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Rule learning enhances structural plasticity
of long-range axons in frontal cortex
Carolyn M. Johnson1, Hannah Peckler2, Lung-Hao Tai2 & Linda Wilbrecht2,3

Rules encompass cue-action-outcome associations used to guide decisions and strategies in

a specific context. Subregions of the frontal cortex including the orbitofrontal cortex (OFC)

and dorsomedial prefrontal cortex (dmPFC) are implicated in rule learning, although changes

in structural connectivity underlying rule learning are poorly understood. We imaged OFC

axonal projections to dmPFC during training in a multiple choice foraging task and used a

reinforcement learning model to quantify explore–exploit strategy use and prediction error

magnitude. Here we show that rule training, but not experience of reward alone, enhances

OFC bouton plasticity. Baseline bouton density and gains during training correlate with rule

exploitation, while bouton loss correlates with exploration and scales with the magnitude of

experienced prediction errors. We conclude that rule learning sculpts frontal cortex inter-

connectivity and adjusts a thermostat for the explore–exploit balance.
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R
ules are learned associations among cues, actions and
outcomes used to guide actions in pursuit of a goal1.
The prefrontal cortex is critical for the representation

and implementation of rules2–7. The orbitofrontal cortex (OFC)
and dorsomedial prefrontal cortex (dmPFC; including
cingulate cortex and secondary motor cortex) have been
proposed to encode cue–outcome and action–outcome
associations, respectively8,9, and lesions of these regions impair
flexible updating of choice behaviour10–15. Rearrangements of
synaptic connectivity are generally thought to underlie
many forms of learning and memory16,17. The in vivo
formation and elimination of frontal cortex dendritic spines has
been observed previously in response to motor learning18,19 and
conditioning20,21, yet knowledge regarding the structural basis
of abstract rule learning in goal directed behaviour remains
limited. Here we hypothesized that rule learning—connecting
cues, actions and outcomes—would drive structural plasticity in
long-range axons projecting from the OFC to the dmPFC.

A fundamental problem of decision-making is the dilemma of
whether to pursue a known course of action to achieve reward
(exploitation) or to search alternative options in hope of a better
outcome (exploration)22,23. In novel situations or under conditions
of uncertainty, exploration is used to gather information on the
outcomes of choices24,25. Rather than representing impulsivity or
error, strategic exploration is a critical strategy for organisms to
discover resources necessary for survival26,27. Strategic exploration
emerges between early adolescence and adulthood in parallel with
frontal cortex maturation12 and plays a role in formulating rules to
achieve long-term goals28.

A balance must be struck between exploration and exploitation
for optimal decision-making. Abnormalities in decision-making
flexibility characterize numerous psychiatric disorders29.
Different subregions of the frontal cortex have been implicated
in exploratory and exploitative choices. The OFC and
ventromedial PFC are involved in exploiting and monitoring
the outcome of the current rule8,30,31, while the dmPFC and
rostral frontal cortex may have a more specialized role in
monitoring alternative strategies and exploratory actions14,30–36.
The frontal cortex may act as a thermostat for decision-making,
taking the temperature of the current environment and setting
the appropriate explore/exploit strategy. We thus hypothesized
that long-range connectivity from OFC to dmPFC may play a
specific role in regulating exploratory versus exploitative strategy
choice during rule learning.

Theories of learning have long recognized that learning is not a
passive process37. Rather, subjects actively make predictions
about the outcomes of cues and actions, and learning
occurs when a subject experiences an unexpected outcome38.
The difference between the expected result and the actual
outcome is formally called a ‘prediction error’. A perfectly
predicted outcome does not generate a prediction error or spur
new learning, while experience of an unexpected reward generates
a positive prediction error and supports responses to associated
cues. An omission of an expected reward generates a negative
prediction error that leads to extinction of associated behaviours.
This error-driven learning figures prominently in computational
models of associative learning22,38,39. Prediction errors adjust
behaviour presumably by remodelling associations between cues,
actions and outcomes. However, the neural basis of this
relationship remains unclear.

Here we train mice to learn rules in a multiple choice foraging
and reversal task12, and daily image OFC axons that project to the
dmPFC. We use a reinforcement learning model22,38 to classify
exploratory and exploitative strategies30 and compare individual
differences in OFC to dmPFC connectivity with choice strategy
implementation. We leverage the natural diversity of individual
choice histories and resulting prediction error magnitudes to
survey how prediction errors may scale plasticity at the structural
level. Our data reveal a structural trace of rule learning, and
illuminate neural correlates of individual differences in decision
making history and strategy.

Results
dmPFC lesions and the explore/exploit balance. To first
establish the role of the dmPFC in modulating exploratory and
exploitative choice behaviour in mice, we used a reinforcement
learning model to perform new analysis of data from a previous
study of dmPFC lesions made in our lab12. Bilateral excitotoxic
lesions were made in dmPFC in adult mice (Fig. 1a) and then
mice were trained in a multiple choice foraging task. In the
discrimination phase of the task, mice foraged for a buried piece
of cereal reward hidden in one of four pots of scented wood
shavings until reaching criterion of 8 out of 10 consecutive trials
correct. The spatial location of the odour cues was shuffled on
each trial. Mice freely explored the arena and indicated a choice
by digging in one of the pots. In the reversal phase, the cereal
reward was buried in odour 2 instead of the previously rewarded
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Figure 1 | dmPFC lesions alter the explore/exploit balance. (a) Bilateral excitotoxic lesions of dmPFC. Cresyl-violet-stained sections show the extent of a

typical lesion. (b) The behavioural choices were classified as explore or exploit choices using a reinforcement learning model. Lesion mice made fewer

explore choices in discrimination compared with sham-operated mice (lesion: n¼ 11, sham: n¼ 9; strategy: F(1,17)¼ 5.14, P¼0.04; lesion: F(1,17)¼ 7.34,

P¼0.02; interaction: F(1,17)¼ 9.06, P¼0.008; two-way repeated measures analysis of variance (ANOVA), Bonferroni post hoc test). (c) In reversal, lesion

mice made more exploit choices (strategy: F(1,17)¼ 90.66, Po0.0001; lesion: F(1,17)¼ 5.22, P¼0.04; interaction: F(1,17)¼8.27, P¼0.01; two-way

repeated measures ANOVA, Bonferroni post hoc test). (d) Lesion mice shifted their strategy less from discrimination to reversal compared with sham mice,

where a large number indicates more exploit choices in reversal (t(17)¼ 2.19, P¼0.04; unpaired t-test). ‘Exploit index’¼ (exploit� explore)/total trials.

*Po0.05, **Po0.01, ***Po0.001. Bars represent the mean±s.e.m. Behavioural data for modelling were previously published12.
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odour 1. Subjects needed to abandon the previously rewarded
action, explore the alternatives and exploit the new rewarded
action until again reaching criterion of 8 out of 10 trials correct.

