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Fourier Analysis and Numerical Integration; 
A Step Towards Invariance Group * 

Analysis of Numerical Approximations 

by Arthur R. Zingher 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

19 August 1976 

ABSTRACT. Integration !~dx G(x) is invariant under the translation 

G(x) -+ G(x+y). We will study the effect of this translation group on the 

+00 ( , numerical integration Lk~_oohG kh). This generates a class of equivalent 

, " +00 
numerical integrations Lk=-oohG(kh+y). This class has simpler invariance 

group properties than anyone approximation alone. This invariance will force 

us to Fourier analyze the numerical integration. We will extend these results 

to integration on a finite domain. Often this Fourier analysis will be more 

* This work was done with support from the U.S. Energy Research and 
Development Administration. 
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convenient than the polynomial and higher derivative methods of classical 

numerical analysis. This new analysis will allow us to use many suggestive 

ideas from communication theory. We will be able to understand a great deal 

about the errors in numerical integration from ideas of "aliasing" 

(Nyquist's theorem), the uncertainty principle, and extrapolation. Often the 

numerical integration error is dominated by needless errors due to implicit 

extrapolation near the ends of the integration domain. This gives a new 

insight into the peculiarities of Simpson's rule. This intuition will guide 

us to strikingly better numerical integration rules which will use samples 

outside the integration domain. The most exciting consequence is that these 

ideas are relevant to many numerical analysis problems, not only numerical 

integration. This is one step on a promising bridge between group theory 

and numerical analysis. 

INTRODUCTION. This paper is the result of a mathematical surprise 

during the analysis of some hardware. I wanted to count the ions in an 

intense beam of very fast moving ions. The usual method is to run the beam 

through a "scintillator," a special plastic which produces a brief light 

,0, flash when each ion penetrates it. These flashes are then counted photo­

electrically. Unfortunately, the ions came faster than the electronics 

could reliably count. 

William Holley, of Lawrence Berkeley Laboratory, suggested a better 

method: Take a large piece of insensitive plastic and embed many small, 

equal-sized pieces of scintillator at regular intervals. Then, put this 

perpendicular to the beam. The regular grid of small scintillators will 

sample the beam and produce flashes for a constant fraction of the ions. 

Thus the electronics is not overwhelmed, and can effectively count a very intense beam. 
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One. crucial question was the error due to this spatial sampling. 

I did not know the beam intensity in detail, but a plausible estimate was a 

GauSsian,exp(-t 2/a2), where t was the position across the beam.. The sampling 

s'cintillator took samples at intervals 6t=h=a/4. Thus the exact beam and 

the s~mpled beam could be represented as an exact integral and a numerical 

integral: 
-+00 22-+00 22 
~oo dt e-t /a ~~_~ e-(kh) /a 

How accurately could I expect this coarse numerical integral to approach 

the exact integral lIT? The result is astounding! On an HP55 the sum is 

1.772,453,852. This is identical to lIT to the 9-figure precision of the 

calculator! 

The application forced me to realize that there are other equivalent 

calculations. First, the beam occasionally shifted sideways. Second, the 

scintillator assembly could also shift sideways. Thus an equally plausible 

equation was 

for y=a/8 • 

The exact integral is invariant under this translation, but the 

numerical integral is different. Nevertheless, the sum is 1. 772,453,851, 

which is again astoundingly accurate for such a coarse sampling grid. 

The exact integral is invariant under the group of translations of the 

integrand. Therefore it can be approximated by an ensemble of equivalent 

numerical integrations, which differ only in the fine alignment of their 

samples. This is the central, new idea in this paper. It is explored 

graphically in Figs. + and 2. 
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NUMERICAL INTEGRATION ON AN INFINITE DOMAIN~ We start by calculating the error 

in numerical integration over the entire real line. Assume that the integrand 

G(t) is a complex function, defined on the entire real line, and square-

integrable. Consider the rectangular numerical integration rule which adds 

equally weighted samples G(t) on a uniform grid t = kh+y for all integers k. 

+00 +00 
NI (G jY) :: 'E h G(kh+y) 

k=_oo 
INT(G) :: J dt G(t) • 

-00 

Notice that the numerical integral depends on an alignment parameter y. 

This y dependence has three striking properties. First, NI(GjY) is periodic 

in y with period h. 

+00 +00 +00 

NI (Gjy+h) = L h G(kh+y+h) = I: h G( [k+l]h+y) = 'E h G(k"h+y) • 
k=_oo k=-oo k"=-oo 

Second, the mean value of NI(G;y),averaged over a period of y, equals the 

exact integral. 
Ih +oohh 

<NI (G» :: h J dy NI (G;y) = L h f dy G(y+kh) 
o k=-oo 0 

+00 Jkh+h +00 
= l: dt G(t) =J dt G(t) • 

k=_oo kh _00 

Third, there are at least two values of y that make the numerical integral exact: 

NI(G;YBEST) = INT(G) • 

Of course, YBEST depends on G. 

The periodicity in y strongly suggests using Fourier series analysis 

with respect to y. We expand NI(G;y) in the Fourier series: 

NI (G;y) =£ ~ N'i (G; f) e -i2nfmt 
m=-oo 

where, of course, the coefficients are given by 

NI(G;f ) 
m 

h :: J dy NI (G;y) 
o 

+i2nf t e m 

where f =m/h, 
m 
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Next, we need to Fourier analyze C(t). Since it is not periodic but rather 

is square-integrable, we must use the Fourier integral: 

+00 
G(t) = f df G(t) e -i2nft 

-00 

with the inverse 
+00 

G(f) :: f dt G(t) 
-00 

+i2nft 
e 

Clearly, NI(G.f ) should be related to G(f). Unfortunately NI is a , m 

function of a discrete variable E =m/h, and G is a function of a continuous 
m 

varia~le f. It requires a little sophistication to connect them rigorously [21. 

We use the language of distribution theory, or, equivalently, the language 

of linear operators over complex square-integrable functions. Some convergence 

questions are discussed in Appendix A. 

The numerical integral can be written as a convolution of a sampling 

distribution and the integrand: 

+00 

NI(G;y) = f dt SAMPLE(y-t) G(t) 
_00 

+00 
SAMPLE(t"') = L h O(kh-t"') • 

k=-oo 

where we define 

A significant result is the Fourier transform of the sampling operator [31: 

+00 +00 
SAMPLE(f) :: Ldt-" SAMPLE(t-") e+i2nft" = LO(f-m/h) • 

_00 m=-oo 

Although SAMPLE(t") and SAMPLE(f) look similar, nevertheless they are distinct. 

The Fourier convolution theorem states that the Fourier transform 

of the convolution of two functions is the product of the Fourier transforms 

of the two functions. Therefore, 

+00 

NI(G;f) = SAMPLE(f) G(f) = L o(f-m/h) G(m/h) 
m=-oo 

~, 
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The error of numerical integration is defined to be the difference between 

the numerical integral and the exact integral: 

ERR(G;y) == NI(G;y) - INT(G) • 

The exact integral INT(G) is precisely the zero frequency Fourier transform 

G(O). Therefore 
+00 

ERR(G;y) =Jr df SAMPLE(G;f) e-i2nfy - G(O) 
.... 00 

'" 

= ~ G(m/h) e -i2nmy /h • 
m#O 

For many applications, G(m/h) may be known well enough to make this sum useful. 

For example, sometimes only a few frequencies dominate the sum. 

If, the magnitude of G(f) is known, but not its phase, then we can still 

give an upper bound. Use the triangular inequality: 

:. /ERR(G;y)1 ~ E I G(m/h) I 
m#O 

The error will reach this limit only if all terms have the same phase. 

If G(t) is positive and decreases monotonically away from t=O, then ERR(G;O) will 

reach the limit. However, if (G(m/h)} are not all in phase, then this sum overestimates 

the error. For example, if G(x) is discontinuous, then the sum diverges. 

