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Abstract 

Behavioral, neuropsychological, and neuroimaging 
evidence indicate categories can be learned either via an 
explicit rule-based mechanism dependent on medial 
temporal and prefrontal brain regions, or via an implicit 
information integration mechanism relying on the basal 
ganglia and occipital cortex. In this study, participants 
viewed Gabor patches that varied on two dimensions, 
and learned categories via feedback. Different stimulus 
distributions can encourage participants to favor explicit 
rule-based or implicit information integration 
mechanisms. We monitored brain activity with scalp 
encephalography while participants (1) passively 
observed Gabor patches, (2) categorized patches from 
one distribution, and, one week later, (3) categorized 
patches from another distribution. Categorization 
accuracy was matched across the two learning 
conditions, which nevertheless elicited several distinct 
event-related potentials. These results demonstrate the 
efficacy of real-time neural monitoring during category 
learning and provide additional evidence implicating 
different neurocognitive mechanisms in explicit rule-
based versus implicit information integration category 
learning. 

Keywords: category learning; memory; event-related 
potentials; ERP; EEG. 

Introduction 
Behavioral, neuropsychological, and neuroimaging 
evidence suggests that categories can be learned via 
explicit and/or implicit mechanisms (Ashby & Maddox, 
2005; Kéri, 2003; Nomura & Reber, 2008). Ashby and 
Maddox (2005) described a feedback category-learning 
paradigm with different category distributions to 
selectively encourage one of the two types of learning: 
Explicit or Rule-Based learning (RB) versus Implicit or 
Information Integration learning (II). These strategies 
have been dissociated behaviorally using working 
memory dual-task procedures (e.g., Zeithamova & 
Maddox, 2006), feedback delay (e.g., Maddox, Ashby, 
& Bohil, 2003), and procedural interference (e.g., 
Ashby, Ell, & Waldron, 2003). In our previous work, 

we (Nomura et al., 2007; Nomura, Reber, & Maddox, 
2007) used functional neuroimaging to demonstrate that 
RB category learning depends on contributions from 
prefrontal cortex (PFC) and medial temporal lobe 
(MTL), whereas II category learning depends on basal 
ganglia and occipital cortex.  

One possible explanation for RB learning specifies a 
mechanism for hypothesis testing (Ashby et al., 1998). 
By this account, a participant develops a candidate rule 
(category A has bars that are thinner than x; category B 
has bars thicker than x) that is tested based on the 
feedback on each trial. This RB mechanism would 
presumably require both updating and maintaining the 
rule in working memory (dependent on PFC) and 
updating and maintaining information about the 
boundary condition in long-term memory (dependent 
on MTL). 

In contrast, II learning appears to occur implicitly, 
such that the rule for the category structure is difficult 
or impossible to describe verbally or experience 
subjectively. II learning may occur via procedural 
learning under the control of the caudate nucleus in 
conjunction with visual processing areas in occipital 
cortex. Dopaminergic reward circuits of the caudate 
may be responsible for associating specific stimuli with 
groups of neurons coding for their visual features in 
occipital cortex (Ashby et al., 1998). 

Building on the success of previous neuroimaging 

Figure 1. Category distributions used in this study. 
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efforts to dissociate RB and II category learning, we 
utilized electrophysiological methods to obtain 
additional evidence about this neural dissociation with 
greater temporal precision and to learn more about how 
the two mechanisms may differ. 

Methods 
Task Description 
We used a visual category-learning paradigm (Maddox, 
Ashby, & Bohil, 2003) in which subjects learn, via 
feedback, to categorize Gabor patches that vary in 
spatial frequency and orientation and that are selected 
from distributions (Figure 1) designed to encourage 
either explicit rule-based or implicit information-
integration mechanisms. 

Participants  
Twenty-eight Northwestern University students served 
as participants in this experiment.  Participants received 
US$15 per hour for two 2- to 3-hour testing sessions. 
Participants gave informed consent according to the 
oversight of the Northwestern University Institutional 
Review Board. 

Procedure 
Prelearning At the beginning of the first testing 
session, participants passively viewed 80 RB and 80 II 
stimuli from the two stimulus distributions to ensure 
that there were no systematic differences in ERPs based 
entirely on the two types of distributions. The timing 
was identical as in the learning trials, but participants 
made no response and no feedback was given. 
Learning In separate sessions, each participant learned 
an RB category defined by the spatial frequency of 
Gabor patches and an II category defined by a diagonal 
threshold based on both spatial frequency and spatial 
orientation. Sessions were 1 week apart and 
administered in counterbalanced order. Participants 
received no instructions about the nature of the 
categories, but rather discovered the categories with the 
aid of auditory feedback given 2.5 s after stimulus 
onset. Figure 2 provides a schematic of the trial 
timeline.  Participants categorized 320 Gabor patches, 
presented in four blocks, during each learning session.  
They were debriefed about their categorization 
strategies after the second testing session. 

