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      Optimization-based approaches are presented for the design of environment-oriented road pricing and 

traffic rationing schemes, particularly with the objective of curbing human exposure to motor vehicle 

generated air pollutants. In addition, surrogate-based solution algorithms are developed to accelerate the 

search of good solutions for the problems considered.  

 A toll design problem is proposed for selecting tolling locations and levels that minimize environmental 

inequality and human exposure to pollutants, subject to budget constraints and pollutant concentration 

constraints at receptor points. A mixed-integer variant of the metric stochastic response surface algorithm 

and a hybrid genetic algorithm-metric stochastic heuristic are presented to solve the mixed integer toll 

design problem. Numerical tests suggest that the proposed algorithms are promising solution methods for 

transportation network design problems. 

 In addition, an optimization problem is presented for the design of cordon and area-based road pricing 

schemes subject to environmental constraints. Flexible problem formulations are considered which can be 

easily utilized with state-of-the-practice transportation planning models. A surrogate-based solution 

algorithm that utilizes a geometric representation of the charging area boundary is proposed to solve cordon 

and area pricing problems.  
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 Lastly, a bi-objective traffic rationing problem is considered where the planner attempts to maximize 

auto usage while minimizing pollutant exposure inequality, subject to constraints on the levels of 

greenhouse gas emissions and pollutant concentration levels. A surrogate-assisted differential evolution 

algorithm for multiobjective continuous optimization problems with constraints is proposed. 
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Chapter 1  

Introduction  
 

 

Considerable advances have been made in the past decades in the reduction of vehicle generated pollutants.  

Yet, despite these improvements, cutting motor vehicle emissions and their related negative effects remains 

a priority for societies around the world. The reason for this concern is that, even in countries with stringent 

environmental regulations and the resources to benefit from the latest vehicle technologies, motor vehicles 

continue to be a major source of pollutants that contribute to anthropogenic climate change and air quality 

degradation. For example, in the US road vehicles generate 23 percent of greenhouse gas (GHG) emissions 

(EPA, 2014), and are estimated to be the largest contributors to ozone and particulate matter-related 

premature mortalities (Caiazzo et al., 2013). Worldwide, road emissions are estimated to account for 10 

percent of GHG emissions (OECD/ITF, 2010), and to cause the deaths of more than 150,000 people each 

year (World Bank, 2014). In light of the threat to public health and the environment posed by vehicle 

emissions, several vehicle emissions control strategies have been proposed and implemented. Among these 

strategies is the use of road pricing and quantity control schemes to manage travel demand.    

In the travel demand management (TDM) context, pricing refers to the use of price signals, such are 

tolls or taxes, to influence the transportation decisions of individuals or firms. These decisions could include 

when and where to enter a transportation network, what mode to use, or what type of vehicle to purchase. 

London’s Low Emission Zone (LEZ) program and British Columbia’s fuel carbon tax are examples of real-

world implementation of emission pricing schemes. In the LEZ, the price signal is a daily charge levied 

based on a vehicle’s emission classification, while in British Columbia it is taxes levied on fuels based on 

their carbon content.  

TDM quantity control instruments set (or cap) the quantity of a polluting activity, as opposed to setting 

the price for the activity. TDM control schemes are somewhat analogous to cap-and-trade schemes. A 

famous example of an implemented quantity control scheme is Mexico City’s “no driving day program” 
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(Hoy No Circula, HNC) (Goddard, 1997). The HNC program restricts the days private vehicles can 

circulate in the city. More recently, German cities have implemented Low Emissions Zones where only low 

emitting PM10 vehicles are allowed access to city centers (Wolf and Perry, 2010). Cities like Paris, Milan, 

and Beijing have also imposed strict traffic rationing schemes to combat air pollution. 

The international experience with pricing and traffic rationing schemes shows that these strategies can 

be effective in reducing traffic congestion and pollution. Their political acceptance, however, constitutes a 

significant challenge. This resistance partly stems from the considerable uncertainties surrounding the 

strategies’ economic, social, and environmental effects. Hence, the importance of the planning and design 

process of pricing and rationing schemes. In this regard, optimization-based analysis methods can be a 

useful tool in the TDM planning and design process, as this analysis approach can provide guidance on 

what courses of action could be most effective in achieving a schemes’ intended objectives. In particular, 

discrete transportation network design problems, and related solution algorithms, have been proposed to 

aid planners in answering a variety of network management questions. Among these questions is how to 

manage travel demand in order to mitigate the environmental impacts of vehicle emissions. Existing models 

can be used to determine, for example, toll levels on roads that minimize network emissions (e.g., Yin and 

Lawphongpanich 2006), tolls levels that ensure link emission compliance with environmental constraints 

(e.g., Ferrari 1995), and the distribution of travel permits among network users to achieve a series of 

suitability related goals (e.g., Nargurney 2000a).  

In this dissertation, optimization problems are proposed that extend the scope of previous environment-

oriented transportation network design problems. The proposed problems can be used to determine the 

location and level of tolls according to pollutant exposure and environmental equity objectives, to design 

area-based charging schemes that help curb pollutant concentration in cities, and to select traffic rationing 

levels that both maximize auto trips in a city and minimized air pollutant intake inequality in a population. 

In addition, new surrogate-based solution algorithms are proposed to solve the presented problems. 

Network design problems are notoriously difficult to solve, in part, because of the time consuming nature 

of the models utilized to evaluate candidate solutions. Surrogate based-solution algorithms attempt to 
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address this computational problem by utilizing computationally inexpensive approximations of the 

computationally expensive problems to guide the search for good solutions. The proposed algorithms are 

derivative-free, so they can easily be utilized to solve other optimization problems with similar 

characteristics to the ones presented here.  

A motivating example is presented in the next section. This section is intended to illustrate why an 

optimization-based perspective is potentially useful in the design of environment-oriented pricing and 

traffic rationing schemes. The example also highlights a few of the primary objectives that are considered 

in the design of TDM strategies intended to improve environmental sustainability. This is followed by a 

brief introduction to the surrogate-based optimization literature in transportation. The chapter’s last section 

provides an overview of the structure and content of this dissertation.  

 

1.1. Motivating Example: A Pollutant Exposure Pseudo-Paradox 
 

Environment-oriented road pricing research is partly motivated by the observation that minimizing traffic 

congestion does not necessarily reduce emissions; in fact, the opposite could be the case. To illustrate this 

point, Nagurney (2000b) presented three emission paradoxes that demonstrate how strategies aimed at 

improving network performance, such as adding a road or decreasing travel demand, may result in an 

increase in total system emissions. The emission paradoxes highlighted the importance of incorporating 

network topology, cost structures, and levels of travel demand in the design of policies aimed at reducing 

traffic emissions. In this section an additional example is presented to illustrate the importance of explicitly 

accounting for population information and meteorological uncertainty when designing demand 

management policies aimed at mitigating the adverse effects of vehicle emissions. 

Consider the network presented in Figure 1-1. Traffic flows from node 1 to node 2 along two 10-mile 

links: link 𝑎 and link 𝑏. Travel times on the links are estimated using the Bureau of Public Roads (BPR) 

link performance function, as shown in the figure. It is assumed that the free flow travel time in both links 

is 9.2 minutes, the capacities of links 𝑎 and 𝑏 are 5000 vehicles per hour (vph) and 3000 vph, respectively, 

and there is a fixed travel demand of 8000 vph. 
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Figure 1-1 Network topology for toy example 

Link emissions (𝑒, in grams per vehicle) of carbon monoxide (CO) are computed using the following 

speed-based model (Sugawara and Niemeier 2002).  

 

𝑒 = exp[1.8 − 0.05627𝑦 + 2.1(10)−3𝑦2 − 7.6(10)−5𝑦3 + 1.2(10)−6𝑦4] × 𝑙  (1.1) 

 

where 𝑦 is equal to the link velocity minus 16, and 𝑙 is the link’s length. Eastward winds transport link 𝑎’s 

emissions to population zone I, the only populated zone in the regions (zones II through V are uninhabited). 

A transfer coefficient of 0.0001 is multiplied to link 𝑎’s emissions to compute the traffic-related pollutant 

concentration in zone I. Link 𝑏’s emissions do not affect zone I given the wind direction; if westward winds 

were assumed the situation would be reverse (i.e., only link 𝑏’s emissions would affect zone I).  

Consider three network performance indicators: total system travel time (𝑇𝑇), total emissions (𝑇𝐸), and 

total population exposure to pollutants (EP). Figure 1-2 presents the normalized 𝑇𝑇, 𝑇𝐸, and 𝐸𝑃 curves 

given different link loadings. The abscissa shows the fraction of the total demand assigned to link 𝑎. If 

deterministic user-optimized routing behavior is assumed, the network is in equilibrium when five eighths 

of the total demand travels on link 𝑎. The deterministic user equilibrium (DUE) solution equals the system 

optimal solution, so a manager interested exclusively in reducing total travel time could not improve the 

network’s performance. Now consider two additional myopic managers: the 𝑇𝐸 manager, who is only 
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concerned with minimizing total emissions, and the 𝐸𝑃 manager, who is only concerned with minimizing 

population exposure to air pollutants. The optimal network performance from the 𝑇𝐸 manager’s perspective 

would occur if all the demand was assigned to link 𝑎. Relative to DUE flows, assigning all the demand to 

link 𝑎 would result in a 13.2 percent decrease in system emissions. However, assigning all the demand to 

link 𝑎 would also result in a 38.8 percent increase in zone I’s pollutant concentration and a 72.4 percent 

increase in total travel time. Conversely, from the 𝐸𝑃 manager’s perspective all the demand should be 

assigned to link 𝑏 since this would completely eliminate the carbon monoxide concentration in zone I. Yet, 

assigning all the demand to link 𝑏 would increase total emissions by 210 percent and total travel time by 

647 percent.  

Note that the 𝐸𝑃 manager’s objective function value, and the manager’s resulting optimal intervention 

(e.g., a toll), is highly dependent on meteorological conditions. For example, the 𝑇𝐸 and 𝐸𝑃 managers’ 

optimal strategies would align if the wind blew from east to west. Given that meteorological conditions 

vary from day to day, even from second to second, an 𝐸𝑃 manager should be interested in incorporating 

the variability of wind speed, wind direction, and atmospheric stability, among other factors, as part of a 

robust policy evaluation process. Furthermore, the location, density, and characteristics of the populations 

adjacent to the network would affect the design of the 𝐸𝑃 manager’s interventions. Even each zone’s 

population activity patterns and the building characteristic (e.g., ventilation) would also be relevant 

information in the process of reducing human exposure to air pollutants. 

If zones II through V were also populated, and each zone had different population groups and density 

levels, the 𝐸𝑃 manager might be interested in considering a comprehensive population exposure measure, 

in addition to air pollutant concentration, in the design of the travel demand management strategy. The 

planner also faces an environmental equity problem, as shifting traffic flow from one link to the other would 

transfer pollutant concentrations between the different zones. Assuming eastward winds and that the 

population in zone I is considerably larger than the combined populations in zones II and V, it might still 

be optimal for the 𝐸𝑃 manager to shift most of the traffic flow to link 𝑏, but that would undoubtingly result 
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in an increase in the concentrations levels of zones II and V. The question then becomes if the redistribution 

in emissions and pollutant concentrations is fair.     

 

 
 

Figure 1-2 Normalized performance indicators as a function of fa 

 

Obviously, network managers are not myopically concerned with a single objective. What this toy 

example illustrates, however, is that environment-oriented demand management interventions could have 

unintended consequences, as there might be tradeoffs in the reduction of congestion, emissions, pollutant 

concentrations, and environmental equality. Particularly in regards to the latter two issues, the problems 

proposed in this document extend previous road pricing and traffic rationing models, providing planners 

additional methods for designing road pricing and rationing schemes that explicitly account for population 

exposure to pollutants. 
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1.2. Applications of Surrogate-Based Solution Algorithms to Transportation 

Optimization Problems 
  

Computer-based models are commonly part of contemporary engineering design optimization problems. 

Given the time consuming nature of these models, considerable computational cost is incurred in finding 

good candidate designs. This computational challenge is commonly encountered in transportation network 

design problems (NDPs), which usually employ multiple types of interconnected computer models to 

simulate network users’ behaviors and the resulting traffic conditions in a road network. In traditional 

NDPs intended for congestion mitigation, the computational cost of finding optimal solutions can be 

attributed primarily to the run times of traffic assignment models. In the case of environment-oriented 

NDPs, these computational costs are compounded by the introduction of additional models to compute, for 

example, link emissions and pollutant concentrations.  

 Surrogate-based optimization procedures have been developed in response to the computationally 

intensive nature of computer-based optimization problems. In the context of optimization algorithms, 

surrogate models (also known as metamodels or response surface models) are models that provide 

computationally inexpensive approximations to computationally expensive models. Commonly used 

models for constructing surrogates include polynomial regression models, kriging models, radial basis 

functions, and support vector machines, among others (Queipo et al. 2005, Forrester and Keane 2009). 

Surrogate models could be used, for example, to quickly screen for promising candidate solutions before 

actually evaluating any designs with the time consuming traffic assignment and related models. This in 

turn reduces the number of model runs necessary in the search for good solutions. In some methodologies, 

the surrogate completely substitutes the computer-based model in the optimization process (Queipo et al. 

2005).  

Particularly in the last five years, there is growing interest in the field of transportation engineering in 

using surrogate-based optimization methods to solve network design problems. In Table 1-1 a list of 

surrogate model applications for transportation optimization problems is presented. Previous studies have 

developed surrogate-assisted solution algorithms for continuous (e.g., Chow et al. 2010, Chen et al. 2013) 



 

 

8 

 

and discrete (e.g., Xiong and Schneider 1994, Wismans 2012) NDPs. Only one algorithm has been proposed 

for a mixed integer problem, in a problem where there is no dependence between the integer and continuous 

variables. Also, the algorithm proposed by Chow and Regan (2014) appears to be the only transportation 

application with a multiobjective problem. 

 
Table 1-1 Previous applications of surrogate-based optimization in transportation NDPs 

Authors Year Variable  Problem 

Xiong and Schneider  1994 Integer Network expansion  

Chow et al. 2010 Continuous Capacity expansion 

Osorio and Bierlaire 2010 Continuous  Signal control 

Fiske 2011 Integer Dynamic traffic management 

Wismans 2012 Integer Dynamic traffic management 

Chow and Regan 2014 Continuous  Road pricing 

Lamotte 2014 Continuous Signal control 

Chen et al. 2014a Continuous Road pricing 

Chen et al. 2014b Continuous Toll and transit fare optimization 

Chen et al. 2015 Mixed Network and capacity expansion 

 

 Besides the proposed environment-oriented NDPs, a second contribution of this dissertation are four 

surrogate-based solution algorithms that can be used to find good solutions for mixed integer optimization 

problems, like the toll design problem, for cordon and area based pricing problems, or for constrained 

multiobjective continuous problems, as the proposed traffic rationing problem. The general strategy of the 

proposed algorithms is presented in Figure 1-3. The initial step of the algorithms is to generate an initial set 

of candidate solutions that are then evaluated with the computationally expensive models. Using the model 

outputs as independent variables and the candidate design solutions as the dependent variables, a surrogate 

model is constructed. The surrogate model is used to identify the most promising solutions that are 

evaluated in each iteration. The model is updated as new information is acquired from the model evaluation 

of candidates. This process continues until a convergence criterion is met, which is defined as a maximum 

number of iterations in all the application presented.     
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Figure 1-3 General structure of proposed surrogate-based solution algorithms 

 

1.3. Research Objectives and General Outline of Dissertation  
 
The general objective of this work is to propose new optimization problems that can be used by planners to 

design road pricing and traffic rationing schemes with the objective of reducing human exposure to vehicle 

generated pollutants. The pollutant exposure minimization objective is defined either explicitly (in the form 

an objective function) or implicitly (in the form of constraints). In addition, since the proposed optimization 

problems would undoubtedly be computationally challenging to utilize in any real-world applications, 

surrogate-based solution algorithms are presented that could help analysts find good solutions in relatively 

short amount of time. The following three chapters have the same general structure. The chapters open with 

an introduction to the problem of interests, followed by a review of relevant literature, the formulation of 

the optimization problem,  a discussion of the surrogate-based solution algorithm proposed for the problem, 

and, lastly, numerical tests with applications of the problem and its solution algorithm.  

 In Chapter 2, a toll design problem is proposed that accounts for population exposure to pollutants and 

environmental equity objectives subject to chance constraints on the pollutant concentration levels at 

receptor points. A mixed-integer variant of the metric stochastic methodology (Regis and Shoemaker 2007) 

and a hybrid genetic algorithm-metric stochastic heuristic are presented to solve the mixed integer toll 

design problem.  

 An area-based pricing problem under environmental constraints is presented in Chapter 3. Three 

flexible objective function formulations (consumer surplus maximization, minimization of auto travel 

demand deviations from the status quo, and revenue maximization) are proposed which can be easily 

utilized along with state-of-the-practice transportation planning models to design cordon and area pricing 
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schemes. A surrogate-based solution algorithm is proposed which utilizes a geometric representation 

(simple polygons) of the charging area boundary to estimate the response surface models.  

 A bi-objective traffic rationing problem is proposed in Chapter 4. In this problem, a traffic rationing 

scheme is sought which maximizes auto travel demand served while minimizing population pollutant 

exposure inequality, this subject to constraints on the levels of greenhouse gas emissions and pollutant 

concentration levels. A surrogate-assisted differential evolution algorithm for multiobjective continuous 

optimization problems with constraints is proposed. In contrast to the algorithms presented in Chapters 2 

and 3, in the proposed differential evolution variant separate surrogates are estimated to produce surrogate 

ensemble-based predictions for the computationally expensive objective function (the pollutant exposure 

objective function) and the constraints.    
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Chapter 2  

Accounting for population exposure to vehicle-generated pollutants and 

environmental equity in the toll design problem 
 

 

 

2.1 Introduction 
 

Extensive research has been conducted on the use of tolls or fees to control the negative externalities of 

vehicular traffic (e.g., see Yang and Huang, 2005). In the last two decades several studies have proposed 

transportation network design problems (NDPs) that incorporate environmental considerations in the design 

of road pricing schemes. NDPs provide transportation planners an optimization-based approach for 

determining what is the best network intervention given a series of objectives and constraints. Coupled with 

judgment-based considerations, NDPs could be useful tools in the planning process of travel demand 

management schemes. Generally speaking, environment-oriented NDPs, such as the toll design problem 

(TDP), have been proposed from the perspective of planners interested in either reducing total network 

emissions, ensuring that link emissions do not exceed predetermined emission constraints, or guaranteeing 

that pollutant concentration standards in areas adjacent to the road network are met. In this chapter, an 

extension to the TDP is presented that explicitly accounts for population exposure to air pollutants and 

environmental equity, which is defined here as the equitable distribution of environmental risk, as indicated 

by proxy pollutant exposure measures, among spatial locations and population groups.  

In the TDP the planner’s problem is to select toll locations and charging levels such that the expected 

human exposure to vehicle emitted pollutants and environmental inequality are minimized, subject to a 

budget constraint and probabilistic constraints on pollutant concentration levels. Both pollutant exposure 

and environmental inequality are quantified using estimated pollutant concentration levels at receptor 

points. These two objectives are common goals of environmental protections agencies. For instance, 

estimates of a population’s pollutant exposure are an integral part of cost and benefits calculations in 

environmental impacts studies (Rabl et al. 2014). And, while the primary policy, research developments, 
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and public advocacy on environmental equity has occurred in the US, reducing pollutant exposure 

disparities is an emerging issue in various countries (e.g., see Buzzelli 2008, Laurent, 2011).  

In addition to an extension to the TDP, new solution algorithms are presented which can be applied to 

mixed integer NDPs. Transportation NDPs have been the subject of a considerable amount of research, in 

part, because of the computational challenges associated with solving this type of problem (Yang and Bell, 

1997). For environment-oriented NDPs these practical challenges are compounded by need to connect 

additional models to the ones used to simulate the network users’ response to the planner’s interventions. 

For example, in the problem considered in this chapter an analyst would need to connect at least three 

distinct models to compute link flows, link emissions, and air pollutant dispersion. The resulting combined 

model might require considerable time to evaluate the impact of a single candidate set of tolling locations 

and levels. Furthermore, it might not be possible to represent the model with a closed form analytical 

expression. This computational challenge motivates the second contribution of this chapter: two new 

derivative-free surrogate-based solution algorithms (SBSA) for mixed integer TDPs. 

In the next section a literature review is presented on previous environment-oriented discrete network 

pricing studies (excluding noise-related studies), on equity and road pricing models, and on the algorithms 

that have been proposed to solve mixed integer TDPs. The problem formulation is presented in section 2.4, 

followed by an explanation of the proposed surrogate-assisted solution algorithms. The results of a 

numerical examples are also discussed. In the last section conclusions and possible future research 

directions are presented. 

 

2.2 Literature Review 
 

Next, previous discrete network studies that account for environmental considerations in the design of road 

pricing schemes are reviewed, followed by a brief discussion of equity considerations in road pricing NDPs. 

Lastly, an overview of solutions algorithms for mixed integer TDPs is offered.  
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2.2.1 Discrete network toll setting problems with environmental considerations 

 
Environmental air quality regulations usually establish maximum air pollutant concentrations thresholds 

that can be violated only a predetermined number of times. Thus, it is not surprising that environmental 

considerations are often introduced in discrete network-based road pricing models in the form of 

environmental constraints. An example of such constraints are link-based environmental capacity 

constraints (Ferrari 1995). A roadway’s environmental capacity is a traffic flow limit defined by a 

regulatory agency based on environmental concerns. This concept has been used in bi-level optimization 

road pricing problems with elastic demand (Yang and Bell 1997), uncertain demand (Li et al. 2012), and in 

dynamic pricing models (Zhong et al. 2012). A related type of environmental constraint is the link-based 

emission constraint, which directly limits total emissions on a link. Emission constraints have been 

incorporated in road pricing models with fixed and elastic demand (Nagurney 2000), land-use 

considerations (Li et al. 2007), multi-criteria routing behavior (Jaber and O’Mahony 2009), and in models 

that have considered corridor-level pricing (Mishra and Welch 2012). Dhanda et al. (1999) proposed the 

concept of link-based environmental target constraints in road pricing models; the targets are met by the 

implementation of link subsidies or tolls. Constraints on total system emissions have also been proposed, 

especially in models concerned with minimizing GHG emissions (Sharma and Mishra 2013).  

Discrete network optimization problems with environment-oriented objective functions are an 

alternative approach for designing road pricing schemes. Yin and Lu (2000) proposed a bi-level 

optimization problem to determine tolls that minimize total network emissions. Yin and Lawphongpanich 

(2006) extended this work, in part, by presenting a bi-objective problem where total travel time and total 

emissions are simultaneously minimized. Other studies have considered the design of pricing schemes with 

emission minimization objectives in the presence of public transit (Si et al. 2012; Sharma and Mishra 2013), 

area-based emission budget constraints (Yang et al. 2013), and joint toll and rebate schemes (Chen and 

Yang 2012), or in conjunction with dynamic assignment models (Friesz et al. 2013). The model proposed 

by Wang et al. (2014) is perhaps the most relevant work to this study. Wang et al. proposed a multiobjective 
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toll setting problem where the pollutant intake of travelers is minimized. Pollutant intake is defined in terms 

of the median or maximum pollutant intake experienced by road travelers in different routes. An alternative 

to emission minimization objective functions is the minimax objective function formulated to minimize the 

maximum deviations between observed link emissions (Hizir 2006) or concentrations (Kolak et al. 2013) 

relative to an emission or concentration limit, respectively. 