We used a reinforcement learning model based on the
Rescorla–Wagner model of expectancy driven learning22,38 (see
Methods). Prediction errors are generated when the outcome
does not match the expected outcome. Unexpected reward results
in a positive prediction error while unexpected omission of
reward results in a negative prediction error. Using animals’
individual choice histories, we used the model to calculate
the relative choice probabilities in each trial and estimate the
magnitude of prediction errors experienced after each choice.
We classified trials as exploitative if the actual choice matched the
most probable choice predicted by the model and as exploratory
when the choice was to any of the three less probable options30.

Using the model to classify choice strategy on each trial, we
found that dmPFC lesion mice explored significantly less in
discrimination compared with sham operated mice (Fig. 1b). In
the reversal phase, lesion mice made significantly more
exploitative choices (Fig. 1c). To test whether lesions impaired
flexibility in choosing the appropriate strategy, we calculated the
‘exploit index’ (the proportion of exploit choices) and then found
the change in the ‘exploit index’ between discrimination and
reversal. Lesion mice tended to shift their behavioural strategy
less between discrimination and reversal (Fig. 1d). In sum, mice
with frontal lesions had altered strategies and inflexible responses
to unexpected outcomes.

Rule training enhances plasticity of long-range axonal projections.
Our next goal was to study inputs to the dmPFC from the
OFC subregion of frontal cortex. We used adeno-associated virus
to label OFC axons that project to the contralateral dmPFC
(Fig. 2a-c). To confirm that OFC axons make functional synapses
in the dmPFC, we virally expressed the gene encoding
channelrhodopsin (ChR2) in OFC axons (Fig. 3a). We then used
laser scanning photostimulation of OFC axon terminals con-
taining ChR2 combined with whole-cell recording of downstream
cells to confirm monosynaptic connectivity (Fig. 3b–f). OFC
axons in L1 made functional connections with 92% of L2/3
pyramidal cells (11 out of 12 cells), as well as L5 pyramidal cells
and parvalbumin expressing putative interneurons (Fig. 3c).

We next moved to our core experiment, using
adeno-associated virus to deliver the gene encoding green
fluorescent protein (EGFP) to OFC neurons and imaging
OFC-dmPFC projection axons using two-photon microscopy.
To image fluorescently labelled OFC axons in the living brain, we
implanted a chronic cranial window over the dmPFC (Fig. 2d).
After a recovery period, segments of OFC axons were imaged in
the dmPFC daily for a baseline period of 3 days in the afternoon.
Mice were then exposed to control conditions or trained in the
foraging task in the morning and the OFC-dmPFC axons
continued to be imaged daily in the afternoon (Table 1;
Supplementary Fig. 1). We tracked gains and losses of boutons
using established detection thresholds40,41 (see Methods; Fig. 2e,
f) blind to treatment group.

Our goal was to document structural remodelling in OFC
axons that might occur in response to control conditions or rule
learning. Our experimental design included multiple control
groups to test whether factors independent from rule learning
were sufficient to drive OFC-dmPFC bouton plasticity.
The ‘untrained’ control conditions included ‘standard-housed’
mice (n¼ 10 mice), which were simply imaged daily, and a yoked
‘arena control’ group (n¼ 8 mice), which experienced the same
handling and cues as ‘trained’ mice, but without the experience of
reward (Table 1; Supplementary Fig. 1). Following 3 days of

baseline imaging, ‘trained’ mice underwent habituation to the
arena on day 4 and shaping to learn to dig for buried piece of
cereal on day 5. On day 6, ‘trained’ mice completed the odour
discrimination phase, learning that one of four odour choices
contained a buried reward. On day 7, the ‘trained’ group diverged
into two conditions. Both groups completed a recall to criterion
of the odour discrimination from the previous day, whereupon
the ‘recall-only’ group (n¼ 8) was returned to the homecage.
The ‘reversal’ group (n¼ 9) completed a reversal to criterion
in the same session as the recall, with the reward now buried in
odour 2. On day 8, all mice stayed in the homecage and were
imaged for a final session.

Comparing the ‘untrained’ (n¼ 18) and ‘trained’ (n¼ 17)
groups, we found that rule training in the multiple choice
foraging task significantly enhanced OFC-dmPFC bouton
turnover (gainþ loss/2� total boutons) on both day 6
(discrimination) and day 7 (recall/reversal; Fig. 2h). Bouton
density was not different between groups across training (Fig. 2i).
After training, turnover returned to baseline level in the final
imaging session, indicating that experience-dependent changes
were likely captured in the same-day imaging sessions.
Thus, multiple choice rule learning encompassing complex
cue–action–outcome associations drove significant increases in
OFC-dmPFC plasticity.

To test whether plasticity was a general phenomenon or
restricted to a smaller proportion of ‘hot’ axons, we compared
cumulative frequency histograms of bouton turnover from
all axons imaged (323 axons from 35 mice; Fig. 4a). On
discrimination day 6, axons from the ‘trained’ group showed
higher bouton turnover compared with axons from the
‘arena control’ group (Fig. 4b). The large majority of axons in
‘trained’ mice (80%) showed plasticity, with B13% more axons
recruited to active turnover compared with controls (Fig. 4c). On
recall/reversal day 7, axons in the ‘reversal’ group again showed
higher bouton turnover compared with axons from ‘arena
control’ mice (Fig. 4d), with again B13% more axons showing
turnover in the ‘reversal’ group (Fig. 4e).

Specificity of plasticity in OFC projections to dmPFC. To
exclude the possibility that enhanced bouton turnover was simply
a result of environmental enrichment, we compared bouton
plasticity between the ‘standard-housed’ and ‘arena control’
groups. The ‘arena control’ group experienced the same
environmental context and cues as the ‘trained’ mice, but without
the experience of reward (Supplementary Fig. 1). Bouton turnover
was not significantly different between ‘standard-housed’ and
‘arena control’ groups across days (Fig. 2g).

We next examined the possibility that increased bouton
dynamics were due to the experience of reward, independent
from learning rules. On day 4 (habituation), mice in the ‘trained’
group received rewards at pseudorandom intervals in the training
arena, uncoupled from the animals’ behaviour (Fig. 5a). We
found no differences in bouton gain (Fig. 5b) or loss (Fig. 5c)
among groups on day 4. We also found no significant difference
comparing between baseline and day 4 turnover within the
‘trained’ group (P¼ 0.08).

On day 5, mice were shaped to dig for a piece of cereal buried
under wood shavings in a single pot (Fig. 5d). We found
a non-significant trend towards higher bouton gain in the ‘trained’
group (Fig. 5e). There were no differences found in bouton loss
(Fig. 5f). In comparing baseline with day 5 turnover within the
‘trained’ group, we found no significant difference (P¼ 0.26).
Together, these control conditions establish that novel sensory
cues, non-contingent rewards and the simple instrumental action
of digging for reward with a single choice did not substantially
enhance structural plasticity in OFC-dmPFC axons.
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To test whether the experience-dependent plasticity observed
following rule training on day 6 was specific to the OFC-
dmPFC projection, we also imaged OFC projections to primary
motor cortex (M1). The OFC-M1 axons showed no difference
in turnover between ‘untrained’ and ‘trained’ mice on day 6
(Supplementary Fig. 2), suggesting pathway-specific plasticity
within the OFC projection to dmPFC in rule learning.