EEG Continuous electroencephalographic (EEG) 
recordings were made during prelearning and learning 
blocks from 59 evenly distributed scalp sites using tin 
electrodes embedded in an elastic cap. Four additional 
channels were used for monitoring horizontal and 
vertical eye movements. Electrode impedance was ≤ 5 
kΩ. EEG signals were amplified with a band pass of 
0.05–200 Hz, sampled at a rate of 1000 Hz, and re-
referenced offline to average mastoids. Participants 
were instructed to attempt to refrain from blinking or 
moving their eye position from fixation during the 
categorization portion of each trial. 

For categorization event-related potentials (ERPs), 
trials exhibiting eye movements were rejected (< 15% 
of trials). Averaging epochs lasted 1100 ms, including 
100 ms prior to stimulus onset. Participants showed a 
high of blinking during auditory feedback, so we 
employed a blink-correction algorithm based on 
independent component analysis instead of rejecting 
trials (Source Signal Imaging, 2008). Averaging epochs 
for feedback processing lasted 850 ms, including 100 
ms prior to stimulus onset. 

Results 
Based on prior behavioral and neuroimaging results, we 
anticipated that RB and II category learning 
mechanisms would produce different ERPs particularly 
when comparing successful (correct) and unsuccessful 
(incorrect) trials. Specifically, we predicted that ERPs 
associated with explicit memory (Late Positive 
Complex/P3) and ERPs associated with selective 
attention (N1) would show correct-incorrect differences 
only during RB learning. Given that RB learning is 
more explicit than II learning, we also anticipated a 
differential P300 to feedback for incorrect trials in RB 
versus II learning. 

Decision-Bound Theory Modeling 
We used mathematical models derived from Decision-
Bound Theory (DBT; Ashby, & Maddox, 1993; 
Nomura et al., 2007) to fit each participant's responses 
and obtain a detailed picture of how they were likely 
categorizing the stimuli. The RB model assumed a 
vertical decision boundary (in stimulus space) reflecting 
the use of a rule dependent on a single stimulus 
dimension (spatial frequency). The II model assumed a 
decision boundary with slope equal to 0.5 (i.e., a 
diagonal line reflecting integration of both dimensions). 
In each case, the model identified the placement of this 
boundary and the perceptual noise parameter that best 
accounted for the observed data. Thus the models both 
had exactly two free parameters to allow for direct 
comparison of fit. 

Of the 28 participants in the study, 15 exhibited an 
II distribution response profile best fit by an II DBT 
model, while 13 exhibited an II distribution response 
profile best fit by an RB DBT model (see Figure 3 for Figure 2. Trial timeline. 
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distribution profiles from representative participants). 
Thus, for analyses reported here we excluded data from 
participants who were probably using a unidimensional 
RB strategy to categorize the II category distributions. 

Task Performance 
Of the 15 participants whose DBT fits were consistent 
with II strategy use in categorizing the II distributions, 
2 did not have an adequate number of incorrect trials to 
allow for the correct/incorrect ERP analysis (< 30), so 
their results were also excluded from analysis. 

For the remaining 13 participants, accuracy in RB 
and II conditions (Figure 4) did not reliably differ 
[F(1,12) = 1.5, ns]. There was a main effect of block 
[F(3,36) = 29, p < .001] and no interaction [F(3,36) < 1, 
ns]. Thus, observed differences in correct/incorrect ERP 
subtractions (described below) cannot easily be 
attributed to simple differences in accuracy between RB 
and II learning. 

Response time in RB and II conditions did not 
reliably differ [F(1,12) = 1.7, ns]. Correct trials were 
reliably faster than incorrect trials  [F (1,12) = 23, p < 
.001].  There was no effect of block [F (1,12) = 1, ns]; 
however, there was a condition by block interaction [F 
(3,36) = 3.8, p = .02] whereby II RTs slightly increased 
over blocks while RB RTs slightly decreased. Because 

of the difference in correct/incorrect RTs we carefully 
evaluated the ERPs described in the following sections 
for onset and offset latencies; however, there was no 
evidence this differed across accuracy or categorization 
conditions. 

Event Related Potentials 
Learning Visual inspection of waveforms and 
topographies for correct/incorrect subtractions for each 
categorization condition confirmed three areas of 
spatiotemporal interest. 

First, an early (115-155 ms) negative frontocentral 
ERP was predictive of correct categorization (Figure 5) 
in the RB condition [F(1,12) = 8.1, p = .015], but not 
the II condition [F(1,12) =  .07, ns]. Second, a slightly 
later (170-200 ms) negative occipito-temporal ERP was 
modulated by categorization condition (Figure 6) with 
less negativity on correct than incorrect RB trials 
[F(1,12) = 8.2, p = .014], but more negativity on correct 
than incorrect II trials [F(1,12) = 7.9, p = .016]. Third, a 

Figure 3. Model fits for two participants in the II 
condition showing how DBT models can be used to 

select participants based on likely strategies. 
 