Besides the work of Wang et al. (2014), human exposure to pollutants has been previously considered 

in the context of two other types of transportation network design models. Gouge et al. (2013) proposed a 

transit network design problem that considers the minimization of an intake fraction measure. In the context 

of robust signal timing optimization, Zhang et al. (2013) proposed the use of a mean excess exposure 

measure, where pollutant exposure was defined as a function of pollutant concentrations and population 

density.   

In the reviewed road pricing studies, models were proposed mainly with the objectives of minimizing 

emissions or ensuring that emission or pollutant concentration levels do not exceed a preselected threshold. 

The minimization of human exposure to vehicle-generated air pollutants has only been considered in the 

work of Wang et al. (2014), but in terms of pollutant exposure of road travelers. Furthermore, in these 

studies the toll locations are predefined; the planner’s decision variables are only the toll levels in the 

selected links. The TDP extension presented in the section 2.4 can be used to select both toll locations and 

their corresponding levels according to human exposure and environmental equity considerations and in 

compliance with pollutant concentration constraints at receptor points. As it will be illustrated in the 

example presented in the section 1.1, this is a useful extension given that neither human exposure to air 

pollutants nor environmental inequality are necessarily minimized in models aimed at minimizing 

emissions or congestion.  

 

2.2.2 Equity considerations and discrete network road pricing problems 

 

The equity impacts of road pricing schemes are a major concern for transportation planners (Levinson 

2009), and accordingly equity-based constraints and objectives have been incorporated to toll setting 
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models, particularly in terms of the distribution of travel benefits and costs between different 

socioeconomic groups and geographical locations. For example, Yang and Zhang (2002) proposed a multi-

class toll setting problem with spatial and social equity constraints that control the allowable relative change 

in travel cost with respect to the equilibrium costs. In other models constraints are introduced that ensure 

that no user is worse off after the pricing intervention (e.g., Song et al. 2009, Lawphongpanich and Yin 

2010). Yin and Yang (2004) proposed two road pricing optimization problems with the objectives of 

minimizing the difference in travel disutility among user classes and origin-destination pairs. While Wu et 

al. (2012) proposed a model for designing congestion pricing schemes that maximize social benefit and 

equity. The Gini coefficient was used by Wu et al. to measure disparities in the distribution of incomes due 

to the pricing intervention. 

However, although environmental justice is recognized as an important equity dimension in the 

transportation planning process (Forkenbrock and Schweitzer 1999, Feitelson 2002), it appears that it has 

not been considered in transportation NDPs, including toll pricing models. Nevertheless, the use of road 

charges to achieve environmental equity objectives has been discussed in the context of traffic assignment 

models (Rilett and Benedek 1994), and there are simulation studies that support the contention that road 

pricing could be a useful mechanism for reducing disparities in the distribution of pollutant concentrations 

(Mitchell 2005).  

Environmental equity considerations are incorporated in the TDP presented in section 2.4 as part of the 

planners objective. It is posited that the planner can quantify environmental inequity utilizing an inequality 

index. Levy et al. (2006) examined different inequality indicators in the context of health benefit analysis 

for pollution control policies, and they concluded that the Atkinson index offers is the most appropriate 

indicator, partly because it satisfies the Pigou-Dalton transfer principle and it is subgroup decomposable. 

The Atkinson index has been used in the assessment of pollutant exposure and mortality risk inequalities 

caused by mobile sources (e.g., Levy et al. 2009, Marshall et al. 2014), and it is selected as the inequality 

index in the numerical examples presented in section 2.5.   
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2.2.3 Solution algorithms for mixed-integer TDPs  

 

Several optimization algorithms have been proposed for different types of TDP. Bai (2004) developed a 

dynamic slope scaling procedure for the minimum toll booth problem. Verhoef (2002) proposed the use of 

welfare gain indicators in solution algorithms for the social welfare maximization TDP with elastic demand, 

an approach later extended by Shepherd and Sumalee (2004) and Ekström et al. (2009). Yang and Zhang 

(2002) presented a simulated annealing-genetic algorithm (SA-GA) heuristic to solve the social welfare 

maximization TDP and the travel cost minimization TDP. Mixed integer linear approximations (Ekström 

et al. 2012) and GA (Fan and Gurmu 2014) are two other solution approaches developed for the travel cost 

minimization TDP. For the case of the cordon-based TDP, Zhang and Yang (2004) and Sumalee (2004) 

proposed GA-based approaches, while Zhang and Sun (2013) proposed a dual-based heuristic algorithm.  

As previously mentioned, finding optimal solutions to NDPs is generally computationally expensive, 

partly given the time required to run traffic simulation models. In the case of environment-oriented NDPs, 

each candidate solution’s evaluation is further burdened by the need to compute, for example, vehicle 

emissions and pollutant concentrations. With the increasing complexity of the models used to simulate 

travel behavior and assess the environmental impact of traffic it becomes even more important to develop 

efficient solution algorithms if optimization based approaches are to application to practical engineering 

problem. Hence, there is a growing interest in developing SBSAs for NDPs. In the context of optimization 

algorithms, surrogate models (also known as metamodels or response surface models) are models that 

provide computationally inexpensive approximations to computationally expensive models. Surrogate 

models could be used, for instance, to quickly screen for promising candidate solutions before actually 

evaluating any designs with the time expensive models. This in turn reduces the number of model runs 

necessary in the search for good solutions. Previous studies have developed SBSAs for primarily for 

continuous (e.g., Chow et al. 2010; Osorio and Bierlair 2013; Lamotte 2014) and discrete (Xiong and 

Schneider 1992; Fiske 2011; Wismans, 2012) NDPs. Of particular interest are the SBSAs proposed by 

Chow and Regan (2014) and Chen et al. (2014), which were developed for continuous toll pricing problems. 

In this chapter, a SBSA is developed for the mixed integer TDP. Concurrently, Chen et al. (2015) developed 
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a SBSA for the link addition and capacity expansion mixed integer NDP. To the authors’ knowledge, this 

is the only other study that has considered the use of SBSA for mixed integer NDP. The proposed algorithm 

differs from previous SBSA in that it is applicable to mixed integer problems where binary variables 

indicate which continuous variables can assume non-zero values, which is the case of TDPs. Given that it 

is a derivative-free algorithm, the proposed SBSA can be applied to any other optimization problem 

(including other NDPs) that features a similar relationship between binary integer and continuous variables. 

 

2.3 Model Formulation 
 

This section opens with the introduction of a TDP intended for pollutant exposure minimization, with 

environmental equity considerations incorporated in the pollutant concentration constraints. This is 

followed by a discussion of two indicators that can be used to quantified population exposure to pollutants. 

Lastly, a TDP objective function is presented that explicitly considers environmental inequality. To set the 

problem, first consider a planner that is interested in determining toll locations 𝒚 and associated toll levels 

𝝉 that minimize the expected population exposure to vehicle-generated air pollutants. Given are a set of 

preselected candidate links 𝐴̅ for tolling, the costs ℎ𝑎 incurred for charging a toll on each link 𝑎 (𝑎 ∈ 𝐴̅), a 

budget 𝐻, and the requirement that pollutant concentrations levels 𝐶𝑟 at each receptor point 𝑟 (𝑟 ∈ 𝑅) have 

to be less than or equal to a threshold 𝐶𝑟,𝑚𝑎𝑥 with probability 𝜃𝑟 or higher (for notational simplicity, a single 

pollutant is considered). As in previous TDPs, this problem can be formulated as a bi-level optimization 

problem, where the upper level contains the planner’s objectives and constraints, and the lower level models 

the response 𝒗(𝒚, 𝝉) of the network users to the planner’s intervention (i.e., the tolling scheme).  

 

2.3.1 Upper level problem 

 

Human exposure to pollutants is a function of multiple factors, including total emissions, the location, 

density, and characteristics of the population, and meteorological conditions (Levy et al., 2010). Let 𝐼 be 

an indicator of human exposure to vehicle-generated air pollutants that accounts for population 

characteristics, and assume that this indicator varies with changing meteorological conditions (as pollutant 
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concentrations vary with meteorological conditions). Let 𝑘 represent a meteorological scenario and 𝜋𝑘 

represent its probability of occurrence. Additionally, let 𝐼𝑘 represent the region’s aggregate exposure to a 

pollutant of interest under scenario 𝑠. Utilizing a sample average approximation approach, the upper level 

is formulated as follows: 

 

min
𝝉,𝒚

𝜑(𝝉, 𝒚) = ∑ 𝜋𝑘𝐼(𝒗(𝒚, 𝝉))
𝑘

𝑘

 
 

 (2.1) 

 

subject to 
 

   

𝑃(𝐶𝑟(𝒗(𝒚, 𝝉), 𝜸) ≤ 𝐶𝑟,𝑚𝑎𝑥) ≥ 𝜃𝑟 
 

 ∀ 𝑟 ∈ 𝑅 (2.1.1) 

∑ ℎ𝑎𝑦𝑎

𝑎∈𝐴̅

≤ 𝐻 
 

 (2.1.2) 

0 ≤ 𝜏𝑎 ≤ 𝑦𝑎𝜏𝑚𝑎𝑥  ∀𝑎 ∈ 𝐴̅ (2.1.3) 

𝑦𝑎 ∈ {1,0}  ∀𝑎 ∈ 𝐴̅ (2.1.4) 

 

In the upper level problem the expected pollutant exposure is minimized subject to probabilistic 

constraints on pollutant concentration (2.1.1), budget constraint (2.1.2), bounds constraints for the toll levels 

(2.1.3), and integer constraints for the toll locations variables (2.1,4). For each receptor, constraints 2.1.1 

ensure that the probability 𝑃(𝐶𝑟(𝒗(𝝉), 𝜸) ≤ 𝐶𝑟,𝑚𝑎𝑥) is greater than or equal to 𝜃𝑟. A simple approach to 

operationalize constraint set 2.1.1 is to restate it as follows: 

 

∑ 𝜋𝑘Γ𝑟
𝑘(𝒗(𝝉), 𝜸𝒌)

𝑘

≥ 𝜃𝑟 ∀ 𝑟 (2.2) 

  

where Γ𝑟
𝑠(𝒗(𝝉), 𝜸𝒔) is an indicator variable defined as: 

 

Γ𝑟
𝑘(𝒗(𝝉), 𝜸𝒔) = {

1 , 𝑖𝑓 𝐶𝑟(𝒗(𝝉), 𝜸𝒌) ≤ 𝐶𝑟,𝑚𝑎𝑥  

0 , 𝑖𝑓 𝐶𝑟(𝒗(𝝉), 𝜸𝒌) > 𝐶𝑟,𝑚𝑎𝑥

  (2.3) 

 

Two reasons for incorporating the probabilistic concentration constraints 2.1.1 are the planner’s interest 

of meeting certain air quality regulatory standards or reducing the level of environmental equity inequality 

in the distribution of pollutant concentrations. Minimizing total expected pollution intake does not 

guarantee that air quality standards are met. In fact, it is possible that a toll location and level configuration 

that reduces the overall human exposure to pollutants could result in worse pollutant concentration levels 
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in some communities, thus raising the second issue of environmental equity. Environmental equity 

considerations could be reflected in the determination of 𝐶𝑟,𝑚𝑎𝑥. For example, let 𝐶𝑟,𝑏𝑎𝑠𝑒 represent 

concentration levels in receptor 𝑟 previous to the road pricing scheme. Relative to 𝐶𝑟,𝑏𝑎𝑠𝑒, define a 

maximum allowable increase (𝛿𝑟) in pollutant concentrations resulting from the road pricing scheme. 

𝐶𝑟,𝑚𝑎𝑥 could then be computed as min(𝛿𝑟𝐶𝑟,𝑏𝑎𝑠𝑒 , 𝐶𝑟𝑒𝑔), where 𝐶𝑟𝑒𝑔 represents an air quality standard.  

 

2.3.1.1 Population-level indicators of pollutant exposure 

 

𝐼 is assumed to be a population-level exposure measure, that is, a measure of human exposure computed 

using aggregate population information (including encountered pollutant concentrations) at the grid cell or 

receptor level. This is a common approach used in the assessment of human exposure to air pollutants (e.g., 

see BENMAP, Abt Associates 2012) as it can be applied with readily available data (e.g., using census tract 

information). Here two specifications of  𝐼 are considered: 𝐼𝑖𝑛𝑡𝑎𝑘𝑒 and 𝐼ℎ𝑒𝑎𝑙𝑡ℎ. 𝐼𝑖𝑛𝑡𝑎𝑘𝑒 is defined as an air 

pollution intake measure (Evans et al 2002), which is a proxy measure for the public health impact of 

emitted pollutants. Assume that a population 𝜌 can be divided according to their proximity to discrete 

receptor points 𝑟 (𝑟 = {1, … , 𝑅}) and demographic classification 𝑔 (g= {1, … , 𝐺}) characterized by a 

breathing rate 𝐵𝑔. Each group 𝜌𝑔𝑟 (𝜌 = ∑ ∑ 𝜌𝑔𝑟𝑔𝑟 ) is exposed to a pollutant concentration 𝐶𝑔𝑟. Then, 

𝐼𝑖𝑛𝑡𝑎𝑘𝑒 is formulated as: 

 

𝐼𝑖𝑛𝑡𝑎𝑘𝑒 = ∑ ∑ 𝜌𝑔𝑟𝐶𝑔𝑟𝐵𝑔

𝑟𝑔

  (2.4) 

 

𝐶𝑔𝑟 depends on the pollutant contribution 𝑐𝑎 of each link, which is a function of the spatial location of the 

link relative to the location 𝑟 (𝑑𝑎𝑟), the link emissions 𝑄𝑎, meteorological conditions 𝜸, terrain or urban 

form effects 𝜺, and background concentrations 𝐶𝑟𝑏. Furthermore, given that direct exposure to outdoor 

levels of ambient pollutant concentrations varies among the population, 𝜙𝑟𝑔 is used to factor the outdoor 

pollutant concentrations to a value that is more representative of the concentrations that the average group 

𝑔 person associated with receptor 𝑟 is exposed to. 𝐶𝑔𝑟 is defined as: 



 

 

20 

 

 

𝐶𝑔𝑟 = 𝜙𝑔𝑟 ∑ 𝑐𝑎(𝑑𝑎𝑟, 𝑄𝑎 , 𝜸, 𝜺)

𝑎

+ 𝐶𝑟𝑏  (2.5) 

 

The concentrations levels to which each group is exposed to can have different health outcomes, so it 

might be of interest for a planner to convert the pollutant exposure estimates  into a measure that directly 

accounts for health effects, which is the motivation for the 𝐼’s second specification, 𝐼ℎ𝑒𝑎𝑙𝑡ℎ. 𝐼ℎ𝑒𝑎𝑙𝑡ℎ can be 

specified in terms of the risks of an adverse health outcome 𝑜 (e.g., chronic bronchitis) by multiplying each 

population groups’ pollutant exposure 𝐼𝑔 by a corresponding unit risk factor 𝜇𝑜𝑔 (Lai et al. 2000). Assuming 

that 𝐼𝑔 appropriately characterizes the long-term pollutant exposure of each population group, the health 

impact performance indicator can be formulated as: 

 

𝐼ℎ𝑒𝑎𝑙𝑡ℎ = ∑ 𝜇𝑜𝑔𝐼𝑔

𝑔

  (2.6) 

 

In the numerical examples section an application of the proposed TDP is presented with 𝐼ℎ𝑒𝑎𝑙𝑡ℎ specified 

in terms of years of life lost (YOLL) due to exposure to particulate matter (PM2.5). Note that although 

𝐼ℎ𝑒𝑎𝑙𝑡ℎ provides only a rough estimate for assessing health outcomes (given the aggregate nature of the 

analysis), it is a useful metric as it provides an objective way for weighting the health implications of each 

group’s pollutant exposure levels. Naturally, other non-linear specifications of 𝐼ℎ𝑒𝑎𝑙𝑡ℎ are possible (e.g., 

depending on the pollutant, using nonlinear exposure response functions) that given the flexible nature of 

the bilevel formulation and the derivative-free solution algorithms proposed in the sections 2.4 and 2.6 

could be used to specify 𝐼.  

 

2.3.1.2 Minimizing expected pollutant exposure and environmental inequality 

 

Minimizing a total population exposure to pollutants would result in obvious aggregate benefits, but this 

objective does not directly address environmental equity concerns. Instead of reflecting environmental 

equity concerns only in the specification of the concentration constraints, an alternative approach is to 

explicitly incorporate an environmental inequality metric as part of the planner’s objective. In the current 

context, an inequality index simply indicates the level of pollutant exposure disparities that exists among 
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different locations and population groups. Since minimizing pollutant exposure inequality does not 

necessarily lead to a minimization in the region-wide impacts of vehicle emission, the environmental equity 

objective can be viewed as a complementary objective that is weighed against the objective of minimizing 

total pollutant exposure. These two objectives can be combined into a single equation using linear 

scalarization. Let 𝜑̃ represent the normalized expected pollutant exposure function in equation (2.1), 𝐴̃ 

represent a normalized pollutant exposure inequality index, and 𝑤𝐼 and 𝑤𝐸𝑄 represent the respective weight 

of each objective (𝑤𝐸𝑄 = 1 − 𝑤𝐼). Then, the combined objective function is formulated as: 

 

min
𝝉,𝒚

𝜑(𝝉, 𝒚) = 𝑤𝐼 𝜑̃(𝝉, 𝒚) + (1 − 𝑤𝐼)𝐴̃(𝝉, 𝒚)   (2.7) 
 

subject to 
 

   

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2.1.1) 𝑡𝑜 (2.1.4)  
 

 
 

 

 

In the numerical examples, 𝜑 is normalized by using the computed pollutant exposure indicator value for 

the untolled network as the scaling factor. Similarly, the inequality index is normalized by the pollutant 

concentration inequality levels estimated for the untolled network. The Atkinson index is utilized as the 

inequality measure, per the analysis of Levy et al. (2006). The Atkinson index varies between zero 

(complete equality) and one (complete inequality). 

   

2.3.2 Lower level problem 

 

The lower level problem is formulated as a fixed-demand DUE problem, a common assumption used in 

NDP studies. The fixed demand between each origin-destination (OD) pair 𝑤 (𝑤 ∈ 𝑊) there is represented 

by 𝑞𝑤. 𝑓𝑘
𝑤 is a path 𝑘 flow between for each OD pair 𝑤. 𝛿𝑎𝑘

𝑤  is an indicator variable with value of one when 

link a is in path k, and zero otherwise. Homogeneous drivers are assumed with a single value of time (𝛽) is 

used. The link flow vector 𝒗 is determined by solving problem: 
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min
𝒗

∑ ∫ 𝑡𝑎(𝜔)𝑑𝜔
𝑣𝑎

0
𝑎∈𝐴\𝐴̅

+ ∑ ∫ (𝑡𝑎(𝜔) +
𝜏𝑎

𝛽
) 𝑑𝜔

𝑣𝑎

0
𝑎∈𝐴̅

 

 

 (2.8) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 

  

𝑣𝑎 = ∑ ∑ 𝑓𝑘
𝑤𝛿𝑎𝑘

𝑤

𝑘𝑤

  ∀ 𝑎 ∈ 𝐴 (2.8.1) 

∑ 𝑓𝑘
𝑤

𝑘

= 𝑞𝑤 ∀𝑤 ∈ 𝑊 (2.8.2) 

𝑓𝑘
𝑤 ≥ 0 ∀𝑤 ∈ 𝑊, 𝑘 ∈ 𝐾 (2.8.3) 

 

Equations 2.8.1 are definitional constraints, equations 2.8.2 are the flow conservation constraints, and 

constraints 2.8.3 specify the non-negativity condition. Note that the intent of this section is to present a 

flexible bi-level optimization framework for the design of tolling schemes that minimize human exposure 

to vehicle-generate pollutants. Nevertheless, for completeness and purposes of the numerical tests a specific 

lower level problem assumption (i.e., DUE) is made. Next, a new derivative-free solution algorithm for 

mixed-integer problems like the TDP is presented. 

 

2.4 Solution Algorithm: Mixed Integer Variant of the LMSRS Algorithm 
 

In practice, it is likely that finding good solutions to the proposed TDP would present a significant challenge 

given the computational cost and likely black-box nature of the multiple computer software applications 

necessary to evaluate candidate tolling schemes. Therefore, a new derivative-free SBSA algorithm is 

proposed to tackle these problems.  The algorithm presented next is a variation of the local metric stochastic 

response surface (LMSRS) methodology (Regis and Shoemaker 2007; Muller et al. 2014) that is applicable 

to mixed integer problems where binary integer variables indicate which of the continuous variables can 

assume non-negative values.  

The problems shown in (2.1) and (2.7) have two constraints: the budget constraint and the concentration 

constraints. The budget constraint is easily evaluated as it is only a function of the costs of charging tolls 

on the candidate links. Therefore, constraint (2.1.2) is computed before evaluating any candidate solution; 

if the constraint is violated a new link combination is generated that complies with the budget constraint. 

In contrast, the concentration constraints require outputs from the traffic assignment, emission, and air 
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dispersion models, and consequently it is computationally expensive to determine if a candidate solution 

meets these constraints. To circumvent this problem, the concentration constraints are handled using a 

parameter-free penalty approach (Deb 2000). Let  𝜑𝑚𝑎𝑥 be the objective function value of the worst known 

feasible solution, and 𝜅 be a penalty factor. The upper level problem’s objective function (2.1) is re-

formulated (arguments omitted) as: 

 

Φ = {

𝜑 𝑖𝑓 𝑃(𝐶𝑟 ≤ 𝐶𝑟,𝑚𝑎𝑥) ≥ 𝜃𝑟    ∀𝑟

𝜑𝑚𝑎𝑥 − 𝜅 ∑ min(𝑃(𝐶𝑟 ≤ 𝐶𝑟,𝑚𝑎𝑥) − 𝜃𝑟 , 0) 

𝑟

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (2.9) 

 

 𝜑𝑚𝑎𝑥 is updated as worst feasible solutions are discovered. If there is no known feasible solution, a 

placeholder value (e.g., zero) is assumed for 𝜑𝑚𝑎𝑥. The same adjustment is made for function (2.7). 

 

2.4.1 Preliminary concepts of the LMSRS algorithm 

 

The LMSRS method was previously applied by Chow et al. (2010) to the capacity expansion NDP, and 

extended for the multiobjective toll pricing problem by Chow and Regan (2014). Muller et al. (2013) 

presented a LMSRS methodology for general mixed integer problems. Here the LMSRS strategy is adapted 

for the mixed integer TDP, where the integer variables are binary and determine where the continuous 

variables (i.e., toll levels) can assume positive values. In the algorithm to be presented, the surrogate models 

are estimated using the toll level vectors and their associated objective function values Φ. 

