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Abstraction versus Selective Attention in Classification Learning

Kenneth J. Kurtz (kkurtz@binghamton.edu)
Department of Psychology, PO Box 6000

Binghamton Unviersity (State University of New York)
Binghamton, NY 13902 USA

Abstract

The Shepard, Hovland, & Jenkins (1961) result that Type II
(exclusive-or, XOR) category structures are easier to acquire
than Type IV (family resemblance, FR) is shown not to
replicate with less easily analyzable stimuli. By increasing the
number of stimulus dimensions, the traditional XOR
advantage emerges in terms of likelihood of reaching a
demanding performance criterion, however more errors are
actually made during study by XOR learners as compared to
FR. Removing borderline instances from the training set
promotes acquisition of the family resemblance structure and
leads to a reversal: an actual learning advantage for FR-strong
over XOR. Similarity ratings collected after learning reveal
another failed prediction of the selective attention account.
This set of findings upsets the foundations for the current
pecking order among models of category learning.

Introduction
The seminal work of Shepard, Hovland and Jenkins (1961)
stands as a leading benchmark for model testing and theory
development in the field of categorization.  Specifically, the
explanatory constructs of selective attention and localist
representation of exemplars (or exceptions) have become
widely accepted on the basis of superior data fits. Only three
published accounts (though see Kurtz, under review) have
achieved successful fits to the SHJ data and, in fact, it is the
only computational experiment common to all three papers.
Otherwise influential and compelling theoretical approaches
have suffered for their failure to show the observed ordering
of ease of acquisition of the six types of category structures.
The present research extends this classic paradigm with a
goal of evaluating its place as the sine qua non for category
learning models.

The original Shepard, et al. (1961) study tested a small
sample of learners on the six general types of two-choice
category structures which can be constructed using three
binary-valued stimulus dimensions. The abstract form of the
eight possible stimulus types (000, 001, 010, 100, 110, 101,
011, 111) can be visualized as vertices of a three
dimensional cube. Each of the three dimensions was
realized in terms of two possible values that were highly
recognizable and analyzable: shape (square or triangle);
color (white or black); and size (large or small). Shepard, et
al. measured the number of errors made before a demanding
learning criterion (4 consecutive perfect passes through the
training set) was reached.

The six types of category structures can be summarized as
follows. Type I is based on a unidimensional rule (UNI), so

considering a single dimension is sufficient for perfect
classification. Type II instantiates an exclusive-or (XOR)
logical rule in which membership depends upon whether
one, but critically not both, of two specific dimensions
values are present. For example, white squares and black
triangles might comprise one category, while white triangles
and black squares comprise the other. In this case, size is an
irrelevant dimension. Types III, IV, V are often grouped
together as structures possessing regularities, but always
with an exception to the rule. Among this group, Type IV
conforms to a family resemblance (FR) structure. Examples
000 and 111 can be considered category prototypes with
additional members consisting of those examples with a
majority (two out of three) of prototype-consistent features.
The final category structure, Type VI offers no regularities
and can only be mastered by rote memorization.

The observed ordering in terms of ease of acquisition is as
follows: Type I (UNI) faster than  Type II (XOR); which is
faster than Types III, IV (FR) and Vl which are faster than
Type VI. Theorists have emphasized an interpretation of this
pattern in terms of the number of dimensions requiring
attention. The UNI case requires attention to only one
dimension and it is the easiest to learn. The XOR case
requires attention to two dimensions, and it is the second
easiest. The remaining (and hardest) types each require
attention to all three dimensions in order to be solved. These
results were of early importance in ruling out classes of
models based on principles of stimulus generalization.
Contemporary theorists have found success in simulating
the pattern in terms of: error-driven learning of attention
weights (ALCOVE, Kruschke, 1992), discovery of
regularities/rules plus exceptions (RULEX, Nosofsky,
Palmeri, & McKinley, 1994) or a dynamic clustering
approach that integrates aspects of both of these
mechanisms (SUSTAIN, Love, Medin, & Gureckis, 2004).

