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Modeling Radiation Characteristics of Semitransparent 

Media Containing Bubbles or Particles 

Jaona RANDRIANALISOA and Dominique BAILLIS 

Centre de Thermique de Lyon - UMR CNRS 5008 Institut National des Sciences Appliquées de 

Lyon 69621 - Villeurbanne Cedex - France 

Laurent PILON  

University of California, Los Angeles. Mechanical and Aerospace Engineering Department 37-

132 Engineering IV - Box 951597 Los Angeles, CA 90095-1597 USA 

This study focuses on modeling of radiation characteristics of semitransparent media 

containing particles or bubbles in the independent scattering limit. The existing radiative 

properties models of a single particle in an absorbing medium using the approaches based on (1) 

the classical Mie theory neglecting absorption by the matrix, (2) the far field, and (3) the near 

field approximations are reviewed. Comparison between models and experimental measurements 

are carried out not only for the radiation characteristics but also for hemispherical transmittance 

and reflectance of porous fused quartz. Large differences are found between the three models 

predicting the bubble radiative properties when the matrix is strongly absorbing and/or the 

bubbles are optically large. However, these disagreements are masked by the matrix absorption 

during calculation of radiation characteristics of the participating medium. It is shown that all 

three approaches can be used for radiative transfer calculations in absorbing matrix containing 

bubbles. 
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I. INTRODUCTION 

Visible and infrared radiation transfer in semitransparent solids or liquids can be strongly 

affected by the presence of entrapped bubbles or particles. This is of interest to many practical 

engineering applications ranging from remote sensing of the ocean surface1, 2 to materials 

processing.3, 4 

Radiation transfer in particulate media has long been a subject of study as reviewed by 

Viskanta and Mengüç5, and Baillis and Sacadura6. Radiation characteristics of dispersed particles 

in a non-absorbing medium have been extensively studied. The general way to obtain these 

radiation characteristics is based on the absorption and/or extinction and scattering efficiency 

factors, and the scattering phase function, placed in non-absorbing environment using the 

classical Mie theory7 (CMT). However, few analyses have been carried out on the radiation 

characteristics of polydispersed bubbles in absorbing media. Fedorov and Viskanta8 have 

proposed a model for the effective radiation characteristics of glass foams. Their analysis was 

performed for bubbles large compared to the wavelength of radiation in the limiting case of 

anomalous diffraction. Pilon and Viskanta9 have studied the influence of the bubble size 

distributions and porosity using the Fedorov and Viskanta model. Dombrovsky10 questioned the 

validity of the previous models and suggested the use of the extended Mie theory11 applied to the 

case of large gas bubbles in semitransparent liquid. 

For estimating spurious scattering in optical elements, assessing the attenuation of light in 

fiber optics and in characterizing light transport through turbid water, more rigorous prediction 

of light scattering and attenuation by spherical particles in absorbing media was developed.11 

Substituting in the CMT solutions the complex refraction index of the matrix instead of the real 

one is an inappropriate approximation. In fact, this neglects the attenuation of scattered waves by 
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the absorbing matrix between the particle surface and the far field zone at which the CMT 

solutions were derived. In addition, the incident intensity needed to define the particle efficiency 

factors becomes questionable. The solutions should be derived from the solution of the 

Maxwell’s equations7 over the particle surface. Two approaches are usually proposed: the Far 

Field Approximation (FFA)11- 13 and the Near Field Approximation (NFA).14-19 The FFA was 

initially developed by Mundy et al.11 and Chylek12 by extending the classical Mie theory 

(CMT),7 i.e., particle in non-absorbing environment to particle in an absorbing environment. 

The FFA solutions such as the particle extinction11 or absorption12 and scattering efficiency 

factors were defined using the true incident intensity on the particle instead of the conventional 

incident intensity at the particle center.7 Sudiarta and Chylek 14, 15 and Lebedev et al.16, 17 have 

proposed the NFA in which the Poynting vectors (i.e., the solutions of Maxwell’s equations7) are 

integrated over the particle surface. 

Fu and Sun18 used the NFA to model scattering and absorption efficiency factors of a coated 

particle placed in an absorbing medium. The scattering phase function derived from the FFA was 

used. Yang et al.13 have extended the FFA to study the scattering process and the polarization 

state during the interaction of electromagnetic plane wave with coated particle embedded within 

an absorbing environment. They analyzed the deviation between the extinction efficiency factor 

and the ratio of the scattering efficiency factor to the extinction efficiency factor from NFA and 

FFA, and have discussed the application fields of these two approaches. They suggested that the 

FFA solutions, defined using the conventional incident intensity at the particle center instead of 

the true incident intensity, should be used in order to preserve the usual meaning of radiation 

characteristics in the radiative transfer calculations. Recently, Sun et al.,19 compared Fu and 

Sun’s model18 and a three-dimensional solution of Maxwell’s equations7 using the numerical 

method known as finite-difference time domain,20 for the radiative properties of a coated sphere 
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placed in an absorbing matrix. Sharma and Jones 21 have studied the absorption and scattering of 

electromagnetic radiation by a large absorbing sphere containing highly absorbing inclusions. 