The basic idea behind the LMSRS methodology is to use a surrogate model to iteratively select the 

most promising solutions among a set of randomly generated candidate solutions, which are then evaluated 

with the computationally expensive models to determine if there is a candidate that improves on the best 

known solution. The most promising solution is the candidate with the minimum weighted score 𝑊 =

𝑤𝑅𝑆𝑉𝑅𝑆 + 𝑤𝐷𝑉𝐷, where 𝑉𝑅𝑆 is the response surface criterion score, 𝑉𝐷 is the distance criterion score, and 

𝑤𝑅𝑆 and 𝑤𝐷 are their corresponding weights (where 𝑤𝑅𝑆 + 𝑤𝐷 = 1). Assume that 𝝉𝑚 (𝑚 = 1, … , 𝑀) is a 

candidate toll vector and 𝒚𝑚 is its associated toll location vector, both with dimension 1 × |𝐴̅|. Furthermore, 

let 𝑠(𝝉𝑚) represent the objective function value predicted by the surrogate model. Then,  
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𝑉𝑅𝑆(𝝉𝑚) =
𝑠(𝝉𝑚) − 𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
 

 (2.10) 

 

where  𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are the minimum and maximum predicted objective function values, respectively, 

among the candidate solutions. If 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are equal, then 𝑉𝑅𝑆(𝝉𝑚) = 1. For the distance criterion 

score, let Δ(𝝉𝑚) represent the minimum distance (e.g., Euclidean) between candidate 𝝉𝑚 and the previously 

𝑛 evaluated points. Additionally, let ∆𝑚𝑖𝑛= min
1≤𝑗≤𝑛

{∆(𝝉𝑚)} and ∆𝑚𝑎𝑥= max
1≤𝑗≤𝑛

{∆(𝝉𝑚)}. The distance 

criterion is computed as: 

 

𝑉𝐷(𝝉𝑚) =
Δ𝑚𝑎𝑥 − ∆(𝝉𝑚)

Δ𝑚𝑎𝑥 − Δ𝑚𝑖𝑛 
 

 (2.11) 

 

If ∆𝑚𝑖𝑛 equals ∆𝑚𝑎𝑥, then 𝑉𝑛
𝑑𝑖𝑠𝑡(𝝉𝑚) = 1. For the weight 𝑤𝑅𝑆, an ordered set Υ = 〈𝑣1, … , 𝑣𝜅〉 (0 ≤ 𝑣1 ≤

⋯ ≤ 𝑣𝜅 ≤ 1) is defined. In each iteration 𝑛 the value of 𝑤𝑅𝑆 is adjusted by sequentially cycling through 

the set elements. By varying the weights’ values the algorithm gradually oscillates between an exploitative 

and an explorative search focus.  

Another important element of the LMSRS method is the set of strategies used for generating candidate 

solutions. Let 𝝉𝑏𝑒𝑠𝑡 be the toll level vector with lowest known Φ (Φ𝑏𝑒𝑠𝑡), and 𝒚𝑏𝑒𝑠𝑡 be its associated 

location vector. Three types of candidate points are generated in each iteration of the proposed algorithm. 

In the first group of candidates (group I), 𝑀𝐼 candidates are generated by varying the toll levels in the 

locations indicated in 𝒚𝑏𝑒𝑠𝑡. First, define the probability 𝑝𝐼 for perturbing a coordinate of 𝝉𝑏𝑒𝑠𝑡. Let 𝜔 be a 

random draw from a standard uniform distribution. For each tolled coordinate 𝑖 of  𝝉𝑏𝑒𝑠𝑡, if random draw 

𝜔𝑖 > 𝑝𝐼, then 𝜏𝑖
𝑚 = 𝜏𝑖

𝑏𝑒𝑠𝑡; otherwise, the tolls are perturbed according to 𝜏𝑖
𝑚 = 𝜏𝑖

𝑏𝑒𝑠𝑡 + 𝑧(0, 𝜎𝐼), where 𝑧 

is a random draw from a normal distribution with mean zero and variance 𝜎𝐼. This procedure is repeated 

𝑀𝐼 times. The variance 𝜎𝐼 is initialized with value 𝜎𝑖𝑛𝑖𝑡
𝐼 , but it is modified depending on the number of 

success or failures in finding a better solution than 𝝉𝑏𝑒𝑠𝑡.  

The second group of candidates (group II) are generated by creating 𝒚𝑚 vectors in the neighborhood 

of 𝒚𝑏𝑒𝑠𝑡. First, 𝑀𝐼𝐼 location vectors are generated by changing each coordinate of 𝑦𝑏𝑒𝑠𝑡 with probability 
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𝑝𝐼𝐼. 𝒚𝑚 is said to be in the neighborhood of 𝒚𝑏𝑒𝑠𝑡 if 0 < ∑ |𝑦𝑖
𝑚 − 𝑦𝑖

𝑏𝑒𝑠𝑡|𝑖 ≤ 𝜂𝐼𝐼, where 𝜂𝐼𝐼 is a parameter 

that defines the maximum distance that can exists between 𝒚𝑚and 𝒚𝑏𝑒𝑠𝑡. If candidate 𝒚𝑚 is determined to 

be in the neighborhood of 𝒚𝑏𝑒𝑠𝑡, the budget constraint is checked; candidate toll location vectors that violate 

the budged constraint are adjusted until the constraint is satisfied. For each neighbor 𝒚𝑚 a total of 𝜆𝐼𝐼 

candidate toll levels are generated (naturally, in the toll locations indicated by 𝒚𝑚). Toll locations shared 

between 𝒚𝑚and 𝒚𝑏𝑒𝑠𝑡 are perturbed with probability 𝑝𝐼𝐼. If 𝜔𝑖 > 𝑝𝐼𝐼, then 𝜏𝑖
𝑚 = 𝜏𝑖

𝑏𝑒𝑠𝑡; otherwise, the tolls 

are perturbed according to 𝜏𝑖
𝑚 = 𝜏𝑖

𝑏𝑒𝑠𝑡 + 𝑧(0, 𝜎𝐼𝐼), where 𝑧 is a random draw from a normal distribution 

with mean zero and variance 𝜎𝐼𝐼; 𝜎𝐼𝐼 is assumed fixed. Toll levels for the toll locations not shared by 𝒚𝑚 

and 𝒚𝑏𝑒𝑠𝑡are generated by randomly drawing from the interval [0, 𝜏𝑚𝑎𝑥].  

In the last group (group III) a candidate that is not in the neighborhood of 𝒚𝑏𝑒𝑠𝑡 is generated. A two-

stage procedure is followed. First, 𝑀𝐼𝐼𝐼 candidate toll locations are generated and adjusted according to the 

budget constraint. A candidate 𝒚𝑚 with ∑ |𝑦𝑖
𝑚 − 𝑦𝑖

𝑏𝑒𝑠𝑡|𝑖 > 𝜂𝐼𝐼𝐼 is randomly selected. 𝜂𝐼𝐼𝐼 is the minimum 

distance for which 𝒚𝑚 is said to be outside the neighborhood of 𝒚𝒃𝒆𝒔𝒕. Next, 𝜆𝐼𝐼𝐼 toll level vectors are 

generated in the positions indicated in 𝒚𝑚 by randomly drawing from the interval [0, 𝜏𝑚𝑎𝑥]; the 𝜆𝐼𝐼𝐼 toll 

vectors constitute group III. Although a total (𝑀) of 𝑀𝐼 + 𝜆𝐼𝐼𝑀𝐼𝐼 + 𝜆𝐼𝐼𝐼 candidate points are generated, in 

each iteration only three points (one from each group) are evaluated with the computationally expensive 

models. Next the steps of the mixed integer LMSRS algorithm is presented.   

 

2.4.2 LMSRS algorithm for the TDP 

 

The algorithm steps and the notation used in this description are given below. 

 

Decision variables 

 

𝝉 : toll level vector 

𝒚 : toll location vector 
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Indices 

 

𝑚 : indices for candidate solution vectors generated according to the rules of groups I, II, 

and III (𝑚 = 1, … , 𝑀) 

𝑢 : indices for the three candidate solutions selected for evaluation (𝑢 = I, II, III) 

𝑗 : indices for solutions that were evaluated with the models (𝑗 = 1, … , 𝑛) 

 

Counters 

 

𝑛 : counter for the number model runs 

𝐺𝑠𝑢𝑐𝑐 : counter for number of successes in improving upon best known solution 

𝐺𝑓𝑎𝑖𝑙 : counter for number of failures in improving upon best known solution 

 

Functions 

 

𝜑(∙) : objective function  

Φ(∙) : penalty-adjusted objective function 

𝑜(∙) : 
feasibility indicator equal to ∑ min(𝑃(𝐶𝑟 ≤ 𝐶𝑟,𝑚𝑎𝑥) − 𝜃𝑟, 0) 𝑟  

𝑠(∙) : surrogate model 

𝜎𝐼 : variance used in the generation of candidates for group I 

𝑊(𝝉𝑚) : weighted candidate score of 𝝉𝑚  

𝜒 : function that indicates if a feasible solution was found 

𝜇 : function that indicates if 𝜑𝑚𝑎𝑥 was updated 

 

Parameters 

 

𝑛0 : initial number of evaluated solutions 

𝑛𝑚𝑎𝑥 : maximum value for 𝑛  

𝐸𝑠𝑢𝑐𝑐, 𝐸𝑓𝑎𝑖𝑙 : maximum counter values for 𝐺𝑠𝑢𝑐𝑐 and 𝐺𝑓𝑎𝑖𝑙, respectively 

𝜎𝑖𝑛𝑖𝑡
𝐼 , 𝜎𝑚𝑖𝑛

𝐼  : initial and minimum value of 𝜎𝑛
𝐼 , respectively 
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Sets 

 

Τ : set for 𝝉𝑗 values 

Λ : set for 𝜑(𝝉𝑗) values 

Ψ : set for 𝑜(𝝉𝑗) values 

Ω : set for Φ(𝝉𝑗) values 

 

Algorithm Steps 

 

1. Initialization:  

1.1. Set  𝑛 = 𝑛0, 𝐺𝑓𝑎𝑖𝑙 = 0, 𝐺𝑠𝑢𝑐𝑐 = 0, 𝜎𝐼 = 𝜎𝑖𝑛𝑖𝑡
𝐼 , and 𝜇 = 0.  

1.2. Generate 𝑛 𝒚𝑗 vectors, and adjust those vectors that do not satisfy the budget constraint.  

1.3. Based on the 𝒚𝑗 vectors, generate 𝝉𝑗 vectors. 

1.4. Add vectors 𝝉𝑗 to Τ, and initiate  Λ , Ψ, and Ω as empty sets. 

2. Initial point evaluation and selection of best solution:  

2.1. For each 𝝉𝑗, compute 𝜑(𝝉𝑗) and o(𝝉𝑗), and add values to Λ and Ψ.  

2.2. If there are feasible solutions according to the 𝑜(𝝉𝑗) values, the 𝝉𝑗 and 𝒚𝑗 vectors for the candidate 

with lowest 𝜑(𝝉𝑗) are labeled 𝝉𝑏𝑒𝑠𝑡 and 𝒚𝑏𝑒𝑠𝑡, respectively. Additionally, the highest feasible φ(𝝉𝑗) 

is labeled 𝜑𝑚𝑎𝑥, and 𝜒 = 1. Otherwise, if there are no feasible solutions, 𝝉𝑏𝑒𝑠𝑡and 𝒚𝑏𝑒𝑠𝑡 are assigned 

the values of the candidate with the lowest 𝑜(𝝉𝑗) value, 𝜑𝑚𝑎𝑥 is assigned a placeholder value, and 

𝜒 = 0.  

2.3. For each initial point, compute Φ(𝝉𝑗) and add values to Ω. 

2.4. Determine Φ𝑏𝑒𝑠𝑡. 

3. Fit surrogate model 𝑠 using information in Τ and Ω. 

4. Candidate point generation and selection:  

4.1. Generate candidates according to the specifications of groups I, II, and III. 

4.2. For each group and each candidate point 𝝉𝑚, compute 𝑊(𝝉𝑚). 
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4.3. For each candidate point group, select the candidate solutions with minimum 𝑊(𝝉𝑚).  

5. Candidate evaluation and updates of parameters and archives: 

5.1. Evaluate the three selected candidates 𝑢 with the computationally expensive models to determine 

𝜑(𝝉𝑢) and 𝑜(𝝉𝑢).  

5.2. Update 𝜑𝑚𝑎𝑥 if possible: If 𝜒 = 1 and there is a feasible candidate 𝑢 with 𝜑(𝝉𝑢) > 𝜑𝑚𝑎𝑥, 

then 𝜑𝑚𝑎𝑥 = 𝜑(𝝉𝑢). Else, if 𝜒 = 0 and there are one or more of the three candidate points that are 

feasible, update 𝜑𝑚𝑎𝑥 with the worst feasible 𝜑(𝝉𝑢) and set 𝜒 = 1. If 𝜑𝑚𝑎𝑥 is updated, 𝜇 = 1. 

5.3. For each candidate point, compute Φ(𝝉𝒖). 

5.4. If 𝜇 = 1, use the new 𝜑𝑚𝑎𝑥  to update values in Ω, update Φbest, and then set 𝜇 = 0. 

5.5. For the group I candidate, if Φ(𝝉𝐼) < Φ𝑏𝑒𝑠𝑡,  then Φ𝑏𝑒𝑠𝑡 = Φ(𝝉𝐼), 𝝉𝑏𝑒𝑠𝑡 = 𝝉𝐼, 𝒚𝑏𝑒𝑠𝑡 = 𝒚𝐼, 𝐺𝑠𝑢𝑐𝑐 =

𝐺𝑠𝑢𝑐𝑐 + 1 and 𝐺𝑓𝑎𝑖𝑙 = 0. Otherwise, only adjust counters: 𝐺𝑠𝑢𝑐𝑐 = 0 and 𝐺𝑓𝑎𝑖𝑙 = 𝐺𝑓𝑎𝑖𝑙 + 1. 

Similarly, sequentially check if Φ(𝝉𝐼𝐼) or Φ(𝝉𝐼𝐼𝐼) are less than Φ𝑏𝑒𝑠𝑡. If so, update Φ𝑏𝑒𝑠𝑡, 𝝉𝑏𝑒𝑠𝑡, and 

𝒚𝑏𝑒𝑠𝑡 accordingly, but in both cases set 𝐺𝑠𝑢𝑐𝑐 = 0 and 𝐺𝑓𝑎𝑖𝑙 = 0. 

5.6. If 𝐺𝑠𝑢𝑐𝑐 = 𝐸𝑠𝑢𝑐𝑐, then reset 𝜎𝐼 = 2𝜎𝐼 and set 𝐺𝑠𝑢𝑐𝑐 = 0. If 𝐺𝑓𝑎𝑖𝑙 = 𝐸𝑓𝑎𝑖𝑙 , then reset 𝜎𝐼 =

max(𝜎𝑚𝑖𝑛
𝐼 , 𝜎𝐼/2) and set  𝐺𝑓𝑎𝑖𝑙 = 0. 

5.7. Increase counter 𝑛 = 𝑛 + 3, and add information from evaluated candidate points to Λ, Ψ, Τ, and Ω. 

If 𝑛 ≤ 𝑛𝑚𝑎𝑥 return to step 3; otherwise, continue to step 6. 

6. Return Φ𝑏𝑒𝑠𝑡, 𝝉𝑏𝑒𝑠𝑡, and 𝒚𝑏𝑒𝑠𝑡. 

  

2.5 Numerical Examples for Toll Problem Extension and the LMSRS Algorithm 
 

Numerical tests were performed to provide a sample application of the proposed TDP and to examine the 

performance of the proposed LMSRS algorithm. Four fixed-demand TDPs were considered in the 

performance tests: a total system travel cost minimization (TT) problem (in time units), a total system 

emission minimization (TE) problem, a pollutant intake minimization (PIK) problem using 𝐼𝑖𝑛𝑡𝑎𝑘𝑒, and a 

health impact minimization (HI) problem using 𝐼ℎ𝑒𝑎𝑙𝑡ℎ. The algorithm’s performance was compared against 
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the SA-GA heuristic (Yang and Zhang 2002) and a GA-based approach (FG-GA; Fan and Gurmu 2014); 

which to the authors’ knowledge are the only derivative-free heuristics that have been proposed for TDPs.  

A series of numerical test were also conducted with the combined PIK and inequality minimization (PIK-

EQ) problem in equation (2.7). 

In the HI problem, chronic mortality (measured in YOLL) due to PM2.5 exposure (Rabl et al. 2014) was 

used as a proxy to the adverse health impacts caused by vehicle emissions. Linear exposure-response 

functions (ERF) were assumed for different populations group. Let the slope of the group 𝑔’s ERF be 

represented by 𝑆𝑔 (units: YOLL/(person×year× μgPM2.5/m3)). Additionally, let 𝑉𝐿 represent the value of a 

life year, set equal across all groups in this example. With the given assumptions, the health impact objective 

function for the TDP test was specified as: 

𝐼ℎ𝑒𝑎𝑙𝑡ℎ = 𝑉𝐿 ∑ 𝑆𝑔 (∑ 𝜌𝑔𝑟𝐶𝑔𝑟

𝑟

)

𝑔

  (2.12) 

 

In this example, 𝐶𝑔𝑟 represents daily concentrations, which were modeled as an average of the vehicle-

generated PM2.5 concentrations during two time periods, with the second time period’s OD trip matrix being 

simply the transpose of the first period’s OD trip matrix (i.e., return trips). Traffic conditions are assumed 

to be invariant throughout the year. Furthermore, it was assumed that tolls are charged only during the first 

period (and therefore the concentrations of the second period were assumed fixed). 

 As previously mentioned, the Atkinson index was used to quantify the level of environmental 

inequality, which in the examples is defined in terms of the differences in average CO pollutants 

concentrations at the receptor points (𝐶𝑟̅). So for this problem the Atkinson index is defined as: 

𝐴 = 1 − [
1

𝑅
∑ (

𝐶𝑟̅

𝐶̅ )

1−𝜀𝑅

𝑟=1
]

1
1−𝜀

  (2.13) 

 

𝐶̅ is the average concentration over all receptors, while 𝜀 is a parameter that indicates the level of aversion 

to inequality (assumed here not to be equal to one).  
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2.5.1 Test networks 

 

Two test networks were used in the algorithm performance tests: the Sioux Falls network and a grid 

network. The Sioux Falls network data was obtained from Bar-Gera’s transportation network test problem 

database (Bar-Gera 2014). This network is composed of 76 links, 24 nodes, and 24 OD zones and has a 

total demand of 360,000 trips. The given node coordinates were used to define the spatial location of the 

links, assuming shortest connections between nodes. The unit length in the Sioux Falls’ coordinate system 

was set to be equivalent to 0.023 meters. In Figure 2-1(a) the network is presented and the 10 candidate 

links selected for the test problems are identified (dashed arrows). 

The grid network is composed of 1444 links, 400 nodes, and 38 OD zones, and the total travel demand 

was set to 104,694. An 800 meter spacing is specified between nodes. The square grid network is shown in 

Figure 2-1(b); 32 candidate links are considered for tolling (dashed lines). The red lines in Figure 3(b) 

represent links with capacities of 7200 vph and free flow travel times of 0.5 minutes. All other links were 

randomly assigned capacities and free flow travel times form the intervals [4000, 6000] and [0.7, 1], 

respectively.  For both networks a budget of 10 cost units was assumed, along with a value of time 𝛽 of $20 

per hour and a $5 maximum toll (𝜏𝑚𝑎𝑥) for all candidate link locations. Furthermore, the Bureau of Public 

Road (BPR) function was used to compute average link travel time in both networks. 

 

2.5.2 Models and associated inputs  

 

In all problems traffic flow was modeled using the fixed-demand DUE problem, which was solved using 

the Frank-Wolfe algorithm. Carbon monoxide (CO) was selected as the pollutant of interest in the PIK 

problem, the TE problem, and the combined PIK and inequality minimization problem. CO emissions were 

computed using the speed-emission function utilized in the motivating example presented in section 1.1 

(Sugawara and Niemeier 2002). In the health impact problem, PM2.5 emissions were computed using 

average speed-based emissions factors obtained from the Motor Vehicle Emission Simulator (MOVES; 

EPA 2014). Pollutant concentrations in the pollutant intake and health impact problems were computed 
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using the Gaussian plume approach proposed by Zhang et al. (2010). A hundred meteorological scenarios 

were created with different wind speeds, wind directions, and atmospheric stability classes, and equal 

probability of occurrence. The receptor locations were spaced 200 meters from the links’ centerlines. 𝐶𝑟,𝑚𝑎𝑥 

for all receptors was assumed to be twice the concentration resulting from the base UE flows (background 

concentrations were set to zero), and 𝜙𝑟𝑔 was set to two thirds for all receptors and population groups. 

Random number generation procedures were used to define the populations associated with each receptor. 

For the pollutant intake problem a homogeneous population was assumed with breathing rate of 12.2 cubic 

meters per day (m3/d). In the health cost impact problem, two population groups were assumed. Population 

Group 1 was characterized by a loss of 𝑆1 = 6.8E-4 YOLL/(person×year× μgPM2.5/m3) and Group 2 was 

characterized by a loss of 𝑆2 = 6.2E-4 YOLL/(person×year× μgPM2.5/m3). For both groups VL was set to 

$50,000. The inequality aversion parameter  𝜀 is set to 0.75 (Levy et al. 2006, Marshall et al. 2014) in the 

PIK-EQ problem. 

 

 
Figure 2-1 The Sioux Falls (a) and grid (b) networks. 
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2.5.3 Parameters for solution algorithms 

 

The SA-GA heuristic as presented by Yang and Zhang (2002) was implemented, including the Hooke-

Jeeves (HJ) local search procedure. GA is used to explore the tolling locations, while the HJ-assisted SA 

algorithm determines the toll levels for each tolling location vector. The initial step size, termination 

parameter, and acceleration factor of the HJ algorithm with discrete steps (Bazaraa and Shetty 1979) were 

set to 0.25, 0.001, and 1, respectively. The SA parameters were specified as follows: 𝛿 = 0.1, 𝜒0 = 0.9, 

𝑡 = 0.7, 𝐿 = 1, 𝑇𝑠 = 10−3, and m0 = 30 (initial population) (Dekkers and Aarts 1991). A crossover rate 

of 0.7, a mutation rate of 0.05, and a population size of 64 was used for the GA (Fan and Gurmu 2014). 

The tournament selection size for GA was set to three, with the best solution in each generation always 

preserved. The same GA parameters were used for FG-GA. In addition, FG-GA was initialized by setting 

the initial number of toll locations equal to the best number of locations found in preliminary MI-LMSRBF 

runs (this information was not utilized in the SA-GA tests). This additional information is required because 

FG-GA is designed to determine the best toll configuration incrementally, starting by finding the best tolling 

scheme for a single toll location, and continuing until the maximum number of possible toll locations is 

reached. This strategy means that the algorithm might spent considerable computational time on tolling 

configurations (e.g., schemes with only one toll location) that are suboptimal. Therefore, for FG-GA it is 

assumed that the analysts has a priori knowledge on what is the total number of tolling locations that should 

be considered.  

The following parameters were used for the LMSRS algorithm: 𝑀𝐼 = 1000, 𝑀𝐼𝐼 = 2000, 𝑀𝐼𝐼𝐼 =

1000, 𝜆𝐼𝐼 = 10, 𝜆𝐼𝐼𝐼 = 1000, 𝜎𝑚𝑖𝑛
𝐼 = 0.1, 𝑝𝐼 = 𝑝𝐼𝐼 = 0.8, 𝑝𝐼𝐼 = 0.1,  𝐸𝑠𝑢𝑐𝑐 = 8, 𝐸𝑓𝑎𝑖𝑙 = 12, Υ𝐼 =

{0.15, 0.40, 0.75, 0.95, 0.97, 1}, Υ𝐼𝐼 = {0.6, 0.95, 0.99, 1}, and Υ𝐼𝐼𝐼 = {1}. Additionally, 𝜂𝐼𝐼 = 𝜂𝐼𝐼𝐼 = 3  

and 𝑛0 = 30 was set for the Sioux Falls tests, and 𝜂𝐼𝐼 = 𝜂𝐼𝐼𝐼 = 5  and 𝑛0 = 50 for the grid network tests. 