A more convenient norm for error analysis is often the mean square 

error, averaged over y. This is estimated by Parseval-,s equality: 

2 I h 2 
II ERR (G) II == h f dy I ERR(C ;y) / 

= 

o 

-* 1 hJ dy e+i2nmly/h e· -i2nm2y/h r G(m/h) G(m2/h) h 
mz#O 0 

~* r r G (ml/h) G(m2/h) o(ml -m2) 
ml#O mlO 

II ERR (G)11
2 

= L: IG(m/h)/2 • 
m#O 
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These results can be interpreted with ideas from communication theory. 

Since we sample G(t) at regular intervals ~t=h, we can accurately measure 
"-

components in G(f) up to a maximum frequency If I ..;; 1/2h. We will call an 

integrand band limited to f iff its amplitudes G(f) are zero for frequencies max 

If I ~ f • Nyquist's theorem states that errors will not occur max 

if G is band limited to f ..;; 1/2h. Higher frequency components are 
max 

mismeasured and produce errors. On our regular grid of samples, a higher 

frequency component has the same values as a lower frequency component. 

ei2Trf(y+kh) = ei2Tr(f+m/h) (y+kh) • 

This misidentification is called "aliasing" [2]. 

Even though G(t) is not periodic, the regular sampling process makes 

ERR(G;y) periodic. Since it is linear in G, ERR filters the continuous 

Fourier integral G(f) and passes only the discrete Fourier series G(m/h). 

2 Since these components are orthognal under the L inner product, they contri-

bute separately to I I ERR(G) I I 2 without cross-terms. 

For a usefully large class of applications an ~pproximate Fourier 

transform is sufficiently well known to make this a practical error estimate. 

A very important case is when the step size h becomes very small. Then only 

"- 2 
the high frequency power spectrum, IG(f)/ for If I ~ l/h, is necessary. This 

'high frequency spectrum may be sufficiently well known even if the low 

and intermediate frequency spectrum is'not known. 

These Fourier estimates are often particularly convenient to describe 

properties of experimentally measured data. First and foremost, the hardware 

often is a low pass filter and removes high frequency components from the 

experimentally observed samples. Second, a new generation of spectrum analyzers 

is nOw available to measure efficiently the approximate Fourier transform of 

.the data. Third, the recent development of the Fast Fourier Transform makes 
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digital Fourier analysis practical. These hardware developments enable 

parallel developments in numerical analysis. 

INTERPRETATIONS. Hamming introduces the beautiful idea of an invariant 

algorithm [1. ,p.,7, 72]. We can interpret the preceding analysis with an 

extension of this idea. The exact integral is invariant under the group of 

translations of the integrand: 

+00 +00 f dt G(t) = f dt G(t+y) 
_00 _00 

for all real y. 

An individual numerical integral NI(G;y) approximates this invariance by 

being periodic in y, but the exact integral is invariant for all real y. 

However, the ensemble {NI(G;y) I all real y} is manifestly invariant. 

The ensemble can be analyzed into irreducible representations of the group. 

These representations of the translation group are the Fourier basis functions 

{exp(-i2wft)I for all real ff. 

This suggests a generalization. Suppose that an, exact calculation is 

invariant under a group. The elements of this group shall be called 

symmetries of the exact calculation. We would prefer that the numerical 

approximations have these same symmetries. Unfortunately, many familar 

and useful algorithms are not invariant. Given two approximations to the 

same exact calculation, they will be called equivalent under,the group iff 

a symmetry of the exact calculation transforms one approximation to the other. 

An invariant algorithm is an equivalence class of one element. Given an 

algorithm which is not invariant, it generates an ensemble which is invariant: 

the set of all equivalent algorithms. Since this ensemble is more symmetric 

than an individual algorithm, the ensemble should be easier to analyze than 

an individual algorithm. Group theory provides several tools for this analysis. 
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Call an algorithm correct under a symmetry group iff it is equivalent 

to an algorithm which gives the same result as the exact calculation. I 

speculate that if an algorithm is correct, then its error can be fully. 

described by the group properties. Th~s was the case for numerical integration. 

Notice that these generalizations relate to any group of symmetries of 

an exact calculation. This group need not be the largest possible group, 

all the ,symmetries which leave the exact calculation unchanged. This is good. 

Often we know a few symmetries, but do not know all the symmetries. 

Correctness implies that the symmetry will depend on the approximation, 
+00 

as well as the exact calculat.ion. For example, the integration J dt Gft) 

has many symmetries: 

G(t) -+ G(t+y) 
TRANSLATION 

G(t) -+ cG(t/ c) 
SCALING 

-00 

G (t) -+ G ( -t) . 
REFLECTION 

Numerical integration is correct with respect to translation, but not 

scaling nor reflection. However, it would be premature to assume that 

these other symmetries had no relevance. For example, the scaling group 

might be a useful tool to study the effect of changing the sampling interval 

h.We might use scaling alone, or use the group generated by scaling and trans-

lation together. Also, the scaling group is related to classical polynomial numerical analysis. 

Sometimes the symmetry group gives a lotof information about the exact 

calculation. For example, the only translationally invariant linear 

functionals over the space of continuous integrands are integration over 

(_00, +00) multiplied by an overall constant. 

Quantum mechanics [4] uses group theory in ways which may inspire 

future work. It describes a physical system by a differential equation. 

Many important physical systems have significant symmetries. Quantum 

mechanics translates these physical symmetries into invariance groups of 

the differential equation. The solutions of these equations are analyzed into 
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irreducible representations of the invariance group. Also in classical 

mechanics, there is an import~nt connection between constants of motion and 

symmetries. 

The connection between physical symmetries and computational symmetries 

is often much stronger than a mathematical analogy. Many numerical analysis 

problems describe phys;i.cal systems. Computational symmetries often are a 

reflection of a symmetry of the original physical system, and not just a 

mathematical artifice. Conversely; if an applied mathematician finds a 

symmetry in a mathematical model, then he would be wise to ask what the 

symmetry means for the original system. For example, the periodicity of the 

numerical integral NI(G;y) is a discrete translational symmetry. In the 

hardware described in the Introduction, this symmetry reflected the sideways 

motion of the beam, and the arbitrary alignment of the. sampling scintillator. 

Notice that these group theory ideas are not restricted to numerical 

integration. They should apply to many numerical analysis problems. Of 

course the relevant symmetries and representations will depend on the 

specific application~ 

All this suggests many interesting subsequent papers; but for this one 

we will continue with the analysis of numerical integration rules. We shall 

find enough interesting results to justify the steady work. 

INFlNITE DOMAIN EXAMPLES. The first example dramatizes the difference 

between Fourier error analysis and classical polynomial numerical analysis. 

Return to the problem of numerically integrating a Gaussian by the rectangular 

rule: 
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GAUSS(t) _ exp(_t2/a2) 

L 2 2 2 GAUSS(f) = av~ exp(-~ fa) 

IERR(GAUSS;Y)I~ a~ L exp(_m2~2a2/h2) 
. m:/:O 
. L 2 2 2 
~ av~ exp(-~ a /h ) • 

Divide this error by the exact integral a.fIT. Suppose the scan is rather 

coarse h = a/4 with only 8 samples in the peak. The fractional root-mean-square 

error is only exp(-16~2/2) ~. 10-34 : A more reasonable scan h = a/10 gives an 

extraordinary accuracy exp(-100~2/2) ~ 10-214 : In actual computation, roundoff 

effects will be much larger. 

This extraordinary convergence is the result of the Gaussian integrand. 

Consider the product of the normalized variance in t multiplied by the 

normalized variance in f: 

where G is any function such that all the integrals converge. The Gaussian 

makes this product uniquely small [4]. I speculate that this makes 1 IERRI 12 

uniquely small for'some 1arge'class of integrands. What should this class be? 

How does this Fourier analysis compare to classical numerical analysis? 