Their system (large sphere + particle inclusions) was approximated as a large sphere containing a 

homogeneous absorbing and scattering medium characterized by the radiation characteristics of 

the particle inclusions which use the NFA efficiency factors and the FFA scattering phase 

function. The ray tracing method combined with the Monte Carlo technique was used to 

determine the absorption and scattering of the incident radiation on the large homogeneous 

sphere. 

Note that to date, no model for radiative properties of particle (coated or uncoated) embedded 

in an absorbing medium is widely accepted. Therefore, the aim of this study is (1) to clarify the 

issue concerning the appropriate definition of incident intensity to be applied for computing the 

efficiency factors of a single particle in an absorbing medium, (2) to determine the limits of 

application of the FFA, NFA and CMT in the modeling of the radiation characteristics of 

absorbing heterogeneous medium (in the CMT, the absorption of the matrix is taken into account 

on the effective absorption coefficient calculation but is neglected during the calculations of 

single particle radiative properties), and (3) to compare the radiation characteristics models based 

on the FFA, NFA, and CMT against the experimental data for porous fused quartz.22 

In the first part, models proposed to determine the radiation characteristics of an absorbing 

medium containing polydispersed bubbles from the single bubble radiative properties are 

presented. Then, the existing models for predicting the radiative properties of a single particle or 

bubble in an absorbing medium are reviewed. The results obtained from the models are 

compared and discussed for different values of the complex index of refraction of the 

surrounding medium. The second part of this paper is concerned with porous fused quartz and a 

comparison of the experimental data with theoretical predictions. 
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II. THEORETICAL MODELS 

A. Radiation characteristics of Semitransparent Medium Containing 

Polydispersed Bubbles 

Let us consider spherical bubbles randomly distributed in a semitransparent matrix. We 

assume that there is no bubble clusters for small concentration of bubbles, enabling one to treat 

the bubbles as independent scatterers.23, 24 

Thus, the radiation characteristics such as the absorption coefficient αλ and the scattering 

coefficients σλ of an absorbing continuous phase containing polydispersed spherical bubbles of 

radius “a” and size distribution n(a)21 (or number of bubbles per unit volume having radius 

between a and a+da) such that x=2πa/λ>1,25 can be calculated as follows:9,10 
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where λπκα /4 00 =  is the absorption coefficient of the continuous phase, fv is the bubble volume 

fraction or porosity, sQ  is the mean scattering efficiency factor for polydispersed bubbles, and 

mQ  is the mean absorption efficiency factor for polydispersed bubbles if they are filled with the 

matrix substance. The average radius a32 is defined as: 10, 25 
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The mean efficiency factors sQ  and mQ  are expressed as:25 
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where sQ  is the scattering efficiency factor of a bubble of radius a embedded in the host 

medium and mQ  is the absorption efficiency factor of a particle of radius a if it was filled with 

the matrix substance.11, 16, 17 mQ  describes the ratio between the energy which would be 

absorbed by the matrix having size and shape equal to those of the bubbles. It has the same 

meaning as the absorption efficiency factor defined in the theory of light absorption and 

scattering by particle.7, 23-27 The introduction of mQ  by means of mQ  in Eq. (1) indicates that the 

absorption coefficient of the porous medium is solely due to the matrix volume separating the 

bubbles. 

Note that in the case of monodispersed bubbles of radius a, a32 reduces to a and sQ  and mQ  

are equal to sQ  and mQ , respectively. In this case, summing Eqs. (1) and (2) yields the usual 

extinction coefficient of particles embedded in absorbing matrix as defined by Lebedev et al.16, 17  

Moreover, the scattering phase function Φλ of the absorbing continuous phase containing 

polydispersed bubbles is given by the usual formulation for a non-absorbing matrix: 8-10, 25 
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where φλ is the scattering phase function of a single bubble of radius a and Θ is the angle 

between the incident and scattered radiations. 

The asymmetry factor denoted by g, describing the relative ratio of the forward to backward 

scattering, is defined by:23-25 

 ∫ ΘΘΘΘΦ=
π

0
2
1 dsincos)(g           (6) 

Note that in practice, it is more useful to use (i) an approximated phase function such as the 

Henyey-Greenstein model23, 24 or (ii) the transport approximations,10, 26 which depend essentially 

on the asymmetry factor. 

B. Radiative Properties of Single Particle in Absorbing Medium 

1. The Classical Mie Theory (CMT) 

The Mie theory is the general way of determining the radiative properties such as the 

scattering M
sQ , absorption M

aQ , and extinction efficiency factors M
eQ , and the scattering phase 

function Mφ  of a single particle in a non-absorbing environnement.7, 27 This theory was shown 

to be applicable for bubbles in semitransparent liquid10 and will be used in this study for bubbles 

embedded in an absorbing matrix by ignoring the effect of the matrix absorption on M
sQ , M

aQ , 

M
eQ , and Mφ . 

