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ABSTRACT 

Seismic Performance and Modeling of Reinforced Concrete and Post-
Tensioned Precast Concrete Shear Walls 

by 

Ahmet Can Tanyeri 

Doctor of Philosophy in Engineering - Civil and Environmental Engineering 

University of California, Berkeley 

Professor Jack P. Moehle, Chair 

Past earthquakes have shown examples of unsatisfactory performance of buildings using 
reinforced concrete structural walls as the primary lateral-force-resisting system. In the 1994 
Northridge earthquake, examples can be found where walls possessed too much overstrength, 
leading to unintended failure of collectors and floor systems, including precast and post-
tensioned construction. In the 2010 Maule Chile earthquake, many structural wall buildings 
sustained severe damage. Although Chilean design standards result in different reinforcement 
detailing than is common in U.S. walls, the failure patterns raise concerns about how well 
conventionally reinforced structural walls in U.S. buildings will perform during the next 
earthquake. Alternative wall design philosophies that offer more predictable response, with 
better damage control, should be investigated. 

After the Mw 8.8 Chile earthquake, the 15-story Alto Rio building in Concepción sustained 
failures near the base, overturned, and came to rest on its side. The collapse of the Alto Rio 
building was significant because it was designed using the Chilean Building Code NCh433.Of96, 
which requires the use of ACI 318-95 for design of reinforced concrete structural elements 
intended to resist design seismic forces. The failure of the Alto Rio building is significant for 
many reasons. It is the first modern shear wall building of its type to collapse by overturning 
during an earthquake. The building is studied using forensic data and structural models of the 
framing system subjected to earthquake shaking. The study identifies the likely failure 
mechanism and suggests areas for which design and detailing practices could be improved. The 
capabilities and shortcomings of the analyses to identify details of the failure mechanism are 
themselves important outcomes of the study. 

A second study explores the behavior of structural wall buildings using unbonded post-
tensioned structural walls. Such walls offer the opportunity to better control yielding 
mechanisms and promote self-centering behavior. The study focuses on the measured responses 
of a full-scale, four-story building model tested on the E-Defense shaking table in Japan. The 
seismic force-resisting system of the test building comprised two post-tensioned (PT) precast 
frames in one direction and two unbonded PT precast walls in the other direction. The building 
was designed using the latest code requirements and design recommendations available both in 
Japan and the U.S., including the ACI ITG-5.2-09. The test building was subjected to several 
earthquake ground motions, ranging from serviceability level to near collapse. Analytical studies 
were carried out to test the capability of the structural models to replicate behaviors important to 
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structural engineers, and to assess whether available analysis tools are sufficient to model 
dynamic behavior that results when a full-scale building is subjected to realistic earthquake 
ground shaking. Measured response data from such an outstanding test provides an opportunity 
to fully understand the response characteristics of PT walls and assess the ability of nonlinear 
analytical models to reproduce important global and local responses, including three-dimensional 
system interactions, both prior to and after loss of significant lateral strength. Moreover, this 
study to assess behavior and system interaction of PT walls leads to improvements of the current 
design ideas and performance expectations. 

The present study examines both the collapse of the Alto Rio building in Chile and the 
shaking table tests of the unbonded post-tensioned wall building in Japan. The collapse study 
suggests areas of improvement in current design and detailing practice. The shaking table study 
suggests an alternative approach to design of shear walls in buildings. Both studies demonstrate 
the use of modern structural analysis tools to interpret building responses to earthquake shaking. 
Taken together, the studies provide added confidence in earthquake simulation capabilities and 
demonstrate alternatives for designing earthquake-resistant buildings that use structural walls.  
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Chapter 1. Introduction 

1.1 Motivation 

Reinforced concrete structural shear walls are a very common and effective choice of lateral-
load-resisting system to resist wind and earthquake loading. Structural walls provide the required 
lateral stiffness and strength for performance-based design of mid- and high-rise buildings under 
strong ground motions. Reinforced concrete shear walls are also popular due to the relatively 
small amount of floor area they occupy and the confidence of engineering community to the 
satisfactory performance of a well detailed structural wall. 

Despite the popularity and general success of structural walls as earthquake-resisting 
elements, past earthquakes have shown examples of unsatisfactory performance of buildings 
using reinforced concrete structural walls as the primary lateral force-resisting system. In the 
1994 Northridge earthquake, many older reinforced concrete buildings experienced severe 
damage, and some collapsed due to brittle failure modes. Some examples can be found where 
walls possessed too much overstrength, leading to unintended failure of collectors and floor 
systems, including precast and post-tensioned construction. Similarly, in the 2010 Maule (Chile) 
and 2011 Christchurch (New Zealand) earthquake, many modern structural wall buildings 
sustained severe damage, and some even collapsed. Although Chilean and New Zealand design 
standards result in different reinforcement detailing than is common in U.S. walls, the failure 
patterns raise concerns about how well conventionally reinforced structural walls in U.S. 
buildings will perform during the next earthquake. There is a need to investigate the seismic 
performance of the current design practice in the U.S. and the ability of current engineering 
models to simulate the seismic behavior of reinforced concrete shear walls. 

After the Mw 8.8, 27 February 2010 Maule Chile earthquake, at least 50 multi-story 
reinforced concrete buildings were severely damaged and four collapsed partially or totally. 
Among these, the 15-story Alto Rio building in Concepción sustained failures near the base, 
overturned, and came to rest on its side. The collapse of the Alto Rio building was significant 
because it was designed using the Chilean Building Code NCh433.Of96, which requires the use 
of ACI 318-95 for design of reinforced concrete structural elements intended to resist design 
seismic forces. It is the first modern shear wall building of its type to collapse by overturning 
during an earthquake. The failures and analysis results suggest areas for which design and 
detailing practices could be improved in the current engineering practices using ACI 318. 

Observations of unsatisfactory performance of the Alto Rio building and other similar 
buildings in Chile and Christchurch are very important for advancing engineering practice. 
Engineering studies of such buildings can help engineers understand those aspects that may have 
led to the collapse, and may lead to improvements in engineering practices.  

Observations of unsatisfactory performance of convention reinforced concrete construction 
can also serve as a impetus for developing new structural framing systems that are less prone to 
critical damage. One system that has received attention in the past decade incorporates unbonded 
post-tensioned structural walls. Such walls can be designed to have a predictable inelastic fuse 
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with required strength and energy dissipation characteristics, and with self-centering response to 
result in a building that returns to its original up-right position following an earthquake.  

In December 2010, the National Research Institute for Earth Science and Disaster 
Prevention (NIED) in Japan conducted a three-dimensional earthquake simulation test on a full-
scale, four-story building using the E-Defense shaking table. Design, instrumentation, 
preliminary analytical studies, and testing of the building were a collaboration among researchers 
from Japan and the U.S. (lead researchers in the U.S. were J. Moehle, W. Ghannoum, R. Sause, 
and J. Wallace). The seismic force-resisting system of the test building comprised two PT frames 
in one direction and two unbonded PT precast walls in the other direction. The building was 
designed using the latest code requirements and design recommendations available both in Japan 
and the U.S., including the ACI ITG-5.2-09. The test building was subjected to several 
earthquake ground motions, ranging from serviceability level to near collapse.  

Three-dimensional earthquake simulation testing of full-scale specimens is rare. Data from 
this test give a unique opportunity to understand the behavior of the unbonded PT walls and their 
interaction with other structural elements during an earthquake. Analytical studies were carried 
out as part of the overall research program. The studies, which are reported here, aim to develop 
practical structural engineering models, to conduct analytical simulations to test the capability of 
the structural models to replicate behaviors important to structural engineers, and to assess 
whether available analysis tools are sufficient to model dynamic behavior that results when a 
full-scale building is subjected to realistic earthquake ground shaking.  

The present study examines both the collapse of the Alto Rio building in Chile and the 
shaking table tests of the unbonded post-tensioned wall building in Japan. The collapse study 
suggests areas of improvement in current design and detailing practice. The shaking table study 
suggests an alternative approach to design of shear walls in buildings. Both studies demonstrate 
the use of modern structural analysis tools to interpret building responses to earthquake shaking. 
Taken together, the studies provide added confidence in earthquake simulation capabilities and 
demonstrate alternatives for designing earthquake-resistant buildings that use structural walls.  

 

1.2 Scope of the Study 

The first part of the study examines the collapse of the Alto Rio building during the 2010 Chile 
earthquake. The study aims to identify various hypotheses to explain the collapse, and uses 
structural analysis to test the validity of those different hypotheses. The study emphasizes 
practical approaches to assessing the collapse of a complex conventional reinforced concrete 
building subjected to earthquake shaking. The results of analyses and failures identify details of 
the failure mechanism and suggest areas for which design and detailing practices could be 
improved. The capabilities and shortcomings of the analyses to identify details of the failure 
mechanism are themselves important outcomes of the study. 

The second part of this study examines the response of the unbonded, post-tensioned 
building model tested on the E-Defense shaking table. The study develops practical structural 
engineering models to conduct analytical simulations to test the capability of the structural 
models to replicate behaviors important to structural engineers, and to assess whether available 
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analysis tools are sufficient to model dynamic behavior that results when a full-scale PT shear 
wall building is subjected to realistic earthquake ground shaking. Measured response data from 
such an outstanding test provides an opportunity to fully understand the response characteristics 
of PT walls and assess the ability of nonlinear analytical models to capture important global and 
local responses, including three-dimensional system interactions, both prior to and after loss of 
significant lateral strength. Moreover, this study to assess behavior and system interaction of PT 
walls leads to improvements of the current design ideas and performance expectations. 

 

1.3 Manuscript Organization 

This dissertation is organized in five chapters, with specific content identified below.  

Chapter 2 reviews previous studies of structural walls, including experimental studies on 
reinforced concrete shear walls, numerical simulation and modeling of reinforced concrete shear 
walls, and the research on post-tensioned precast concrete shear walls.  

Chapter 3 assesses the collapse of the Alto Rio building in the 2010 Chile earthquake. 
Several analyses of the building are presented to investigate the possible reasons for the collapse. 
The results of analyses and failures identify details of the failure mechanism and suggest areas 
for which design and detailing practices could be improved. 

Chapter 4 assesses the performance of the unbonded, post-tensioned building model tested 
on E-Defense. Extensive test data from the tests are presented. The chapter also develops 
practical structural engineering models and conducts analytical simulations to test the capability 
of the structural models to replicate behaviors important to structural engineers and assess the 
ability of nonlinear analytical models to capture important global and local response.  

Chapter 5 presents a summary of research findings and conclusions as well as a list of 
topics for future research. 
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Chapter 2. Previous Studies 

This chapter presents a brief review of the state of the art in seismic design and performance of 
reinforced and post-tensioned precast concrete shear walls. Section 2.1 presents a review of the 
previous experimental work on slender reinforced concrete walls, providing the code 
compatibility of test specimens and observed damage. In Section 2.2, the previous research on 
the numerical simulation and modeling techniques of reinforced concrete shear walls is 
presented. Finally, Section 2.3 presents the experimental and numerical research done on post-
tensioned precast concrete and rocking shear walls. 

 

2.1 Experimental Studies on Reinforced Concrete Shear Walls 

Numerous laboratory-based studies of reinforced concrete structural walls have been reported in 
the literature. This section reviews a representative sample of those studies. 

Oesterle et al. (1976 and 1979) at Portland Cement Association Construction Technology 
Laboratories conducted a comprehensive experimental research program of sixteen 
approximately 1/3 scale reinforced concrete structural walls for earthquake resistant structures. 
The objective of the experimental program was to introduce design recommendations for walls 
with enhanced energy dissipation achieved through nonlinear response of the constituent 
concrete and steel materials. 

The test variable considered for the experiments were i) shape (rectangular, barbell, 
flanged), ii) amount of the flexural reinforcement, iii) amount of horizontal web reinforcement, 
iv) amount of boundary element transverse reinforcement, v) axial load level (zero or constant 
axial load ranging from 0.06 to 0.13ܣ௚ ௖݂

ᇱ), vi) loading protocol (monotonically and cyclically), 
and vii) concrete compressive strength (5600 to 7800 psi, or 38 to 54 MPa).  

The wall specimens were designed according to the 1971 ACI building code. The design 
yield strength of the steel was 60 ksi (414 MPa) and the design concrete compressive strength 
was 6.0 ksi (41 MPa). The aspect ratio of wall specimens was 2.4. Figure 2.1 shows the cross-
sections of the specimens tested. All of the wall specimens were 4 in (102 mm) thick, 75 in 
(190cm) long and 15 ft (4.60 cm) tall. The specimens with the barbell shape had 12 in (305 mm) 
square boundary elements. The specimens with the flanges had 4 in (102mm) thick and 36 in 
(910 mm) long flanges. The wall specimens had longitudinal boundary reinforcement ratios of 
1.1 to 4.4%, and vertical web reinforcement ratios of 0.25 to 0.31%. The horizontal web 
reinforcement ratios of the walls tested were 0.31 to 1.38%. Figure 2.2 shows the test setup.  

The results of the Oesterle et al. (1976 and 1979) concluded that the shear stress level of 
the structural wall had a dramatic impact on the overall behavior and crack pattern (Figure 2.3). 
In walls with low shear stress demands, where maximum shear stresses are less than 3.0ඥ ௖݂

ᇱ, the 
damage was consisted of crushing of concrete core and buckling of the longitudinal 
reinforcement. Figure 2.3.a indicates this flexure-dominated failure mode. For walls with high 
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2.2 Research on Numerical Simulation and Modeling of 

Reinforced Concrete Shear Walls 

Several numerical modeling techniques have been studied for simulating the response of 
reinforced concrete shear walls. The most common and the simplest approach is the lumped 
plasticity using beam-column elements. In this model, the element is located at the centroid of 
the wall with rigid links on beam girders. The beam-column element consists of two nonlinear 
rotational springs at the critical section of the wall that the inelastic actions are expected to 
happen and an elastic flexural element that represents the rest of the wall. Figure 2.11shows a 
representation of the beam-column elements.  

The moment-rotation relationship assigned to the rotational springs of beam-column 
elements can be selected in two ways. The commonly used way in engineering practice is the use 
of basic backbone curves for the flexural response of the walls from ASCE 41 Supplement 1 
(2007). These backbone curves are established from the gathered experimental data on structural 
walls. The backbone curves vary according to the nominal flexural capacity, reinforcement ratio, 
shear and axial demands on the walls. The rotational spring is usually located at the center of the 
plastic hinge region which is defined by the one-half of the wall length (lw). This is a very simple 
way to model the behavior of structural walls. The rotation capacities defined by the ASCE41 
document are conservative and may not represent the behavior of different configuration of shear 
walls. The second way is to calculate a moment-rotation relationship of the wall using a section-
analysis software. This approach is more reliable for walls with peculiar details and strongly 
relies on the assumption of the linear distribution of the strains in wall cross-sections. However, 
a big pitfall of these models is that the moment-rotation spring cannot capture the interaction of 
the flexural response with axial and shear forces. Therefore, in a wall with significant axial or 
shear force variation, this model will misrepresent the behavior. This simple beam-column model 
is the most computationally efficient tool for analyses of slender structural walls.  