The radial basis function (RBF) model with cubic functional form (Gutmann 2001) was used as the 

surrogate model for the mixed integer LMSRS (henceforth, MI-LMSRBF). The previous algorithm 

parameter values were obtained from the references cited in this section or based on the authors’ judgment. 
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2.5.4 Test results  

 

A total of 30 model runs were performed for each problem, network, and solution algorithm, each run being 

stopped once 1,500 or more candidate solutions were evaluated. Figures 2-2 and 2-3 present the progression 

of the average best objective function values for the tests conducted using the Sioux Falls and grid networks, 

respectively. Tables 2-1 and 2-2 present the best solutions (after 1,500 model evaluations) for the Sioux 

Falls and grid networks, respectively. For all the problems the best solutions were found by the MI-

LMSRBF algorithm. Interestingly, on average SA-GA found better solutions than MI-LMSRBF for short 

periods during the TT and TE tests in the grid network. However, past 150 model evaluations the proposed 

solution algorithm found better solutions than the GA solutions for all problems, which suggests that MI-

LMSRBF is a promising solution approach for TDP problems. 

Relative to the DUE concentrations, the population weighted average pollutant concentration at 

receptor points decreased in the solutions for both the PIK and the HI problems, and in both networks. For 

example, the best solution found for the grid network’s PIK problem results in a 6 percent decrease in the 

population weighted mean concentration CO (averaging across all receptor concentrations). In the same 

network but for the HI problem, the best solution results in a 12 percent reduction in of PM2.5 concentrations 

(11 percent reduction for Group 1 and 13 percent reduction for Group 2). However, partly because the tolls 

are simply rerouting traffic flows (given that travel demand is fixed), some receptors may actually 

experience an increase in pollutant concentrations, a previously stated possibility. Again taking the grid 

network’s results as examples, in 66 and 60 percent of the receptors the average pollutant concentrations 

increased for the PIK and HI problems’ solutions, respectively, although the overall regional pollutant 

intake and health impact decreased by around 6 percent. This underscores the importance of considering 

the environmental equity impacts of tolling decisions. Fortunately in the grid examples, the Atkinson 

inequality index improved in both solutions; relative to the UE concentration levels, the inequality index 

was reduced by 4.5 percent in the PIK problem results and by 7 percent in the results of the HI problem. 

Naturally, if minimizing environmental inequality is incorporated in the planner’s objective function, as in 
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the PIK-EQ problem, then more significant inequality index reductions can be attained. Table 2-3 shows 

solutions for the PIK-EQ problems for different weights 𝑤𝐼. As expected there is a trade-off between 

minimizing an aggregate pollutant exposure objective and minimizing disparities in pollutant 

concentrations; what is the optimal weighting of the objectives will obviously depend on the circumstances 

and goals of each community. Other noteworthy observations from the numerical examples are the tradeoffs 

that occur with the TT and TE objectives. For example, in the grid network’s PIK problem the best solution 

results in increases in travel cost (2.9 percent) and CO emissions (3.3 percent). In the Sioux Fall’s PIK 

problem the best solution results in an increase in travel cost (1 percent) and a decrease in CO emissions (1 

percent). These results emphasize the general observations made in section 1.1.  

 

2.5.5 Sensitivity tests of the neighborhood distance 𝜼 

 

Varying the neighborhood distance η has an impact on the speed in which good solutions are found. In 

Figure 2-4 and Figure 2-5 the results of tests with different values of η are presented. All tests used the TT 

objective function (the least time consuming problem). The results presented in Figure 2-4 were obtained 

from tests performed using the Sioux Falls, while Figure 2-5 presents the results obtained with the grid 

network. Both sets of test results suggest that low values of 𝜂 produce good solutions in the initial 250 

model evaluations; a 𝜂 = 2 resulted in the best objective functions values. However, the results in Figure 

2-5 suggest that in the long run η around half the number of variables yields better solutions. Therefore, it 

could be preliminary stated that the selection of the neighbor distance depends on available simulation time. 

Further sensitivity tests with additional networks and objective functions are needed to determine how 

general these observations are. 
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Figure 2-2 Progression of average best known objective function values for the Sioux Falls network tests 

 

 

 

 
 

 

a. TT Problem            b. TE Problem 

c. PIK Problem d. HI Problem 
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Figure 2-3 Progression of average best known objective function values for the grid network tests 
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Table 2-1 Best solutions obtained for the Sioux Falls tests problems 

Problem Tolling locations as indicated by 𝒚𝑏𝑒𝑠𝑡 𝝉𝑏𝑒𝑠𝑡  
𝚽𝒃𝒆𝒔𝒕 

(units) 
𝚫 

TT {2, 6, 8,10} {4.44, 3.49, 3.08, 1.23} 
7,461,412 

(veh.-min.) 
-0.25 

TE {2, 5, 6, 7, 8, 9, 10} {4.68, 4.68, 4.93, 4.88, 5.00, 0.08, 5.00} 
51,027,841  

(g) 
-1.14 

PIK {2, 5, 6, 7, 8, 10} {4.54, 5.00, 3.12, 4.90, 4.73, 4.98} 
204,680  

(g/hr) 
-1.00 

HI {6, 7, 8, 9} {4.95, 4.14, 3.02, 2.28} 
2,517,382  

($/year) 
-0.63 

𝑁𝑜𝑡𝑒: Δ refers to the percent difference between the best solution objective function value and the objective function value obtained with the DEU flows. 

 
Table 2-2 Best solutions obtained for the grid network problems 

Problem Tolling locations as indicated by 𝒚𝑏𝑒𝑠𝑡 𝝉𝑏𝑒𝑠𝑡  
𝚽𝒃𝒆𝒔𝒕 

(units) 
𝚫 

TT {1, 7, 9, 13, 18, 19, 24, 26, 32} {1.21, 0.87, 0.68, 0.24, 0.58, 1.13, 0.76, 1.01, 0.39} 
1,035,727 

(veh.-min.) 
-2.43 

TE {8, 9, 14, 22, 23, 27} {1.84, 0.35, 3.31, 0.49, 0.24, 0.22} 
2,213,057 

(g) 
-0.83 

PIK 
{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 15, 21, 26, 27, 29, 

30} 

{3.57, 2.88, 3.27, 4.57, 1.39, 0.67, 4.22, 3.56, 0.75, 1.33, 1.99, 

3.20, 1.84, 2.68, 4.67, 3.90, 1.83} 

27,863 

(g/hr) 
-6.43 

HI 
{1, 2, 5, 7, 9, 11, 12, 15, 16, 18, 19, 20, 25, 26, 27, 

28, 29, 30, 32} 

{4.62, 2.97, 1.36, 4.30, 4.67, 3.95, 0.51, 1.28, 1.02, 4.52, 0.27, 

4.57, 1.17, 2.93, 2.06, 2.70, 1.57, 3.05, 0.15} 

1,366,651 

($/year) 
-6.14 

𝑁𝑜𝑡𝑒: Δ refers to the percent difference between the best solution objective function value and the objective function value obtained with the DEU flows. 
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Table 2-3 Solutions obtained for the joint intake-environmental equity problem 

𝒘𝑰 Intake (g/hr) 𝚫 Intake Atkinson Index 𝚫 Atkinson Index 

1 27,863 -6.43 0.1870 -4.45 

0.75 27,964 -6.09 0.1854 -5.26 

0.25 28,642 -3.81 0.1849 -5.51 

0 29,230 -1.84 0.1844 -5.78 

Note: Δ represents the relative change with respect to the no toll condition. 

 
 

 

 

 

 

 

 
Figure 2-4 Sensitivity tests conducted using Sioux Falls network 
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Figure 2-5 Sensitivity tests conducted using grid network 

 

2.6 Solution Algorithm: GA-LMS approach for Mixed Integer TDPs 
 

The SA-GA heuristic had the worst performance in the numerical tests. This could be explained in part by 

the nature of the algorithms used to search for the optimal tolls of each toll location vector (or parent). In 

particular, the nature of the HJ algorithm results in the evaluation of a significant number of candidate 

solutions that differ very little among themselves. Despite this issue, for a short period of the grid network 

model runs the SA-GA heuristic obtained better results, on average, for the TT and TE problems. For this 

reason in this section the basic idea of the SA-GA heuristic, namely the use of GA to explore toll locations 

and a continuous optimization heuristic to explore toll values, is modified by substituting the SA and HJ 

algorithms by a surrogate based heuristic, namely, the LMSRS algorithm. Next the steps of the new 

algorithm, GA-LMS, are presented. The steps are presented for an unconstrained TDPs, but they can be 

easily adjusted by using the formulation presented in equation (11). 
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2.6.1 GA-LMS heuristic for the TDP 

 

In this algorithm surrogate models are used to explore and preselect the candidate toll levels for each parent 

toll location vector (i.e., the time consuming models). In addition to selecting the most promising toll level 

for each parent using a surrogate model, for each toll location parent a surrogate model is used to select 

which toll location vector mutation is evaluated in each iteration. The notation and steps of the algorithm 

are as follows: 

 

Notation 

 

𝑛 : generation counter 

𝑛𝑚𝑎𝑥 : maximum value for 𝑛  

𝑛0 : parent population size 

𝑛𝑇𝑆 : maximum number of iterations for LMSRS algorithm 

𝑛𝑀𝐶 : number of children toll location vectors created 𝒚𝒄𝒖 for each parent 𝒚𝑗 

𝑛𝑇𝐶  : number of children toll level vectors created for each 𝒚𝒄𝒖 

 

Algorithm Steps 

 

1. Initialization 

1.1 Set 𝑛 = 1. 

1.2 Generate  𝑛0 𝒚𝑗 parent vectors, and adjust those vectors that do not satisfy the budget constraint.  

1.3 For each parent toll location vector 𝒚𝑗, generate two toll level vectors 𝝉𝑗 vectors (two is used 

here, but naturally more than two initial toll level vectors per location vector can be generated). 

1.4 Add vectors 𝝉𝑗 to Τ, and initiate Λ as an empty set. 

2. Initial point evaluation and selection of best solution:  

2.1 For each 𝝉𝑗, compute 𝜑(𝝉𝑗), and add values to Λ.  

2.2  For each parent 𝒚𝑗, select the best known toll level vector  𝝉𝑗 
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3. For each parent, improve upon its best known toll vector. 

3.1  Apply LMSRS algorithm 𝑛𝑇𝑆 times in order to find a better toll vector for each parent toll location 

vector. 

3.2 In each iteration of the LMSRS algorithm, update the Τ and Λ sets. 

4. For each parent 𝒚𝑗 , generate children toll location vectors 𝒚𝒄𝒖 by applying GA mutation and 

crossover operators, and by using the surrogate models to screen for best children. 

4.1 For each parent 𝒚𝑗, apply mutation and crossover operations 𝑛𝑀𝐶 time to generate 𝑛𝑀𝐶 toll 

location vector children 𝒚𝒄𝒖, and for each 𝒚𝒄𝒖 child generate 𝑛𝑇𝐶 toll level vectors (therefore, for 

each parent toll location vectors there are 𝑛𝑀𝐶 × 𝑛𝑇𝐶  candidate children).   

4.2  For each 𝒚𝒄𝒖 vector, score each toll level child based on its surrogate-based predicted objective 

function value and its distance to previous solutions using the same procedure as the one discussed 

in section 2.4.2. 

4.3 Score each child 𝒚𝒄𝒖 using the 𝑛𝑇𝐶 scores obtained from its child toll level vectors. Among many 

possibilities, the score of each 𝒚𝒄𝒖 vector could be either the mean of the children toll level vector 

scores or the minimum score found.   

4.4 Accept child location vector with the lowest (best) score (𝒚𝒄𝒃𝒆𝒔𝒕). 

4.5 Evaluate the best predicted toll level vector found for 𝒚𝒄𝒃𝒆𝒔𝒕, and update the Τ and Λ sets. 

5. Apply LMSRS algorithm to find better toll level values for each of the children toll location 

vectors (same procedure as step 3) , while updating the Τ and Λ sets. 

6. If 𝑛 = 𝑛𝑚𝑎𝑥, return the best solution found in the archieve sets Τ and Λ sets. Else, 𝑛 = 𝑛 + 1 and 

continue to next steps 

7. Given parent and children toll location vector objective function values, conduct tournament 

selection procedure (Golberg and Deb 2001) to select next parents and go to step 4. 
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2.6.2 Testing GA-LMS heuristic 

 

This algorithm was tested for the TT problem using the Sioux Falls network. The results were compared to 

the MI-LMSRBF and SA-GA heuristics. The initial population 𝑛0 was set to 60 for all the algorithms. For 

the GA-LMS heuristic 𝑛𝑇𝑆, 𝑛𝑀𝐶, and 𝑛𝑇𝐶 were set to 5, 10, and 20, respectively. For the LMSRS algorithm, 

a weight of 0.8 was used for 𝑤𝑅𝑆. A total of 2,500 candidate toll values were generated using a 0.7 variance   

in each iteration of the LMSRS algorithm. In the exploration of the best child toll location vectors, a weight 

of 0.9 was assigned for the response surface criterion score. For MI-LMSRBF and SA-GA the parameters 

presented in section 2.5.3 were used.  

 In Figure 2-6 the results of the tests are shown. Like in previous tests, 30 runs were performed for each 

algorithm, and 1,500 model evaluations were performed for each test. Again, the MI-LMSRBF algorithm 

found better solutions in fewer model evaluations. The GA-LMS heuristic obtained better results than SA-

GA, but only after 225 model evaluations were performed, which practically speaking might not be too 

useful. Further improvements are necessary for the GA-LMS heuristic in order to have confidence that it is 

a better alternative that SA-GA heuristic.   

 

 
Figure 2-6 Numerical tests for GA-LMS heuristic 

7460000

7462000

7464000

7466000

7468000

7470000

7472000

7474000

7476000

7478000

0 250 500 750 1000 1250 1500

Tr
av

el
 C

o
st

 (
ve

h
.-

m
in

.)

Model Evaluations

GA-LMS

MI-LMSRBF

SA-GA



 

 

43 

 

2.7 Closing Remarks 
 

A TDP was presented that accounts for human exposure to air pollutants and environmental inequality 

given a budget constraint and chance constraints on pollutant concentration levels. Two possible indicators 

were suggested: a population intake measure and a health impact measure. Several extension to the 

proposed model can be considered, including incorporating models that account for mode and destination 

selection and differential pricing based on vehicle class emission intensity. Furthermore, additional studies 

are required to account for in-vehicle exposure to pollutants in TDPs. Future research could approach the 

in-vehicle pollutant exposure problem from the personal exposure perspective, rather than the aggregate 

population approach employed here. A personal exposure methodology would specify 𝐼 using personal 

exposure measures (𝐼𝑚𝑖𝑐𝑟𝑜) based on individual agents’ exposures. Agent-level pollutant exposure levels 

could be estimated based on a simulation of each agent’s activity selection and scheduling, and a simulation 

of the concentration levels encountered in the different microenvironment visited during the course of the 

day. This microsimulation approach is far more challenging both in terms of data requirement (e.g., requires 

activity pattern data) and computational resources, so in all likelihood a SBSA approach would be useful. 

Even though this agent-based approach is not incorporated in the lower level problem used in this chapter, 

the proposed upper level formulation and derivative-free solution algorithms presented can be utilized by 

planners interested in applying a personal exposure microsimulation approach. 

Numerical examples were used to illustrate the application of the presented TDP and to study the 

performance of the proposed LMSRS-based algorithms. The results suggest that the MI-LMSRBF 

algorithm generally outperforms the evaluated GA methods when the number of candidate solution 

evaluations is restricted. The test results add further evidence that surrogate-based optimization methods 

are a useful solution tools for NDPs, particularly when the computational cost of the models utilized is a 

concern. Future research could explore modifications to the GA-LMS heuristic. In particular, the number 

of evaluations performed by the LMSRS algorithm for each parent toll location vector (𝑛𝑇𝑆) could be 

adaptively varied based on the improvement observed as new candidates are evaluated. This would prevent 
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the use of simulation time on parents that are not too promising. Additionally, several modifications could 

be made to the proposed MI-LMSRBF algorithm, including the use of adaptive 𝜂𝐼𝐼 and 𝜂𝐼𝐼𝐼 parameters and 

adaptive selection of surrogate models. The use of surrogate model ensembles for NDPs is another 

potentially useful research direction. Surrogate ensembles could circumvent the need for testing and 

selecting a single type of surrogate model, and they could prove to be more robust solution search tools. 

Furthermore, algorithmic developments are necessary for problems where the models utilized have non-

deterministic outputs, such as the aforementioned probabilistic personal-level pollutant exposure models.  
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Chapter 3 

Designing area pricing schemes to reduce vehicle-generated pollutant 

concentrations 
 

 

 

3.1 Introduction 
 
Since Singapore’s Area Licensing Scheme in 1975, cordon and area-based congestion pricing have proven 

effective tools in reducing congestion and pollutant emissions. For example, London’s congestion charge 

zone reduced delays by more than 20 percent and particulate matter emissions by approximately 10 percent 

(Beevers and Carslaw 2005, Tonne et al. 2011). Stockholm’s congestion charging system resulted in traffic 

and air pollutant reductions of around 15 and 10 percent, respectively (Eliasson et al. 2009).  And Milan’s 

Ecopass produced comparatively positive results both in terms of emissions and congestion reduction. 

(Rotaris et al. 2010). Ecopass is of particular interest because, as its name suggests, it was implemented 

specifically to curb pollution. Prior to the start of the program, Milan was experiencing particulate matter 

concentrations in exceedance of European Union environmental regulations. In response, the city planners 

implemented this area-based scheme, in which vehicles were charged according to their emission standard 

classification. Starting in 2012, Ecopass was converted into a standard congestion pricing scheme (i.e., no 

price differentiation according to vehicle emission intensity).  

 International experience demonstrates that cordon and area-based road pricing can be effective in 

mitigating negative externalities produced by motor vehicles. It also shows that there is interest by planners 

to design and implement schemes for the achievement of environmental objectives. As it will be discuss in 

the next section, discrete network optimization-based approaches for congestion mitigation have been 

proposed for the design of cordon and area-based road pricing schemes, but explicit consideration of 

environmental objectives has not been accounted for. In this chapter, an optimization-based approach is 

presented for the design of area pricing schemes intended to reduce pollutant concentrations in a city. The 

problem is formulated taking into consideration the fact that most transportation planning agencies have 
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models that do not incorporate elastic demand traffic assignment procedures, the modeling approach used 

in previous studies. In addition, in this chapter a new surrogate-based solution algorithm is proposed for 

area and cordon pricing problems.  

 The next section contains a review of discrete network methodologies for the design of cordon and 

area congestion charging schemes. In section 3.3, the problem setting and formulation are discussed, 

followed by the presentation of the surrogate-based solution algorithm. A numerical example is presented 

in section 3.6. The chapter closes with the chapter’s summary and future research ideas.  

   

3.2 Literature Review: Designing Cordon Pricing Schemes  
 

In this section an overview of cordon pricing design studies is presented. Two analysis approaches are 

considered: the continuum modeling approach and the discrete network optimization approach.  

 

3.2.1 Continuum modeling studies on the design of optimal cordon pricing schemes 

 

Continuum modeling studies are particularly useful for gaining general theoretical insights into the impacts 

of cordon pricing schemes, independent of the particular configuration of a transportation network.  For 

example, in the model developed by Mun et al. (2003), a continuous space monocentric city is considered 

in which a planner is interested in determining the cordon location and tolling level that maximizes social 

welfare. The cordon location variable is defined in terms of the cordon boundary from the city center. Their 

analysis suggests that cordon pricing results in welfare levels that are close to those of the first-best pricing 

optimum (a toll equal to marginal cost). A similar conclusion was reached by Verhoef (2005), who extended 

Mun et al.’s model by assuming endogenous urban density. Of particular interest is the model by Li et al. 

(2013), who consider the design of a cordon pricing schemes that account for vehicle-generated air pollutant 

costs. The model indicates that the optimal cordon scheme (in terms of social welfare) depends on traffic 

levels and related emissions, and, surprisingly, that compact cities are less efficient in terms of total traffic 

emissions.  
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3.2.2 Discrete network optimization approach for the design of cordon pricing schemes 

 

Static discrete network optimization problems offer a practical approach for the design of cordon and area 

pricing schemes for specific networks. Like in the continuous approximation studies, in these models the 

optimal location and tolling level of the cordon are sought. Given the computational cost associated with 

solving this type of problem, usually a single toll level is determined for the cordon. Zhang and Yang (2004) 

proposed using a GA-based approach to solve the cordon-based congestion pricing problem. The problem 

was formulated as a bi-level optimization problem where the planner’s objective is to maximize the social 

welfare of network users, who are assumed to have elastic demands. A cordon’s feasibility was defined 

based on the graph theory concept of a cutset. Sumalee (2004) noted that Zhang and Yang’s algorithm could 

result in infeasible offspring after the GA’s crossover and mutation procedures where applied to feasible 

parent solutions. Sumalee developed a branch-tree encoding of the GA solution and related crossover and 

mutation operations that prevents the generation of infeasible solutions. Additionally, in this version of the 

problem the cordon pricing implementation cost was introduced to the upper level problem’s social welfare 

function. Zhang and Sun (2013) formulated the cordon problem as a mathematical program with 

complementarity constraints, and proposed a dual-heuristic solution algorithm. The applicability of the 

solution algorithm depends on the problem formulation (i.e., it is not a derivative free algorithm). 

Maruyama et al. (2014) also used a GA-based approach to solve the cordon pricing problem. In their 

methodology the cordon location was determined using a computational geometry approach, instead of a 

direct graph-based approach. In contrast to the GA methods proposed by Zhang and Yang (2004) and 

Sumalee (2004), this GA heuristic is not anchored to a central position; it optimizes the central location of 

the charging cordon while using convex region constraints to control the shape of the charging boundary. 

Of interest are also the operations performed to generate new candidate solutions. These operations include: 

expanding the cordon boundary, contracting the boundary, and mutations via rotation of the cordon 

boundary geometry. Hult (2006) documents similar efforts in the UK Department of Transport (DoT) to 

use a GA-based computational geometry approach for the cordon pricing problem. The DoT method 
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mapped the network nodes into a Delaunay triangulation, and the cordon was expanded from a randomly 

selected triangle. 

 

3.3 Problem Formulation: An Area-based Pricing Problem with Environmental 

Constraints 
 

The studies discussed in the previous section used a static equilibrium assignment model with elastic 

demand, and, given this assumption, proposed a social welfare maximization objective. In this section, a 

departure is made from the elastic demand formulation, instead choosing a more flexible framework that 

can be applied along with models commonly used by most transportation planning agencies (e.g., sequential 

four-step models). Like in previous studies, a bi-level simulation framework is adopted. In the upper level 

the planner’s objective is optimized subject to pollutant concentration constraints. The network users 

response to a candidate changing scheme is simulated using transportation planning models, which 

generally do not lend themselves to be succinctly expressed in mathematical forms Hereafter, the references 

will be made only to area pricing schemes, but it should be evident that the discussion can be easily extended 

to cordon pricing schemes. 

 In the area pricing problem considered, the planner attempts is define a charging zone area and its toll 

level, assumed fixed for in all time periods, that maximizes an objective 𝐹 subject to concentration 

constraints on selected receptor points. Define 𝐶𝑟̅(𝜏, 𝜺, 𝒗(𝜏, 𝜺)), as the average pollutant concentration 

levels at receptor 𝑟, which is partially a function of the toll 𝜏 over the charging area represented by a 

collection of tolled links 𝜺, which results in link flows 𝒗(𝜏, 𝜺) (other factors like meteorological conditions 

are omitted for notational simplicity). 𝐶𝑟,𝑚𝑎𝑥 is defined as the maximum allowable value of 𝐶𝑟̅(𝜏, 𝜀). 𝜀𝑎  is 

a variable that indicates if a link 𝑎 leads to the charging zone area. Let Θ be the set of all possible closed 

charging areas, so 𝜺 ∈ Θ. The toll 𝜏 belongs to a finite set, where 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are its minimum and 

maximum elements, respectively. Given this notation, in general the upper level problem can be expressed 

as: 
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max
𝜏,𝜺

𝐹(𝜏, 𝜺, 𝒗(𝜏, 𝜺)) 

 

 (3.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 

  

𝐶𝑟̅(𝜏, 𝜺, 𝒗(𝜏, 𝜺)) ≤ 𝐶𝑟,𝑚𝑎𝑥 ∀ 𝑟 (3.1.2) 

𝜏 ∈ {𝜏𝑚𝑖𝑛, … 𝜏𝑖 , … , 𝜏𝑚𝑎𝑥}  (3.1.3) 

𝜀𝑎 ∈ {0,1} ∀𝑎 (3.1.4) 

𝜺 ∈ 𝛩  (3.1.5) 

 

𝒗(𝜏, 𝜺) is the simulation output obtained from the transportation planning models used. The next 

subsections present three objectives that could be easily used in conjunction with most transportation 

planning models utilized by planning agencies.  