In order to promote model comparison, Nosofsky, Gluck,
Palmeri, McKinley, & Glauthier (1994) conducted a
replication and extension of the SHJ study with several
extensions. The researchers used solid versus dotted lines
instead of color as one of the three dimensions. The same
strict learning criterion was applied. Testing many more
participants the originally observed pattern of acquisition
was replicated. By examining the time course of learning,
Nosofsky, et al. were able to conclude that the expected
ordering of the types was in place from the initial learning
blocks all the way to asymptote. (One procedural point is
that each learner was tested on two out of the six possible
types. While participants were instructed that the two
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training sets were independent, it remains true that half of
the data for each type was collected after the participant had
spent up to 400 trials studying the exact same stimuli under
a different category structure.) Nosofsky, et al. conducted
comprehensive model fits to conclude  that ALCOVE
produced a better account than competing models and that
this success was attributable to selective attention.

The stimuli used in these studies are more or less
equivalent to presenting participants with the lists of 0’s and
1’s used by experimenters. As Shepard put it, “The stimuli
in that investigation [(Shepard, Hovland, & Jenkins, 1961)]
were psychologically highly analyzable in the sense that
they tended to be immediately perceived or described in
terms of their values on a small number of perceptually
isolated and salient dimensions” (Shepard & Chang, 1963,
p. 95). It follows that two reversals of the SHJ results have
been observed in the literature. The first case (Nosofsky &
Palmeri, 1996) involved the use of non-analyzable or
integral stimulus dimensions. Love (2002) tested
participants on supervised and unsupervised versions of the
SHJ task and found that Type IV (FR) was more easily
acquired than Type II (XOR) under conditions of incidental
learning (ratings of pleasantness were collected as opposed
to classification decisions). In fact, the Type II (XOR)
problem was as difficult to acquire as Type VI in this
learning mode. In both the intentional unsupervised (a
memorization task) and supervised learning conditions,
performance on Type II (XOR) and Type IV (FR) was
found not to differ. However, a significantly greater
proportion of Type II (XOR) learners reached 95%
accuracy.

A footnote in the paper articulates the point that this
partial failure to replicate SHJ was due to the stimulus set
rather than to the non-standard methodology that was
required to allow comparisons across learning modes. The
stimuli were patterned squares that varied in terms of:
yellow vs. white border (representing category) and three of
the following four features (with the remaining feature
constant across items): slightly larger vs. slightly smaller
size; purple vs. blue color; smooth or dotted texture; and
presence or absence of a diagonal line. These dimensions
were tested for independence and equivalent salience;
making this a very useful set of materials. Importantly, the
pairs of dimension values are not dramatically different
from one another. The dimensions are certainly analyzable,
but they are not the overt, overlearned features used in the
previous studies. In fact, while not suggesting naturalism,
these stimuli do have considerably more in common with
the  kind of category distinctions learners realistically make.

Experiment 1
This project began with an attempt to more fully explore
Love’s (2002) finding of no difference in mean accuracy
between XOR and FR despite a greater number of XOR
learners reaching near-perfect performance. Further reason
to more closely investigate XOR vs. FR comes  from
Nosofsky, et al.’s (1994) time course results (using stimuli

like SHJ) that show only a minimal Type II (XOR)
advantage over Type IV (FR) for the first two passes
through the eight training items; which is followed by a
uniform and substantial Type II (XOR) advantage until
asymptote. No analyses were reported with regard to a
possible interaction between time course and learning
condition.

The goals of the current study are: 1) to advance the
argument that the traditional SHJ ordering of ease of
learning is limited to the case of stimulus materials that are
overtly analyzable along overlearned dimensions; and 2) to
test whether ratings of item similarity collected after
category learning are predicted by selective attention to
diagnostic features during the learning phase. If the
diagnostic features earn high attentional weighting, then a
correlational analysis should show that diagnostic features
predict more of the variation in similarity ratings than non-
diagnostic features.

The logic to address the first goal is straightforward.
Since the learning conditions of primary interest are the
UNI, XOR, FR category structures, a between-Ss design
was used manipulating learning condition in terms of the
SHJ Types I, II, and IV. Regarding the second goal, it has
been shown that same-category pairs are treated as more
similar by participants who have acquired the category
structure over the domain (see Goldstone, 1998; Goldstone,
Lippa, & Shiffrin, 2001; Livingston, Andrews, & Harnad,
1998) for evidence of such top-down perceptual learning
effects. Kurtz (1996; 1997; in preparation) offers a full
treatment and account of category-based similarity (CBS)
effects that occur at the conceptual encoding level rather
than at the level of fine perceptual discrimination. One
observed phenomenon is within-category compression
(higher similarity) without a corresponding between-
category differentiation (lower similarity). However, in
some versions of learned categorical perception phenomena,
the pattern differs. Therefore, for present purposes a non-
controversial measure of CBS was used: difference scores
between the set of same-category pairs and the set of
different-category pairs. Comparing such scores for
category learners to baseline scores produces a measure of
the extent to which the difference between the similarity of
same-category pairs and that of different-category pairs
increases with category acquisition.

