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 Fourier Analysis and Numerical Integration;
' A Step Towards Invariance Group
Analysis of Numerical Approximations

*

“ ' , By Arthur R. Zingher
- o : ‘Lawrence Berkeley Laboratory

v ' : University of California
Berkeley, California 94720

19 August 1976

' oo
ABSTRACT. = Integration f_mﬂx G(x) is invariant under the translation
G(x) -~ G(x+y) We will study'the effect of this tranmslation group on the

numerical 1ntegratiou Z;:_th(kh). This generates a class of ‘equivalent

numerical integrations Z::_whc(kh+y). This class has simpler invariance
group properties than any one approximation alone. This invariance will force
us to Fourier anelyze the numerical integration. We will extend these results

to integration on a finite domain. Often this Fourier analysis will be more

This work was done with support from the U.S. Energy Research and
Development Administratlon.
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convenient than the polynomial and higher derivative methods of classical
numerical analysis. This new‘analysis will allow us to use many suggestive
ideas from comﬁunication theory. We will be able to understand a great deal
about the errors in numerical integration from ideas of "alias:’mg"I
(Nyquistfs>thesrem), the uncertainéy principle, and extrapoletion. Often the
numerical integration error is dominated by needless errors due to implicit
extrapolation near the ends of the integration domain. This gives a new
insight into the peculiarities of Simpson's rule. This intuition will guide
us to strikingly better numerical infegration rules which will use samples
outside the.integration domain. The most exciting consequence is that these
.ideas are relevant to many numerical analysis problems, not only numerical
integretidn. This is one step on a promising bridge between group theory

and numerical analysis.

v INTRODUCTION. This paper is the result of a mathematical surprise
during the analysis of some hardware. I wanted to count the ions in an
intense beam of very fast moving ions. The usual method is to run the beam

through a "scintillator," a special plastic which produces a_brief‘light
flash when each ion penetrates it. These flashes are then counted photd—
electricelly. Unfoftunately,.the ions came’faster than the electronics
could reliably count.

.William Holley, of Lawrence Berkeley Laboratory, suggested a better
method: Take e large piece‘of insensitive plastic and embed many small,
equal-sized pieces of scintillator at regular intervals. Then, put this
perpendicular to the beam. The regqlar grid of small scintillators will

sample the beam and produce flashes for a constant fraction of the ions.

Thus - the electronics is not overwhelmed, and can effectively count a very intense beam.



One,cruciél question was_the error due to this spatial sampling.

I did.not know the beam intensity in detail, but a plausible estiﬁate_@as a
Gaussian;exﬁ(—tzlaz); where t was the position across the beam, The sampling
scintillator took samples at intervals At=h=a/4. Thus the exact beam and

the sampled beam could be represented as an exact integral'and,a numerical

integral: : .
+o0 2,2 +» 2,2
f gt &€/ Ay B /AT

| =00 T -0

How accgrately'couldvI expect this coarse numerical integral to_approach
the exact integral vm?. The result is asfounding! On an HP55 the suﬁ is
1.772,453,852. This is identical to V7 to the 9-figure precision of the
calculator! |

- The application forced mevto realize that there are other eQuivalent
calculations. First, the beam occasionally shifted sideways. Second, the
scintillator assembly éould also shift-sideﬁays. Thus aﬁ equally blausible

equatioﬁ was’ :
- - 400 2, 2 400 . 2, 2
jf dt e-(t+y) /a ~ 2: h e-(kh+y) /a

-0 SO .

for y=a/8 .

The exact integral is invariant under this traqslation, but the
numerical integral is different. ~ Nevertheless, the sum is 1;772,453,851,
which is agéin astoundingly acéur#te for such a coarse sampling grid.

The exact integral is invariant under the group of translations of the
integrand. Therefofe.it can be approxima#ed by.an ensemble of equivalent
numerical integrations, which differ only in thg fine alighment of their
samples. This is the central, new idea in this paper. It is explored

graphically in Figs. 1 and 2.
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NUMERICAL INTEGRATION ON AN INFINITE DOMAIN: We start by calculating the error

in numerical integration over the entire real line. Assume that the integrand
G(t) is a complex function, defined on the entire real line, and square-

integrable. Consider the rectangular numerical integration rule which adds.

. equally weighted samples G(t) on a uniform grid t = kh+y for all integers k.

, oo 0
NI(G;y) =), h G(khty) INT(G) zf. dt G(t) .
k=—00 ' —00 )

Notice that the numerical integral depends on an alignment'parameter y.
This y dependence has three striking properties. First, NI(G;y) is periodic

in y with period h.
oo .

oo : . 4o
NI(G;y+h) =3, h G(khty+h) =3 h G([k+l]h+ty) =2, h G(k’h+y) .
k== k=—-c0 7 =e00

Second, the mean value of NI(G;y), averaged over a period of y, equals the

exact integral.

1 h +o0 h h
<NI(G)> = B—f dy NI(G;y) =Z B—fdy G (y+kh)
o k=-x" "0
+co kh+h +oo
= z f dt G(t) =f dt G(t) .
k== kh : ~00

Third, there are at least two values of y that make the numerical integral exact:

NI(G = INT(G) .

}YBEST)
Of course, YREST depends_on G. ‘

The periodicity in y strongly suggésts using Fourier series analysis
with respect to y. We expand NI(G;y) in the Fourier series:-

| Pl R ~i2mF 't L
NI(G;y)-—z: ﬂ-NI(G;f) e m where fm—m/h,

m= 00
where, of course, the coefficients are given by
h .
+i2nf t
m

NI(G;f ) :jc‘) dy NI(G;y) e
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Next, we need to Fourier analyze G(t). Since it is not periodic but rather

is square-integrable, we must use the Fourier integral:
. oo

G(t) = f af C(r) e 12mit )
-—00
with the inverse oo
&) = f ar (o) gti2mit
-—Q0

Clearly, ﬁi(G;fm) should be related to E(f). Unfortunately NI is a
function of a discrete variable fm=m/h, and G is a function of a continuous
variable f. It requires a little sobhistication to connect them rigorously [2].v
we use the language of distribution theory, or, equivalently, the language
of linear operators over complex square-integrable functions. Some convergence
Questions are discussed in Appendix A.

The numerical integrai can be written as a convolution of a sampling

distribution and the integrand:

40
NI(G;y) =Jr dt SAMPLE(y-t) G(t) . where we define
-00
4o
SAMPLE(t”) =3 h &(kh-t”) .
k=~

A significant result is the Fourier transform of the sampling operator [3]:

~ hag HOTEET & ‘
SAMPLE(f) = ) dt” SAMPLE(t”) e =Y, 8(f-m/h) .

—o0 _ =—co

Although SAMPLE(t') and SAMELE(f) look similar, ne?ertheless they are diétinct.
The Fourier convolution theorem states fhat the Fourier transform

of the convolution of two functions is the product of the Fourier transforms

of the two functions. Therefore,

NI(G;f) = SAMPLE(f) G(f) =} &(f-m/h) G(m/h)

m=-00



e

The error of numerical integration is defined to be the differénce between
.éhe nuﬁerical integral and thebexacf intégral:

ERR(G3y) = NI(G3y) - INT(G) .
The exact integrai'INT(G) is precisely the zero frequency.Fourier transform
E(O)._»Theréfore

oo .
ERR(G3y) = [ df SAMPLE(G:f) e 12"y _ G0y

=Z E(m/h)_ e—-iZme/h )
m#0
For many applications, E(m/h) may be known well enough to make this sum useful.
For example, sometimes only a few frequencies dominate tﬁé sum,
If the magnitude of E(f) is known, but not its phase, then we can still
give an upper bound. Use the triangular inequality:

. |ERR(G;y)| < 2 Ia(m/h)l .
m#0

The error will reach this limit only if all terms have the same phase.
If G('t) is positive and decreases monotonically away from t=0, then ERR(G;0) will

reach the limit.However, if {G(m/h)} are not all in phase, then this sum overestimates

the error. For example, if G(x) is discontinuous, then the sum diverges.
A more convenient norm for error analysis is often the mean square

error, averaged over y. This is estimated by Parseval's equality:

Hi

, h :
||ERR(G)||2 %f dy ]ERR(G;y)lz_
. A :

Lo
~* . 3 _o

L% Om./h) Gm./h) L f dy etH2Myy/h -12Tm y/h
1 2/ q

ml#O mZ#O o

~k
-z Y G (m,/h) G(m,/h) S(m,-m.)
m19‘0 mz#O 1 2 172

L err @12 = X |Gaum]? .
m#0
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These results can be interpteted with ideas from communication theory.
Since we sample G(t) at regular intervals At=h, we can accurately measure

components in E(f) up to a maximum frequency |f| < 1/2h. We will call an

integrand band limitedvto fﬁax iff its amplitudes E(f) are zero for frequencies
[£] = fmax' Nyquist's theorem states thaﬁ errors will not occur

if G is band limited to fmax < 1/2h. 'Higher frequency components are
mismeasured and produce errors. On our regular grid of samples, a higher

frequency component has the same values as a lower frequency component.

ei2Trf(y+kh) = eiZ'tT(f+m/h_)(y+kh) a

This misidentification is called "aliasing" [2].