 

3.3.1 Maximizing consumer surplus 

 

Consumer surplus is an important policy evaluation measure. Provided that a logit choice model exists to 

simulate the response of consumers to a policy, consumer surplus can be easily computed using the model’s 

logsum. Fortunately, logit models are widely used in transportation planning (Cambridge Systematics et al. 

2012), so utilizing a logsum-based objective function in the design of an area pricing scheme would likely 

be feasible for most planning agencies.  

 Assume that the analyst has at her disposal a multinomial logit model as part of a larger transportation 

planning model. These MNL model could simulate, for example, mode choice, joint destination and mode 

choice, or joint destination, departure time, and mode choice. The planning model has 𝑁 representative 

groups, each group with population size 𝜌𝑛 distinguished by separate zone membership and marginal utility 

of income 𝛼𝑛 (assumed constant with respect to income). A group 𝑛 obtains a deterministic utility 𝑉𝑛𝑗 for 

alternative 𝑗 previous to the introduction of the charging scheme, and utility 𝑉𝑛𝑗(𝜺, 𝜏) with the candidate 

scheme (𝜺, 𝜏). With this information, the design objective 𝐹𝐶𝑆 can be expressed as:    

 

𝑚𝑎𝑥
𝝉,𝜺

𝐹𝐶𝑆 = ∑ ∑
𝜌𝑛𝑡

𝛼𝑛
(ln (∑ 𝑒𝑉𝑛𝑡𝑗(𝜺,𝜏)

𝑗

) − ln (∑ 𝑒𝑉𝑛𝑡𝑗

𝑗

))

𝑛𝑡

 
 (3.2) 

 



 

 

50 

 

𝐹𝐶𝑆 represents the expected change in consumer surplus,  a common metric of consumer benefits (de Jong 

et al. 2007). In this expression, the index 𝑡 represents the different model periods in the planning model.   

 

3.3.2 Minimize deviations from status quo  

 
Another sensible objective is to minimize deviations from the base auto trip demand conditions. Let 𝑞𝑤𝑡 

represent the auto trip demand for origin-destination pair 𝑤 and time period 𝑡, and 𝑞𝑡𝑤(𝜏, 𝜺) represent the 

demand under charging scheme (𝜏, 𝜺). The objective of minimizing deviation from the status quo can be 

expressed as: 

 

𝑚𝑎𝑥
𝝉,𝜺

𝐹𝑆𝑄 = − ∑ ∑|𝑞𝑤𝑡(𝜏, 𝜺) − 𝑞𝑤𝑡|𝜉

𝑤𝑡

  (3.3) 

 

𝐹𝑆𝑄 is an objective that attempts to maintain the status quo given the pollutant concentration constraints. 𝜉 

(𝜉 ≥ 1) is a parameter that can be used to reflect how acceptable large deviations from the original demands 

are.    

 

3.3.3 Maximizing revenue generation 

 

Like with any pricing scheme, area based pricing can be used to generate revenue. Letting 𝑣𝑡𝑎 represent 

traffic flow on like 𝑎 for time period 𝑡, the objective maximizing revenue can be formulated as: 

 

𝑚𝑎𝑥
𝝉,𝜺

𝐹Rev = 𝜏 ∑ ∑ 𝜀𝑎𝑣𝑎𝑡

𝑎𝑡

  (3.4) 

 
If the auto demand is considered to be fixed, it might also be meaningful to consider the objective of 

minimizing total revenue collected. 

 

3.4 Solution Algorithm 
 
There are at least four GA-based solution algorithms that could be applied to solve the proposed area pricing 

problem: the cutset-based heuristic (Zhang and Yang 2004), the branch-tree method (Sumalee 2004), the 
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Delaunay triangulation approach (Hult 2006), and the shape constrained algorithm (Maruyama et al. 2014). 

In this section a surrogate-based solution algorithm is proposed to solve cordon and cordon pricing 

problems. Surrogate-based optimization approaches have proven to be more effective in finding good 

solutions in fewer iterations than traditional evolutionary heuristics (e.g., see Chapter 2), an ability that is 

particularly useful when the evaluation of candidate solution takes too much time. This computational cost 

problem is encountered in the design of area pricing schemes with environmental constraints, so a new 

surrogate-based solution algorithm is presented for this type of problem.  

Next, the surrogate-based cordon/area pricing solution algorithm (SB-CAPSA) is explained. In this 

algorithm the concentration constraints are handled using a parameter-free penalty approach (Deb 2000). 

From the maximization perspective, let  𝐹𝑚𝑖𝑛 be the objective function value of the worst known feasible 

solution, and 𝜅 be a penalty factor. Objective function (3.1) is restated (arguments omitted) as: 

 

𝐹̃ = {

𝐹 𝑖𝑓 𝐶𝑟̅ ≤ 𝐶𝑚𝑎𝑥    ∀𝑟

𝐹𝑚𝑖𝑛 + 𝜅 ∑ min(𝐶𝑟,𝑚𝑎𝑥 − 𝐶𝑟̅, 0) 

𝑟

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (3.5) 

 

𝐹𝑚𝑖𝑛 is updated as worst feasible solutions are discovered. If there is no known feasible solution, a 

placeholder value is assumed for 𝐹𝑚𝑖𝑛 .  

 

3.4.1 Preliminaries of SB-CAPSA  

 

Next, a description is presented of how the charging area is represented in SB-CAPSA, how candidate 

schemes are generated, and the algorithms steps are detailed.  

3.4.1.1 Representing the charging area  

 

A fundamental feature in area-based pricing solution algorithms is the manner in which the charging area 

is represented. In SB-CAPSA, the charging boundary representation was motivated in part by the cutset-

based heuristic proposed by Zhang and Yang. In this algorithm, preselected network nodes are classified as 

either inside or outside the charging area. The charging area itself is represented by a binary vector 

(chromosome) 𝜼 of length equal to the number of preselected nodes, where each element of the vector is a 
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binary variable indicating if a node is in or outside the charging area. 𝜼 is then used to define which network 

links have to be tolled. Although it is technically possible to use the representation 𝜼, along with the toll 

information 𝝉, to estimate a surrogate 𝑠(𝜼, 𝝉) of the objective function 𝐹(𝜼, 𝝉), generally it would 

impractical. A surrogate model is estimated using as data points a set of candidate solutions and their 

corresponding objective function values (e.g., {(𝜼, 𝝉, 𝑭(𝜼, 𝝉))}, with 𝜼 and 𝜏 as the dependent variables). 

For the surrogate model to be useful, or even capable of being estimated, the number of data points used in 

its estimation would have to be least greater than the number of unknowns in the model. With the 𝜼 

representation, the number of unknowns is 𝑑 = |𝜼| + 1 (plus one for the toll level), where |𝜼| could easily 

be greater than a 100 nodes. As an example, if a cubic radial basis function (RBF) model is used as the 

surrogate for 𝐹(𝜼, 𝝉), the minimum number of initial candidate solutions needed for its estimation is 𝑑 + 1, 

and, in practice, usually more than 𝑑 + 1 data points are used in order to estimate a  model with sufficient 

predictive power. So, representing the charging zone using the 𝜼 approach would require considerable 

computational time.  

For a surrogate-based solution algorithm, the charging area representation used would, ideally, contain 

all the relevant information of the charging scheme, impose minimal data requirement for the estimation of 

the surrogate model, and, yet, be useful in the search for solutions. A geometric representation of the 

charging area’s boundary is used in SB-CAPSA because it can be used to represent complex shapes with 

relatively minimal information. One simple and general approach is to model the boundary’s shape as a 

piecewise polynomial function that is defined in part by a collection of points (“knots”). Specifically, in 

this chapter the charging area boundaries are represented using simple polygons, which are defined by an 

ordered collection of 𝑝 points or vertices 𝑷 = {(𝑟𝑖, 𝜃𝑖): 𝑖 = 1, … , 𝑝}. 𝑟𝑖 is the point’s radial distance from an 

artificial area center 𝑂, and 𝜃𝑖 is its angle relative to the horizontal direction from point 𝑂. A piecewise 

linear representation is used, as opposed to a more complex shapes (e.g., cubic B-splines), because of its 

simplicity; the polygon is completely specified by the vertices without the need for additional parameters. 
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Associated to each candidate polygon boundary are 2𝑝 + 1 unknowns (the radii and angles of the 𝑝 vertices 

and the toll).  

In the proposed algorithm a charging area boundary is created by generating vertices 𝑷 for a simple 

polygon. Network nodes that are inside the polygon area are inside the charging area, and, naturally, nodes 

outside the polygon are outside the charging area. This leads to the secondary 𝜼 representation proposed by 

Zhang and Yang. So 𝑷 maps to 𝜼, and 𝜼 maps to the network as tolling indicators for the links. The objective 

function value 𝐹, as computed with the computationally expensive models, is calculated by using 𝜼 and toll 

𝜏. An objective function estimate 𝐹̂𝑚 of charging area candidate 𝑚 can be obtained from a surrogate model 

𝑠 estimated using a collection of 𝑛 previously evaluated candidates, represented by 𝑛 data points 

{(𝑷𝒋, 𝜏𝑗 , 𝐹𝑗)}. Given a candidate boundary 𝑷𝑚 and toll 𝜏𝑚, the surrogate is used to predict 𝐹̂𝑚 = 𝑠(𝑷𝑚, 𝜏𝑚). 

Next, how the surrogate model is used to search for good solutions to the area pricing problem is discussed.   

 

3.4.1.2 Overview of surrogate-based search procedure 

 
SB-CAPSA follows the general logic of the metric stochastic response surface algorithms proposed by 

Regis and Shoemaker (2007). An initial population of 𝑛 polygons and tolls is generated and evaluated with 

the computationally expensive models. The resulting data points {(𝑷𝒋, 𝜏𝑗, 𝐹𝑗)} are used to estimate surrogate 

model 𝑠. In each iteration, five groups of candidate points are generated according to different set of rules 

(explained in the next section), and, among thousands of candidates, a candidate is selected for each group. 

This selection is partly made based on the surrogate model’s prediction of each candidate’s objective 

function value. Surrogate model 𝑠 is updated after each iteration as new information (i.e., new data points 

(𝑷𝒋, 𝜏𝑗, 𝐹𝑗)) is learned. 

During the candidate generation procedures, each candidate is given a score (𝑊 = 𝑤𝑅𝑆𝑈𝑅𝑆 + 𝑤𝐷𝑈𝐷) 

according to its predicted objective function value (surrogate score 𝑈𝑅𝑆), a measure of each candidate’s 

distance to previously evaluated points (distance score 𝑈𝐷), and weights 𝑤𝑅𝑆 and 𝑤𝐷 corresponding to 
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these two criterions (𝑤𝑅𝑆 + 𝑤𝐷 = 1). For a candidate scheme (𝑷𝑚, 𝜏𝑚), the score 𝑈𝑅𝑆,𝑚(𝑷𝑚, 𝜏𝑚) is 

computed using: 

 

𝑈𝑅𝑆,𝑚(𝑷𝑚, 𝜏𝑚) =
𝑠(𝑷𝑚, 𝜏𝑚) − 𝑠𝑚𝑖𝑛 

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
 

 (3.6) 

 

 

where  𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are the minimum and maximum predicted objective function values, respectively, 

among the candidate solutions of each group. If 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are equal, then 𝑈𝑅𝑆(𝑷𝑚, 𝜏𝑚) = 1.  

The purpose of the distance criterion score 𝑈𝐷 is to measure how different a candidate solution is from 

previously evaluated solutions. Given that multiple polygons can result in the same charging zone (in terms 

of which nodes are within the charging area), the distance criterion is computed using the 𝜼 mapping of 

each polygon. The minimum distance Δ(𝜼𝒎, 𝜏𝑚) between candidate (𝜼𝒎, 𝜏𝑚) and the previously 

𝑛 evaluated schemes is computed along with the related minimum (∆𝑚𝑖𝑛= min
1≤𝑗≤𝑛

{∆(𝑷𝑚, 𝜏𝑚)}) and 

maximum (∆𝑚𝑎𝑥= max
1≤𝑗≤𝑛

{∆(𝝉𝑚)}) distances. Score 𝑈𝐷,𝑚(𝑷𝑚, 𝜏𝑚) is calculated using: 

 

𝑉𝐷(𝝉𝑚) =
∆(𝝉𝑚) − Δ𝑚𝑖𝑛 

Δ𝑚𝑎𝑥 − Δ𝑚𝑖𝑛 
 

 (3.7) 

 

Again, if ∆𝑚𝑖𝑛 equals ∆𝑚𝑎𝑥, then 𝑉𝑛
𝑑𝑖𝑠𝑡(𝝉𝑚) = 1. The weight of each criterion (𝑤𝑅𝑆 and 𝑤𝐷) is cyclically 

adjusted in each iteration. For this purpose, an ordered set Υ = 〈𝑣1, … , 𝑣𝜅〉 (0 ≤ 𝑣1 ≤ ⋯ ≤ 𝑣𝜅 ≤ 1) is 

defined, and with each changing iteration 𝑤𝑅𝑆 is sequentially assigned a value from Υ. The purpose of 

adjusting the weights in this manner is to alternate between an exploitative and an explorative search focus. 

After each candidate 𝑚 is given a score 𝑊, in each candidate group the scheme (𝑷𝑚, 𝜏𝑚) with the 

highest score is selected and evaluated with the computationally expensive models. The information of the 

evaluated candidates is stored in data archives which are used to re-estimate the surrogate model at the start 

of each iteration, as previously mentioned. An additional data archive is used to store the best known 

charging area scheme (i.e., the feasible solution with highest objective function value). This best known 

solution is used in the generation of candidates. SB-CAPSA stops when a convergence criterion is met, 
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which given the computationally expensive nature of the problem, is specified as a maximum number of 

iterations.  

 

3.4.1.3 Procedure to generate candidate solutions 

 
Of the five types of candidates generated in each iteration of SB-CAPSA, the first four candidate groups 

are created using information from the best known charging area boundary 𝑷𝒃𝒆𝒔𝒕 = {𝒓𝒃𝒆𝒔𝒕, 𝜽𝒃𝒆𝒔𝒕}. The first 

group of candidates (type I) share the boundary 𝑷𝒃𝒆𝒔𝒕, but differ in their toll level 𝜏𝑚. The number of type 

I candidates, 𝑀𝐼, depends on how many of 𝑷𝒃𝒆𝒔𝒕 possible toll values have been evaluated. In the unlikely 

case that all tolls are evaluated for 𝑷𝒃𝒆𝒔𝒕, the analyst could decide to simply stop producing type I candidates 

or switch the 𝑷𝒃𝒆𝒔𝒕 information with data from another feasible solution (e.g., the second best known 

solution). In numerical tests this situation was not encountered, as the best known solution changes before 

all tolls have been considered for a particular 𝑷.  

 In the second group of candidates (type II), 𝑀𝐼𝐼 candidate charging area boundaries are generated by 

enlarging the 𝑷𝒃𝒆𝒔𝒕 boundary. The radii of 𝑷𝒎,𝑰𝑰 candidates is created by perturbing the 𝒓𝒃𝒆𝒔𝒕 elements 

according to the formula 𝑟𝑗
𝑚,𝐼𝐼 = 𝑟𝑗

𝑏𝑒𝑠𝑡(1 + 𝜔), where 𝜔 is a randomly generated value in the interval [0,1]. 

𝜔 can be generated, for example, by making random draws from a beta distribution. A similar approach is 

used for generating type III candidates, but using the formula 𝑟𝑗
𝑚,𝐼𝐼𝐼 = 𝑟𝑗

𝑏𝑒𝑠𝑡(1 − 𝜔); the 𝑷𝒃𝒆𝒔𝒕 boundary 

is contracted in the 𝑀𝐼𝐼𝐼 type III candidates. For the fourth group of candidates (type IV), both expansion 

and contraction operations are performed on the 𝑷𝒃𝒆𝒔𝒕 boundary. The radii of the 𝑀𝐼𝑉 candidates are 

computed using 𝑟𝑚,𝐼𝑉 = 𝑟𝑗
𝑏𝑒𝑠𝑡(1 + 𝑏𝜔), where 𝑏 is a random variable that can assume the values of -1 and 

1 with equal probability. The angles of candidates for groups II, III, and IV are calculated with the formula 

𝜃𝑗
𝑚 = 𝜃𝑗

𝑏𝑒𝑠𝑡 + 𝑧(0, 𝜎), where 𝑧 is a random draw from a normal distribution with mean zero and variance 

𝜎. Lastly, for the last group of candidates (type V), 𝑀V boundaries are generated randomly, without using 

𝑷𝒃𝒆𝒔𝒕 as a reference.   
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 After generating the boundary locations, the associated toll levels are generated for each candidate 𝑚. 

Here it is assumed that the planner is interested in |𝝉| number of tolls from a finite set 𝜏 = {𝜏𝑚𝑖𝑛, … , 𝜏𝑚𝑎𝑥}. 

For each candidate charging boundary (𝑷𝒎, 𝜏𝑚), all possible tolls are considered; |𝝉| candidate schemes 

are created with the coupling of boundary (𝑷𝒎, 𝜏𝑚) with all possible tolls. So from groups II through V a 

total of 𝑀 = |𝝉| × (𝑀𝐼𝐼 + 𝑀𝐼𝐼𝐼 + 𝑀𝐼𝑉 + 𝑀𝑉) schemes are generated.  

 𝑀 candidates are generated, but a 𝑊 score is not generated for the 𝑀 candidates. A candidate 𝑚 must 

pass a series of checks before being considered for evaluation. The polygon 𝑷𝒎 has to be a simple polygon 

(i.e., composed of non-intersecting line segments), as intersecting polygons generally have no practical 

meaning. If the polygon is simple, it is then checked that its transformation to 𝜼𝑚, along with its toll 𝜏𝑚, 

have not been previously evaluated. Finally, here we impose the cutset requirement used by Zhang and 

Yang, so the only polygons accepted are those that reduce the rank of the road network’s graph incidence 

matrix by one when the columns representing the tolled links leading to the charging area are eliminated 

(see Zhang and Yang 2004). 

 

3.4.2 Algorithm steps 

 

The algorithm steps and the notation used in the description of SB-CAPSA are given below. 

 

Decision variables 

 

𝜏 : charging zone toll level 

𝑷 : vertices defining changing zone boundary 

 

Indices 

 

𝑚 : indices for candidate solution vectors generated according to the rules of groups I 

through V 

𝑢 : indices for the five candidate solutions selected for evaluation (𝑢 = I, II, III, IV, V) 

𝑗 : indices for solutions that were evaluated with the models (𝑗 = 1, … , 𝑛) 
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Counters 

 

𝑛 : counter for the number model runs 

 

Functions 

 

𝐹(∙) : objective function  

𝐹̃(∙) : penalty-adjusted objective function 

𝑜(∙) : 
feasibility indicator equal to ∑ min(𝐶𝑟,𝑚𝑎𝑥 − 𝐶𝑟̅, 0) 𝑟  

𝑠(∙) : surrogate model 

𝑊(∙) : weighted candidate score  

𝜒 : function that indicates if a feasible solution was found 

𝜇 : function that indicates if 𝐹𝑚𝑖𝑛 was updated 

 

Parameters 

 

𝑛0 : initial number of evaluated solutions 

𝑛𝑚𝑎𝑥 : maximum value for 𝑛  

 

Sets 

 

Τ : set for 𝜏 values 

Ρ : set for 𝑷 values 

Λ : set for 𝐹(∙) values 

Ψ : set for 𝑜(∙) values 

Ω : set for 𝐹̃(∙) values 

 

 

Algorithm Steps 

 

1. Initialization: 

1.1. Set 𝑛 = 𝑛0. 

1.2. Generate 𝑛 initial candidates (𝑷𝑗, 𝜏𝑗). 
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1.3. Add vectors 𝑷𝑗 and 𝜏𝑗 to P and Τ, respectively, and initiate  Λ , Ψ, and Ω as empty sets. 

2. Evaluate initial candidates and select initial best solution: 

2.1. For each candidate (𝑷𝑗, 𝜏𝑗), compute 𝐹(𝑷𝑗, 𝜏𝑗) and 𝑜(𝑷𝑗, 𝜏𝑗), and add values to Λ and Ψ. 

2.2. If there are feasible solutions according to the 𝑜(𝑷𝑗 , 𝜏𝑗) values, the 𝑷𝑗 and 𝜏𝑗 vectors for the 

candidate with the highest 𝐹(𝑷𝑗, 𝜏𝑗) are labeled 𝑷𝒃𝒆𝒔𝒕 and 𝜏𝑏𝑒𝑠𝑡, respectively. Additionally, the 

lowest feasible 𝐹(𝑷𝑗, 𝜏𝑗) is labeled 𝐹𝑚𝑖𝑛, and 𝜒 = 1. Otherwise, if there are no feasible solutions, 

 𝑷𝒃𝒆𝒔𝒕 and 𝜏𝑏𝑒𝑠𝑡 are assigned the values of the candidate with the highest 𝑜(𝑷𝑗, 𝜏𝑗) value, 𝐹𝑚𝑖𝑛 is 

assigned a placeholder value, and 𝜒 = 0.  

2.3. For each initial point, compute 𝐹̃(𝑷𝒋, 𝜏𝑗) and add values to Ω. 

2.4. Determine 𝐹̃𝑏𝑒𝑠𝑡. 

3. Fit surrogate model 𝑠 using information in P, Τ and Ω. 

4. Candidate point generation and selection:  

4.1. Generate candidates according to the specifications of groups I through V. 

4.2. For each group and each candidate point 𝑚, compute 𝑊(𝑷𝒎, 𝜏𝑚). 

4.3. For each candidate group, select for model evaluation the candidate solutions with 

maximum 𝑊(𝑷𝒎, 𝜏𝑚).  

5. Candidate evaluation and updates of parameters and archives: 

5.1. Evaluate the five selected candidates 𝑢 with the computationally expensive models to determine 

𝐹(𝑷𝒖, 𝜏𝑢) and 𝑜(𝑷𝒖, 𝜏𝑢).  

5.2. Update 𝐹𝑚𝑖𝑛 if possible: If 𝜒 = 1 and there is a feasible candidate 𝑢 with 𝐹(𝑷𝒖, 𝝉𝑢) < 𝐹𝑚𝑖𝑛, 

then 𝐹𝑚𝑖𝑛 = 𝐹(𝑷𝒖, 𝝉𝑢). Else, if 𝜒 = 0 and there are one or more of the five candidate points that 

are feasible, update 𝐹𝑚𝑖𝑛 with the worst feasible 𝐹(𝑷𝒖, 𝝉𝑢) and set 𝜒 = 1. If 𝐹𝑚𝑖𝑛 is updated, 𝜇 =

1. 