Selective attention predicts CBS to occur only for
learning conditions in which attention is differentially
allocated across features (i.e., UNI and XOR, but not FR
with its three equally predictive features). The item pairs
that become more psychologically similar after learning
should be those which match on highly attended features.
For example, after learning XOR on dimensions 1 and 2, the
items (110 and 001) become a same-category pair.
However, increased attention to dimensions 1 and 2 would
increase the weight on mismatched features, thereby failing
to explain any increase in perceived similarity of this same-
category pair. Alternatively, pairings such as (111 and 110)
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would be expected to show CBS since the features matches
underlying their similarity are on diagnostic dimensions.

Method
Subjects A total of 109 undergraduates at Binghamton
University participated in the experiment in order to receive
course credit. An additional 25 Ss participated, but these
data were not analyzed due to the use of a data removal
procedure pertaining to the similarity phase of the
experiment (explained below). Each participant was
randomly assigned to condition.
Materials  The stimuli were eight examples of the patterned
squares downloaded from the site indicated in Love (2002).
In order to allow for interpretation of the similarity data,
only one featural instantiation of each category structure
was used. The texture dimension (smooth or dotted) was the
definitional feature for UNI learning. Texture and Diagonal
(presence or absence) were the diagnostic features for XOR.
Border (yellow or white), Texture, and Diagonal were the
three predictive features for FR. All eight items shared the
same value for Color and Size. This restriction in feature
assignments was made possible by the fact that these stimuli
were tested for independence of dimensions and calibrated
for equal salience (Love, 2002). In addition, a full range of
feature assignments was utilized previously with no
differences reported due to feature assignment (Love, 2002).
Procedure The experimental procedure was the same for
each of the three between-subjects conditions (UNI, XOR,
FR). Participants read a set of instructions explaining the
category learning task under a minimal cover story about
deciding which of the “examples of geometric images with
subtle differences between them” are members of the Alpha
or Beta category. The classification learning phase consisted
of consecutive passes through the training set in randomized
orders. On each trial, the stimulus appeared on a computer
screen along with two radio buttons labeled Alpha and Beta.
Participants responded via a mouse click. After each
response, corrective feedback was provided followed by a
self-paced interval for study prior to the beginning of the
next trial. The maximum number of training trials was
seventy-two (nine passes through the training set), and
learning was stopped early according to a criterion of
perfect performance on any of the six training blocks of
twelve trials (1.5 passes through the training set).

After learning, a test phase was conducted. Participants
were instructed to choose the correct category for each
example without any further feedback (and to give ratings of
the typicality of each example relative to its category). The
final task in the experiment was to complete a set of all
twenty-eight possible pairwise similarity ratings on a (1-7)
scale with endpoints (1) “not at all similar” and (7) “highly
similar.” The stimuli were presented in random order and
each pair was presented in randomized left-right order on
the screen. Before beginning the similarity phase,
participants were given explicit instructions to “keep in
mind that examples from the same category may not be very
similar and examples from different categories could be

quite similar.  Your judgments should reflect the similarity
of the specific examples, NOT merely whether they belong
in the same category.” The reason for this instructional
device was the threat of a potential task demand to produce
high ratings for same-category pairs and low ratings for
different-category pairs (i.e., to demonstrate having learning
the categories). To further protect against the task demand
problem, participants who showed low variability or high
perseveration in responding (such as using only endpoints
rather than the full scale) were removed from the analysis.

Results and Discussion
Learning performance was evaluated under the assumption
that learners who reached criterion would have continued to
produce errorless responding.

Table 1:  Relative ease of acquisition of categories.

Condition Study
Accuracy

Test
Accuracy

% of subjects
reaching criterion

UNI       .95       .99              97%
XOR       .71       .82              44%
FR       .72       .82              26%

As can be seen in Table 1, UNI was vastly superior to the
other conditions as expected. In accord with Love (2002),
the difference in accuracy between the XOR and FR groups
did not approach significance. Unlike Love’s results, there
was also no significant difference in the proportion of Ss
reaching criterion, χ2(1) = 2.38, p  > .05. The criterion
measure shows a possible trend, but these data certainly
defy expectations from SHJ and offer no basis to reject the
null hypothesis of no difference between XOR and FR.

