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ABSTRACT OF THE DISSERTATION
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Professor Frank S Jenko, Co-Chair

Professor Troy A. Carter, Co-Chair

The exact nature of the physics governing the L-H transition seen in tokamak magnetic

confinement experiments has eluded fusion researchers for several decades. To date, a first

principles model for the transition does not exist. The improved particle and energy con-

finement realized by the suppression of turbulence in the post-transition H-mode motivates

an understanding of the transition and the empirically known conditions necessary for its

initiation, generically an input power threshold with key sensitivities to the edge electron

density, main ion mass and charge, plasma configuration, divertor conditions, ∇B drift di-

rection, etc. Modern consensus that an increase in the E × B shear at the plasma edge is

responsible for the turbulence suppression and formation of a transport barrier invigorates

research into possible driving mechanisms. The loss of thermal ions from the imperfectly

confining magnetic field of a tokamak manifests as a steady-state radial current in the edge

and has long been suspected to play a role in the generation of the E × B shear and hence

the L-H transition.

The body of this thesis presents the development of a model for the steady-state thermal
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orbit loss based on the identification of the phase-space loss cone. The presented model

boasts several improvements over other loss cone models found in the literature, largely

rooted in the careful consideration of local pitch angle scattering on ions within and near the

velocity-space boundaries of projections of the phase-space loss cone to observation points

in configuration-space. The probability that ions within the loss cone will be lost on a first

orbit is estimated by comparing the rates of collisionally scattering out of the loss cone to

the periods of orbit loss. The steady-state is determined by the rates of collisional loss cone

refueling modified by the statistical chance of first orbit loss. A competition arises between

the sufficiently large temperatures necessary for appreciable parts of the distribution to

interact with the loss cone and the reduced rate of collisional refueling of high energy ions.

The steady-state orbit loss current calculated by the model exhibits several features of

the experimentally measured L-H transition power threshold not present in other models.

The orbit loss current displays branching behaviors in the edge density, peaking at densities

similar to those minimizing the required transition power on ASDEX Upgrade. Additionally,

the loss current features the suspected strong ∇B drift direction asymmetry of the orbit loss.

The unfavorable drift configuration requires about a factor of two greater input power to

produce a similar orbit loss current seen in the favorable drift, again echoing a known behavior

of the power threshold. Other explored features that suggest a promising connection between

the thermal orbit losses and the transition are the main ion mass and the horizontal position

of the X-point.

The orbit loss current has been implemented into the edge fluid transport code SOLPS.

The first order plasma response to the current is studied over the high-density branch of the

loss current. The leading order effect is an increase in the magnitude of the edge Er well and

the associated E ×B shear. Over the explored parameter space, the input power necessary

to reach some threshold Er magnitude lessens on the order of ∼ 10–20% in the presence of

the loss current. Thermal ion orbit loss appears capable of influencing the onset of the L-H

transition.
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Chapter 1

Introduction

1.1 Nuclear fusion as a source of power

Nuclear fusion, the combining of one or more atomic nuclei, is the most widely used source

of energy on Earth, at least indirectly. Plants and other organisms absorb light emitted from

the sun, converting the energy to a usable form through photosynthesis. The foundation of

the food chain is set by these lifeforms, by which predatory species, including human beings,

can survive. Following the first industrialization of human societies, new sources of energy

have been increasingly demanded in increasing quantities.1 It is well known that our first

solutions to such demands, the fossil fuels, are limited in quantity and cause irreparable

damage to our environment when implemented at scale. The combined challenges of climate

change and scarcity have all too slowly encouraged investment in sustainable sources of

energy; currently ∼ 80% of energy demand in the United States is still supplied by fossil

fuels.2 Nonetheless, human beings have developed both new and more efficient technologies

to control alternative forms of energy: solar, wind, water, geothermal, nuclear, etc.3 Many

of these solutions seek to either directly or indirectly harness the energy output of the sun.

Inspired by our distant relatives and food sources, the development of photo-voltaic

technology allows for the generation of electricity from sunlight. Well placed turbines steal
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energy from the fluid of their immersion, typically the atmosphere or water, whose cycles

are driven by the solar heating of the Earth. Each of these energy sources is touched by

the nuclear fusion reactions happening some 150 million kilometers away in the sun. By

accident, the sun radiates 3.85 · 1026 W of power by way of energy released via the nuclear

fusion of light elements in its core. A mere fraction of this energy is incident on the Earth,

on average about 1.75 · 1017 W, with only a fraction reaching the surface. Human energy

consumption is roughly four orders of magnitude less.4 The magnitude of the sun’s energy

output is awe-inspiring; how can something so far away provide us so much power?

The answer lies in the relevant physics underlying the fusion process. The convenience

of fossil fuels is dual in nature: they are capable of providing a sufficient amount of energy

for most human activity, and this energy is relatively simple to harness. Fossil fuels release

energy through combustion, a chemical reaction by which bonds between negatively charged

electrons and positively charged atomic nuclei are broken and rearranged, leaving the nuclei

themselves unchanged. The energy scale of combustion and other chemical reactions is that of

the electromagnetic interaction. The shifted components only gain or lose energy on the scale

of the binding interaction, typically in the electronvolt (eV) range for the electromagnetic

interaction, thus setting a limit on the energy output of and the required energy for such

reactions. Physical reactions governed by the strong nuclear force, with bonds typically in

the MeV range, result in energy output typically about a million times greater than chemical

reactions and consequently require larger input energies to catalyze.

Both nuclear fusion and nuclear fission, the splitting of atomic nuclei, are governed by

the strong interaction. Individual fission reactions release about an order of magnitude more

energy than fusion reactions, but fusion reactions release more energy per fuel mass; fusion

and fission are energetically viable for low and high mass elements, respectively. Fission

boasts one significant advantage over fusion as a power source: nuclear fission power plants

are currently feasible and at work across the Earth. Fusion boasts many advantages over

fission. Several high profile disasters surrounding nuclear fission reactors, for instance, the
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events of Chernobyl (1986) or more recently in Fukushima Daiichi (2011) have understand-

ably soured the public opinion of such facilities. In contrast, a nuclear fusion power plant

does not run the risk of an uncontrolled nuclear meltdown. Furthermore, the byproducts

of nuclear fusion are not radioactive for comparable lengths of time, avoiding the difficult

problem of nuclear waste disposal.5 Fusion reactions also have the benefit of requiring less

exotic sources of fuel, contributing to the ease of monitoring the non-proliferation of nuclear

weaponry. Although the problem of creating a nuclear fusion reactor is an open one, the

advantages of safe and sustainable energy production on the scale of the strong force demand

continued experimental and theoretical research in the field. The challenge at hand is to not

only recreate conditions similar to those within the sun’s core but to do so in a controlled

fashion that can reliably and continuously convert energy to a usable form.