‘Even though G(t) is not périodié, the regular sampling procéss makes
ERR(Giy) périodic. Since it is linear in E, ERR filters the continuous
Fourier integral E(f) and passes only the discrete Fourier series E(m/h).
Since these components are orthognal under the 12 inner product, they contri-
bute separately to HERR(G)H2 without cross—terms.

For a usefully large class of applications an approximatg Fourier
transform is sufficiently well known to make thié a practical error estimate.
A very'important case is when the step size h becomes very small. Then only
the high frequency power spectrum, la(f)l % for [£] > l/h; is necessary. This
‘high frequency spectrum ﬁay be sufficiently well known even if the low
and intermediate frequency spectrum is'not known.

These Fourier estimates are often particularly convenient to.describe
properties of experimentally measured da;a. First and fofemost, the hardware
often is a low pass filter and removes high frequency components from'the
experimentally ObserVed samples. Second, a new generation of spectrum‘analyzers
- is now available to measure efficiently the approximate Fourier transform of

the data._ Third, the recent development of the Fast Fourier Transform makés



digital Fourier_ahalysis practical.  These hardware developments enable

parallel deVelopmenté in numerical analysis.

INIERPRETATIONS. Hamming introduces the beautiful idea of an invariant
algorithm [1.,p.7,72]. We can interpret the preceding analysis with an
extension of this idea. The exact‘integrél is invariant under the group of

translations of the integrand:

o0 o0 . .
f dt G(t) =f dt G(t+y) _ - _ for all real y.
R _

-00 -

An individuél pumerical integral NI(G;y) épproximates this invérianée by )
being pefiodic in y, but the exact integral is invafiant for all real y.
However, the ensemble {NI(G;y) | all real Y},is ménifestly invariant.
"The ensemble can be aﬁalyzed'iﬁto irreducible represehtations of the group.
These representations of the translation group are the Fourier basis functions
{exp(-12mft) | for all real f}. |
This7sugges;s a generalization. Suppose that an, exact calculation is
invariant under a group. The elements of this group shall be calied
sxggetries.of the exact calculation. We would prefer that the numerical
approximations have thesé same stmetries. rUnfortunately, many familar
and useful algorithms are not invafiant. Giﬁen two approxiﬁatiqns,to the
same exact calculation, they will be called equivalent under the gfoup iff
a symmetry of the exact.calculation transforms one approximation to the other.
An invariant algorithm is an equivalence class of one element. Given an
algorithm whicﬁ is not invariant, it generates an ehsemﬁle which is ipvariaﬁt:
the set of all equivalent algorithms. Since this enéeﬁble is more symmetric
than an individual algorithm, the ensemble should be easier to analjze than

an individual algorithm. Grodp theory provides several tools for this analysis.
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Cal; an algorithm correct under a symmétry gfoup-iff it is equivélént -
to an algorithm which gi?és the same result és the exacf calculation. I |
speculate thét if an algorithm.is correct, then its error can be fully.
dgscribed by'the.group pfopertiés. " This was the case for numerical integratién..
NotiCé that these genéralizations,relate to any group of symmetries:of'
an exact ca1cu1atioﬁ. Thié gfoup need not be the largest bossible group,
all the,symmétries which leave the exact calculation unchanged. This is good.
Often we know a few symmetries, but do not know all the symmétries. |

Correctness implies that the symmetry will depend on the approxihation,

. _— +o ‘
as well as the exact calculation. For example, the integration [ dt G(t)
e -0
has many symmetries: ‘
G(t) > G(t+y) G(t) =+ cG(t/c) G(t) = G(-t) .
TRANSLATION - SCALING " REFLECTION

Numerical integratiqn is correct with respeét to>trans1ation, but not
scaling»nor reflection. Hﬁwever, it>wqu1d'$e premature to assume that
these other symmetries had no relevance. For exampie, the scaling group
might be a useful tool to study-the effect of changingrthe sampling interval
h.“We'mighﬁ use scaling alone, or use thelgtoup generated b& scaling and traﬁs-
lation together.Alsg.the scaling group isrelated to classical polynomial numerical analysis.
Sometimes the éymmetfy group.gives a lotof ihformatiqn-about the exact
‘calculation. For example, the dnly translationally invariant linéar
functionals over tﬁe space of continuous integrands are integrétidn over
(;w,'+w) multiplied by an overall constant.
Quantgm mechanics [4] uses group theory in ways whiéh may inspire
future work. It describes a physicallsystem.by a differential gquation.
Many important physical systems have significant symmetries. Quantum
mechanics translateé théée physical symmetries into invariance groups of

the differential equation. The solutions of these equations are amnalyzed into

12



irreducible representations of the invariance group. Also in classical
'ﬁechanics;’tﬁere is én iﬁportgnt connection_bétween constants éf motion and
- symmetries.

Thé connection between physical”symmétries.and computational symmetries
is often.much stronger than é mathemafical analogy. Many numeriéal analysis
_problems deséribe physical systems. Computétional symmetries often are a
rgflection of a symmetry of the original physical system, an& not just a
mathematical artifice. Conversely, if an applied mathematician finds a
symmetfy in a2 mathematical ﬁodel, then he would be wiée to ask what .the
symme;ry means for the original systém.- For exampie, the periodicity of the
numerical iﬁtegrai NI(G;y) is a disérete translational symmetry. In the
hardware described in the Introduction, this symmetry reflected the sideways
motion of the beam, and the arbitr;ry alignment éf ;he,sampling scintillator.

Notice that these group theory ideas are not restricted to numerical
integration. They should abply to many numerical analysis‘problemé. of
-éourse the relevant symmeﬁries and répresentatiqns will depend on the
specific application;

All this suggests many interesting subseduent papers; but for this one
we will continue with the analysis of numerical integration rules. We shall

find enough interesting results to justify the steady work.

INFINITE DOMAIN EXAMPLES. The first example dramatizes the difference
between qurier error analysis and classical polynomial numerical analysis.
Return to the problem of numerically integrating a Gaussian by the rectangular

rule:
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exp(-t2/a%)

GAUSS (t)

GAUSS(£f) = a/m exp(—'lT £2a2)

| ERR(GAUSS;y)|< a/fF & exp (-n’12a/h?)
w#0

~ a/— exp(-ﬂzazlhz) .
Divide this error by the exact integral a/m. Suppose the scan is rather

coarse h = a/4 with only 8 samples in the peak  The fractional root-mean-square

error is only exp(-16n /2) ~ 10 34! A more reasonable scan h = a/10 gives an
- extraordinary accuracy exp(—100ﬂ2/2) ~ 10—214! In actual computation, roundoff

effecté will be much larger.