Figure 6. Early negative occipital ERPs differed 
at 170-200 ms as a function of accuracy and RB/II. 
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Figure 5. Early negative frontocentral ERPs  
at 105-155 ms, larger for correct than for 

incorrect trials during RB learning. 
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included in ERP analyses. 

B

B
B

B

E

E E

E

Block 1 Block 2 Block 3 Block 4
50

60

70

80

90

100

Pe
rc

en
t C

or
re

ct

B RB

E II

Accuracy

3078



late (400-700 ms) positive parietal ERP was predictive 
of correct categorization (Figure 7a) in the RB 
condition [F(1,12) = 9.0, p = .011], but not in the II 
condition [F(1,12) =  .077, ns]. The magnitude of the 
correct/incorrect subtraction, measured for a 60-ms 
interval at its maximum,  was reliably correlated 
(Figure 7b) with RB performance [r(11) = .62, p = .02], 
but not with II performance [r(11) = .11, ns]. 
Prelearning Although our comparisons of interest 
during learning were correct/incorrect subtractions 
performed within a categorization condition (i.e., RB or 
II), not across conditions, we wanted to ensure that any 
differences were not due to the nature of the RB or II 
stimuli distributions. Inspection of prelearning and 
learning waveforms suggested that early peaks were 
timed similarly between prelearning and learning, and 
prelearning peaks were smaller in amplitude than 
learning peaks. In contrast the prominent late positivity 
seen in learning was absent in prelearning. We directly 
compared all three temporal regions of interest during 
prelearning and found no significant differences 
between RB and II waveforms at the electrodes that 
were tested at during learning. This suggests that 
differences in stimuli per se did not contribute to 
observed ERP findings during learning. 
Feedback In order to assess predictions about the 
explicit nature of the RB condition relative to the II 
condition, we examined ERPs recorded during 
feedback for the presence of a differential P300 
response, an ERP sometimes associated with subjective 

expectations (Polich, 2007). Both correct and incorrect 
trials showed P300s with broad topographies centered 
around 350 ms (Figure 8). Whereas ERPs for RB and II 
conditions did not differ in the 310 to 410 ms range for 
correct trials [F(1,12) = .01, ns], they did differ for 
incorrect trials [F(1,12) = 5.7, p = .03], suggesting that 
participants were more surprised when they learned that 
they had made an error in the RB condition than in the 
II condition. 

Discussion 
Our ERP results provide additional evidence for distinct 
RB and II category-learning mechanisms. We observed 
both early and late ERP differences when comparing 
correct to incorrect trials for RB and II category 
learning. These ERP differences reflected the 
distinctive cognitive processing engaged rather than 
perceptual differences between stimuli or learning 
conditions. 

RB processing is usually thought to depend on 
hypothesis testing, whereby a candidate rule is 
evaluated by comparing the representation of the 
stimulus in the current trial to that of a stimulus 
representative of the relevant boundary condition (or to 
some abstract representation of that boundary 
condition). This evaluation requires selective attention 
and working memory, likely implemented in prefrontal 
cortex, as well as the ability to form enduring 
representations of the rule and boundary condition 
dependent on hippocampus and medial temporal cortex. 
In contrast, II learning may be likened to gaining 
expertise in specialized or holistic processing, as 
applied for individuating faces or categorizing complex 
multi-featured objects like Greebles (Rossion, Curran, 
& Gauthier, 2002).  

ERP results were consistent with both of these 
descriptions. Specifically a differential correct/ 
incorrect frontocentral N1 ERP (Figure 5) may reflect 

RB II

 Correct
+10µV

- 4µV          200       400      600   ms

 Incorrect

0 0

+10µV

- 4µV          200       400      600   ms

Figure 8. ERPs recorded during feedback show 
differential RB vs. II P300 responses for incorrect, 
but not correct trials. Waveform shown is from a 

right occipital electrode location. 
 

Figure 7. a) Late positive parietal ERPs for RB 
and II conditions; b) correlations between accuracy 

and the magnitude of the correct/incorrect 
subtraction at the peak. 
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early top-down allocation of attentional resources, 
which is most important in RB learning because one 
stimulus dimension must be used and the other ignored. 
In RB learning, the extent to which resources are 
allocated to the correct feature (i.e., spatial frequency) 
will tend to result in correct categorization; selectively 
attending to just one feature in the II condition would 
often result in errors. Similar frontal N1 potentials have 
been reported in other visual paradigms (Luck & Vogel, 
2000; Hillyard & Anllo-Vento, 1998), and some 
evidence suggests that the various N1 signals are under 
frontal control (Deouell & Knight, 2009). 