For any nuclei to fuse, they must overcome their mutual electromagnetic repulsion such

that they can interact on the shorter length scale of the strong force. Collisions of the nuclei

dictate these reactions such that the rates are often discussed in terms of cross-sections. A

fusion reaction with a particularly large cross-section, due to quantum mechanical tunneling

effects, is the fusion of hydrogen’s two isotopes, deuterium and tritium:6

1D
2 + 1T

3 → 2He4 + 0n
1 + 17.6 MeV. (1.1)

The excess 17.6 MeV was originally held by the strong force carrying gluons, binding the

nucleons together, and is carried away as kinetic energy by the α-particle and neutron prod-

ucts. The cross-section for the above reaction is maximized for particle energies around 100

keV, about 100 times hotter than the sun’s core. Decreasing the deuteron energies by an

order of magnitude results in a cross-sectional decrease of about three orders of magnitude,6

emphasizing the importance of the fuel temperature. To capitalize on such reactions, they

must be sufficiently numerous, demanding that the fuel be maintained at some ideal density

for a given temperature. The extreme gravitational pull of the sun finds equilibrium in bal-
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ancing the large outward pressure found in its core, effectively confining a large number of

fusing nuclei. Without access to comparably large confining fields, it is necessary to achieve

fusion while maintaining outward pressures that can be realistically balanced, encouraging

the use of warmer and less dense fuels compared to the solar core.

The confinement problem extends beyond the particles, and the timescale of the system’s

energy confinement, τE, must be considered. This time scale is inversely proportional to the

fuel temperature,6 discouraging the use of arbitrarily large heating input, not to mention the

looming concerns of operational cost and potential structural damage. In any case, continued

heating of the fuel is necessary until the energy of the fusion reactions is able to sustain the

conditions necessary for fusion, a state referred to as ignition, requiring a triple product of

the fuel temperature, density, and the energy confinement time

nTτE ≥ 3 · 1021 m−3 keV s. (1.2)

This relationship is known as the Lawson criterion for the deuterium-tritium fusion reaction.7

Other fuels require a quantitatively different criterion.

The constituent particles in such a state are unsurprisingly nearly all ionized, as the

thermal energies are far above the typical energies of the electromagnetic interaction. The

individual charged particles are sensitive to any electromagnetic fields, including those that

arise from the collective motions of the charges, via the Lorentz force

F = q (E + v ×B) .

The result is a complex system of N particles each coupled to the electromagnetic fields

obeying Maxwell’s equations

∇ ·E =
ρ

ε0
, (1.3)

∇ ·B = 0, (1.4)
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∇×E = −∂B
∂t

, (1.5)

∇×B = µ0

(
J + ε0

∂E

∂t

)
. (1.6)

Thus, the physics governing the particle and collective behaviors is that of plasma physics.

Often, the confining gravitational field of a stellar fusion plasma is replaced by complex

magnetic field configurations, an approach aptly known as magnetic confinement fusion.

1.2 Properties of a plasma

According to Krall and Trivelpiece, “Plasma physics is the study of charged particles col-

lected in sufficient number so that the long-range Coulomb force is a factor in determining

the statistical properties, yet low enough in density so that the force due to a near-neighbor

particle is much less than the long-range Coulomb force exerted by the many distant parti-

cles.”8 Within this statement is the definition of a plasma, which can be parameterized and

understood following the introduction of the Debye length.

Any charged point particle affects the space around it by way of its electric field,

E =
1

4πε0

Ze

r2
r̂, (1.7)

with an electrostatic potential of the form

Φ =
1

4πε0

Ze

r
. (1.8)

Here, Ze is the charge of the particle, r is the distance away from the charge, and ε0 is

the well-known permittivity of free space. If this point particle exists within a collection of

charged particles, those of similar charge will feel a repulsive force while oppositely charged

particles will experience an attraction, each charge also projecting its own electric field. The

drawn charges of opposite sign shield more distant charges from interactions with the point
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particle in much the same way that the electric field of a dipole decays far faster than a

monopole. The shielding is expressed by a characteristic length scale

Φ =
1

4πε0

Ze

r
e−r/λD , (1.9)

where λD is the Debye length,

λD =

√
ε0T

nee2
. (1.10)

Here, e is the elementary charge, ne is the electron density, and T is an assumed equilibrium

temperature. The internal plasma energy is insufficient to maintain charge separations over

distances longer than the Debye length, a property known as the quasi-neutrality condition.

On length scales longer than the Debye length,

ne =
∑
i

Zini, (1.11)

where ni is the density of each ion species and Zi is the charge state. In opposition to true

charge neutrality, quasineutrality does not imply the nonexistence of a finite charge density,

∇ ·E =
ρ

ε0
6= 0, (1.12)

where E is the electric field and ρ is the charge density. In the steady-state, the charge

density is taken to be time independent

∂

∂t
(∇ ·E) = 0, (1.13)

implying a dearth of current sources by connection with Ampere’s law, Eq. (1.6),

∇ · J = 0, (1.14)
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where J corresponds to the current density. Integrating Eq. (1.14) about some closed volume

and applying the divergence theorem makes clear the consequence of equilibrium quasineu-

trality

‹
(J · n̂) dS = 0; (1.15)

the net current flow across any closed surface must be zero. The currents that arise from the

particle motions must create self closing loops to prevent any net current flow. Therefore,

the net particle transport in a tokamak must be ambipolar. Any non-ambipolar transport

mechanism must be compensated by another non-ambipolar type transport.

For a collection of charged particles to depend more on long range particle interactions

than on collisions with its nearest neighbors, the number of particles within a Debye sphere,

∼ λ3
D, must be very large to supply the necessary shielding, leading to the definition of the

plasma parameter,

g =
1

nλ3
D

(1.16)

=
√
n

(
e2

ε0T

)3/2

.

The plasma parameter is clearly inversely proportional to the number of particles within

a Debye sphere, and g � 1 is called the plasma approximation. Perhaps contrary to in-

tuition, low densities for a given temperature are required to maintain a large number of

particles within a Debye sphere since the sphere’s volume shrinks with increasing density.8

The plasmas of interest for magnetically confined fusion typically satisfy the plasma approx-

imation and are treated using the techniques of plasma physics, some of which are discussed

in Chapter 2.
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1.3 The tokamak and the L-H transition

In pursuance of achieving sustained energy-positive terrestrial nuclear fusion, a variety of

devices have been developed which act to confine plasmas within magnetic field geometries.