Considering a bubble or particle with radius a illuminated by a monochromatic plane wave of 

wavelength λ in vacuum propagating in an attenuating and refracting medium with complex 

refraction index m0, the independent parameters of the CMT solutions are the relative particle 

size parameter n0x where n0 is the real part of the complex index m0, and the relative complex 
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refraction index of particle m/n0 in which m=n+jκ is the complex refraction index of the bubble 

or particle. The efficiency factors are given by:7, 27 
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were ap and bp are the Mie coefficients expressed in terms of the Riccati–Bessel functions.7, 27 S1 

and S2 are the usual amplitude functions7 while ℜe{ } corresponds to the real part of the complex 

number. 

For an absorbing matrix, M
mQ  is required in Eq. (1). There is no established expression for 

M
mQ  in the conventional theory of scattering and absorption of radiation by a particle. However, 

M
mQ  can be derived from the expression of M

aQ  since both have the same meaning. Indeed, 

M
mQ  can be computed from Eq. (9) by substituting the complex refractive index of the matrix by 

that of the bubble. 

The asymmetry factor Mg  related to the phase function Mφ  is given by:7, 23 
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Here, the superscript * indicates the complex number conjugate. 
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For optically large bubbles (i.e., x>>1) in an absorbing matrix, it can be shown that the CMT 

solutions for M
mQ , M

sQ , and Mg  converges to the following asymptotic values: 

            
3

4
3

8 00 axQMm ==
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where aa 00 α=  is called optical radius of a matrix particle. 

Several studies11-19 have highlighted the effects of the matrix absorption on the particle efficiency 

factors and the scattering phase function which were not accounted for in the CMT through Eqs. 

(7)-(14). The basic idea is to solve the Maxwell’s equations7 by considering the complex 

refractive index of the matrix, m0, and that of particle, m. Two approaches are usually proposed 

to solve the Maxwell’s equations: (1) the far field (FFA)10-13 and (2) the near field approaches 

(NFA).14-19 These two approaches are detailed in the following. 

2. Far Field Approach (FFA) 

Mundy et al.11 and Chylek12 have suggested that the relations developed in the CMT based on 

the far field approximation, i.e., Eqs. (7)-(10), can be extended to analyze the radiative properties 

of a particle in an absorbing medium. For an arbitrary value of the complex index of refraction of 

the surrounding medium m0, the classical Mie relations can be generalized by applying the far-

field approximation to the formulations of the scattered and extinction energy expressed in term 

of the Poynting vector integral.7, 27 This extension consists in replacing, in the CMT solutions 

[Eqs. (7), (8) and (10)], (i) the relative particle size parameters n0x by the complex value m0x, 

and (ii) the complex particle refraction index m/n0 by the corresponding relative value m/m0. 
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Thus, the efficiency factors of a particle in an absorbing medium such as F
sQ  and F

eQ  can be 

obtained by multiplying the CMT solutions [i.e., Eqs. (7) and (8)] by a factor η such that: 

           )rexp(I
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where “r” is the radius of the integrating sphere in the far field zone (r>>a) over which the 

integral of Poynting vectors are evaluated. The coefficients ap and bp are formally identical to 

those for non-participating host medium but by replacing the parameter n0x by m0x and m/n0 by 

m/m0. The incident intensity I0 at the bubble center is evaluated in absence of the bubble, while Ii 

is the incident intensity on the bubble. The latter will be discussed in Section II.B.4. 

The scattering phase function Fφ  and the corresponding asymmetry factor Fg  are similar to 

the CMT formulae given by Eqs. (10) and (11) but n0x is replaced by m0x and m/n0 by m/m0 in 

calculating the Mie coefficients ap and bp, and the amplitude functions S1 and S2. 

The efficiency factors )r(QF
s  and )r(QF

e  in Eqs. (16) and (17) are the scattering and 

extinction efficiency factors defined at distances far from the particle, i.e., in the far field zone, 

and depend not only on the matrix properties but also on the size of the integrating sphere r. In 

practice, the particle radiative properties should be independent of the integrating sphere. 

Usually, )r(QF
s  and )r(QF

e  are re-scaled from the far field zone of radius r to the particle surface 

by applying a simple exponential factor { })ar(exp 0 −α  to Eqs. (16) and (17).11, 13 This makes the 
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FFA efficiency factors )a(QF
s  and )a(QF

e  independent of the far field distance r, and they can be 

expressed as:11 
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Note that the extinction efficiency factor )a(QF
e  in Eq. (19) satisfies the relationship: 

)a(Q)a(Q)a(Q)a(Q F
s

F
m

F
a

F
e +−= .11, 18, 19 This implies that )a(QF

e  does not have the same meaning 

as the conventional extinction efficiency factor for which sae QQQ += . In addition, for a non-

absorbing bubble placed in an absorbing environment )0Q( F
a = , the absorption efficiency factor 

F
mQ  can be deduced from F

e
F
s

F
m QQQ −= .11 

3. Near Field Approach (NFA) 

An alternative formulations known as “the near-field approach” (NFA) has been proposed by 