This extraordinary convergence is the result of the Gaussian integrand.
Consider the product of thelnofmalized variance in t multiplied by the
normaliéed Variénce in £:

2 _Jfdt t Jc(t)l fdt £2 Jc(f)J
" fae |G(t)| fdt 136 2

,(Ot)v (of)

where G is any function such that all the integrals converge. The Gaﬁssian
makes this product uniquely small [4]. I speéulate that this makes IIERRIIZ
‘uniquely -small for'somé large’class of integrands. What should this class be?
How dbes this Fourier analysis compare to‘élassical numerical analysis?
There we appfoximately fit the sampled integrgnd with a polynbmial and then
integrate that pdlynomial. ‘Classical numerical analysis finds thaf the
réctangular rule_exactly integrates linear polynomials. Insofar as higher:
powers occur, numerical integration efrors will occur. Thesé'ﬁighér*péwers
can be estimated from the higher derivatives of the integrand. This leads
to a variety df error estimétes. The simplest egtimaté.coﬁes from the mean

value theorem:
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| - n’ a? ,CAUSS
MAX | ERR(GAUSS;y)| < T3 MAX | 527777
| 2
- -h 7 MAX [ -2 + 4t2/a2, L (h/a)?
t 6
12a”

1/24 if h=a/4

it

1/600 if h=a/10 .
Thus the simplest form>of classical numerical analysis greatly overestimates
the maximum error for this prdblem. Conversely, suppose you want to integrate
numerically to a specified accuraéy; The better Fourier estimate which we
have developéd would allow youbto use a much coarser numerical integration.
This somewhat exaggerates the crudeness of classical numerical analysis.
There are other, more éoﬁhisticated integration rules with better error
estimates. Unfortunatély, the corresbonding discussion is also more sophis-
ticated, and the reader may choose to skip the next four paragraphs.
The Euler—Maclaurin formula estimates the error for trapazqid rule
iﬁtegration of a finite interval in terms of the highef derivatives at the

ends [5].

" 4L/2 1 ‘ :
.f dt G(t) = h[3 G(-L/2) + G(-L/2+h) + . . .
~L/2 : :
+ G(+L/2-h) + L 7 G(+L/2)]

+Z o ). 2 16777 1)<+L/2) S E WY

+L/2 .
+ hzqﬂf_ dt B, (t) _G(zq)(,t) ,
(2q)! *~L/2 q

where bK and BK(t) are the Kth Bernoulli coefficient and Bernoulli function.
The usual method is to evaluate a few terms in the sum and to neglect the

rest. One can improve the numerical integration by adding several terms as

"end corrections" and estimate the error with the next higher order term.
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Suppose we reach the numerical integral on (-x,+~) as the limit of the
uncorrected trapezoid rule as L + », Then all the higher derivative terms

form the error estimate. If we stop at g=1, then we get

L2 2 2
)| < b 46 _46
MAX | ERR(G3y)| < 35 [th2 (+L/2) 02 (-L/2)]
2

MAX | ERR(GAUSS;y)| < % 2 + LZ_/aZ)' exp (-L2/4a%) .

If we take the limit L > « then the erfor bound has thevmisleading limit
of zero. But certainly fhé error is not zero. The intefpfetation should be:
if h is sufficiently small, then the error goes to zero faster than h2 times
any constant. Unfortunately this énalysis doés nof tellvhow small is
' sufficient, so this bound is nét very usefulbfor a pumerical Calculation.
Suppose you are intent on méking the classical numérical analysis Qork!

{

Do you get a more sensible error bound if you use higher derivatives? No —

you get a similar null limit proportional to h2q. If you are really determined

and try to let q > », then you still have ptoblems because the correction

terms form an asympotic series, and not a convergent series. The problem

is that you must take two limits L - ©, q > ® and the convergence ;s not uniform.

I tHink that if you take the joint limit L -+ =, q.+ © with q/L2 fi#ed, then
you get a sensible error bound, |

What can we éonclude from this long and careful labor? For this problem,
claséical numerical analysis gi?es a result which is either‘excessivély crqde,
or else somewhat vacuous, or else very difficult to evaluate. "Hamming [1., p.
concludes that, in the context of classical numerical analysis of the Gaussian

integral,

348]
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. "Thé remarkable accuracy fbr.h=l/2 is unfortunately
accompanied by a certain lack of knowledge of when it
occurs, or when h i too large; the error analysis of
Gregory's formula is a difficult topic."

This is not a blanket rejection of classical numerical analysis; rather,
it limits them to integrands.which}have rapidly convergent power series.
Conversely, this Fourier errof analysis should be efficient only'if.the
Fourier tfansform E(f) -+ G(t) converges qﬁickly.

Our second example will be easier.. Suppose the integrand is experimentally
'déﬁermined by a sequence of measurements G(xk) at'a uniform gfid bf sample
locatiéns xk=kh+y for integer k. Suppose each measurément G(xk) is a 'sum of
an ideal signal S(xk) ana experimental noise N(xk). Let g(f) and E(f) be
ithé corresponding Foqrier-transforms. Suépose the noise is described‘by a
set of representative noises. Let»<...‘> indicate an average over this set.
‘SuppOSe the aﬁérage noise is zero:

<N(x)> = 0 and hehce <§(f)> =0 .

>We often know an approximation to the average power spectrum for the
noise <lﬁ(f)’2>1 From this it is very easy to see what error the noise -
p?oduces in the nuﬁerical integral.NI(G;y). A common example is '"shot hoisg"
or "pink noise" which fallé off at high.frequencies.

| '<lﬁ(f),2> = g2 exp (-1| £]) ' with g, T positive.
‘Here g is characteristic noise size,.and l/T is a characteristic noise

frequency. Then the average square error is

it

dER@]1% = = <S@m) + n@my |

m#0

1f

72‘ '<[§(m/h)[2> + 2 <Re §*(m/h)' N(m/h > + <[_ﬁ(m/h)|2>
m¥0 ' .

i

i ,E (ﬁ/h)!z‘f 2 Re g*(m/h) <ﬁ(m/h)$ + gz exﬁ(~lm’T/h),
w#0 -

2 '
2 . 2 g~ exp(-1/h)
| |ERR(S)] | f O+ 31> exp (~T1/h)

fl

< || ERR(G)]] Z
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Thus the nef mean square error.is the éum of an error produced by the
sighal,'and one produced by‘the noise, and there are no cross terms. if the
sampling intefval is short compared to the typical noise freqqency; then |
h<<T and the extra squared error is Zgzexp(-—_T/h)r If the sampling interval is
long theﬁ h>>T and the'éxtra error is 2g2.h/T.

This is not the oniy way to estimate the noise error. Autocorrelation
arguments can be ﬁsed to éstimate <|d2N/dt2]2> and these will lead to corres-
ponding estimates. However, you must use some care, because d2N/dt2'may be
singuiar for some representative noises. If sufficient t~domain information
_is éQailaBle; then these higher derivative methods may be useful. But in
experimental applications, often the noise Foufiervspectrum is easier to

estimate because of the hardware developments discussed before.

- NUMERICAL - INTEGRATION ON A FINITE DOMAIN. Here we will develop the
corresponding theory for integrafion on a finite real domain

+L/2
. dt G(t)
~L/2
Can we directly use the preceding theory? Assume that G(t) is defined
. on the entire real line and is square integrable. A first attempt is to
truncate the integrand. Letgj(t) = G(t) EXACT(t) where
EXACT(t) = 1 if |x| < L/2
1

5 if |

0 if |x] > L/2 .

L/2

I

I use the name EXACT because we will see that this is closely related to

the exact integral.
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v_Noﬁ analyze_£+wd£€3(t). -The:preceding theory-gives a misleadingly
large error estimate. Since EXACT is'diséontinuoﬁé,.in'geﬁéraléj(f) will
have lérge high frequency cohﬁdnents; Conclusion: we must analyze anothér way;

The solution is suggested by‘the symmetry group ideas which we developed

before. The infinite domain iﬁtegrél INT(G) was inv;riaﬁt under the group of
realignments, G(t) 4 G(t+y). Anvindividual numerical integral NI(G;y) di&
not share this'symmetry, so we creatéd a symmétric ensemble by considering the
claés of all realigned numerical integrals. By cbmﬁarison, the finite
domain exact integral is not invariant. But we can construct an invariant

ensemble by’considering all realigned finite domain exact integrals.

Thus .we have an invariant ehsemble_gg exact calculations which parallels

the invariant ensemble of approximations.

This idea is developed graphically in Fig. 3. When we change the
alignment y, then the numerical infegration samples a differenﬁ domain.

We should compare this with a realigned exact integral:

o o4L/2
INT(G;y) = [ dt 6(t)
' -L/2 '
=/dt EXACT (y-t) G(t) .