5.3. If 𝜇 = 1, use the new 𝐹𝑚𝑖𝑛 to update values in Ω, update 𝐹̃best, and then set 𝜇 = 0. 
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5.4. If any feasible candidate 𝐹̃(𝑷𝒖, 𝜏𝑢) is greater than  𝐹̃𝑏𝑒𝑠𝑡, set  𝐹̃𝑏𝑒𝑠𝑡 = 𝐹̃(𝑷𝒖, 𝜏𝑢), 𝑷𝒃𝒆𝒔𝒕 = 𝑷𝒖, 

and 𝜏𝑏𝑒𝑠𝑡 = 𝜏𝑢. 

5.4 Increase counter 𝑛 = 𝑛 + 5, and add information from evaluated candidate points to Λ, Ψ, P, Τ, 

and Ω. If 𝑛 ≤ 𝑛𝑚𝑎𝑥 return to step 3; otherwise, continue to step 6 

6. Return 𝑷𝒃𝒆𝒔𝒕 and 𝜏𝑏𝑒𝑠𝑡 

 

3.5 Numerical Tests 
 
The tests presented in this section explore the accuracy of the surrogate models estimated with data obtained 

from the proposed geometric representation of charging area boundaries. Additionally, a sample application 

of the algorithm is presented. All tests assume a sequential three-step planning model composed of trip 

distribution, mode split, and traffic assignment procedures, which are applied for four time periods in a day 

(morning, midday, afternoon, night). The output of the planning model is used to compute link emissions 

and, subsequently, pollutant concentration at receptor points. In Figure 3-1 the overall model structure used 

to compute the upper level objective function and constraints is shown. A range of $1 to $40 dollars was 

set for 𝝉, with $1 increments from $1 to $40. In this example, it is assumed that the planner is interested in 

reducing the average daily pollutant concentration experienced in the city of Chicago. 

 

 
 

Figure 3-1 Structure of integrated model used in numerical tests 

 

3.5.1 Models and related parameters 

 

The network users behavior was simulated using a standard travel demand planning model structure, 

without the trip generation step. A portion of the travel demand distribution was assumed fixed, meaning 
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that the charging area did not have any effect on the users’ choice of destinations. In the short term, this 

would be expected for people whose work requires them to be present at a particular location. The 

distribution of a relatively small portion of the travel demand is allowed to vary. The destination choice of 

trips originating in a particular zone was modeled using a multinomial logit formulation, where each 

destination’s utility was specified as a function of the mode choice logsum and an activity level variable, 

which in this case was computed based on the employment level of each zone. Only auto and transit modes 

were consider in the binary logit mode split model. Mode choice was specified as a function of travel time 

and cost. For auto the cost was computed using a fixed per mile cost (60 cents per mile) and the 

corresponding tolls, while for transit only fixed per mile costs (2 cents per mile) were considered. Also, 

transit was assumed to have fixed travel times (i.e., changes in road network congestion have no effect on 

the transit travel time). The final component of the model structure is the traffic assignment model. User 

equilibrium behavior was assumed, and the resulting problem was solved using the gradient projection 

method (Jayakrishnan et al. 1994). A value of time of $30 per hour was used to convert tolls to link specific 

costs. The three components are applied to find links flows for four model time periods. A feedback loop 

based on the link flows was implemented at the trip distribution and mode split steps using the method of 

successive averages (Boyce et al. 2008). Only three loops were employed in this example, because of time 

constraints. Tables 3-1 and 3-2 present the parameters assumed for the destination and mode choice models. 

 
Table 3-1 Parameters for destination choice model 

Variable Parameter value 

Attraction 10 

Impedance (logsum) 0.5 

 

 

 
Table 3-2 Parameter for mode split model 

Variable Parameter value 

Car constant 4 

Travel time (minutes) -0.1 

Travel cost (cents)  -0.002 
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 Particulate matter (PM2.5) is the pollutant of interest in this example. Link emissions were estimated 

using speed-based factors extracted from EPA’s MOVES model. Once the link emissions were computed, 

concentration at the receptor points were estimated using a Gaussian plume model and the cell-based 

methodology utilized by Zhang et al. (2010). Four different meteorological conditions (with distinct wind 

speeds, directions, and atmospheric stability classes) for each time period were employed to compute the 

average pollutant concentrations at the receptor points. The blue region in Figure 3-2 represents the area 

with the 14,057 receptor points of interest for which concentrations were computed. The receptors were 

spaced 656 feet apart. The circle in the figure represents the artificial point 𝑂 from which the charging 

boundary polygon vertices are referenced. The farthest receptor of interest is approximately 50000 feet 

from point 𝑂. In the sample application, the area pricing scheme is feasible if concentrations at all receptors 

points are reduced by 5 percent relative to the base situation (before the pricing scheme).   

 
Figure 3-2 Receptor region 

 

 

 

3.5.2 Network and demand data 

 
A section of the Chicago Sketch Network, corresponding to the Cook and DuPage County road networks, 

was used in the numerical tests. Figure 3-3 presents the network. This network has 1330 links and 421 

nodes, of which 160 are origin-destination zones. The network data and its related trip distribution were 

obtained from an online data repository (Bar-Gera 2014). The provided trip data was augmented by a factor 
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of 1.5, and assumed as the fixed travel demand distribution for the morning period. For the remaining model 

periods, the fixed travel demand distribution was assumed to be the given trip data times factors 0.3, 1.05, 

and 0.15, respectively. Additionally, variable travel demand distributions were created for each time periods 

by multiplying the computed fixed travel demand by factors 0.2, 0.1, 0.2, and 0.5, respectively.  

 

 
 

Figure 3-3 Section of the Chicago Sketch Network 

 

3.5.3 Testing accuracy of surrogate models 

 

A geometric representation of a charging area’s boundary is arguably intuitively reasonable. However, it is 

not immediately clear if such a representation would be useful in a surrogate-based solution algorithm for 

cordon and area pricing problems. For this reason a series of tests were conducted to explore the predictive 

accuracy of surrogate models estimated using the proposed simple polygon representation of charging 

boundaries. The tests were conducted using a sample of 400 charging schemes with randomly generated 

polygons and tolls.  

Each scheme’s polygon boundary was generated using 10 vertices. The radii and angles of these 

vertices were measured from a reference point set at (710070, 1931400) (in feet, see node coordinates in 

Bar Gera 2014), in the vicinity of Chicago’s central business district. Radii were allowed to assume values 

in the interval [16500, 75500] (feet), while the angles were bounded to [1.8, 5] (radians). For each candidate 
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polygon, two vertices had their angles fixed to 1.8 and 5 radians (i.e., fixed at the angle bounds).  For each 

pricing scheme the total toll revenue was computed using the output of the transportation planning model 

previously discussed. Radial basis functions (RBF) were used as surrogate models.  

Four RBF functional forms were tested: linear, cubic, thin plate spline, and multiquadratic (with 

parameter 0.001) (Gutmann 2001). For each functional form a series of k-fold cross validation tests were 

performed. In k-fold cross validation the sample is divided into k subsamples. A partition 𝑘 is used once as 

the validation data set, while the remaining partitions are used to fit the surrogate model; this is repeated 

for all partitions. Folds of 2, 5, and 10 were used in the tests, with sampling for each fold performed 30 

times. In addition to the k-fold cross validation tests, cross validation was performed by randomly selecting 

100 data points (candidate schemes) as the training data set, while the remaining 300 data points were used 

for validation. Again, these tests were repeated 30 times.  

 With the validation data a series of measures of fit were computed. The correlation between the 

surrogate model predictions and the planning model values was computed using the Pearson correlation 

coefficient (PC). Mean average percent error (MAPE), root mean squared error (RMSE), and normalized 

root mean square error (NRMSE) were used as error metrics. The test results are presented in Table 3-3. 

On average, a correlation of 0.76 was observed between the surrogate predicted values and the planning 

model values. The highest correlations were observed with the multiquadratic and linear functional forms. 

Average MAPE, RMSE, and NRMSE for all tests were 15%, 161, and 3%. Again, based on these metrics 

the multi-quadratic functional form had the best performance. There are several other RBF functional 

forms, other types of surrogate models, and other geometric approaches for representing charging 

boundaries that should be examined. But, these preliminary results, particularly the level of correlation 

between predicted and modeled values, suggest that the use of the proposed surrogate model concept to 

predict charging scheme’s objective functions is an idea worth exploring. 
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Table 3-3 Validation results from cross-validation tests 

Form Cross-validation mean PC MAPE (%) RMSE NRMSE (%) 

linear 

10-fold 0.795 13.4 146 3.02 

5-fold 0.799 13.5 150 2.97 

2-fold 0.795 14.2 157 2.95 

100/300 split 0.774 15.5 165 3.05 

cubic 

10-fold 0.734 14.9 159 3.34 

5-fold 0.733 15.5 168 3.29 

2-fold 0.708 16.6 179 3.38 

100/300 split 0.661 18.8 194 3.63 

thin-plate 

10-fold 0.766 13.7 149 3.01 

5-fold 0.777 13.8 153 3.01 

2-fold 0.771 14.4 159 3.00 

100/300 split 0.729 16.5 173 3.21 

multi- 

quadratic 

10-fold 0.792 13.4 144 3.00 

5-fold 0.800 13.5 150 2.95 

2-fold 0.791 14.2 157 2.97 

100/300 split 0.780 15.9 168 3.13 

 All tests 0.763 14.9 161 3.12 

 

 

3.5.4 Sample application of SB-CAPSA 

 
The objective functions discussed in section 3.3 were used in the applications of the proposed algorithm. 

For the consumer surplus objective function 𝐹𝐶𝑆, all population groups were assumed to have the same 

marginal utility of income, so this term was dropped (equivalently, it was assumed to be 1). Additionally, 

the logsum of the base condition (ln(∑ 𝑒𝑉𝑛𝑡𝑗
𝑗 )), given that it is a constant, was removed from the 

formulation. For the auto trip objective function, 𝜉 was set to one, and the 𝑞𝑤𝑡 terms were removed from 

the function, again, because these terms are constants.  

An initial population 𝑛0 of 100 polygons, with randomly assigned tolls, was generated for all tests. The 

maximum number of model evaluations, 𝑛𝑚𝑎𝑥, was set to 250. The polygons were produced using the same 

information used for the accuracy tests in section 3.5.3. 𝑀II, 𝑀III, 𝑀IV, and 𝑀V where set to 5,000. The 𝜔 

parameter used in the radius perturbation was drawn from a beta distribution with shape parameters set to 

𝐵𝑒𝑡𝑎(2,20). The 𝜃𝑗
𝑏𝑒𝑠𝑡 angles were perturb using a variance 𝜎 of 0.3. The set Υ was specified as 

{0.75, 0.85, 0.90, 0.95, 0.97, 1}. A parameter free cubic radial basis function (RBF) model was employed 

as the surrogate model (Gutmann 2001).  
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In Figure 3-4, the best cordon boundaries found after 250 candidate evaluations, along with their 

corresponding tolls, are presented. The change in the best known solution with each model evaluation is 

given in Figure 3-5. Figure 3-6 presents the mode shares and trip distributions for the based condition and 

the three solutions. As it would be expected, different objectives result in different cordons. The status quo 

objective resulted in an aggregate mode share most similar to the base situation. The revenue objective 

resulted in the highest possible toll. No general insights can be derived, partly because the presented 

solutions are most likely not the optimal solutions; just the best solutions found after 250 model function 

evaluations.  

  

3.6 Closing Remarks 
 
A variant of the cordon and area-based pricing problems was proposed which incorporates pollutant 

concentration constraints. Departing from the formulation of previous problems, a series of general 

objective functions were proposed that can be utilized with state-of-the-practice travel demand planning 

models. Additionally, a new surrogate-based solution algorithm, SB-CAPSA, was proposed for cordon and 

area-based discrete network optimization problems. As part of the new algorithm, a geometric-based 

method for representing charging boundaries and estimating surrogate models was proposed. Numerical 

tests suggest that arguably good predictive accuracy can be obtained by applying the proposed surrogate 

model methodology with radial basis functions. Lastly, an example was provided to illustrate the 

application of SB-CAPSA.    

The formulated problem can be extended to account for several practical considerations that are part of the 

public and political debate surrounding the design of cordon and charging area schemes, including discounts 

for citizens that live within the charging boundary, time-of-day toll variability, and toll exceptions for 

particular users or vehicles. Further research is also needed to explore SB-CAPSA’s multiple components. 

For instance, more sophisticated approaches could be utilized to create boundary mutations. Currently, 

random perturbations are independently applied to each polygon vertex. An alternative approach would be 
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to coordinate the perturbations, perhaps producing smoother shape transformation and improving the 

success rate in finding better solutions. Also, alternative geometric representations (e.g., using cubic B-

splines) should be explored. Even with the simple polygon representation, additional tests are required to 

explore what is the impact of the number of vertices utilized.  
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a. 𝐹𝐶𝑆 boundary  

b. 𝐹𝑆𝑄 boundary 

c. 𝐹Rev boundary 

$26 

$15 

$40 

Figure 3-4 Charging boundaries for Chicago Sketch Network 



 

 

68 

 

 
Figure 3-5 Change in best known objective function value 
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Figure 3-6 Differences in trip length distribution and mode share due to charging schemes 
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Chapter 4 

Designing traffic rationing schemes to reduce air pollution and 

environmental inequality 
 

 

 

4.1 Introduction 
 
The political intractability of road pricing and its possible negative equity impacts has in recent years 

revived interest in the study of non-pricing based travel demand management strategies. One of such 

strategies is what in this chapter will be called traffic rationing, that is, schemes that restrict the number of 

vehicles on a road network using non-pricing control mechanism, such as permit systems or license plate 

based programs. In contrast to road pricing schemes, there are multiple examples of major cities 

implementing traffic rationing schemes with the explicit objective of reducing critical levels of air pollution 

(e.g., Mexico City, Paris, Milan, and Beijing).   

 In this chapter a bi-objective simulation-based optimization problem is proposed to determine traffic 

restriction levels that maximize total road traffic and minimize pollutant exposure inequalities while 

reducing emissions and pollutant concentration levels below given maximum values. A probabilistic 

pollutant exposure approach is used to simulate pollutant exposure at the person level. Like the road pricing 

problems discussed in previous chapters, the problem considered in this chapter poses a significant 

computational challenge. For this reason, a new surrogate assisted multi-objective differential evolution 

algorithm (SAMDE) is proposed to solve the traffic rationing problem.     

 This chapter is organized as follows. In the next section, literature related to the design of traffic control 

strategies is reviewed, both for the cases of congestion and pollution control. Additionally, research on 

probabilistic modeling of personal pollutant exposure is discussed. This is followed by the formulation of 

the bi-objective traffic rationing problem. Next, the steps of the SAMDE algorithm are detailed and the 

heuristic is applied to a sample problem. Closing remarks and future research opportunities are presented 

in the last section of the chapter.  
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4.2 Literature Review 
 
This section presents a literature review of models proposed to design non-pricing traffic control 

strategies, and of models used to estimate the exposure of individuals to air pollutants.  

 

4.2.1 Quantity control schemes based on environmental considerations 

 

Quantity control measures have been considered as possible vehicle emission reduction policies since at 

least the 1960s (Howitt and Altshuler 1999), and despite their apparent political impracticability these 

strategies have been implemented in a few cities. In practice, the type of program that have been 

implemented can be describes as “command-and-control” programs in the sense that they prescribe a goal 

that must be achieved without a direct financial incentive. More succinctly, Raux (2004) described this type 

of scheme as “cap but no trade” programs.  Traffic rationing systems, such as Mexico’s HNC program, are 

examples of this type of strategy. The design of rationing systems with no trade mechanisms has been 

studied from a congestion reduction perspective (e.g., Daganzo 1995; Han et al. 2010), and their effects on 

total emissions and pollutant concentration have been documented (e.g., Wang et al. 2007; Chen et al. 

2008).  

Another quantity control strategy are tradable permit systems. This type of system is analogous to a 

cap-and-trade scheme. Verhoef et al. (1997) discussed possible road transportation applications of tradable 

permits, including driver-oriented applications such as vehicle ownership permits, road usage permits, and 

parking permits. These user-oriented programs are known as downstream trading system, as opposed to the 

upstream trading systems that target industries in the fuel and vehicle manufacturing sectors. The following 

five factors are identified as important design considerations of tradable permit systems: type of policy 

target, geographic domain, initial distribution of permits, enforcement and monitoring of system, and degree 

of differentiation in the permit market given spatial and temporal considerations. Associated to the first 

factor is the important distinction between emission permit systems and ambient permit systems, the latter 

systems are aimed at controlling the amount of emissions while the former are systems designed to meet 
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ambient standards. Expanding on Verhoef et al., Raux and Mariot (2005) and Raux (2010) proposed fuel 

consumption permit systems for autos and trucks, a system that would fall under Verhoef et al.’s road usage 

permit system classification.    

Though the use of tradable pollution permit programs to control the emission of firms has received 

considerable attention since the work of Montgomery (1972), few studies have considered this strategy for 

mobile emission sources. In light of Mexico City’s experience with HNC, Goddard (1997) presented one 

of the first models to consider the use of travel demand restrictions, coupled with tradable permits, to control 

vehicle generated air pollution. Goddard’s model, developed from an ecological economics perspective, is 

formulated as a cost minimization problem (or equivalently, a welfare maximization problem) where the 

decision maker’s objective is to “minimize the total cost of emissions reduction subject to a constraint on 

allowable emissions”. Bulteau (2012) developed a microeconomic theoretic model where consumers trade 

permits that regulate the number of kilometers that they can travel. In this model the decision maker defines 

the total amount of traffic emission in the region and freely distributes the permits among the consumers.  

Zhu et al. (2013) also developed a theoretical model for rationing, but in terms on vehicle ownership and 

usage and with emphasis on congestion mitigation. Feng et al. (2010) and Feng and Timmermans (2014) 

propose practical, bi-level optimization methods for determining vehicle ownerships rates and usage given 

environmental (emission) constraints. The model presented by Feng and Timmermans includes the 

objective of maximizing spatial equity. 

In the field of transportation networks, research on tradable pollution permit systems has been 

conducted primarily by Nagurney and her colleagues. Like in previous environmental pricing studies, their 

analysis assumes that maximum allowable emission amounts can be defined on network components (e.g., 

links, paths, or origin and destination (OD) pairs), and these amounts can serve as an air quality standard 

constraint on the maximum emissions generated by the network users. The allowable amount of emission 

is represented by a number of permits.  The traffic network equilibrium problems are solved subject to a 

permit constraint. Using a variational inequality approach, these researchers developed models for single 

and multimodal networks; for the cases of user compliance or noncompliance with the system (Nagurney 
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et al. 1998); for link, path, or origin and destination based systems (Nagurney 2000), and to consider 

different dynamic aspects surrounding permit systems (Nagurney and Zhang 2001).  

 

4.2.2 Quantity control instrument for congestion mitigation 

 

Until this point only environment-oriented quantity control studies have been discussed. A related body of 

literature concerned with controlling the amount of traffic from a congestion mitigation perspective might 

be helpful in conceptualizing alternative environment-oriented travel demand management strategies or 

considering alternative environmental goals.   

Temporal considerations are a neglected component in the previously discussed quantity control 

models. The programs control where the emissions occur, but when the emissions occur during the day is 

not explicitly considered. In contrast, several models for quantity control travel demand management 

strategies have been proposed which consider the temporal effects of traffic on congestion. Teodorovic and 

Edara (2005) and Edara and Teodorovic (2008) proposed a highway booking system in which users send 

to the transportation manager requests to enter the highway at a given time for a specific trip (defined in 

terms of the trip’s date and time, the access and egress ramps, the tariff paid, and the type of vehicle), and 

the transportation manager decides to accept or reject the request. The allocation of highway space for 

different types of trips is determined by solving an integer program with the objective of maximizing total 

travel passenger miles while not exceeding the links capacity. Similarly, Ma et al. (2010) developed a 

methodology to determine the optimal time slot allocation of demand that minimizes travel time along a 

highway. In this model the demand is allocated to time slots by determining a departure distribution that 

minimized the cost of time-slot-shifting (relative to the base time slot demand) given the constraint that the 

resulting flow on each link has to be less than its capacity. Akamatsu (2007) proposed a tradable bottleneck 

permit system where the decision maker issues time-dependent permits for the bottlenecks in the network 

with the objective of minimizing social transportation costs. Two types of permits distribution schemes are 

proposed: free distribution and auction based distribution. An alternative permit distribution method is 

proposed by Nie and Yin (2013). In their model drivers arriving at a bottleneck during the peak period must 
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pay either a relatively high toll or a number of mobility credits, while drivers arriving during the off-peak 

period are awarded mobility credits that they can either save to travel during a future peak period or sell to 

other driver.  

Another type of quantity control strategy for congestion mitigation are area-based control systems. 

Teodorovic et al. (2008) developed a model for an auction-based downtown time slot program. In this 

system the city manager auctions time slots and users bid for the slots corresponding to their desired visit 

duration. The objective of the model is to maximize revenue subject to a maximum number of allowable 

vehicles in the downtown area, which is defined in terms of the number of parking spaces and the maximum 

accepted delay in links. Similarly, Zhao et al. (2010) proposed a downtown space reservation system which 

is analogous to the highway space reservation system, but different in that the allocation of trips is 

constrained by the downtown’s network capacity, as opposed the links capacity of a highway, and the city 

manager is assumed to maximize two objectives: revenue and system throughput. 

Static road network equilibrium studies have also explored the use of quantity control mechanisms to 

minimize congestion. Yang and Wang (2011) proposed the use of tradable credit to manage network 

congestion, and they studied the properties of the network equilibrium resulting from this type of scheme. 

Several extensions have been presented for the tradable credit models. For example, Wang et al. (2012) 

relaxed the homogenous user assumption by assuming users with different value of time. Nie (2012) 

considered the effects of transaction costs in the credit market. Shirmohammadi et al. (2013) studied the 

effects of demand and supply uncertainty in the analysis and design of tradable credit schemes. Wu et al. 

(2012) studied the design of tradable credit schemes in a multimodal networks considering different user 

income levels.  

 

4.2.3 Probabilistic simulation of human exposure to air pollutants 

 

A common strategy in state-of-the-practice models, like BenMAP, is to estimate population intake of 

pollutants by assuming that a person’s pollutant exposure depends only on the pollutant concentration levels 

at the person’s home location. This assumption is usually made, in part, because it allows for a model that 
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is not too data or computationally expensive. An alternative to this approach are probabilistic personal 

exposure models that attempt to simulate a person’s pollutant exposure based on activity patterns. Naturally, 

this modelling approach requires considerable more data and computational power than the home-based 

approach. Early model developments utilized data from activity pattern diaries to estimate probability 

distributions that were used to probabilistically simulate, for example, starting time of work trips, trip 

duration, and mode choice, among other important factors (Ott et al. 1988). This basic idea has been 

extended by incorporating an even greater number of factors that determine the degree of pollutant 

exposure, such as the simulation of type of activities performed by individuals and the breathing rates 

associated with each activity (Zidek et al. 2005).    

  Examples of integrated transportation and personal exposure models can be found in the literature. For 

example, Hatzopoulou et al. (2011) developed an activity-based model to evaluate the pollutant exposure 

impacts of a series of policy interventions in Toronto, Canada. In this study an activity-based model 

(TASHA) was integrated with a multi-agent transportation simulation (MATSIM), a vehicle emissions 

model (MOBILE), and a pollutant dispersion model (CALPUFF). Similarly, Dhondt et al (2012) utilized 

an integrated activity-based model to simulate population exposure to pollutants in Flanders and Brussels, 

Belgium. In this study the activity-patterns were aggregated into OD matrices which were then assigned to 

the road transportation network using equilibrium traffic assignment models. This hybrid micro-macro 

approach is used in the numerical example presented in section 4.5. 

 

4.3 Traffic Rationing Problem Formulation 
 

Nagurney (2000a) considers the problem of determining what is the maximum achievable travel demand 

given a network-level environmental quality standard. Here a related problem is proposed. Consider a 

region where pollutant concentration levels and total greenhouse gas emissions exceed given thresholds. 