We also observed a differential correct/incorrect 
response in positive parietal potentials only during RB 
learning (Figure 7). This effect is thus analogous to the 
earlier N1 effect. However, this ERP was correlated 
with performance in the RB condition; subjects with 
larger correct/incorrect differences performed the task 
more accurately. Similar positive potentials have been 
found in many different tasks and variously referred to 
as the P3, P300, P600 or Late Positive Complex (LPC). 
These positive potentials have also been associated with 
working memory (Kok, 2001; Polich, 2007) and 
episodic memory retrieval (Paller, Voss, & Westerberg, 
2009). Thus, LPC potentials found during category 
learning here may reflect discriminative processing to 
compare the current Gabor patch with the boundary 
condition. Differential LPC responses for correct/ 
incorrect responding in the RB condition are likely to 
reflect the engagement of the neural system responsible 
for making the decision based on RB learning.  

LPC potentials were also apparent in the II 
condition with amplitudes for both correct and incorrect 
trials similar to those for correct RB trials. Importantly, 
these LPC amplitudes in the II condition were not 
predictive of accuracy, as they were in the RB 
condition. This suggests that the neural systems 
responsible for the LPC may also be engaged during II 
learning, but are not responsible for the final behavioral 
decisions. Normura, Reber, and Maddox (2007) argued 
that RB and II systems compete during categorization 
and that prefrontal cortex appraises confidence in both 
systems, making the final decision based on the one 
with higher confidence for a particular stimuli. Foerde, 
Knowlton, and Poldrack (2006) likewise demonstrated 
competition between systems in a categorization task 
that can also be performed explicitly and implicitly, and 
were able to experimentally manipulate competition, 
resulting in changes in the neural systems engaged. 

We observed a differential correct/incorrect 
response in a negative occipitotemporal N1 ERP  
(Figure 6) in both RB and II conditions. A prior 
category learning study also revealed differential effects 
in similarly distributed N1 potentials (Curran, Tanaka, 
& Weiskopf, 2002). The authors speculated that this 
ERP could be related to the N170 ERP frequently seen 

in studies of face processing (e.g., Bentin et al., 1996) 
and expert categorization (e.g., Rossion et al., 2002; 
Tanaka & Curran, 2001).  This type of processing 
frequently engages extrastriate visual cortex (e.g., 
Kanwisher, McDermott, & Chun, 1997; Gauthier et al., 
1999), an area found to be more active in the II 
condition of this task (Normura, Reber, & Maddox, 
2007) and previously seen in several other category 
learning tasks (Reber et al., 1998ab).    

One hypothesis is that this N170-like ERP may be 
sensitive to the type of holistic processing engaged 
when categorizing complex objects, which could thus 
overlap with II processing. We found a differential 
correct/incorrect effect in both II and RB conditions, 
but importantly, the direction of the effect was inverted; 
correct II trials showed greater negativity than incorrect 
trials whereas correct RB trials showed greater 
negativity than incorrect trials. This pattern of results is 
consistent with competition between the two systems, 
such that correct II trials specifically employ holistic 
processing.  We further propose that correct RB trials 
likely rely on single-feature processing, and incorrect 
trials may rely more on holistic processing. 

Lastly, we observed a differential P300 response 
comparing RB and II incorrect trials during feedback 
(Figure 8), with no difference in correct trials.  Some 
researchers have argued that the P300 is an index of 
cognitive “surprise” (see Polich, 2007).  This is 
consistent with an explicit RB and implicit II 
mechanism.  Specifically, participants in the RB 
condition are developing firm hypotheses about the rule 
to use for categorization and the identity of the 
boundary condition. When those expectations are 
violated by negative feedback, participants are 
surprised.  In contrast, they are much less certain about 
what they are doing in the II condition (in spite of 
equivalent learning as measured by accuracy). This 
result is also consistent with participants’ self reports, 
which indicate great confidence in rule description after 
RB learning and little confidence after II learning.  
These results thus provide further evidence for an 
explicit/implicit distinction between RB and II learning.  

An alternative perspective is that the feedback P300 
represents memory updating (see also Polich, 2007).  
From this perspective, the representation for the 
boundary condition or the rule must be changed in 
memory as a result of negative feedback. Again, 
updating is more important for the system employing 
explicit memory for categorization, the RB mechanism. 

In summary, the present ERP findings illustrate that 
neurocognitive processes engaged during category 
learning differ for RB and II learning. These differences 
occur at multiple time-points in the course of stimulus 
processing. Real-time neural monitoring via EEG 
analyses can thereby provide a window into 
categorization processing yielding information that 
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goes significantly beyond analyses limited to behavioral 
responses. Further analyses of these measures may thus 
constitute an fruitful avenue for gaining new insights 
into higher cognition generally.  
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