There we approximately fit the sampled integrand with a polynomial and then 

integrate that polynomial. Classical numerical analysis finds that the 

rectangular rule exactly integrates linear polynomials. Insofar as higher 

powers occur, numerical integration errors will occur. These.hi-gher powers 

can be estimated from the higher derivatives of the integrand. This leads 

to a variety of error estimates. The simplest estimate comes from the mean 

value theorem: 
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= 1/24 if h=a/4 

= 1/600 if h=a/IO 

Thus the simplest form of classical numerical analysis greatly overestimates 

the maximum error for this problem. Conversely, suppose you want to integrate 

numerically to a specified accuracy. The better Fourier estimate which we 

have developed would allow you to use a much coarser numerical integration. 

This somewhat exaggerates the crudeness of classical numerical analysis. 

There are other, more sophisticated integration rules with better error 

estimates. Unfortunately, the corresponding discussion is also more sophis-

ticated, and the reader may choose' to skip the next four paragraphs. 

The Euler-Maclaurin formula estimates the error for trapazoid rule 

integration of a finite interval in terms of the higher derivatives at the 

ends [5J. 

+L/2 f dt G(t) -
-L/2 

he} G(-L/2) + G(-L/2+h) + • . . 

+ G(+L/2-h) + ~ G(+L/2)] 

+ t ~ b [G (2p-l) (+L/2) - G (2p-l) (-L/2) J 
p=l (2p)! 2p 

+L/2 . 
+ h2q+l f dt B (t) G(2q) (t) , 

(2q)! -L/2 2q 

where bK and BK(t) are the Kth Bernoulli coefficient and Bernoulli function. 

The usual method is to evaluate a few terms in the sum and to neglect the 

rest. One can improve the numerical integration by adding several terms as 

"end corrections" and estimate the error with the next higher order term. 
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Suppose we reach the numerical integral on (-00,+00) as the limit of the 

uncorrected trapezoid rule as L + 00. Then all the higher derivative terms 

form the error estimate. If we stop at q=l, then we get 

MAX I ERR(G;y)I 
y 

·22 2 
E:;; _h . [d G (+L/2) _ d G (-L/2)] 

12 4t2 dt2 

MAX I ERR(GAUSS;y)I y 
h2 2 2· 2 2 

E:;; jf (2 + L /a ) exp(-L /4a ) 

If we take the limit L + 00 then the error bound has the misleading limit 

of zero. But certainly the error is not zero. The interpretation should be: 

2 
if h is sufficiently small, then the error goes to zero faster than h times 

any constant. Unfortunately this analysis does not tell how small is 

sufficient, so this bound is not very useful for a numerical calculation. 

Suppose you are intent on making the classical numerical analysis work! 

Do you get a more sensible error bound if you use higher derivatives? No­

you get a similar null limit proportional to h
2q

• If you are really determined 

and try to let q + 00, then you still have problems because the correction 

terms form an asympotic series, and not a convergent series. The problem 

is that you must take two limits L + 00, q + 00 and the convergence is not uniform. 
I 

I think that if you take the joint limit L + 00, q + 00 with q/L2 fixed, then 

you get a sensible error bound. 

What can we conclude from this long and careful labor? For this problem, 

classical numerical analysis giyes a result which is either excessively crude, 

or else somewhat vacuous, or else very difficult to evaluate. Hamming [1., p. 348] 

concludes that, in the context of classical numerical analysis of the Gaussian 

integral, 
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"The remarkable accuracy for h=1/2 is unfortunately 
accompanied by a certain lack of knowledge of when it 

.->4 

occurs, or when h ~s too large; the error analysis of 
Gregory's formula is a difficult topic." 

This is'not a blanket rejection of classical numerical analysis; rather, 

it limits them to integrands which ,have rapidly convergent power series. 

Conversely, this Fourier error analysis should be efficient only if the 

Fourier transform G(f) + G(t) converges quickly. 

Our second example will be easier. Suppose the integrand is experimentally 

determined by a sequence of measurements G(xk) ata uniform grid of sample 

locations xk=kh+y for integer k. Suppose each measurement G(xk) is a sum of 

an ideal signal S (xk) and experimental noise N (xk) . Let S (f) and N (f) be 

the corresponding Fourier transforms. Suppose the noise is described by a 

set of representative noises. Let < •.• > indicate an average over this set. 

Suppose the average noise is zero: 

<N(x» = 0 and hence <N(f» = 0 . 

We often know an approximation to the average power spectrum for the 

- 2 noise <IN(f)1 >. From this it is very easy to see what error the noise 

produces in the numerical integral NI(G;y). A common example is "shot noise" 

or "pink noise" which falls off at high frequencies. 

with g, T positive. 

Here g is characteristic noise siz~, ,and lIT is a characteristic noise 

frequency. Then the average square error is 

<II ERR(G) 112> ::; L: <I SCm/h) + N (m/h) 12> 
m10 

= L:<IS(m/h)1
2
> + 2 <Re S*(m/h)N(m/h > + <IN(m/h)1 2> 

m10 

~ 2 ~* ~. 2 
L: Is (m/h)1 + 2 Re S (m/h) <N(m/h):- + g, exp(-Imlr/h), 

m10 
2 

:<,IIERR(G)/1 2>= IIERR(s)//2 + 0 + 2 g exp(-T/h) 
1 - exp(-T/h) 
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Thus the net mean square error is the sum of an error produced by the 

signal, and one produced by the noise, and there are no cross terms. If the 

sampling interval is short compared to the typical noise frequency, then 

2 
h«T and the extra squared error is 2g exp(-T/h). If the sampling interval is 

long then h»T and the extra error is 2g2 hiT. 

This is not the only way to estimate the noise error. Autocorrelation 

arguments can be used to estimate <ld
2
N/dt2

1 2> and these will lead to corres-

ponding estimates. 
2 2 

However, you must use some care, because d N/dtmay be 

singular for some representative noises. If sufficient t-domain information 

is available, then these higher derivative methods maybe useful. But in 

experimental applications, often the noise Fourier spectrum is easier to 

estimate because of the hardware developments discussed before. 

NUMERICAL INTEGRATION ON A FINITE DOMAIN. Here we will develop the 

corresponding theory for integration on a finite real domain 

+L/2 f dt G(t) 

-L/2 

Can we directly use the preceding theory? Assume that G(t) is defined 

on the entire real line and is square integrable. A first attempt is to 

EXACT(t) == 1 if I xl 
_ 1 

if I xl =2" L/2 

== 0 if I xl > L/2 • 

I use the name EXACT .because we will see that this is closely related to 

the exact integral. 

....-
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The preceding theory gives a misleadingly 

large error estimate. Since EXACT is dis~ontinuous, ingeneralg(f) Will_ 

have large high frequency components. Conclusion: we must analyze another way. 

The solution is suggested by the symmetry group ideas which we developed 

before. The infinite domain integral INT(G) was invariant under the group of 

realignments, G(t) -+ G(t+y). An individual numerical integral NI(G;y) did 

not share this symmetry, so we creatada symmetric ensemble by considering the 

class of all realigned numerical integrals. By comparison, the finite 

domain exact integral is not invariant. But we can construct an invariant 

ensemble by- considering all realigned finite domain exact integrals. 

Thus we have an invariant ensemble of exact calculations which parallels 

the invariant ensemble of approximations. 

This idea is developed graphically in Fig. 3. When we change the 

alignment y, then the numerical integration samples a different domain. 

We should compare this with a realigned exact integral: 

+L/2 

INT(G;y) = f dt G(t) 

-L/2 

~ 

= f dt EXACT(y-t) G(t) • 

_00 

Now apply the Fourier convolution theorem: 
+00 

INT(G;y) = f df G(f) ExACT(f) e-i2nfy , where 

-00 

+00 

EXACT(f) = f dt' EXACT(t') 
-00 • 

= sin(7rfL)j-rrf 

+i2nft 
e 
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We require G(t) to be square-integrable qn the entire real line to 

make G(f) well defined. Also, since INT(G;y) is not periodic, we must use 

the Fourier integral, G(f) for all real f, and not just the discrete Fourier 
"-

series G(m/h). 

Next, define the numerical integration. Let {WT(n) /integer n} be a set 

of coefficients, called Weigh!s. The Numerical Integration is defined 

NI(G;Y)=J;: h G(y-kh) WT(k) . 