Sudiarta and Chylek,14, 15 Lebedev et al.,16, 17 Fu and Sun,18 and Sun et al.19 The energies 

absorbed and scattered by the particle are obtained by computing the integrals of the absorption 

and scattering Poynting vectors,7, 27 over the scatterer surface as opposed to over the surface of a 

large imaginary sphere of radius r in the far field zone. This enables one to obtain the NFA 

efficiency factors such as N
sQ , N

aQ and N
mQ  independently of the surrounding medium size as:14, 

15, 18 
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where ψ(ρ), ψ′(ρ), ξ(ρ), and ξ′(ρ) are the Ricatti-Bessel functions and their derivatives28 with 

respect to the complex argument ρ=m0x while { }mℑ  refers to the imaginary part of the complex 

number. Note that here the extinction efficiency factor can be written as N
a

N
s

N
e QQQ += .14, 18  

In the literature, there is no established expression for the scattering phase function based on 

the NFA. Existing calculations18, 19, 21 of absorption and scattering of electromagnetic radiation 

by particles using the NFA solutions [Eqs. (21)-(23)] consider the same scattering phase function 

as the FFA. Similarly, in this work all calculations related to the NFA consider the FFA phase 

function. 

Moreover, comparison between )a(QN
m  and )a(QF

m  tends to confirm that the absorption 

efficiency factor of particle filled by the matrix substance from the FFA and NFA are identical, 

i.e., )a(Q)a(Q F
m

N
m = . Indeed, the relative difference was found to be less than 0.5 % for bubble 

size parameter x in the range from 1 to 10+4 in an absorbing matrix of optical index n0=1 to 2 and 

κ0=0 to 0.1. This is expected since the absorption by the particle is independent of the 

observation zone at which the Poynting vectors are integrated. 
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4. Choice in the Definition of the Incident Intensity Ii 

It is now necessary to discuss which expressions for the incident intensity Ii should be used in 

Eqs. (15) to (23) to define the efficiency factors of a bubble in an absorbing environment. Two 

definitions are commonly used: (1) Ii is equal to the intensity at the particle center, i.e., Ii=I0;13, 16, 

17, and (2) Ii is equal to the average incident intensity on the particle called “truly incident 

intensity” and expressed as Ii=γI0.11, 12, 14, 15, 18, 19 The parameter γ is defined as the ratio of 

incident energy over the particle illuminated area evaluated from the integral of the incident 

wave Poynting vector, to the incident energy over the particle of cross section 2aπ  in absence of 

the particle (i.e., the incident energy evaluated at the abscise at the particle center). It is given 

by11, 13, 14 

2
0

00
a

)aexp()1a(1 −+
=γ           (24) 

Figure 1 illustrates the variation of the parameter γ as function of the parameter a0. One can 

see that if a0<0.2 then γ≈1, and the two definitions of intensity give identical results. Otherwise, 

one should be cautious in choosing the expression for the incident intensity Ii. 

Let us analyze the variations in the effective absorption coefficient α [Eq. (1)] and scattering 

coefficient σ [Eq. (2)] of an absorbing medium containing monodispersed bubbles. The radiation 

wavelength at λ =π µm is considered. The bubbles radius is taken equal to a=100 µm leading to 

a size parameter x=200 verifying the criterion x>1. The bubbles volume fraction fv is taken equal 

as 5 % satisfying the independent scattering conditions for large particles.29, 30 The matrix 

refraction index n0 can be chosen arbitrarily since mQ  and sQ  become independent of n0 for 

large transparent bubble (x>>1 and m=1) as shown computationally in section II.B.5. The two 

definitions of intensities I0 and γI0 are used to determine mQ  and sQ  for both the NFA and the 
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FFA models. Figure 2 shows the variation of α and σ as functions of the matrix absorption κ0. 

One can note that increasing the matrix absorption index κ0 and using the incident intensity 

definition Ii=γI0, the absorption coefficient of the porous medium α (i) is greater than the 

scattering coefficient σ for both FFA and NFA and (ii) is of the same order of magnitude as the 

matrix absorption coefficient (α0) due to the small void fraction. On the other hand, if the 

intensity definition Ii=I0 is used as suggested by Yang et al.19 then, the scattering coefficient σ 

increases as κ0 increases while the absorption coefficient α first increases with κ0. Then, σ 

decreases slightly from κ0>0.005 to finally decrease sharply to negative values from κ0>0.015. 

On the contrary, this is not observed when the definition Ii=γI0 is used. Thus, the definition Ii=I0 

seems to be inappropriate for computing the efficiency factors eQ , mQ , and sQ  of a bubble in 

an absorbing environment. Consequently, the definition of the incident intensity Ii=γI0 is used in 

the remaining of this study. 

5. Comparison of Predictions of the CMT, Far Field, and Near Field Approaches 

Comparison between CMT, FFA, and NFA calculations can be performed for the scattering 

efficiency factor and the scattering phase function or the asymmetry factor. Let us consider a 

bubble with m=1 embedded in matrices having different complex refraction index m0=n0+jκ0 

such as n0=1.4 and 1.7, and κ0=0, 10-3, 10-2, and 0.1. 

