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A B S T R A C T

Emerging evidence has linked the gut microbiome changes to schizophrenia. However, there has been limited
research into the functional pathways by which the gut microbiota contributes to the phenotype of persons with
chronic schizophrenia. We characterized the composition and functional potential of the gut microbiota in 48
individuals with chronic schizophrenia and 48 matched (sequencing plate, age, sex, BMI, and antibiotic use)
non-psychiatric comparison subjects (NCs) using 16S rRNA sequencing. Patients with schizophrenia demon-
strated significant beta-diversity differences in microbial composition and predicted genetic functional potential
compared to NCs. Alpha-diversity of taxa and functional pathways were not different between groups. Random
forests analyses revealed that the microbiome predicts differentiation of patients with schizophrenia from NCs
using taxa (75% accuracy) and functional profiles (67% accuracy for KEGG orthologs, 70% for MetaCyc path-
ways). We utilized a new compositionally-aware method incorporating reference frames to identify differentially
abundant microbes and pathways, which revealed that Lachnospiraceae is associated with schizophrenia.
Functional pathways related to trimethylamine-N-oxide reductase and Kdo2-lipid A biosynthesis were altered in
schizophrenia. These metabolic pathways were associated with inflammatory cytokines and risk for coronary
heart disease in schizophrenia. Findings suggest potential mechanisms by which the microbiota may impact the
pathophysiology of the disease through modulation of functional pathways related to immune signaling/re-
sponse and lipid and glucose regulation to be further investigated in future studies.

1. Introduction

Schizophrenia is a debilitating illness of the brain and body. It is
associated with cognitive and functional deficits as well as higher
medical comorbidity and shortened life expectancy that limit in-
dividuals’ quality and quantity of life (Casey et al., 2009). Individuals
with schizophrenia are more prone to diseases associated with aging,
namely cardiovascular diseases (CVD) (Hennekens et al., 2005), and
exhibit age-associated physiological changes, such as inflammation, at
earlier ages (Lee et al., 2017; Kirkpatrick and Miller, 2013). A growing

body of literature strongly supports the hypothesis of accelerated bio-
logical aging in persons with schizophrenia (Kirkpatrick et al., 2008;
Nguyen et al., 2018; Jeste et al., 2011). Understanding the mechanisms
of potential accelerated aging is imperative to improving the quality
and quantity of life in schizophrenia. Mounting evidence links the gut
microbiome – the modifiable “second genome” consisting of trillions of
diverse microbes living in the human gut – to key determinants of
human health and disease (Clemente et al., 2012). The gut microbiome
is critical in maintaining human physiology. It regulates many meta-
bolic processes essential for optimal health that cannot be maintained
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by human cells, particularly in maintaining homeostasis of host meta-
bolism, stimulating normal immune maturation, and stabilizing the gut
barrier (Carroll et al., 2009). Imbalance (or dysbiosis) of the microbiota
has been associated with most aging-related diseases, including dia-
betes, obesity, CVD, and neurodegenerative diseases (Clemente et al.,
2012). These observations have raised a possibility that the human
microbiome is a key modulator of host organismal aging, which may
contribute to premature morbidity and mortality in schizophrenia.
Schizophrenia is also characterized by increased gut permeability
(Severance et al., 2013). In this way, gut dysbiosis may contribute to
increased translocation of enteric microbes into systemic circulation,
thus potentially contributing to the pro-inflammatory milieu and other
physiological abnormalities implicated in schizophrenia (Hsiao et al.,
2013).

Research on the gut microbiome in psychiatric disorders is in early
stages and the role of the gut-brain axis in schizophrenia is not fully
understood. Our previous systematic reviews in this area (Nguyen et al.,
2018, 2019) found a small number of studies examining differences in
the gut microbiota between patients with first-episode psychosis and
schizophrenia and non-psychiatric comparison subjects (NCs). Al-
though all investigations reported beta-diversity differences between
patients and controls, there was minimal consensus with regards to
abundances of microbial taxa. Discrepancies may be explained, at least
partly, by misinterpretations of relative abundance data due to the
compositionality of microbiome data, which we sought to resolve using
novel methods. The present study is an extension of our previous article
(Nguyen et al., 2019) characterizing the gut microbiome in patients
with chronic schizophrenia; it includes participants from the previous
study. With an expanded cohort (n = 96), we build upon our previous
results (n= 50) and incorporate new analyses on functional pathways,
which have not been previously reported in any subjects. The objectives
of this study were three-fold. 1) We evaluated differential abundance
using Songbird, a newly-developed compositionally-aware method for
differential abundance testing (Morton et al., 2019). This approach is
more robust than previous methods and may help reveal more re-
producible results and lead to more stable inferences of compositional
change. 2) We also evaluated the predicted functional potential of the
microbial community using PICRUSt2 (Langille et al., 2013; Douglas
et al., 2019). Understanding the genetic potential of the intestinal
ecosystem may be more important and robust across different studies
and cohorts than simply knowing the taxonomic identity of microbes
present, particularly in elucidating potential pathways and mechanisms
by which the gut microbiome influences downstream clinical outcomes.
3) Finally, using supervised learning (Random Forests models), we
evaluated the microbiome as a diagnostic predictive tool by con-
structing taxonomy-based and function-based classifiers.

Based on previous studies (Nguyen et al., 2019; Shen et al., 2018;
Zheng et al., 2019), we predicted that beta-diversity, but not alpha-
diversity, of microbial taxa and predicted functional pathways would be
significantly different between schizophrenia and NC groups. Further-
more, consistent with the theoretical framework of accelerated biolo-
gical aging in schizophrenia, we also hypothesized that schizophrenia
would be characterized by alterations in functional pathways involved
in immune modulation and cardiovascular risk. We also anticipated
that alterations in microbiota function would be associated with in-
dicators of inflammation and CVD risk, in schizophrenia.