An examination of the time course of learning proved
informative. On the last block of training, XOR accuracy
(M=.83) is slightly higher than FR accuracy (M=.81). This
could suggest that XOR acquisition would begin to show an
advantage as more learners make the transition from
moderately good performance to mastery. The logical nature
of the XOR category structure in comparison with the
probabilistic nature of the FR category structure is
consistent with a prediction of fewer errors on XOR than FR
among those learners who have developed a generally
effective classification basis. It could be that this difference
is what accounts for the SHJ pattern.

For the similarity data, correlation coefficients were
computed to measure which feature matches accounted for
variability in the mean rated similarity of the item pairs.
Based on  selective attention, if a feature was diagnostic
during learning, then a match on that feature should matter
more in rating similarity. Accordingly, the defining feature
for the UNI condition showed r =.74, p  < .01, while the
other features failed to show significant correlations with
similarity. In the FR condition, all three features only
showed moderate, p’s > .05, correlations with similarity.
These results are consistent with the selective attention
account (in addition to others such as Kurtz, in preparation)
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since UNI has one diagnostic feature which is the best
predictor and FR has three equally diagnostic features which
are all moderate predictors.

In the XOR condition, all three features showed moderate
(and narrowly significant, p <.05) correlations of r =.45, .40,
.42 with the mean similarity ratings. The predictive power
of a match on the diagnostic features was no more
predictive than a match on the irrelevant feature. However,
it must be recalled that in the XOR category structure on the
first two dimensions, pairs such as 000 and 111 belong to
the same category. A better predictor might be the match on
both of the relevant features considered together. This
paired match is a significant predictor r =.62, p < .01, but
the other paired matches failed to reach significance.
Therefore, it is evident that category knowledge influences
similarity performance. However, the mechanism of
applying greater weights to a similarity computation for
matches on diagnostic features is inadequate. These data
suggest instead that the mechanism used to learn the
categories is a recoding of the input. Finally, as would be
expected given the correlation analysis, UNI and XOR, but
not FR, show significant category-based similarity effects
using the difference score analysis described above (details
omitted due to space restrictions).

Experiment 2
The essential design of Experiment 1 was preserved, but the
training set was increased from eight to twenty-four items
varying on five rather than three dimensions. Are the
previously observed differences among UNI, XOR and FR
preserved when the task is less of a toy problem (i.e., more
examples comprised of more features)? This design offers
an opportunity to replicate the learning and similarity
findings with the patterned square stimuli which less
dramatically caricature real-world categorization (than do
the traditional materials).

In addition to the three learning groups in Experiment 1, a
fourth condition (FR-strong) was introduced using a
modified version of family resemblance structure. In the
FR-strong condition, learners were only exposed to strong
category members, i.e. exemplars possessing either four or
five out of the five possibly prototype-consistent feature
values. The SHJ findings have contributed to a largely
doubtful view among theorists regarding any special status
for family resemblance structure in learning. In the major
modeling efforts, Type IV (FR) is talked about no
differently from the non-descript Type III and Type V as
category structures that require attention to all three
dimensions (Kruschke, 1992) or as rule plus exception
structures (Nosofsky, et al., 1994). This is despite the
compelling and widely accepted evidence (e.g., Rosch &
Mervis, 1975) for family resemblance as an organizing
principle for natural categories with numerous demonstrable
correlates in cognitive performance. The surprising
difficulty inherent in getting participants to spontaneously
organize a novel domain according to family resemblance in
category construction tasks has contributed to this state of

affairs (Medin, Wattenmaker, & Hampson, 1987).
Participants tend to produce unidimensional sorts (it goes
without saying that they do not produce XOR sorts).