OFC to dmPFC connectivity and the explore/exploit balance.
After establishing that rule training altered OFC-dmPFC bou-
ton turnover, our next goal was to investigate whether bouton
plasticity reflected each individual’s strategy and feedback

experience during rule learning on day 6 and 7. Using individual
animals’ unique choice histories, we used the model to calculate
the relative choice probabilities on each trial and estimated the
magnitude of prediction errors experienced after each choice
(Figs 6b and 7c). As described previously, we classified choices as
exploitative if the actual choice matched the most probable choice
predicted by the model and as exploratory if any of the three less
probable options was chosen30. Both strategies can be either
rewarded or unrewarded. Note on day 6 that most logical
(probable) choice based on the evidence gathered switches
from ‘O4’ (unrewarded) to ‘O1’ (rewarded; Fig. 6b), and from
‘O1’ (unrewarded) to ‘O2’ (rewarded) in reversal on day 7
(Fig. 7c). While it may be tempting to conflate exploration with
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Figure 2 | Rule training enhances OFC bouton turnover. (a) Schematic showing the extent of viral labelling at injection site in the OFC in all experimental

mice (n¼ 35). Black indicates the minimum expression and light grey is the maximum expression. Medium grey shows a representative example of

labelling. (b,c) Representative image of viral labelling at the injection site in OFC (b) and of axonal projections to the upper layers of contralateral dmPFC

(c). (d) Schematic of cranial window implant over dmPFC. (e,f) Representative in vivo two-photon images of axons of a ‘standard-housed’ (e) and a

‘reversal’ trained (f) subject across imaging sessions. Open and closed arrowheads indicate bouton gain and loss, respectively. (g) Bouton turnover did not

differ between the ‘standard-housed’ (n¼ 10) and ‘arena control’ (n¼8) groups across imaging sessions (group: F(1,16)¼0.35, P¼0.56; time:

F(6,96)¼ 1.70, P¼0.13; interaction: F(6,96)¼0.56, P¼0.76). (h) The ‘trained’ group (n¼ 17 mice) had significantly higher bouton turnover following the

odour discrimination (day 6) and recall/reversal (day 7) sessions compared with the ‘untrained’ group (n¼ 18 mice; group: F(1,33)¼ 14.59, P¼0.0006;

time: F(6,198)¼0.87, P¼0.52; interaction: F(6,198)¼ 2.38, P¼0.03). (i) Density did not differ between ‘untrained’ and ‘trained’ groups (group:

F(1,33)¼0.06, P¼0.81; time: F(7,231)¼ 63.34, Po0.0001; interaction: F(7,231)¼0.88, P¼0.52). Groups in g–i were compared using two-way repeated

measures analysis of variance and Bonferroni post hoc tests. Data from each mouse were normalized to the average of baseline sessions and are presented

as mean±s.e.m. in g–i. Scale bars, (a,b) 1 mm; (c) 100 mm; (e,f) 10mm. *Po0.05, **Po0.01.
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error, it may also serve as a means of hypothesis testing. For
example, the representative subject in Fig. 6b methodically
samples each choice in turn in an exploratory bout late in the
session before going on a rewarded streak until the end of the
session.

Comparing ‘trained’ and ‘standard-housed’ groups to the
‘arena control’ group on discrimination day 6, we observed a
nearly twofold increase in OFC-dmPFC bouton turnover in
‘trained’ mice (Fig. 6a,c). The increase in bouton turnover in the
‘trained’ group was driven by greater percentages of total boutons
both gained (Fig. 6g) and lost (Fig. 6k) from the previous day.
Groups showed comparable mean baseline OFC-dmPFC
bouton density (Fig. 6d). Exploitative choices on discrimination
day 6 were positively correlated with both baseline bouton density
(Fig. 6f) and subsequent gains of new boutons (Fig. 6i), but not
with bouton loss (Fig. 6m). In contrast, exploratory choices were

correlated with bouton loss (Fig. 6l), but not with baseline density
(Fig. 6e) or bouton gain (Fig. 6h). We did not find correlations
between OFC bouton plasticity and either the total number of
rewards received or the number of trials to reach criterion
(Table 2), indicating that this was unlikely to be a simple reward
or practice effect.

We next tested whether bouton gain and loss on day 6 were
scaled by individual differences in prediction errors. The average
prediction error individually experienced on exploit trials was not
correlated with OFC bouton gain (Fig. 6j). However, the average
prediction errors generated by exploration trials were correlated
with OFC bouton loss (Fig. 6n; see also Supplementary Fig. 3),
such that greater OFC bouton losses occurred when outcomes
from exploration yielded better than expected outcomes (positive
prediction errors). Together, these results suggest that the
strength of connectivity between the OFC and dmPFC regulates
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Table 1 | Experimental timeline.

Imaging day Baseline imaging Training (a.m.)þ Imaging (p.m.) Imaging

1 2 3 4 5 6 7 8

Standard housed H H H H H H H H
Arena control H H H Arena Arena Arena Arena H
Recall only H H H Habituation Shape Discrim. Recall H
Reversal H H H Habituation Shape Discrim. Recall and Reversal H

Discrim., discrimination; H, homecage.
Timeline of behavioural and imaging sessions for each group. ‘Untrained’ mice consist of ‘standard-housed’ and ‘arena control’ groups. ‘Trained’ mice include the ‘recall-only’ and ‘reversal’ groups that
have identical behavioural conditions until day 7.
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the explore/exploit balance, and that prediction errors may
dynamically update this connectivity (Fig. 7j).

On the seventh day of training, mice were tested for recall of
the previous day’s rule (Fig. 7a), which was then reversed within
the same session for the ‘reversal’ group (Fig. 7b). During recall,
mice required fewer trials to reach criterion than during initial
acquisition (discrimination: 37.41±3.15; recall: 10.53±0.66
trials; t(16)¼ 7.75, Po0.0001), indicating 424 h memory of
the odour-reward contingencies. Mice showed a tendency to
explore less in reversal compared with discrimination (Fig. 8a).
Mice also made significantly more exploitative choices (Fig. 8b),
likely reflecting decreased uncertainty with experience in the task.
We quantified this shift in strategy as the change in the ‘exploit
index’ between sessions (Fig. 8c). Within the OFC-dmPFC
projection, we found that the magnitude of bouton turnover on
day 6 predicted the strategy shift on day 7 (Fig. 8d). Connecting
the fact that enhanced bouton plasticity is correlated with
behavioural flexibility, and the fact that mice with dmPFC lesions
showed smaller experience-dependent changes in behavioural
strategy (Fig. 1d), we suggest the shift in strategy may be at least
partially dependent on plasticity of synaptic connections made in
the dmPFC.