2. Materials and methods

2.1. Participants

Participants were recruited from the greater San Diego area through
the University of California San Diego (UCSD). The research protocol
was approved by the UCSD Human Research Protections Program, and
all participants provided written informed consent prior to participa-
tion. The sample included 48 subjects with schizophrenia and 48

matched NCs between the ages of 27 and 76 years. Participants with
schizophrenia were diagnosed based on the Structured Clinical
Interview for the DSM-IV-TR (SCID) (First et al., 2002). NCs were
screened for major neuropsychiatric disorders using the Mini-Interna-
tional Neuropsychiatric Interview (MINI) (Sheehan et al., 1998) and
excluded if they had a past or present diagnosis of a major neu-
ropsychiatric illness. Exclusion criteria were: other current major DSM-
IV-TR Axis I diagnoses; alcohol or other substance (other than tobacco)
abuse or dependence within 3 months prior to enrollment; diagnosis of
dementia, intellectual disability disorder, or a major neurological dis-
order; or any medical disability that interfered with a subject’s ability to
complete study procedures. Additional details regarding recruitment
and subject selection have been previously reported (Nguyen et al.,
2019).

To account for potential methodological differences that might bias
results and obscure biologically meaningful compositional differences
(Lozupone et al., 2013; Walters et al., 2014) and to control for clinical
factors and known major drivers of microbiome changes (McDonald
et al., 2018), NCs were matched to schizophrenia subjects on the same
sequencing plate after initial recruitment. Following a stable matching
algorithm, for each SZ subject we found the nearest matching NC
neighbor based on age, sex, race, body mass index (BMI), and history of
antibiotic use, requiring that the sample must come from the same se-
quencing plate.

2.2. Sociodemographic and clinical assessment

Sociodemographic characteristics (i.e., age, sex, race/ethnicity,
current smoking status) and illness-related factors (i.e., age of onset,
duration of illness, antipsychotic medication dosages) were obtained
through participant interview and review of the available medical re-
cords. Antipsychotic medication dosages were converted to World
Health Organization (WHO) defined daily dose (Organization WH,
2017). BMI was calculated based on height and weight (kg/m2). Par-
ticipants were interviewed by trained staff and completed the following
standardized assessments. Positive and negative psychiatric symptoms
were evaluated using interviewer-administered Scales for Assessment of
Positive Symptoms and Negative Symptoms (SAPS, SANS) (Andreasen,
1983; AndreasenOthers., 1984). Depression was assessed using the
Patient Health Questionnaire (PHQ-9) (Kroenke et al., 2001). Health-
related quality of life and functioning was evaluated using the physical
and mental health component scores from the Medical Outcomes Study
36-item Short Form (SF-36) (Ware and Sherbourne, 1992). Medical
comorbidity was measured with the total score and severity index from
the Cumulative Illness Rating Scale (CIRS) (Parmelee et al., 1995). The
Framingham 10-year Coronary Heart Disease (CHD) Risk Score was
calculated according to Wilson et al (Wilson et al., 1998).

2.3. Inflammatory biomarker assays

A subsample of participants was randomly selected to provide
fasting blood samples for testing of specific biomarkers. Of these in-
dividuals, a greater proportion was from the schizophrenia group
(p < 0.001) and of non-Caucasian race (p < 0.047). Otherwise, the
subsample did not significantly differ from the overall sample on age,
gender, BMI, medical comorbidity, smoking status, psychiatric symp-
tomatology, or antipsychotic medication use (ps > 0.05). Based on
prior empirical literature (Lee et al., 2017; Fernandes et al., 2016;
Frydecka et al., 2015), we focused on three pro-inflammatory markers
that have been observed to be linked with schizophrenia (high-sensi-
tivity C-reactive protein [hs-CRP], tumor necrosis factor [TNF]α, and
interleukin [IL]-6) and explored relationships with an anti-in-
flammatory cytokine (IL-10). Plasma TNFα, IL-6, and IL-10 were
quantified using the Meso Scale Discovery (MSD) MULTI-SPOT® Assay
System (MSD, Rockville, MD, USA) and analyzed on a SECTOR Imager
2400 instrument (MSD). Samples were run in duplicates, using V-PLEX
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Human Biomarker panels (Catalog no. K151A0H-2). Plasma hs-CRP was
measured with MSD enzyme-linked immunosorbent assay (ELISA).
Intra-assay variability and inter-assay variability was < 10% for all
assays.

2.4. Fecal sample collection and processing

Participants collected fecal samples using home collection kits (BD
SWUBE Dual Swab Collection System; BD Worldwide) and returned
them via mail in a self-addressed envelope. Returned samples were
immediately frozen and stored at −80 °C until aliquoting into 96 well
plates for DNA extraction. DNA extraction and 16S rRNA amplicon
sequencing were completed using the Earth Microbiome Project stan-
dard protocols (McDonald et al., 2018; Thompson et al., 2017). In brief,
DNA was extracted using the Qiagen MagAttract PowerSoil DNA kit
(Marotz et al., 2017), followed by PCR amplification on the V4 region of
the 16S rRNA gene with unique reverse barcoded primers and se-
quenced on Illumina MiSeq and HiSeq 4000 platforms, yielding paired-
end, 150 base-pair reads, with a minimum of 7,872 (median 47,615)
reads per sample (Caporaso et al., 2012; Walters et al., 2016).