The scattering efficiency factors vs. the particle size parameter are plotted in Fig. 3 for 

n0=1.4 and in Fig. 4 for n0=1.7. One can see that when κ0=0, the absorption efficiency factor 

vanishes and the three approaches converge to the same solution. In the limiting case when 

x>>1, they converge to 2 which is the usual geometric optic limit for non-absorbing particle 

(bubble in this case).23, 27 On other hand, for an arbitrary value of κ0>0, the FFA and NFA 
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scattering efficiency factors converge asymptotically to 0.5 and 1, respectively. The FFA and 

NFA calculations give predictions similar to those of CMT up to a0=0.06 and 0.08, respectively, 

with relative deviation less than 5 % as illustrated in Figs. 5 and 6 as a function of the optical 

radius a0. Figure 7 reports the relative deviation between the NFA and the FFA. Here, the 

relative deviation between the FFA and NFA predictions is less than 5 % for a0<0.16, and 

increases with a0 to reach 90 % for a0 =20. 

The scattering phase functions from the FFA and NFA being equal, both approaches gives 

the same asymmetry factor. Figures 8 and 9 compare the asymmetry factors g predicted by the 

FFA and the CMT for n0=1.4 and 1.7, respectively. The figures show that the FFA and CMT 

remain in close agreement for a0<0.08. Beyond this limit, the FFA is strongly influenced by the 

absorption by the surrounding medium which is not taken into account in the CMT model. 

Note that similar conclusions are reached when comparing the FFA, NFA, and CMT for the 

different matrix refraction index (n0). This tends to show that these conclusions can be valid for 

radiative properties of a bubble embedded in any arbitrary absorbing medium. 

To complete this comparative study, the differences between the radiative transfer 

calculations using the FFA, NFA, and CMT should be assessed. Recall that in radiative transfer 

calculations, the most important parameters are the transport extinction βtr and single scattering 

albedo ωtr defined as:10, 26 

)g(tr −+= 1σαβ            (25) 

tr
tr )g(

β
σω −

=
1              (26) 

Thus, the comparison of the transport coefficients βtr and ωtr enables one to compare the 

three approaches. Let us consider monodispersed bubbles randomly distributed in an absorbing 
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and refracting matrix with n0=1.4 and arbitrary values of κ0, satisfying the independent scattering 

limit, e.g., fv=5 %. The scattering phase function for the NFA is equal to that of the FFA as 

assumed in the literature.19, 21 Figures 10 and 11 compare βtr and ωtr predicted by the three 

approaches as functions of the optical radius a0. It is worth noting that even though important 

differences between these three approaches exist for the scattering efficiency factor and the 

asymmetry factor (Figs. 5-9), no significant difference is evident in the transport properties βtr 

and ωtr shown in Figures 10 and 11. The differences in βtr expected for large values of a0, are 

masked by the absorption of the continuous phase (i.e., α0≈α) since the bubble volume fraction 

is small in the independent scattering regime. Moreover, as a0 increases the albedo ωtr becomes 

small and tends to 0 ( tr)g( βσ <<−1 ). As a result, the three approaches should yield identical 

results for transmittance and reflectance calculations in the independent scattering regime. This 

conclusion will be confirmed in Section III.E by comparing the theoretical results based on the 

models and experimental data for hemispherical transmittance and reflectance. 

III. APPLICATION TO POROUS FUSED QUARTZ 

A. Experimental Data of Volume Fraction and Bubble Size Distribution of 

Porous Fused Quartz 

The above analysis shows that the bubbles size distribution n(a), the bubbles volume fraction 

fv, and/or the bubble average radius a32 are important for calculating the radiation characteristics. 
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The total volume fraction fv can be evaluated by measuring the sample density:31 

bpv d/d1f −=               (27) 

where db and dp refer to the dense and porous fused quartz densities, respectively. Several 

measurements of densities of dense and porous fused quartz samples give the bubble volume 

fraction equal to %5.00.4fv ±= . 

The size distribution of bubbles for the thin sample was determined by analyzing high-

resolution digital photographs.31 From image analysis of the total number of bubbles Nt=212, the 

bubbles size distribution was determined and depicted in Fig. 12. The corresponding bubble 

average radius is about a32=0.64 mm. 

B. Infrared Optical Properties of Fused Quartz 

The complex index of refraction of fused quartz m0=n0+jκ0 is required in Eq. (1) and Eqs. (7) 

to (24). Different relations for the real part of the complex refraction index of fused quartz, n0, as 

function of wavelength have been suggested in the literature for different spectral regions.32-35 

The three-term Sellmeier equation proposed by Malitson32 [Eq. (28)] is the most commonly 

accepted expression in the literature for the spectral range from 0.21 to 6.7 µm at ambient 

temperature:22, 31-33, 36 
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The spectral value of κ0 can be recovered from the normal spectral transmittance data denoted 

by T(λ) based on the relationship between T(λ) and κ0 in which multiple internal reflections at 

the sample boundaries are accounted for:22, 31, 36 

      
( ) ( )











 −−+−

−= 2

2224

0 )()(T2
)(1)()(T4)(1

ln/e4
1)(

λελ
λελελλε

λπλκ       (29) 

where e is the sample thickness, ε(λ) is the spectral Fresnel reflectivity of the air-glass interface 

for normally incident radiation and given by:23, 25 
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In the case of dielectric materials, 12
0 <<κ  and Eq. (30) simplifies to: 
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The normal spectral transmittance of a 6.5 mm fused quartz sample thickness without bubbles 

and of identical composition as the porous fused quartz continuous phase was measured. The 

absorption index κ0 was retrieved from Eq. (29). Figure 13 depicts the variation of the real 

refractive index n0 predicted by Eq. (28) which is considered in this study while Fig. 14 

compares the values of κ0 as a function of wavelength λ for the dense fused quartz with those 

reported in the literature.34-35, 37 The spectral value of the optical radius of a matrix particle a0 is 

also plotted in Fig. 14, the largest value of a0 is found equal to 0.12 at 2.74 µm (with 

1467/a2x 32 == λπ ) and 4 µm (with 1000/a2x 32 == λπ ). 