The weights implicitly depend on L, and h, and on the numerical integration 

rule. They cut off the summation for large k to locate the integration domain. 

This may. occur by WT(k) = 0 everywhere outside the integration domain 

/kh/ OS;;; L/2. Or it may include a few non-zero weights just beyond the ends 

to make end corrections. Or it may even include non-zero weights far beyond 

the ends, but with sufficiently small weights to make the sum converge. For 

future convergence it will be sufficient to assume that the weights are 

absolutely summable: 

.~+oo h /WT(k)/ < 00 • 

k=_oo 
Examples are given in Fig. 4. 

The error ERR(G;y) is defined to be the difference between the numerical 

integral and the exact integral: 

ERR(G;y) = NI(G;y) - INT(G;y) • 

Since neither integral is a periodic function of the alignment y, this 

difference need not be periodic. Nevertheless, we can construct its Fourier 

integral: 

ERR(G;f) _ jdY ERR(G;y) e+i2nfy . 

_00 
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Now evaluate this transformed error. First rewrite NI and INT as 

convolutions: 
+00 

NI(G;y) = f dt G(t) SAMPLEWT(y'-t) ,·where 

-00 

+00 
SAMPLEWT(t") = L h .cS(t"-kh)· .. WT(k) , and 

k=-oo 
-f-oo 

INT(G;y) - ~ dt EXACT(y-t) G(t) • 
-00 

Unlike the preceding infinite domain case, the Fourier transform of the 

sampling operator will converge and not be singular: 

~ ~ +i2~fkh 
SAMPLEWT (f) = ~-oo h e WT (k) • 

Since exp(+i2~fh) = exp(+i2~ [fil/h) kh), it follows that SAMPLEWT(O .is periodic 

in f. This will become significant later. 

We can now apply the Fourier convolution theorem. This gives our main < 

result, an exact formula for the numerical integration error: 
+00 r - - -i2~f ERR(G;y) = Jf df G(f) E(f) e y , where 

-00 

E(f) Fourier Error Coefficient (f) 

-= SAMPLEWT(f) - EXACT(f) 

In the next section we will see that E(f) is near zero for much of the 

frequency domain. This will allow us to approximate the error ERR(G;y) 

using only limited information about G(f). If we have even less information, 

and if our application can use a less exact error estimate, then we can 

make various simplifications. An upper bound follows from the triangular 

inequality: 
-f-oo 

I ERR(G;y) I < ~ df I C(O I I E(f) I . 
-00 
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In other applications, a root mean sq~are average is preferable. 

Since ERR(G;y) is not periodic, we must construct the average a little 

differently than before. We define a norm 
+00 

/ /ERR(G;y)/ /2 = i ~dY /ERR(G;y)/2 J 

~ 

Appendi)C A shows that this converges. NoW-use Parseval's equality: the 

mean-square norm with respect to y equals the mean-square norm with respect 

to f. +00 

II ERR(G)/l2 = ~ f df I ERR(G;f) 12 

_00 

+00 

= ~df /G(f)/2 /E(f)/2 /L 
-00 

In the next section we will study E(f) for several important numerical inte­

gration rules. These can be rewritten trivially to calculate /E(f)/ 'or 

/E(n/ 2 /t to study error upper bounds or mean square errors. To repeat, the 

choice between these depends on the application. 

SEVERAL IMPORTANT NUMERICAL INTEGRATION R~ES. Now we will study the 

Fourier error coefficients E(f) for several important numerical integration 

rules. We will try to concentrate on interpretation and qualitative ideas 

and will try not to be overwhelmed by the algebra. Nevertheless, the reader 

must persevere through several difficult pages. In the next section the 

discussion will become easier, and the reader will be rewarded with some 

interesting results. Some of the algebraic details have been exiled to 

Appendix B. Figure 4 is a pictorial catalogue of these numerical integration 

rules. 

. --
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Start with the midpoint RECTangular !umerical Integration rules, which 

has the obvious acronym NlRECT. Assume that the sampling period h divides 

the integration domain L into,2N, an even integer number of samples. 

Let G
k 

::: G(kh+y). 

NIRECT(G;y) h[G_N+l / 2 + G-N+3/ 2 + .•• + G+N- 3/ 2 +G+N- l / 2 ] 
¥o 

~dt RECT(y-t) G(t), where the kernel is 
_00 

RECT(z) 
k=+N-1/2 
L:h o(kh+z) 
k=~N+l/2 

whose Fourier transform is 

RECT(f) = ~h e+i2nfkh = h sin(nfL)/sin(nfh) 
k 

By comparison, the kernel of the exact integral gave EXACT(f) = sin(nfL)/nf. 

Therefore the Fourier error coefficient is 

ERECT(f) = h sin(nfL)/sin(n£'h) - sin(nfL)/nf • 

Now we work towards getting some insight out of this messy algebra. Start by 

factQring RECT(f) from ERECT(f). 

ERECT(f) = RECT(f) [1 - sin(nfh)/nfh] 

-. RECT (f) MODRECT (f) • 

These functions are plotted in Fig. SAB. Start by concentrating on 

RECT(f). This shows a pattern of large spikes superimposed on fine small 

oscillations. These spikes are due to aliasing, which we already discussed. 

We will call them Nyquist spikes. 

Compare this with the error for integration on the entire real line. 

The language was somewhat different, but the corresponding Fourier error 

coefficient was a singular operator 

SAMPLE (f) E a (f-m/h) . 
mlO 

Thus the spikes in ERECT(f) approach these delta functionals. 
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For the finite domain, the Nyquist spikes have width !J.f ~ 1/L because 

of the factor sin(~fL) in RECT(f). This width is the result of the uncertainty 

principle that measurements on a domain of length L cannot determine a frequency 

more precisely than !J.f ~. l/L. (This is not the most precise statement of the 

principle, because that would divert us from our main discussion. The 

uncertainty principle is well known in physics [4] and communication theory • 

. We skirted it in our study of the Gaussian integrand.) We conclude that 

RECT(f) summarizes the almost unavoidable errors of any numerical integration 

method based on a finite density of regularly spaced samples. 

There is one exception: zero frequency components are correctly 
,..., 

represented by the samples. Consider the other factor in ERECT(f). It is 

convenient to measure frequency in comparison to the sampling interval 

a = ~fh: 
MODRECT(f) - 1 - sina/a 

~ a2/6 

~ 1 

if lal « 1 

if lal » 1 

This has a double root at zero frequency. This eliminates the zero frequency 

Nyquist spike and reduces (filters) the errors at low frequencies. 

Now we can study how the error changes as the sample interval is reduced, 

h + O. The starting point is our main formula for errors, with the h depen-

dence written out explicitly. 
+00 

ERR-RECT(G;y;h) = ~ df G(f) ERECT(f;h) e 
-i2rrfy 

-00 

ERECT(f;h) = h sin(~fL)/sin(~fh) - sin(TIfL)/TIf 

= [TIfh/sin(TIfh) - 1] sin(TIfL)/TIf • 
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We already know a great deal about the way the Nyquist spikes change 

with h. The peak frequency f =m/h will scale up, but the width f ~ IlL and 
m 

the peak height ERECT ~ L, are both independent of h. If G is band limited 

to f , then the errors indicated by the Nyquist spikes will disappear hr max 

h ~ llf . This part of the h dependence is carried by the factor max 

RECT(f;h) in ERECT(f;h). 

Alternatively, consider one fixed frequency f, and let h + O. The last 

formula for ERECT(f;h) isolates all h dependence into the factor in square 

brackets. When h becomes small compared to III fl, then this factor is approx-

2 imately equal to (nfh) 16. Thus the error coefficient will become small 

like h2, once h is sufficiently small. However, "sufficiently small" 

depends on f, and this convergence is non-uniform in f. This part of the h 

'" '" dependence is carried by the factor MODRECT(f;h) in ERECT(f;h). 