The dissociation between the apparent family
resemblance basis for real-world concepts and the nearly
allergic response shown by learners to family resemblance
structure requires explanation. Medin, et al., suggest that
category cohesiveness (knowledge relating category
features) may be the explanation. However, numerous
results suggest that the noticing of correlations (as required
to solve XOR) depends upon top-down knowledge; yet
XOR is easily learned in the classic SHJ finding. A simpler
hypothesis is that family resemblance is not very compelling
to learners asked to consider very low-dimensional stimuli.
With the use of (111 vs. 000) or (1111 vs. 0000) as
prototypes – which is often the case in artificial category
learning studies – the difference between members of the
two ‘families’ is certainly meager.  With three dimensions,
as in the SHJ study, six out of the eight possible examples
are borderline cases. With four dimensions, the situation
improves slightly, although items that are literally halfway
between the two prototypes are sometimes assigned
membership to one category or the other in the training set
(e.g., Medin & Schaffer, 1978).

With the use of five-dimensional stimuli, it is possible to
test whether or not family resemblance has received the
short end of the stick in learning studies. The FR-strong
condition uses five-dimensional stimuli and remove
borderline items (with only three prototype-consistent
features) from the training set. The design addresses the
question of whether either the small number of features or
the proliferation of borderline examples in the training set
has resulted in systematic underestimation of sensitivity to
family resemblance in learning. An issue of direct interest is
whether either the FR or FR-strong groups might surpass
XOR in ease of acquisition. If so, theoretical accounts
emphasizing selective attention would need to explain how
a category structure that requires attention to five diagnostic
features is easier to learn than a category structure
determined by two features (XOR).

The design also allows for the evaluation of transfer
performance on novel, untrained category examples. This
has never been possible in the SHJ task since there are only
eight training items and each is critical to realizing the six
types. Throughout the literature on learning, the ability to
extend a concept to new cases is considered as important as
acquisition of the training set.

Method
Subjects A total of 190 undergraduates at Binghamton
University participated in the experiment in order to receive
course credit. A subset of 19 participants were removed
from the analysis based on the data removal procedure
pertaining to the similarity phase of the experiment.
Participants were assigned randomly to condition.
Materials Twenty-four of the thirty-two possible five-
dimensional patterned squares (Love, 2002) were used as
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training items such that each value on each feature occurred
exactly half the time. The remaining eight items were used
as novel transfer items in the test phase. The UNI and XOR
learning conditions were unchanged in nature from
Experiment 1 by the addition of two varying, non-predictive
features (Color and Size). The FR training set consisted of
the two prototypes (00000 and 11111), all ten of the strong
category members (with four prototype-consistent features)
and twelve borderline category members (three prototype-
consistent features against two inconsistent features). By
way of comparison, the FR condition in the original SHJ
formulation used in Experiment 1 included two prototypes
and six borderline category members (two consistent
features against one inconsistent). For the FR-strong group,
the training set consisted of only the two prototypes and the
ten strong category members. In order to keep the learning
phase balanced across conditions, the FR-strong group (with
half as many training items as the other groups) received the
same number of trials, but twice the exposures to each item.

The extension from three to five dimensions for the UNI
and XOR conditions consisted  simply of expanding each of
the eight original items into four items based on each
variation of the newly added non-diagnostic dimensions (00,
01, 10, 11). However, the same approach with the FR
stimulus set leads to a violation of the family resemblance
category structure. In exactly six of the thirty-two cases, the
correct FR category of an item becomes switched by adding
two additional feature values. For example, the item 001 is a
member of the 0-based category, however the item 00111 is
a member of the 1-based category according to family
resemblance. The principle of family resemblance was
given priority in the present design and category
assignments were made accordingly. Of the six cases in
which the category assignment would have gone the other
way by rote extension of the three-dimensional set, all were
borderline category members and two of these appeared in
the training set. No unusual effects were observed for these
items (none would be expected since participants in
Experiment 2 are in no way exposed to the possibility of
items and categories designed according to only the first
three dimensions).

In the five-dimensional FR training set, the constraints
were such that it was not possible to perfectly balance the
predictive power of each of the five features. It was decided
to assign the patterns as follows: for one of the features
(size) the prototype-consistent value occurred in seven out
of the twelve category members (58.33% predictive); for
each of the remaining four features the prototype-consistent
value occurred in nine out of the twelve category members
(75% predictive). Across the five features, the prototype-
consistent values were 71.67%  predictive. This is a close
approximation to the 67% predictive power of prototype-
consistent features in the original three-dimensional version.
In the five-dimensional FR-strong categories, each
prototype-consistent feature occurred in five out of the six
category members (83.33% predictive) as a result of the
removal of borderline examples.

