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ABSTRACT 

Every basin of higher than first order is drained by a channel network composed of two subnetworks. Their basins are 
separated by a drainage divide line, called the basin divider, which is the primary organizing feature of the main basin. 
Each basin of magnitude n contains n - 1 subnetworks of higher order, and is therefore organized by a set of n - 1 dividers. 
The dividers and the basin boundary are interconnected in a graph called the divider network of the basin; in graph-the- 
oretic terms this network forms a tree and has the same magnitude and link numbers as the channel network draining the 
basin. While the subbasins and subnetworks of a drainage basin form a nesting hierarchy, the corresponding dividers do 
not; indeed, any two dividers share at most one node in common, and whether they do so is independent of whether the 
corresponding subbasins are nesting or disjoint. However, the dividers of nesting basins are linked by recursive relation- 
ships which permit the derivation of a set of algebraic equations; these equations relate the dividers of a basin to other basin 
components; for example, their combined length is equal to half the length of all first-order basin boundaries minus the 
length of the main basin boundary. 

The second part of the paper explores the dependence of the divider length on other basin parameters. The expected 
length, as predicted by the assumption of topological randomness, is clearly rejected by the data. An alternative approach 
(regression) is based on the observed magnitudes of the subbasins separated by each divider, and is reasonably successful in 
estimating divider length. The last section introduces the concept of the standardized basin defined by a boundary length of 
unity; the estimated lengths of the basin divider and the basin boundary permit an approximate reconstruction of the 
idealized basin shape and the location of the divider in it. 

KEY WORDS Drainage basin Drainage divide Graph theory Ridge/channel networks 

INTRODUCTION AND OUTLINE 

This paper derives its purpose from Shreve’s (1969) principal statement: ‘. . . to comprehend the geometry 
of drainage basins and channel networks.. . is prerequisitive to explaining their mechanics.. .’. Its aim 
is to expand the existing language of formal basin description, to deduce several algebraic functions 
that govern the interrelations between the descriptive concepts of basin structure, and to relate topologic 
and geometric parameters of drainage basins to those of the channel networks by which they are 
drained. 

Both the geometric and the graph-theoretic analyses of channel networks have progressed steadily since 
the foundations were laid in the early work of Horton (1945), Strahler (1952), Melton (1957) and Shreve 
(1966); it has sharpened existing concepts and, very importantly, recognized and defined additional channel 
network features (Gardiner, 1975; Mark, 1975); it has generated theoretical explanations for a variety of 
observed regularities, such as some of the Horton laws of drainage composition (Shreve, 1969, 1975; 
Smart, 1972); and it has successfully separated the effects of formal or physical constraints from those of 
chance (Abrahams, 1980, 1983, 1984; Werner 1982, 1984). At least in theory, through the formulation of 
explicit functions relating slope development to channel growth and incision, it should be possible to 
‘. . . comprehend the geometry of drainage basins. . .’ simply as a derivation from what is known about 
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748 C. WERNER 

channel networks. However, except for computer simulations (Howard, 1990) and the derivation of some 
topological duality relations (Werner, 199 l), the connection between the vectors of channel network 
descriptors and similar vectors describing corresponding drainage basins has not yet been worked out. 
For that matter, even the formal description (geometry, connectivity) of the line patterns that define and 
subdivide drainage basins has received only limited attention (Warntz, 1972; Jarvis, 1976; Mark, 1975, 
1979; Werner, 1982). 

Within this broad context the present paper: (1) introduces several new concepts to capture in greater 
detail and make operationally accessible the graph-theoretic and geometric structure of drainage basins; 
(2) derives several logical relations between new and established basin parameters; (3) examines the effects 
of chance on the internal partition of basins and establishes empirical relations between certain channel 
and basin parameters; and (4) explores the possible reconstruction of the basin from selected basin variables 
and their functional relations. 

BRIEF REVIEW OF SOME FAMILIAR CONCEPTS 

A drainage basin is an area whose surface runoff is drained by a single channel network and which, in turn, 
is the only area drained by that network. Unless it consists of a single channel, the network has one or 
more nodes in which it bifurcates. Since, a t  any given bifurcation, a channel typically splits into no more than 
two branches, the network can be characterized in graph-theoretic terms as a trivalent planar rooted tree 
(Smart, 1972). That is to say: each node interconnects exactly three channel links; the network can be 
mapped unambiguously into the two-dimensional plane; it has a particular outlet link which makes it a 
directed graph; and any two links are connected by exactly one path. Thus, if the network is of magnitude 
n ,  i.e. has n exterior links, then it has n - 1 interior links as well as n - 1 nodes, where each node is 
the upstream end point of exactly one interior link. Each channel link defines a particular channel sub- 
network with its own unique drainage basin and basin boundary. Thus, a channel link, its upstream 
end node, the channel subnetwork defined by the link, and the corresponding drainage basin and basin 
boundary are all one-to-one related entities. Finally, the magnitude of a drainage basin is defined as the 
magnitude of the channel network by which it is drained; basins of magnitude 1 are traditionally referred 
to as first-order basins. 

DEFINITION O F  THE BASIN DIVIDER 

In the following analysis we will use small letters x for links; large letters X for the networks defined by the 
links x; A(X) and A(x) for the drainage basin and the link drainage area of X and x respectively; and B@), 
B(x) for the boundaries of the basin A(X) and the link drainage area A(x). 