It would be misleading to conclude that the overall error converges to 

zero like 
2 +00 

I ERR-RECT (G;y;h) I ~ (n~) I df IG(f)1 f2 X sin(nfL)/nf 

-00 

The first problem is that this upper bound does not follow because the h
2 

approximation depends on f. In other words, the error coefficient converges 

non-uniformly to zero. The second problem is that this upper bound is 

infinite if G(t) is not everywhere differentiable. Third, and most insidious, 

this bound may often seriously overestimate the error. 

Often the integrand is not only band-limited, put the power spectrum 

IC(f)1 2 is largest at low frequencies and falls approximately monotonically 

as the frequency increases in magnitude. In such c,ases, the main formula 

for the error is more sensitive to values of ERECT(f;h) at low frequencies, 

and less sensitive at high frequencies. The non-uniform convergence means 

that the low frequency error coefficients will shrink as h + 0 before the 
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high frequency coefficients start to shrink. Thus the error will shrink 

before this misleading upper bound would indicate. These problems are similar 

to the problems we already studied in the example of the second-derivative 

error bound for the Gaussian integrand. This non-uniform convergence and 

extra low frequency sensitivity should be kept in mind when we study other 

numerical integration rules. 

The ~ezoidal rule for !umerical Integration is 

NITRAP(G;y) = h[1/2 G_N + G_N+l + ••• + G+N_l + 1/2 G+N] • 

As before, this can be written as the convolution of G(t) with a kernel 

TRAP(y-t). Appendix B shows that its Fourier transform is 

TRAP(f) - h sin(nfL)/tan(nfh) • 

Therefore its error coefficient is 

ETRAP(f) = RECT(f) MODTRAP(f), where 
.... 

MODTRAP(f) - cosS - sinS/S 

~ 822/3 if 181 « 1 . 

We will interpret this after we have developed other integration rules. 

Simpson's rule on the same samples is 

NISIMP(G;y) = h[l/3 G_N + 4/3G_N+l + 2/3 G_N+2 + 4/3 + 2/3 + 

+ 2/3 G+N_2 + 4/3 G+N_l + 1/3 G+N] • 

Appendix 13 calculates the Fourier transform of its kernel: 
.... 

SIMP(£) = {2h sin(nfL) /sin(2nfh)} [1 + 2/3 cos(2nfh)] 

= RECT2H(f) [1 + 2/3 cos(28)] 

.... """' 
Notice that SIMP(f) contains a factor RECT2H(f) which has the same form as 

RECT{f), but with h r~placed by 2h. We will interpret this later. The 

--error coefficient ESIMP(f) contains a corresponding factor. The Fourier 

error coefficient is 
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'" ....., '" 
ESIMP(f) = RECT2H(f) MODSIMP(f), where 

MODSIMP(f) - 2/3 + 1/3 cos(2e) - sin(2e)/2e 

~ +.0888 e4 
if I el « 1 • 

We will discuss Simpson's rule further after we evaluate the first order 

ce~tered Gauss Gregory rule which we abbreviate CGG [6]. This corrects the 

trapezoidal rule with centered differences at each end. (This correction is 

similar to the first order Euler-Maclaurin correction to the trapezoidal rule.) 

NICGG(G;y) - h[-1/24 G_N_l + 1/2 G_N + 25/24 G_N+2 + G_N+3 + ••. 

+ G+N- 3 + G+N_2 + 25/24 G+N_l + 1/2 G+N - 1/24 G+N+l ] • 

Appendix B shows that the Fourier error coefficient is 

ECGG(f) = RECT(f) MODCGG(f) , where 

MODCGG(f) = cose + t sin2e - sine/e 

~ -.0777 e4 
if lei « 1 . 

GRAPHICAL COMPARISONS AND INTERPRETATIONS. These Fourier coefficients 

can most easily be compared graphically. They have been evaluated and plotted 

with a simple FORTRAN program for the errors of numerical integration of 

+10 f dt G(t), where h = 1. 

-10 

Since ERECT(f) is a common factor in all but one rule, we can compare the 

error coefficients by just comparing their modulations. Figure 6A shows 

the low and intermediate frequency bands I fl ~ 0.9 cycle/sample. Notice that 

MODRECT(f) and MODTRAP(f) are both approximately parabolic, with the 

trapezoidal errors about twice the rectangular errors. The other rules 

'" 
MODSIMP(f) and MODCGG(f) are almost identical quartics. Figure 6B shows the 

individual modulations up to high frequencies I fl ~ 3 cycles/sample, and 

Fig. 6C superimposes them. This last figure is complex, with many overlapping 
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curves. The important feature is that all the rules have comparable magnitude 

in the high frequency band, I fl~ ;;. 1 cycle/sample. All are on the order of 

one. Therefore, they will produce similar errors in this band. 

Simpson's rule needs some interesting special consideration. Recall 

that its Fourier error coefficient has a factor RECT2H(f) instead of 

RECT(f). This requires that we compare the error coefficients ESIMP(f), 

Fig. 7A, and ECGG(f), Fig. 7B. At low frequencies, I fl ~ 1/3 cycle/sample, 

these errors are very similar. At intermediate frequencies, I fl = 1/3 to 

1 cycle/sample, we see that Simpson's rule is much worse! Why? Inspect the 

weights in Fi;g. 4 for Simpson's rule. They give little weight to alternate 

samples. So Simpson's rule approximates CGG with half the density of samples. 

Therefore Simpson's rule must develop Nyquist spikes at half the frequencies 

that CGG does. The extra spikes happen to have negative phase and are 

conspicuous in Fig. 7A. 

A more precise statement is possible. The sampling weights for Simpson's 

rule repeat with sampling period 2h, even· though the sampling interval is h. 

The Nyquist spikes show aliasing errors. These occui at harmonics of the 

sampling period f = m/2h. On the other hand, CGG gives equal weights to 

all its samples. Thus its sampling period and interval are identieal. There-· 

fore its Nyquist spikes are at f= m/h. This distinction between the ~epetition 

period and the sampling interval is reinforced.by the convolution algebra in 

Appendix B. There the repetition clearly introduces the factors RECT(f) 

--and RECT2H(f). 
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This makes Simpson's rule seem very crude. But it is well known to 

be better than the trapezoidal rule for many integrands. In the low 

frequency band Simpson's rule is much better than the trapezoidal rule 

(see Fig. 6A). Why.? Because it handles the ends of the integration domain 

well. The CGG makes this clear. Throughout the bulk of the summation~ 

everywhere except at the ends of the integration domain, CGG is identical 

to the trapezoidal rule (see Fig. 4). Therefore, they have similar Nyquist 

spikes, and similar RECT(f) factors. But the subtle differences near the 

ends of the integration domain imply different modulation factors. These 

determine the low frequency error. There the trapezoidal rule error is 

proportional to e2~ while the CGG error is proportional to e4 

Why should fine details near the end make such an extraordinary difference 

in the errors? Aren't these insignificant compared to the many samples 

inside the integration domain? No! We can think of numerical integration in 

two stages. First~ we construct an approximation to the integrand from the 

given samples. Second~ we calculate the exact integral of this approximation. 

Well inside the domain~ with many samples on each side~ the approximation is 

an interpolation problem. Near an end~ with very few samples on one side, 

the approximation is like an extrapolation problem. Extrapolation is much 

more difficult than interpolation~' and it dominates the errors at low frequen-

cies. Simpson's rule and CGG are better than the trapezoidal rule because 

they do this extrapolation better. Simpson's rule is not improved because 

the weights inside the domain alternate in some clever way. Indeed~ the 

Nyquist spike analysis showed that this alternation is a weakness. The 

improvement is due to better extrapolation near the ends. 
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A useful concept, due to Tsvi White, is the data domain for a numerical 

integration rule. This is the set of all locations of the required samples. 

Compare the data domain and the integration domain. Iff; the data domain is 

inside the integration domain excluding the end points, then that numerical 

integration rule is open. The midpoint rectangular rule is open since its 

samples never are closer than h/2 from'either end. Call a rule closed iff 

its data domain is the ends plus locations inside the integration domain. 