-0

Now apply the Fourier convolution theorem:

7 +<0
INT (G3y) =‘/df G(f) EXACT(£) e 2™V | uhere
-0 .
+ . v )
+i2mEE

EXACT (£) dt” EXACT(t”) e

-0

.Sin(ﬂfL)/ﬂf .
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We reQuire G(t) to be sqﬁare-in;egrable on the entire real line tb
make E(f)bwell defined. AISO; since INT(G;y) is not.periédic, we must use
the Fourier integral, E(f) for all real f,‘and not just the diécrete Fourier
series E(m/h).

Next, define the numerical integration. Let {WI(n) |integer n} be a set
of coeffiéients, called WeighTs. The gpmerical Integration is defined

NI(G;y) 5% h G(y-kh) WT (k)
=—c

The Qeights implicitly depend on L, and h, and on theknumerical integration
rule. They cgt off the suﬁ@atidn for large k to locafe tﬁe integration domain.
This_max.occur by WT(k),='O everywhere outside fhe integration domain
Ikh] <.L/2. Or it may include a few non-zero weights just beyond the ends
to make end corrections. Or it may even include non-zero weights far beyond
the ends, but with sufficiently small weights to maké‘the sum converge. For
future convergence it will be sufficient to assume that the weights are |
absélﬁtely-sUmmable:

S jwrm| <o
=00 ’
Examples are given in Fig. 4.

The error ERR(G;y) is defined to be the difference between the numerical
integral and the exact integral: |
| ~ ERR(G;y) = NI(G;y) - INT(G;y) .
‘Since neither integral is a periodic function of the alignment y,'this
difference need not be periodic.v Nevertheless, we_can'constructvité_Fourier

integral: <o

" ERR(G;f) = /dy ERR(G;y) e't2"EY |

" =00

H
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Now evaluate this transformed error. Firstfrewrite NI and INT as

convoiutions: oo |
NI(Giy) = /dt G(t) SAMPLEWT(y’—t)‘ , where
. .
) )
SAMPLEWT (t”) = 3~ h §(t”-kh)-WT(k) , and
k=~ :
4o
INT(G;y) = /dt EXACT (y-t) G(t)
N 00 ’

Unlike the preceding infinite domain case, the Fourier transform of the

sampling operator will converge énd'not be singular:

SAMPLEWT (£) =$%"h e 22K yriyy |
| ! é;iw

Since exp(+i2mfh) = exp(+i2m [fil/h] kh), it follows .that SAMéiEWT(f)”is-periodic
in f. This will become significant later. |

We can now'applybthe Fourier convolution theorem. This gives our main -

result, an exact formula for the numerical integration error:

ERR(G;y) = /df E(f) E(f) e_121Tfy , where
‘ E(f) = TFourier Error Coefficient (f)

SAMPLEWT (£) - EXACT(f) . -

In the next section we will see that E(f) is near zero for much_éf the
frequency domain.. This will allow us to approximate the efror ERR(G;y)
using only limited information about E(f). If we have even leSs'infOrmation;
and if our application can uée a less exaét error estimate, then'we‘can
make vapious‘simplificatiOns. An upper bound foilows from the triangular
inequélity: 440
| ERR(G;¥) | S!J/rdfla(f)[ [ECE)] .

-0
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In otherlépplications, a root mean square average is preferable.
Since ERR(G;y) is not periodic, we must construct the'aVeragé a little

differently than before. We define a norm
: : oo

|lerrees) |12 = L [ ay |ERR(G39)] 2 .
ERR L

-=00
Appendix A shows that this converges. Now use Parseval's équality;n the

mean—-square norm with respect to y equals the mean-square norm with respect

to £. Y '
| |Err(@]]? = £ /df |Brr(o;0)] *
o - |
= /af 156)] 2 |5 % .

.

In the next section we will study E(f) for several important numerical inte-
gration rules. These can be rewritten trivially to calculate [E(f)l\or
lE(f)IZ/L to study error upper bounds or mean square errots. To repeat, the

choice between these depends on'the application.

SEVERAL IMPORTANT NUMERICAL INTEGRATION‘RULES. Now we will study the
Fourier error coefficients E(f) for several important numerical integration
rules., We will try to concentrate on interpfetation and qualitative ideas
and will fry not to be overwhelmed by tHe algebra. :Nevertheless,'the readér
must persevere through several difficult pages.  In the next section the
discussion will becdmé easier,'aﬁd the reader will be rewarded with some
interesting results. Some of the algebraic details have been exiled to
Appendix B. Figure 4 is a pictorial catalogue of these numerical integration

rules.
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Start with the midpoint RECTangular Epmerical‘iptegration rules, which
has the obvious acronym NIRECT,. Assume*that the sampling period h divides
the integration domain L into- 2N, an even integer number of samples.

Let G E‘G(kh+y).

k
NIRECT(G;y) = h[G_N+l/24+ G_N+3/2 + ... f G+N—3/2 +'G+N—1/2]
= /dt RECT (y-t) G(t), where the kernel is

-0 ' '
k=+N-1/2 _

RECT (z) = h 6(kh+z) whose Fourier transform is
=-N+1/2 | | | |

RECT (£) = Toh e 2TEKR _py sin(nfL) /sin(nen) .
k .

.By combariSQﬁ, the kernel of thé exact integfal ga§e EXXCT(f).= sin(ﬁfL)/ﬂf.
Thefefore the Fourier error coefficient ié B |

ERECT(f) = h sin(mfL)/sin(nfh) - sin(mfL)/mf .-
.Now we work towards getting some insight‘qut of this messy algebra. Start by

factering RECT(f) from ERECT(f).

'ERECT(f) = RECT(£) [1 - sin(wfh)/mfh]

RECT (£) MODRECT (f) .

i

These functions are pldtted in Fig. 5AB. Start by concentrating on
RECT(f). This shows a pattern of large spikes superimposed on fine small

oscillations. These spikes are dde_to aliasing, which we already discussed.

~We will call them Nyquist spikes.

Compare this with fhé error for integratiqn on the entire real line.
The‘language was somewhat different, but the correéponding‘Fourier'error
coefficient was a singular operator

SAMPLE(f) = 3 S(f-m/h) .
m#(

Thus the spikes in ERECT(f) approach these delta functionals.
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"For the finite‘domain, the‘Nyquist spikes have width Af =~ i/L because
of thetfactor'sin(ﬂfL) in RﬁéT(f). Thié width is the_résult of the uncerfainty
principle that measu:ementsbon‘a ddmain of length L cannot determiné abfrequencﬁ
ﬁore precisely than Af_é'l/L; (Tﬁis is not the most precise statement of the
‘ principle, Because that wduld divert us from our main discussion. - The
uncertainty.principle is well knowﬁ in physics [4] and communication theory.
We skirted it in our study of the Gaussian integrand.) We conclude that
RﬁéT(f) summarizes the almost unavoidable efrors of any numerical integration
method based on a finite density of regularly épaced samples.

There is one_exceptionf zero frequency componentsvare correctly

‘represented by the samples. Consider the other factor in ERECT(f). It is
convenient to measure frequency in comparison to the sampling interval

0 E‘ Tfth:

1

MODRECT (f) = 1 - sin8/6 -
~e%/6 L _ if |8 << 1
~ 1 ) ' if |e] > 1.
- This has a double root at 2ero frequency. Thisveiiminates-the_zero frequenéy
Nyquist spike and reduces (filters) the errors at low frequencies,
| £]< 1/mh.
Now we can study how the error changes as the sample interval is reduced, .
h + 0. The starting poinf is our main formula for errors, with the h depen-
dence written out explicitly. »
. o :
~ g -i2nfy
df G(f) ERECT(f;h) e .

-0

ERR-RECT (G;y;h)

_ERECT (f3h) = h sin(mfL)/sin(wfh) - sin(TfL)/mf

[rfh/sin(nfh) - 1] sin(wfL)/nf .
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We alfeady know a'great déal aboﬁt the %ay the'Nyqdistvspikeé change
with - h. The peak frequency fm=m/h.will scale up, but the widfh f ~ 1/L and
‘the peak height ERECT ~ L,vare both independeht of h. If G is band limited
to fmax’ then‘the errors  indicated by the Nyquist'spikééAwill disappeér for
h<1/f . This part of the h dependence iévcarriedvby the factof
RECT (f3;h) in ERECT(f;h).