Let P be a channel node, let w and u, v be its downstream and upstream links, and let W, U, V refer to the 
network and its two subnetworks defined by these links. Since every point within the drainage basin A(W) 
drains into exactly one link of W, A(W) is simply the sum of the drainage basin areas A(U), A(V) and the link 
drainage area A(w). In as much as A(w) tends to be comparatively small, the line separating the two sub- 
basins A(U), A(V) is the primary organizing feature of the basin A(W). Morphologically it forms a ridge 
that starts in a point Q1 next to the channel node P between the two links u and v, and terminates in a 
node Q2 of the basin boundary B(W). This line is the intersection B(U) n B(V) of the boundaries of the 
two subbasins A(U) and A(V); we call it the divider of the drainage basin A(W) and denote it by D(W) 
(Figure 1). 

GRAPH-THEORETICAL DESCRIPTION OF DIVIDER PATTERNS 

Most of the following statements are easily verified and are therefore listed without proof. 
(1) A channel network W of magnitude n has n - 1 bifurcation nodes; each node interconnects three 

links which define a network and its two subnetworks. The drainage basins of the two subnetworks are 
separated by a divider defined as the intersection of their boundaries. As such, the divider is unique 
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Figure 1. A drainage network W and its two subnetworks U and V. The intersection of the basin boundaries of U and V defines the basin 
divider DW). The divider starts in a point Q1 next to the first channel node P upstream of the outlet of W and terminates in a point Q2 of 

the basin boundary of W 

to that pair of subbasins and therefore also to the associated bifurcation node. It follows that a basin 
of magnitude n contains exactly n - 1 dividers (Figure 2). 

(2) Within a drainage basin no divider is separated by channels from both the basin boundary and the 
other dividers, as that would mean the existence of circuits in the channel network draining the basin, in 
contradiction to the assumption that graph theoretically the network forms a tree. Similarly, no part of 
the boundary of the basin and the dividers in it can form a circuit, as that would constitute an area of 
internal drainage, which we rule out by assuming a humid, non-karstic environment. Thus, the boundary 

Figure 2. A channel network, the boundary of its basin, and the dividers of the basin and its subbasins. The nodes connecting dividers to 
each other and to the basin boundary have been omitted so as to explicitly show the extent of each divider. The lower part of the 
figure shows the (abstracted) graph composed of the boundary of the main basin and the divider trees in it, each tree consisting of one or 

more dividers 
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of a basin and the dividers it contains merge into an interconnected line pattern which, like the 
corresponding channel network, forms a tree; this tree we call the divider network R of the basin 
(Figures 2, 4; in Figure 2 connecting nodes have been intentionally omitted). 

(3) Since both natural ridges and dividers are lines separating adjacent drainage basins it is not surprising 
that, by and large, natural divider networks coincide with patterns of ridges. To trace the lines of a divider 
network in the field or on a topographic map is similar to tracing the corresponding channel network, with 
one exception, however: while the degree of a divider node is usually three (‘trivalency’) if it is clearly 
discernible, one occasionally encounters situations that make it difficult, if not impossible, to assign a 
particular degree value. Fortunately, by allowing for links of a very small length we can approximate the 
actual divider network layout by assuming that, as in a channel network, all nodes are of degree three. 

(4) Since each divider starts with an exterior link positioned between the two upstream links of a channel 
bifurcation, and since the basin boundary terminates in two exterior links, the total exterior link number of a 
divider network is n + 1, which is equal to the number of exterior links of the channel network if we include 
its outlet. It is therefore reasonable to define the magnitude of the divider network as equal to that of the 
corresponding channel network, that is, n. With this convention the magnitudes of divider networks possess 
the same additivity as their channel networks: if two channel networks U, V merge to form a network W then 
the magnitude of the corresponding divider network R(W) is equal to the sum of the magnitudes of the 
divider networks R(U) and R(V). 

( 5 )  Each divider D defines a set consisting of all dividers that are interlinked and include D. Such 
a set forms a subnetwork which, in light of statement (2) above, is linked to the basin boundary in a 
single boundary node Q. We denote their number with k; for an example see Figure 4 where these nodes are 
labelled Qi, i = 1,2, . . , , k and k = 1 1. In as much as the divider network is a tree, these subnetworks must be 
trees as well; we therefore call them the divider trees of the basin A(W) and denote the set of all k divider trees 
in A(W) by T(W). Since the k divider trees are composed of n - 1 dividers their combined magnitude is also 
P I  - 1, and their combined link number is therefore 2 ( n  - 1)  - k .  Thus, the average link number L(D) of 
dividers in a basin of magnitude n containing k divider trees is (2n - 2 - k ) / ( n  - 1) = 2 - k / ( n  - 1). The 
ratio on the right side of the equation approaches 1 for the value of k approaching n - 1, and zero for small 
values of k; hence the average link number of a divider is limited by the inequality 1 5 L(D) < 2. The 
extremal values of N(D) are 1 and n - 1 respectively. Figure 3a shows examples of the two cases for 
magnitude 7 networks. 