2.5. 16S data processing and analysis

The raw sequencing data were processed using QIIME 2 version
2019.7 (Caporaso et al., 2010; Bolyen et al., 2019). Raw sequences were
demultiplexed and processed using Deblur to generate amplicon se-
quence variants (ASVs) (Amir et al., 2017) and previously recognized
bloom sequences were removed (Amir et al., 2017). Deblur ASVs were
inserted into the Greengenes 16S rRNA gene tree using SEPP via q2-
fragment-insertion (McDonald et al., 2012; Janssen et al., 2018), and
taxonomy was assigned using UCLUST (Edgar, 2010). The output fea-
ture table was rarefied to 7,000 sequences per sample. PICRUSt2
(phylogenetic investigation of communities by reconstruction of un-
observed states, version 2) was performed to predict functional poten-
tial of microbial communities, based on metagenomes inferred from
16S data (Langille et al., 2013; Douglas et al., 2019). PICRUSt2 pre-
dictions were made based on the following gene family databases:
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs (KO)
(Kanehisa et al., 2012), Enzyme Classification (EC) numbers, and the
MetaCyc Metabolic Pathway Database (Caspi et al., 2018).

Primary measures of the gut microbiome included abundances of 1)
microbial taxa (e.g., ASVs) and 2) functional pathways. For each, core
diversity metrics of alpha-diversity (within-sample) and beta-diversity
(between-samples) were calculated. Metrics of alpha-diversity included
number of observed features, Shannon diversity index (Shannon, 1948),
and Faith’s Phylogenetic Diversity (PD) (Faith, 1992). Beta-diversity
was calculated using unweighted UniFrac (Lozupone and Knight, 2005;
Lozupone et al., 2007) and Bray-Curtis dissimilarity (Bray and Curtis,
1957) for taxa, and Jaccard distance (Jaccard, 1912) for predicted
functional pathways. Output matrices were ordinated using principal
coordinate analysis (PCoA) and visualized using EMPeror (Vázquez-
Baeza et al., 2013).

2.6. Statistical analysis

Participant sociodemographic and clinical characteristics were
summarized and analyzed using paired-samples t tests and McNemar χ2

tests for continuous and discrete variables, respectively. Analyses of
microbiome 16S sequencing data were performed in QIIME 2. A two-
sided alpha level of p < 0.05 was used to determine statistical sig-
nificance. The Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) was used to control false discovery rate (FDR) at
alpha = 0.05 to account for multiple comparisons within each set of
analyses.

2.6.1. Diversity analysis
Alpha-diversity metrics were compared using nonparametric

Wilcoxon signed-rank tests. Beta-diversity distances between samples
were compared with PERMANOVA (Anderson, 2001) with 999 per-
mutations.

2.6.2. Differential abundance analysis
Differential abundance testing of microbial taxa and functional

pathways were first performed using ANCOM (Mandal et al., 2015). We
used features identified by ANCOM to seed Songbird to further examine
differential abundance (Morton et al., 2019). Songbird is a recently
developed method that uses reference frames (or balances) to account
for the compositional nature of microbiome data. By comparing log-
ratios of features, this method circumvents bias introduced by unknown
total microbial loads. We employed Songbird to estimate the relative
differentials of microbial taxa and functional pathways based on disease
status (schizophrenia vs. NC). Relative differentials were then ranked
with respect to diagnosis (i.e., most associated with schizophrenia vs.
NC groups) and visualized using Qurro (Fedarko et al., 2019). Balances
were created to determine differential abundance, relative to reference
frame, and compared using Wilcoxon signed-rank tests. Spearman’s
correlations were performed to explore associations of log-ratios of
functional pathways with biomarkers of inflammation and CVD risk.

2.6.3 Random forests analysis. We used supervised learning
Random Forests models (Breiman, 2001) to classify samples according
to diagnosis (i.e., schizophrenia or NC). For ASV models, data were
divided into 80%-20% training-test sets and prior to training the model,
the data were imported into Calour (Xu et al., 2019), normalized to
10,000 reads per sample and, in order to limit the number of features in
the model, low abundance features (20 reads across all samples or less)
were clustered together based on Euclidean distance hierarchical clus-
tering. In PICRUSt2 models, for MetaCyc pathways, we normalized the
data to 5,000,000 reads per sample, since there is approximately 100x
more pathways than ASVs, and filtered features with < 10,000 oc-
currences across all samples; for KEGG orthologs, we normalized the
data to 50,000,000 reads per sample, due to approximately 1,000x
more KEGG orthologs than ASVs, and filtered features with <
1,000,000 occurrences across all samples. Hyperparameter optimiza-
tion of the model was performed using the grid search method, as im-
plemented in Python scikit-learn package (Bokulich et al., 2018;
Pedregosa et al., 2011; Virtanen et al., 2020). ROC curves were gen-
erated from the stratified 5-fold cross-validation results and the con-
fusion matrices were calculated on the basis of the best model obtained
from cross-validation. The best model was selected on the basis of ac-
curacy score.

3. Results

Participant demographic and clinical characteristics are presented
in Table 1. As expected, the schizophrenia group had worse psychiatric
symptoms, lower levels of physical/mental well-being, higher rates of
smoking, and greater medical comorbidity. Although schizophrenia and
NC groups did not differ in mean levels of blood-based inflammatory
biomarkers, a significantly greater proportion of patients with schizo-
phrenia exhibited hs-CRP levels ≥ 2 mg/L, a level above which is as-
sociated with increased risk of major cardiovascular events (Carrero
et al., 2019).

3.1. Microbiota analysis

3.1.1. Diversity patterns
Schizophrenia and NC groups did not differ on any assessed measure

of alpha-diversity (Table S1). There were significant beta-diversity
differences between schizophrenia and NC groups using unweighted
UniFrac and Bray-Curtis (Table 2). PCoA of unweighted UniFrac and
Bray-Curtis distances showed that schizophrenia and NC groups formed
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distinct clusters (Fig. 1). Additionally, schizophrenia subjects demon-
strated greater variability across the PCoA space, compared to NCs who
were more tightly clustered (within-group distance comparison; un-
weighted UniFrac p < 0.001; Bray-Curtis p < 0.001). Across diag-
nostic groups, significant beta-diversity differences were also observed
for sex, BMI category, and smoking status (Table 2). Within the schi-
zophrenia group, there were no beta-diversity differences between
subjects on versus off antipsychotic medication.