The work of this thesis is directly applicable to one such type, the tokamak, a well explored

solution to the problem of magnetic confinement. Fusion plasmas exhibit such complex

behaviors that are deeply connected to their confining field geometries that vast fields of

academic study revolve around the particularities of each. The direct focus of this document

on the tokamak configuration is rooted in several practicalities. First and foremost, the ma-

jority of the presented work was performed at the Max Planck Institute for Plasma Physics

in Garching, Germany. The on-site experimental tokamak ASDEX Upgrade (AUG) has a

strong influence on the research interests of the institute and its collaborators. Furthermore,

this work seeks to investigate a proposed factor in the L-H transition, a fast time-scale phase

change seen in tokamaks in response to increased heating power from a low confinement

behavior to a regime of high confinement, first seen at AUG’s predecessor ASDEX.9 Finally,

foundational techniques for the developed model rely on the toroidal symmetry of the toka-

mak’s magnetic field, a hallmark of the device. For the remainder of the document, the

discussion will focus on the field geometry of a tokamak, in particular that of a poloidally

diverted tokamak.

The plasma in a tokamak is confined in the shape of a torus. The tokamak magnetic

field primarily consists of a large toroidal component maintained by external superconducting

coils. An additional poloidal magnetic field component is required to combat the planar drift

motions of the charged particles out of the device, discussed in more detail in the upcoming

chapter. A transformer is manipulated to change the magnetic flux through the tokamak

itself, inducing a toroidal electric field in line with Faraday’s law, Eq. (1.5). This electric

field drives a toroidal plasma current, generating the required poloidal magnetic field. The

changing magnetic flux sets an operational limit on the tokamak; the flux cannot increase in-

definitely, and the device must run in a pulsed fashion. An alternative magnetic confinement
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device that avoids this problem is the stellarator. Highly complex and precise field coils are

designed to naturally create a twisting magnetic field structure that confines the majority

of charged particles. The driven toroidal plasma current in the tokamak is often associated

with disruption events where confinement is lost, a notable problem avoided by the stel-

larator design.6,10 Although, the resulting magnetic field geometry of a stellarator is highly

dependent on the toroidal coordinate, unlike the nearly toroidally symmetric, axisymmetric,

field of a tokamak.

The tokamak plasma is kept separate from the material wall as both an act of confinement

and to prevent the accumulation of radiating impurities within the plasma, a problem for the

confinement of energy.6 One method of bolstering this separation is the so-called divertor

configuration. The magnetic field is altered to create a null point in the poloidal magnetic

field and thus a saddle point in the magnetic flux. This X-point creates a surface of constant

magnetic flux with the shape of a figure-eight. The confined plasma exists in one of these

loops within the vacuum vessel while the other loop intersects with the vessel in the divertor

region. The flux surfaces within the loop confining the plasma are closed while the surfaces

outside are open to the wall or divertor, effectively distancing the confined plasma from the

impurity releasing surfaces. The last closed flux surface (LCFS) is often referred to as the

separatrix, and to be ‘within the separatrix’ is to be in the closed field line region.

The axisymmetric nature of the tokamak often allows for simple visualizations of phe-

nomena projected onto a poloidal cross-section. Figure 1.1 shows the field geometry in the

poloidal plane for AUG discharge 16151 used as an example case in the SOLPS transport

code. SOLPS models the edge region of the confined plasma and the scrape of layer (SOL)

beyond the separatrix. Consequently, the plots omit the inner core region. Subplot (a)

shows the toroidal field structure, where the basic R−1 field strength dependence can be

easily seen. Subplot (b) shows the poloidal magnetic flux where the surfaces of constant flux

are visible. The separatrix is shown demarcating the closed flux surfaces from those open.

Also shown is the vessel structure, including the divertor structure found at the bottom of
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(a) (b)

Figure 1.1: The field geometry for the baseline AUG discharge 16151. The poloidal field can
be seen in Fig. 4.8.

the device. Rotation of the images about R = 0 over 2π in the toroidal angle reproduces the

full tokamak geometry.

To leading order, the single particle motions of the charged particles follow helical orbits

about the magnetic field lines, constraining the particles to a flux surface. If this were the

complete picture, any particle within the separatrix would be confined for all time and the

Lawson criterion would be trivially satisfied. The second order particle motions include

the perpendicular drifts resulting from particle motion in the inhomogeneous magnetic field

of a tokamak. Neoclassical theory considers the multitude of effects of the toroidal field

geometry on the confined plasma, culminating in the neoclassical transport:11 the outward

diffusive radial motions of particles associated with interparticle Coulomb collisions in the

tokamak field geometry. The diffusion coefficients calculated from such theories often fail

to predict the high levels of radial particle and energy transport experimentally measured.

The observed transport of energy and particles above the neoclassically predicted levels was

originally labeled ‘anomalous’ in relation to its unpredicted nature. It is generally accepted

that the anomalous transport describes the outward fluxes of particles and energy due to
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the evolution of small scale fluctuations in the plasma linked to turbulence.12,13

A suppression in the anomalous transport is seen in response to some threshold input

heating power by way of a phase transition of sorts into a regime of high confinement on

a fast timescale.9,14–21 This improved mode of operation is called the H-mode and the low

confinement phase the L-mode. Although possible on limiter tokamak configurations, the

power threshold is significantly lower for poloidally diverted tokamaks.36,37 In the diverted

configuration, the power threshold is minimized when the ion ∇B drift direction is toward

the active X-point15,16 and for some machine dependent edge density,22,23 birthing low and

high density branches for the power threshold. Additional known dependencies include the

mass and charge of the main ion species24–28 and the X-point and divertor conditions.20,29

Remarkably, the H-mode has improved energy confinement by about a factor of two,15

and it is assumed that tokamak reactors of the future will operate in such a regime.30 The

anomalous transport reduction manifests as the formation of a transport barrier in the edge

of the confined plasma, defined by the so-called pedestal region marked by steep gradients in

the radial temperature and density profiles. Concurrently present in the pedestal region is

a significantly deepened radial electric field well, which has long been suspected of playing a

role in the turbulence suppresion.15,64 Modern understanding of the turbulence suppression

indicates that rather than the well depth it is the large gradients of the electric field and the

related strongly sheared E × B flows that are instrumental,31 although in many cases the

two are inextricably linked.

The exact physics of the transition is still unknown. There is interest in exploring any

mechanism related to the increase of the Er magnitude and thus the stabilizing shear E×B

flows in the edge. Bodies of evidence exist which suggest that the necesarry flows to enter

the H-mode are driven by turbulence while others indicate that neoclassical orbit loss is

responsible.32 It appears likely that an interplay between the two sources holds the truth.
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1.4 This thesis

The focus of this document is to investigate the neoclassical orbit losses thought to contribute

to the shear E×B flows in the tokamak edge,32,33 possibly playing a role in the L-H transition.

The effect is neoclassical in the sense that it is a direct result of the toroidal field structure.