(6) It is interesting to note that basin dividers do not possess the nesting quality of channel networks or 
their basins: while these may contain, and are usually contained in, other channel networks (basins), no 

* 
Figure 3. (a) Two channel networks of magnitude 7 together with their divider networks. While in the left basin the basin divider has the 
maximum possible link number I I  - I ,  the divider of the right basin consists of a single link. Note also that the two channel networks 
have the same topological configuration, in contrast to their divider networks. (b) Simplified graph of a channel network W, its two 
subnetworks U and V, the basin boundaries of W, U, V, and hence, the basin divider D(W) and the boundary of the area drained 
by the outlet link w. Note that for a + b = s, + 2? the basin boundary of W is the sum of the boundaries of U and V minus twice 

the basin divider D(W) 
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divider is part of any other divider. In particular, the dividers of a basin's subbasins are not part of, and 
are indeed unrelated to, the divider of the main basin. What makes this observation all the more noteworthy 
is the very definition of dividers, as it is a direct derivative of the concept of subbasins. In fact, except for 
the nodes in which they interconnect, dividers are always pairwise disjoint: no two share a divider link in 
common (Figure 2). We verify this statement through an indirect proof: let r be a link of the divider network 
R and D(X) and D(Y) be two dividers of R which share the link r. Like all drainage basins the corresponding 
basins A(X) and A(Y) are either nesting or disjoint. We first assume that they are nesting-say, 
A(X) c A(Y). Let A(Y,) and A(Y2) denote the two subbasins of A(Y) whose boundaries define D(Y): 
D(Y) = B(YI) n B(Y2). Since drainage basins never overlap, A(X) must be fully contained in either 
A(YI) or A(Y2). In either case, its divider D(X) cannot share a link with D(Y) as it is located inside 
A(X). If, on the other hand, then basins A(X) and A(Y) are disjoint, so must be their dividers D(X), 
D(Y), again because by virtue of their definition, dividers are always located inside their respective 
basins. 

(7) As a graph, each divider network has its particular topological configuration, and for any given 
magnitude the number of possible configurations is equal to that of the corresponding channel network. 
But here the equivalence ends. Unlike channel networks, divider networks are the aggregation of n 
specific, well defined network paths, namely, the n - 1 dividers and the basin boundary (Figure 2). For any 
given topology of a divider network the number of ways in which it can be constituted as an aggregation of a 
boundary and n - 1 divider path is 2" - ~ ', where k is the number of divider trees in the basin and n is again 
the magnitude of the divider network. However, once the topology of the corresponding channel network is 
also fixed, the divider network's breakdown into dividers is unique (interestingly, the reverse statement does 
not hold). Figure 3a shows two magnitude 7 channel networks as well as their divider networks. While the 
former are topologically equivalent, the same does not hold for the latter. 

ALGEBRA OF BASIN STRUCTURE 

It might be useful to briefly review the different components of the divider network using Figures 2 and 4 as 
examples. A basin of magnitude n(n = 35 and 15, respectively, in Figures 2 and 4) contains n - 1 individual 

Figure 4. A channel network and the corresponding divider network. Including the outlet link each network has )z + 1 exterior lidks 
which are strictly alternating. The basin contains a total of 11 divider trees which are linked to the boundary in boundary nodes Q,, 

wherei= 1, . . . ,  11 
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dividers D; in Figure 2 they are the 34 solid lines located within the basin boundary. These dividers are 
either connected to the basin boundary or else to each other. Again in Figure 2, the interconnecting 
nodes have been omitted so as to clearly show the end points of each divider (and thus the fact that dividers 
do not share links in common). Each set of one or more interconnected dividers that includes all dividers 
linked to them is called a divider tree; the magnitude of such a tree is equal to the number of dividers 
forming it. Each divider tree is connected to the basin boundary. The number of divider trees in a basin 
is denoted by k; in Figure 2 the total number of divider trees is k = 19; the largest of these is connected 
to the basin boundary in node Q; it consists of 10 dividers and is therefore of magnitude 10; in Figure 4 
the number of divider trees is k = 11; two are of magnitudes 3 and 2 respectively, the rest being of magnitude 
one. The set of all divider trees contained in the basin A(W) of a channel network W is labelled T P ) .  The 
union of the boundary B(W) and the divider trees T(W) of the basin A(W) is called the divider network 
corresponding to the channel network W, and is denoted by R(W); an example is the set of interconnected 
solid lines in Figure 4. 

The various components of the structure of a basin and its subbasins-the dividers D, the set T of divider 
trees, the basin boundary B and the divider network R-are interlinked by several identities. Let w, u, v be 
the three links interconnected in a channel network node and let W, U, V, and A, B, D, T, R of W, U, V, refer 
to the corresponding channel networks and their basins, basin boundaries, dividers, divider trees and divider 
networks. To denote the graph theoretic aggregation, deletion and intersection of sets we use the symbols C 
or +; -; n. Evidently, the following identities hold (Figures 3b, 4): 

T(W) = T(U) + T(V) + D(W) (1) 

R(W) =T(W) + B(W) (2) 

(3) 

B(W) = B(U) + B(V) + B(w) 

- 2{[B(U) n B(w)l+ [B(V) n B(w)l+ [B(U) n B(V)I) 

where B(w) refers to the boundary of the area drained by the channel link w. For the following investigation 
we will restrict our consideration to the length measures L of T, R, B and D, where L might be defined 
as either the number of links or the planimetric length. Evidently, Equations 1, 2, 3 remain valid if we 
substitute each component by its length measure. In particular, Equations 1 and 2 translate into: 