3.1.2. Differential abundance
Differential abundance testing using ANCOM identified two taxa

from family Lachnospiraceae to be significantly different between schi-
zophrenia and NC groups (W = 647, 688). The W value is used to
evaluate the null hypothesis that the two groups have no significant
difference; the higher the W value, the more significantly the taxon
differs across groups. Songbird was then employed to identify taxa that
were most positively and negatively associated with diagnosis, and
Qurro was used to display the sorted differential rankings associated

Table 1
Demographic and Clinical Characteristics of Subjects.

Non-Psychiatric Comparison(n = 48) Schizophrenia(n = 48) t or χ2 p

Age (years) 54.1 (12.6) 53.2 (10.3) N/A1 –
Gender [n (% female)] 19 (40%) 19 (40%) N/A1 –
Race [n (% Caucasian) 37 (77%) 31 (65%) N/A1 –
BMI 28.5 (5.9) 31.8 (6.7) N/A1 –
BMI classification2 [n (%)]
Normal 10 (21%) 9 (19%) N/A1 –
Overweight 24 (50%) 11 (23%)
Obese 14 (29%) 28 (58%)
Antibiotic use [n (% in past year)] 12 (25%) 12 (25%) N/A1 –
Current smoking status [n (% smoker)] 2 (4%) 16 (33%) 14.6 0.007
Age of illness onset (years) – 23.5 (9.1) – –
Illness duration (years) – 30.3 (11.0) – –
Current antipsychotic use [n (%)]
On – 40 (83%) – –
Off 8 (17%)
Antipsychotic type [n (%)]
Atypical – 23 (57%) – –
Typical 6 (15%)
Both 11 (28%)
Antipsychotic daily dosage3 – 2.06 (2.20) – –
SAPS Total Score 0.50 (0.8) 4.58 (3.5) −3.72 0.003
SANS Total Score 0.58 (0.9) 4.81 (4.3) −3.84 0.003
PHQ-9 Depression Score 3.24 (3.9) 7.49 (5.5) −3.87 <0.001
SF-36 Mental Component 52.2 (8.3) 43.6 (12.8) 2.97 0.005
SF-36 Physical Component 52.3 (8.4) 41.9 (10.8) 4.81 <0.001
CIRS Total Score 3.27 (3.6) 6.74 (3.1) −2.03 0.07
CIRS Severity Score 0.95 (0.8) 1.63 (0.4) −2.87 0.02
Framingham 10-year CHD % Risk 0.083 (0.06) 0.10 (0.07) −1.521 0.19
Medical diagnoses
Diabetes [n (% with)] 0 (0%) 16 (50%) 5.46 <0.001
Heart Disease [n (% with)] 0 (0%) 8 (17%) 2.31 <0.001
Hypertension [n (% with)] 6 (50%) 32 (67%) 1.15 0.052
Inflammatory biomarkers4

hs-CRP (mg/L) 1.38 (2.02) 3.18 (3.80) −1.63 0.178
hs-CRP clinical high risk5 [n (%)] 2 (4%) 16 (33%) 13.4 <0.001
TNFα (pg/mL)6 2.79 (1.17) 2.88 (1.66) 0.09 0.93
IL-6 (pg/mL)6 0.59 (0.12) 1.10 (0.73) −1.47 0.16
IL-10 (pg/mL)6 0.32 (0.04) 0.42 (0.23) −0.42 0.68

BMI = body mass index; CHD = coronary heart disease; hs-CRP = high sensitivity C-reactive protein; IL = interleukin; PHQ-9 = Patient Health Questionnaire;
SANS = Scale for the Assessment of Negative Symptoms; SAPS = Scale for the Assessment of Positive Symptoms; TNFα = tumor necrosis factor alpha;
WHO = World Health Organization

1 Comparison not applicable as groups were matched on these variables.
2 World Health Organization (WHO) classification
3 WHO defined daily dose
4 Values for statistical tests based on log-transformed values
5 hs-CRP ≥ 2 mg/L; higher risk of major adverse cardiovascular event (Carrero Juan Jesus, Andersson Franko Mikael, Obergfell Achim, Gabrielsen Anders,

Jernberg Tomas. hsCRP Level and the Risk of Death or Recurrent Cardiovascular Events in Patients With Myocardial Infarction: a Healthcare‐Based Study. J Am Heart
Assoc., 2019)

6 Independent t-tests were performed, as not all subjects in pairs had inflammatory biomarker data

Table 2
Differences in Microbial Beta-Diversity Indicators by Diagnostic Group and
Other Demographic and Clinical Variables.

Variable Unweighted UniFrac Bray-Curtis Dissimilarity

pseudo-F p q† pseudo-F p q

Diagnosis 2.41 0.001 0.010* 2.74 0.002 0.010*
Sex 1.65 0.013 0.022* 1.88 0.007 0.018*
BMI category 1.39 0.011 0.022* 1.40 0.034 0.043*
Smoking status 1.79 0.005 0.167 1.54 0.034 0.043*
Current

antipsychotic
medication use

0.92 0.60 0.67 0.77 0.826 0.826

† Adjusted p-value controlling for false discovery rate using Benjamini-
Hochberg procedure
* q < 0.05.
BMI = body mass index.

T.T. Nguyen, et al. Brain, Behavior, and Immunity xxx (xxxx) xxx–xxx

4



with schizophrenia vs. NC groups, as determined by Songbird (Fig. 2A).
The differential microbial ranks are listed in Table S2. A log-ratio was
computed with the sequences associated with the family Lachnospir-
aceae (as identified by ANCOM) in the numerator, compared to the top-
20 ranked taxa (i.e., taxa most associated with NCs) in the denominator
as a reference frame. The difference in this log-ratio was compared
between groups, and across this balance, Lachnospiraceae was sig-
nificantly higher in the schizophrenia group compared to NC group
(p = 0.002) (Fig. 2B).