Reversal training drives exploration and bouton loss. Analysis
of OFC-dmPFC bouton plasticity on day 7 showed ‘trained’
mice had higher turnover than controls (Fig. 7d). Breaking
turnover down into the percentage of boutons gained and lost on
day 7, we observed that the ‘reversal’ group lost significantly more
boutons (Fig. 7f) compared with ‘arena control’ group, but found
no differences in bouton gain (Fig. 7e). When comparing the
‘recall-only’ and ‘reversal’ groups, we found no differences in
bouton gain, loss or the persistence of new boutons gained after
odour discrimination training (Fig. 7g), indicating that reversal is

likely new learning rather than erasure of previous associations42.
‘Reversal’ group mice showed a significant increase in the number
of exploratory trials compared to the ‘recall-only’ group (Fig. 7h).
On day 7, bouton loss scaled with average prediction errors from
exploratory trials (Fig. 7i; Supplementary Fig. 3), replicating
observations from day 6 in which greater bouton loss was
observed following more positive outcomes from exploration.
Note that the magnitudes of predication errors have a larger
range on day 7 (Fig. 7i) compared with day 6 (Fig. 6n). Increased
experience with the task creates stronger expectations, which
when violated in reversal generate larger prediction errors.
Together, the results from day 6 and 7 show that behavioural
conditions that encourage strategic exploration, and positive
outcomes from this exploration, promote pruning in the
projection from OFC to dmPFC (Fig. 7j).

Discussion
To study how rule learning impacts frontal cortex connectivity
and plasticity, we used in vivo two-photon imaging to observe
long-range OFC-dmPFC projection axons before and after
training in a multiple choice foraging task. We discovered that
rule learning resulted in both enhanced bouton gain and loss.
Further parsing these findings, prior bouton density and
subsequent new gains following discrimination training
were related to learning and exploiting a rule. Conversely,
bouton loss was correlated with greater strategic exploration and
was scaled by the magnitude of prediction errors generated by
exploration. These results provide new, structural evidence that
complex associations among cues, actions and outcomes are
stored in the brain at the synaptic level. These data are
complementary to previous in vivo electrophysiology studies
showing that neurons in the rodent, primate and human
prefrontal cortex encode abstract task rules in a context-
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Figure 4 | Recruitment of plasticity in the majority of axons in discrimination and reversal learning. (a) Locations of imaged axons in dmPFC.

(b) Cumulative frequency histogram of the percentage of total boutons gained and lost on day 6 in ‘arena control’ (n¼ 76 axons) and odour discrimination

‘trained’ (n¼ 148 axons) mice. The distribution was shifted significantly towards higher turnover in ‘trained’ group (KS statistic¼0.47, Po0.0001).

(c) ‘Trained’ mice had more axons (79.5%) with some level of bouton turnover compared with ‘arena control’ mice (67.1%). (d) On day 7, the cumulative

frequency distribution of turnover was shifted towards higher turnover in the ‘reversal’ group (n¼ 76 axons) compared with ‘arena control’ group (n¼ 76

axons; KS statistic¼0.25, P¼0.01). (e) ‘Reversal’ trained mice had more axons that gained or lost boutons (75.0%) than ‘arena control’ mice (61.9%).
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dependent manner2–7,43. The neural representation of rules can
be stable across days6 indicating that lasting changes to the
network support memory and recall of rules. Our imaging data
‘connect the dots’ by documenting changes in connectivity among
neurons that occur during task learning and extend our
understanding by identifying structural changes that correlate
with specific aspects of rule learning strategy and experience.

Our data suggest the remodelling of OFC-dmPFC axons
during rule training was widespread, rather than concentrated in
a few ‘hot’ axons. A large cranial window allowed imaging access
to axons projecting throughout the upper layers of a 2-mm2

region of dmPFC. Here B80% of sampled axons showed
experience-dependent plasticity during rule training (Fig. 4c).
From our imaging data, we can only indirectly infer changes in
the number of synapses. However, in vivo bouton intensity has
previously been shown to correlate with volume, number of
synaptic vesicles, size of the PSD, and number of synapses44,45.
OFC axons made functional synapses with nearly all L2/3
pyramidal cells sampled (Fig. 3c). These structural plasticity data
can be interpreted to support models in which the prefrontal
cortex can efficiently encode decision variables by making small

changes to the activity of a broad population of neurons, rather
than making focal changes to a few highly selective neurons46,47.

Increasingly, it is understood that flexible rule-guided beha-
viour is the product of interactions among multiple brain
regions31,48. We used targeted viral labelling to isolate the
synaptic intersection between two critical frontal cortex hubs for
flexible behaviour, the OFC and dmPFC. We found that the
pretraining strength of the connection between these hubs,
measured by bouton density, was predictive of exploitative choice
strategy during odour discrimination training (Fig. 6f).
Experience with the task further sculpted this connectivity
through bouton gain and loss (Fig. 6g,k), preceding adaptations
in subsequent choice strategy (Fig. 8d). Lesions of the dmPFC
reduce behavioural flexibility12 and shifts in strategy in our task
(Fig. 1d), lending support to the idea that plasticity of synaptic
connections in this region is essential for adaptive behaviour.
Comparing OFC projections to M1 and to dmPFC, we found
pathway-specific plasticity in dmPFC during learning
(Supplementary Fig. 1). Rule learning selectively alters the flow
of information from the OFC to the dmPFC, with experience
toggling the pipeline via bouton gain and loss (Fig. 7j).

Habituation

a

d e f

b c

Shaping

N
or

m
al

iz
ed

 g
ai

ne
d

Sta
nd

ar
d 

ho
us

ed

Are
na

 co
nt

ro
l

Tra
ine

d

0

1

2

3

0

1

2

3

4

5

N
or

m
al

iz
ed

 g
ai

ne
d

Sta
nd

ar
d 

ho
us

ed

Are
na

 co
nt

ro
l

Tra
ine

d

0

1

2

3

N
or

m
al

iz
ed

 lo
st

Sta
nd

ar
d 

ho
us

ed

Are
na

 co
nt

ro
l

Tra
ine

d

0

1

2

3

4

5

N
or

m
al

iz
ed

 lo
st

Sta
nd

ar
d 

ho
us

ed

Are
na

 co
nt

ro
l

Tra
ine

d

NS NS NS NS

NS NS NS NS

Figure 5 | Environmental enrichment, novel food reward and simple instrumental learning were not sufficient to drive axon plasticity above

control levels. (a) Schematic of behaviour arena on habituation day 4. Pots placed in the corners of the arena were baited 12 times with food rewards at

pseudorandom intervals within a 30-min session, uncoupled from the animals’ behaviour. (b) Bouton gains normalized to the average baseline

level for each mouse did not differ among the ‘standard-housed’ (n¼ 10), ‘arena control’ (n¼ 8) or ‘trained’ (n¼ 17) groups (F(2, 32)¼ 1.23, P¼0.31).