The relation between the boundaries B(W), B(U), B(V) of the main basin and its two subbasins, as stated 
in Equation 3, can be substantially simplified if we restrict our consideration to their length values and 
assume that, again in terms of length, the intersections of the boundaries B(U) and B(V) with the boundary 
B(w) are equal to the intersection of the boundary B(W) with B(w), or, using the labels of Figure 3b, 
a + b = s1 + s2: 

L[B(U) n B(w)] + L[B(V) n B(w)] = L[B(W) n B(w)] ( 6 )  

The assumption formulated in Equation 6 has the sole purpose to facilitate the exploration of the inherent 
formal structure of drainage basins and is justified in part because it constitutes, on average, a fairly 
reasonable approximation of reality, and in part because the impact of any error in Equation 6 on 8 
becomes negligible for increasing network magnitude. 
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Combining Equations 4, 5 and 8 provides a similar formulation for the length of divider networks: 

L[R(W)I = L[R(U)I + L[R(V)I - L[D(W)I (9) 

Equations 4,7 and 9 reveal a noteworthy structural quality of the lengths of the divider trees T, the boundary 
B and the divider network R of any given drainage basin A(W). Each of these basin parameters can be 
expressed as a function of the same parameters of the two subbasins and the basin divider, thus creating 
a recursive relationship that interrelates these parameters over the entire hierarchy of nesting basins and 
subbasins. In particular, through a process of iterative substitution, each parameter can be formulated as 
a function of the same parameters of the n first-order basins and the set of dividers contained in the main 
basin. For an example, consider Equation 7. Since it applies to any basin boundary we can apply it, in 
particular, to B(U) and B(V) on its right side. Hence, if U1, U2 and V1, V2 are the subnetworks constituting 
U and V respectively, then: 

L[B(W)I = {L[B(Ul)I + L[B(U2)1 - 2L[D(U)I) 

+ {L[B(Vl)I + L[B(V2)1 - 2L[D(V)IJ 

- 2L[D(W)I 1 (10) 

Through repeated application of Equation 7 we continue to substitute the lengths of the basin boundaries on 
the right side of Equation 10 until no further substitutions are feasible and only the lengths of the basin 
dividers and the first-order basin boundaries remain: 

n- 1 

L[B(W)] = C L[B(Xi)] - 2 . Z  L[D(Yj)] 
i= 1 j= 1 

where n is the magnitude of the network W, {Xiti = 1 , .  . . , n) is the set of all magnitude 1 subnetworks of W, 
and {Yib = 1,.  . . , n - 1) is the set of all magnitude > 1 subnetworks of W. In words: the length of a basin 
boundary is equal to the combined lengths of all first-order basin boundaries minus twice the sum of the 
lengths of all dividers in the basin. 

Similarly, Equations 4 and 9 are recursive, permitting the representation of the length of the divider 
trees and the divider network of a given basin in terms of the lengths of its first-order basin boundaries and 
the dividers in the basin: Since first-order basins do not contain dividers (and, hence, divider trees) their 
divider networks consist of their basin boundaries only: L[D(X)] = 0; L[T(X)] = 0; L[R(X)] = L[B(X)], 
and therefore: 

where {Xiti = 1,.  . . , n - I} and {Yjlj = 1,. . . , n - 1) are defined as before. Equation 12 simply verifies the 
(trivial) statement that the combined length of the divider trees in any basin is the sum of the lengths of all 
dividers in that basin, and Equation 13 expresses the length of the divider network of a basin in terms of the 
lengths of the first-order basin boundaries and the dividers contained in the basin. 

In a later section of this paper we will estimate the length of a basin's boundary as a power function of the 
basin area which, in turn, is approximated by the basin magnitude: Est L[B(Z)] = K(na) ,  where Z refers to a 
channel network, n to its magnitude, Est L[B(Z)] to the estimated boundary length L of the basin drained by 
Z, and where K and a are numerical constants to be determined empirically (for an example see Equation 
16). Substituting this estimation into Equation 11 gives us a simple estimate of the combined length of all 
dividers in a basin of magnitude n: 

Est c [ L ( D j ) ]  = (K/2)(n -nu) 
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wherej = 1, .  . . , n - 1. Observed values of the exponent a are always well below 1. Hence, for large basins 
the length of the line pattern which organizes a basin into a hierarchy of subbasins tends to be proportional 
to the basin magnitude and therefore proportional to the length of the channel network. Of course, this 
conclusion is not surprising; what the argument presented here adds is an algebraic derivation of an 
intuitive expectation. 

The formal proofs of Equations 11, 12 and 13 by mathematical induction are straightforward and have 
therefore been omitted. 

THE EFFECT OF CHANCE ON DIVIDER LENGTH 

We will first calculate the expected length of the basis divider on strictly theoretical grounds. The only model 
of network design that permits the derivation of the expected link number of the divider without resorting to 
empirical calibration is the random model (Shreve, 1966; Smart, 1974). While that model has been developed 
for natural channel networks, there is no principal reason that prevents its application to divider networks, 
as they too form trivalent planar trees; whether such application is any more successful than in the case of 
channel networks is, of course, a matter of testing. 

Let X be a channel network of magnitude n. Since X is rooted and planar its exterior links form a sequence 
S(x) = {xili = 1 , .  . . , n }  where by established convention x1 refers to the first exterior link to the left of the 
outlet link. Within the sequence S(x) we call the link xp the kth neighbour of the link xq if 1p - q1 = k 
(Figure 4). 