C. Experimental Measurements of Radiation Characteristics 
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Experimental radiation characteristics of porous fused quartz such as the extinction 

coefficient, βλ=αλ+σλ, the scattering albedo, ωλ=σλ/βλ, and the scattering phase function 

asymmetry factor, g, are obtained by using an inverse method based on the minimization of the 

quadratic differences between measured and calculated spectral bidirectional transmittance and 

reflectance over discrete measurement directions. The measured bidirectional transmittance and 

reflectance are obtained from an experimental setup including a Fourier-transform infrared 

(FTIR) spectrometer22, 36, 38, 39 operating in a spectral range from 1.67 to 14 µm, associated with a 

liquid nitrogen cooled MCT detector mounted on a goniometric system.36, 39 The theoretical 

spectral bidirectional transmittance and reflectance are the solution of the radiative transfer 

equation (RTE) at steady state regime, in azimuthal symmetry case, and without emission term 

disregarded thanks to the radiation modulation and the phase sensitive detection of the FTIR 

spectrometer. The radiation characteristics of three fused quartz samples of different thickness 

(5, 6, and 9.9 mm) were identified over more than 100 wavelengths from 1.67 to 4.04 µm as 

reported by Randrianalisoa et al.22 More details concerning this inverse method can be found in 

references.22, 36 

D. Comparison between Modeled and Measured Radiation 

Characteristics 

The radiation characteristics predicted by the three models based on the FFA, NFA, and CMT 

are compared with those measured experimentally. The modeled radiation characteristics of the 

absorbing porous medium are obtained by introducing the bubble radiative properties ( sQ , mQ , 

and φ ) obtained from either the FFA, NFA, or CMT, in Eqs. (1), (2), and (5). Since bubbles 

embedded in the fused quartz are optically large (i.e., x>>1), the asymptotic solutions of the 
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bubble efficiency factors and asymmetry factor [Eqs. (12) to (14)] are used for the CMT model. 

The experimental radiation characteristics used in this study are the averaged characteristics for 

three samples and retrieved using an inverse method. The experimental uncertainties associated 

with the radiation characteristics are assumed to be equal to the standard deviation of the 

radiation characteristics for the three samples thicknesses. The extinction coefficient β, scattering 

albedo ω, and asymmetry factor g for porous fused quartz with an average porosity fv=4 % are 

presented in Figs. 15-17. Figures 18 and 19 illustrate the effect of the experimental uncertainty of 

±0.5 % in the measured porosity on the radiation characteristics β and ω in the case of the FFA. 

The same order of magnitude uncertainties in β and ω are found for the FFA, NFA and CMT. 

The largest uncertainty is equal to 23 % for β and 17 % for ω. 

As evident, there is good overall agreement between the three radiation characteristics models 

and the experimental results, except for the asymmetry factor for wavelengths larger than 3.5 

µm. The deviation noted in the asymmetry factor can be attributed to (i) the uncertainties in the 

asymmetry factor g from the inverse method at wavelengths larger than 3.5 µm as discussed 

earlier22, and (ii) the effect of the fused quartz absorption index κ0 on g which is not taken into 

account in the model based on the CMT. 

E. Comparison between Theoretical and Experimental Hemispherical 

Transmittance and Reflectance 

Comparison between the calculated and measured hemispherical transmittance and 

reflectance is also performed. The FTIR spectrometer is combined with a gold coated integrating 

sphere (CSTM RSA-DI-40D) to measure the spectral hemispherical transmittance +
expT  and 

reflectance −
expT . The associated experimental uncertainties are evaluated by repeating the 
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measurements five times for each sample. These uncertainties vary with wavelength from 3 to 8 

% and 9 to 16 % for the transmittance and the reflectance, respectively. To determine the 

hemispherical transmittance +
thT  and reflectance −

thT , first, the radiation characteristics β, ω, and 

Φ obtained from models using an average porosity of fv=4 % are introduced in the radiative 

transfer equation22, 36 to compute the bidirectional transmittance and reflectance leaving the 

plane-parallel slab. Then, the hemispherical transmittance +
thT  and reflectance −

thT  are computed 

by integrating the bidirectional transmittance and reflectance over their respective hemispheres. 

Comparison between the calculated and measured hemispherical transmittance and reflectance 

are shown in Figs. 20 to 23 for the 5 mm and 9.9 mm thick samples. Very good agreement is 

observed between the transmittance and reflectance based on the FFA, NFA, and CMT radiation 

characteristics models and those measured experimentally. Moreover, the FFA and NFA results 

are overlapping. The differences observed in the asymmetry factor g (Fig. 17) between the FFA 

and the CMT are not evident in the hemispherical transmittance and reflectance results. This can 

be explained by the good agreement found for the transport parameters βtr and ωtr. 