(c) Normalized bouton losses did not differ among groups (F(2, 31)¼0.88, P¼0.42). One outlier from the ‘trained’ group was excluded from

analysis of normalized lost (3.71 s.d.’s from the mean). (d) Schematic of behaviour arena on shaping day 5. Mice learned to dig in increasing levels of

wood shavings to find a buried cereal reward. Shaping consisted of 12 trials and the location of the pot was changed each trial. (e) Normalized bouton

gains were not significantly different (F(2, 32)¼ 7.13, P¼0.003, Bonferroni post hoc tests 40.05). (f) There were no significant differences in normalized

bouton losses (F(2, 31)¼ 2.73, P¼0.08). One outlier from the ‘trained’ group was excluded from analysis of normalized loss (3.65 s.d.’s from

the mean). Each symbol represents one mouse. Graphs show mean±s.e.m. Groups are compared using one-way analysis of variance with Bonferroni

post hoc test.
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We observed significantly enhanced bouton plasticity following
discrimination and recall/reversal training (Figs 2h, 6c and 7d),
but not following control experiments of enrichment (Fig. 2g),
reward experience (day 4; Fig. 5a–c), or simple instrumental
learning (day 5; Fig. 5d–f). We also found that bouton turnover
with discrimination and recall/reversal training did not correlate
with the number of rewards or trials completed (Table 2),
suggesting that our findings cannot be attributed solely to reward
or practice effects. The return of turnover to baseline levels on
day 8 when no training occurs suggests that plasticity effects are
captured by imaging the same day as training and do not
extend to subsequent days. Our results are consistent with
electrophysiology studies showing that neurons in the dmPFC
respond preferentially to combinations of decision variables such
as choice and outcome49,50. Here we used a reinforcement
learning model to classify trial-by-trial choice strategies and
found the interaction between strategy and outcome (prediction
error magnitude for explore trials) correlated with bouton loss
(Figs 6n and 7i).

Proponents of the ‘Bayesian brain hypothesis’ argue that the
brain is essentially a prediction machine that seeks to build
accurate internal models of the environment51,52. Incoming
information is compared against this internal model and a
mismatch creates a prediction error signal that can be used to
update the model. There is evidence of predictive coding observed
from neural firing rates in sensory systems53,54, sensorimotor
cortex55 and in regions involved in decision-making42,56–58. In
this paper, we put forth the hypothesis that prediction errors
update internal models by altering the structural connectivity
among neurons. We support this hypothesis with novel data
showing that bouton plasticity is scaled by prediction error
magnitude. Our experiments provide a potential mechanism for
the theoretical framework of prediction error-driven learning.
Future studies may use our observations as a template to study
the structural basis of prediction error updating in other neural
systems.

Our experiments indicate that OFC-dmPFC plasticity is
scaled by unexpected feedback and correlates with subsequent
shifts in strategy. We can extrapolate from this finding that the
accumulation of life experiences may result in different neural
connectivity and decision-making patterns. A prolonged
history of predictable rewarding outcomes may strengthen
OFC-dmPFC connectivity and dampen the exploratory spirit.
Meanwhile, surprising positive experiences after exploration may
disengage OFC-dmPFC connectivity and encourage further
exploration and risk-taking. For optimal decision-making,
subjects need to be able to toggle between exploration and
exploitation in response to current environmental conditions and
internal motivational states. Exploration is beneficial to gather

information in novel or dynamic environments, while
exploitation strategy will yield more rewards in stable conditions.
Tipping the balance of strategy towards either extreme may result
in psychiatric illness such as addiction. We propose that the
OFC-dmPFC circuit is tuned by experience to set the
temperature of decision-making strategy. It will be interesting
to see if these results are replicated in human functional
connectivity studies and if therapeutic interventions that alter
human behaviour also alter connectivity in this circuit.

In our study, we found that bouton turnover was enhanced
with both rule acquisition during the odour discrimination on
day 6 and recall/reversal training on day 7 (Fig. 2h).
The significant plasticity observed on day 6 may be interpreted
as surprising in light of older studies that find OFC lesion or
inactivation can significantly impair reversal learning but has no
effect on acquisition of a discrimination task11,59,60. However,
dmPFC lesions and inactivations have been shown to accelerate
task acquisition in previous studies61,62 and in our own data12. In
our multiple choice task, dmPFC lesions reduced exploratory
choices and hastened completion of the discrimination phase
(Fig. 1b). We observed a non-significant trend towards increased
gains following shaping on day 5 (Fig. 5e). Shaping could be
considered a simplistic form of rule learning (association of
environmental cues with the action of digging and reward),
although with the critical distinction that it does not involve
choice among competing alternatives1. We conclude that the role
of the OFC and dmPFC in discrimination learning may be more
evident in tasks with multiple choices and where exploration of
alternatives becomes a relevant variable.

Another potentially surprising and informative detail of our data
is that boutons gained during discrimination (on day 6) were not
preferentially lost when the rule was reversed (on day 7; Fig. 7g).
Instead, we observed that most boutons gained with rule training in
the discrimination phase persisted through the end of training. Our
data are in line with numerous studies showing that experience
results in new persistent synaptic structures18,19,21,63–65. These
results contrast with the finding that spines in frontal cortex are
eliminated and formed at the same dendritic location during fear
extinction and reconditioning, respectively20. One interpretation of
our data is that new boutons leave a lasting structural trace of a rule
that can be reactivated when contextually appropriate66. This
interpretation is consistent with theories that posit the OFC
encodes a cognitive map of task space, which allows animals to
flexibly apply a variety of stored rules depending on the current
context42.

In sum, our observations support the hypothesis that
enhanced plasticity of OFC-dmPFC boutons that occurs with
multiple choice training represents a structural trace of rule
learning, above and beyond the simpler experiences of reward,

Figure 6 | Bouton dynamics following multiple choice discrimination learning correlate with strategy and scale with prediction errors. (a) Schematic of

day 6 odour discrimination arena. (b) Computational model of choice probabilities and prediction errors in an example subject. If the actual choice (top bar)

matched the most probable choice predicted by the model (middle bar), then trials were classified as exploitative (black bottom bar; closed circles). Choice

of any of the three alternative choices was classified as exploratory (white bottom bar; open circles). The innate odour preferences across all mice in the

first four trials set the initial choice probabilities. ‘O4’ was initially preferred by all mice, and through trial and error the rewarded odour ‘O1’ gained value

and probability of being chosen. In subsequent panels, the black circles refer to this example subject. (c) Bouton turnover on day 6 was increased in the

‘trained’ group (n¼ 17 mice) compared with ‘standard-housed’ (n¼ 10) and ‘arena control’ (n¼8) groups (F(2,32)¼ 10.81, P¼0.0003). (d) Baseline

bouton density did not differ among groups (F(2,32)¼0.63, P¼0.53). (e,f) Bouton density did not predict the number of explore choices (e), but did

predict exploit choices (f). (g) The percentage of total boutons gained was enhanced in the ‘trained’ group after discrimination learning (F(2,32)¼6.36,

P¼0.005). (h,i) Baseline normalized bouton gain in ‘trained’ mice correlated with the number of exploit choices (i), but not explore choices (h). (j)

Average prediction errors from exploit trials did not correlate with bouton gain. (k) The percentage of total boutons lost was enhanced in the ‘trained’ group

(F(2,32)¼6.06, P¼0.006). (l,m) Baseline normalized loss was correlated with the number of explore trials (l), but not exploit trials (m). (n) The average

prediction errors from exploratory trials correlated with bouton loss. One outlier with low baseline loss was excluded from the analysis of normalized losses