Alternatively, considef one_fixed frequency f, and let h - 0. The last
formula for ERECT(f;h) isolates all h dependence into the factor in square
"brackets. When h becomes small compared to l/If], then this factor isvépproi—
imately equal to (ﬂfh)2/6. Thus the error coefficient will become émall
like h2, oncé h is sufficiently small. However, "sufficiently small
dgpends on f, an& this convergence is non-uniform in_f. fhisvﬁart of tﬂe h '
. dependence is carried by the factér MODEECT(f;h) in ERECf(f;h).

It would be misleading to conclude that the overall error converges to

zZero likg 4o
(wh)z 2 o
| ERR-RECT (G;y;h)| < 3 df |G(f)| £° X sin(mfL)/wf .
—0 . . . ) B -

The first problem is that this upper bound does not follow because the h2

approximation depends on f. In other words, the'grror coefficient converges
non-uniformly to zero. The second problem is that this upper bound is
infinite if G(t) is not everywhere differentiable. Third, and most insidious,
this bound may_often.seriously'oyerestimate the error.

Often the integrand is not only band-limited, but the power spectrum
lE(f)lz is largest at low frequencies and falls approximately monotonically
as.the freqﬁency increases in magnitude, in such cases, the.main formula
for the error is more sensitive to values of ERECT(f;h) at low frequencies,
and less sensifive at high frequencies. The non-uniform convergence means

that the low frequency error coefficients will shrink as h + 0 before the
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ﬁigh freqqency goefficients start to shrink. Thus the.error wiii‘shrink
before this misieading upper bound would indicafe; Iheée probléms are similér
to the problems we already studied in the example of the second-derivative
error bouﬁd for the Gaussian integrand. This non-uniform coﬁvergence and
extra low frequency‘sensitivity should be kept in mind when we study othef

' nuﬁeriéal integration rules.

The Igéggzoidal rule fbr Numerical Integration is

NITRAP(G;y) = h[1/2 G+ Gy ¥ e F Oyt 1/2 G+N] .

As before, this can be written as the convolution of G(t) with a kernel

TRAP (y-t). Appendix B shows that its Fourier transforﬁ is’

" TRAP(f) = h sin(ﬂfL)/tan(th)‘.

Therefore its error coefficient is

ETRAP(f) = RECT(f) MODTRAP(f), where
MODTRAP(f) = cos® - sin6/6
~ 6%2/3 o if |6] << 1 .

We will intérpret this after we have developed other integration rules.
Simpson's rule on'the_séme samples is

NISIMP(G3y) = h[1/3 G_y + 4/3 G_g ., + 2/3 G_/» + 4(3 +2/3+ ...

1

+ 2/3 G + 4/3 Gyy

N-2 +1/3 Gl .

-1

Appendix B calculates the Fourier transform of its kernel:

sfh?(f) {2h sin(mfL) /.sin(Zﬂfh)} t1 + 2/3 cos(2mfh)]

RECT2H(f) [1 + 2/3 cos(20)] .

Notice that SiﬁP(f) contaihs a factor RﬁéTZH(f) which has the same form as
RﬁéT(f), hut with h replaced by 2h. We will interpret this later. The

S error éoefficient ESEMP(f) contains avcorresponding factor. The Fourier

error coefficient is
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ESTMP (£)

RECT2H(f) MODSIMP(f), where

il

MODSIMP (£) = 2/3 + 1/3 cos(20) - sin(26)/26

~ +.0888 0% if |o] << 1.

We will discuss Simpson's rule further after we evaluate the first order
ceqtered Gauss Gregory rule which we abbreviate CGG [6]. This corrects the
trapezoidal rule with centered differences at each end. - (This correction is
similar to the first order Euler-Maclaurin correction to the trapezoidal rule.)

+ G + ...

NICGG(G:y) = h[-1/24 G_y- -N+3

+ 1/2 G_ + 25/24 G_,

1 2

+ G + G +25/24 G

HN-3 T CHN-2 PSR

1t 1/2 Gy ~ 1/24 G

Appendix B shows that the Fourier error coefficient is

ECGG(f) = RECT(f) MODCGG(f), where
MDﬁEGG(f) = cosG +-% sinze - sin6/8
o 4 | .
~ -.0777 O dif |8] <«< 1.

GRAPHICAL COMPARISONS AND INTERPRETATIONS. These Fourier coefficients
can most - easily be compared graphically. They have been evalﬁated and plotted
with a simple FORTRAN program for the errors of numerical integration of

+10
dt G(t),‘Where h = 1.
-10

Since ERECT(f) is a cqmmonvfactor in all buf one rule, we can compare phei
error coefficients by just comparing their modulatioﬁs. :Figure‘6A shoﬁe

the low and intermediate frequency bands lfl < 0.9 cycle/sample. Noticevthaf
MOD%ECT(f) and MDDERAP(f) are both approximately parabolic, with the
trapezeidal errors about twice the recfangular errors., The other rules
MOﬁEIMP(f) and MOﬁéGé(f) are almost identical quartics. Figure 6B shows the
individual modulafions up to high frequencies | f| < 3 cycles/sample, and

Fig. 6C superimposes them. This last figure is complex, with many overlapping
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curves. The important feature is that all the rules have comparable magnitude
in the high frequency band, |f} > 1 cycle/sample. All are on tﬁe order of
ehe. _Therefore, they will produce similar errors in this band.

Simpson's rule needs some interesting epecial consideretion. Recall
that its Fourier error coefficient hes a factor REé&ZH(f) instead of
RébT(f). This requires that we compare the error coefficients ESEMP(f),
Fig. 7A; and EébG(f), Fig. 7B. At low frequencies, |f| < 1/3 cycle/sample,
these errors are very similar. At intermediate frequencies, [f[ = 1/3 to
1 cycle/sample, we see that Simpson's rule is much worse! Why? Inspect the
Qeights in Fig. 4 for Simpson's ruie. They give little weight to alternate
semples. So Simpson's rule approximates CGG with half the density of samples.
Tﬁefefore Simpson's rule ﬁust develop Nyquist spikes at half the frequencies
that CGG does. The extra spikes happen to have negative phase and are
conspicuous in.Fig. 7A. |

A more.preCise statement is possible. The sampling weights for Simpson's

rule repeat with sampling period Zh,_even'thOugh the sampling interval is h.

The Nyquist spikes show aliasing-e:rofs. These occur et harmonics of the
sampling peried f = m/2h. On the other hand5 CGG gives equal weightseto

all its'samples, Thus its sampling period and interval are identieal. There~ -
fore its Nyquist spikes are at f = m/h. This disfinction between the gepetition
period and the sampling interval is reinforced by the convolution algebra in
Ap?endix B. There the repetition clearly introduces the factors Rﬁ&T(f)

and RECT2H(f).
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" This makes Simpson’s rule seem vary crude. But it is well known to '
be better than the trapezoidal fule for many integrands. . In tha low
frequency band Simpson's rule is’mucn better than the trapézoidal role
(see Fig. 6A). Why? _Because»it handlea the ends of the integration domain
well.‘ The CGG makea this clear. Throughout the bulk of the summation,
everywnare.except at the ends of the integration domain, CGG is identical
to the trapezoidalbfule (see Fig. 4). Therefore, they have similar Nyquist
Spikes, and similar RﬁéT(f) factors. Bot‘the subtle differences near thé
ends of the integration domain imply different modulation factors. .These
‘determine'the low frequency error. There the trapezoidal rule error is
proportionallto 92, while the CGG,errof is proportional to 64.

Why should fine details near the end make such an extraordinary difference
in the erfors?' Aren't these insignificant compared to the many samples
inside tha integration domain? No! We can think of nomerical integration in
two sfageaL First, we construct an approximation to tha integrand fiom the

given samples. ~Second, we calculate the exact integral of this approximation..