The effect of the uncertainty of the porosity measurement on the computed hemispherical 

transmittance +
thT  and reflectance −

thT  was found to be of the same order of magnitude as the 

measured hemispherical transmittance and reflectance uncertainties. They are 3.5 % for the 

transmittance +
thT  and 15 % for the reflectance −

thT . The same uncertainties are observed for the 

results based on the FFA, NFA and CMT radiation characteristics models. Figures 24 and 25 

illustrate the effects of porosity uncertainties on the transmittance +
thT  and reflectance −

thT  based 

on the FFA. 
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Therefore, one can conclude that the three above mentioned models for the radiation 

characteristics are valid for radiative transfer calculations of the hemispherical transmittances 

and reflectances of low porosity and weakly absorbing material. 

IV. CONCLUSIONS 

Modeling of radiation characteristics of bubbles embedded in an absorbing medium has been 

presented. The models based on the classical Mie theory (CMT), the far field (FFA) and the near 

field approaches (NFA) are compared with experimental data for the radiation characteristics as 

well as the hemispherical transmittance and reflectance of porous fused quartz. The following 

conclusions can be drawn: 

 The bubble efficiency factors predicted by the FFA and NFA should be defined using 

the true incident intensity on the particle instead of that at the particle center as in the 

conventional definition. This is required to avoid unphysical results when the bubbles 

are optically large and the matrix is highly absorbing. 

 Large deviations are observed between the FFA, NFA, and CMT for the efficiency 

factors (scattering sQ  and absorption mQ ) and the asymmetry factor (g) of a bubble 

when the matrix is strongly absorbing and/or the bubble is optically large. However, all 

three approaches can be used to perform radiative transfer calculations in absorbing 

matrix containing bubbles even if the matrix is strongly absorbing and the bubbles are 

optically large. Indeed, the disagreement observed between the three models is 

“masked” by the strong absorption of the matrix. 

 Good agreement are observed between the experimental data and the predictions of the 

models for the radiation characteristics of porous fused quartz containing an ensemble 

of optically large polydispersed bubbles and having a porosity of 4 %. 
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 The validity of the three radiation characteristics models in the independent scattering 

limit are confirmed by comparing the computed and measured hemispherical 

transmittances and reflectances of porous fused quartz samples of different thickness. 
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Figure captions 

Fig. 1.  Ratio between the intensities Ii and I0 as a function of the optical radius of a matrix 

particle a0. 

Fig. 2.  Variation of the absorption (α) and scattering coefficients (σ) of a porous medium with 

λ=π µm, x= 200 and fv=5 % as a function of κ0. Solid line: α0. Open symbols: results from the 

definition Ii=γI0. Solid symbols: results from the definition Ii=I0. 

Fig. 3.  Bubble scattering efficiency factor Qs for n0=1.4 as a function of the bubble size 

parameter, x. 

Fig. 4.  Bubble scattering efficiency factor Qs for n0=1.7 as a function of the bubble size 

parameter, x. 

Fig. 5.  Comparison between the FFA, NFA and CMT scattering efficiency factors Qs for 

n0=1.4 vs. optical radius of a matrix particle, a0. The deviations for 30 10−=κ  and 50 10−=κ  are 

overlapped. Fig. 6.  Comparison between the FFA, NFA and CMT scattering efficiency factors 

Qs for n0=1.7 vs. optical radius of a matrix particle, a0. The deviations for 30 10−=κ  and 

50 10−=κ  are overlapped. 

Fig. 7.  Comparison between the FFA, NFA and CMT scattering efficiency factors Qs vs. 

optical radius of a matrix particle, a0. The deviations for 30 10−=κ  and 50 10−=κ  are 

overlapped. 

Fig. 8.  Bubble asymmetry factor g for n0=1.4. The predictions of g by the FFA and NFA are 

identical for the values of κ0 considered. For 00=κ , predictions by the FFA & NFA and CMT 

are overlapping. 
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Fig. 9.  Bubble asymmetry factor, g, for n0=1.7. The predictions of g by the FFA and NFA are 

identical for the values of κ0 considered. For 00=κ , predictions by the FFA & NFA and CMT 

are overlapping. 

Fig. 10.  Comparison between the CMT, NFA and FFA transport extinction, βtr, for n0=1.4 and 

fv=5 %. 

Fig. 11.  Comparison between the CMT, NFA, and FFA transport albedo, ωtr, for n0=1.4 and 

fv=5 %. 

Fig. 12.  Bubbles normalized size distribution, n(a)/Nt, for Nt=212 measured bubbles. 

Fig. 13.  Refraction index of fused quartz n0 calculated from Eq. (28). 

Fig. 14.  Absorption index of fused quartz κ0 and the corresponding optical radius a0 with 

λπ /a2x 32=  and a32=0.64 mm. 

Fig. 15.  Extinction coefficient, β of porous fused quartz. 

Fig. 16.  Single scattering albedo ω of porous fused quartz. 

Fig. 17.  Porous fused quartz asymmetry factor g. The asymmetry factors predicted by the FFA 

and the NFA are identical. 