(l–n; 3.53 s.d.’s from the mean; see Supplementary Fig. 3). Each symbol represents a mouse. Data in (c,d,g,k) are mean±s.e.m., and are compared using

one-way analysis of variance with Bonferroni post hoc tests. Correlations are Pearson’s correlation coefficient. **Po0.01, ***Po0.001.
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enrichment or total trial number. This plasticity was long
lasting and was observed on the majority of axons sampled.
We used a reinforcement learning model to classify
choice strategies and quantify prediction error magnitudes
based on the unique choice histories. Further analysis
of correlates of OFC-dmPFC connectivity showed a
bidirectional relationship with choice strategy. OFC-dmPFC
bouton density before training and experience-dependent

bouton gain showed a relationship with exploitative choices,
while losses were associated with greater exploration.
Losses also scaled with individual experience of exploratory
prediction errors, potentially representing learning from
outcome feedback. We conclude that both a history of strategy
and a history of feedback experience sculpt frontal circuits at the
level of axonal boutons and may adjust a thermostat for future
decision-making.
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Figure 7 | Bouton loss following reversal learning scales with exploratory prediction errors. (a,b) Schematic of day 7 recall (a) and reversal

(b). (c) Model of choice probability and estimated prediction errors for explore/exploit trial classification in the reversal phase. Black circles in g and h

indicate the representative mouse shown in c. (d) Bouton turnover was enhanced in the ‘trained’ group (n¼ 17) on day 7 compared with ‘standard-housed’

(n¼ 10) and ‘arena control’ (n¼8) groups (F(2,32)¼4.00, P¼0.03; one-way analysis of variance (ANOVA) with Bonferroni post hoc tests).

(e) Comparing among all groups, there were no differences in bouton gain (F(3,31)¼ 1.31, P¼0.29; one-way ANOVA with Bonferroni post hoc tests).

(f) The ‘reversal’ group lost significantly more boutons than the ‘arena control’ group (F(3,31)¼ 2.95, P¼0.048; one-way ANOVA with Bonferroni post hoc

tests). (g) The survival fraction of boutons gained on day 6 to subsequent imaging sessions was not significantly different between the ‘recall-only’ (n¼ 8)

and ‘reversal’ group (n¼ 9; group: F(1,15)¼0.27, P¼0.61; time: F(2,30)¼ 53.99, Po0.0001; interaction: F(2,30)¼0.22, P¼0.81; repeated measures

ANOVA with Bonferroni post hoc tests). (h) The ‘reversal’ group made more exploratory choices than the ‘recall-only’ group (t(15)¼ 5.84, Po0.0001;

unpaired t-test). (i) Average prediction errors on exploratory trials correlated with normalized bouton loss (Pearson’s correlation). One outlier was

excluded from i (2.21 s.d.’s from mean; see Supplementary Fig. 3). (j) Summary schematic. Each symbol represents a mouse. Data in (d–h) show

mean±s.e.m. * Po0.05, **** Po0.0001.

Table 2 | The number of rewards or trials do not correlate with bouton plasticity.

Discrimination Reversal

Total rewards
Bouton gain R¼0.16, P¼0.54 R¼0.21, P¼0.58
Bouton loss R¼0.17, P¼0.54 R¼0.30, P¼0.47

Trials to criterion
Bouton gain R¼0.21, P¼0.42 R¼ -0.02, P¼0.96
Bouton loss R¼0.05, P¼0.84 R¼0.46, P¼0.25

Total rewards are the number of correct trials achieved before reaching criterion of 8 out of 10 consecutive trials correct. Trials to criterion include both correct and incorrect trials. Discrimination: n¼ 17
mice; reversal: n¼9 mice. Pearson’s correlation coefficient.
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Methods
Animals. Male C57Bl/6J Mus musculus (2–3 months old) were group housed 2–5
per cage on a 12/12 reverse light cycle (lights off at 10 a.m.). Experiments took
place during the dark period. All animals received nesting material and plastic hut
in their homecage. Littermates were matched across experimental groups. Animals
were food deprived to 90% of free feeding weight 3 days before and during
behavioural experiments. All procedures were approved by the Ernest Gallo Clinic
and Research Center and UC Berkeley Animal Care and Use Committees.

Surgery. All surgical procedures were performed under isoflurane anaesthesia. Viral
labelling techniques were used to identify projections from the OFC to the
dorsomedial frontal cortex. Using a Nanojet II injector (Drummond Scientific
Company, Broomall, PA), 50 nl of AAV2/1-CAG-eGFP (Addgene plasmid 28014;
UNC Vector Core) or 500 nl of AAV2/1-CAG-ChR2-tdTomato (UNC Vector Core)
was injected to the left OFC (anterior 2.3, lateral � 1.7 and ventral 2.5) 2–6 weeks
before experiments (Fig. 2a). In a separate procedure, a B3-mm craniotomy was
made over the dorsomedial frontal cortex of both hemispheres, and sealed with a glass
coverslip (Fig. 2d) as described previously40. The craniotomy was placed immediately
rostral to bregma. Mice were allowed to recover for 7–14 days before imaging.

Channelrhodopsin assisted circuit mapping of OFC inputs to dmPFC. In a
separate set of mice, we injected 500 nl of AAV2/1-CAG-ChR2-tdTomato
(UNC Vector Core) in the left OFC and allowed 1 month of expression prior to
making slices in adult 2–3-month-old male mice (Fig. 3a). Animals were
anaesthetized with a ketamine–xylazine mixture (70 mg kg� 1 ketamine and
10 mg kg� 1 xylaxine) and perfused through the heart with ice-cold artificial cer-
ebrospinal fluid (ACSF) (in mM; 120 NaCl, 2.5 KCl, 26.2 NaHCO3, 1.25 NaH2PO4,
11 glucose, 2.5 CaCl2 and 1.3 MgCl2) aerated with 95% O2 and 5% CO2. The brain
was rapidly removed and placed in ice-cold cutting buffer bubbled with 95% O2

and 5% CO2 (2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 25 D-glucose, 0.5 CaCl2, 7
MgCl2, 110 choline-Cl, 3 mM Na-pyruvate and 11.6 Na-ascorbate). Coronal slices
(300 mm) of the dmPFC were cut on a vibratome and incubated in oxygenated
ACSF for 1 h at 37 �C and 30 min at room temperature before recordings.