Each of the n - 1 pairs of consecutive links xi, xi+l in S(x) define a particular channel node Pi, namely the 
point in which the two paths connecting these links with the outlet merge. Since the network has n - 1 nodes, 
this correspondence is a one-to-one mapping operation. As was shown earlier, there exists for each channel 
node exactly one divider, and therefore one exterior link of the divider network R(X). Thus, exterior channel 
links and exterior divider links form an alternating sequence. To reflect this particular relation between the 
networks X and R(X), we label the exterior divider link associated with the channel node Pi (and therefore, 
via transitivity, with the exterior channel links xi, xi+ 1) with zi; since the links zi alternate with the links xi 
they too form a sequence which we label S(z). Finally, we add the channel outlet to the beginning of S(x) as 
xo, and the end links of the basin boundary B(X) to the beginning and the end of S(z) as zo and z,. As a result 
the two sequences now consist of n + 1 links each and can be mapped onto each other such that xi zi 
(Figure 4). Note that in S(x) the last link x, is the nth neighbour of the first link xo; the mapping operation 
translates this relation into a corresponding statement for S(z), namely that z, is the nth neighbour of zo. In 
words: in a drainage basin of magnitude n each end link of the basin boundary is the nth neighbour of the 
other end link. 

Divider networks are usually subnetworks of much larger networks, so that it is appropriate to apply the 
random model under the assumption that the magnitude of the embedding network approaches infinity. 
Under the assumption of topological randomness the expected link number of a path connecting an exterior 
link with its k th neighbour in a network of infinite magnitude is 8.irp1/2k1/2 (Werner, 1984). Let W, U, V refer 
to a channel network and its two subnetworks, with magnitudes n, i, j where i + j  = n; and let E[B(W)] 
denote the expected link number of the basin boundary B(W). We assume that the corresponding divider 
network R(W) is embedded in a network of infinite magnitude. Applying the result of the preceding 
paragraph it is 

E[B(W)] = 8.irp’/’n’i2 (14) 
Equivalent equations give the expected link numbers E[B(U)] and E[B(V)] of the boundaries of the two 
subbasins A(U), A(V) of the main basin A(W). Substituting these three equations into Equation 8 produces 
the expected link number of the divider D(W): 

E[D(W)] = 4.ir-”2[i1/2 + j 1 / 2  - (i + j )1 /2]  (15) 

To evaluate the effectiveness of the random model in predicting the link number of basin dividers, we have 
sampled a set of natural drainage basin data from the 1:24,000 USGS topographic map, Varney, Kentucky, 
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quadrangle. This study area is considered to be a good example of a maturely eroded landscape without 
significant geologic controls and a reasonably uniform link destiny (Krumbein and Shreve, 1970; 
Smart, 1978). Both network channels and basin dividers were identified following the contour crenulation 
method as described by Krumbein and Shreve (1970) and later modified and extended (Werner, 1988). 
Specifically, for each of 50 basins the data consist of the planimetric length of the basin boundary broken 
down into its two subbasin components, the length of the basin divider, and the magnitudes of the two 
subbasins. In addition, the link numbers of the basin and subbasin boundaries and the basin divider were 
determined for 32 of the 50 basins. The basins were selected in such a way that the sample contained a 
reasonably even distribution for different basin and subbasin magnitudes; that approach was virtually 
unavoidable in light of the fact that the smallest basins, those of magnitudes 1 to 4, constitute over 
90 per cent of all natural basins. Otherwise the selection process was essentially random. 

Test results 
While a number of parameters of natural networks show a surprising degree of control by chance 

(Smart, 1972), the link number of the basin divider is not one of them. That is clearly demonstrated by 
Figure 5, which shows the observed link numbers of 32 basin dividers plotted against those expected by the 
random model. Moreover, since planimetric path length and path link number are highly correlated 
(Werner, 1982), it follows that the model would not be successful for metric length measures of dividers 
either. To check for any size-related discrepancies the observed data have been ordered by link number. 
Apparently the deviation of the expected values is systematic, which would permit correction of the 
discrepancy by appropriate adjustment of the model parameters on the basis of empirical data; however, 
after such a corrective measure the model would no longer be strictly random or deductive. 

25 - 

20 - 

15 - 

10 - 

5 -  

Discussion 
Given the considerable chance effect in the design of channel networks (Shreve, 1975) it is at least initially 

puzzling to find such major and persistent deviation from randomness in the configuration of divider 
networks. We offer two comments, the first of which provides a plausible explanation for the last part of 
the above statement, and the second examines the seeming discrepancy by comparing channel and divider 
networks with regard to one of the critical parameters. 