Fig. 18.  Effect of the uncertainty in the porosity measurements on the predictions of the 

extinction coefficient β using the FFA. 

Fig. 19.  Effect of the uncertainty in the porosity measurements on the predictions of the single 

scattering albedo ω using the FFA. 

Fig. 20.  Hemispherical transmittance +T  of the 5 mm thick sample. The results from the FFA 

and NFA are overlapping. 

Fig. 21.  Hemispherical reflectance −T  of the 5 mm thick sample. The results from the FFA and 

NFA are overlapping. 
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Fig. 22.  Hemispherical transmittance +T  of the 9.9 mm thick sample. The results from the FFA 

and NFA are overlapping. 

Fig. 23.  Hemispherical reflectance −T  of the 9.9 mm thick sample. The results from the FFA 

and NFA are overlapping. 

Fig. 24.  Effect of the uncertainty in the porosity measurements on the predictions of the 

hemispherical transmittance +T  using the FFA for the 9.9 mm thick sample. 

Fig. 25. Effect of the uncertainty in the porosity measurements on the predictions of the 

hemispherical reflectance −T  using the FFA for the 9.9 mm thick sample.
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 Fig. 1.  Ratio between the intensities Ii and I0 as a function of the optical radius of a matrix 

particle a0. 
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Fig. 2.  Variation of the absorption (α) and scattering coefficients (σ) of a porous medium with 

λ=π µm, x= 200 and fv=5 % as a function of κ0. Solid line: α0. Open symbols: results from the 

definition Ii=γI0. Solid symbols: results from the definition Ii=I0. 
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Fig. 3.  Bubble scattering efficiency factor Qs for n0=1.4 as a function of the bubble size 

parameter, x. 
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Fig. 4.  Bubble scattering efficiency factor Qs for n0=1.7 as a function of the bubble size 

parameter, x. 
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Fig. 5.  Comparison between the FFA, NFA and CMT scattering efficiency factors Qs for 

n0=1.4 vs. optical radius of a matrix particle, a0. The deviations for 30 10−=κ  and 50 10−=κ  are 

overlapped. 
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Fig. 6.  Comparison between the FFA, NFA and CMT scattering efficiency factors Qs for 

n0=1.7 vs. optical radius of a matrix particle, a0. The deviations for 30 10−=κ  and 50 10−=κ  are 

overlapped. 
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Fig. 7.  Comparison between the FFA, NFA and CMT scattering efficiency factors Qs vs. 

optical radius of a matrix particle, a0. The deviations for 30 10−=κ  and 50 10−=κ  are 

overlapped. 
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Fig. 8.  Bubble asymmetry factor g for n0=1.4. The predictions of g by the FFA and NFA are 

identical for the values of κ0 considered. For 00=κ , predictions by the FFA & NFA and CMT 

are overlapping. 
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Fig. 9.  Bubble asymmetry factor, g, for n0=1.7. The predictions of g by the FFA and NFA are 

identical for the values of κ0 considered. For 00=κ , predictions by the FFA & NFA and CMT 

are overlapping. 
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Fig. 10.  Comparison between the CMT, NFA and FFA transport extinction, βtr, for n0=1.4 and 

fv=5 %. 
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 Fig. 11.  Comparison between the CMT, NFA, and FFA transport albedo, ωtr, for n0=1.4 and 

fv=5 %. 
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Fig. 12.  Bubbles normalized size distribution, n(a)/Nt, for Nt=212 measured bubbles. 
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 Fig. 13.  Refraction index of fused quartz n0 calculated from Eq. (28). 
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Fig. 14.  Absorption index of fused quartz κ0 and the corresponding optical radius a0 with 

λπ /a2x 32=  and a32=0.64 mm. 
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 Fig. 15.  Extinction coefficient, β of porous fused quartz. 
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Fig. 16.  Single scattering albedo ω of porous fused quartz. 
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 Fig. 17.  Porous fused quartz asymmetry factor g. The asymmetry factors predicted by the FFA 

and the NFA are identical. 
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 Fig. 18.  Effect of the uncertainty in the porosity measurements on the predictions of the extinction 

coefficient β using the FFA. 
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 Fig. 19.  Effect of the uncertainty in the porosity measurements on the predictions of the single 

scattering albedo ω using the FFA. 
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 Fig. 20.  Hemispherical transmittance +T  of the 5 mm thick sample. The results from the FFA 

and NFA are overlapping. 
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 Fig. 21.  Hemispherical reflectance −T  of the 5 mm thick sample. The results from the FFA and 

NFA are overlapping. 
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 Fig. 22.  Hemispherical transmittance +T  of the 9.9 mm thick sample. The results from the FFA 

and NFA are overlapping. 
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 Fig. 23.  Hemispherical reflectance −T  of the 9.9 mm thick sample. The results from the FFA 

and NFA are overlapping. 
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 Fig. 24.  Effect of the uncertainty in the porosity measurements on the predictions of the 

hemispherical transmittance +T  using the FFA for the 9.9 mm thick sample. 
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 Fig. 25. Effect of the uncertainty in the porosity measurements on the predictions of the 

hemispherical reflectance −T  using the FFA for the 9.9 mm thick sample. 