Some modifications to standard beam-column model has been proposed for improved 
representation such as use of multiple springs by Takayanagi and Schnobrich (1976), varying 
inelastic zones by Keshavarzian and Schnobrich (1984), and different behavior for inelastic shear 
by Aristizabal (1983). One big pitfall of the beam-column models is the lack of representation of 
the bar slip effects. The study done by Lehman and Moehle (2000) that the bar slip plays a 
significant role in the total displacement of columns tested. Therefore, ignoring this effect can 
cause misleading results for the neutral axis depth of such wall cross-sections. Similar modeling 
problems occur for rocking walls due to the different kinematic translation due to the neutral axis 
shift shown in Figure 2.12 and Kabeyasawa et al. (1983). 

A more complicated (and arguably more advanced) solution for modeling of reinforced 
concrete shear walls is the use of distributed plasticity elements or lumped plasticity elements 
with fiber cross-sections. These models use fiber cross-sections to define the moment-curvature 
response and a predefined plastic hinge length to calculate the moment-rotation response. The 
fibers are used to discretize the cross-section into concrete and steel fibers for which uniaxial 
stress-strain curves are defined from material coupon tests or constitutive models. From the axial 
and flexural loads acting on the section, strains of the individual fibers are calculated assuming a 
linear strain distribution. Calculated strains are transformed into fiber stresses from the assigned 
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2.3 Research on Post-Tensioned Precast Concrete Shear Walls 

The first examples of rocking in structural design can be traced back to South Rangitikei Rail 
Bridge in New Zealand, and a chimney at Christchurch International Airport (Skinner et al. 
1993). Priestley and Tao (1993) was the first to propose the idea of rocking beam-column 
connections for special moment frames, using unbonded prestressing tendons designed to 
provide the restoring force. This innovative concept was tested by Stanton et al. (1997).  

Priestley et al. (1999) designed, built and tested a five-story precast building under 
simulated seismic loading at the University of California at San Diego in The PREcast Seismic 
Structural Systems (PRESSS) research program (Figure 2.29). The five-story precast concrete 
test building was 60% scale, which was 90 feet tall. The test building had four different structural 
frame systems in one principal direction, and a jointed precast wall system was the lateral load 
resisting system in the orthogonal direction. The walls were built with 19ft wall (2.5 stories) four 
panels. These two walls were connected through four unbonded post-tensioning tendons 
vertically and by 20 U-shaped flexural plates (UFP connectors) located between two walls.  

The test results were satisfactory, with minimal damage in the wall direction. At the design 
level earthquake loading, the wall had a roof drift ratio of 1.8% (8 in). At the MCE level loading, 
the roof drift ratio reached to 2.5% (11 in). Some minor flexural cracking as well as minor 
crushing of cover concrete was observed at the base of the wall. The residual drift after the MCE 
level loading was very limited and measured as 0.06%. In a following study researchers at Iowa 
State University validated the proposed design guidelines for precast hybrid frames and joint 
wall systems (Celik and Sritharan, 2004; Thomas and Sritharan, 2004). The subsequent research 
efforts led to the codification of design guidelines and publication of the ACI ITG 5.1: 
Acceptance Criteria for Special Unbonded Post-Tensioned Precast Structural Walls Based on 
Validation Testing and ACI ITG 5.2: Special Unbonded Post-Tensioned Precast Structural 
Walls. 

Mander and Cheng (1997) proposed the damage avoidance design (DAD), which was a 
new seismic design and construction methodology. DAD used damage-free rocking connections. 
DAD proposed to terminate the column longitudinal reinforcement at the foundation beam-
column interface. This allows the column to freely rock, and prevents the damage in the 
reinforcing steel and concrete. The specially reinforced rocking toe regions ensure that the 
structure behaves in a bilinear elastic manner without any damage. An energy based method to 
assess the equivalent viscous damping in rocking structures and a complete force-deformation 
model for rocking columns was developed by Mander and Cheng (1997). The force-deformation 
behavior is validated with results of a quasi-static test of a nearly full-size precast concrete 
rocking column bridge structure. 
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Code was modified in 2008 to require use of confined boundary elements. Several Chilean 
engineers have indicated, however, that this requirement was not always followed in design, and 
confinement, where specified, was not always implemented in construction. 

 

 

Figure 3.4 - Alto Rio building first-floor plan. Dashed line encloses portion of building 
modeled in the nonlinear static analysis (Unit: cm) (Note: 1 cm = 0.3937 in) 

 

 

Figure 3.5 - Alto Rio building second-floor plan. Dashed line encloses portion of building 
modeled in the nonlinear static analysis (Unit: cm) (Note: 1 cm = 0.3937 in) 
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3.5 Alto Rio Building 

The Alto Rio building was a 15-story reinforced concrete building with two additional 
subterranean levels. It had a nearly rectangular plan (Figure 3.4 and Figure 3.5) with the 
transverse (short) direction oriented on 60 degrees azimuth, which corresponds to the EW 
direction of the ground motion in Figure 3.2. The building plan dimensions were 40 m (131 ft) in 
the longitudinal direction and 12 m (39 ft) in the transverse direction. The building had stepped 
elevation at the roof, such that it was 12 stories tall at the north end and 15 stories tall at the 
south end, with maximum height of 38 m (125 ft). First-story height was 3.06 m (10 ft) and all 
other stories including subterranean levels were 2.52 m (8.3 ft) tall.  

At the time of design in 2006, the applicable building code was NCh433.Of96, which 
referred to ACI 318-95. The building was designed using analysis and design procedures similar 
to those used in the US, including linear elastic response spectrum analysis using the computer 
program ETABS (CSI). Building construction was completed in 2009.  

The seismic-force-resisting system comprised a pair of longitudinal corridor walls flanked 
by transverse walls, and interconnected by 150-mm (5-in.) thick floor slabs. Along axes 8, 13, 
and 20, the first-story transverse walls were continuous along the entire building width. Above 
the first story, a stack of 1.2 m (4 ft) wide corridor openings divided these into two separate walls 
coupled by floor slabs (Figure 3.6 and Figure 3.8). The easternmost edge of these walls, as well 
as the shorter walls along axes 11, 17, and 24, had another discontinuity at the second level 
where the first story was set back 40 cm (1.31 ft) from the upper stories on the east side of the 
building (Figure 3.7). Above the setback, the walls had a return at the exterior face of the 
building, exacerbating the vertical discontinuity in the framing system.  
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Figure 3.6 - Alto Rio building axis 8 elevation view (Unit: cm) (Note: 1 cm = 0.3937 in) 

 

Figure 3.7 - Alto Rio building axis 11 elevation view (Unit: cm) (Note: 1 cm = 0.3937 in) 
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Figure 3.8 - Alto Rio building axis 13 elevation view (Unit: cm) (Note: 1 cm = 0.3937 in) 

Walls were 20-cm (7.9 in) thick, except some underground walls were 25-cm (9.8 in) thick. 
Wall distributed reinforcement comprised either ϕ81 or ϕ10 with 15 or 20-cm (5.9 or 7.9 in) 
spacing. Larger diameter longitudinal bars (ϕ16 to ϕ25) were positioned at the wall boundaries. 
The structural drawings show wall transverse reinforcement detailed with 135-degree hooks 
anchored around wall boundary reinforcement with typical longitudinal (vertical) spacing of 20 
cm (7.9 in). A field survey after collapse showed that transverse reinforcement was constructed 
with 90-degree hooks (IDIEM 2010). Wall longitudinal reinforcement was lap-spliced according 
to conventional practices, without special confining transverse reinforcement along the lap 
splices. For ϕ22 mm and ϕ25 bars, lap splice lengths of 125 cm (49 in) (57db) and 140 cm (55 in) 
(56db) are provided in design. The length required by ACI 318-11 equation 12-1 for a Class B 
lap splice (all the bars spliced at the same level) developing specified yield stress is 43db. 
According to ACI 318-11 21.9.2.3, regions of special structural walls that are expected to yield 
are required to have development lengths of longitudinal reinforcement at least 1.25 times the 
values calculated for fy in tension, or a lap splice length of 54db. Therefore, lap splice lengths 
meet requirements of ACI 318. In US practice, however, a special structural wall might be 
expected to have more and better detailed transverse reinforcement than is typical in Chilean 
practice. Given the transverse reinforcement detailing in Alto Rio, it is reasonable to suspect the 
lap splices as a potential initiator of failure.  

                                                 

1	The number following the symbol ϕ refers to nominal diameter in mm.	
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All reinforcement was specified S420 steel [minimum yield strength of 420MPa (60 ksi) 
and ultimate strength of 630MPa (90 ksi)]. Consistent with the specification, reinforcement 
samples taken from the collapsed building had mean yield and ultimate stresses of 484 MPa (70 
ksi) and 727 MPa (105 ksi), respectively (IDIEM, 2010). From the base to the top of the second 
story, specified concrete compressive strength was 25 MPa (3600 psi); for the rest of the building 
specified compressive strength was 20 MPa (2900 psi). Thirty-three concrete cores taken from 
the structural walls after the earthquake showed mean compressive strength of 43 MPA (6200 
psi), with somewhat lower strength in lower stories than upper stories. This result contrasts with 
the strength specification in that higher strengths were specified for the lower stories than upper 
stories.  

The building was founded on alluvial deposits. Soil investigations reported by IDIEM 
(2010) indicate the building site had static strength parameters consistent with aspects of both 
Soil Type II and Type III (Table 3.1, Figure 3.9). Soil Type II corresponds to stiff soil whereas 
Soil Type III corresponds to medium stiff soil. Soil Type II represents a dense gravel or clay with 
shear wave velocity larger than 400 m/s in the upper 10 m (32 ft), and Soil Type III is 
unsaturated gravel or clay with shear wave velocity less than 400 m/s (NCh433.Of96, 1996). In 
order to be classified as Soil Type II, soil of that characteristic should have a minimum thickness 
of 20 m (65 ft); Soil Type III requires minimum thickness of 10 m (33 ft). Soil investigations 
reported by IDIEM (2010) indicate existence of both Soil Type II & III. However, all layers have 
shear wave velocities below 300 m/s, suggesting the soil should be classified as Type III.  

The cross-sectional wall to floor area ratio was approximately 3% in the longitudinal 
direction and 4% in the transverse direction, resulting a total cross-sectional wall to floor area of 
7%. Calculated wall axial load ratios ranged from 0.05 to 0.07 P/fc’Ag, where P considers 
expected loads (1.0D + 0.25L), fc’ is the specified concrete compressive strength, and Ag is the 
gross cross-sectional area of the wall.  

 

Table 3.1 - Soil properties of Alto Rio 

(Note: 1 ft = 0.3048 m, 1 MPa = 145 psi) 

Layer Soil Characteristic Test Result Soil Type 

1 Sandy Soil Layer (N1)60 = 38 / ft III 

2 Silty Soil Layer Su = 0.12 MPa II 

3 Sandy Soil Layer (N1)60 = 36 / ft III 

4 Sandy Soil Layer (N1)60 > 50 / ft II 
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which are typical of values for Chilean shear wall buildings (Wallace and Moehle, 1989).  

 

Table 3.2 - Calculated vibration periods 

Mode Period (s) Direction 

1 0.81 Transverse 

2 0.71 Longitudinal 

3 0.58 Torsional 

4 0.19 Longitudinal 

5 0.17 Transverse 

6 0.14 Torsional 

Response spectrum analysis was done using 2.5%-damped response spectra for the 
recorded Concepción ground motions, with results combined using the complete quadratic 
combination method (Der Kiureghian and Nakamura, 1993). The effective damping value was 
selected based on recommendations of PEER/ATC-72-1 (2010). Calculated roof displacements 
were 0.0070h and 0.0046h in the transverse and longitudinal directions, respectively, where h = 
height from grade level to top of the roof at the 15th level. Maximum story drifts were 0.0090hx 
and 0.0069hx in the transverse and longitudinal directions, where hx = story height. As a point of 
reference, maximum permitted story drift ratio for this building type is 0.02hx in ASCE 7-10. 
The linear model showed stress concentrations in the walls around the setback at level 2 and in 
the solid panels beneath the stacks of openings. Numerical values of stress were sensitive to 
mesh size, and are not reported here.   

 

3.9 Nonlinear Static Analysis 

To gain further understanding of the inelastic behavior of the building, a static lateral force 
analysis was conducted on an analytical model representing the inelastic material properties of a 
portion of the building in the transverse direction. Only the walls along axes 8 and 13 were 
modeled, as these were deemed representative of the main portion of the seismic-force-resisting 
system of the building. Contributions of the walls along axes 11 and 17 are ignored in the 
analysis, as these are not likely to contribute significantly to overall lateral resistance. Figure 3.4 
and Figure 3.5 indicate the portion of the building included in the model. 

An important first step in developing an inelastic model is to identify the likely modes of 
inelastic response. Inelastic flexural response of the walls is an obvious consideration. Typical of 
Chilean design practice, the Alto Rio building features a pair of longitudinal corridor walls 
flanked by transverse walls, resulting in a series of T and L-shaped wall cross sections (Figure 
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3.4 and Figure 3.5). Given the slender aspect ratio of the walls, the flanges can be assumed to be 
fully effective as either a compression or tension element, depending on the loading direction. 
Such walls are relatively strong but brittle for loading that puts the flange in tension and the stem 
in compression, and relatively weak but ductile for loading in the opposite direction. Figure 3.26 
plots calculated moment-curvature relationships of a T-shaped shear wall along axis 13 for 
expected axial loads (1.0D + 0.25L), demonstrating the asymmetry in load-deformation 
response. Where two such walls are placed with their flanges back-to-back to create a corridor, 
the result is one T-wall that is strong and brittle while the other is weak and ductile. Under lateral 
load, the strong wall attracts greater force and degrades earlier than the other wall. These 
interactions can be monitored using a structural analysis model of the building that incorporates 
the inelastic flexural response characteristics.  