Procedure The experiment was conducted following the
same procedure. One difference to note is that participants
in this experiment receive fewer exposures to a greater
number of items during the seventy-two trial study phase.
Apart from the described conditions, an additional set of
participants (N=82) was run in a version of the task without
category learning in order to collect baseline similarity
ratings. A study phase was included to control for item
exposure (a generic instruction was given to study each
example and click to continue). This was followed by the
collection of pairwise similarity ratings.

Results and Discussion
The experiment yielded the results shown in Table 2.

Table 2: Relative ease of acquisition of categories.

Condition   Study Accuracy  % Ss to Criterion
UNI           .93           93%
XOR           .73           50%
FR           .68           11%
FR-strong           .81           31%

All pairwise χ2 tests were significant (p’s < .05) except for
FR-strong versus XOR, χ2 = 3.15, p > .05, indicating the
following pattern for reaching criterion:

UNI  >  XOR  =  FR-strong  >  FR

Notably, a greater number of participants reached criterion
in the FR-strong condition than in standard FR suggesting
that removing the borderline cases promoted family
resemblance acquisition. One caveat is that FR-strong
learners saw twice the number of repetitions of each item in
order to equate overall number of exposures. However, the
time course data show that the FR-strong group performed
better during the second block (M = .81) than the standard
FR group in the final block (M = .70). Learning in the FR
group was considerably more flat than what was observed in
Experiment 1. To the contrary, the FR-strong group made
rapid gains at a rate paralleling that of the UNI learners.

A four-level ANOVA on learning accuracy showed a
significant main effect,  F = 37.29, MSe = 69.89, p < .001.
Pairwise t-tests using the Bonferroni correction showed
significant differences between all pairs except for XOR (M
= .73) versus FR (M = .68) which did not reliably differ, p >
.2. While XOR learners were more likely to reach criterion
than FR learners, the overall accuracy between these groups
did not show a significant difference. The time course data
shows evidence of XOR making steady gains over time
relative to FR, but XOR (M = .79) is no closer to FR-strong
(M  = .88) in the last block than at earlier points in the
learning phase.

Similarity performance matches the observed patterns in
Experiment 1: only UNI and XOR showed category-based
similarity and only the UNI condition showed any one
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feature accounting for a disproportionate amount of the
variance in similarity ratings (details not included due to
space restrictions).

Increasing the size of the training set and of the featural
composition of the items had no great impact on the UNI,
XOR, FR category structures. It is increasingly clear across
these studies that XOR and FR generate very much the same
learning trajectory – except that XOR learners more easily
make the final leap to flawless performance. The superior
learning by the FR-strong group suggests that under the
right circumstances family resemblance is a privileged
category structure (nearly rivaling UNI in study phase
accuracy). Notably, FR-strong learners were still unlikely to
reach criterial levels as quickly as UNI or XOR learners. In
fact, a clear dissociation is seen: FR-strong learners were
significantly more accurate than XOR learners during study,
but half of the XOR participants reached a demanding
learning criterion compared to less than one-third of the FR-
strong learners. There are two possible interpretations. The
first is a bimodal distribution of the XOR learners. The test
phase data (not shown due to space restrictions) is
informative in this regard. Exactly 80% of the XOR group
performed at an accuracy level either above .90 or below .65
(chance is .50) and is evenly distributed between the two.
Acquiring XOR with five-dimensions appears to be
essentially an all-or-none proposition (as befits a logical
rule). The five-dimensional family resemblance structure
shows performance that is fuzzy like the category boundary.

General Discussion
There are two main conclusions to draw from these

results. The first is that the famously easy acquisition of the
XOR category structure and the notoriously poor acquisition
of the FR category structure are limited to the case of
stimuli based on three overtly analyzable dimensions. The
second is that the selective attention account of category
learning is dealt several critical blows: 1) a category
structure requiring attention to five dimensions (FR-strong)
shows reliably fewer errors during study than one that
requires attention to two dimensions (XOR); and 2) XOR
learners show compression, increased perceived similarity
of same-category examples, relative to baseline, but the
match between values for the diagnostic features does not
predict the variability in rated similarity.

As the original researchers put it: “...the most serious
shortcoming of the [stimulus] generalization theory is that it
does not provide for a process of abstraction (or selective
attention)” (Shepard, et al., 1961, p. 29). The present results
encourage the exploration of abstraction, rather than
selective attention, as the core explanatory principle.
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