3.2. Functional analysis

To identify potential genetic functional differences between micro-
bial communities present, PICRUSt2 was performed to predict micro-
bial metagenomes, which can reveal the specific metabolic and/or
biological functions of the gut microbiome.

3.2.1. Diversity patterns
There were no group differences in the alpha-diversity of KEGG

Fig. 1. Beta-diversity of microbial taxa was significantly different between schizophrenia and NC groups. PCoA plots are a multivariate reduction method to
depict beta-diversity distance matrices of microbial taxa between samples. Each point represents an individual subject. (A) Unweighted UniFrac measures the
presence or absence of unique branch lengths in a phylogenetic tree, while (B) Bray-Curtis is a non-phylogenetic method that considers relative abundance. Both
unweighted UniFrac (A) and Bray-Curtis (B) distance metrics show a high degree of separation between participants with schizophrenia (red) compared to NC
participants (blue) along Axis 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Differential rankings of taxa associated with diagnosis. (A) Qurro visualization displaying the sorted differential rankings of taxa associated with
schizophrenia vs. NC groups, as determined by Songbird. Left on the x-axis indicates relative over-expression in NCs, right indicates relative over-expression in
schizophrenia. Sequences associated with family Lachnospiraceae are highlighted in blue; the top-20 ranked taxa are highlighted in yellow. (B) The log-ratio of
Lachnospiraceae to the top-20 ranked taxa is significantly increased in schizophrenia, compared to NCs (Z= -3.072, p= 0.002). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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orthologs, EC numbers, or MetaCyc pathways (ps > 0.08). Beta-di-
versity was significantly different between schizophrenia and NC
groups for KEGG orthologs (Jaccard pseudo-F = 2.41, p = 0.008,
q = 0.012) and EC numbers (Jaccard pseudo-F = 2.49, p = 0.007,
q = 0.012), but not MetaCyc pathways (Jaccard pseudo-F = 1.28,
p = 0.252, q = 0.252).

3.2.2. Differential abundance
ANCOM revealed three predicted functional pathways to be differ-

entially abundant between groups: trimethylamine-N-oxide (TMAO)
reductase (KO W = 3725; EC W= 1243), glycerol degradation to 1,3-
propanediol (W = 109), and Kdo2-lipid A biosynthesis (W = 76). The
differential ranking of functional pathways associated with diagnosis
were generated using Songbird. The differential ranks for KEGG or-
thologs, EC numbers, and MetaCyc pathways are listed in Table S3. The
log ratios of the above-identified pathways to either the top-20 or
bottom-20 ranked pathways were computed and compared between
groups. Log-ratios with TMAO reductase as the numerator, relative to
bottom-20 pathways, were significantly lower in the schizophrenia
group compared to the NC group (q < 0.001) (Fig. 3A). The log-ratio
of glycerol degradation to 1,3-propanediol pathway, relative to the top-
20 pathways, was significantly increased in the schizophrenia group,
whereas the log-ratio of Kdo2-lipid A biosynthesis pathway, relative to

the bottom-20, was significantly decreased in the schizophrenia group,
compared to NCs (q < 0.001) (Fig. 3B).

The extant literature suggest links between TMAO and Kdo2-lipid A
with CVD outcomes and immune responses, respectively (Zeisel and
Warrier, 2017; Wang et al., 2015), which are both related to the hy-
pothesis of accelerated aging in schizophrenia. Spearman’s correlations
were performed to examine the association of these functional path-
ways with age, Framingham Risk Score, and inflammatory biomarkers
(Fig. 3C). Log-ratios of TMAO reductase/bottom-20 were positively
correlated with Framingham Risk Score. The log-ratio of Kdo2-lipid A/
bottom-20 was negatively correlated with IL-10. No significant corre-
lations were observed with age, hs-CRP, IL-6, or TNFα in schizophrenia.
No relationships between pathways and clinical variables were ob-
served in the NC group (ps > 0.13).

3.3. Random forests classifier

To evaluate the ability of the microbiome to classify diagnostic
groups, we used Random Forests models to classify groups using mi-
crobial composition (ASVs) and functional profiles (KEGG orthologs
and MetaCyc pathways) as key input features (Fig. 4). The model built
using microbial taxonomy differentiated participants with schizo-
phrenia from NCs with 75% accuracy. Feature importance scores were

Fig. 3. Three predicted functional pathways were differentially abundant between schizophrenia and NC groups: trimethylamine-N-oxide (TMAO) re-
ductase, glycerol degradation to 1,3-propanediol, and Kdo2-lipid A biosynthesis. (A) The log-ratios of TMAO reductase (TMAOr), relative to the bottom-20
pathways (i.e., pathways most associated with schizophrenia), were significantly lower in schizophrenia, compared to NCs. K07821: Z = -3.80, p < 0.001,
q < 0.001; EC 1.7.2.3: Z= -4.19, p < 0.001, q < 0.001. (B) The log-ratio of glycerol degradation to 1,3-propanediol pathway (GlycProp), relative to the top-20
pathways (i.e., most associated with NCs), was significantly increased in schizophrenia, whereas the log-ratio of Kdo2-lipid A biosynthesis pathway, relative to the
bottom-20 pathways, was significantly decreased in schizophrenia group, compared to NCs. GOLPDLCAT-PWY: Z = -4.36, p < 0.001, q < 0.001;
KDO-NAGLIPASYN-PWY: Z = -3.33, p = 0.001, q < 0.001 (C) Greater log-ratios of TMAOr/bottom-20 were associated with greater Framingham Risk Scores in
schizophrenia, and greater log-ratios of Kdo2-lipid A/bottom-20 was correlated with decreased levels of IL-10.
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all < 2%, indicating that no single (or group of) microbial feature(s)
contributed to model performance in a significant way. This suggests
that many different features and their unique combination are jointly
responsible for the overall model performance. Functional classification
models were built using PICRUSt2 data. The accuracy of supervised
classification was 67% for KEGG orthologs (0.65 AUC) and 70% for
MetaCyc pathways (0.70 AUC). Similar to taxonomic classification
models, feature importance scores from functional models were < 5%.