 

Figure 3.26 - Moment curvature analysis of the east wall on axis 13 (Note: 1 kN.m = 0.7375 
kip.ft) 

Another potential source of inelastic response results from the high shear stress that 
develops in the solid wall panel directly beneath a stack of openings. This stress is the result of 
opposing flexural tension and flexural compression forces in the boundaries of the walls on 
opposite sides of the opening (Figure 3.27). Studies (for example, Naeim et al., 1990) show that 
the majority of this force is resolved by panel zone shear stresses that occur within a short 
distance below the bottom of the stack of openings. The effect is analogous to the shear stress 
that develops in beam-column joints of moment-resisting frames. Studies of typical Chilean 
buildings show that this stress may reach the stress capacity of the panel (NIST GCR 14-917-25 
(2014)). Therefore, a nonlinear model of the building should also represent this effect.  
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Figure 3.33 - Concrete stress-strain relation (positive values are compressive) (Note: 1 MPa 
= 145 psi) 

The reinforcing steel stress-strain relation for the fiber elements was modeled using the 
relation shown in Figure 3.34. The ultimate strain in tension was limited to 0.05 in consideration 
of low-cyclic fatigue (PEER/ATC-72-1). Behavior in compression was varied according to the 
ratio s/db (s = spacing of transverse reinforcement and db = diameter of longitudinal bar) in 
consideration of longitudinal bar buckling (Monti and Nuti, 1992). It was assumed that bar 
buckling could not trigger spalling, but instead buckling could occur only following spalling of 
cover concrete at assumed compressive strain of 0.005. Some ongoing research suggests that 
reinforcement buckling can initiate spalling under some circumstances, but this possibility was 
not modeled.  

An inelastic shear material was used for the walls, with nominal shear strength of 1.5Vn, in 
which Vn is the nominal shear strength defined in ACI 318-11, that is, ௡ܸ ൌ ൫0.17ඥ ௖݂

ᇱ ൅
௧ߩ ௬݂௧	൯ܣ௖௩	ሺMPaሻ ൣ൫2ඥ ௖݂

ᇱ ൅ ௧ߩ ௬݂௧	൯ܣ௖௩	ሺpsiሻ൧, in which �t = transverse reinforcement ratio, fyt = 
yield stress of transverse reinforcement, and Acv = web area of wall. The solid wall panels 
beneath the stack of openings were modeled in two different ways. In one model, the regions 
were modeled with an elastic shear material having effective shear stiffness defined as 
0.4EcAcv/20 (PEER/ATC-72-1), in which 0.4Ec approximates the shear modulus Gc and the 
divisor 20 represents stiffness reduction associated with concrete cracking. In a second model, 
the solid wall panels were modeled using a trilinear shear material having initial stiffness 
0.4EcAcv, with the first break point at shear equal to 0.33ඥ ௖݂

ᇱܣ௖௩  (MPa) [4ඥ ௖݂
ᇱܣ௖௩  (psi)], 

followed by a strain-hardening branch to a point defined by the intersection of a shear force of 
1.5Vn and a secant from the origin at a slope of 2.5ρtnGc, in which ρt is the ratio of the area of 
horizontal reinforcement to the area of concrete, n = Es/Ec is defined as the modular ratio, and Gc 
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is the shear modulus of concrete (= 0.4Ec). The shear model degrades after reaching shear force 
1.5Vn. This model was based on the recommendation in Sozen et al. (1992) and was found to 
correlate well with the test results of similar wall panels reported in Vecchio and Collins (1986). 
The force transfer between the panel zone and the adjacent walls is achieved through the 
assumption of the perfect bond of the boundary element reinforcement from the walls into the 
solid segment. 

 

Figure 3.34 - Reinforcing steel stress-strain relation (positive values are tensile) (Note: 1 
MPa = 145 psi) 

The analytical model was subjected first to gravity loads and then to progressively 
increasing lateral forces. Gravity loads were estimated based on tributary areas for the various 
walls, considering 1.0D + 0.25L (D = dead load and L = specified live load). For lateral analysis, 
an inverted triangular force pattern was applied at the center of mass of each floor of the 
modeled part of the building. Due to the tendency for some torsional response for this loading, 
rotations about a vertical axis were artificially prevented. 

Figure 3.35 shows calculated relations between base shear and roof displacement for east 
and west loading directions of the model with nonlinear shear stress-strain relationships assigned 
to the solid panel beneath the corridor openings and the rest of the model. For loading the model 
to the east, the direction in which collapse occurred, the first significant event is crushing of the 
wall boundary at the east edge of the east wall along axis 13 at around 0.72% roof drift ratio, 
followed by similar crushing of the east part of wall 8 at around 1% roof drift ratio. The crushing 
occurs at the transition between levels 1 and 2, apparently because of the wall vertical 
discontinuities at that level (the setback between stories 1 and 2 and beginning of the stacked 
openings along the corridor). Compression failure of the east side of the walls along axes 13 and 
8 resulted in numerical instability of the model. It is noteworthy that at the roof drift 

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05
-1000

-750

-500

-250

0

250

500

750

1000

Strain

S
tr

es
s 

(M
P

a)

 

 

s/d
b
=6

s/d
b
=8

s/d
b
=9

s/d
b
=11

s/d
b
=12

s/d
b
>20



70 

 

corresponding to the crushing of W8-E, the model indicates boundary reinforcement tensile 
strain of 5 to 14 times the yield strain. Thus, it plausible that the lap splices may have sustained 
some yielding and strength degradation before this point.   

 

Figure 3.35 - Base shear – drift relationship of nonlinear static analysis (Note: 1 kN = 0.2248 
kips) 

For lateral load to the west, the first significant events are failure of the solid wall panels 
below the stack of openings between coupled walls along axes 8 and 13 at around 1.0% roof drift 
ratio. “Failure” is arbitrarily defined as onset of strength degradation after reaching shear 
strength 1.5Vn. This is followed by fracture of the longitudinal reinforcement at the east side of 
the east walls along Axis 13 at 1.6% roof drift ratio. (The drift estimates corresponding to 
fracture are likely to be low because of the small element size, which can result in strain 
concentration in the reinforcing steel model. Sensitivity studies have been done in order to 
investigate the effect of mesh size on the response. There was no significant relationship 
observed between element sizes and drift ratios corresponding to the fracture of reinforcing 
steel.) It is noteworthy that crushing failure is not calculated to occur for loading in this direction, 
at least not within the drift range of interest. Apparently, the absence of the setback and the short 
returns on the walls result in sufficient compression area to avoid crushing failure for loading to 
the west. In the absence of splice failure, compressive failure seems unlikely in this direction. 
However, compression failure could occur if the wall edges are previously damaged by splice 
failure.  

The calculated maximum shear force resisted by the walls along axes 8 and 13 is 4400 kN 
(990 kips) for loading to the east and around 5000 kN (1125 kips) for loading to the west. 
Nominal shear strength Vn calculated according to ACI 318-11 is 9300 kN (2090 kips). Shear 
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forces could increase for alternative lateral loading patterns, especially where building response 
extends well past the effectively linear range of response (Rejec et al., 2011). Crushing of the 
walls, however, effectively preempts development of ductile flexural response, thereby reducing 
the likely shear force amplification. Therefore, it seems highly unlikely that the shear demands 
reached the shear capacity, or that wall shear failure was a primary initiator of the collapse. The 
single exception is the solid wall panel immediately below the stack of openings.   

Figure 3.36 shows the calculated relations between roof drift ratio and (a) average shear 
stress in the solid wall panel below the stack of openings (solid line) and (b) average shear stress 
across the entire wall length (dashed line). The results are for the model loaded in the collapse 
direction, with the solid wall panel below the stack of openings modeled as linearly-elastic. The 
average stress in the solid wall panel below the stack of openings is approximately three times 
the average stress acting across the entire wall section. This result is consistent with the results 
reported by Naeim et al. (1990).  

 

Figure 3.36 - Shear stress – roof drift ratio relationship for solid wall panel below the stack 
of openings and for entire wall in story 1, using a linear model for the solid wall panel. 

Stress for the solid wall panel is the average value over the height of the story below the 
stack of openings.  (Note: 1 MPa = 145 psi) 

Figure 3.37 shows the calculated relation between shear stress and shear strain in the solid 
wall panel below the stack of openings for the model in which the solid wall panel is modeled 
using an inelastic shear material, as described previously. Lateral loading is toward the east. 
Inelastic response of the region is apparent. More significant inelastic response of the solid wall 
panel is obtained for loading toward the west (not shown). Overall, the calculated results are 
consistent with reported damage, which shows cracking or destruction of the solid wall panel 
below the stack of openings (see Figure 3.10 & Figure 3.11). 

It is noteworthy that wall crushing damage and solid wall panel shear damage are estimated 
to occur for roof drift ratio in the range 0.007 to 0.010 for loading toward the east, with similar 
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effects at higher drifts for loading toward the west (Figure 3.35, Figure 3.37). As reported 
previously in this paper, linear response spectrum analysis indicates that the roof drift ratio 
demand was approximately 0.007 in the transverse direction, similar to the drift at onset of 
critical damage. To better understand dynamic response, a series of simplified nonlinear dynamic 
models were studied. The results of these studies will be presented later in this chapter.  

 

 

Figure 3.37 - Shear stress – strain relationship of the solid wall panel below the stack of 
openings along axis 13 of the Alto Río building (Note: 1 MPa = 145 psi) 

Figure 3.38 and Figure 3.39 show the deformation concentrations of the Perform 3D model 
under the loading to the east at 0.75% roof drift ratio. These figures represent the deformations at 
specific elements right after the “Concrete Crushing of W13-E”. The wall on the right side (wall 
on Axis 13) of the figure had localized deformations at the top of the first story due to the 
compression failure. 

Similarly, Figure 3.40 and Figure 3.41 show the deformation concentrations of the Perform 
3D model under the loading to the east at 1.1% roof drift ratio. These figures represent the 
deformations at specific elements right after the “Concrete Crushing of W8-E”. It is worth noting 
that the wall on Axis 8 (the wall on the left) also experienced the concentrated compression 
failure right below the setbacks at the top of the first story.  

Figure 3.42 and Figure 3.43 show the deformation concentrations of the Perform 3D model 
under the loading to the west at 1.6% roof drift ratio. This deformation corresponds to the 
“Tensile Fracture of W13-E”. The calculated damage of the bar fracture is located at the bottom 
of the first story of the wall on Axis 13 (the wall on the right) as can be seen in the figures. It is 
also apparent that the damage is distributed throughout the first story due to the ductile nature of 
the tensile failure. 
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3.10  Effect of the Shear Material Model on Response 

As mentioned before, an inelastic shear material was used for the walls, with nominal shear 
strength of 1.5Vn, in which Vn is the nominal shear strength defined in ACI 318-11, that is, 

௡ܸ ൌ ൫0.17ඥ ௖݂
ᇱ ൅ ௧ߩ ௬݂௧	൯ܣ௖௩	ሺMPaሻ  ൣ൫2ඥ ௖݂

ᇱ ൅ ௧ߩ ௬݂௧	൯ܣ௖௩	ሺpsiሻ൧ , in which ρt = transverse 
reinforcement ratio, fyt = yield stress of transverse reinforcement, and Acv = web area of wall. 
Figure 3.35, shows the calculated relation between base shear and roof displacement for the 
model with nonlinear shear stress-strain relationships assigned for the whole model including the 
shear panel region.  

Although these modeling parameters are validated against the results of similar wall panels 
from the study of Vecchio and Collins (1986), there are some other possible modeling techniques 
currently popular among structural engineering community. One of these modeling assumptions 
is modeling shear behavior with an equivalent linear elastic model. To assess the effects of such 
a modeling decision, a model with an elastic shear material having effective shear stiffness 
defined as 0.4EcAcv/20 (PEER/ATC-72-1), in which 0.4Ec approximates the shear modulus Gc 
and the divisor 20 represents stiffness reduction associated with concrete cracking.  

Figure 3.44 shows the comparison of the calculated base shear – drift relationship of 
nonlinear static analysis of two models of the Alto Rio building. The solid and dashed black lines 
represent the results for the model with the inelastic shear material. These are the same curves as 
those presented in Figure 3.35. The solid and dashed red lines represent the results of the model 
with elastic shear material. There is an apparent difference in the overall stiffness of these two 
models. Because the elastic shear material model represents the cracked concrete properties, the 
stiffness of this model is relatively lower than the model with inelastic shear material. A stiffer 
behavior is expected form the inelastic shear material model because of the stiffer initial slope of 
the shear stress strain curve shown in Figure 3.37.  

The lower stiffness of the model with the elastic shear material results into delayed 
failures. For lateral loading to the east, crushing of east side of the wall 13 happens at 0.8% roof 
drift ratio compared to 0.7% of the previous model. Similarly, crushing of the east side of the 
wall 8 happens at 1.2% roof drift ratio, which was at a 1.0% roof drift ratio for the model with 
inelastic shear material model. However, it should be noted that the sequence of failures 
observed didn’t change with a change of the shear material model. 

 For the lateral load to the west, the first difference in the damage modes is observed. As 
expected, the failure of the shear panel of the walls 8 and 13 is not observed, due to the elastic 
model of the shear material. On the other hand, the fracture of the longitudinal reinforcement at 
the east side of the east walls along Axis 13 is observed at 2.0% roof drift ratio rather than the 
1.6% observed in the inelastic shear material model.  

Another observation of the comparison of the results of these two models is the overall 
strength of the pushover curves. For the lateral loading to the east, the results of the elastic shear 
material model have slightly lower strength.  On the other hand, for the lateral loading to the 
west, the nonlinear static analysis of the elastic shear material model results with a higher 
strength. This inverse effect should be investigated further.  

The preceding results indicate that modeling the behavior is important to correctly 
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understanding; (a) stiffness of the structural system, (b) the types of failures that can occur, 
including failure of the panel zone, and (c) understanding the drifts at which different failures 
occur.  

 

 

Figure 3.44 - Comparison of the base shear – drift relationship of nonlinear static analysis 
for elastic and inelastic shear material models (Note: 1 kN = 0.2248 kips) 

 

3.11 Dynamic SDOF Analysis 

A single-degree-of-freedom (SDOF) model was established to represent the effective first 
translational mode response of the Alto Rio building in the transverse direction. The SDOF 
model was implemented in Perform3D with a nonlinear rotational spring at the base, a massless 
rigid bar, and a mass at the top. Mass and height of the rigid bar are effective modal mass, M1

*, 
and effective modal height, h1

*, of the fundamental vibration mode (Chopra 2011), defined by: 

૚ࡹ  
∗ ൌ

∑ ሺ࣐࢘࢘࢓ሻ૛
࢐
స૚࢘

∑ ࣐࢘࢘࢓
૛࢐

స૚࢘

       3.1 

 

0.0 0.5 1.0 1.5 2.0 2.5
0

1000

2000

3000

4000

5000

6000

Roof Drift Ratio (%)

B
as

e 
S

h
ea

r 
(k

N
)

 

 

Inelastic Shear Material (East)

Inelastic Shear Material (West)

Elastic Shear Material (East)

Elastic Shear Material (West)



81 

 

૚ࢎ  
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∑ ࢘࢓
࢐
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       3.2 

 

in which φr is the rth story value of the first-mode shape, mr is the mass matrix value of the 
rth story, hr is the height of rth story level from the base level, and j is the number of stories. 