Additionally, the region’s authorities are concerned about the level pollutant exposure inequality among 

the population. The planners decide to cap car usage in different zones in the region using a permit system 

(or any other control mechanism). The region is divided into 𝑍 zones, and for each zone a number of car 
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usage permits are randomly distributed among the population of car users. The number of car users in each 

zones is assumed fixed; not receiving a permit is the only reason for a car user to shift to other modes. 

Furthermore, it is assumed that transit services can accommodate the additional demand diverted from auto. 

 

4.3.1 Objective functions  

 
The planner has two objectives: maximizing total auto usage and minimizing inequalities in pollutant 

intake. Define 𝑞𝑧 as the total demand for car usage in zone 𝑧 (𝑧 = 1,2, … , 𝑍).  For each zone, define the 

number of distributed permit (𝑝𝑧) as: 

 
𝑝𝑧 = ⌊(1 − 𝑥𝑧)𝑞𝑧⌋  (4.1) 

 

 
𝑥𝑧 is the percent level reduction of the total demand for car usage demand in zone 𝑧. 𝑥𝑧 is bounded by 

[𝑥𝑧,𝑚𝑖𝑛, 𝑥𝑧,𝑚𝑎𝑥]. The first objective is defined as follows: 

 

max
𝒙

 𝑃 = ∑ 𝑝𝑧

𝑧

= ∑⌊(1 − 𝑥𝑧)𝑞𝑧⌋

𝑧

 

 

 (4.2) 

Alternatively, objectives could be formulated to consider disparities in travel costs between rationing 

districts as a result of the rationing scheme. Minimizing deviations between rationed and original travel 

demand offers a way of reflecting both the objective of maximizing auto usage and the objective of reducing 

rationing disparities among zones. This objective can be expressed as:  

min
𝒙

 𝑃 = ∑((1 − 𝑥𝑧)𝑞𝑧 − 𝑞𝑧)
2

= ∑(𝑥𝑧𝑞𝑧)2

𝑧𝑧

 

 

 (4.3) 

For the second objective, the Atkinson index 𝐴 is used to represent the level of pollutant intake inequality 

among the population. Let 𝐼𝑛 represent an individual person 𝑛’s pollutant intake. Then, the second objective 

is defined as: 

min
𝛼

 𝐴 = 1 − [
1

𝑁
∑ (

𝐼𝑛

𝐼 ̅
)

1−𝜀𝑁

𝑛=1
]

1
1−𝜀

 

 

 (4.4) 
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where 𝑁 is the total population in the region, 𝐼 ̅ is the average pollutant intake in the region, and 𝜀 is a 

parameter that indicates the level of aversion to inequality (here assumed not to be equal to one).  Next, the 

method used here to compute personal level pollutant intake is discussed.  

 

4.3.1.1 Person-level modeling of pollutant intake 

 
An individual 𝑛’s air pollutant intake 𝐼𝑛 during a day is a function of the sequence of activities undertaken 

in the day, the location and duration of each activity, and the pollutant concentration encountered in each 

location, among other factors. Intake 𝐼𝑛 can be decomposed into 𝐼𝑛,𝑆, the intake of the individual while the 

person is at a particular location (e.g., home, office) and 𝐼𝑛,𝑀, the person’s pollutant intake while moving 

from one location to another (e.g., going from home to work). 𝐼𝑛 is computed using: 

   

𝐼𝑛 = 𝐼𝑛,𝑆 + 𝐼𝑛,𝑀  (4.5) 

 
Let 𝑚𝑒𝑆 be a microenvironment visited by person 𝑛 for a duration 𝛿𝑚𝑒𝑆. Assuming no indoor pollutant 

sources, the concentration at 𝑚𝑒𝑆 can be computed using 𝑝𝐹𝑚𝑒𝑆 × 𝐶𝑚𝑒𝑆,𝑡, where 𝑝𝐹𝑚𝑒𝑆 is a infiltration 

factor that converts the outdoor concentration 𝐶𝑚𝑒𝑆,𝑡 at time period 𝑡 to the microenvironment’s pollutant 

concentration. Also, for simplicity a single breathing rate 𝐵𝑛 is assumed for all time periods of the day. 

Then, summing over all microenvironments where the person remains relatively stationary during a period 

of time, 𝐼𝑛,𝑆 can be defined as: 

 

𝐼𝑛,𝑆 = 𝐵𝑛 ∑ 𝛿𝑚𝑒𝑆 × 𝑝𝐹𝑚𝑒𝑆 × 𝐶𝑚𝑒𝑆,𝑡

𝑚∈𝑆

  (4.6) 

 

To compute the intake resulting from moving from an origin to a destination, the selected path pollutant 

concentration profile is needed. Assume that the path 𝜘 can be deconstructed into a series of links 𝑎, each 

link with average pollutant concentration 𝐶𝑎,𝑡 at time period 𝑡 and average travel time 𝑑𝑎/𝑣𝑎, with 𝑑𝑎 

representing the length of the link and 𝑣𝑎 representing the average velocity. Then, the pollutant intake 

estimate for path 𝜘 can be formulated as: 
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𝐼𝑛,𝜘 = 𝐵𝑛 ∑
𝑑𝑎

𝑣𝑎
× 𝑝𝐹𝑚𝑜𝑑𝑒,𝜘 × 𝐶𝑎,𝑡

𝑎

  (4.7) 

 

𝑝𝐹𝑚𝑜𝑑𝑒,𝜘 is the inflation factor for the mode used in a particular movement. Finally, 𝐼𝑛,𝑀 can be computed 

using:   

 

𝐼𝑛,𝑀 = ∑ 𝐼𝑛,𝜘

𝜘

  (4.8) 

 

4.3.2 Constraints  
 

As previously mentioned, it is assumed that the planner is concerned with the levels of pollutant 

concentrations and GHG emissions. The pollutant concentrations 𝐶𝑟,𝑡 of interest are measured at selected 

locations 𝑟 (𝑅 = {1, … , 𝑟}) and time periods 𝑡. The planner is interested in maintaining the average pollutant 

concentrations level 𝐶𝑟̅ at every receptor point below a threshold  𝐶𝑚𝑎𝑥. Let 𝐶𝐿 be equal to 𝐶𝐿 = max
𝑙∈𝑟

𝐶𝑙̅. 

The pollutant concentration constraint is stated as:  

 

𝐶𝐿̅ < 𝐶𝑚𝑎𝑥  (4.9) 

 

In the case of the emission constraints, the interest is in the level of GHG emissions are the network level 

(not at link level). The total network emissions 𝑄𝐺𝐻𝐺 in the network have to be less than 𝑄𝑚𝑎𝑥. For 

completeness:  

𝑄𝐺𝐻𝐺 < 𝑄𝑚𝑎𝑥  (4.10) 

 

Lastly, the decision variables are constrained in the interval [𝑥𝑧,𝑚𝑖𝑛, 𝑥𝑧,𝑚𝑎𝑥]. 
 

 

4.4 Solution Algorithm: A Surrogate Assisted Multiobjective Differential 

Evolution Algorithm 
 

As its name suggests, the differential evolution algorithm is an evolutionary algorithm, meaning that it 

follows the general procedure of generating a parent population of solutions and iteratively applying 

mutation, recombination, and selection procedures to create an improved population until a convergence 

criterion is met (Storn and Price, 1997). During the past two decades, evolutionary algorithms, including 
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DE, have been combined with surrogate models to improve their efficiency. Interest in surrogate-assisted 

evolutionary algorithms (SEAs) has grown as the simulation models embedded in optimization problems 

have increased in complexity (Jin 2011). In the context of the problem presented in this chapter, an analysts 

could be interested in combining models for traffic assignment, emission generation, atmospheric 

chemistry, air pollutant emission dispersion, and population pollution exposure. Given the high 

computational cost that such combined model would entail, the use of SEAs is a promising solution 

approach for practical design problems. 

 A common strategy in SEAs is the use of surrogate models to prescreen multiple solutions before 

being evaluated by the costly models. For example, Zhang and Sanderson (2009) proposed a radial basis 

function (RBF) assisted DE. The surrogate model was used to evaluate multiple mutations for a single 

parent, and then select the most promising candidate. The algorithm proposed in this section incorporates 

this surrogate strategy to an adaptive multiobjective differential evolution algorithm proposed by Zhang 

and Sanderson (2009) (here referred to as JADE-MO). Additional algorithm modifications are introduced 

to handle computationally expensive constraints. The next sections discuss the basics of JADE-MO and the 

proposed modifications for the traffic rationing problem. 

 

4.4.1 Preliminaries of JADE-MO  

 

Like other DE algorithms, in JADE-MO mutations are performed based on the difference of vectors of 

candidate solutions. What distinguishes JADE-MO from other algorithms is the adaptive nature of its 

mutation and crossover parameters, and the rules used to select the parents for the mutation procedure. In 

this section the mutation, crossover, and selection procedures of JADE-MO are explained. 

Assume that there are 𝑁𝑃 parents in the population, and for each parent a child solution is produced. 

The child 𝒗𝑖,𝑔 (i for parent relation and g for iteration) is generated by combining the parent 𝒙𝑖,𝑔 with three 

other randomly selected candidate solutions: a member 𝒙𝑏𝑒𝑠𝑡,𝑔 from a collection the best solutions in the 

current population, another member 𝒙𝑟1,𝑔 from the parent population, and a solution 𝒙𝑟2,𝑔 from an archive 
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that contains all the evaluated candidate solutions until generation 𝑔. The following mutation function is 

used to generate 𝑣𝑖,𝑔: 

 

𝒗𝑖,𝑔 = 𝒙𝑖,𝑔 + 𝐹𝑖(𝒙𝑏𝑒𝑠𝑡,𝑔 − 𝒙𝑖,𝑔) + 𝐹𝑖(𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔)   (4.11) 

  

 

𝒙𝑏𝑒𝑠𝑡,𝑔 refers to the 𝑛𝑏𝑒𝑠𝑡  solutions with the best crowding density values. Crowding density is a measure 

of the distance between the objective function values of a candidate solution to the objective function values 

of other candidate solutions (see Zhang and Sanderson 2009). A solutions is said to be more crowded than 

others if its distance to other solutions is small, relatively speaking. 𝐹𝑖 is an adaptive mutation factor, and 

it is randomly generated from a Cauchy distribution with location parameter 𝜇𝐹 and scale parameter 0.1. 

The location parameter 𝜇𝐹 is adaptive; it is updated after each iteration using the current 𝜇𝐹 parameter, the 

Lehmer mean 𝑆𝐹 of all successful 𝐹𝑖 of the current iteration (successful in the sense that child 𝑖 was better 

than parent 𝑖), and a recombination parameter 𝑐. The parameter 𝜇𝐹 is updated using the next equation: 

 

𝜇𝐹,𝑛𝑒𝑤 = (1 − 𝑐)𝜇𝐹 + 𝑐𝑆𝐹  (4.12) 

 

 The child 𝒗𝑖,𝑔 is then modified in the crossover step. Let 𝑣𝑖,𝑗,𝑔 and 𝑥𝑖,𝑗,𝑔 represent the element 𝑗 of 

vectors 𝒗𝑖,𝑔 and 𝒙𝑖,𝑔, respectively. In the crossover step the final version of the child, 𝒖𝑖,𝑔, is produced as 

follows:   

𝑢𝑖,𝑗,𝑔 = {
𝑣𝑖,𝑗,𝑔 𝑖𝑓 𝜔 < 𝐶𝑅𝑖

𝑥𝑖,𝑗,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4.13) 

 
𝐶𝑅𝑖 is the crossover parameter and, like 𝐹𝑖, it is randomly generated using a distribution, in this case, a 

normal distribution with mean 𝜇𝐶𝑅 and variance 0.1. After each iteration the parameter is updated using the 

current 𝜇𝐶𝑅, the arithmetic mean 𝑆𝐶𝑅 of all successful 𝐶𝑅𝑖 of the current iteration, and a recombination 

parameter  𝑐. The parameter 𝜇𝐶𝑅 is computed using the next equation:  

 

𝜇𝐶𝑅,𝑛𝑒𝑤 = (1 − 𝑐)𝜇𝐶𝑅 + 𝑐𝑆𝐶𝑅  (4.14) 
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After the 𝑁𝑃 children are generated the next generation of parents has to be selected. The process 

begins by pooling the parents and offspring, thus creating a set of solutions of size 2𝑁𝑃. The selection 

process ends once 𝑁𝑃 solutions are selected from the pool. The selection process consists of three selection 

rules or steps. In the first step the Pareto rank of the vectors in the pool of solution is determined. If a child 

has a better Pareto rank than its parent, the parent is removed from the pool, and vice versa. Note that the 

child and parent can have the same Pareto rank, so after this step there might still exist more than 𝑁𝑃 

solutions in the pool. In the second stage, the remaining solutions are pruned further based on their Pareto 

rank. Solutions are saved from pruning in increasing order of their Pareto rank until at least 𝑁𝑃 solutions 

are selected. For example, assume that there is a pool with 18 solutions, and 𝑁𝑃 = 10 (i.e., the pool has to 

be reduced to 10 solutions). There are five solutions with Pareto rank 1, four solutions with Pareto rank 2, 

six solutions with Pareto rank 3, and three solution with Pareto rank 4. So first the solutions with rank 1 are 

accepted, followed by the solutions with rank 2, followed by the solutions with rank 3, at which points there 

are more than 𝑁𝑃 candidate selected, so the selection procedure is stopped. If more than 𝑁𝑃 solutions 

remain (like in the previous example), in the third step vectors with the worst rank are eliminated based on 

their crowding density; the least crowded solutions are preserved. In the example, after the second step 

there are 15 solutions, of which six belong to the worst ranked group. So the five more crowded solutions 

are rejected and the least crowded solution is preserved to form part, along with the rank 1 and rank 2 

solutions, of the parent population for the next iteration. Next the modifications to JADE-MO are discussed.  

 

4.4.2 SAMDE:  A surrogate-based variant of JADE-MO 

 

SAMDE can be considered an extension of JADE-MO given that it follows the general strategy of the 

algorithm proposed by Zhang and Sanderson (2009). It defers from JADE-MO in that it is applicable to 

constrained optimization problems and it incorporates surrogate-based strategies to speed the search of 

good solutions to computationally expensive problems. In the next paragraphs the offspring generation 

(OG), offspring selection (OS), and parent selection (PS) strategies are explained.  
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4.4.2.1 OG strategy 

 

Usually in evolutionary algorithms like DE, each parent is subjected to mutation and recombination 

operations to generate a single child. In surrogate based OG strategies, multiple children are generated for 

a single parent by applying to it the mutation and recombination operators multiple times. Here, the 

previously described JADE-MO mutation and recombination strategies are applied 𝐾 × 𝑊 times to create 

𝐾 × 𝑊 candidate offspring, of which one is selected as most promising according to the surrogate models 

predictions. This is accomplished by selecting 𝐾 different 𝒙𝑏𝑒𝑠𝑡,𝑔, 𝒙𝑟1,𝑔, and  𝒙𝑟2,𝑔 for each parent 𝒙𝑖,𝑔, 

and, for each of those 𝐾 sets of vectors, 𝑊 mutation and recombination parameters are generated. For each, 

of the  𝐾 × 𝑊 sets of vectors and parameters the previous mutation and crossover equations are applied to 

generate the offspring. 

 

4.4.2.2 OS strategy 

 

The next step is to select the most promising offspring from the 𝐾 × 𝑊 children using the surrogate models. 

This follows a three-step process: select the feasible solutions, then select solutions with the best Pareto 

rank, then select the solution with the lowest crowding density. Surrogate models are estimated for each 

constraint and objective function. In the traffic rationing problem, only the inequality objective function 

makes use of the computationally expensive model outputs, so no surrogate model is need for the car usage 

objective function. Based on the constraints’ surrogate models, the children that are predicted to be feasible 

are selected, and the rest discarded. If none are predicted to be feasible, then solutions with the minimum 

number of constraint violations are selected. If all solutions have the same number of constraint violations, 

then the solutions with the minimum magnitude of constraint violations are selected. Naturally, this last 

condition is problem specific. In the case of the traffic rationing problem, let 𝑠𝐸 represent the surrogate 

model for estimating the level of GHG emissions, and 𝑠𝐶 be the surrogate model to estimate the maximum 

pollutant concentration. Additionally, denote the maximum and minimum predictions for each surrogate 

model as 𝑠𝐸𝑚𝑖𝑛, 𝑠𝐸𝑚𝑎𝑥, 𝑠𝐶𝑚𝑖𝑛, and 𝑠𝐶𝑚𝑎𝑥, respectively. Then, the constraint violation score 𝑣𝑠𝑖 of a 

candidate 𝑢𝑖,𝑔 is calculated as follows:  
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𝑣𝑠𝑖 = 𝑤𝐸

𝑠𝐸( 𝑢𝑖,𝑔) −  𝑠𝐸𝑚𝑖𝑛

 𝑠𝐸𝑚𝑎𝑥 −  𝑠𝐸𝑚𝑖𝑛
+ 𝑤𝐶

𝑠𝐶( 𝑢𝑖,𝑔) −  𝑠𝐶𝑚𝑖𝑛

 𝑠𝐶𝑚𝑎𝑥 −  𝑠𝐶𝑚𝑖𝑛
  (4.15) 

 

where 𝑤𝐸 and 𝑤𝐶 (𝑤𝐸 + 𝑤𝐶 = 1) are weights that reflect the relative difficulty in complying with each 

constraint. Having used the constraints’ surrogate models to select the feasible (or least infeasible) 

candidates, the objective function surrogate model is then used to predict each selected candidate’s intake 

inequality objective function value. Based on their predicted intake inequality objective function values and 

the computed traffic restriction objective function value, each candidate is assigned a Pareto rank. Solutions 

with rank 1 are selected. Of the solutions with Pareto rank 1, then the solution with the lowest crowding 

density is finally picked as the most promising offspring of parent 𝒙𝑖,𝑔  

 

4.4.2.3 PS strategy 

 

The parent selection strategy for SAMDE is identical to the JADE-MO strategy, but for one difference: 

after each solution is given a Pareto rank, the rank of infeasible solutions is adjusted to be equal to the 

highest rank found in the pool of candidates, plus one, thus ensuring that infeasible solutions are always 

removed when compared to feasible solutions.   

 

4.4.2.4 Surrogate models and ensembles 

 

The traffic rationing problem has one computationally expensive objective functions and two 

computationally expensive constraints. Therefore, three different surrogate models are estimated and used 

to screen for the most promising candidate solutions. Instead of conducting expensive tests to select the 

best surrogate model type (i.e., radial basis functions, artificial neural networks, kriging) for each function, 

one could use an ensemble of surrogate models. 

A surrogate model ensemble refers to the weighted linear combination of multiple surrogates. The 

expectation is that by combining surrogate models errors will cancel out thus improving overall prediction 

accuracy (Viana et al. 2010). As the optimization progresses the weights for each model change. Zhou et 

al. (2011) grouped ensemble weighting methods into three categories: weighting based on prediction error 
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variance, on cross-validation errors minimization, or on mean square error minimization. In addition, Zhou 

et al. proposed a recursive simple averaging method to compute ensemble weights. A common feature of 

these methods is that the weights are constrained to sum to one. A method that does not appear to have been 

explored in the surrogate optimization literature is the Granger-Ramanathan averaging method (Granger 

and Ramanathan 1984). This method estimates unconstrained ordinary least squares weights (i.e., weights 

do not have to sum to one) based on the surrogate models predictions (explanatory variables) and the true 

function values (dependent variable). In the context of forecasting model accuracy, Diks and Vrugt (2010) 

state that the Granger-Ramanathan averaging method exploits the possible presence of covariance structure 

in the prediction errors, and they show that this simple method performs better than more sophisticated 

ensemble building techniques. Here the Granger-Ramanathan averaging method is used because of its 

simplicity and its good performance in other applications. It is anticipated that the averaging could have a 

smoothing effect on the surrogate model predictions. The smoothing effect is of interest given that the 

simulation models used in the sample application (Section 4.5) have non-deterministic outputs. 

Let 𝚽 represent a vector of model outputs (either for an objective function or a constraint), and 𝚽̂ be a 

matrix of predicted values of the elements in 𝚽 (i.e., each row 𝚽̂𝒋 contains different predictions that were 

made previous to the determination of 𝚽𝐣). Then, the Granger-Ramanathan weights 𝒘𝐺𝑅,𝑔 are estimated 

by:   

 

𝒘𝐺𝑅,𝑔 = (𝚽̂𝒈
𝑻𝚽̂𝒈)

−1
𝚽̂𝒈

𝑻𝚽𝒈   (4.16) 

 

 

In each iteration the combined predictions 𝚽̂𝒄𝒐𝒎 are equal to 𝚽̂𝒈+𝟏𝒘𝐺𝑅. The weights can be initialized in 

several ways.  For example, given the initial population and its evaluated outputs, the best surrogate model 

type can be determined for each function (i.e., using a cross-validation approach) and assigned a weight of 

one, while the other models are assigned a zero weight. A simpler method is to use equal weight averaging, 

where all the models are assigned the same weight; this is the approach used in the example presented in 

section 4.5. After each iteration of the algorithm, the surrogate model predictions for each candidate 
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solution are stored in a matrix 𝚽̂, and after each candidate is evaluated with the actual model and the 𝚽 

vectors are obtained, equation 4.16 is used to update the 𝒘𝐺𝑅 weights for the next iteration.   

  

4.4.2.5 SAMDE steps 

 
The steps and related notation of the algorithm are detailed next. 

 

Decision variable  

 

𝒙 : vector of the percent level reduction of the total demand for car usage in rationing 

zones 

 

Functions  

 

𝑂𝐹𝐷 : total car usage objective function 

𝑂𝐹𝐸𝑄 : exposure inequality objective function 

𝑍𝐸  : estimate of total GHG emissions 

𝑍𝐶  : estimate of maximum pollutant concentration  

 

Counters  

 

𝑔 : generation counter   

 

Parameters  

 

M : number of different surrogate models  

 

Sets 

 

Χ : set of evaluated solution vectors 

Λ𝐸𝑄 : set of computed  𝑂𝐹𝐸𝑄 values 

𝑂𝐸 : set of computed  𝑍𝐸  values 

𝑂𝐶  : set of computed  𝑍𝐶  values 

Γ𝐸𝑄 : set of surrogate model 𝑂𝐹𝐸𝑄 predictions for parents’ offspring 

Η𝐸 : set of surrogate model 𝑍𝐸  predictions for parents’ offspring 

Η𝐶  : set of surrogate model 𝑍𝐶  predictions for parents’ offspring 
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Steps 

 

1. Initialization.  

1.1 Set generation counter 𝑔 = 1.  

1.2 Generate initial set of points (parent population) 𝑋𝑔 = {𝑥1,𝑔, … , 𝑥𝑖,𝑔, … , 𝑥𝑁𝑃,𝑔} within predefined 

bounds. 

1.3 Set initial model 𝒘𝐺𝑅 weights equal to 1/𝑀 for all objective functions and constraint RBF models.  

1.4 Add solutions in 𝑋𝑔 to X. 

2. Initial parent evaluation. 

2.1 For each point in 𝑋𝑔, evaluate objective function 𝑂𝐹𝐷 and 𝑂𝐹𝐸𝑄 and constraints 𝑍𝐸  and 𝑍𝐶 . 

2.2 Add data to archives Λ𝐸𝑄, 𝑂𝐸, and 𝑂𝐶.  

3.  Generate surrogate models. 

3.1 Given 𝑋𝑔 and the data in archives Λ𝐸𝑄, 𝑂𝐸, and 𝑂𝐶, fit surrogate models for the 𝑂𝐹𝐸𝑄 objective 

function and constraints  𝑍𝐸  and 𝑍𝐶 . 