4. Discussion

Consistent with our hypotheses, we found significant beta-diversity
differences in both microbial composition and functional potential be-
tween individuals with schizophrenia and NCs. On the other hand,
alpha-diversity of microbial taxa and functional pathways were not
different between groups. Using a novel compositionally-sound method
to conceptualize and interpret differential abundance, we found that
the family Lachnospiraceae was associated with schizophrenia. One of
the most notable findings of this study is that pathways related to
TMAO reductase and Kdo2-lipid A biosynthesis were altered in schizo-
phrenia, indicating that these enzymes and pathways may have clinical
significance and, if verified in independent studies, may prove to be
useful markers of disease. Also as hypothesized, we observed that these
functional profiles were associated with decreased anti-inflammatory
cytokine IL-10 and increased risk for CVD. This study extends our
previous report (Nguyen et al., 2019) and presents new findings on
microbial functional potential and pathways in this cohort of patients
with chronic schizophrenia.

Our findings regarding community-level differences in microbiota
composition is consistent with previous studies in schizophrenia
(Nguyen et al., 2019; Shen et al., 2018; Zheng et al., 2019; Zhu et al.,
2020). Beta-diversity findings are further reinforced by random forests
analysis, which revealed that microbial taxa can predict patients with
schizophrenia from NCs with 0.82 AUC. Feature importance scores
from our model did not reveal any microbial features that strongly
differentiated groups, despite the strong overall accuracy of the model.
This suggests that no single microbial feature was responsible for model
performance, but rather the unique distribution of all taxa in relation to
one another are most associated with schizophrenia. Despite differences
in beta-diversity of microbes, individuals with schizophrenia and NCs
did not differ in terms of within-sample alpha-diversity. It typically
observed that low alpha-diversity is a hallmark of dysbiosis and re-
presents “worse” health (Yatsunenko et al., 2012). However, the lit-
erature on alpha-diversity in psychiatric populations has been mixed
(e.g., no differences (Nguyen et al., 2019; Shen et al., 2018; Coello
et al., 2019; Painold et al., 2019; Zheng et al., 2016; Naseribafrouei
et al., 2014; Chen et al., 2018), decreased (Zheng et al., 2019; Huang
et al., 2018; Ma et al., 2020), and increased (Zhu et al., 2020; Jiang
et al., 2015). A recent meta-analysis of the gut microbiota in major
depressive disorder revealed no difference in alpha-diversity between
patients and NCs (Sanada et al., 2020).

The transdisciplinary nature of microbiome research brings chal-
lenges to reproducibility and replicability (Schloss, 2018), particularly
in the field of clinical psychiatric research. The microbiome revolution
has opened new frontiers for examining host-microbe associations in
the context of understanding psychiatric disorders, leading to an in-
crease of studies investigating microbial abnormalities in schizophrenia
and related psychotic disorders. However, such rapid expansion has
pitfalls, as various research groups seek to incorporate microbiome
collection and analysis into ongoing clinical studies, employing varied

experimental techniques at hand. Technical differences (e.g., DNA ex-
traction methods, PCR primers, sequencing platforms, bioinformatic
pipelines, taxonomy databases) can produce systematic biases that can
obscure biologically meaningful results (Lozupone et al., 2013; Walters
et al., 2014; Forslund et al., 2015). Systematic variation is especially
problematic when the effects of a biological parameter are expected to
be subtle and makes replication and integration of findings difficult, if
not impossible (Debelius et al., 2016). Small sample sizes and lack of
determination of within-individual sample variation are among other
pitfalls of the current literature. Our systematic review in this area
(Nguyen et al., 2019) found that, among a handful of studies examining
microbiota differences between patients with first-episode psychosis
and schizophrenia and healthy controls, there was minimal consensus
with regards to alpha-diversity patterns, relative abundance, or direc-
tionality of differences in taxa. Nowhere is this problem more apparent
than in differential abundance testing. Across these studies (Nguyen
et al., 2019; Shen et al., 2018; Zheng et al., 2019), over 130 taxa were
observed to be different with little consistency across investigations.

Differential abundance analysis is controversial throughout micro-
biome research, and there is widespread misconception about how to
interpret microbial abundance (Morton et al., 2019). Data from next-
generation high-throughput sequencing methods are compositional,
meaning that abundance information is relative to the biological spe-
cimen itself, and contains information about the relationship between
parts (e.g., proportions or probabilities) (Aitchison, 1986; Pawlowsky-
Glahn et al., 2015). Thus, the reporting and interpretation of relative
abundance data as absolute differences or changes can lead to mis-
interpretations of microbial community structures, as the increase of
one taxon inevitably leads to the concurrent decrease of others. Since
the changes of components are mutually dependent, high false dis-
covery rates occur when compositional data are analyzed using tradi-
tional statistical methods – a fact that is frequently swept under the rug
in microbiome studies (Knight et al., 2018). Instead, log ratios are a
preferable way to examine differences within compositional datasets.
Ratio transformations of data capture relationships between the fea-
tures, and, importantly, these ratios are the same whether the data are
represented as counts or proportions. This method allows for a more
robust biological understanding of microbial contributions to schizo-
phrenia. We performed ANCOM, a compositional approach that per-
forms statistical test based transformed by an additive log ratio (Mandal
et al., 2015), followed by Songbird, which uses reference frames to
establish microbial composition measurement standards (Morton et al.,
2019). Using this approach, we found that the log-ratio with Lachnos-
piraceae in the numerator and the top-20 ranked taxa associated with
NCs in the denominator was higher in individuals with schizophrenia
compared to NCs, indicating that the ratio of this taxa may have clinical
significance and, if verified in independent studies, may prove to be a
useful marker of the disorder. Lachnospiraceae is one of the most
abundant families from the phylum Firmicutes found in the gut and has
been associated with the production of butyrate (Biddle et al., 2013), a
short chain fatty acid associated with anti-inflammatory effects (Pryde
et al., 2002). Results relying on relative abundance information for this
family have been mixed. Prior studies of affective disorders have re-
ported increased levels of Lachnospiraceae in patients with MDD, com-
pared to healthy controls (Zheng et al., 2016), and in patients with
bipolar disorder on atypical antipsychotic medications, compared to
patients not on atypical antipsychotics (Flowers et al., 2017). A ma-
jority of participants on antipsychotic medication in this sample were
taking atypical antipsychotics (either alone or with typical anti-
psychotics), which may have contributed to the finding of increased