The moment-rotation relationship of the rotational spring is based on the base moment 
versus roof drift relationship resulting from the nonlinear static analysis of the structure (Figure 
3.45). Because the nonlinear static analysis results are only for a representative part of the 
structure, they should be adjusted to represent the response characteristics of the entire building. 
Recognizing the approximate nature of the scaling process, we simply scaled the moment values 
of the relationship by the ratio of seismic mass of the whole building to the seismic mass of the 
portion of the structure included in the nonlinear static analysis. The initial slope of the moment-
rotation response was selected to match the fundamental vibration period calculated using 
ETABS, described previously. Other parameters of the simplified trilinear moment-rotation 
relation were adjusted to approximate the relation obtained with the scaled nonlinear static 
analysis, as shown in Figure 3.45. Hysteresis rules governing unloading and reloading stiffness 
and energy dissipation per cycle were implemented to approximate the approach presented by 
Saiidi and Sozen (1981). The SDOF model was excited with the east-west direction of the 
ground motions recorded at Colegio Inmaculada Concepción site. 

Calculated moment-drift relations and displacement response histories of the SDOF model 
subjected to the Concepción motion are plotted in Figure 3.46 and Figure 3.47. It is worth noting 
that after a deformation cycle as large as 1.3% roof drift ratio in the west direction, the SDOF 
model collapses to the east (collapse) direction at around 22 seconds of the excitation. Based on 
the calculated damage from the PERFORM nonlinear static analyses presented previously, it is 
expected that the building would sustain concrete crushing failures for both walls on Axes 8 and 
13 during the cycle to the east at around 20 seconds. Immediately after that, the loading cycle 
changes direction. The amplitude of response is consistent with the occurrence of shear damage 
to the shear panels on both Axes 8 and 13 at around 21 seconds. This is followed by a large cycle 
to the east direction around 22 seconds, where the nonlinear dynamic model becomes 
permanently displaced to the east. This permanent displacement of the model is also an indicator 
of the collapse to the east direction. The final result of the dynamic SDOF analysis is consistent 
with the observed damage and collapse of the building.  
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Figure 3.45 - Comparison of moment-rotation relations for the SDOF model and the scaled 
nonlinear static analysis (Note: 1 kN.m = 0.7375 kip.ft) 

 

Figure 3.46 - Moment–drift ratio response of the SDOF model under the Concepción 
ground motion (Note: 1 kN.m = 0.7375 kip.ft) 
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Figure 3.47 - Roof drift ratio response history of the SDOF model subjected to the 
Concepción ground motion 

To assess the influences of fundamental period and base moment capacity of the SDOF 
model on the calculated response, a sensitivity study was conducted. Varying values of 
fundamental periods from 0.4 seconds to 1.2 seconds (increments of 0.1 seconds), and values of 
base moment capacity from 0.5 to 1.5 (increments of 0.1) times the calculated moment capacity 
were used in the analysis. All combinations resulted in collapse of SDOF model in the east 
(collapse) direction. This result suggests that the collapse was insensitive to strength and 
stiffness, and instead was driven by the brittle and asymmetric behavior of the structure. 

 

3.12 Effect of the Softening Slope of the Concrete Stress-Strain 

Relationship 

As mentioned before, the concrete stress-strain relation for compression was a trilinear relation 
with a descending portion (Figure 3.33). Concrete was assumed to be unconfined because of the 
wide spacing and 90-degree hooks on the transverse reinforcement. It was assumed that concrete 
has no tension resistance. The slope of the descending portion of the concrete stress-strain 
relationship after the ultimate strength point ( ௖݂

ᇱ), is decided according to the recommendations 
of the document PEER/ATC-72-1. PEER/ATC-72-1 recommends the value of the concrete 
ultimate strain (εu) to be 0.005 for normal strength concrete. The analyses reported previously in 
this study were done with this assumption. To explore the effect of these assumptions, additional 
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analyses were carried out using adjusted concrete models.  

Figure 3.48 shows the four different concrete stress-strain relationships used in this study 
with the only difference of the ultimate concrete strain (εu) values. The first stress-strain 
relationship is the model recommended in PEER/ATC-72-1, plotted as the black solid line. As 
previously mentioned, this model is assumed to have an ultimate compressive strain of 0.005. A 
second stress-strain relationship is the model by Roy and Sozen (1965) plotted with dashed green 
line in Figure 3.48. This study recommends an empirical formula for the stress-strain relationship 
of concrete under compressive forces and results into a smaller ultimate strain (εu) value of 
0.0043. This model is selected to be a lower bound of values can be selected for the ultimate 
strain of concrete under compression. This value of the ultimate strain is also approximately 
equal to the two times of the strain at the peak stress value (εo), which is a value that is being 
used to estimate the ultimate strain value.  A third model using the model of Mander et al. (1988) 
is plotted with the dashed blue line. It should be noted that the Mander et al (1988) stress-strain 
relationship for concrete results an ultimate strain (εu) value of 0.01. This value seems to be 
higher than the strain that unconfined concrete can achieve under cyclic loading conditions. This 
value is selected to be an upper bound for the ultimate compressive strain of concrete under 
cyclic loading conditions.  

Lastly, a fourth concrete compressive stress-strain relationship is modeled using the 
proposed regularization technique against loss of objectivity by Coleman and Spacone (2001). 
That study proposes a regularization technique for softening sections that requires knowledge of 
the compression fracture energy for the concrete used in the structure. This parameter 
supplements the concrete stress-strain relation to maintain a constant stress-displacement relation 
in the post-peak. Coleman and Spacone (2001) focus on the likelihood of the strain-softening 
type behaviors that can promote localization in one integration point only. This can occur when 
the number of integration points increases, as when the element size gets smaller in Perform 3D. 
This will cause the local base section moment-curvature response and the global base shear-
displacement response to lose objectivity. Coleman and Spacone (2001) use the concept of 
constant fracture energy in tension, which is used widely to regularize mesh-sensitive smeared 
crack displacement-based elements in continuum finite-element analysis. The main idea of the 
regularization process is to assume that the uniaxial stress-strain relation for concrete is 
supplemented by an additional parameter, the fracture energy in compression	ܩ௙

௖, defined as; 

 

ࢌࡳ
ࢉ  3.3        ࢏࢛ࢊ	࣌׬ = 

where σ is the concrete stress and ݑ௜ is the inelastic displacement. To adapt the fracture energy 
concept case in terms of stress and strain, Equation 3.3 may be written as; 

 

ࢌࡳ
ࢉ ࢖ࡸ = ࢏ࢿࢊ	࣌׬ࢎ =  ׬	  3.4       ࢏ࢿࢊ	࣌

where εi indicates inelastic strain and Lp is the plastic hinge length.  

The regularization in their study is applied to the Kent and Park (1971) law used for the 
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concrete fibers of the fiber cross-section. The pre-peak behavior is given by a parabola, followed 
by a linear post-peak softening branch until a stress of 20% ௖݂

ᇱ is reached at a prescribed strain 
labeled ߝଶ଴. The value of ߝଶ଴ must be calibrated to maintain a constant energy release. Assuming 
that	ܩ௙

௖ is known for unconfined concrete, leads to the following expression: 

 

૛૙ࢿ ൌ 	
ࢌࡳ
ࢉ

૙.૟ࢉࢌ
ᇲ࢖ࡸ

െ	૙.ૡࢉࢌ
ᇲ

ࡱ
൅	ࢿ૙       3.5 

where E is Young’s modulus and ߝ଴ is the strain corresponding to peak stress of concrete under 
compression. Plugging in values of 	ܩ௙

௖ equal to 20 N/mm for unconfined concrete, ௖݂
ᇱ equal to 

43 MPa, Lp to be 40 cm, E to be 30820 MPa, and, ߝ଴ equal to 0.0023, Equation 5 results in an ߝଶ଴ 
value of 0.0052 and a ߝ଴  value of 0.0058. These parameters representing the Coleman and 
Spacone approach (2001) are plotted with a red dashed line in Figure 1.23.  

 

Figure 3.48 - Concrete stress-strain relationships for the sensitivity study (Note: 1 MPa = 145 
psi) 

Figure 3.49 shows the comparison of the calculated relations between base shear and roof 
drift for east loading direction of models with different concrete stress-strain relationships. The 
calculated results of the analysis are plotted with the same line colors with the material models 
plotted in Figure 3.48. The green line represents the model with concrete stress-strain 
relationship using Roy and Sozen (1965), the black line represents the model with concrete 
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stress-strain relationship by PEER/ATC-72-1, red line represents the model with concrete stress-
strain relationship regularized by Coleman and Spacone (2001), and the blue line represents the 
model with concrete stress-strain relationship using Mander et al (1988). In Figure 3.49 the black 
line with the PEER/ATC-72-1 material model is the same curve previously shown in Figure 3.35. 
As expected, there is no difference in the overall stiffness of the responses in either case. 
Differences in results are observed after the roof drift ratio of 0.7%. It should be noted that the 
order of failures observed didn’t change with a change of the concrete material model. However, 
the drift capacity of the different models is notably dependent of the concrete ultimate strain 
value (εu). This is not surprising considering the failure mode of the Alto Rio in this direction is 
controlled by concrete crushing. 

 

Figure 3.49 - Comparison base shear – drift relationship of nonlinear static analysis for 
different concrete stress-strain models (loading to the east) (Note: 1 kN = 0.2248 kips) 

For all of the different concrete material models considered, crushing of east side of wall 
13 happens first, followed by crushing of the east side of the wall 8. The crushing of the east side 
of wall 13 happens at 0.7% drift ratio for Roy and Sozen (1965), 0.72% for PEER/ATC-72-1, 
0.75% for regularized Coleman and Spacone (2001) and 0.9% for Mander et al (1988). Similar 
order is seen for the crushing of the east side of wall 8, which happens at 0.98% for Roy and 
Sozen (1965), 1.0% for PEER/ATC-72-1, 1.1% for regularized Coleman and Spacone (2001), 
and 1.4% for Mander et al (1988). The trend shows that the higher value of the ultimate concrete 
compressive strain (εu) assigned for the model, the higher drift capacity is observed in the 
analysis. It seems like the analysis results are sensitive to the assumptions of the material level 
stress-strain relationships, in this case for concrete under compressive loading. However, for 
values of concrete ultimate strain in accordance with Roy and Sozen (1965), PEER/ATC-72-1, 
and regularized Coleman and Spacone (2001), the model predicts the first strength degradation at 
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a small interval of 0.7 to 0.75% roof drift ratio.  

Figure 3.50 shows the comparison of the calculated relations between base shear and roof 
drift for the west loading direction of models with different concrete stress-strain relationships. 
The calculated results of the analysis are plotted with the same line colors with the material 
models plotted in Figure 3.48 and Figure 3.49. For lateral load to the west, the first significant 
event is failure of the longitudinal reinforcement at the east side if the east walls along Axis 13 at 
1.55% for Roy and Sozen (1965), 1.60% for PEER/ATC-72-1, 1.65% for regularized Coleman 
and Spacone (2001), and 1.97% for Mander et al (1988). The trend shows that the higher value 
of the ultimate concrete compressive strain (εu) assigned for the model, the higher drift capacity 
is observed in the analysis. This is unexpected since the controlling failure mechanism in this 
direction of loading is tensile failure of reinforcement rather than the concrete crushing. It seems 
that the analysis results are sensitive to the assumptions of the material level stress-strain 
relationships, in this case for concrete under compressive loading. However, for values of 
concrete ultimate strain in accordance with Roy and Sozen (1965), PEER/ATC-72-1, and 
regularized Coleman and Spacone (2001), the model predicts the first strength degradation at a 
small interval of 1.55 to 1.65% roof drift ratio. 

 

Figure 3.50 - Comparison base shear – drift relationship of nonlinear static analysis for 
different concrete stress-strain models (loading to the west) 

Results of this sensitivity study conclude that the material level stress-strain curve has an 
important effect of the overall behavior of the numerical model. Therefore, practicing engineers 
should be cautious for the selection of element size and material stress-strain relationships for 
possible effects on model behavior. The approach of Coleman and Spacone (2001) is 
recommended for addressing this issue.  
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3.13 Effect of Lap Splices to the Modeling and the Response 

The provided lap splice lengths in design of the Alto Rio building exceed the required lengths of 
ACI 318-95. Thus, the analytical models reported previously assumed that the lap splices were 
adequate and did not require modeling. However, a recent study done by Hardisty et al. (2014) 
showed that behavior of lap splice in unconfined structural walls cannot be ignored, especially in 
the plastic hinge regions.  

Hardisty et al. (2014) studied six beams with unconfined lap splices and reinforcement 
layouts similar to the detailing of the Alto Rio building. The test setup simulated the nearly 
constant-moment region of the lap splices at boundary elements of the Alto Rio building (Figure 
3.51). The study also tested two structural walls with similar detailing, which had large moment 
gradients. It was concluded that boundary elements in constant-moment regions may fail in bond 
while similar boundary elements subject to large moment gradients may be adequate. They also 
observed that results from test of scaled structural walls with large-scale lap splices couldn’t 
always be projected directly to full-scale walls. Therefore, the test results of beams with 
unconfined lap splices in Hardisty et al. (2014) could be used as a guide to understand the 
behavior of the lap splices of the Alto Rio building.  

Figure 3.52, Figure 3.53, and Figure 3.54 show the cross-sections and stirrup details of the 
beams tested by Hardisty et al. (2014). Four #8 (ϕ25 in SI units) longitudinal reinforcing bars 
were spliced at the top of the beam. Similarly sized ϕ22 and ϕ25 bars were lap spliced at the 
boundary elements of the Alto Rio building. The spacing and cover of longitudinal reinforcement 
of the test beams is also similar to that used in the Alto Rio walls. In Hardisty et al. (2014), #3 
(ϕ9) stirrups had spacing of 5db, 8db and 11db, which compares with ϕ8 stirrups with 20 cm 
spacing used in the Alto Rio building.  

The lap splice length in all of the beam tests was 60db. In Alto Rio, for ϕ22 mm and ϕ25 
bars, lap splice lengths of 125 cm (49 in) (57db) and 140 cm (55 in) (56db) are called out in the 
design. The length required by ACI 318-11 equation 12-1 for a Class B lap splice (all the bars 
spliced at the same level) developing specified yield stress is 43db. According to ACI 318-11 
21.9.2.3, regions of special structural walls that are expected to yield are required to have 
development lengths of longitudinal reinforcement at least 1.25 times the values calculated for fy 
in tension, or a lap splice length of 54db. Therefore, lap splice lengths in both Alto Rio building 
and the tested beams meet requirements of ACI 318.  
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drift ratio. However, there is relatively higher strength degradation after the crushing of the wall 
along axis 13. It can be seen that, even though the crushing of the wall on axis 8 is at the same 
displacement, overall strength of the building at 1% roof drift ratio is lower than the model not 
accounting for lap splice effects.  

