixing u
L

2 RN and parameterizing the solution u
R;k

(c;u
L

), such that

u
R;k

(0;u
L

) = u
L

, results in a set of N equations with N +1 unknowns: u
R

and

S. In the case of a linear flux function, the kth wave family has a jump u
R

�u
L

that is a scalar multiple of the kth right eigenvector, and the shock speed is the

kth characteristic speed.

u
R;k

(c;u
L

) = u
L

+ cr
k

(67)

s
k

(c;u
L

) = �
k

(68)

These solution curves are lines that connect the left and right states by a 1-

shock.

A solution to nonlinear systems is pursued in the same fashion. The Rankine-

Hugoniot jump condition,

f(u
R;k

(c;u
L

))� f(u
L

) = s
k

(u
R;k

(c;u
L

)� u
L

), (69)
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is di↵erentiated with respect to constant the c, and then c is set equal to zero:

f 0(u
R;k

(0;u
L

))u0
R;k

(0;u
L

)� 0 = s
k

(u
R;k

(0;u
L

)� 0) (70)

=) f 0(u
L

)u0
R;k

(0;u
L

) = s
k

u0
R;k

(0;u
L

). (71)

Eq.(71) shows u0
R;k

(0;u
L

) is the kth eigenvector of the Jacobian matrix f 0(u
L

),

and the shock speed is the kth eigenvalue. This means the solution curve

u
R;k

(c;u
L

) is tangent to r
k

(u
L

) at the left state. It can be shown the solu-

tion curves exist in a neighborhood around u
L

and the functions u
R;k

and s
k

are smooth if the flux function is smooth [43, 44]. If a solution u
R;k

(c;u
L

) lies

on the kth Hugoniot curve through u
L

, a k-shock is present.

As described in Section 2.1.2, the full Euler equations can be reduced to the

isothermal Euler equations by setting � ⇡ 1. This allows for the study of the

internal dynamics of the slowly moving shock in the density-momentum phase

space. Let momentum be denoted as m = ⇢u, and apply the Rankine-Hugoniot

jump condition to the isothermal Euler equations to get two solution curves:

m
R

�m
L

= s(⇢
R

� ⇢
L

) (72)
✓
m2

R

⇢
R

+ a2⇢
R

◆
�
✓
m2

L

⇢
L

+ a2⇢
L

◆
= s(m

R

�m
L

) (73)

=)

8
><

>:

m
R

= ⇢RmL

⇢L
± a
q

⇢R

⇢L
(⇢

R

� ⇢
L

)

s = mL
⇢L

± a
q

⇢R

⇢L
.

(74)

The Hugoniot locus is determined by evaluating the first equation at a set of

points ⇢
R

between the known left and right density values.

In Figure 15, phase plots for the Roe, Osher, and HLLC Riemann solvers

with and without upwinding are presented. One interesting feature is the cluster

of points near the right state associated with the upwind oscillations. Unlike

the numerical orbit near the downwind state u
L

, the numerical orbit at the

upwind state u
R

deviates significantly from the Hugoniot curve for all numerical

flux functions. This is a result of small cross characteristic waves influencing

the solution in slowly moving shock regions where the shock characteristic is
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necessarily small. Note that once the upwind-biased slope limiter is implemented

the disturbance at the upwind state reduces in size.

In Figure 16, the phase plots for the MC, minmond, van Leer, and WENO-

type slope limiters are presented. The numerical orbits for the three standard

slope limiters are very similar to each other and the exact shock curve, while

the WENO-type slope limiter deviates significantly from the common structure.

Based on the numerical tests where there is a shift in the oscillations computed

by the new slope limiter, (see Figure 8 and Figure 14) this is not surprising.

6.2. Roberts’ argument for a single zone shock layer

Consider the discrete profile of a shock. In order to not produce noise in the

solution, all but the shock wave family should vanish in the upwind direction

within the discrete shock profile. If more than a shock wave connects the left

and right state, then the internal zone of the shock will not move tangent to

the shock curve H(U
L

;U
R

). Since approximate Riemann solvers generate a full

wave solution, shock regions are polluted by cross characteristic information.

Roberts [5] recognized the equation of the shock curve passing through U
R

in state space must satisfy H(U ;U
R

) = 0. Using the Godunov flux function

F̂ =
1

2
(F

R

+ F
L

)� 1

2
(�F+ ��F�), ) (75)

where �F± is the exact solution to the Riemann problem, he calculated the

di↵erence between the post-shock region and the shock front.