Fig. 4. Accuracy of supervised Random Forests classification models. (A) Microbial classification predicted schizophrenia vs. NCs with 75% accuracy. Area
under the ROC curve was 0.82, indicating good classification accuracy. Functional classification predicted diagnosis with (B) 67% accuracy for KEGG orthologs and
(C) 70% for MetaCyc pathways. All ROC curves were produced from stratified 5-fold cross-validation results, while the confusion matrices were generated from the
best model obtained in cross-validation.
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Lachnospiraceae. On the other hand, Lachnospiraceae has also been
found to be depleted in schizophrenia and positively correlated with
psychosis symptom severity (Zheng et al., 2019). A recent systematic
review (Vindegaard et al., 2020) noted that the most consistent finding
when pooling results from affective and psychotic disorders is lower
levels of Lachnospiraceae. It is possible that this taxon may be a trans-
diagnostic marker of psychiatric disease, perhaps related to common
mood symptoms or medications across disorders. Discrepant results,
with regards to directionality, may be due to differences in differential
abundance methods. Thus, the method currently presented holds much
promise for resolving outstanding inconsistencies across previous re-
ports by re-analyzing those datasets using reference from to make more
stable inferences of compositional differences. It is critical to use ap-
propriate statistical tools for data analyses and to continuously bench-
mark analytic methods in order to better understand their strengths and
limitations. It is beyond the scope of the current paper to benchmark
our methods against others. Instead, we refer the reader to other pub-
lished studies, including benchmarking, that highlight that composi-
tionally-aware methods are more accurate and robust with regards to
microbiome data (Morton et al., 2019; Gloor et al., 2017).

Differences between differential abundance and random forests
findings, which did not identify any microbial features that strongly
differentiated groups, may be explained by several reasons. Generally
speaking, important features in a random forests model (i.e., taxa
highly contributing to a model's performance) should be differentially
abundant, but differentially abundant features may not necessarily be
important in the random forests model. First, differential abundance
testing examines ratios of microbes, whereas the random forests model
considers normalized counts. Second, rare features may be differen-
tially abundant, but ubiquitous features are important to the model.
Third, the overall microbiome composition drives diagnotic prediction
in random forests models, not any single of several taxonomic features;
on the other hand, in differential abundance testing, we are looking for
ratios of taxa that are different between the groups.

PICRUSt2 analysis revealed broad community functional differences
between individuals with schizophrenia and NCs, and functional clas-
sification using random forests predicted diagnosis with good accuracy.
Similar to taxonomic data, no differences in alpha-diversity of KEGG
orthologs, EC numbers, or MetaCyc pathways were observed between
groups. However, functional pathways related to TMAO reductase and
Kdo2-lipid A biosynthesis were associated with NCs. In humans, TMAO
is formed from trimethylamine, which is a byproduct of the bacterial
metabolism of dietary choline in the intestine (Zeisel and Warrier,
2017). TMAO modulates lipid and glucose homeostasis (Warrier et al.,
2015) and has been associated with a number of chronic diseases, most
notably CVD and diabetes (Zeisel and Warrier, 2017). In mouse models,
TMAO represents the end of a complex dietary phosphatidylcholi-
ne–choline metabolic pathway involving the gut microbiome that
contributes to the pathogenesis of atherosclerotic coronary artery dis-
ease (Wang et al., 2011). Similarly, TMAO induces glucose intolerance
and insulin resistance in mice fed a high fat diet, and effects were
concurrent with increased mRNA levels of pro-inflammatory cytokines
(Gao et al., 2014). Among individuals at risk for CVD, high plasma
levels of TMAO is correlated to increased atherosclerotic plaque burden
(Wang et al., 2011) and risk of major adverse cardiovascular events
(Tang et al., 2013), and people at risk for diabetes have higher plasma
TMAO concentrations (Tang et al., 2013; Lever et al., 2014; Barton
et al., 2015). TMAO reductase is an enzyme that catalyzes the reduction
of TMAO to trimethylamine. Our findings suggest the hypothesis that
individuals with schizophrenia may have less ability to clear TMAO due
to lower levels of TMAO reductase, leading to increased levels of the
metabolite. In patients with schizophrenia, higher ratios of TMAO re-
ductase were correlated with higher Framingham Risk Scores. Further
blood-based metabolomics are needed to examine this hypothesis and
determine levels of compounds specific to TMAO pathways present in
circulation, which might provide greater insights into the role of this

potential mechanism in cardiovascular disease in schizophrenia.
Kdo2-lipid A is an essential structural component for the survival of