Well inside the domain, with many samples on each side, the approximation is

an interpolation problem. Near an end, with very few samples on one side;

the approximationiis like an extrapolation problem. Extrapolation is much
more difficult than intérpolation,'and_it dominates the errors at low frequen-
cies. Simpson's rule and CGG are better than the trapezoidal pule because
they do thié extrapolation better. Simpson's rule is Egg improved because

the weights inside the domain alternate in some clever way. Indeed, the
Nyquisﬁ spike.analysis showed that this alternation is a weakness. The

improvement is dué to better extrapolation near the ends.
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A useful concept, due to TsVi.White;.is the data domaiﬁ»for a ncmerical
integration rule. This is the.eet,of all,locations of the iequired samples.
Compare the data doﬁain and the integration domain. ifftthe date domain is
inside the integration domain excluding the end points, then that numerical
"integration rulevis open. Thevmidpoint rectangular fule is open since‘its
samplee never are closer than h/2 from'either end. Call a.rule closed iff
its data domain is the ends plus locations inside the integration domain.

The trapezoidal rule and Simpson's rule.are.closed. Call a rule extepded

iff its information domain includes points beyond the ends of the integratioﬁ
domain,keé well as inside the integration domain. The CGG rule is extended
since the centered difference at each end requires one sample beyond each
end. Fof a given density cf'samples, the p:cgression from éﬁ open rule,.to-
a closed rule, to an extended rule can change the errors aésociated with

the ends from.extrapolation errors to interpolation errors.

The'natural context for this analysis is integrands with well defined
Fourier transforms.‘ Nevertheless, we will briefly consider polynomial
integrands because they dominete claseical numerical integration. Polynoﬁials
can be Fourier transformed withinvdistribution.theory. The Fourier transform
of a polynomial (of finite degree) vanishes except at very low frequencies:

Fourier transform (xm;f) = 8(f) (-2mi) " ™(3/0f) .
~Substitute this integrand into our main error formula fef ERR(xm;y). Simpsdn’s
rule and CGG have'erfor coefficients like (hf)4 as hf > 0, so it follows that
both rules integrate cubic polynomials exactly.

There afe many possible compatisons between polynomial and Fourier methods.
For low order polynomials (m < L/h) and low ffequencies ( |£] < 1/h) the
two methods give very similar results. Beyond this, some integrands afe better

analyzed by one method, and some by the other. If an ihtegrand has a rapidly
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convergent power series, then polynomial methods should work well, If it has a
rapidly convergent Fourier transform, then Fourier methods should work well. The

tool should fit the task. One cannot say that either method is categorically better.

We conclude this sec;ioﬁ with several generalizations. First, if exténdéd
sémples are available, ﬁhen the centered Gauss-Gregory rule is better than
Siﬁpson‘s;rule.' Second, every rule with uniformly spaced samples will makev
aliasing errors, which will produce Nyquist.spikes.' Third, the best rule
should havevequal-weigbts inside the integration domain. Near the ends it
should be more sophisticated, to alleviate the éxtrapolation problem; if
possible, itbshoﬁld use extended samples to eliminate this pfoblem. In tﬁe

next section we will develop these ideas to their logical conclusion.

AN OPTIMAL NUMERICAL INTEGRATION RULE. What is the best possible

numerical'integration‘rule, as measured by its mean—squaré,error spectrum?
: ‘ _ oo s OEEE

2 ~ 2,7 2 :
| |ERR(G) | | =/ at |G| % [E| .

—o

Clearly the answer depends on the integrand's power speétrum Ia(f)lz;
Insofar as it.is konown, tﬁe.rule should be-tﬁned to make the Fourier coefficient
coefficient IE(f)lzvsmall.wherever Ia(f)l2 is large. How large a set of
frequencies cén-have zéro error coeffigieﬁt?.'Does any rule reach this
optimum?

We need to recall some previous results. Let NI(G;y) be the numerical
+L/2 : -
integration which approximates . dt G(t+y) with a regular grid of samples

“=L/2
and some unspecified weights:

. , +oo
NI(G;y) =), h G(khty) WI(k) .

k=—oo
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Assume that L/h is én‘even integer. We aifeady constructed the Fourier
transform Of the kernel, SAMPLEWT(f), and we saw that it was périodiciin £,
with period'Af = 1/h. The error cdefficient was the difference betweén ghis
kernel apd the correspohding kernel for the exact integral:
| E(f) = SAMPLEWI(f) - EXACT(f) .
Obviously this error will be zero at some particular frequepéy, if and only if
SAMPLEWT (£) = EXACT(f) = sin(TEL)/nf .
 Now we are prepared to restate the question. Consider all such
numerical integrals. Each rule will have a set of roots {f|E(f) = 0}.
What rulé gives é ﬁaximal set of roots? What periodic functions SAMﬁiEWT(f)
have a ﬁaximél solution to the following eéuation?
SAMPLEWT (£) /sin (1€L) = 1/nf .
The left-hand si&é is periodic in.f, but the right-hand side never repeats
a value. 'Therefdre, if this equation is satisfied for frequency fl, theﬁ it

must not be satisfied for frequency f. + m/h for any non-zero integer m.

1

‘Thus all roots are distinct modulo Af = 1/h. Therefore a maximal set of
roots will be (-1/2 hy + 1/2h] if we can find a rule with these roots.

There is one loophole. The preceding afgument'is not valid if
sin(mfL) = 0. In that case, the error will bé zero if SAMﬁiEWT(f) = sin(ﬂfL) =0,
These frequencies genérate‘the functions with period L. |

Now we construct a numerical integration rule whiEh is exact up to
frequencies 1/2h in magnitude. This sounds like a difficult condition to
fulfill; but it turns out to be quite moderate. This condition implieé that

SAMPLEWT (f) = EXACT(f) = sin(TfL)/Tf

if £ is in the fundamental band f €(-1/2 h; + 1/2 h].
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Define é'new function, f modﬁlo 1/h. Let mod(f) be that,frequency in the
fundamental band which differs from f by an integerbmultiple of 1/h. ’Then,'
since SAMfLEWT(f) is periodic, it ié detérmined everYwhere‘by its values for
f in the fundamental band. Therefore | |

SAMPLEWT (£) = EXACT(mod(£)) = sin(T£L)/T mod(f) for all f.
We cannot naively take_thé Fourier transform of SAMfiEWT(f) because it is
periodic and not squére—iﬁtegréble. This is precisely the same problem which
we-élready overcéme to study numerical integration on an infinite domain. |
There we used a special opefator

SAMPLE (t) éé{f“

‘h §(t-kh) ~ whose Fourier transform was
=00 : .

SAMPLE(£) =§j“” §(£-m/h) .

m=-o -

Let BANDZIMIT(f) be the chafacteristic function of the band (—1/2 h; + 1/2 h).

1 if |f] <1/2h

m

BANDLIMIT (£)

1/2 if | f]

Vit
i

1/2 h

0 if |f] >1/2h

The periodicity of SAMfLEWT(f)_can now be expressed by the infinite sum
SAMPLEWE(£) =3 EXACT(f-m/h) BANDLIMIT (f-m/h)
N : = . '

This can be rewritten as a convolution:
o0

SAMfiEWT(f)'=.//fdf' %bﬁ(f—m/h—f')'EXXCT(f') BANDEIMIT(f')

-0

=/df’ SAMPLE (f-£7) Ech_T(f‘) BANDLIMIT (£°) .
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The Fourier transform of BANDLIMIT(f) is
oo

. BANDLIMIT(t) ='}(.df BANDLIMIT (f) e L27Et
~+1/2h
= ‘ ‘ df e
'~1/2h°
- singﬂt/h) .

mt/h

-i2nft

The Fourier transform of7EX§CT(f) is given by the original definition of

EXACT(t):

EXACT(t) = 1 if |t] < L/2

1/2 if |t

L/2

0 if |t >1L/2 .

 Now apply the Fourier convolution theorem twice to the last formula for

SAMPLEWT (£) : oo
SAMPLEWT (t) = SAMPLE(t)./(.dt' EXACT (t-t”) BANDLIMIT (t”)
t+L/2
e sin(ﬂt /h)
gwhwkwf Sl
%;G(t—kh) h WIr(k), where
VT = l-sl(n[k+u]) - Sl(ﬂ[k—N]) , where
S1(¥) = .f ay” sin ¥ W and N = L/2h .