The second order particle drift motions disproportionately move the heavier ions further

from the flux surfaces of their lowest order motion, allowing for the generation of a plasma

current from the confined orbits. The magnitudes of these orbital widths are proportional

to the ions’ energies. Thus, for sufficiently energetic particles, the orbits are able to intersect

the first wall, essentially being removed from the system. Since the charge loss associated

with these ions is inherently non-ambipolar, it must be closed by a current driven by another

plasma phenomenon.

The X-point geometry of a diverted tokamak allows for topologically open orbits con-

nected to the divertor for particles of arbitrarily low energy, see Chapter 3. The radial

domain of the low energy losses is related to the orbital widths, again favoring the loss of

ions, allowing for a non-ambipolar transport of ions out of the confined region on trajectories

to the divertor. The loss of thermal ions is dominated by these trajectories.33,34 The net

transport and sourcing of ions onto such orbits within the confined region of the plasma cor-

responds to an excess outward flux of ions across the separatrix.35 The ions carry an electric

current that cannot close itself as the particles are lost to the divertor, again necessitating

closure from another plasma phenomenon.

Several properties of the orbit losses make them noteworthy in regard to the L-H transi-

tion. For any configuration, the trigger to enter the H-mode is the application of a threshold

heating power, with evidence indicating that the ion channel plays a more fundamental role.23

The direct scaling of the average orbital width with the ion temperature suggests that the

orbit losses are more prevalent for increasing input powers. The fact that the L-H transition

power threshold is significantly higher for limiter configuration plasmas further supports the

importance of the thermal orbit losses in the diverted configuration.36,37 Furthermore, the
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loss orbits are expected to produce greater losses in the favorable ∇B drift configuration due

to the on-average shorter loss periods for ions originating in the confined region,38,39 aligning

with the experimentally observed reduction in the power threshold in this orientation. The

orbit losses are additionally expected to scale directly with the ion mass and inversely with

the charge, qualitatively agreeing with experimental observation.40 The majority of thermal

orbit losses pass nearby the X-point on their way to the divertor, suggesting that the physics

of ions on these trajectories can help explain the additional sensitivities of the L-H transition

on the X-point and divertor geometries.

The portion of phase-space describing orbits lost to the wall or divertor can be identified

and is referred to as the loss cone. Often projected to a specific point in configuration-

space, the resulting velocity-space loss cone contains all collisionless ion trajectories passing

through an observation point that are removed from the plasma on a first orbit. If initially

full, a loss cone containing collisionless orbits empties itself on the orbit timescale and further

losses occur only if the cone is refilled by some mechanism. The ion orbit loss phenomenon

is explicitly dependent on the distribution of particles within phase-space and is therefore

a kinetic effect. Plasma descriptions that are insensitive to such details are incapable of

resolving the orbit losses, and the effect is most naturally included in a fully kinetic model,

where it has been reported to be of crucial importance.32

Nevertheless, there have been many efforts to understand ion orbit loss within a reduced

context both analytically41–44,64 and numerically.33,34,45–47 The static loss cone structure

is well diagnosed and has been reproduced in a variety of contexts: in circular and other

analytic flux geometries,41,43 in experimental flux geometries,42,44 under the influence of

a radial electric field,42,44,45,47 for different plasma triangularities,47,48 etc. Solutions to

the static problem suggest under which conditions the orbit losses are most significant;

however, steady-state solutions are necessary to probe the interaction between the plasma

and the loss mechanism. Existing steady-state solutions, those concerning the refueling of

the loss cone, typically assume purely collisionless loss orbits,49,50 omitting a fundamental
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sensitivity of the problem, or rely on a simplified collisional cutoff.64 Such solutions also

either use liberal definitions of orbit loss49,64 or do not resolve the phenomenon over the entire

confined region,50,64 leaving additional room for improvement. Furthermore, the mechanisms

responsible for refilling the loss cone serve as the driving force for the losses and have only

tentatively been explored. An eventual complete characterization of each process will be

necessary to perfectly resolve the steady-state ion orbit loss, a feat beyond the scope of this

thesis.

The body of this thesis provides solutions to some of these open problems. The document

is presented in a procedural fashion, with the content of each chapter paving the way for the

next. The primary goals of the work are to develop a steady-state ion orbit loss model that

accounts for sensitivities missing in the literature, largely through a detailed comparison of

the collisional and loss timescales, and to implement the loss current into an established fluid

model, SOLPS, to study the first order influence of the loss mechanism on confined L-mode

plasmas nearing the L-H transition.

• Chapter 2 includes the necessary theoretical background to understand and contex-

tualize the remainder of the work. The basic theories of tokamak plasmas and their

modeling are discussed, as well as an introduction to the fluid transport code suite

SOLPS.

• Chapter 3 reviews the orbit loss theory and presents a method for the relatively fast

determination of the static loss cone structure in an experimental diverted geometry

while maintaining key sensitivities to the radial electric field. Computational levity al-

lows for the eventual inclusion of the orbit loss model into existing fluid codes without

hindering their computational advantage over kinetic simulations. This chapter devi-

ates from what is typically seen in the literature by placing focus on the projections of

the phase-space loss cone to various positions in configuration-space.

• Chapter 4 considers the effects of pitch angle scattering on ions following orbits within
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the loss cone, determining the rates of scattering onto confined orbits. Methods for

estimating the loss orbit periods are presented, and the rates of scattering out of the loss

cone are compared to the loss orbit periods. The loss cone projections are demarcated

about a qualitative change in the nature of the orbit loss, resulting in collisionless and

collisional portions of the loss cone.

• Chapter 5 works toward a steady-state solution for the orbit loss, handling the colli-

sionless and collisional portions of the loss cone separately. The pitch angle scattering

into and out of the loss cone structure is self-consistently compared, finding estimates

for the orbit loss current. The dependencies of the loss current on the ion temperature,

electron density, ∇B drift direction, ion mass, and X-point position are explored and

qualitatively compared to the behaviors of the empirically known L-H transition power

threshold.

• Chapter 6 illustrates the implementation of the orbit loss model into the fluid trans-

port code SOLPS. The edge radial electric field is discussed both before and after the

inclusion of the orbit loss current. The plasma response to the orbit losses is further

considered over scans in the input power and core density.

• Chapter 7 gathers the conclusions and highlights the next steps for future work.
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Chapter 2

Theoretical background

The field of tokamak research applies the basic theory of plasma physics to the engineering

challenges of designing and operating a reactor type device, becoming both academic and

pragmatic in nature.6 The techniques of basic plasma physics8,51 are generally applicable to

the interacting charged particles in a strong magnetic field, and the phenomena often share

similarities to those found in the natural astrophysical plasmas. Unlike the study of basic

plasma physics or astrophysical plasmas, engineering practicalities constrain the considered

plasma boundary conditions and parameters,52,53 narrowing the focus of the applied theory.