For lateral load to the west, unlike the previous results, the first significant event is the 
failure of shear panel on the Axis 13 at 0.62% roof drift ratio. It is followed by the failure of the 
longitudinal reinforcement lap splices at the east side of the east walls along Axis 13 at 0.82% 
roof drift ratio. This shows that the modifications done to account for lap splice affects the 
tension-controlled failure dramatically, decreasing the drift capacity of the building to half of the 
previous model. It is noteworthy that crushing failure is still not calculated to occur for loading 
in this direction, similar to the previous model. This conclusion about crushing failure is based 
on the assumption that the boundary is not previously damaged by some other action such as the 
lap splice failure.  

 

 

Figure 3.55 - Reinforcing steel stress-strain relation with modifications for lap splices 
(positive values are tensile) (Note: 1 MPa = 145 psi) 
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Figure 3.56 - Base shear – drift relationship of nonlinear static analysis with modifications 
for lap splices (Note: 1 kN = 0.2248 kips) 

 

Similar to the previous analysis, a second single-degree-of-freedom (SDOF) model was 
established to represent the effective first translational mode response of the Alto Rio building in 
the transverse direction, accounting for the lap splice effects. The SDOF model was implemented 
in Perform3D with a nonlinear rotational spring at the base, a massless rigid bar, and a mass at 
the top, using a procedure similar to the previous model. Parameters of the simplified trilinear 
moment-rotation relation of the modified SDOF were adjusted to approximate the relation 
obtained with the scaled nonlinear static analysis, as shown in Figure 3.57. The SDOF model 
was excited with the east-west direction of the ground motions recorded at Colegio Inmaculada 
Concepción site. 
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Figure 3.57 - Comparison of moment-rotation relations for the modified SDOF model and 
the scaled nonlinear static analysis (Note: 1 kN.m = 0.7375 kip.ft) 

Calculated moment-drift relations and displacement response histories of the modified 
SDOF model subjected to the Concepción motion are plotted in Figure 3.58, Figure 3.59, and 
Figure 3.60. It is worth noting that after a deformation cycle as large as 1.2% roof drift ratio in 
the west direction, the SDOF model collapses to the east (collapse) direction at around 22 
seconds of the excitation. First significant event of the structure response under dynamic analysis 
is the damage at the shear panel on the Axis 13 in a cycle to the west around 15 seconds. In the 
cycle to the east at around 20 seconds, concrete crushes under compression for both walls on 
Axes 13 and 8, respectively. Right after that the loading cycle changes direction to the west and 
causes the failure of the lap splices on the east side of the east wall on Axis 13 at around 21 
seconds. It is followed by a large cycle to the east direction around 22 seconds, where structure 
permanently displaced to the east. This permanent displacement of the model is also an indicator 
of the collapse to the east direction. 

Figure 3.60 compares the displacement response histories of the original and SDOF model 
modified for the lap splice effects. The results of the dynamic analysis of the modified SDOF 
system are very close to the analysis of the original model. The final result of the dynamic SDOF 
analysis is consistent with the observed damage and collapse of the building.  This suggests that 
although the possible effects of the lap splices can change the nonlinear static analysis results of 
the Alto Rio building, it neither had a dramatic effect on the dynamic SDOF analysis, nor 
changed the mode of collapse. 
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Figure 3.58 - Moment–drift ratio response of the modified SDOF model under the 
Concepción ground motion (Note: 1 kN.m = 0.7375 kip.ft) 

Figure 3.59 - Roof drift ratio response history of the modified SDOF model subjected to the 
Concepción ground motion 
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Figure 3.60 - Roof drift ratio response history of the modified SDOF model subjected to the 
Concepción ground motion 

The nonlinear static and dynamic SDOF analysis results demonstrate that the Alto Rio 
building was susceptible to collapse to the east direction. The main factors contributing to the 
failure include: the configuration of T and L-shaped wall cross sections, vertical discontinuities 
at the east side of the building, and high shear stresses in the solid wall panels below the stack of 
openings. The structural drawings and reconnaissance data suggest that the absence of confined 
boundary elements and the occurrence of lap splices of longitudinal bars without sufficient 
transverse reinforcement could be other factors that contributed to the collapse. However, the 
analysis of models modified according to the behavior of lap splices showed that lap splices have 
a very minor effect on the overall behavior of the building under this specific earthquake motion. 
The specific analyses reported in this paper indicate one plausible failure sequence, that is, 
initiation of shear damage in the solid wall panel immediately below the stack of openings, 
crushing and buckling failure of the walls at the discontinuity between the first and second 
stories on the east side of the building, and subsequent failure of the tension chord on the west 
side of the building as it collapsed toward the east. Other failure sequences are also plausible, 
depending on details of the ground motion and structural model, but these were not indicated by 
the present study. Observed damage after the earthquake (IDIEM, 2010) is consistent with the 
findings of the analysis results. 

Figure 3.61 and Figure 3.62 show the deformation concentrations of the Perform 3D model 
modified according to the behavior of lap splices under the loading to the east at 0.75% roof drift 
ratio. These figures represent the deformations at specific elements right after the “Concrete 
Crushing of W13-E”. The wall on the right side (wall on Axis 13) of the figure had localized 
deformations at the top of the first floor due to the compression failure. This damage state is very 
similar to the damage state presented in Figure 3.38 for the model ignoring lap splices. The effect 
of lap splices for this deformation state is negligible. 
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Similarly, Figure 3.63 and Figure 3.64 show the deformation concentrations of the Perform 
3D model modified according to the behavior of lap splices under the loading to the east at 1.1% 
roof drift ratio. These figures represent the deformations at specific elements right after the 
“Concrete Crushing of W8-E”. It is worth noting that the wall on Axis 8 (the wall on the left) 
also experienced the concentrated compression failure right below the setbacks at the top of the 
first floor. Similar to the previous damage state, this damage state is very similar to the damage 
state presented in Figure 3.39 for the model ignoring lap splices. The effect of lap splices for this 
deformation state is also negligible. 

Figure 3.65 and Figure 3.66 show the deformation concentrations of Perform 3D model 
modified according to the behavior of lap splices under the loading to the west at 0.86% roof 
drift ratio. This deformation corresponds to the “Lap Splice Failure of W13-E”. The damage 
concentrated at the bottom of the first floor level wall on Axis 13 (the wall on the right) can be 
seen. Similar damage is also seen at the bottom of the first floor level of the wall on Axis 8 (the 
wall on the left side). For this failure mode, the lap splices actually shortened the deformation 
capacity of the whole model. The deformations of this failure mode is very concentrated when 
compared to another tensile (however rather ductile) failure mode shown in Figure 3.42. For this 
mode of damage, the change in lap splice behavior affects the response and deformation 
concentrations in the model dramatically. 
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3.14  Investigation of Lateral Buckling of Reinforced Concrete 

Walls on the Response 

Lateral buckling of walls is the overall lateral instability of the concrete wall section over a 
portion of wall height. Lateral buckling of walls or wall-like elements has been observed in 
several laboratory tests, including Chai and Elayer (1999), Thomsen and Wallace (2004), Paulay 
and Priestley (1993), and Corley, W.G., A.E. Fiorato, and R.G. Oesterle (1981). Recently, lateral 
(overall) buckling of reinforced concrete walls are also observed following 2010 Maule (Chile) 
earthquake and 2011 Christchurch (New Zealand) earthquake. Figure 3.67 shows the Alto 
Huerto building, one of the buildings that experienced lateral wall buckling after the 2010 Chile 
earthquake.  

Slenderness of the concrete walls is one of the major factors of wall buckling. Design 
practice globally has resulted in more slender walls. In the case of Chile, it has been common to 
find rectangular wall sections having a thickness of 6 to 8 inches (150mm to 200mm), and floor-
to-floor slenderness ratios (hu/b) of 16 or greater, where hu is the clear story height and b is the 
wall thickness. This increase in the slenderness ratio can make walls more susceptible to 
buckling. There are two hypotheses for the lateral wall buckling. One of these hypotheses 
(Paulay and Priestley, 1993; Chai and Elayer, 1999) is that the tensile yielding for loading in one 
direction softens the boundary for the subsequent loading cycle in the opposite direction, causing 
the lateral instability of the wall in compression. Although the lateral buckling of the wall is 
under the compression cycle, it is strongly influenced by the prior tensile strains in the opposite 
loading direction. Another hypothesis (ATC 94 report) is that the wall crushes under the 
compression cycle, making the cross-section smaller and irregular. The smaller cross-section 
becomes vulnerable to lateral buckling under the same or subsequent compression cycles.  
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This theory is applied on the walls on the Axes 8 and 13 of the Alto Rio building, in order 
to investigate the possible effect of lateral wall buckling to the collapse. These two walls had the 
same parameters concerning the lateral buckling theory. Both walls had a clear story height of hu 
= 291 cm (114.5 in), a thickness of b = 20 cm (8 in), and a spalled thickness of bspalled = 17 cm 
(6.7 in). Plugging in these values for two possible wall thickness cases in to the Equation 3-8, 
results in to a maximum tensile strain value of εsm = 0.043 for the full wall thickness and εsm,spalled 
= 0.032 for the spalled wall thickness.  

The values of maximum tensile strains calculated for the two possible cases are reasonable 
strain values for walls like the ones in the Alto Rio building. In the case of the Alto Rio building, 
the locations of concern for lateral buckling coincide with the locations of lap splices, as shown 
in Figure 3.6 and Figure 3.8. According to the findings of Section 3.13, and the study done by 
Hardisty et al. (2014), a value of 2εy would be a good approximation for the ultimate strain, (εu), 
capacity of unconfined lap splices under cyclic loading. The assumed stress-strain relationship 
for unconfined lap splices is show in red dashed line in Figure 3.55. The value of 2εy is around 
0.0042, if a value of 0.0021 is assumed for the value of εy. According to this finding, the ultimate 
strain that unconfined lap splices can go through under cyclic excitation is in the order of 2εy or 
0.0042. The maximum tensile strain values calculated with the lateral wall buckling theory of 
Parra and Moehle (2014) (εsm = 0.043 and εsm,spalled = 0.032) are in the order of tenfold of the 
ultimate tensile strain. Having the maximum tensile strain values for lateral wall buckling to be 
tenfold greater than the ultimate strain capacity of the lap splices located at the same wall edge, it 
can be concluded that the lateral wall buckling of walls on the Axes 8 and 13 are highly unlikely 
and most probably is not a major factor contributed to the collapse of the Alto Rio building. 
Spalling of the wall could leave a reduced effective core area that would be more prone to 
buckling. However, absent confinement reinforcement to define a confined core, the stability of a 
crushed boundary seems questionable, and does not warrant further consideration. 

The structural wall tests done by Villalobos (2014) have similar findings for the possible 
effects of lap splices on the lateral wall buckling (case of Alto Rio building). Villalobos (2014) 
tested six wall specimens to study the effects of lap splices of longitudinal reinforcement. From 
these six specimens, two walls are interesting for the investigation of the lateral wall buckling 
where lap splices are present. Specimens W-MC-N and W-60-N, is designed similar to the 
construction practice in Chile with light reinforcement ratios and non-confined boundary 
elements (Figure 3.71 and Figure 3.72). The only difference between these two specimens where 
that the W-MC-N had mechanical couplers at the foundation level of the wall, where W-60-N 
had lap splices with a length of 60db at the bottom of the wall specimen. It is worth noting that 
the 60db lap splice length is very close to the lap splice length provided in Alto Rio building 
(58db).  

Both wall specimens were tested under identical displacement cycles in the same test setup. 
These two walls having identical properties except the lap splices on the bottom level of the wall, 
had different failure modes. Figure 3.73 shows the failure modes of two walls. The wall W-MC-
N failed in lateral wall buckling, on the other hand the wall W-60-N failed with the buckling of 
longitudinal reinforcements. It was reported that there was a strain concentration at the lap 
splices of W-60-N, this and the difference in the response might be caused by the similar effect 
of the ultimate strain limitation of the unconfined lap splices (similar to Alto Rio building). Test 
results of Villalobos (2014) support the conclusion of the previous investigation of lateral wall 
buckling in Alto Rio building. Considering previous analysis and test results, the occurrence of 
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and longitudinal directions were typical of values for Chilean wall buildings, with values of N/18 
and N/20, respectively, where N = number of stories. Calculated wall axial load ratios ranged 
from 0.05 to 0.07 P/fc’Ag, where P considers expected loads (1.0D + 0.25L). 

A nonlinear static analysis was conducted on an analytical model representing inelastic 
material properties of walls along axes 8 and 13 in the building transverse direction; this portion 
was deemed representative of the seismic-force-resisting system of the building. The model was 
loaded with an inverted triangular lateral force pattern. For loading to the east (collapse) 
direction, critical lateral strength degradation occurred due to crushing of the wall boundary at 
the east edge of the east wall along axis 13 at around 0.7% roof drift ratio, followed by similar 
crushing of the east part of wall along axis 8 around 1.0% roof drift ratio. The crushing zone 
occurred adjacent to a vertical discontinuity in the wall cross section. Solid wall panels beneath 
the stack of openings were calculated to undergo cracking and inelastic response, without failure, 
for loading in this direction. For lateral load toward the west, those same solid wall panels 
sustained shear failures, as indicated by initiation of shear strength degradation, at approximately 
0.9% roof drift ratio. This was followed by fracture of the longitudinal reinforcement at the east 
side of the east walls along Axis 13 at 1.6% roof drift ratio. Apart from the isolated shear failure 
of the solid panel beneath the stack of openings, analyses indicate that shear failure was not an 
initiator of building failure.  

The effect of modeling decisions such as modeling of shear behavior of walls and the 
softening slope of the concrete material stress-strain relationship are also investigated for 
understanding of the model sensitivity for these parameters. Nonlinear static analysis of a model 
with linear elastic shear stress-strain relationship assigned for the whole model was conducted 
and compared with the previous model with nonlinear shear behavior. There was an apparent 
difference in the overall stiffness of these two models. Because the elastic shear material model 
represents the cracked concrete properties, the stiffness of this model was relatively lower than 
the model with inelastic shear material. The lower stiffness of the model with the elastic shear 
material results into delayed failures. For lateral loading to the east, crushing of east side of the 
wall 13 happens at 0.8% roof drift ratio compared to 0.7% of the previous model. Similarly, 
crushing of the east side of the wall 8 happens at 1.2% roof drift ratio, which was at a 1.0% roof 
drift ratio for the model with inelastic shear material model. However, it should be noted that the 
order of failures observed didn’t change with a change of the shear material model. For the 
lateral load to the west, the first difference in the damage modes is observed. As expected, the 
failure of the shear panel of the walls 8 and 13 is not observed, due to the elastic model of the 
shear material. On the other hand, the fracture of the longitudinal reinforcement at the east side 
of the east walls along Axis 13 is observed at 2.0% roof drift ratio rather than the 1.6% observed 
in the inelastic shear material model. It showed that the failure modes except the failure of shear 
panels are calculated with the same order with the inelastic shear material model .However; there 
were some discrepancies in drift capacities and strength of the model that can be critical to the 
dynamic response of such models. It was concluded that the inelastic modeling of shear should 
be employed by practicing engineers.  