The trapezoidal rule and Simpson's rule are closed. Call a rule extended 

iff its information domain includes points beyond the ends of the integration 

domain, as well as inside the integration domain. The CGG rule is extended 

since the centered difference at each end requires one sample beyond each 

end. For a given density of samples, the progression from an open rule, to 

a closed rule, to an extended rule can change the errors associated with 

the ends from extrapolation errors to interpolation errors. 

The natural context for this analysis is integrands with well defined 

Fourier transforms. Nevertheless, we will briefly consider polynomial 

integrands because they dominate classical numerical integration. Polynomials 

can be Fourier transformed within distribution theory. The Fourier transform 

of a polynomial (of finite degree) vanishes except at very low frequencies: 

Fourier transform (xm;f) = o(f)(-2'ITi)-m(dldf) • 

Substitute this integrand into our main error formula for ERR(xm;y). Simpson's 

rule and CGG have error coefficients like (hf)4 as hf + 0, so it follows that 

both rules integrate cubic polynomials exactly. 

There are many possible comparisons between polynomial and Fourier methods. 

For low order polynomials (m E;; L/h) and low frequencies ( If I E;; l/h) the 

two methods give very similar results. Beyond this, some integrands are better 

analyzed by one method, and some by the other. If an integrand has a rapidly 
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convergent power series, then polynomial methods should work well. If it has a 

rapidly convergent Fourier transform, then Fourier methods should work well. The 

tool should fit the task. One cannot say that either method is categorically better. 

We conclude this section with several generalizations. First, if extended 

samples are available, then the centered Gauss-Gregory rule is better than 

Simpson's rule. Second, every rule with uniformly spaced samples will make 

aliasing errors, which· will produce Nyquist spikes. Third, the best rule 

should have equal weigqts inside the integration domain. Near the ends it 

should be more sophisticated, to alleviate the extrapolation problem; if 

possible, it should use extended samples to eliminate this problem. In the 

next section we will develop these ideas to their logical conclusion. 

AN OPTIMAL NUMERICAL INTEGRATION RULE. What is the best possible 

numerical integration rule, as measured by its mean-square error spectrum? 
¥O 

II ERR (G) II 2 = / d fiG (f) I 2 I E (f) I 2/L • 

-00 

'" 2 
Clearly the answer depends on the integrand's power spectrum IG(f)1 • 

Insofar as it is known, the rule should be tuned to make the Fourier coefficient 

'" 2 - 2 coefficient IE(f)1 small wherever IG(f)1 is large. How large a set of 

frequencies can have zero error coefficient? Does any rule reach this 

optimum? 

We need to recall some previous results. LetNI(G;y) be the numerical 
+L/2 

integration which approximates f dt G(t+y) with a regular grid of samples 
. -L/2 

and some unspecified weights: 
+00 

NI(G;y)' ==1: h G(kh+y) WT(k) . 
k=-oo 
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Assume that L/h is an even integer. We already constructed the Fourier 

transform of the kernel, SAMP1.EWT (f), and we saw that it was periodic in f, 

with period IJ.f = l/h. The error coefficient was the difference between this 

kernel and the corresponding kernel for the exact integral: 

E(f) = SAMPLEWT(f) - EXACT(f) . 

Obviously this error will be zero at some particular frequency, if and only if 

SAMPLEWT(f) = EXACT(f) :: sin(TIfL)/TIf • 

Now weare prepared to restate the question. Consider all such 

numerical integrals. Each rule will have a set of roots {fIE(f) = O}. 

--What rule gives a maximal set of roots? What periodic functions SAMPLEWT(f) 

have a maximal solution to the following equation? 

SAMPLEWT(f)/sin(TIfL) = l/TIf • 

The left-hand side is periodic in f, but the right-hand side never repeats 

a value. Therefore, if this equation is satisfied for frequency f l , then it' 

must not be satisfied for frequency fl + m/h for any non-zero integer m. 

Thus all roots are distinct modulo IJ.f = l/h. Therefore a maximal set of 

roots will be (-1/2 h; + 1/2h) if we can find a rule with these roots. 

There is one loophole. The preceding argument is not valid if 

--sin(TIfL) = O. In that case, the error will be zero if SAMPLEWT(f) sin(TIfL) = O. 

These frequencies generate the functions with period L. 

Now we construct a numerical integration rule which is exact up to 

frequencies 1/2h in magnitude. This sounds like a difficult condition to 

fulfill, but it turns out to be quite moderate. This condition implies that 

--SAMPLEWT(f) = EXACT(f) = sin(TIfL)/TIf 

if f is in the fundamental band f E(-1/2 h; + 1/2 h). 
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Define a new fmiction, f modulo 1/h. Let mod (f) be that frequency in the 

fundamental band which differs from f by an integer mUltiple of 1/h. Then, 

since SAMPLEWT(f) is periodic, it is determined everywhere by its values for 

f in the fundamental band. Therefore 

'" SAMPLEWT(f) =EXACT(mod(f» = sin(7TfL)/7T mod(f) for all f. 

'" We cannot naively take the Fourier transform of SAMPLEWT(f) because it is 

periodic and not square-integrable. This is precisely the same problem which 

we already overcame to study numerical integration on an infinite domain. 

There we used a special operator 

SAMPLE(t) =~::h o(t-kh) whose Fourier transform was 

:roo 
SAMPLE(f) =1: o(f-m/h). 

m=-OO 

Let BANDL1M1T(f) be the characteristic function of the band (-1/2 h; + 1/2 h). 

BANDL 1MIT (f) - 1 if 1 fl < 1/2 h 

- 1/2 if 1 f/ 1/2 h 

- 0 if 1 f/ > 1/2 h 

'" 
The periodicity of SAMPLEWT(f) can now be expressed by the infinite sum 

SAMPLEWT.(f) =1:~ ExACT (f-m/h) BANDLIMIT (f-m/h) . 
m=-oo 

This can be reWritten as a convolution: 
~ 

SAMPLEWT (f) =/ df'" ~ 0 (f-m/h-f"') ExACT (f"') BANDLIMIT-(f"') 

-00 

I 
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'" The Fourier transform of BANDLIMIT(f) is 
+00 

BANDLUllT(t) = df BANDLIMIT(f)e f '" -i2~ft 

-00 

. +1/2h 

f -i2~ft 
= df e 

:""1/2h 

_ sin(~t/h) 
- ~t/h • 

'" The Fourier transform of EY;;kCT(f) is given by the original definition of 

EXACT(t): 

EXACT(t) = 1 if It I < L/2 

= 1/2 if It I = L/2 

= 0 if I tl > L/2 

Now apply the Fourier convolution theorem twice to the last formula for 

SAMPLEWT (f) : 
+00 

SAMPLEWT(t) = SAMPLE(t) f dt'" EXACT(t-t") BANDLIMIT(t"') 

WT(k) 

Si('1') 

-00 

t+L/2 
~ f sin(~t"/h) ={;-oo h 6(t-kh). dt" ~t"/h 

t-L/2 

= ~ 6 (t-kh) h WT(k), where 

.,; 1. Si(7r[k+N]) - Si(~[k-N]) , where 
~ 

I!' sin '1'''' 
== f d'1'''' '1''' and N == L/2h . 

This last integral is reasonably well known [7]. The weights are 

particularly simple if h «L. The weights extend indefinitely far outside 
. 

the integration domain, but they approach zero. In the center of integration 

domain they approach 1. Near either end, they oscillate about the trapezoidal 

weights. More precisely, suppose that k is not near either end: ~ Ik + NI » 1 

and ~ Ik - NI »1. Then the weights are approximately: 
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WT(k) ~ (_)k-N [1 _ 1 1 if k is outside. the domain 
n2 k - N k + ~ 

~ 1 - (_)k-N [1 1 J if k is inside the domain. 
n2 k - N k + N 

Near the end, a few weights are: 

k - N TRAP WT CGG WT NEW WT 

+5 0 0 o -.020,11 

+4 0 0 o +.025,03 

+3 0 0 o -.033,09 

+2 0 0 o +.048,59 

+1 0 o -.041,67 o -.089,49 

0 1/2 1/2 1/2 

-1 1 1 +.041,67 1 +.089,49 

-2 1 1 1 -.048,59 

~3 1 1 1 +.033,09 

-4 1 1 1 -.025,03 

-5 1 1 1 +.020,11 

This table assumes lk - Nl «N. This rule is sketched in Fig. 4. 