This chapter discusses the theoretical techniques used to understand, predict, and con-

trol the behaviors of plasmas confined by the magnetic field of a tokamak. Each of these

methods are deep and have been studied in great detail for decades, and the following cur-

sory presentation cannot do the field justice. The focus here is to highlight the motivating

ideas for investigating the orbit loss and the necessary tools for its consideration. A major

component of contemporary plasma physics research focuses on the evolution of small scale

turbulent fluctuations. Throughout this work, the thermal orbit losses in the diverted field

geometry are considered while allowing for Coulomb collisions both into and out of the loss

orbits. The exact interaction between the loss mechanism and the turbulent flows is an open

question that will motivate future investigations,32,34,35,49,54,55 although there is evidence
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that suggests that the turbulence can enhance the losses.34,49,55

2.1 Equilibrium: field structure and single particle or-

bits

The equilibrium magnetic field structure of the tokamak is determined by external coils and

a toroidal plasma current driven by induction. Although the equilibrium field is often taken

to be constant in time, the loop voltage maintained by the induced field implies an evolution

of the equilibrium field structure, ocurring on the long resistive skin time,74,75 and can thus

be considered constant for faster time scale processes. Finer control of the field and thus the

plasma shape is made possible by secondary external coils. The field structure is designed

to confine the ions and electrons against their internal self pressure, playing the role of the

gravitational force present in stellar fusion plasmas. Recalling the Lorentz force,

F = Ze (E + v ×B) , (2.1)

one can see that motions of charged particles in a paired null electric field and homogeneous

magnetic field are circular about the lines of magnetic field and unabated in the direction

parallel to the magnetic field. In other words, the motion is helical about the field lines.

For the creation of a magnetically confined nuclear fusion device, the choice of a constant

magnetic field proves problematic as the motion parallel to the magnetic field will eventually

lead all particles to the boundary of any finite device.

A natural solution to this problem is to bend the magnetic field into itself, resulting in the

famous ‘donut’ shape of the tokamak. The external field coils generate a toroidal magnetic

field that the orbits gyrate around to lowest order. Recall the magnetic field of a toroid with
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N windings carrying current I easily obtained from Ampere’s law,

B =
µ0NI

2πR
φ̂, (2.2)

where µ0 is the well-known permeability of free space. A natural consequence of the toroidal

shaping is observed: the magnetic field is stronger at smaller major radii, B ∼ R−1. The

inhomogeneity of the magnetic field gives rise to the perpendicular, with respect to the mag-

netic field direction, drifts associated with single particle motions in nonuniform magnetic

fields: the so-called ∇B and curvature drifts,

v∇B =
mv2
⊥

2ZeB

B ×∇B
B2

, (2.3)

vC =
mv2
‖

Ze

B × (b∇)b

B2
. (2.4)

Here, m is the particle mass, b is the unit vector for the local magnetic field, and the parallel

and perpendicular directions are taken with respect to b. For the inhomogeneous toroidal

field of a tokamak, the drifts described by Eqs. (2.3) and (2.4) are nearly vertically directed

and oppositely signed for ions and electrons, leading to a charge separation and a vertical

restoring electric field, leading to yet another drift motion, the E ×B drift,

vE×B =
E ×B
B2

. (2.5)

In the presence of a purely toroidal field, we again encounter the problem that all of the

particles would eventually reach the edge of the device due to this drift.

There are two famous solutions to this problem, manifesting as two different nuclear

fusion devices: the tokamak and the stellarator. The former makes use of a driven toroidal

electric current, the primary generator of a poloidally directed magnetic field component.

The induction solution forces the tokamak to only operate under pulsed scenarios, limited
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by the ability to apply an increasing magnetic flux. The poloidal component complicates

the orbital motions, closing a majority of the trajectories even in the presence of the drifts.

Alternatively, the stellarator implements coils of increased complexity that automatically

generate a twisting magnetic field structure, both necessarily breaking the axisymmetry

while providing the desired confinement properties and avoiding disruption type events. As

discussed in Chapter 1, the work of this thesis is focused on the magnetic field geometry found

in a tokamak. Furthermore, the methods employed make use of the tokamak’s approximate

axisymmetry, distancing direct applicability to stellarators. Axisymmetry is not guaranteed

for a tokamak but will be assumed throughout the work.

The magnetic field lines of a tokamak lie within an infinite series of nested toroidal

surfaces called flux surfaces.56 The surfaces can be labeled by counting either the toroidal or

poloidal flux of the magnetic field incident on some surface. When considering orbit losses,

it is natural to work with the poloidal flux,

ψpol =

¨

S

B · dS, (2.6)

since it directly appears in the canonical toroidal momentum, a conserved quantity for col-

lisionless orbits in an axisymmetric field geometry. Here, S is a plane extending from the

magnetic axis to the defined flux surface. The concentric magnetic flux surfaces are often

used as a radial coordinate since many plasma parameters are leading order constant over a

flux surface.6 For example, the density, temperatures (therefore pressure), and the electric

potential, are approximately flux functions, making this a convenient choice. This is alluded

to in the lowest order pressure balance for the plasma, the magnetohydrodynamic (MHD)

force balance,

j ×B = ∇p, (2.7)

where the magnetic force balances the plasma pressure, implying that the pressure gradient
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is perpendicular to the field’s direction. The MHD force balance is considered the basic

condition for equilibrium. Using properties of the poloidal flux, Eq. (2.7) can be transformed

into the Grad-Shafranov equation,56,57

R2∇ ·
(

1

R2
∇ψpol

)
= −I dI

dψpol

−R2µ0
dp

dψpol

, (2.8)

where I = RBφ. Eq. (2.8) can be solved to find the equilibrium magnetic field geometry.

An alternative label for the radial coordinate that is employed throughout the text is a

dimensionless radial coordinate,

ρpol =

√
ψpol − ψaxis

ψsep − ψaxis

, (2.9)

where ψsep and ψaxis are the poloidal flux values measured respectively at the separatrix and

the magnetic axis.

Figure 2.1: The equilibrium for ASDEX Upgrade discharge 31533 with three orbits overlayed:
a trapped (banana) orbit in blue and purple, a passing orbit in orange, and a lost orbit in
yellow. The separatrix is in black.

Figure 2.1 illustrates the equilibrium flux surfaces for ASDEX Upgrade shot 31533.
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Two dimensional cross-sections of tokamaks are often appropriate, considering the ignor-

able toroidal coordinate with regard to the field structure. The shaded contours correspond

to the nested surfaces of constant poloidal magnetic flux, with the thick black contour rep-

resenting the boundary between the open and closed field line regions, the separatrix. The

X-point found at the bottom of the closed field line region is a null point in the poloidal

field and a saddle point in the poloidal flux. Recall the spatial inhomogeneity of the toroidal

magnetic field: the left half of the plot is often referred to as the high field side (HFS) while

the right half the low field side (LFS).