Neurons (n¼ 42 cells from 13 mice) in the contralateral dmPFC were patched
with borosilicate pipettes (4–6 MO; internal solution: 110 Cs-methanesulfonate, 5
NaCl, 10 BAPTA, 10 HEPES, 2 MgCl2, 10 Na2-phospocreatine, 4 ATP-Naþ , 0.3
GTP-Naþ and 0.1% biocytin). L2/3 and L5 pyramidal cells were identified by
morphology and distance from surface. Parvalbumin-positive putative
interneurons were identified in Pvalb-IRES-Cre mice (B6;129P2-Pvalbtm1(cre)Arbr/J;
stock number 008069 from Jackson Labs) crossed with Ai14 reporter mice
(B6;129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J; stock number 007908 from
Jackson Labs). Recordings were performed at 32 �C in ACSF with 0.5 mM TTX
(Tocris Bioscience) and 100mM 4-AP (Sigma) to block action potentials and
restore presynaptic glutamate release, respectively. Photostimulation was with a
blue laser (473 nm). Beam position was controlled with galvanometers and steered
through an air immersion objective (4x magnification 0.16 numerical aperture;
UPlanSApo, Olympus). For each recorded cell, laser power was adjusted to yield
peak excitatory post-synaptic current (EPSC) amplitudes of B100 pA. We
delivered light pulses (1-ms duration; interstimulus interval 800 ms) on a 12� 18
grid (50-mm spacing) in a pseudorandomized pattern to avoid sequence-specific
responses. Mapping experiments were repeated three to five times for each cell and
presented as average responses. EPSCs were recorded in voltage clamp (� 70 mV)

and excluded if access resistance exceeded 30 MO (MultiClamp 700B amplifier and
pClamp 10 data acquisition software, Molecular Devices).

Four-choice odour discrimination and reversal task. The training arena was a
clear acrylic box (120 0 � 120 0 � 90 0), with four internal walls (30 0) to partially divide
the arena into four quadrants. White ceramic pots were used to present odour
stimuli (2.90 0 diameter and 1.750 0 deep). A clear acrylic cylinder (60 0 diameter) was
used to confine the mouse in the centre of the maze between trials while pots were
baited and rearranged. Food rewards were B10-mg pieces of Honey Nut Cheerios
(General Mills, MN). Odour cues were scented wood shavings (anise extract;
McCormick, Hunt Valley, MD; clove, litsea, and eucalyptus oils ; San Francisco
Massage Supply Company, San Francisco, CA; thymol, Alfa Aesar, Ward Hill,
MA). On days 6 and 7, all pots were sham baited with a piece of cereal secured
under a mesh screen.

Training in the task proceeded as previously described12. Mice were trained in
the morning, and imaged 2–6 h later. Following 3 days of baseline imaging, mice
were habituated to the arena on day 4 (Fig. 5a). Four empty pots were placed in
each quadrant of the arena, and baited with cereal pieces every 10 min, for a total of
30 min. On day 5, mice were shaped to dig in wood shavings (Hartz Mountain
Corporation, Secaucus, NJ) to obtain a buried food reward (Fig. 5d). Only one pot
was used, and the food reward was covered with increasing amounts of wood
shavings across 12 untimed trials. The pot quadrant location was changed each
trial. Mice were returned to the central start cylinder between trials. Mice rapidly
learned to uncover the buried food, and shaping typically was completed within
B1 h. Note that the same total number of food rewards (12) was delivered on day 4
and 5.

On day 6, mice learned to discriminate among four pots with different scented
wood shavings (anise, clove, litsea and thyme; Fig. 6a). A trial began when the
central start cylinder was lifted. The mice could then freely explore the arena until a
digging choice was made. Digging was defined as purposeful displacement of the
shavings with paws, but not superficial sniffing. The cylinder was lowered as soon
as a digging choice was made. If the choice was incorrect or if 3 min elapsed, the
trial was terminated and the mouse was gently encouraged back into the start
cylinder. Criterion was met when the mouse completed 8 out of 10 consecutive
trials correctly.

On day 7, mice completed a recall of the initial odour discrimination to
criterion again (Fig. 7a,b). The ‘recall-only’ group was then returned to their
homecage, while the ‘reversal’ group continued within the same session to learn
new odour cue–outcome contingencies. The rewarded odour was switched from
anise (O1) to clove (O2). A novel odour cue was also introduced, with eucalyptus
replacing thyme. Mice again were required to achieve 8 out of 10 consecutive trials
correct to reach criterion. Training sessions on days 6 and 7 were typically
completed within B1.5 h.

The ‘arena control’ group was yoked to the experimental conditions of the
‘reversal’ group, but without food rewards (Supplementary Fig. 1). Each day, mice
entered the arena for time matched to the trained cage mate, with the same number
of pots and shaving odours. However, mice were never placed in the start cylinder
and there was no demarcation of trial structure. All behavioural experiments were
carried out during the subjective dark period, and ‘arena control’ mice actively
explored the arena and shavings. Mice were not observed sleeping while in the
arena. The ‘standard-housed’ mice were cage mates of the ‘trained’ and ‘arena
control’ groups, and so experienced the environment of the behaviour testing
room. All groups were handled daily for weighing and imaging.
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Figure 8 | Bouton plasticity precedes updating of decision-making strategy. (a) Mice (n¼ 9) explored less in reversal compared with discrimination

(t(8)¼ 1.91, P¼0.09; paired t-test). (b) Mice exploited significantly more in reversal (t(8)¼4.70, P¼0.002; paired t-test). (c) This shift in strategic

choice is captured by the change in the ‘exploit index’ (exploit� explore/total trials), where a positive number indicates proportionally more exploitation in

reversal. (d) The amount of bouton turnover observed following discrimination training on day 6 correlated with the shift in the ‘exploit index’ on day 7

(Pearson’s correlation coefficient). Bouton plasticity was related to flexibility in decision-making strategy. Connected symbols are the same mouse on

different days. Graph (c) shows mean±s.e.m. ** Po0.01.
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Analysis of behavioural data. We modelled discrimination and reversal learning
using a reinforcement learning model driven by an iterative error-based rule22,38,39.
The model uses a prediction error (d) to update the value (V) of each odour
stimulus. The prediction error is the difference between the experienced feedback
(l) and the current expected value, where l is 100 for rewarded choices and is 0 for
unrewarded choices. The prediction error is scaled by a learning rate parameter (a),
with 0oao1.

V tþ 1ð Þchoice¼ V tð Þchoice þ d;

d ¼ a l�V tð Þchoice

� � ð1Þ

Since there may be different circuit mechanisms underlying positive and negative
feedback, we also fitted behavioural data to a model with separate learning rates for
rewarded (apos) and unrewarded (aneg) outcomes67,68. When feedback is better
than expected, the model generates a positive-prediction error that increases the
value of that odour. Likewise, when feedback is worse than expected, the model
generates a negative-prediction error that decreases the value of that odour.

Mice have innate odour preferences69, and the task was designed so that the
rewarded odour was not the most preferred initially in discrimination. The initial
values for the odours were generated from the average percentage of choice for
each odour in the first four trials of the discrimination for 26 mice (for t¼ 1,
V(O1)t¼ 25, V(O2)t¼ 19, V(O3)t¼ 5, V(O4)t¼ 51). The initial values for the
odours O1, O2 and O3 in the reversal were determined by the choice history of the
animal in discrimination and recall, and the initial value of a novel odour O40

introduced in reversal was set from the average percentage choice of that odour in
the first four trials of reversal (V(O40)¼ 6).

To model trial-by-trial choice probabilities, the stimulus values were
transformed using a softmax function to compute the relative probability of each
choice. The inverse temperature parameter (b) determined the stochasticity of the
choices.