I. As stated previously, there is ample empirical evidence that in homogeneous terrain the magnitude of a 
channel network and the link number of a basin boundary are highly correlated to the metric measures of the 
area drained by the network and the physical length of the boundary in question. In its most compact form 

o !  I I I I I t X  
0 5 10 15 20 25 30 35 

Figure 5. Observed (solid line) and expected divider link numbers for 32 natural drainage basins. The observed values are ordered hor- 
izontally by size; the expected values result from the assumption of random network topology 
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the shape of a basin is a circle, and the length of the circle perimeter is the minimum length of any possible 
boundary delineating the basin. This limitation is not a physical constraint but rather a mathematical one, 
dictated by the axioms of Euclidean geometry. In light of the correlations referred to above, this conclusion 
translates into an equivalent topologic statement regarding basins and their boundaries: for any given chan- 
nel network magnitude there is a tight stochastic limit to the minimum possible number of links of the 
boundary delineating the area drained by that network. Consequently, the link numbers of drainage basin 
boundaries cannot be randomly distributed. Furthermore, since the divider length is a function of the length 
of basin boundaries (Equation 8) a similar conclusion applies to it. To repeat this argument in general terms: 
in a world of random topology the constraint referred to above would not be applicable. But since the topo- 
logic parameters in question are empirically dependent on their geometric counterparts they also become 
dependent on the laws of Euclidean geometry and thus lose their purely random nature. 

Interestingly, the length of basin boundaries also has an upper limitation for any given basin magnitude; 
but it is in the nature of an upper bound and not a matter of logical necessity; rather, it is a matter of empiri- 
cal observation. Irrespective of their size, drainage basins do not deviate from a certain degree of compact- 
ness which limits the length of their boundaries. In the absence of a mathematical constraint any 
explanations for it must be of a physical nature (e.g. river piracy) which goes beyond the scope of this paper. 

11. the number of different topologic network parameters is only limited by our imagination. Some display 
fairly random distributions in nature (e.g. stream numbers) while others do not (e.g. proportion of cis links). 
To compare the topologic behaviour of channel and divider networks we have to use the same parameters, 
and we have to keep in mind that any answer is only an answer with regard to the comparison parameters 
selected. The empirical data presented in this paper demonstrate that, for any given network magnitude, the 
link number of basin dividers is non-random, one reason being that dividers are defined by basin boundaries 
whose link numbers cannot be randomly distributed because of their high correlation with their metric 
counterpart-see the previous argument. Turning now to channel networks we have to ask what parameter 
in a channel network corresponds to the link number of a basin boundary of a divider network. The answer 
is provided by the concept of network duality (Werner, 1991). In particular, a basin boundary is: 

any path in a divider network whose end links are separated by a single channel link (i.e. the outlet of the 
basin). 

The dual counterpart to a basin boundary is: 

any path in a channel network whose end links are separated by a single divider link. 

Thus, the dual concept to a basin drained by a channel network is simply an area delineated by a channel 
path and containing a divider network, the root of which separates the end links of the path. This particular 
type of channel path has been investigated in a previous study, which has indeed rendered similar results, 
including the finding that the link number of such channel paths is consistently larger than the number 
derived from the assumption of randomness (Werner, 1984). Thus, with regard to the particular parameter 
examined here-the link number of network paths forming quasi-closed curves-channel networks and 
divider networks do not principally differ in as much as the random model fails to fit the observed values 
of both. 

Since a basin of magnitude n is organized by n - 1 dividers, the failure of the random model affects the 
entire basin geometry. We therefore finish this part of the analysis with the conclusion that the random 
model, while providing a good approximation for some other channel network parameters (Shreve, 
1975), is not compatible with the internal partition as observed in our sample of natural drainage basins. 

MODELLING DIVIDER LENGTH BY REGRESSION 

In the absence of any axiomatic theory that derives the length of dividers from other basin parameters we 
have, of course, the less satisfactory option of trying to establish such a relation inductively. Equation 8, 
which expresses the length of the divider as a function of the boundaries of the basin and its two subba- 
sins, is not quite, but almost, a logical identity (see Figure 3b and associated text) and is therefore devoid 
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Figure 6. Observed lengths of dividers (solid line) of 50 natural drainage basins, and the corresponding length values as estimated by 
regression from the magnitudes of the subbasins separated by the dividers. The observed values are again ordered by size; the unit 

of the vertical scale is 127.4m 

of much substantive information. Instead, we will examine the dependence of the length of the divider on 
the magnitudes of the two basins it separates. To this end we first determine the approximate functional 
relationship between network magnitude and basin boundary length on the basis of sampled data; that 
function will then be used in conjunction with Equation 8 to estimate the length of the divider for any given 
basin A(W) composed of subbasins A(U) and A(V). 

There is a considerable body of evidence indicating that basin area and one-dimensional basin features 
tend to be related by a power function (see, for example, Hack, 1957; Leopold et al., 1964; Montgomery 
and Dietrich, 1992). In areas approximating uniform environmental conditions, channel link density tends 
to be roughly uniform, making the magnitude of a channel network a convenient surrogate for the area of 
the basin drained by that network (Smart, 1978); we therefore use basin magnitude n as the independent 
variable to estimate the length of the basin boundary, Est L[B(X)]. As one would expect from these 
considerations and the research referred to above, the plot of the (metric) boundary lengths and the 
magnitudes of 127 basins in the study area revealed a close correspondence; the regression line of the 
respective logarithms translates into the power function 

Est L[B(X)] = 10.1265n0'5695 (16) 

with a correlation coefficient of r = 0.9877 and a mean deviation of the expected from the observed 
values of 9.34 per cent. Combining Equations 16 and 8 permits the estimation of the length of the basin 
divider: 

(17) 
Est L[D(W)] = ( 10*1265/2)[i0'5695 +,j0.5695 - ( i  + j10.56951 

where i, j are the magnitudes of the two subnetworks U, V of W. 
Both estimations and observations for a sample of 50 drainage basins are shown in Figure 6; the observed 

divider values have once again been ordered by size. Although the deviation of the estimated from the 
observed values is on average 16.2 per cent, the close dependence of the length of the divider on the 
magnitudes of the two subbasins it divides is nevertheless quite apparent. 