Also illustrated in Figure 2.1 are three sample orbital paths in the tokamak. Each orbit

follows the helical combination of the toroidal and poloidal magnetic field components. Of

the parallel motions, only the component about the poloidal field is apparent in the figure

as the toroidal motions are lost in the projection. The second order drift motions are nearly

entirely perceptible since they are perpendicular to the magnetic field vector, although the

slow toroidal drift is similarly unseen. The orbit in blue and purple is trapped on the LFS

of the plasma, experiencing magnetic mirror like bounce motions at positions of sufficiently

great magnetic field. At each bounce location, the parallel velocity changes sign, signified

by the different colors, and the leading order motion about the field line continues in the

opposite direction. Such orbits are referred to as ‘trapped’, due to their behavior, or ‘banana’

orbits, due to their shape. In orange, the ion orbit has a sufficiently large parallel velocity

that its magnitude is only reduced on the HFS of the tokamak and the orbit circulates

around the device in a helical fashion. These orbits are called ‘passing’ or ‘transit’ orbits.

The orbit in yellow starts within the separatrix at the LFS but is lost from the plasma near

the X-point. It is this class of ion orbits that will be of interest throughout this work. Either

a trapped or a passing orbit can be a lost orbit. Trapped orbits are able to be lost with lower

energies, a direct result from their larger radial widths; however, trapped orbits can only be

lost via the X-point if they are not too deeply trapped, if their bounce locations allow for

interaction with the null point.
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A description of a plasma is incomplete when only considering the motions of single par-

ticles. Plasmas are often defined by the collective behavior of the large number of charged

particles with motions coupled by the electromagnetic fields. More comprehensive descrip-

tions are required.

2.2 Kinetic and fluid modeling

Generically, the field of plasma physics involves the study of a large number of charged parti-

cles interacting with electromagnetic fields that are themselves sensitive to the motions of the

charged particles. Winnowing the field down to the specifications of a tokamak sets a per-

missible range of magnetic field strengths and geometries and characteristics of the plasma,

for example, the temperature and density. The focus shifts from purely understanding the

plasma to also controlling it. Nonetheless, the same basic theory applies.

Consider the time development of a collection of charged particles that are justifiably

conserved,8

dNα

dt
=
∂Nα

∂t
+ v · ∇Nα +

Ze

m
(E + v ×B) · ∇vNα = 0, (2.10)

where Nα(x,v, t) specifies the location, x, and velocity, v, of a particle α at a given time t.

The particles described by Nα(x,v, t) are appropriately coupled by the electric and magnetic

fields via the Maxwell equations:

∇ ·E =
1

ε0

∑
α

Zαe

ˆ
Nα(x,v, t)dv, (2.11)

∇ ·B = 0, (2.12)

∇×E = −∂B
∂t

, (2.13)

∇×B = µ0

∑
α

Zαe

ˆ
vNα(x,v, t)dv + ε0µ0

∂E

∂t
. (2.14)
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Here, the charge densities and currents are supplied by the particles. The above description

completely models the plasma up to including quantum mechanical or relativistic effects and

is considered fully kinetic. The number of interacting particles within any system of interest

is typically so great that anything beyond a statistical description is untenable. A reduction

in the problem’s complexity becomes necessary.

A statistical particle distribution function is introduced, a smooth six dimensional field

spanning both physical- and velocity-space that describes the probability for a subset of the

particles to exist in some physical location with some particular velocities,

f(x,v)dxdv = N in volume dxdv centered about x,v. (2.15)

Every particle must be described by some velocity, so integration over velocity-space returns

the particle density,

n(x) =

ˆ
f(x,v)dv, (2.16)

and each particle must have a position, so integration about both configuration- and velocity-

space returns the total number of particles in the system,

N =

ˆ
n(x)dx =

¨
f(x,v)dxdv. (2.17)

Such a statistical particle distribution function is naturally obtained by averaging Eq. (2.10)

over the microstates that correspond to an equivalent macrostate,

∂fa
∂t

+ v · ∇fa +
Zae

m
(E + v ×B) · ∇vfa = Ca. (2.18)

Note that the electromagnetic fields have also been averaged and represent the smooth

macroscopic fields associated with the averaged plasma. The collision operator, the single
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term on the right hand side of Eq. (2.18), is often complicated and contains all of the

particle interactions that are lost by only considering the smooth macroscopic fields, the

particle interactions within a Debye sphere. Recall from the introduction that the plasma

does not tolerate charge separation on scales longer than the Debye length, Eq. (1.10), due

to the natural shielding of positive charges by those negative and vice versa. In other words,

on length scales longer than the Debye length, the plasma motions are described by the

particle interactions with the large scale electromagnetic fields sustained by the collective

plasma behavior or externally applied, and the interactions between individual particles are

treated by the collision operator. In the above, the subscript ‘a’ signifies that the distribution

function applies for only species ‘a’; through this procedure, there is a distribution function

for each species in the plasma. Eq (2.18) is the kinetic equation for a plasma species ‘a’, and

solutions to and systematic reductions of this equation represent large fields of research.

Lower dimensionality models are often attractive for plasma analysis. A reduction in the

description will always result in a loss of model fidelity, and one must be careful to ascertain

what it is that is being lost. A common procedure is to take moments of the kinetic equation.

Each moment is constructed by integrating the distribution function scaled by increasing

integer powers of the velocity, starting from zero, over velocity-space. For example, the first

three velocity-space moments can be taken as

n =

ˆ
fdv, (2.19)

Γ = nV =

ˆ
vfdv, (2.20)

P = m

ˆ
(v − V ) (v − V ) fdv. (2.21)

Here V are the average fluid flows, Γ are the particle fluxes, and P is the pressure tensor.

Note that the pressure tensor is often written as the sum of the scalar pressure, the diagonal
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elements, and the viscous stress tensor,

P = pI + π. (2.22)

Integrating Eq. (2.18) in the same way provides equations for each quantity, defining their

evolution,

∂n

∂t
+∇ · (nV ) = 0, (2.23)

∂

∂t
(mnV ) +∇ · (mnV V ) = Zen(E + V ×B)−∇p−∇ · π +R, (2.24)

3

2

∂p

∂t
+∇ · (3

2
pV + q) + p∇ · V + π : ∇V = Q. (2.25)

Here, R is the force density given by the Coulomb collision operator, q is the heat flux, and

Q is the heat exchange due to the Coulomb collisions. Such equations are referred to as

fluid equations as opposed to those kinetic, because they model the macroscopic phenomena

of a composite system of interacting elements and resemble the standard equations of fluid

dynamics;51 however, the fluids of plasma physics are coupled by the Maxwell equations.

The advective term in Eq. (2.18), v · ∇f , requires that the equation governing the nth

velocity-space moment depends on information concerning the next higher order moment.58

The six dimensional kinetic problem is reduced to one in three dimensions described by an

infinite number of coupled equations. To progress, an assumption is usually made concerning

the relationship between two moments, an equation of state. The choice of such a closure

relationship largely determines the modeling and must be carefully considered.