3.2 Using 𝒘𝐺𝑅  weights, create surrogate ensemble. 

4.  Create offspring using the OG strategy. 

5. Select most promising offspring 𝑌𝑔. 

5.1 Using surrogate models, screen for the most promising offspring using the OS strategy. 

5.2 For each selected offspring, save the predicted objective function and constraint values in archives 

Γ𝐸𝑄, Η𝐸, and Η𝐶. 

6. Evaluate offspring 𝑌𝑔. 

6.1 Evaluate the most promising offspring with the computationally expensive models. 

6.2 Update the X, Λ𝐷, Λ𝐸𝑄, 𝑂𝐸, and 𝑂𝐶 sets with the new information. 

7.  Apply PS strategy to choose the parents of the next generation. 
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8. If 𝑛 = 𝑛𝑚𝑎𝑥, stop and return the current parent population solutions. Else, reset 𝑛 = 𝑛 + 1 and 

continue to Step 9. 

9. Update ensemble weights and algorithm parameters. 

9.1 Using costly model outputs and the data in achieves Γ𝐸𝑄, Η𝐸, and Η𝐶, update the objective function 

and constraints surrogate model weights utilizing the Granger-Ramanathan averaging method. 

9.2 Clear data from sets Γ𝐸𝑄, Η𝐸, and Η𝐶. 

9.3 Update mutation and crossover parameters. 

9.4 Return to step 3. 

 

4.5 Numerical Example 
 

For illustrative purposes, a numerical example is presented in this section. In this example the planner seeks 

a rationing schedule that maximizes auto trips, maximizes pollutant exposure equality, and reduces GHG 

emissions and the maximum pollutant concentration by 20 percent relative to conditions prior to the 

introduction of the scheme. The proposed problem is applied in a hypothetical version of Sioux Falls. Figure 

4-1 presents the network. Zones are aggregated to 10 rationing districts. The planner’s decision is the degree 

to which auto drivers in each zone will be forced to take the bus, the only alternative mode besides walking.   

 

4.5.1 Network and population data 

 
The Sioux Falls network is composed is composed of 76 links, 24 nodes, and 24 OD zones. Figure 4-1 

presents the network. The link attributes were obtained from an online database (Bar-Gera 2014). A 

population of 600,000 is assumed to live in the 24 zones. Each individual agent is characterized by an age 

group class, an income class, a mode class, and an activity profile class. There are five activity profiles: 

full-time worker, part-time worker during the day, part-time worker during the night, student, and 

unemployed. Tied to each activity profile is also a series of mandatory activities that the agent always 

performs. Each agent is also characterized by a start and end time for each of the mandatory activities. 

Regarding the mode class classification, it is assumed that every agent only makes binary choices involving 
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their assigned mode class and walking. For example, if a person is an auto driver, at a particular destination 

and mode decision point (to be explained in the next section), the agent only considers walking as an 

alternative to using the car. Similarly, an agent classified as a bus user only considers using the bus or 

walking. For all rationing districts, the rationing fraction 𝑥𝑧 was bounded in the interval [0.5, 1].   

 

 
Figure 4-1 Sioux Falls Network and its rationing zones 

4.5.2 Simulation model structure 

 

The structure of the simulation model is presented in Figure 4-2. The model is composed of an activity 

scheduling model, a traffic assignment model, a vehicle emissions model, a pollutant dispersion model, and 

a pollutant exposure model.  
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Figure 4-2 Components of integrated model used to compute agents' pollutant intake 

 

A simple behavioral model structure was utilized to simulate individual agent’s activity schedules, 

meaning, a list of each agent’s activities, the location of the activities, the time period when they occur, 

and, in the case of transportation activities, the mode utilized. Activity participation was modeled using a 

combination of rules and sequential logit models. Each agent has an assigned activity type profile that 

determines the types of mandatory activities (work and school) that the agent has to engage in, along with 

the number of non-mandatory activities that the person can participate in and when each non-mandatory 

activity can occur. These activity anchors constituted the rule-based model component of the activity 

scheduling model. For example, a full time worker has at most two non-mandatory activities: one in the 

middle of the work period and one after work. In the middle of the work period the worker decides to either 

perform an activity outside of the workplace or stay in the work location. After work the person decides to 

either go home or perform an activity. If the agent decided to return to their home, then it again has to 

decide whether to perform an activity. If at any stage the agent is simulated to perform an activity, a joint 

decision is made on where the activity will be performed and which mode will be used. The activity 

participation and joint destination-mode choice decisions were modeled sequentially using a logit 

formulation. The binary logit model was used to compute the probability of deciding to participate in an 

activity or not, and a multinomial logit model was used to compute the probability of selecting a destination-

mode alternative. Based on these probabilities, a Monte Carlo simulation procedure was used to determine 

the agent’s choices. The rules and specification of the logit models are presented in Appendix A. 
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The activity scheduling model results in individual activity lists that contain information on people’s 

origin and destination, modes, and the time period when the trip occurs. Initially, these lists were generated, 

in part, using free flow road network travel times. The travel times were updated based on the output of the 

traffic assignment model. After the activity schedules were determined, the lists’ trips were aggregated to 

mode and time specific OD matrices. The auto OD matrices were assigned to the road network by the traffic 

assignment model, while bus OD demand was assumed to travel on the shortest path and to have no effect 

on the auto travel time. The gradient projection method (Jayakrishnan et al. 1994) was employed to find 

the user equilibrium traffic flows on the network for the different model time periods. The output of the 

traffic model were auto link flows, OD path sets, and their corresponding path flows. With this information 

the auto OD travel time were updated by combining predecessor link flow information with updated link 

flow information using the method of successive averages (Boyce et al. 2008), which results in an updated 

set of link travel times, and, consequently, new auto OD travel times. The new auto OD travel times were 

looped back to the activity scheduling model, and a new simulation of the agent’s activity schedules was 

performed. This feedback procedure was repeated only three times, given time constraints.   

In this example, only autos emit pollutants. Link GHG and PM2.5 emissions were estimated using 

speed-based emission factors obtained from MOVES. Following methodology proposed by Zhang et al. 

(2010), a Gaussian plume model was utilized to compute average PM2.5 pollutant concentrations over a 

14,641 receptor grid (with 200 meter spacing) that covers the Sioux Falls region. Only four meteorological 

scenarios (with distinct wind speeds, directions, and atmospheric stability classes) were utilized.   

Given the activity schedules, the path sets and flows, and the time specific PM2.5 concentration at all 

receptor points, each agent’s daily PM2.5 intake was estimated using the pollutant exposure model. As 

discussed in section 4.2.3, pollutant intake was modeled here as the sum of the agent’s intake while at 

particular locations and the intake while moving between locations. The pollutant intake model determined 

the time spent in each microenvironment based on each agent’s schedule, along with the concentration of 

the microenvironment. For activities at a particular location, the microenvironment’s concentration 𝐶𝑚𝑒,𝑆 
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were computed with the formula 𝑝𝐹𝑚𝑒,𝑆 × 𝐶𝑟,𝑚𝑒𝑆, where 𝐶𝑟,𝑚𝑒𝑆 is the concentration of the closest receptor 

to where the agent is located. The infiltration factor 𝑝𝐹𝑚𝑒,𝑆 was generated by taking random draws from a 

normal distribution with mean 0.66 and variance 0.04. In the case of concentrations encountered while 

moving via auto or bus, the movement’s concentration exposure profile was constructed based on the 

movement’s path links, the average PM2.5 concentrations on these links (as indicated by the receptors in the 

proximity of each link), and the time it takes to traverse each link. The infiltration factors for autos and 

buses were generated in a similar fashion, but with a normal distribution with mean 0.9 and variance 0.01. 

A random walk algorithm was used to simulate the path that walkers take from their origin to their 

destination, and the intake was computed based on concentrations encountered in the random path; walking 

speed was fixed at 3 miles per hour. Daily breathing rates were also randomly generated using a truncated 

normal distribution with mean of 12 m3/d and variance of 2 (m3/d)2. Additional details on the pollutant 

intake model can be found in Appendix A. 

 

4.5.3 Solution algorithm parameters  

 
The parent population 𝑁𝑃 was set to 40. A maximum of 10 iterations where performed, so in total 400 

candidate solutions were evaluated. The mutation factor 𝜇𝐹 and cross-over factor 𝜇𝐶𝑅 were initiated at 0.5 

and 0.8, respectively. A value of 0.3 was used for the recombination factor 𝑐. Only eight solutions were 

used for 𝑛𝑏𝑒𝑠𝑡. The factors 𝐾 and 𝑊 were set to 10 and 100, so 1000 candidate offspring were prescreened 

for each parent. Radial basis function (RBF) models were used as surrogate models. The ensembles were 

constructed using three parameter free RBF functional forms: linear, cubic, and thin-plate spline. 

 

4.5.4 Results 

 

In Figure 4-3, the Pareto frontier for the numerical example is presented. The feasible solutions have total 

traffic restrictions ranging from 23 percent to 48 percent, and Atkinson index ranging from 0.90 to 0.93. 

Without the rationing scheme the Atkinson index is 0.95. High levels of inequalities are found, in part, 

because very similar wind directions were used, the network is relatively sparse, and agents are allowed to 
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perform activities at any point within the receptor grid. So, agents performing activities in the relatively 

small number of locations that are downwind and close to links inhale significantly more pollutants than 

their counterparts. This result, however, highlights the possibility that improvements in pollutant exposure 

inequality could be hard to achieve if there are structural reasons (e.g., meteorology, population distribution, 

urban form) for the observed inequality that are unaffected by traffic management schemes. Here small 

reductions in the Atkinson index are achieved even though there are significant reductions in traffic. In 

Figure 4-4, a box plot of the reduction level variables is presented. For each variable, the whiskers represent 

the minimum and maximum values, the edges of the box represent the 25 and 75 percentile, and the box’s 

central mark is the variable’s median. As can be seen, there is great variation in the values that the rationing 

variable can assume. The rationing variable for district 6 is the least disperse and the variable with the 

highest mean value. District 5 has the lowest median reduction. Note that most of the variables are skewed 

to the left, with over 25 reduction in car usage.  

 
Figure 4-3 Pareto frontier for numerical example 
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Figure 4-4 Box plot of rationing variables 

 

4.6 Closing Remarks and Future Research 
 

 A traffic rationing problem was introduced that attempts to balance the planner’s objectives of 

improving air quality conditions, reducing GHG emissions, and equitably distributing environmental 

pollution burdens and benefits, with the objective of allowing citizens the opportunity to use their desired 

mode of transportation. To find good solutions for this problem, a multiobjective differential evolution 

algorithm was proposed that incorporates surrogate model ensembles to predict which candidate solutions 

are feasible and more likely to be better than their parent solutions.   

 Objective function 4.1 reflects the planner’s desire to reduce the disutility of the control scheme by 

maximizing the demand served. Since 𝑥𝑧 will not be one for all ODs, the planner is simultaneously faced 

with a second problem: what to do with the rationed demand 𝑥𝑧𝑞𝑧. A possible response is to improve or 

introduce a transit system to service the capped demand. Therefore, the proposed problem can be extended 

by integrating objectives related to transit network design, where decisions on transit network service (e.g., 

in terms of number of buses and routes) would be made considering demand 𝑥𝑧𝑞𝑧, budget constraints, and 

possibly equity measures. This second objective can serve as a way to discriminate among the multiple 

possible solutions the proposed problem. The traffic rationing problem could also be modified by 
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substituting objective function 4.1 with a function that accounts for the differences in disutility between 

capped demand given the variations of travel costs between OD pairs (i.e., accounting for inequalities in 

travel costs). 

 In the context stochastic optimization problems like the one presented here, SAMDE could potentially 

be improved by substituting the surrogate ensemble approach used with the radial basis functions proposed 

by Jakobsson et al. (2010), which are intended to be used with noisy black box functions. Additionally, the 

adjustments implemented on JADE-MO could also be implemented in the LMSRS-inspired multiobjective 

optimization algorithm proposed by Chow and Regan (2014), and tests could be conducted to determine if 

the resulting algorithm performs better than SAMDE.  
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Chapter 5 

Summary and Future Research 
 

 

A summary of research contributions and related future research is presented next. 

 

5.1. Summary of Contributions  
 
The general objective of the presented research was to provide planners with optimization-based approaches 

to design pricing and traffic rationing schemes that minimize human exposure to motor vehicle generated 

pollutants. To this end, network design problems and related surrogate-based solution algorithms were 

proposed.  

 In Chapter 2, the TDP was extended to account for population exposure to pollutants and environmental 

inequalities between zones. The planner’s upper level problem in the TDP is to find the set of toll locations 

and levels that minimize population intake to pollutants and environmental inequality subject to a budget 

constraints and pollutant concentration chance constraints. In this problem, environmental inequality was 

defined in terms of zonal differences in pollutant concentrations at receptor points. To solve this problem a 

mixed integer variant of the LMSRS algorithm was proposed. Numerical results suggest that the proposed 

algorithm performs better than previous GA methods. In addition, the GA-LMS algorithm was presented; 

the performance of this algorithm was promising, but not better than the mixed integer variant of the 

LMSRS algorithm. The two proposed algorithms are derivative-free, so they can be applied to similar 

network design problems, like network capacity expansion problems where the planner must select which 

links to improve (integer variable), and by how much the capacity will be expanded (continuous variable).    

 The research presented in Chapter 3 can be utilized by transportation planners to design cordon and 

area pricing schemes subject to environmental constraints. Like in previous work, the area pricing problem 

is structured as a bi-level optimization problem. But, departing from previous elastic demand formulations 

of the problem, objective functions were proposed that can be easily applied with most state-of-the-practice 

planning models. A surrogate-based solution algorithm was proposed for the area pricing problem, which 
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is also applicable to cordon pricing problems. Preliminary numerical tests suggest that RBF models 

estimated using a geometric representation of a charging boundary result in predictions of objective 

function values that are relatively good, with correlations between model and surrogate values greater than 

0.7. 

 A bi-objective traffic rationing problem with environmental constraints was considered in Chapter 4. 

In this problem, restrictions on zonal trips and inequalities in pollutant intake were minimized, subject to 

constraints on the levels of GHG emissions and PM2.5 concentrations. In contrast to the population intake 

methodology utilized in Chapter 1, in this chapter an individual exposure approach is used, with the 

assumption that the planner has access to models that can simulate agent-level activity scheduling. A 

surrogate-assisted differential evolution algorithm was presented that can be used for multiobjective 

continuous optimization problems with linear and non-linear constraints.       

 

5.2. Future Research 
 

Future research directions are broadly discussed in terms of additional optimization problems that can be 

considered in light of the problems proposed in previous chapters, and in terms of further research on the 

application of surrogate models.   

 

5.2.1. Planning models 

 

The problems proposed in this work dealt exclusively with personal transportation travel demand, with 

no consideration of urban freight movements. Urban freight movements by trucks are a major source of 

GHG emissions and other pollutants (Piera et al. 2011). For this reason, multiple strategies have been 

proposed to control truck generated pollution, including the introduction of programs aimed at shifting truck 

traffic to periods of the day that experience less traffic congestion (e.g., Holguin Versa et al. 2011). 

Although it is argued that this shift would reduce truck emissions, studies have shown that shifting truck 

traffic to off-peak hours could increase pollutant concentrations in urban areas due to the relatively stable 

atmospheric conditions in those periods (Sathaye et al. 2010). There appears to be a trade-off between 
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minimizing emissions and minimizing pollutant concentrations when deciding how many trucks to shift to 

off-peak hours. Additionally, depending on the industry, there could be trade-offs between reducing the 

environmental impact of truck traffic and the economic profitability of firms. In light of these multiple 

competing objectives, research could be conducted on the development of an optimization-based 

framework to aid decision makers design truck traffic management programs.   

In addition, although transit choice was considered in Chapters 3 and 4, it was treated in the abstract, 

with no simulation of how increase patronage would affect the operations of the transit system. Given the 

budget constraints that surround the expansion of any transportation system, and the likely need to expand 

such systems when pricing and traffic rationing programs are implemented, it would be useful to couple 

the proposed problems with transit network design problems.  

 

5.2.2. Surrogate-based solution algorithms and other applications 

 

Comparative studies of algorithm performance are necessary, particularly in the case of the proposed 

algorithm for cordon and area-based pricing. Like the tests conducted in Chapter 2, these studies will 

involve multiple model formulations, including the elastic demand formulations used in previous discrete 

network cordon pricing studies. Additional tests are also required to explore alternative surrogate-based 

methods for handling stochastic simulations, which is particularly important in the case of models that 

simulate agent-level behavior in non-deterministic manner.  

An open question is which surrogate model works best in finding good solutions for the transportation 

network design problems found in the literature. Accuracy-based criteria is commonly used in the selection 

of surrogate models. However, Viana et al. (2010) noted that using the most accurate surrogate models does 

not necessarily lead to the best solutions. In fact, a surrogate model could have low approximation accuracy 

and, yet, it could be more useful in the search of good design solutions than a more accurate model (Jin 

2011). Extensive research remains to be done to determine which surrogate models are best suited for the 

different transportation optimization problems that can be tackled with these surrogate-based techniques. 
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Another potentially useful applications of surrogate models is as substitutes or complements of 

particularly time consuming components of joint transportation-air pollution models. For example, instead 

of applying a computationally expensive air dispersion model over a large area to compute concentrations 

at thousands of grid receptors, the model could initially be applied to compute the concentrations over only 

a fraction of the receptor points. Then a surrogate model, fitted with the modeled concentration at the 

selected receptors, could be used to interpolate the concentration in the remaining receptors not considered 

with the computationally expensive models. This could potentially reduce the computational burden that is 

incurred by embedding an air dispersion model in an optimization problem. Naturally, in this case the 

accuracy of the surrogate model is critical. Preliminary tests conducted with a simple Gaussian plume model 

suggests that this is a promising line of research. The tests were performed using the Sioux Falls grid 

receptor network utilized in Chapter 4, the Sioux Falls’ user equilibrium traffic flows provided by Bar-

Guera (2007), MOVES’ PM2.5 emission factors, the Gaussian plume model, and a Gaussian RBF function 

as the surrogate model. The surrogate model was estimated with 53 percent of all the receptor concentration 

information, and used to interpolate the concentrations at the remaining locations. In Figure 5-1 the 

Gaussian model estimate are plotted versus the RBF predictions. The correlation between the Gaussian 

model values and the RBF interpolations is of 0.99. Future tests will be conducted with more complex air 

dispersion models, different receptor grip arrangements, and other types of surrogate models.    
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Figure 5-1 Gaussian RBF pollutant concentration interpolations versus Gaussian plume model estimates 
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Appendix A 

Description of Activity Scheduling Model and Pollutant Intake Model 
 

 

 

 

This appendix discusses the structure and assumptions used in the development of the activity scheduling 

model and the pollutant intake model. Both are simple models used simply for the numerical example in 

Chapter 4. 

 

A-1 Description of Activity Scheduling Model 

 

The activity scheduling model is used to simulate activity participation and joint destination-mode choices 

of individual agents. Each agent in the model was characterized by a class type, and based on the class the 

agent was assigned a series of mandatory (fixed) activities and a series of potential non-mandatory 

activities. In Table A-1 the class types are listed, along with the number of mandatory activities that each 

class performs and the maximum number of possible non-mandatory activities. Each agent was also 

characterized by an age group class, an income class, a travel mode class, a home location, the location of 

any mandatory activity, and the time each activity can be performed. Based on these attributes, an agent’s 

participation in non-mandatory activities was simulated using a binary logit model (parameters shown in 

Table A-2). If it was simulated that an activity was performed, then a multinomial logit model was used to 

select the mode and destination for the activity (parameters shown in Table A-3). So, a sequential logit 

model structure was used to simulate agent choices.  

 The full-time worker has two potential non-mandatory activities at two different time periods: in the 

middle of the work period and after work. In the mid-work period, the agent has the choice of staying at the 

work location or performing an activity outside the work location. After work, the agent has a choice of 

returning home or performing an activity. If the agent goes home, a choice is then made on whether to stay 

home or perform an activity. The part-time daytime workers can perform an activity after work. Similar to 

the full-time worker, the after-work choice is to perform an activity or go home, and if home is picked, 
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another activity choice simulation is perform for the agent while at home. Part-time nighttime workers and 

students do not have non-mandatory activity choices. The choice of the unemployed person is either to stay 

home or perform an activity.  

For all classes, once it was determined that the agent would perform an activity, the next choice was to 

select the destination and mode. Only two modes were consider: the travel model class assigned to the 

person (auto, bus, walk) and walk. The joint destination-mode choice was a function of an attraction factor 

for each destination and the modes’ travel times and out-of-pocket costs. 

 

Table A-1 Agent classes 

 

Class Description # mandatory activities # non-mandatory activities 

1 Full-time worker 1 2 

2 Part-time daytime worker  1 1 

3 Part-time nighttime worker 1 0 

4 Student 1 0 

5 Unemployed 0 1 
 

 

 

Table A-2 Parameters for activity participation binary logit model 

  

Variable Parameter value 

Alternative specific (do activity) constant  1.00 

Age group 1 -0.10 

Age group 2 -0.08 

Age group 3 -0.01 

Age group 4 0.01 

Age group 5 1.00 

Income group 1 0.01 

Income group 2 0.00 

Income group 3 -0.10 

Income group 4 -0.15 

Income group 5 -0.20 
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Table A-3 Parameters for activity participation binary logit model 

  
Variable Parameter value 

Auto constant  2.00 

Bus constant -0.50 

Travel time (minutes) -0.02 

Travel cost (cents) -0.008 

Destination attraction factor 0.05 

 

A-2 Description of Pollutant Intake Model 

 
The pollutant intake model was used to simulates the time (𝑡𝑚𝑒) spent in each of the agent’s activities, the 

concentration of the microenvironment (𝑚𝑒) during different periods, and the pollutant intake (𝐼𝑚𝑒) 

resulting from these factors. As part of this simulation each agent was given a breathing rate 𝐵.  The basic 

intake 𝐼𝑚𝑒 formula is: 

 

𝐼𝑚𝑒 = 𝐵 × 𝑡𝑚𝑒 × 𝐶𝑚𝑒  (A1) 

 

 

The time spent on each microenvironment was specified as a function of the activity being performed. 

The time spent in the home location before a mandatory activity was the only activity that is a function of 

the start time of another activity. The time when an agent departs from home for a mandatory activity was 

a function of the activity’s start time, the average travel time to the mandatory activity location, and a 

randomly generated factor that determines how early or late the agent arrives to the mandatory activity 

location. This factor was generated using a normally distributed random number generator with mean of 5 

minutes and variance of 0.5 squared minutes. The duration of other activities were generated by taking 

random draws from a normal distribution with mean 𝜇 and variance 𝜎. Table A-4 presents the normal 

distribution parameters used for different activities. The work activity parameters refer to a single block of 

work activity. For full-time workers, two draws were made from the work duration normal distribution for 

the two blocks of mandatory activity. 

Pollutant intake from movements by auto and bus was a function of the links in the movement path, the 

time spent on each link, and the infiltration factor for the transporting vehicle. For each origin-destination 

(OD) pair, bus users were assumed to take the shortest path between each OD. In the case of auto users, 
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multiple paths can exists for each OD. For an OD with multiple paths, an agent was assigned to a single 

path with a probability equal to the path’s traffic flow divided by the total flows between the OD pair (the 

sum of all path flows for that OD pair). This path information was obtained from the output of gradient 

projection algorithm.  

 

Table A-4 Parameters for the normal distributions used in the simulation of activity duration 

 

Activity 𝝁 𝝈 

Waiting at bus stop 5 0.5 

Work  240 30 

Non-mandatory activity  60 8 

School 240 30 
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