�Un

j

= Un+1

j

� Un

j

=
�t

�x

h
F̂n

j+

1
2
� F̂n

j� 1
2

i
(76)

If a point Un

j

in the shock front lies on the shock curve, then it is required

that H(U j

n

;U
R

) = 0. And consequently, the projection of the gradient of the

Hugoniot curve onto the change in state across the shock must be zero.

r
U

H(Un

j

;U
R

) · �Un

j

= 0 (77)

Eq.(77) can be rewritten with the Godunov flux function as

r
U

H(Un

j

;U
R

) · (�F�
j+

1
2
+�F+

j� 1
2
) = 0. (78)
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Phase plots of the internal shock structure of the slowly moving shock experiment

in hydrodynamics using (a) Roe, (b) Roe and upwinding, (c) Osher, (d) Osher and upwinding,

(e) HLLC, and (f) HLLC and upwinding.
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(a) (b)

(c) (d)

Figure 16: Phase plots of the internal shock structure of the slowly moving shock experiment

in hydrodynamics. Discrete shock curves are shown for the (a) MC, (b) minmod, (c) van Leer,

(d) and WENO-type slope limiters.
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The condition in Eq.(78) is dependent on the upwind value Un

j�1

, which then

e↵ects the internal shock structure. Roberts appropriately concluded no single

zone shock layer may satisfy Eq.(77).

Consider a shock with one transition zone Un

j

with left and right states

U
L

= Un

j�1

and U
R

= Un

j+1

. Following Roberts’ argument there can be no

downwind running waves at x
j+

1
2
or upwind running waves at x

j� 1
2
. Eq.(78)

reduces to

r
U

H(Un

j

;U
R

) · (F
R

� F
L

) = 0, (79)

where F
R

= F (U
R

) and F
L

= F (U
L

). Considering the jump relation �F =

S�U , the required relationship for no oscillations as stated in Eq.(79) is equiv-

alent to

r
U

H(Un

j

;U
R

) · (U
R

� U
L

) = 0. (80)

The shock curve must remain tangent to the di↵erence between the left and

right states of the shock to achieve an accurate solution. Since the Riemann

problem returns a full wave solution dependent on a stencil of cells exceeding

the shock region, this will not be the case for systems of equations.

6.3. Monotonicity check

The performance of upwinding is dependent on the inclusion of an additional

monotonicity check during the construction of the interpolation polynomial.

The check, enforced before the final computation of initial Riemann states in

Eq.(20), takes the form:

u
L

= min(max(u
i

, u
i�1

),max(min(u
i

, u
i�1

), u
L

)) (81)

u
R

= min(max(u
i

, u
i+1

),max(min(u
i

, u
i+1

), u
R

)) (82)

This condition ensures the left and right Riemann states do not create a new

extremum. As depicted in Figure 17, not including this monotonicity check

diminishes the upwind-biased slope limiter’s ability to reduce the oscillations

produced by slowly moving shocks.

The exact role of the monotonicity check needs further investigation. In the

2-dimensional Sedov explosion including the check exaggerates an instability
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Figure 17: The hydrodynamics slow shock experiment computed with upwinding and without

a necessary monotonicity check. The solution is computed with PPM, Roe, and MC slope

limiter on a grid size of N = 128. Without the additional check a spike forms at the shock

front.

that results from solving a spherical problem in cartesian coordinates known

as the carbunkle instability. In Figure 18a the Sedov explosion is computed

without the monotonicity check, and in Figure 18b it is computed with the

monotonicity check. In the latter image symmetric features appear along the

x-axis and y-axis due to lack of numerical di↵usion along the axes. It has been

shown that adding numerical di↵usion to experiments that exhibit the carbunkle

instability can remove the problem [45].

7. Conclusion

The Rankine-Hugoniot jump condition determines the set of equilibrium

points that may exist connecting two states provided a flux function and shock

speed. In the case of a scalar equation, two adjacent states are connected exactly

by a single wave. In the case of a system of equations, the shock speed changes

nonlinearly within the shock zone. Fast shocks move across multiple grid cells in

a single time step, so the error produced by discretizing a shock is not prevalent.

In contrast, shocks that take multiple time steps to cross a grid cell produce
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(a)

(b)

Figure 18: The Sedov explosion experiment at time t = 0.1 on a logarithmic scale (a) without

the monotonicity check and (b) with the monotonicity check. The solution is computed with

PPM, Roe Riemann solvers, MC slope limiter, and a grid size of N
x

= 256 and N
y

= 256.
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large unphysical oscillations. As demonstrated in this report, current numerical

methods do not intelligently capture the nonlinear internal shock structure.

The numerics studied here provide an improvement to the problem with little

additional computational cost. The hybridized upwind-biased slope limiter for

PPM [37] is applied to drastically reduce the oscillations produced near slowly

moving shocks. It is demonstrated that the universal Osher Riemann solvers [31]

perform as well as the Riemann solvers of Roe in smooth flows and moderately

better in regions of slow shocks. A WENO-type slope limiter was developed

based on a high-order approximation of the slope used in the construction of

PCM [19]. Due to computational complexity, the new slope limiter is not deemed

the most appropriate solution to the problem.
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8. Appendix

8.1. Construction of discrete conservative form

Define a control volume in the space-time domain as [x
j� 1

2
, x

j+

1
2
]⇥ [tn, tn+1]

and integrate Eq. (3) over a control volume.