Tﬁié last integral is reasonably well known [7]. The'weights'are
particularly simple if h << L. The weights extend‘indefinitely far outside
the integratioﬁ'domain,_but they approach zero. In the center bf'integration
domain they approach 1. Near either eﬁd, they oscilla;e about the'trapezoidal
weights. More precisely, suppose that k is not near eithér end;,bﬂ ]k + Nl >> 1

and T Ik - NI >> 1. Then the weights are approximately:
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w0 ~ 11| b uratde the domats
> Lk i .is outside. the domain
kN[
-) 1 1 . s s s .
~ 1 - ( )ﬁz K- N - T+ N ] if k is 1§s1de the domain.

Near the end, a few weights are:

kK-N TRAP WI CGG WT NEW WT
+5 o o 0 -.020,11
+4 0 | 0 0 +.025,03
+3 0 0 o 0 -.033,09
+2 0 o 0 +.048,59
+1 0o 0 -.041,67 0 -.089,49
0 1/2 1/2 1/2 |
-1 1 1 +.041,67 1 +.089,49
-2 1 | 1 1 -.048,59
-3 1 - | 1 | .1 +.033;09
) 1 1 " 1 -.025,03
_s o o1 1 +.020,11

This table assumes lk - N' << N. This rule is sketched in Fig. 4.
Our construction immediately tells us the Fourier error coefficient

for this new rule:

ENEW(f) = EXACT (mod (£)) -~ EXACT(f)

_ sin(mfL) _ sin(wfl)
T mod (f) Tf

'This oscillates rapidly in f. As usual, it can be factored into a slole_

changing modulation times the kernel of the rectangular rule:

ENEW(f) = RECT(f) MODNEW(f), where

sin(mfh) _ sin(mfh)
T h mod (£) mfh

il

MODNEW (£)

This is not singular since mod(f) and sin(wfh) have the same zeroes.
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This new moaulation is shown iﬁ Figs; 6ABC. Compare it with the other
rules in those figures. The new rule is much better if ]fl < 1/2h, since it
has zero error. Thus this new rule is exact on "band-limited" functions
which contain only these freqpencies. For higher frequencies [f| > 1/2h,
the new rule's errors are approkimately comparable to the other rules.

What does this do for frequencies such that sin(mfL) = 0? If f is an
integer multiple of 1/L, but not an integer multiﬁlé of 1/h, then the
error will be zero becausé RﬁéT(f) is zero. At multiples of 1/h the error
will not be zero because of aliasing.

Thus we have found a new rule which optimizes the mean square error spectrum:
Nd other rule can have these zeroes and more. Noticé that this same rule
optimizes the maximum error bound and the exact error in the same way:

IEI‘INEW(f)l2 = Q4= | ENEW () [= O < ENEW(f) = 0.

For a spécific integrand with an approximately known power spectrum,

we mighf &o a little better. For example, if lE(f),z is known to be tuned to

frequencies near f then we should retune this rule by multiplying each

1°
weight WI (k) by exp(-2ﬂflkh). However, many integrands are large at low
frequencies and fall off rapidly above some‘fmax. If it is possibie to make
h smaller than l/fmax’ then even such specialized rules will show little
improvement over the current one.

This new rule was derivéd'from frequency argumeht§ without explicitly_
studying polynomials. Therefore it is interestiﬁg that the same rule can

be derived by fitting the same extended samples with a Lagrangian polynomial

[1, p. 551] and then intégrating that polynomial.
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Noti¢e'tha; thisvnew rule requires an‘infinitely extended data domain.
This fule wiliobe uséful in either of several cases:
~1) The integrand is known everywhere at t = y+kh.

2) The integrand gets small for large t, and the integrand is
known far enough beyond the domain for the product of the
weight and the integrand to become negligible.

3) The integrand is periodic, or épproximately periodic. This

. period may be different from the integration domain.
In the last case, the preceding derivation must be slightly modified.
The frequency f becomes discrete, and we must replace the factors
) .

1/7f by L /sin(nfL

pefiod period

These applications form avusefully large set. Unfortunately, sometimes
the integrand ié known only over a more liﬁited dafa démain, or the integrand
is large or irregular Qutside the iﬁtegration domain. In those cases,

the optimal rule is probably not to truncate the current one. There the

optimum depends on the data domain. More work is needed.

CONCLUSIONS AND FUTURE‘WORK. What have we learned about numerical
integration? What extensions follow? The first new idea in this paper was
to study numerical integration as a function of the alignment of the samples.
We found that numerical iﬁtegration on (-, +») was a periodiec fqnction of
the alignment. This forced us to use the Fourier convolution theorem.
The result was a family of error estimates based on the Fourier transform
‘of the integrand. Sometimes these Fourier estimates were better than
classical polynomial—derivafive methods. Some of these Fourier errors were
interpreted via,Nyquiét'svtheoremvand the uncertainty principle. Other errors

were due to extrapolation problems near the ends of the samples.  .One
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improvement was higher order extrapolatiqn near the ends. Simpson's rule
&id‘this.in a clumsy way, whichvneedlessly increased the Nyqui%t errors.
A.better solution was to use extended éamples'from Beybnd the integration
domain. The Gauss-Gregory rule di& this a littie, and for many applications
it is better thaﬁ Simﬁson'é rule. We found a new optimal rﬁle which used a
_greatly extended data domain. It gave outstandingly small errors, which were
interpreted via band-limited functions. . |

| Sevgral subsequent studies shbuld be made. First, what is the optimal
rule if the data domain does not extend infinitely? Second, a similar analysis
.can be.based on autocorrelation. Let

AUTO(Gsy) = f de ¢ (y-2) G(2)

It follows that ,
' | ERR(®)] | 2 =fdy lERR(G;y)Iz = AUTO(G;0)

=f dy AUTO (SAMPLEWT-1;y) AUTO(G;-y) .

This last formula is like || ERR||> = [ af g% 5% . |

A third direction is to study‘how other numerical analysis methods
depend on'the sample alignment. For example, suppose we evaluate a differential
equation with a numerical ihtegrétion.scheme using equally épaced steps.
How do the solutions changé as the alignment changes?

There are several exciting new ideas which have more general interest.
First, an ensemble of similar algorithms may be more fruitfﬁl to analyze
than an individual algorithm. Seéond, an eﬁsemble of exact calculations often
has a group of symmetries.' If an ensemble of élgorithms are correct approxi-
‘mations to the exact.calculatioﬁs, then the group structure shéuld be a
powerful tool tovanalyze'the'algorithms. This should be applicable to many
nuﬁeriéal analysis problems. These ideas are one step on a promising

bridge between numerical analysis and group theory.
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APPENDIX A: CONVERGENCE. The following argument shows that the finite

domain norm for HERR(G)H2 converges:

00
EOEE %fdy | ERR (65 )| 2
= %/dy | =™ & wr(kh) G(y-kh) -/dt EXACT (t) G(Y"_t)lz .

=§ # h% W (ih) Wr'(kh) %/dy G(y~kh) G (y-kh)

+ / dt ﬁc‘ EXACT(e) EXacT” (¢”) ﬁy Gly-t) G (y-t7)

+-§h /c'lt’ WT (kh) EXACT*(t') %— /;y G(y-kh) G*(y—t')

| +fdt- E:h EXACT (t) WT(k”h) %/:iy -G(‘y-t) ¢ (y-k"h)

< {Zh | T (kh)| +/th | EXACT (1) }2 %ﬁt le)|? .

The discussion of numerical integration over the entire real line skated

past some very pathological operators.