P tþ 1ð ÞO1¼
1

1þ eb� V tð ÞO2 �V tð ÞO1ð Þ þ eb� V tð ÞO3 �V tð ÞO1ð Þ þ eb� V tð ÞO4 �V tð ÞO1ð Þ ð2Þ

The same equation applies for all odour choice probabilities, replacing with O1, O2,
O3 or O4 as appropriate. The probability (P) of all odour choices sums to 1.

The free parameters a, apos and aneg and b were estimated separately for the
discrimination and reversal training phases. The recall phase was assumed to use
the same parameters as the discrimination. The best-fit parameters were optimized
by maximizing the log-likelihood across trials for each animal. We compared the
alternative models using the Akaike information criterion, corrected for small
sample sizes (Supplementary Table 1). Model AICc values were compared using
the signed-rank test, and were not found to be significantly different from the
chosen models. We also tested for correlation between parameters, which would
indicate that two parameters might be redundant.

For the discrimination phase, we chose the simplest model in which only a
varied among animals, and b was fixed. The model with two free parameters (a and
b) had a slightly lower AICc score, but the magnitude of the prediction errors was
difficult to interpret since the parameters were significantly inversely correlated
(Supplementary Table 1). As has been noted previously, individual parametric fits
for this type of task tend to be noisy and can yield improbable results30,70. So
following previous work, we fixed b for the group to the mean of the individual fits
�b ¼ 0:054
� �

. Importantly, the classification of explore and exploit trials was not
significantly different between these two models for discrimination learning
(explore: t(17)¼ 1.23, P¼ 0.24; exploit: t(17)¼ 0.27, P¼ 0.79). For the reversal
phase, the best model used three free parameters for apos, aneg and b, and the
parameters were not correlated.

We used the output of the model to classify the strategy used by the animal.
Trials were classified as exploitation or exploration trials based on whether the
chosen action was also the most probable choice predicted by the value-based
reinforcement model30. Exploitation trial choice matched the most probable
(and highest valued) choice. Exploration trials were choice of any of the three less
probable alternative options. Omission trials were not included in the strategy
classification analysis.

We also tested an alternative model using e-greedy for action selection22. The
algorithm selects the most valuable choice with a probability of 1–e, and chooses
randomly from the remaining options with a probability of e/(k� 1), where k is the
number of options and i is an odour choice.

P tþ 1ð Þi¼
1� e if i ¼ argmaxj¼1; ... ;kVðtÞj

e=ðk� 1Þ otherwise

�
ð3Þ

Supplementary Table 1 shows that the e-greedy model fit the data significantly less
well than the softmax model for action selection. Exploratory choices classified
using the softmax model were made to the second most valuable option in 58% of
explore trials, indicating that mice continued to use a value-based strategy in
exploration. Exploratory trials were also more common under conditions of greater
uncertainty, when the probabilities of the top two choices were more similar
(mean probability difference: explore trials 0.27±0.009, exploit trials 0.38±0.02;
t(32)¼ 5.93, Po0.0001). The e-greedy model has an equal probability for
exploration of the three alternatives, and thus overestimated the probability of two
of the less valuable choices. The e-greedy model also has the same probability for

exploration across all trials, and therefore poorly fit the behavioural data at the
beginning and end of the session when mice were more certain of their choice.

In vivo two-photon imaging of long-range axonal projections. The procedure
for imaging through a chronic cranial window using two-photon imaging was
performed as previously described40. Mice were anaesthetized with isoflurane
anaesthesia, and a bar affixed to the skull was screwed into a metal post and fixed to
a metal base. The brain was imaged using an Ultima IV laser scanning microscope
(Prairie Technologies) and a water immersion 40x magnification 0.8 numerical
aperture objective. A Mai Tai HP laser (Spectra Physics) was tuned to 910 nm for
excitation of green fluorescent protein. Approximately, 80 mm segments of axon
were imaged at zoom 4 with high resolution (12.05 pixels per mm) within 100 mm
of the surface (layer 1). Image stacks were obtained using a 1-mm z-step. Imaging
for the main experiments was within 0.8 mm of the midline in the right
hemisphere, contralateral to the viral injection. A smaller set of regions of interest
were studied in the ipsilateral left hemisphere (0–0.8 mm from midline), and lateral
right hemisphere (0.8–1.4 mm) for comparison of density and turnover
(Supplementary Fig. 2). For relocation of the same axons across imaging sessions, a
bright-field image and a two-photon image stack were taken of the pattern of the
blood vessels and neuronal processes as a reference point. After imaging, mice were
given subcutaneous saline and allowed to recover in a separate cage before
returning to the homecage.

Bouton scoring. Boutons were scored according to established criteria40, using
custom Matlab software (Mathworks) to measure the intensity of a varicosity
relative to the axon shaft. Varicosities were scored as boutons if two or more pixels
were more than three times as bright as the axon shaft within the adjacent 2 mm. A
new varicosity was scored as a gained bouton if it met these same criteria. A bouton
was subsequently scored as lost if it fell below 1.3 times as bright as the adjacent
shaft. Varicosity peaks had to be 42 mm apart to score individually. Scoring was
done based on individual z-sections of three-dimensional image stacks, choosing
the brightest section for analysis of each varicosity. A bouton was considered to be
the same across time points if it was within 1 mm of the expected position, based on
distance to nearby landmarks or stable boutons. File names were recoded for
analysis, so that all scoring was done blind to the experimental condition. In total,
35 mice were imaged including 323 axons and 6,512 unique boutons.

Analysis of bouton dynamics. Bouton gain and loss were scored in comparison
with the previous imaging session, as a percentage of the total boutons present that
day. Turnover was the number of boutons gained and lost in a session, divided by
two times the total boutons present that day. Normalized values for gain, loss and
turnover were obtained by dividing the measurement by the average of the two
measurements from the baseline imaging sessions, yielding a fold change relative to
the baseline days. The survival fraction of boutons was calculated by starting with
the total number of boutons gained in a specific session and plotting the fraction of
this total that were present on subsequent days.

Image processing. Images for data analysis were median filtered. Images for
figures were median filtered, then projected in two dimensions from the
three-dimensional image stack. Background processes were cropped out. There
were normally several axons in an image. Finally, images were Gaussian filtered
and contrasted for presentation.

Statistics. Statistical analyses were performed using Matlab or GraphPad Prism 5.
Groups were tested for normal distributions in the data. Two-way repeated
measures analysis of variance was used to compare groups across imaging
sessions, with Bonferroni corrected post hoc tests for each session. Comparisons
were made among groups at a single time point using one-way analysis of variance,
with Bonferroni corrected post hoc tests comparing the ‘arena control’ group to the
other experimental conditions. Comparisons between two groups were made using
unpaired t-test, or within the same animal between two behavioural sessions using
paired t-test. Pearson’s correlation was used to measure the linear relationship
between parameters. One outlier in the normalized bouton loss data from
discrimination and reversal was identified using Grubb’s test, and that data
point was excluded from analysis. Kolmogorov–Smirnov tests were used to test for
differences in cumulative histogram distributions.
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