By construction, the fluid equations are insensitive to differences in the velocity-space

distribution function that lead to the same macroscopic fluid moments. Consequently, fluid

models are unable to resolve phenomena that result from such dynamics. When these effects

are of interest but a fully kinetic description is too unwieldy, one can often used reduced

descriptions that maintain non-trivial velocity-space coordinates.

The single particle motion of a charged particle in the presence of a magnetic field natu-
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rally separates the cross field motions from those parallel. In the case of a large magnitude

magnetic field, like the toroidal field of a tokamak, the gyroradius, the radius of orbit gy-

ration, defines a small length scale, and the gyrofrequency, the rate of gyration, defines a

fast time scale. When these scales are smaller than the turbulent plasma dynamics, drift ki-

netic theory11 prescribes a method to average over the gyration, reducing the velocity-space

dynamics to two dimensions, greatly reducing the computational cost compared to fully ki-

netic models. To date, the most successful reduced model which incorporates velocity-space

sensitivities while remaining computationally feasible is the gyrokinetic model,59–62 which

allows for more significant variation in the electromagnetic fields across the gyrating orbit.

Although significant, the reduction in computational expense achieved by the gyrokinetic

model is dwarfed by the fluid models and their complete elimination of the velocity-space

dimensions.

The work presented in this thesis involves the study of a kinetic phenomenon, the first

orbit loss of ions inhabiting a region of phase-space, and its implementation within a fluid

framework. There are several advantages to studying a kinetic effect in this way. The first

and perhaps the most obvious is an issue of practicality, in that the fluid simulations are

comparatively inexpensive. The second and perhaps more interesting advantage comes from

the fact that the orbit loss is independently modeled and is not simply the consequence of a

larger whole; it is possible to study various components of the model by artificially switching

on and off various effects.

2.3 Equilibrium: force balance and the radial electric

field

The characterization of the radial electric field, Er, in the edge of a tokamak plasma appears

necessary to fully diagnose the physics of the L-H transition and the associated sheared E×B

flows thought responsible for the suppression of the edge turbulent transport.21,46,63–68 Here,
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the determination of the radial electric field within the plasma fluid theory framework is

clarified by following two approaches: first a heuristic approach employed by Stroth et al69

and then a more general two-fluid calculation similar to that of Callen et al .75

2.3.1 Heuristic approach

Consider a two-fluid description of a cylindrical plasma composed of electrons and singly

charged ions and the friction exerted by the neutrals on each fluid in a direction perpendicular

to the local magnetic field,

Fjn = −nνjnVj⊥. (2.26)

Fjn is the associated force density, νj,n are the j-neutral collision frequencies, and Vj⊥ here

are the flows perpendicular to the local magnetic field, with the subscript j serving as a

species label.

To leading order, the fluid force balance, Eq. (2.24), reduces to

0 = nZje (E + Vj ×B)−∇pj, (2.27)

where the inertial, viscous, and frictional terms have been ordered out. Eq (2.27) shows that

the leading order perpendicular velocity, Vj⊥, can be expressed by the diamagnetic and E×B

drifts,

Vj⊥ = V dia
j + V E×B

j (2.28)

= −∇pj ×B
ZjenB2

− E ×B
B2

.
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If the pressure and electrostatic potential are assumed to be flux functions, then

Vj⊥ = −
p′j

ZjenB
− Er
B
. (2.29)

Here, p′j = 1
hy

∂pj
∂y

, where y is the radial coordinate, see Section 2.3.2.1. The frictional force

leads to a radial particle drift, described in the usual way,

Vjy =
Fj,n

ZjenB
. (2.30)

To ensure ambipolarity, the ion and electron flows must be equal, and hence the frictional

forces must sum to zero, providing an expression for the electric field that ensures ambipo-

larity,

Er
B

= −
1−

√
me
mi

p′e
p′i

1 +
√

me
mi

p′i
ZienB

=
1−

√
me
mi

p′e
p′i

1 +
√

me
mi

V dia
i . (2.31)

Here, the collision frequencies are assumed to differ only due to the particle mass differences,

essentially an assumption that the ions and electrons are in thermal equilibrium.

The approach can be similarly extended for toroidal systems, including viscous damping

effects of the form F = −n√mjµjVjx and eventually external forces, such as from neutral

beam injectors. For brevity, the result is only quoted:69

Er
B

=

(
1−∆µ

p′e
p′i

)
V dia
i + (1 + ∆µ)εqV‖

1 + ∆µ

± |F
NBI
⊥ |

nm
1/2
i µi

1

(1 + ∆µ) cos2 α
. (2.32)

Here, ∆µ =
√
me/miµe/µi, where the µj are the poloidal viscosity coefficients, ε is the

inverse aspect ratio, q is the safety factor, V‖ is the flow parallel to the local magnetic field,

FNBI
⊥ is the force density perpendicular to the local magnetic field imparted from the NBI,

and α is the angle between the toroidal direction and the magnetic field.

It is worth noting that Eq. (2.32) can be further generalized to include other ‘force’
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terms that are associated with radial particle flows: ion orbit loss, the Stringer spin-up, or

the Reynolds stress.69 The inclusion of these additional terms does not alter the meaning of

the leading order radial force balance; Eq. (2.32) and generalizations thereof are the leading

order force balance with the additional ambipolarity considerations injected. The system is

further specified by accounting for the various radial flows.

2.3.2 Fluid moment approach: Momentum balance

Here, a more general approach similar to that of Callen et al75 is considered, beginning with

the Boltzmann equation, including both sources and Coulomb collisions,

∂fj
∂t

+ v · ∇fj + a · ∇vfj = C(fj) + S(fj). (2.33)

The distribution function for each species is fj, C(fj) is the Coulomb collision operator, and

S(fj) are the kinetic source terms. Two species are assumed: the electrons and a singly

charged ion species. Therefore, ne = ni = n, Zi = 1, and Ze = −1.

The first three velocity-space moments are taken, resulting in

∂n

∂t
+∇ · (nVj) = Sjn, (2.34)

∂

∂t
(mjnVj) +∇ · (mjnVjVj) = Zjen(E + Vj ×B)−∇pj −∇ · πj +Rj + Sjm, (2.35)

3

2

∂pj
∂t

+∇ · (3

2
pjVj + qj) + pj∇ · Vj + πj : ∇Vj = Qj + SjE, (2.36)

differing from Eqs. (2.23), (2.24), and (2.25) by the Sn, Sm, and SE, respectively the kinetic

density, momentum, and energy sources.