most Gram-negative bacteria and is the active component of lipopoly-
saccharide (LPS), which stimulates host immune responses through a
protein complex of Toll-like-receptor 4 (TLR4) and myeloid differ-
entiation protein 2 (MD-2) (Wang et al., 2015; Raetz et al., 2006). The
TLR4/MD-2 complex activates a cascade of signal transductions that
orchestrate an inflammatory response. Many bacteria can modify the
structure of their Kdo2-lipid A, as a way to adapt to different environ-
ments and modulate their virulence or infectivity. Our results showing
alterations in the Kdo2-lipid A biosynthesis pathway in schizophrenia
and its negative relationship with anti-inflammatory cytokine IL-10 is
consistent with evidence that schizophrenia is associated with a lasting
pro-inflammatory state (Kirkpatrick and Miller, 2013). To our knowl-
edge, the clinical impact of Kdo2-lipid A has not been established in
humans; as such, more research is needed to determine how the up- or
down-regulation of this pathway may impact downstream systemic
inflammation. Kdo2-lipid A has potential clinical relevance, particularly
its capabilities to elicit host innate immune responses. The enzymes and
receptors involved in Kdo2-lipid A biosynthesis is an emerging target for
immunopharmocological exploitation (Wang et al., 2015).

4.1. Limitations

The most important limitation of this study is its relatively small
sample size, given the complex nature of schizophrenia and hetero-
geneity of the disorder. Additionally, only one microbiome sample was
evaluated per individual. The composition of the gut microbiome is
known to fluctuate across time and as a result of many factors
(McDonald et al., 2018; Yatsunenko et al., 2012), and intra-individual
variability may be greater than between-group variability (Flores et al.,
2014). The cross-sectional design limits our ability to make causal in-
ferences. Future prospective longitudinal studies are needed to char-
acterize and control for temporal variations within and between groups
in order to understand causal relationships between the microbiome
and health in schizophrenia. This study was not designed to assess the
impact of antipsychotic medications on the gut microbiome. Our clin-
ical population of interest is individuals with long-time, chronic dis-
ease. As such, a majority of our sample were taking antipsychotic
medications. Relatedly, we did not exclude individuals with schizo-
phrenia with cardiometabolic disorders (e.g., diabetes, hypertension,
heart disease). Although these conditions may influence the stability of
the gut microbiota, patients with schizophrenia tend to have higher
rates of these conditions; (Hennekens et al., 2005) as such, these are
important to consider in understanding the phenotype of accelerated
aging in schizophrenia, and excluding them would create a sample that
is unrepresentative of the general schizophrenia population. It is pos-
sible that differences in the gut microbiome between groups may have
been driven by these comorbid medical illnesses; however, we did not
find any differences in the beta-diversity of microbial taxa (ps > 0.38)
or functional potential (ps > 0.20) between persons with schizo-
phrenia with and without these conditions, suggesting that these
medical conditions were unlikely to be driving the reported findings.
Likewise, we did not match samples on or control for smoking pre-
valence in analyses. Patients with chronic schizophrenia are markedly
prone to smoke tobacco and it has been suggested that biological factors
may underlie the association between this disorder and tobacco use. To
disentangle the effects of smoking and diagnostic group, we compared
smokers to non-smokers within the schizophrenia group did not find
differences in beta-diversity of taxa (ps > 0.068) or functional path-
ways (ps > 0.105), suggesting that differences in microbial community
composition between study groups were driven by disease rather than
cigarette smoking. Functional data from PICRUSt was predicted based
on 16S rRNA marker gene sequences, which does not provide direct
information about the functional composition of sampled communities.
Nevertheless, PICRUSt predictions have overall high accuracy (Douglas
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et al., 2019) and can yield new biological insights, particularly in a
novel field of research. Future studies should incorporate shotgun me-
tagenomic sequencing, which directly measures genetic functional po-
tential, to validate predictions of functional potential. Finally, as this
was an exploratory study, we did not have circulating levels of meta-
bolites to further validate TMAO reductase findings. Performing blood-
based metabolomics will be an important next step to discover whether
compounds specific to TMAO pathways are observed in circulation,
which could impact host metabolism and health.

4.2. Conclusions and next steps

Strengths of the present study include a matching of NC participants
to control for other non-disease related factors known to have major
influences on the gut microbiome. We build upon our previous article
by utilizing a new compositionally-aware method for differential
abundance testing that can be used in future studies with larger sample
sizes and/or meta-analysis of existing datasets to help resolve incon-
sistencies in the extant literature. Our study is one of the few to have
examined the functional potential of the gut microbiome in patients
with chronic schizophrenia. Previous studies have found altered func-
tional potentials related to metabolism of amino acids, lipids, and
carbohydrates and degradation of xenobiotics (Shen et al., 2018). To
our knowledge, this study is the first to show that individuals with
schizophrenia have altered metabolic pathways related to TMAO re-
ductase and Kdo2-lipid A biosynthesis. The microbiota may impact that
pathophysiology of the disease through modulation of functional
pathways related to immune signaling/response and lipid and glucose
regulation, which might have implications for accelerated biological
aging in schizophrenia. For example, therapies that target TMAO
pathways are being explored (Zeisel and Warrier, 2017), including
dietary interventions targeted towards reducing TMAO levels (Leal-Witt
et al., 2018; Tripolt et al., 2015).

Research is increasingly moving toward characterizing the func-
tional capacity of the community by quantifying the abundances of
genes or pathways, which can better elucidate potential downstream
effects of taxonomic shifts (i.e., significant differences in abundance
observed between case and control samples). Greater effort should be
made to link these two facets of the microbiome (Manor and
Borenstein, 2017), and future studies should focus on identifying
taxonomic drivers of disease-associated functional imbalances. Deep
functional profiling of the microbiome, along with integration of other
omics data such as metabolomics and proteomics, offers greater pro-
mise for therapeutic discovery and finding microbiome-related inter-
ventions (Segal, 2020).
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