Our construction immediately tells us the Fourier error coefficient 

for this new rule: 

ENEW(f) = EXACT(mod(f) - EXACT(f) 

= .=;.s,=.;in:.:...(.>-n:-=f,::;L7-) 
n mod (f) 

sin(nfL) 
1ff 

This oscillates rapidly in f. As usual, it can be factored into a slowly 

changing modulation times the kernel of the rectangular rule: 

ENEW(f) 

MODNEW(f) 

RECT(f) MODNEW(f), where 

sin(nfh) 
n h mod (f) 

sin(nfh) 
nfh 

This is not singular since mod (f) and sin (nfh) have the same zeroes. 
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This new modulation is shown in Figs. 6ABC. Compare it with the other 

rules in those figures. The new rule is much better if If I < 1/2h, since it 

has zero error. Thus this new rule is exact on "band-limited" functions 

which contain only these frequencies. For higher frequencies If I > l/2h, 

the new rule's errors are approximately comparable to the other rules. 

What does this do for frequencies such that sin ('rrfL) = O? If f is an 

integer mUltiple of IlL, but not an integer multiple of llh, then the 
-.. 

error will be zero because RECT(f) is zero. At multiples of llh the error 

will not be zero because of aliasing. 

Thus we have found a new rule which optimizes the mean square error spectrum: 

No other rule can have these zeroes and more. Notice that this same rule 

optimizes the maximum error bound and the exact error in the same way: 

I ENEW (f) I 2 = 0 •• -........ I ENEW (f) 1= 0 ~.-..... ENEW (f) = o. 

For a specific integrand with an approximately known power spectrum, 

we might do a little better. For example, if IC(f)/2 is known to be tuned to 

frequencies near f l , then we should retune this rule by multiplying each 

weight WT(k) byexp(-2TIfl kh). However, many integrands are large at low 

frequencies and falloff rapidly above some f • If it is possible to make max 

h smaller than llf , then even such specialized rules will show little 
max 

improvement over the current one. 

This new rule was derived from frequency arguments without exp~icitly 

studying polynomials. Therefore it is interesting that the same rule can 

be derived by fitting the same extended samples with a Lagrangian polynomial 

[1, p. 551] and then integrating that polynomial. 
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Notice that this new rule requires an infinitely extended data domain. 

This rule will.be useful in either of several cases: 

1) The integrand is known everywhere at t = y+kh. 

2) The integrand gets small for large t, and the integrand is 

known far enough bey'ond the domain for the product of the 

weight and the integrand to become negligible. 

3) The integrand is periodic, or approximately periodic. This 

period may be different from the integration domain. 

In the last case, the preceding derivation must be slightly modified. 

The frequency f becomes discrete, and we must replace the factors 

lInf by L . d/sin(nfL . d) . per10 per10 

These applications form a usefully large set. Unfortunately, sometimes 

the integrand is known only over a more limited data domain, or the integrand 

is large or irregular outside the integration domain. In those cases, 

the optimal rule is probably not to truncate the current one. There the 

optimum depends on the data domain. More work is needed. 

CONCLUSIONS AND FUTURE WORK. What have we learned about numerical 

integration? What extensions follow? The first new idea in this paper was 

to study numerical integration as a function or the alignment of the samples. 

We found that numerical integration on (_00, +00) was a periodic function of 

the alignment. This forced us to use the Fourier convolution theorem. 

The result was a family of error estimates based on the Fourier transform 

of the integrand. Sometimes these Fourier estimates were better than 

classical polynomial-derivative methods. Some of these Fourier errors were 

interpreted via Nyquist's theorem and the uncertainty principle. Other errors 

were due to extrapolation problems near the ends of the samples. ,One 
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improvement was higher order extrapolation near the ends. Simpson's rule 

did this in a clumsy way, which needlessly increased the Nyqui~t errors. 

A better solution was to use extended samples from beyond the integration 

domain. The Gauss-Gregory rule did this a little, and for many applications 

it is better than Simpson's rule. We found a new optimal rule which used a 

greatly extended data domain. It gave outstandingly small errors, which were 

interpreted via band-limited functions. 

Several subsequent studies should be made. First, what is the optimal 

rule if the data domain does not extend infinitely? Second, a similar analysis 

can be based on autocorrelation. Let 

AUTO(G;y) :: f dz G* (y-z) G(z) 

It follows that 

II ERR(G) 112 = f dy I ERR(G ;y) I 2 = AUTO (G;O) 

= f dy AUTO(SAMPLEWT-I;y) AUTO(G;-y) . 

This last formula is like II ERRI12 = f df IGI2 1'E12 • 

A third direction is to study how other numerical analysis methods 

depend on the sample alignment. For example, suppose we evaluate a differential 

equation with a numerical integration scheme using equally spaced steps. 

How do the solutions change as the alignment changes? 

There are several exciting new ideas which have more general interest. 

First, an ensemble of similar algorithms may be more fruitful to analyze 

than an individual algorithm. Second, an ensemble of exact calculations often 

has a group of symmetries. If an ensemble of algorithms are correct approxi-

mations to the exact calculations, then the group structure should be a 

powerful tool to analyze the algorithms. This should be applicable to many 

numerical analysis problems. These ideas are one step on a promising 

bridge between numerical analysis and group theory. 
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APPENDIX A: CONVERGENCE. The following argument shows that the finite , 

domain norm for I I ERR(G) I 12 converges: 
;-00 

II ERR(G)11
2 

:: f: f dy I ERR(G;y)1
2 

_00 

;-00 ;-00 

= tfdY I E+oo k WT(kh) G(y-kh) 
k=-oo 

-fdt EXACT(t) G(y_t)1 2 

_00 _00 

=t F h2 
WT(kh) WT(kh) t fdY G(y-kh) G* (Y,-kh) 

+ fdt fdt" EXACT(t) EXACT* (t") f fy G(y-t) G* (y-t") 

+t=h fit" WT(kh) EXACT*(t")f: fy G(y-kh) G*(y-t") 

+ !dt. Fh EXACT(t) WT(k"h) f: fly G(y-t) G* (y-k"h) 

E;; {f:h I WT(kh) I + ft I EXACT (t) 1}2 i fit I G(t) 12 

The discussion of numerical integration over the entire real line skated 

past some very pathological operators. 

~ 
SAMPLE(y) = L: h o(y-kh) . 

1(=-00 . 

A more rigorous approach would have been to first study numerical integration 

'" on a finite domain [-L/2; +L/2]. There SAMPLEWT(y) and ERR(G;f) are less 

pathological. After we had the Fourier decompositions for ERR(G;y) and 

2 
MAX IERR(G;y)1 and I I ERR (G) I I , then we could have taken the limit L -+ 00. 

Unfortunately, this rearrangement would have many heuristic disadvantages. 

Numerical integration on a finite domain does not have the clear translation 

invariance that it does on the entire real line. Therefore, the finite 

domain case does not have the striking periodicity in y. Another disadvantage 

is the extrapolation problem. This reorganization would require us to analyze 

this complicated problem at the very beginning. I have balanced these advantages 

an~ disadvantages and chosen clarity over rigor; I hope that the reader agrees. 
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APPENDIX B: EVALUATION OF THE FOURIER TRANSFORMS. Here we will evaluate 

the Fourier transformation of four numerical integration rules. Each of these 

is a linear operator on the space of integrands. These operators are local 

with respect to t, and also are local with respect tof. The algebra of these 

local operators is like the algebra of functions of t or functions of f. 