Another parametric study was done to investigate the possible effects of the softening 
slope of the concrete material stress-strain relationship to the response of the model. Four 
different concrete stress-strain relationships used in this study with the only difference of the 
ultimate concrete strain (εu) values. The first stress-strain relationship was the model 
recommended in PEER/ATC-72-1, and this model was assumed to have an ultimate compressive 
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strain of 0.005. A second stress-strain relationship was the model by Roy and Sozen (1965) with 
a smaller ultimate strain (εu) value of 0.0043. The third model using the Mander et al. (1988) 
resulted in an ultimate strain (εu) value of 0.01. Lastly, a fourth concrete compressive stress-
strain relationship was modeled using the proposed regularization technique against loss of 
objectivity by Coleman and Spacone (2001) with a value of ultimate strain (εu) equals to 0.0058. 
As expected, there was no difference in the overall stiffness of the responses in either case. The 
order of failures observed didn’t change with a change of the concrete material model. The drift 
capacity of the different models was dramatically dependent of the concrete ultimate strain value 
(εu). This is not surprising considering the failure mode of the Alto Rio in this direction is 
controlled by concrete crushing. The trend showed that the higher value of the ultimate concrete 
compressive strain (εu) assigned for the model, the higher drift capacity is observed in the 
analysis. It seems like the analysis results are sensitive to the assumptions of the material level 
stress-strain relationships, in this case for concrete under compressive loading. The analysis 
results showed that the higher value of the ultimate concrete compressive strain (εu) assigned for 
the model, the higher drift capacity is observed in the analysis. It is concluded that the material 
stress-strain relationship has an important effect on the overall model behavior, and practicing 
engineers should be cautious of the element size and material model selection. Tackling possible 
pitfalls can be achieved using the regularization of the post peak behavior of the concrete stress-
stain relationship according to Coleman and Spacone (2001). 

Dynamic analysis of a single-degree-of-freedom (SDOF) model was established to 
represent the effective first translational mode response of the Alto Rio building in the transverse 
direction. The SDOF model was excited by the ground motions recorded in Concepción, 1.2 km 
(0.75 miles) away from Alto Rio. The proximity of the sites and the similar site characteristics 
according to Ramirez and Vivallos (2009) suggest that the motions at the two sites may be 
reasonably similar, although deviations due to different wave paths are to be expected. Studies 
using this model indicate that building collapse would occur toward the east at around 22 
seconds into the ground motion, as observed following the earthquake, and that this result was 
relatively insensitive to the properties of the SDOF model. After a deformation cycle as large as 
1.3% roof drift ratio in the west direction, the SDOF model collapses to the east (collapse) 
direction at around 22 seconds of the excitation. In the cycle to the east at around 20 seconds, 
concrete crushes under compression for both walls on Axes 13 and 8, respectively. Right after 
that the loading cycle changes direction and damages the shear panels on both Axes 8 and 13 at 
around 21 seconds. It is followed by a large cycle to the east direction around 22 seconds, where 
structure permanently displaced to the east. This permanent displacement of the model is also an 
indicator of the collapse to the east direction. The final result of the dynamic SDOF analysis is 
consistent with the observed damage and collapse of the building.  

In another nonlinear static analysis the effects of lap splices to the response are 
investigated. The provided lap splice lengths in design of the Alto Rio building were more than 
the required amount by ACI 318-95.However, a recent study done by Hardisty et al. (2014) 
showed that unconfined lap splices will have limited deformation capacity, even though the 
splice lengths required by ACI 318-95 provided. In light of the results of Hardisty et al. (2014), 
Perform 3D model was modified to account for the lap splices with the modification done was 
the change in the ultimate strain (εu) value in the tension loading side. Results of Hardisty et al. 
(2014) suggested that a value of 2εy would be a good approximation for the ultimate strain (εu) 
capacity of unconfined lap splices under cyclic loading. For loading the model to the east, the 
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direction in which collapse occurred, similar to the previous model, crushing of the wall 
boundary at the east edge of the east wall along axis 13 at around 0.72% roof drift ratio, followed 
by similar crushing of the east part of wall 8 at around 1% roof drift ratio. However, there is 
relatively higher strength degradation after the crushing of the wall along axis 13. It can be seen 
that, even though the crushing of the wall on axis 8 is at the same displacement, overall strength 
of the building at 1% roof drift ratio is lower than the model not accounting for lap splice effects. 
For lateral load to the west, unlike the previous results, the first significant event is the failure of 
shear panel on the Axis 13 at 0.62% roof drift ratio. It is followed by the failure of the 
longitudinal reinforcement lap splices at the east side of the east walls along Axis 13 at 0.82% 
roof drift ratio. This shows that the modifications done to account for lap splices affect the 
tension controlled failure dramatically, decreasing the drift capacity of the building to half of the 
previous model. 

Similar to the previous analysis, a second single-degree-of-freedom (SDOF) model was 
established to represent the effective first translational mode response of the Alto Rio building in 
the transverse direction, accounting for the lap splice effects. After a deformation cycle as large 
as 1.2% roof drift ratio in the west direction, the SDOF model collapses to the east (collapse) 
direction at around 22 seconds of the excitation. First significant event of the structure response 
under dynamic analysis is the damage at the shear panel on the Axis 13 in a cycle to the west 
around 15 seconds. In the cycle to the east at around 20 seconds, concrete crushes under 
compression for both walls on Axes 13 and 8, respectively. Right after that the loading cycle 
changes direction to the west and causes the failure of the lap splices on the east side of the east 
wall on Axis 13 at around 21 seconds. It is followed by a large cycle to the east direction around 
22 seconds, where structure permanently displaced to the east. This permanent displacement of 
the model is also an indicator of the collapse to the east direction. The results of the dynamic 
analysis of the modified SDOF system are very close to the analysis of the original model. This 
demonstrates that although the possible effects of the lap splices can change the nonlinear static 
analysis results of the Alto Rio building, it neither had a dramatic effect on the dynamic SDOF 
analysis, nor changed the mode of collapse. 

The possible effect of lateral wall buckling to the collapse of Alto Rio building was also 
investigated using the theory presented in Parra and Moehle (2014). The maximum tensile strain 
values for the lateral wall buckling to occur was εsm = 0.043 and εsm,spalled = 0.032 for full wall 
thickness and the spalled wall thickness, respectively. Altough, these maximum tensile strain 
values are reasonable for shear walls, in the case of the Alto Rio building, the locations of 
concern for lateral buckling coincide with the locations of lap splices. Since the maximum tensile 
strain values for lateral wall buckling is tenfold of the ultimate tensile strain capacity of the 
unconfined lap splices (2εy) according to Hardisty et al. (2014), it can be concluded that the 
lateral wall buckling of walls on the Axes 8 and 13 are highly unlikely and most probably is not 
a major factor contributed to the collapse of the Alto Rio building.  

The results of this study suggest that the Alto Rio building was susceptible to collapse to 
the east direction due to the following main factors:  

1. The configuration of T and L-shaped wall cross sections resulted in low deformation 
capacity for loading that placed the flange in tension and the stem in compression.  

2. Vertical discontinuities at the east side of the building created stress concentration at 
the top of the first story, with corresponding damage concentration.  
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3. The solid wall panels below the stack of corridor openings were susceptible to high 
shear demands and shear damage.  

4. The absence of confined boundary elements limited the deformation capacity of the 
walls and caused damage concentrations at the boundary elements. 

5. The presence of lap-spliced longitudinal reinforcement without confining transverse 
reinforcement reduced the tensile deformation capacity of lap splices, and further 
reduced the deformation capacity of the structural system.  

The nonlinear static and dynamic SDOF analysis results demonstrate that the Alto Rio 
building was susceptible to collapse to the east direction. The main factors contributing to the 
failure include: the configuration of T and L-shaped wall cross sections, vertical discontinuities 
at the east side of the building, and high shear stresses in the solid wall panels below the stack of 
openings. The structural drawings and reconnaissance data suggest that the absence of confined 
boundary elements and the occurrence of lap splices of longitudinal bars without sufficient 
transverse reinforcement could be other factors that contributed to the collapse. However, the 
analysis of models modified according to the behavior of lap splices demonstrated that lap 
splices have a very minor effect on the overall behavior of the building under this specific 
earthquake motion. The specific analyses reported in this paper indicate one plausible failure 
sequence, that is, initiation of shear damage in the solid wall panel immediately below the stack 
of openings, crushing and buckling failure of the walls at the discontinuity between the first and 
second stories on the east side of the building, and subsequent failure of the tension chord on the 
west side of the building as it collapsed toward the east. Figure 3.74 shows the modes of failure 
that analyses resulted at the suspected locations of the building. Other failure sequences are also 
plausible, depending on details of the ground motion and structural model, but these were not 
indicated by the present study. Observed damage after the earthquake (IDIEM, 2010) is 
consistent with the findings of the analysis results. 
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Chapter 4. Seismic Performance and Modeling of 

Post-Tensioned Precast Concrete Shear Walls 

 

4.1 Introduction 

Past earthquakes have shown examples of unsatisfactory performance of buildings using 
reinforced concrete structural walls as the primary lateral-force-resisting system. In the 1994 
Northridge earthquake, examples can be found where walls possessed too much overstrength, 
leading to unintended failure of collectors and floor systems, including precast and post-
tensioned construction. In the 2010 Chile earthquake, many structural wall buildings sustained 
severe damage. Although Chilean design standards result in different reinforcement detailing 
than is common in U.S. walls, the failure patterns raise concerns about how well conventionally 
reinforced structural walls in U.S. buildings will perform during the next earthquake. Past 
research efforts, including the PRESSS program (Priestley et al. 1999) and subsequent studies, 
have explored alternative design approaches using post-tensioned precast structural walls to 
better control yielding mechanisms and promote self-centering behavior. These studies have 
provided excellent guidance on design and construction requirements, but examples of full-scale, 
three-dimensional dynamic tests to demonstrate behavior in realistic structural systems have 
been lacking. Such demonstrations are important to identify complex interactions that occur in 
complete building structures. Such demonstrations also are useful to serve as a vehicle for 
acceptance by the engineering community. 

In December 2010, the National Research Institute for Earth Science and Disaster 
Prevention (NIED) in Japan conducted a three-dimensional earthquake simulation test on a full-
scale, four-story building using the E-Defense shaking table (Figure 4.1). Design, 
instrumentation, preliminary analytical studies, and testing of the building were a collaboration 
among researchers from Japan and the U.S. (lead researchers in the U.S. were J. Moehle, W. 
Ghannoum, R. Sause, and J. Wallace). The seismic-force-resisting system of the test building 
comprised two PT frames in one direction and two unbonded PT precast walls in the other 
direction. The building was designed using the latest code requirements and design 
recommendations available both in Japan and the U.S., including the ACI ITG-5.2-09. The test 
building was subjected to several earthquake ground motions, ranging from serviceability level 
to near collapse.  

Analytical studies were carried out as part of the overall research program. The studies, 
which are reported here, aim to develop practical structural engineering models, to conduct 
analytical simulations to test the capability of the structural models to replicate behaviors 
important to structural engineers, and to assess whether available analysis tools are sufficient to 
model dynamic behavior that results when a full-scale building is subjected to realistic 
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earthquake ground shaking. Measured response data from such an outstanding test provides an 
opportunity to fully understand the response characteristics of PT walls and assess the ability of 
nonlinear analytical models to reproduce important global and local responses, including three-
dimensional system interactions, both prior to and after loss of significant lateral strength. 
Moreover, this study to assess behavior and system interaction of PT walls leads to 
improvements of the current design ideas and performance expectations. 

 

4.2 Overview of the Test  

4.2.1 Background 

In December 2010, two full-scale, four-story buildings were tested simultaneously on the NIED 
E-Defense shaking table (Figure 4.1). The two buildings were designed to have the same height 
and floor plan; one of the buildings used a conventional reinforced concrete (RC) structural 
system with shear walls in one direction and moment frames in the other direction, whereas the 
other building used the same systems constructed with post-tensioned (PT) precast concrete 
members. This study focuses on the PT building only. 

The test was conducted on the world’s largest shaking table facility, E-Defense. The E-
Defense shaking table has plan dimensions of 20 m x 15 m (Figure 4.2). The table can produce a 
velocity of 2.0 m/s and displacement of 1.0 m simultaneously in two horizontal directions, and 
accommodate specimens weighing up to 1200 metric tons. The two buildings were almost 
identical in geometry and configuration, and were tested simultaneously, as shown in Figure 4.3. 
Each building weighed approximately 5900 kN; therefore, the total weight of the two buildings 
was 98% of E-Defense table capacity. 
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Table 4.1 shows the cross section of the wall panels. The first floor cross section was 
different than the other three floors. However, the same cross section was used for floors 2 thru 
4. The first floor cross section had well-confined boundary elements at the two ends of the wall. 
The total confinement length ratio lc/lw was 0.4, where lc is the total confinement length, and lw is 
the length of the wall. The volumetric ratio of confinement steel to confined concrete core in the 
lengthwise direction was x = 1.7 %, whereas it was y = 1.8 % in the transverse direction.  The 
overall confinement steel ratio was s = 3.5 %. The two-way mesh of reinforcing steel was D13 
SD295, which had a nominal design strength of 345 MPa. Transverse reinforcement of the wall 
boundary elements was high-strength steel bars with a nominal strength of 785 MPa. 

Wall panels were post-tensioned at the roof level with two bundles of 10 – D15.2 SWPR7B 
tendons. Post-tensioning tendons were located with an eccentricity of 380 mm from the center of 
the cross section (Figure 4.7 - Reinforcement details of wall base (Unit: mm)). PT tendons were 
placed inside 85 mm diameter polyethylene ducts without bonding surrounded by concrete over 
the full wall height. The area of the post-tensioning tendons were Aspt = 1387 mm2, which 
corresponds to a post-tensioning reinforcement ratio pt = 0.44 %. Tendons were initially 
prestressed to 60 % of fpy, where fpy is the design yield strength of the PT tendons. Initial 
prestressing of wall panels resulted in an initial concrete compressive stress of fci,pt = 4.3 MPa. 
PT strands used in the walls had design strength of 1600 MPa. Figure 2.6 shows reinforcement 
details of the PT walls and the wall-to-beam joint details. Post-tensioning tendon locations 
throughout the wall height are shown in Figure 4.9.b. 