THE STANDARDIZED DRAINAGE BASIN 

Equation 17 expresses the length of the basin divider as a power function of two independent variables, 
namely the magnitudes i and j = n - i of the two subbasins it separates. We now take advantage of the 
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Figure 7. Distribution of observed (circles) and estimated divider length values for 50 natural drainage basins, after division by their 
respective basin boundary lengths, thus permitting direct comparison across differing basin size. By definition each divider belongs 
to one and only one basin, within which it constitutes the intersection of the two subbasin boundaries. The data are ordered horizontally 

by the ratio of the magnitudes of their left subbasin and their main basin 

fact that, for any fixed ratio t = j / i  and variable n = i + j  the function describes homothetic (similar) figures. 
In particular, if measured as a proportion of the basin boundary the divider is constant and hence indepen- 
dent of the basin magnitude. That becomes immediately clear from the following consideration. Let 
Est L[B(X)] = Kn" be the regression equation estimating the length L of the boundary B of the basin 
drained by the network X as a function of the network magnitude n. Substituting this equation into Equa- 
tion 8 and settingjli = t it follows that: 

EstL[D(X)] = A K {  i" + (ti)" - ( i +  t i )"}  = 1 { 1 + t a  I}  
EstL[B(X)] 2 K ( i  + ti)" 2 m- 
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Figure 8. Estimated and observed distribution of standardized length and location of basin dividers sampled from 50 natural 
drainage basins. The number of estimated values has been enlarged to 299 so as to allow better visualization of the underlying 

theoretical basin shape 
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Thus, the ratio of the estimated basin divider and the estimated basin boundary is only a function 
of the ratio t of the magnitudes of the two subbasins, but not of the basin magnitude n. This permits us to 
standardize the estimated and observed divider values by division through their respective basin boundary 
values, which allows direct comparison of estimated and observed divider length across basins of different 
magnitudes. 

Figure 7 shows the standardized divider values of the observed set consisting of 50 basin dividers (dots); 
superimposed is the curve representing the standardized theoretical values estimated by the regression 
model. The data are ordered by the relative size of the left subbasin, i.e. as a function of the ratio 
q = i / ( i  + j )  = l / ( t  + 1). As anticipated, all values are small if one of the subbasins is much larger than 
the other (q  M 0 or q M 1) and reach their maximum when the two subbasins are of equal magnitude 
(y = 1/2). It should be noted, however, that the curve in Figure 7 represents the ratio of estimates, not 
the estimate of ratios (i.e. it is not the regression line for the observed data shown in the figure). A similar 
comment applies to Figure 8. 

RELATING BASIN DIVIDER TO BASIN SHAPE 

While the previous sections investigated the length of the basin divider, this section focuses on the inter- 
related topics of the theoretical shape of the basin and the location of its divider. Let A(W) be a drainage 
basin of magnitude n composed of the two subbasins A(U) and A(V) with magnitudes i and j = n - i 
(Figure 9). For the following investigation we will keep n fixed and allow i to vary from 1 to n - 1 (and hence 
j from n - 1 to 1). Furthermore, let Di be the divider of the basin and L(DJ its length; we label with Qi 
the node in which Di is connected to the basin boundary. Finally we denote with Gi the part of the basin 
boundary B(W) left of Qi, and its length with L(Gi); evidently, Gi and Di are interconnected in Qi and their 
combined length is equal to the length of the basin boundary B(U). By construction both Gi and Di start 
near the basin outlet, and for the present purpose of determining the geometric shape of the basin A(W) 
and the position of the divider in it we will assume that, as an approximation, both G, and Di 
originate in the basin outlet (Figure 9). 

Briefly, our plan is as follows. We first determine the estimated length of Gi, Est L(Gi); building on that 
result we than use the estimated length Est L(DJ of the divider Di (Equation 17) as a second coordinate to fix 
the position of Qi. With i running from 1 to n - 1 we obtain n - 1 positions of Qi and thus a discrete but 
representative dot pattern for the planimetric shape of the basin boundary BW); together with the outlet 
the dots form a polygon with n edges fitted into the boundary. The construction of Qi will be based on 
the (admittedly crude) assumption that the basin divider D is a straight line. 

However, there still remains a major obstacle to be overcome. The length values of Gi and D, are 
conditions for the location of Qi by specifying its two distances from the outlet, L(Gi) measuring distance 

Figure 9. Idealized sketch of basin with two subbasins A(U), A(V) of magnitude i a n d j  and the basin divider D,. If the magnitude of 
A(U) increases by one, the node connecting the basin divider with the basin boundary will move from Q, to Q, + and the new position of 

the divider will be D,, 
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along the basin boundary B(W), and L(DJ measuring the straight line distance (by assumption; see above). 
But since we do not yet know the shape of the boundary we have no way of measuring the length of Gi along 
its curve. This difficulty we will overcome as follows. Let us assume that we have constructed the position of 
Qi for particular subbasin magnitudes i and j = n - i. The next boundary point to be determined is Qi+ 
which connects the basin divider to the basin boundary when the magnitudes of the two subbasins are 
i + 1 and j = n - i - 1 respectively. If n is 'sufficiently' large, the polygon defined by the n - 1 boundary 
points {Qi(i = 1,. . . , n - 1) will be a close approximation of B, so that we can substitute the boundary 
segment connecting Qi and Qi+l  by a straight line. That, however, gives us an unequivocal fix on the 
position of Qi+l  as the point located at a distance L(Di+l) (Equation 17) from the basin outlet, and at 
distance L(Gj+ 1) - L(GJ from Qi. Starting with Qo as the outlet and i = 1 we can now iteratively construct 
the entire polygon {Qili = 1, .  . . , n - 1) representing the basin boundary B. In our computations we have 
chosen a slightly different strategy, calculating the angular increment A@ of the direction of D as Q moves 
from the ith to the (i + 1)th position along the basin boundary B (Figure 9). 