0 =

Z
x

j+1
2

x

j� 1
2

Z
t

n+1

t

n

u
t

(x, t)dtdx+

Z
x

j+1
2

x

j� 1
2

Z
t

n+1

t

n

(f(u(x, t)))
x

dtdx (83)

0 =

Z
x

j+1
2

x

j� 1
2

u(x, tn+1)dx�
Z

x

j+1
2

x

j� 1
2

u(x, tn)dx (84)

+

Z
t

n+1

t

n

(f(u(x
j+

1
2
, t)))

x

dt�
Z

t

n+1

t

n

(f(u(x
j� 1

2
, t)))

x

dt (85)

Define a cell-average as

ūn

j

=

Z
x

j+1
2

x

j� 1
2

u(x, tn)dx. (86)

and the average flux of u across the right cell-interface for tn  tn+1 as

Fn

j+

1
2
=

1

�t

Z
t

n+1

t

n

f(u(x
j+

1
2
, t))dt. (87)

Substituting these into Eq. (85) discovers the discrete conservation law.

ūn+1

j

= ūn

j

� �t

�x

h
Fn

j+

1
2
� Fn

j� 1
2

i
(88)

8.2. Half-time step computation

Compute the half-time step advancement of anmth reconstructed component

v
i:m

on I
i

at edges x = x
i+

1
2

v
n+

1
2

R,j:m

=
1

�t

Z
t

n+1

t

n

p
j

(x
j+

1
2
)dt (89)

=
X

k

1

�t

Z
t

n+1

t

n

r
(k)

j:m

w
(k)

j

(x
j+

1
2
, t)dt (90)

=
X

k

1

�t

Z
t

n+1

t

n

r
(k)

j:m

l
(k)

j

· p
j

(x
j+

1
2
� �

(k)

j

(t� tn))dt (91)

=
X

k;�

(k)
j >0

1

�
(k)

j

�t

Z
x

j+1
2

x

j+1
2
��

(k)
j �t
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Consider the integrand of the last line.
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Integrate the first term of the last line:
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Then, integrate the second term:
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And define �w
(k)
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(98)
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(100)

8.3. Construction of universal Osher Riemann solvers

For completeness and motivation the standard Osher-Solomon Riemann

solvers [28, 29] formulation is constructed. Assume flux splitting

F (U) = F+(U) + F�(U), (101)
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where the positive flux function has a Jacobian matrix with positive eigenvalues

and the negative flux function has a Jacobian matrix with negative eigenvalues.

A+(U) =
�F+(U)

�U
, and A�(U) =

�F�(U)

�Q
(102)

Then the Osher-Solomon flux is F
j+

1
2
(U

L

, U
R

) = F+(U
L

) + F�(U
R

). This

relation is determined by taking a path independent integral connecting the left

and right states in phase space.

Z
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R

)� F�(U
L

) (103)

Z
UR

UL

A+(U)dU = F+(U
R

)� F+(U
L

) (104)

Using these relations it is easily shown that

F
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1
2
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Z
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= F (U
R

)�
Z

UR

UL

A+(U)dU (106)

=
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2
(F (U

L

) + F (U
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))� 1

2

Z
UR

UL

|A(U)|dU (107)

The path of integration is chosen to be a union of disjoint line segments con-

necting each characteristic field. Intermediate states are determine assuming

a simple wave connects each field. Genuinely nonlinear fields require splitting

the path in two connected by a sonic point. The intersection points and sonic

points must be explicitly defined for each hyperbolic system. The integration

partial paths may have many di↵erent cases based on the wave structure. For

example, the Euler equations have 16 cases.

The universal Osher-type method [31] is independent of system structure

and is complete, it considers all wave information when solving the Riemann

problem. The messy integration in the original method is performed on a line

segment in phase space  (s),

 (s) = U
L

+ s(U
R

� U
L

), 0  s  1 (108)
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evaluated at points determined by a Gauss-Legendre quadrature rule.
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The integrand and absolute value lead to complicated expressions. The

generalized Osher flux simplifies the calculation by considering a Gaussian rule

with g points s
j

and associated weight w
j

.

F
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1
2
(F (U
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) + F (U
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gX

i=1

w
j

|A(( (s
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!
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) (113)

The intermediate states on path  (s
j

) lie in the domain of possible solutions,

a convex region. The system is hyperbolic for all possible solutions within this

domain, so the matrix A( (s
j

)) is hyperbolic for all intermediate points.
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