SAMPLE (y) = Z+°°h‘ § (y-kh)

K=l
A more figorous approach would have been to first study numerical integration
on a finite domain [-L/2; +L/2]. There SAMPLEWT(y)‘and EﬁR(G;f) are less
pathological. After we had the Fourier decompositions for ERR(G;y) and
MAX IERR(G;y)l and ||ERR(G)I{2, then we could have taken the limit L = o,

| Unfortunately, this rearrangement would have many heuristic disadvantages.
Numerical integration on a finite domain doesAnot have the clear translation
invariance that it does on the entire real line. Therefore, the finite .
domain case does.not have the striking periodicity'in y.  Another disadvantage
is the ektrapolation problem. This reorganization would require us to analyée

this complicated problem at the very beginning. I have balanced these édvantages

and disadvantages and chosen clarity over rigor; I hope that the reader agrées}
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APPENDIX B: EVALUATION OF THE FOURIER TRANSFORMS. Here we will evaluate
the‘Foﬁrier-transformétion of four numerical'iﬁtegrationvrules. Eéch of these
'is a linear operator on the»space of integrands. These opératérs are local
with réspeét to t, and also aré local wi;h respect to!f,  The algebra-of‘tﬁese
local dperatoré is like the algebra of fuﬁctiéns of t or.functions'of f.
‘We can formally write the effect of an operatof on an integrand as a convolu- |
tion between the integrand and a kérnel. However, the kernel is not a
weli.&eéined function,-althbugh'it does repreéent a well definéd'operétor.
In this sense the sums of delta functionals, particularly SAMPLEWT and SAM?LE, '
are well defined. | .

The rectangular rule operator, and its Fourier transform are

. +N-1/2 , 1 | ' o
RECT(E) = 2 h §(t-kh) , where N = 1/2h
. - k=~n+1/2 . o . o ] '
RECT(f) = f dt RECT(t) e+12ﬂf‘t‘=%:e+i.2ﬂfkh
-0 <

= h sin(ﬂho)/sin(ﬂfh)

Therefore the numerical integration error is

ERECT (£) = RECT(f) - EXACT(f)

RECT(f) [1 - EXACT(f) / RECT(f)]

W

| | RECT(£) [1 - sin(mfh) / mgh] -
Hereafter use 6 = wfh. '

‘The trapezoidal rule operator is

TRAP(t) = 8 6(e-1/2) + 371 h 8(t-kn) + B 6(e + 1/2) .
' . v == < ;

The trapezoidal rule is the'average of two rectangular rules, each shifted
+h/2. This can be expreséed by convolution (i.e., composition of linear
operatdrS). Then the Fourier'transfbrm‘of TRAP will easily follqw by the '

Fourier convolution theorem:
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400 .
TRAP (t) =./(.dt' RECT (t-t”) WIRAP(t”) ,.. where

il

WIRAP(t”) = 1/2 8(t” - h/2) + 1/2 8(t” + h/2),

" whose Fourier transform is

WTiAP(f) = 1/2 e—lZHfh/2 + 1/2 e+12“fh/2 = cosf
o TﬁAP(f) = RﬁéT(f) cosf
Therefore the corresponding error operator is
ETRAP(f) = TRAP(f) - EXACT (£)
= RECT (f) [cos® - sin6/6]
The operator for Simpson's iule is
SIMP(t) = 3 8(t-L/2) += D, h (t-kh)
3 : 3 v
: even k
[k < N
2 , . h .
+% ) h 8(t-kh) + 7 S(t+L/2) .
3 3
odd k
| k] <w

Observe the sum of vectors
1 0 1 0 1 0 4]
0 4 0 &4 0 4 0

0o 0 1 0 1 o0 1

1 4 2 4 2 4 1
This generates the pattern of weights for Simpson's rule. Thus Simpson's
rule is the weighted average of three shifted operators. Each operator is

like the rectangular rule, but with half the density of samples:



~ RECT2H(t)
WSIMP (t7)
SIMP(t)
SIMP (£)

RECT2H(£)

WSIMP (£)

Therefore the error is

ESTMP (£)
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+N/2~1/2

2h §(t-2hk)
/24172 |

t”-h) + —-6(t ) +~— 6(t +h)
dt” RECTZH(t—t ) WSIMP(t”)

K=
1s
6

RECTZH(f) WSIMP(£), where

i

2h sin(mf X 5 X 2h) / sin(nf X 2h)

N =

1

i

+ %_+ e—iZﬂfh

ol

+-% cos(2wth) .

RECT2H(f) - EXACT(f)

L cos(20) - sin(20)/20] .

RECT2H(£) [% +3

The centeredvfirst order Gauss-Gregory rule corrects the trapezoidal

* rule with centered differences at each end:

i

e

"CORRECTION(t) %%

TRAP(t) + CORRECTION(t)

[8(+L/2+h-t) - 8(+L/2-h-t) + 8(-L/2-h-t) + §(-L/2+h-t)] .

From the preceding description, it is reasonable to analyze the correction

operator as a composition of two other operators:

| CENTERED DIFFERENCE(t) = 18(h-t) - 76(<h-t)

- AT EACH END(t)

B CORRECTIbN(t)

CORRECTION(f) = -

Wk

+§(L-t) —6(—L—t)

I; dt” CENTERED DIFFERENCE(t t7) AT EACH END (t°)
h X . . X I’y .
1 2i 31n(ﬂfh) 2i sin(mfL)

sin® (Tfh) RECT(f) .
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Therefore the error is.

Hl

'ECGG(f) = CGG(f) - EXACT(f)

It

TRAP (f) + CORRECTION(f) - EXACT(f)

RECT(f) [cos® + % sin’f - sin6/0] .
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FIGURE CAPTIONS

These two graphs show two numerical integrals which

approximate the same exact integral. Each arrow represents
a sample G(y+kh). Compare the samples; the alignment y

is different, so the samples are shifted between the two.
In order to make the numerical integration errors more
visible (in Fig. 2B), in Figs. 1AB and 2AB I show a very
coarse numerical integration, and use the square of a
Breit-Wigner as the integrand. This is slightly different
from the case discussed in the 1ntroduct10n.

. These graphically illustrate the calculation of the numerical

integral NI(G;y) and some of its properties. 1In Fig. 2A

we repeat the integrand and the sample arrows from Fig. 1,
but with offsets Ay = kh. The result is that the sample
arrows are superimposed at y = 0. "The numerical integral

is the sum of these sample arrows. They are added graphically
in Fig. 2B, to form NI(G;y=0). The other arrows show another
numerical integral NI(G;y=h/2), with a different alignment.
This corresponds to the samples shown in Fig. 1B. 1In

Fig. 2B, the oscillating line at the top is NI(G;y), and

the straight line is the exact integral. Notice that the
numerical integral is periodic, has the right average value,
and sometimes equals the exact. integral.

The exact integral and the numerlcal 1ntegra1 should be
reallgned together.

A p1ctor1a1 catalogue of numerical integration rules.

Discrete sample operators are represented by arrows, whose

" lengths are the weights. The rectangular rule has uniform

weights. The trapezoidal rule uses half-weighted samples
at each end. Simpson's rule oscillates. The centered
Gauss-Gregory (CGG) rule corrects the trapezoidal rule near
the ends. It uses samples just beyond the ends of the
integration domain. The new, optimal rule uses samples far
beyond the ends, but with decreasing weights. These
weights oscillate around the trapezoidal rule. The

sketch exaggerates this oscillation by 2:1 to make it more
visible.

The Fourier transform of the rectangular rule RﬁéT(f) is

"shown in Fig. 5A. Notice the large Nyquist spikes at

harmonics of the sampling frequency 1 cycle/sample = 1/h.
The modulation MODRECT(f) is the smooth curve in Fig. 5B.
The oscillating curve is the error coefficient ERECT(f),

. which is the product of RECT(f) and MODRECT (f).
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Fig. 6ABC.

Fig.

7ABC.

These graphs show the absolute values of the different
modulations. The smallest modulation will have the
smallest error coefficient. Figure 6A shows the low and
intermediate frequency band 0 < f < 1.0 cycle/sample.
Figures 6B and 6C go to higher frequencies 0 < f < 3
cycles/sample. Figure 6B shows the individual curves,
but with a consistent overall scale. Figure 6C super-
imposes them for comparison. These figures are discussed
in detail in the main text. '

Thgsé show the error coefficients for Simpson's rule
ESIMP(f) (Fig. 7A), and for the centered Gauss-Gregory
rule ECGG{f) (Fig. 7B), and for the new optimal rule

ENEW (£) (Fig. 7C). Notice that Simpson's rule has double
the density of large Nyquist spikes, compared to the
other rules. These additional spikes in Fig. 7A have
negative phase. In contrast, the new rule has exactly
zero errors in the band up to f = 1/2h. Many integrands
‘have most power at low frequencies (i.e.: la(f)lzis
largest at low frequencies) so that this low frequency
band is heavily weighted in the overall error.
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