To estimate the length of the boundary segment G we substitute Equation 8 into the equation 
L(G) = L[B(U)] - L(D) and obtain 

which is simply a permutation of the terms on the right side of Equation (8). Combining Equations 16 and 19 
and adapting the result to our present notation produces an estimate of the length of Gi: 

EstL(G,) = (10.1265/2)[j0.5695 + (i +j)0 '5695 - i0'5695~ (20) 

where j = n - i and n constant. As we increase the magnitude i of the left subbasin by 1, the node in which the 
divider connects with the basin boundary B(W) migrates along that boundary clockwise by an amount equal 
to the difference A = Est L(Gi+ - Est L(Gi). Within the triangle formed by Di, Di+ and A, the cosine law 
gives us the angle between the sides Di and Di+ 1 (Figure 9). Thus, starting with i = 1 we can calculate incre- 
mentally, for each value of i, the direction @(i) of the basin divider Di as a function of i by summing over the 
angular increments. The process terminates when i is maximal, i.e. i = n - 1: 

[Est L(Di)I2 + [Est L(D,+ 1)]2  - [Est L(Gi+ - Est L(Gi)I2 i -  1 

k = l  2[EstL(Di)I[EstL(Di+ 111 ~ ( i )  = C arccos 

To establish a common base for our observed divider values we again standardize them as well as their 
regression estimates. Figure 8 is based on the above construction and displays the theoretical shape of the 
standardized drainage basin together with the observed dividers, this time represented as straight lines 
radiating from the outlet of the basin. 

Figures 7 and 8 also demonstrate the generalization stated in an earlier section, that the length values of 
dividers have an upper bound which is a function of basin size. It indicates that basin boundaries and the 
dividers they form do not engage in wild gyrations (at least at the macro-level represented on topographic 
sheets) like, say, an unconstrained random walk would produce. Rather, drainage basins typically cover 
most of the area of the convex hull corresponding to them. To phrase it differently (and loosely): channel 
networks do not tend to deeply penetrate the areas drained by other networks. However, whether advancing 
channels of a single network send out tributaries into the areas between them (Horton, 1945) before other 
networks have reached those areas, or whether channel networks may occupy oddly shaped basins with very 
long boundaries before the process of competition and piracy leads to areal consolidation and increasing 
compactness is not clear, and can certainly not be answered on the basis of our data. 

The theoretical construction of the standardized basin and its divider for differing proportions j / i  as 
presented here is, at best, a promising start; in light of the assumption stated at the beginning of 
this section, the outcome cannot be considered as satisfactory. While it should be possible to find more 
appropriate formulations using empirical data for guidance, it is not obvious how to expand this approach 
to achieve a complete reconstruction of the basin and its internal organization from the estimated 
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length values of the IZ - 1 dividers. However, if successful, such a reconstruction would be a two-fold 
accomplishment: (1) since these estimates are based on channel network parameters it would establish a 
formal relation between channel networks and the shape and structure of their basins; and (2) it would 
translate the topologic values of basin magnitudes into the planimetric values of basin geometry. 

CONCLUDING REMARKS 

With regard to basin scale at least one cautionary remark is in order. The magnitudes of the sample basins 
range from 1 to 210, and while this limitation is not explicitly acknowledged in each of the conclusions drawn 
from the observed data, it should be emphasized that their extrapolation to basins of larger magnitude is a 
matter of speculation. 

It might conceptually be useful to classify relations among descriptors as either logical or causal or 
random, i.e. independent. Of these, the first class functions as constraint on the second class of relations 
(while the third class determines their existence). An example of the first class would be the condition that 
the planimetric minimum length of a basin boundary is given by the circumference of a circle of equal 
area. It is this category of principles superimposing logical restrictions on causal relations among basin 
and network parameters to which the present paper contributes several constraining identities. 

Whenever research in fluvial geomorphology pursues a comprehensive investigation it tends to emphasize 
the drainage basin as a ‘geomorphic unit’ (Leopold et a/., 1964), a ‘geomorphic system’ (Chorley et al., 1984), 
or ‘the fundamental unit in geomorphology’ (Selby, 1985). While there is overwhelming empirical and 
theoretical support for these statements it is equally true that basins are delineated by networks of basin 
dividers which result from the erosional work performed in two or three adjacent basins. Thus, their study 
requires a different research domain. In particular, any investigation of the causes responsible for location 
and shape of dividers has to examine the joint effect of denudational processes on intersecting slopes of 
adjacent basins, and the impact of channel erosion on slope development in these basins. This paper has 
explored some of the formal concepts and the formal framework within which such a research agenda could 
be embedded. 
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