Eight D22 (22 mm diameter) unbonded mild steel bars (four on each side) were placed 
with 540 mm eccentricity from the center of the wall cross section (Figure 4.7). These bars were 
unbonded through the lower 1.5 m of the first story and connected to the foundation with 
mechanical couplers. Unbonded mild reinforcement was placed across the interface of the wall 
base and the foundation to provide a mechanism for concentrating the inelastic action on these 
bars and dissipating energy. 
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The analytical study presented in this chapter focuses on the response and modeling of the 
Y-direction of the building with an interest in the rocking precast post-tensioned shear wall. For 
convenience the base shear-roof drift ratio relationship of the building in Y-direction is plotted 
for 25%, 50% and 100% Kobe motions in Figure 4.1. Figure 4.31, Figure 4.32, and Figure 4.33 
show the time variation of the roof drift ratio response of the test specimen in Y-direction for 
25%, 50%, and 100% Kobe motions, respectively. Similarly, Figure 4.34, Figure 4.35, and 
Figure 4.36 show the time variation of the base shear force of the Y-direction for 25%, 50%, and 
100% Kobe motions, respectively.  

 

 

Figure 4.30 - Base shear-roof drift ratio relationship of test results for 25%, 50%, and 100% 
Kobe motions 
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Figure 4.31 - Roof drift ratio-time comparison of results for 25% Kobe motion 

 

Figure 4.32 - Roof drift ratio-time comparison of results for 50% Kobe motion 
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Figure 4.33 - Roof drift ratio-time comparison of results for 100% Kobe motion 

 

Figure 4.34 - Base shear-time comparison of results for 25% Kobe motion 
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Figure 4.35 - Base shear-time comparison of results for 50% Kobe motion 

 

Figure 4.36 - Base shear-time comparison of results for 100% Kobe motion 
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bars in this case) anchored into the foundation, additional flexibility is introduced due to rigid-
body rotations that result from slip of the tensile ED longitudinal reinforcement from the 
anchorage (Figure 4.59). The reinforcement enters the foundation in tension and transfers force 
through bond stress to the surrounding concrete. Consequently, the tension force gradually 
decreases until distance ݈ௗ  into the anchoring foundation, at which point the tension force 
reaches zero. Assuming the concrete to be rigid, the reinforcement must slip from the 
surrounding concrete by an amount equal to the total bar elongation within the anchorage. Bar 
elongation from the point of zero tension force to the face of the anchorage can be calculated as 
the integral of the strain along the anchorage length (Moehle, 2013).   

Bar slip (strain penetration) effects are considered for modeling of ED bars. ED bar trusses 
are extended below the top of the foundation to mimic the extra elongation caused by the slip of 
ED bars.  Bar slip is calculated equating the total bond force between steel and concrete to the 
force at the yielding strength of the steel bar, as shown in Figure 4.59. Since bars deform beyond 
the yield point, a bond stress of 6ඥ ௖݂

ᇱ  was assumed, where ௖݂
ᇱ  is the specified concrete 

compressive strength. Equating the bar force and the bond force determines the required 
extension length of the bar, shown as: 

 

࢈ࢊ࣊
૛

૝
࢟ࢌ 	ൌ  (1.9)          ࢛ࢊ࢒࢈ࢊ࣊	

       

ࢊ࢒ 	ൌ 	
࢈ࢊ࢟ࢌ
૝࢛

            (1.10)  

 

in which db is the bar diameter, fy is the specified yield strength of the steel bar, u is the 
assumed bond stress, ld is the length of the bar from the point of zero stress to the point where 
stress fy is calculated. Stresses on the steel bar have a triangular distribution (from zero to fy), 
whereas bond stresses are assumed to be constant throughout the length ld. To simulate extra 
deformation caused by the bar slip, the truss element should be extended with a length of  ݈ௗ ⁄ 2 
on both sides. For practical modeling purposes, ED trusses were extended with a length of ld at 
the foundation level. Calculations resulted into a ݈ௗ value of 46.6 cm. 

 



 

 

FFigure 4.59 - Bar slip (s
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strain penettration) pheenomena 
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versus time response (Figure 4.82) as the slight phase change around 21s. Assumed damping for 
the analytical model is in good agreement for the response of 100% Kobe excitations.  

The axial load variations of the post tensioning (PT) tendons are monitored using load cells 
on the roof level during the test. The force variation for the PT tendons versus time comparison 
for the test results and analysis results are shown in Figure 4.83, Figure 4.84, and Figure 4.85 for 
25%, 50%, and 100% Kobe motions, respectively. 

 

Figure 4.83 - PT force-time comparison of results for 25% Kobe motion 

Figure 4.83 shows a good agreement between the calculated and measured PT force 
variations for 25% Kobe motion. The numerical estimation seems in-phase with the test results 
until second 19. However, the peak values of these cycles are 10 to 30% lower than the observed 
values of the test. It is important to mention that the numerical result matches the ultimate peak 
response very accurately. As expected from the roof drift ratio versus time relationship in Figure 
4.76, PT forces are significantly lower than the test results and out-of-phase after 19 seconds. 
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Figure 4.84 - PT force-time comparison of results for 50% Kobe motion 

 

Figure 4.84 shows a good agreement between the calculated and measured PT force 
variations for 50% Kobe motion. The numerical estimation seems out-of-phase with the test 
results until second 17. Two peak responses of the numerical model between 15 and 16 seconds 
largely overestimate the test results. Results of the numerical model become in-phase and have a 
good match with the test results around 17 seconds. This is very similar to the overall response of 
the model shown in the Figure 4.79. 
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Figure 4.85 - PT force-time comparison of results for 100% Kobe motion 

 

Figure 4.85 shows a very good agreement between the calculated and measured PT force 
variations for 100% Kobe motion. The numerical model estimates peak responses and their time 
accurately. The response of the numerical model becomes out-of-phase around 21 seconds. This 
is very similar to the overall response of the model shown in the Figure 4.82. 

The slip between the post-tensioned (PT) wall base and the foundation during the 100% 
Kobe motion is plotted in Figure 4.86. This shows that the maximum slip at the base of the PT 
walls during the largest applied ground motion is around 1.5 mm (0.059 inches). This result 
confirms the modeling assumption of the fixed connection between PT walls and foundation, i.e. 
ignoring the potential slip surface between the precast wall panel and the foundation.  
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Figure 4.86 - PT wall base slip-time relationship of results for 100% Kobe motion 

Figure 4.87 and Figure 4.88 show the deformation variation of the energy dissipation (ED) 
bars of the PT walls with time for the 25% Kobe earthquake. The test result looks very scattered 
because of the small magnitude of the displacement. The results of the numerical model match 
the test results reasonably before 19 seconds.  

Figure 4.89 and Figure 4.88 show the deformation variation of energy dissipation (ED) 
bars of PT walls with time for the 50% Kobe earthquake. The numerical model is not able to 
simulate the response before 17 seconds. However, after this point test results and analysis 
results match remarkably well within a 10-20% error range. 

Figure 4.91 and Figure 4.92 show the deformation variation of energy dissipation (ED) 
bars of PT walls with time for the 100% Kobe earthquake. The numerical results follow the test 
results very closely throughout the whole motion. The numerical model calculates the peak 
values of deformation of the ED bars approximately 20-30% lower than the observed values 
from the test specimen.  
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Figure 4.87 - ED bar 1 deformation-time comparison of results for 25% Kobe motion 

Figure 4.88 - ED bar 2 deformation -time comparison of results for 25% Kobe motion 
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Figure 4.89 - ED bar 1 deformation-time comparison of results for 50% Kobe motion 

 

Figure 4.90 - ED bar 2 deformation -time comparison of results for 50% Kobe motion 
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Figure 4.91 - ED bar 1 deformation -time comparison of results for 100% Kobe motion 

Figure 4.92 - ED bar 2 deformation -time comparison of results for 100% Kobe motion 
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4.6 Summary, Conclusions  

Past earthquakes have shown examples of unsatisfactory performance of buildings using 
reinforced concrete structural walls as the primary lateral-force-resisting system. This pattern of 
poor performance pushed researchers to explore alternative design approaches using post-
tensioned precast structural walls to better control yielding mechanisms and promote self-
centering behavior. In December 2010, the National Research Institute for Earth Science and 
Disaster Prevention (NIED) in Japan conducted a three-dimensional earthquake simulation test 
on a full-scale, four-story building using the E-Defense shaking table. The seismic-force-
resisting system of the test building comprised two PT frames in one direction and two unbonded 
PT precast walls in the other direction. The test building was subjected to several earthquake 
ground motions, ranging from serviceability level to near collapse. The studies, which are 
reported here, aim to develop practical structural engineering models, to conduct analytical 
simulations to test the capability of the structural models to replicate behaviors important to 
structural engineers, and to assess whether available analysis tools are sufficient to model 
dynamic behavior that results when a full-scale building is subjected to realistic earthquake 
ground shaking. 

The test specimen had a lateral-load-resisting system in the Y-direction was two precast 
unbonded PT shear walls and one bay unbonded PT center moment frame at the B Axis. Shear 
walls had a rectangular cross section with a length (lw) of 2500 mm and a thickness (tw) of 250 
mm with a cross-sectional aspect ratio lw/tw of 10. PT walls were 12 m high, and therefore had a 
slenderness ratio of Hw/lw = 4.8, where Hw is the height of the wall, and lw is the length of the 
wall. Wall panels were post-tensioned at the roof level with eccentrically located two bundles of 
post-tensioning tendons. Eight D22 (22 mm diameter) unbonded mild steel bars (four on each 
side) were placed with 540 mm eccentricity from the center of the wall cross section. These bars 
were unbonded through the lower 1.5 m of the first story and connected to the foundation with 
mechanical couplers. The building was designed using the latest code requirements and design 
recommendations available both in Japan and the U.S., including the ACI ITG-5.2-09. The test 
building was subjected to several earthquake ground motions, ranging from serviceability level 
to near collapse. The input ground motions were scaled JMA-Kobe and JR-Takatori records from 
the 1995 Hyogoken-Nanbu earthquake. Initially, the 25%, 50%, and 100% scaled versions of 
JMA-Kobe, the 40% and 60% scaled JR-Takatori motions were applied to the test specimen. The 
specimen was well instrumented with, accelerometers, displacements transducers, and strain 
gauges.  

The fundamental vibration periods were measured using White Noise excitations prior to 
the applied ground motions. The initially measured fundamental period of the building was 0.45 
seconds in the X-direction and 0.29 seconds in the Y-direction. For the 50% Kobe motion, the 
maximum story drift ratio was 0.004 for the X-direction and 0.006 for the Y-direction. Under the 
100% Kobe motion, the maximum story drift values became 0.039 for the X-direction and 0.017 
for the Y-direction. After the 100% Kobe motion, the concrete cover at the boundary regions 
were spalled at the wall base with a height of one wall thickness. The damage was concentrated 
in the unbonded energy dissipating bars. The contribution of the wall slip was very small. The 
damage at the column base was concentrated at a height of 0.5 times the column dimension. 

The wall direction (Y-direction) of the building is modeled using the computer program, 
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Perform 3D, with emphasis on an implementation that would be practical for design-office 
implementation. This model is subjected to several ground motions to explore the accuracy of 
the analytical model. Initially, the analytical model of only shear walls was implemented. 
Structural walls were modeled using four-noded “Shear Wall Elements” (CSI). The axial forces 
and bending moments on the vertical axis are resisted by fiber cross section. Material stress-
strain relationship properties were decided according to the material sample test results. 
Nonlinear material stress-strain relationships were assigned to the fibers for concrete and 
reinforcing steel. Shear forces on the element can be resisted by a shear spring. Due to 
anticipated low shear demands, an elastic shear material was used for walls. PT tendons and 
energy dissipation (ED) bars are modeled using truss elements with nonlinear material 
properties. Rayleigh damping is used for nonlinear response history analysis, with parameters set 
to produce 2 percent damping at periods 0.2T1 and T1, where T1 = 0.45 seconds. 

Comparing the test and analytical simulation results, stiffness and base shear were 
underestimated significantly for all motions. Roof drift ratio time series were also poorly 
matched for the excitations, with the exception of the 100% Kobe motion after 17 s, for which 
the response histories matched fairly well. This good estimation could be a result of strength loss 
caused by heavy damage of the frames, where the response mainly depends on the walls. These 
results suggest that the contribution of the PT frames in the Y-direction may be significant and 
should be modeled for successful estimations of response. 

Comparison of the wall simulation with test results led to the decision to model the frames 
in the Y-direction. A modified building model was developed that modeled the frame members 
on Axes A, B, and C, in addition to the walls. Beams and columns are modeled using nonlinear 
beam column elements with rigid end zones. Nonlinear fiber sections are assigned through the 
length of the elements with distributed plasticity. Similar to the shear wall elements, a simplified 
trilinear curve with a descending portion is used to model concrete and steel materials. 
Unbonded PT tendons of beams (PG2 & PG3) are modeled with parallel truss elements with 
nonlinear material properties. Rayleigh damping is used for nonlinear response history analysis, 
with parameters set to produce 2 percent damping at periods T1/8 and 1.25T1, where T1 = 0.29 
seconds. 

Base shear versus roof drift ratio relationships for all motions show the flag-shaped 
hysteresis typical of unbonded post-tensioned concrete. Important engineering parameters such 
as fundamental vibration period, stiffness, hysteresis shape, maximum base shear, and maximum 
roof drifts are adequately simulated using the numerical model. For all excitations, energy 
dissipated during the earthquake simulation (area inside the hysteresis curve) is estimated with 
good accuracy. Although estimated maximum roof drift ratios are very close to the test results, 
phase shifts in roof drift ratio versus time series are significant for some parts of the response. 
These discrepancies do not coincide with the peak responses or affect the prediction of the 
overall behavior of such systems.  

For the 25% Kobe motion, the numerical model is slightly stiffer than the test specimen, as 
it is shifting out-of-phase after 19 s. Vibration period of the test specimen is increasing after 19 s, 
but the analytical model does not identify this increase in period. For the roof drift ratio versus 
time relationship, the calculated response damps out more slowly that the test results. For the 
50% Kobe motion, the numerical model has a good estimation for the overall stiffness of the test 
building. The roof drift ratio versus time response of the 50% Kobe earthquake starts out-of-
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phase with the test results. However, it becomes in-phase with the test results in about 17s, and 
follows the test building roof drift ratio versus time response accurately. The apparent damping 
of the numerical simulation is similar to the test specimen for this excitation. For 100% Kobe 
motion, the numerical model has good estimates for important engineering parameters such as 
maximum base shear and maximum roof drift ratio. Response of the numerical model seems 
slightly stiffer on the base shear versus roof drift ratio relationship. Assumed damping for the 
analytical model is in good agreement with the response. 