We can formally write the effect of an operator on an integrand as a convolu-

tion between the integrand and a kernel. However, the kernel is riot a 

well defined function,although it does represent a well defined operator. 

In this sense the sums of delta functionals, particularly SAMPLEWT and SAMPLE, 

are well defined. 

The, rectangular rule operator, and its Fourier transform are 
, . 

+N-l/2 
RECT(t) = l: h o(t-kh) , 

k=-n+l/2 

+00 

RECT(f) = f dt RECT(t) 

-00 

e +i2nft = 2: e +i2nfkh 
k 

= h sin(nfNh)/sin(nfh) 

Therefore the numerical integration error is 

'" 
ERECT (f) - RECT (f) - EXACT (f) 

where N - 1/2h 

= RECT(f) [1 - EXACT(f) / RECT(f)] 

= RECT(f) [1 - sin(nfh) / nfh] 

Hereafter use e = nfh. 

The trapezoidal rule operator is 

TRAP(t) = ~ o(t-L/2) + l:+N-l h o(t-kh) + .~ oCt + L/2) 
, k=-N+l ' 

The trapezoidal rule is the average of two rectangular rules, each shifted 

±h/2. This can be expressed by convolution (i.e., composition of linear 

operators). Then the Fourier transform of TRAP will easily follow by the 

Fourier convolution theorem: 
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-too 

TRAP(t) = I dt' RECT(t-t') WTRAP(t') •. where 

--00 

WTRAP(t') ~ 1/2 o(t' - h/2) + 1/2 o(t' + h/2), 

whose Fourier transform is 

WTRAP(f) = 1/2 e-i2TIfh/2 + 1/2 e+i2TIfh/2 = cose 

:. TRAP (f) = RECT (f) cose 

Therefore the "corresponding error operator is 

ETRAP(f) = TRAP(f) - EXACT(f) 

'" 
= RECT(f) [cose - sinS/e] 

The operator for Simpson's rule is 

SIMP(t) = ~ O(t-L/2) + i ~ h (t-kh) 3 3 £.J 
even k 
Ikl < N 

+ t ~ h o(t-kh) + ~ O(t+L/2) 
odd k 
Ik[ <N 

Observe the sum of vectors 

1 0 1 0 1 0 0 

0 4 0 4 0 4 0 

0 0 1 0 1 0 1 

1 4 2 4 2 4 1 

This generates the pattern of weights for Simpson's rule. Thus Simpson's 

rule is the weighted average of three shifted operators. Each operator is 

like the rectangular rule, but with half the density of samples: 
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+N/2-l/2 
RECT2H(t) = ~ 2h o(t-2hk) 

k = -N/2+l/2 

, WSU1P(t') = i o(t'-h) + % o(t") +! o(t"+h) 
;f-oo 

SIMP(t) = J~dt' RECT2H(t-t') WSIMP(t') 

'" '" SIMP(f) = RECT2H(f) WSIMP(f), where 

RECT2H(f) = 2h sin(nf X ~ X 2h) / sin(nf X 2h) 

WSIMP(f) = 1. e-i2nfh + i + 1. e-i2nfh 
666 

2 1 
= 3 + 3 cos(2nfh) • 

Therefore the error is 
...., '" / 

ESIMP (f) = RECT2H(f) - EXACT (f) 

'" 2 1 = RECT2H(f) [3 + 3 cos(28) - sin(28)/28] • 

The centered first order Gauss-Gregory rule corrects the trapezoidal 

'rule with centered differences· at each end: 

CGG =TRAP(t) + CORRECTION(t) 

CORRECTION(t) = :4 [o(+L/2+h-t) - o(+L/2-h-t) + o(-L/2-h-t) + o(-L/2+h-t)] • 

From the preceding description, it is reasonable to analyze the correction 

operator as a composition of two other operators: 

CENTERED DIFFERENCE(t) = ~(h-t) - ~(-h-t) 

AT EACH END(t) = +o(L-t) -O(-L-t) 

CORRECTION(t) = - ~ jrdt" CENTERED DIFFERENCE(t-t") AT EACH END(t") 

CORRE~TION(f) = - ~ X 2i sin(nfh) X 2i sin(nfL) 12 

: -

, 
.. '. 
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Therefore the error is 

- - -ECGG(f) :;: CGG(f) - EXACT (f) 

- - -= TRAP(f) + CORRECTION(f) - EXACT(f) 

- 1 2 = RECT (f) [cose + "3 sin e - sine/e] . 
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FIGURE CAPTIONS 

Fig. lAB. These two graphs show two numerical integrals which 
approximate the same exact integral. Each arrow represents 
a sample G(y+kh). Compare the samples; the alignment y 
is different, so the samples are shifted. between the two. 
In order to make the numerical integration errors more 
visible (in Fig. 2B), in Figs. lAB and 2AB I show a very 
coarse numerical integration, and use the square of a 
Breit-Wigner as the integrand. This is slightly different 
from the case discussed in the introduction. 

Fig. 2AB. These graphically illustrate the calculation of the numerical 
integral NI(G;y) and some of its properties. In Fig. 2A 
we repeat the integrand and the sample arrows from Fig. 1, 
but with offsets Ay = kh. The result is that the sample 
arrows are superimposed at y = O. The numerical integral 
is the sum of these sample arrows. They are added graphically 
in Fig. 2B, to form NI(G;y=O). The other arrows show another 
numerical integral NI(G;y=h/2), with a different alignment. 
This corresponds to the samples shown in Fig. lB. In 
Fig. 2B, the oscillating line at the top is NI(G;y), and 
the straight line is the exact integral. Notice that the 
numerical integral is periodic, has the right average value, 
and sometimes equals the exact integral. 

Fig. 3. The exact integral and the numerical integral should be 
realigned together. 

Fig. 4. A pictorial catalogue of numerical integration rules. 
Discrete sample operators are represented by arrows, whose 
lengths are the weights. The rectangular rule has uniform 
weights. The trapeZOidal rule uses half-weighted samples 
at each end. Simpson's rule oscillates. The centered 
Gauss-Gregory (CGG) rule corrects the trapezoidal rule near 
the ends. It uses samples just beyond the ends of the 
integration domain. The new, optimal rule uses samples far 
beyond the ends, but with decreasing weights. These 
weights oscillate around the trapezoidal rule. The 
sketch exaggerates this oscillation by 2:1 to make it more 
visible. 

Fig. SAB. The Fourier transform of the rectangular rule RECT(f) is 
shown in Fig. SA. Notice the large Nyquist spikes at 
harmonics of the s~mp1ing frequency I cycle/sample = l/h. 
The modulation MODRECT(f) is the smooth curve in lig. SB. 
The oscillating curve is ~e error coefiicient ERECT (f) , 
which is the product of RECT(f) and MODRECT(f). 



• 0 tJ :"'v 

~ t. () £{ 
/.~ .,:1 ~) i.J v (0 'I ~ ~ 

-43-

Fig. 6ABC. These graphs show the absolute values of the different 
modulations. The smallest modulation will have the 
smallest error coefficient. Figure 6A shows the low and 
intermediate frequency band 0 ~ f ~ 1.0 cycle/sample. 
Figures 6B and 6C go to higher frequencies 0 ~ f ~ 3 
cycles/sample. Figure 6B shows the individual curves, 
but with a consistent overall scale. Figure 6C super­
imposes them for comparison. These figures are discussed 
in detail in the main text. 

Fig. 7ABC. These show the error coefficients for Simpson's rule 
ESIMP(f) (Fig. 7A), and for the centered Gauss-Gregory 
rule ECGG(f) (Fig. 7B), and for the new optimal rule 
ENEW(f) (Fig. 7C). Notice that Simpson's rule has double 
the density of large Nyquist spikes, compared to the 
other rules. These additional spikes in Fig. 7A have 
negative phase. In contrast, the new rule has exactly 
zero errors in the band up to f = 1/2h. Many integrands 
have most power at low frequencies (i.e.: IC(f)12 is 
largest at low frequencies) so that this low frequency 
band is heavily weighted in the overall error. 
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