The developed numerical model is able to simulate the PT force-time relationship in a very 
good agreement with the test results for 100% Kobe motion. For the 25% and 50% Kobe 
motions, there are some discrepancies in the simulation but numerical model was able to 
estimate the peak response quantities. The Perform 3D model was able to estimate the ED bar 
deformation-time relationship with a 20 to 30% difference in all motion. This discrepancy is a 
topic needs to be further studied. 

Important engineering parameters such as fundamental vibration period, stiffness, 
hysteresis shape, maximum base shear, and maximum roof drifts are adequately simulated using 
the numerical model. There are, however, some discrepancies in the modeling of these responses 
with time. These discrepancies do not coincide with the peak responses or affect the prediction of 
the overall behavior of such systems. Moreover, the proposed numerical model is able to 
simulate the actions in building components such as the PT tendons and the ED bars. These 
results indicate that, while further improvements may be desirable, the selected modeling 
approach is capable of producing seismic response estimates of sufficient accuracy to be used for 
detailed design of unbonded post-tensioned, precast structural wall systems 
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Chapter 5. Conclusions 

The purpose of this study was to improve our understating of the seismic behavior and 
limitations of current design practices of reinforced concrete shear walls. The first part of the 
study assessed the collapse of the Alto Rio building as a result of earthquake shaking. Since Alto 
Rio building was designed using modern building codes (ACI 318-95), an understanding of the 
reasons of collapse will improve our understanding of how better to design similar buildings in 
the United States and around the world. The second part of the study uses data from a three-
dimensional earthquake simulation test on a full-scale, four-story, precast post-tensioned 
concrete shear wall building. The goal was to develop practical structural engineering models, to 
conduct analytical simulations to test the capability of the structural models to replicate 
behaviors important to structural engineers, and to assess whether available analysis tools are 
sufficient to model dynamic behavior that results when a full-scale building is subjected to 
realistic earthquake ground shaking. 

 

5.1  Collapse Investigation of a Concrete Shear Wall Building 

The Mw 8.8 2010 Maule Chile earthquake affected over twelve million people in central south 
Chile, severely damaging more than 50 multi-story reinforced concrete buildings  and causing 
partial or total collapse of four other such buildings. Among these, the 15-story residential Alto 
Rio building stands out as the first modern shear wall building to collapse by overturning during 
an earthquake. The recorded ground motions approximately 1.2 km (0.75 miles) away from Alto 
Rio show that shaking lasted more than 120 seconds with peak ground accelerations of 0.402g 
and 0.397g in east-west and north-south directions, respectively. Using the building plans and a 
post-earthquake reconnaissance report, reasons of collapse are investigated with linear elastic, 
nonlinear static, and nonlinear dynamic analyses, in Chapter 3. 

A linear elastic model of the whole Alto Rio building was prepared using effective 
(cracked) section properties of the structural elements. The fundamental periods in transverse 
and longitudinal directions were typical of values for Chilean wall buildings, with values of N/19 
and N/21, respectively, where N = number of stories. Calculated wall axial load ratios ranged 
from 0.05 to 0.07 P/fc’Ag, where P considers expected loads (1.0D + 0.25L). 

A nonlinear static analysis was conducted on an analytical model representing inelastic 
material properties of walls along axes 8 and 13 in the building transverse direction; this portion 
was deemed representative of the seismic-force-resisting system of the building. The model was 
loaded with an inverted triangular lateral force pattern. For loading to the east (collapse) 
direction, critical lateral strength degradation occurred due to crushing of the wall boundary at 
the east edge of the east wall along axis 13 at around 0.7% roof drift ratio, followed by similar 
crushing of the east part of wall along axis 8 around 1.0% roof drift ratio. The crushing zone 
occurred adjacent to a vertical discontinuity in the wall cross section. Solid wall panels beneath 
the stack of openings were calculated to undergo cracking and inelastic response, without failure, 
for loading in this direction. For lateral load toward the west, those same solid wall panels 
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sustained shear failures, as indicated by initiation of shear strength degradation, at approximately 
0.9% roof drift ratio. This was followed by fracture of the longitudinal reinforcement at the east 
side of the east walls along Axis 13 at 1.6% roof drift ratio. Apart from the isolated shear failure 
of the solid panel beneath the stack of openings, analyses indicate that shear failure was not an 
initiator of building failure. In another nonlinear static analysis the effects of lap splices to the 
response are investigated. For lateral load toward the west, the roof drift capacity of the model 
decreased dramatically to 0.65%, which is caused by the lap splice failure at the east side of the 
east walls.  

The effect of modeling decisions such as modeling of shear behavior of walls and the 
softening slope of the concrete material stress-strain relationship are also investigated for 
understanding of the model sensitivity for these parameters. Nonlinear static analysis of a model 
with linear elastic shear stress-strain relationship assigned for the whole model was conducted 
and compared with the previous model with nonlinear shear behavior. There was an apparent 
difference in the overall stiffness of these two models. It showed that the failure modes except 
the failure of shear panels are calculated with the same order with the inelastic shear material 
model. However; there were some discrepancies in drift capacities and strength of the model that 
can be critical to the dynamic response of such models. It was concluded that the inelastic 
modeling of shear should be employed by practicing engineers.  

Dynamic analysis of a single-degree-of-freedom (SDOF) model was established to 
represent the effective first translational mode response of the Alto Rio building in the transverse 
direction. The SDOF model was excited by the ground motions recorded in Concepción, 1.2 km 
(0.75 miles) away from Alto Rio. Studies using this model indicate that building collapse would 
occur toward the east, as observed following the earthquake, at around 22 seconds into the 
ground motion, and that this result was relatively insensitive to the properties of the SDOF 
model. After a deformation cycle as large as 1.3% roof drift ratio in the west direction, the SDOF 
model collapses to the east (collapse) direction at around 22 seconds of the excitation. In the 
cycle to the east at around 20 seconds, concrete crushes under compression for both walls on 
Axes 13 and 8, respectively. Right after that the loading cycle changes direction and damages the 
shear panels on both Axes 8 and 13 at around 21 seconds. It is followed by a large cycle to the 
east direction around 22 seconds, where the structure permanently displaced to the east. This 
permanent displacement of the model is also an indicator of the collapse to the east direction. 
The final result of the dynamic SDOF analysis is consistent with the observed damage and 
collapse of the building.  

In another nonlinear static analysis the effects of lap splices to the response are 
investigated. In light of the results of Hardisty et al. (2014), a Perform 3D model was modified to 
account for possible failure of the lap splices. Results of Hardisty et al. (2014) suggested that a 
value of 2εy would be a good approximation for the ultimate strain (εu) capacity of unconfined 
lap splices under cyclic loading.  

For loading the model to the east, the direction in which collapse occurred, the drift 
capacity of the model was same as in the previous analysis of model not accounting for lap splice 
effects. However, there is relatively greater strength degradation after the crushing of the wall 
along axis 13. For lateral load to the west, unlike the previous results, the first significant event is 
the failure of shear panel on the Axis 13 at 0.62% roof drift ratio. It is followed by the failure of 
the longitudinal reinforcement lap splices at the east side of the east walls along Axis 13 at 
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0.82% roof drift ratio. This shows that the modifications done to account for lap splices affect the 
tension controlled failure dramatically, decreasing the drift capacity of the building to half of the 
previous model. 

Similar to the previous analysis, a second single-degree-of-freedom (SDOF) model was 
established to represent the effective first translational mode response of the Alto Rio building in 
the transverse direction, accounting for the lap splice effects. After a deformation cycle as large 
as 1.2% roof drift ratio in the west direction, the SDOF model collapses to the east (collapse) 
direction at around 22 seconds of the excitation. The first significant event of the structure 
response under dynamic analysis is the damage at the shear panel on the Axis 13 in a cycle to the 
west around 15 seconds. In the cycle to the east at around 20 seconds, concrete crushes under 
compression for both walls on Axes 13 and 8y. Right after that the loading cycle changes 
direction to the west and causes the failure of the lap splices on the east side of the east wall on 
Axis 13 at around 21 seconds. It is followed by a large cycle to the east direction around 22 
seconds, where structure permanently displaced to the east. This permanent displacement of the 
model is also an indicator of the collapse to the east direction. The results of the dynamic 
analysis of the modified SDOF system are very close to the analysis of the original model. This 
demonstrates that although the possible effects of the lap splices can change the nonlinear static 
analysis results of the Alto Rio building, it neither had a dramatic effect on the dynamic SDOF 
analysis, nor changed the mode of collapse. 

Lateral wall buckling as another possible factor for collapse is also investigated. Buckling 
seems to be not a significant factor in the collapse of Alto Rio building. Possible effects of 
different modeling parameters such as; the descending slope of the concrete stress-strain 
relationship, and modeling decision of elastic or inelastic stress-strain relationship for shear 
behavior are investigated. These modeling parameters seem to affect the analysis results. 
However, they do not change the nature or the sequence of failure modes.  

The nonlinear static and dynamic SDOF analysis results demonstrate that the Alto Rio 
building was susceptible to collapse to the east direction. The main factors contributing to the 
failure include: the configuration of T and L-shaped wall cross sections, vertical discontinuities 
at the east side of the building, and high shear stresses in the solid wall panels below the stack of 
openings. The structural drawings and reconnaissance data suggest that the absence of confined 
boundary elements and the occurrence of lap splices of longitudinal bars without sufficient 
transverse reinforcement could be other factors that contributed to the collapse. However, the 
analysis of models modified according to the behavior of lap splices demonstrated that lap 
splices have a very minor effect on the overall behavior of the building under this specific 
earthquake motion. The specific analyses reported in this study indicate one plausible failure 
sequence, that is, initiation of shear damage in the solid wall panel immediately below the stack 
of openings, crushing and buckling failure of the walls at the discontinuity between the first and 
second stories on the east side of the building, and subsequent failure of the tension chord on the 
west side of the building as it collapsed toward the east. Other failure sequences are also 
plausible, depending on details of the ground motion and structural model, but these were not 
indicated by the present study. Observed damage after the earthquake (IDIEM, 2010) is 
consistent with the findings of the analysis results. 
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5.2 Seismic Performance and Modeling of Post-Tensioned Precast 

Concrete Shear Walls 

A three-dimensional earthquake simulation test on a full-scale, four-story, prestressed concrete 
building was conducted using the E-Defense shaking table facility. The lateral-load-resisting 
system in the Y-direction was two precast unbonded PT shear walls and one bay unbonded PT 
center moment frame at the B Axis. The input ground motions were scaled JMA-Kobe and JR-
Takatori records from the 1995 Hyogoken-Nanbu earthquake, applied in a sequence of 25%, 
50%, and 100% scaled versions of JMA-Kobe, and then 40% and 60% scaled JR-Takatori 
motions. The specimen was well instrumented with accelerometers, displacements transducers, 
and strain gauges.  

In Chapter 4, the wall direction (Y-direction) of the building is modeled using the 
computer program, Perform 3D, with emphasis on an implementation that would be practical for 
design-office implementation. A comparison of the simulation and test results is done to assess 
the capability of currently available models to simulate the response of a real PT building under 
gradually increasing earthquakes. Initially, the analytical model of only shear walls was 
implemented. Comparing the test and analytical simulation results, stiffness and base shear were 
underestimated significantly for all motions. Roof drift ratio time series were also poorly 
matched for the excitations, with the exception of the 100% Kobe motion after 17 s, for which 
the response histories matched fairly well. This good estimation could be a result of strength loss 
caused by heavy damage of the frames, where the response mainly depends on the walls.  

Comparison of the wall simulation with test results led to the decision to model the frames 
in the Y-direction. A modified building model was developed that modeled the frame members 
on Axes A, B, and C, in addition to the walls. Base shear versus roof drift ratio relationships for 
all motions show the flag-shaped hysteresis typical of unbonded post-tensioned concrete. 
Important engineering parameters such as fundamental vibration period, stiffness, hysteresis 
shape, maximum base shear, and maximum roof drifts are adequately simulated using the 
numerical model. There are, however, some discrepancies in the modeling of these responses 
with time. These discrepancies do not coincide with the peak responses or affect the estimation 
of the overall behavior of such systems. Moreover, the proposed numerical model is able to 
simulate the actions in building components such as the PT tendons and the ED bars. These 
results indicate that, while further improvements may be desirable, the selected modeling 
approach is capable of producing seismic response estimates of sufficient accuracy to be used for 
detailed design of unbonded post-tensioned, precast structural wall systems. 

 

5.3 Recommendations for Future Studies 

Although proposed analysis methods are state of the art, future work needs to be done in order to 
improve both design practice in reinforced concrete walls and post-tensioned precast concrete 
shear walls. Some of the topics that need to be investigated for the continuation of this study are: 
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 Component testing wall building details. Even though already verified numerical 
modeling was employed in the analysis of the Alto Rio building, experimental work is 
required for verification. Component tests of unconfined boundary elements, lap splices, 
vertical discontinuities, shear panels is missing from the literature and would improve the 
current knowledge and design practice. 

 Further investigation of the PT force and ED bar deformation estimations. The 
analysis and results on the E-Defense test of PT walls are satisfactory for design and 
assessment of the post-tensioned precast concrete shear walls. However, further 
investigation of the simulation discrepancies especially at the PT tendon force and ED 
bar displacement values should be carried out. These parameters are very important for 
the design of these walls and miscalculation of these values can lead to overly 
conservative designs.  

 Further investigation of the E-Defense tests. In Chapter 4, we only studied the 25%, 
50%, and 100% Kobe motions. It would be beneficial to investigate the rest of the test 
motions, namely 40% and 60% Takatori motions. Test specimens were further damaged 
in these stages and modeling of damaged or near collapse state of PT walls are also 
crucial for analyses of existing structures. Three-dimensional analyses should also be 
carried out. 

 Investigation of the design space of PT walls. The three dimensional full-scale E-
Defense tests gave us a chance to verify our modeling techniques against real life 
conditions. Having verified numerical models provides us the opportunity to explore the 
design space of PT wall systems. Any change in design parameters such as post-
tensioning force, ED bar area, changes in eccentricities, or material properties could be 
just modified in the current model and their effect on the response of PT walls could be 
investigated. This could improve and verify the current design practices of PT walls.  

 Verification of current PT wall force-displacement relationships. The verification of 
PT wall force-displacement relationships (pushover) against the response of the E-
Defense tests could be a great opportunity. The force-displacement relationships in the 
literature are developed using cyclic pseudo-dynamic experiments. Comparison of them 
against a three dimensional full-scale test under earthquake motions would give us the 
opportunity to verify and improve those relationships.  
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