2.3.2.1 Coordinate conventions

For the sake of consistent readability throughout this thesis, we introduce early the coordi-

nate system conventions used in the B2.5 plasma solver component of SOLPS.70,71
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The magnetic field is expressed by its equilibrium components,

B = Bxx̂+Bzẑ, (2.37)

where (x, y, z) are a curvilinear orthogonal coordinate system: x is the poloidal coordinate

and varies along flux surfaces, y is the radial coordinate and varies perpendicular to flux

surfaces, and z is the standard toroidal direction, often identified with φ. The x-coordinate

is measured in the clock-wise direction when viewing the poloidal plane from above, the

y-coordinate is positive when pointing radially outward, and the z-coordinate is directed out

of the poloidal plane.

Being curvilinear, scale factors, elements of the metric tensor, are necessary to understand

the transformational properties of the coordinate vectors,72

ei = h(i)ê(i) = gije
j, (2.38)

with

h(i) =
1

|ei|
, (2.39)

and

gij = h(i)h(j)δij. (2.40)

The final expression relies on the orthogonal nature of the coordinate system. The toroidal

symmetry allows for the replacement of the toroidal scale factor by hz = 2πR.

The B2.5 convention is to express components of vectors in terms of their projections on
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the unit base vectors,71 the êi,

A(i) = A · ê(i) = h(i)A
i =

1

h(i)

Ai. (2.41)

For example, the components of the unit magnetic field vector would simply be written as

b̂ =
Bx

B
x̂+

Bz

B
ẑ (2.42)

= bxx̂+ bz ẑ.

Note, we have dropped the parentheses in the subscripts. For the rest of the thesis, it will

be understood that vector components are expressed in terms of their projections along the

physical unit vectors as described above.

The electric field takes the form

E = −∇Φ +EA. (2.43)

Here, Φ is the electric potential, and EA is the inductive part of the electric field,

EA = −∂A
∂t

, (2.44)

withA being the magnetic vector potential. The inductive electric field implies the evolution

of the equilibrium magnetic field that maintains the constant loop voltage. The evolution

of the equilibrium occurs on the long resistive skin time74,75 and the field structure is often

treated as fixed, as is the case in the SOLPS fluid transport code, and the following form is

assumed beyond this chapter:

E = −∇Φ. (2.45)

With the above in mind, it is fruitful to consider projections of a slightly modified mo-
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mentum equation for ions,

min
∂Vi
∂t

= Zien(E + Vi ×B)−∇pi −∇ · πi +Ri + Sim −miSinVi

−min (Vi · ∇)Vi,

(2.46)

along coordinate directions relevant to the magnetic field configuration.73,75 Eq. (2.46) is

obtained by expanding the inertial term and eliminating the time derivative in the density

using the continuity equation.

2.3.2.2 Radial momentum balance

First consider the radial (ey = hyêy) projection of Eq. (2.46),

mihy
∂(nVi,y)

∂t
= −Zien

∂Φ

∂y
− ZienhyVi,xBz + ZienhyVi,zBx −

∂pi
∂y
− ey · ∇ · πi

+hyRi,y + hyS
m
i,y −mihyS

n
i Vi,y −miney · ((Vi · ∇)Vi) ,

(2.47)

where the tensorial terms are left in their general form. The first four terms on the RHS

describe the leading order balance between the perpendicular flows while the remaining terms

are generally considered lower order in comparison,75 resulting in

0 = − 1

hy

∂Φ

∂y
− Vi,xBz + Vi,zBx −

1

Zien

1

hy

∂pi
∂y

. (2.48)

Equation (2.48) is applicable to any individual plasma species and is a powerful tool for

experimentally measuring the radial electric field, as the rotations of impurity species are

easier to measure than those of the main ions.69,76

Summing Eq. (2.48) with the similarly obtained electron equation provides the lowest

order MHD force balance,

0 =
1

hy

∂P

∂y
+ JxBz − JzBx. (2.49)
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Here, P is the combined electron and ion pressures, while J = nZieVi − neVe is the current

density. The quantities found in Eq. (2.48) are not specified in this relationship, but the

equality must hold true for the lowest order equilibration achieved on the fast MHD com-

pressional Alfvén wave timescale.75 Similarly, Eq. (2.49) stipulates that the total plasma

pressure, current, and magnetic field evolve together over longer timescales.

2.3.2.3 Parallel momentum balance

Next the parallel, B, projection of equation (2.46) is investigated,

minB
∂Vi,‖
∂t

= ZienB ·EA −
Bz

hx

∂pi
∂x
−B · ∇ · πi +B ·Ri +B · Sim −mSn(B · Vi)

−minB(·(Vi · ∇)Vi).

(2.50)

The dominant terms found in the radial force balance are absent in the parallel balance,

and it would no longer be prudent to order out the viscous forces. To continue, a closure

scheme is typically chosen. Flux surface averaging the parallel momentum balance for the

ions and summing the result with the similarly obtained electron equation under equilibrium

conditions yields the plasma parallel force balance,

0 = −〈B · ∇ · πi〉+ 〈B · Sim〉+ 〈B · Sem〉 −mi〈B · ViSin〉 −mi〈nB · Vi · ∇Vi〉. (2.51)

The electron momentum terms typically are much smaller than the ion terms and were

dropped from Eq. (2.51).

In the illustrative case that the sources and sinks for the parallel momentum and the

equilibrium inertial terms are negligible, one recovers the neoclassical condition,

0 = 〈B · ∇ · πi〉. (2.52)
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A general expression for Eq. (2.52) has been calculated in the neoclassical theory,97

〈B · ∇ · πi〉 = −νmpnmi

(
1

hy

B

Bx

(
∂Φ

∂y
+

Ti
Zien

∂n

∂y
+

k

Zie

∂Ti
∂y

)
− 〈BV‖〉

)
. (2.53)

The prefactor k is the poloidal flow coefficient and is primarily dependent on the collisionality

regime and νmp is the magnetic pumping frequency. Together, Eqs. (2.52) and (2.53) give

the well-known expression for the neoclassical radial electric field,

E(NEO)
r =

Ti
Zie

(
1

hy

1

n

∂n

∂y
+ k

1

hy

1

Ti

∂Ti
∂y

)
− Bx

B
〈BV‖〉. (2.54)

Again, Eq. (2.54) simply constitutes a necessary relationship between the elements of the

radial force balance for the system to be in equilibrium when Eq. (2.52) holds true, but in

any case, Eq. (2.48) still necessarily holds. The picture is completed by considering the radial

particle fluxes; setting the flux surface average of the radial current due to non-ambipolar

particle fluxes to zero determines the evolution of the toroidal flow, and thus of the radial

electric field.

2.3.2.4 Toroidal ion momentum balance

Finally, consider the toroidal (ez = hzêz = Rêz) projection of Eq. (2.46),

minR
∂Vi,z
∂t

= ZienREzA − ZienRBxVi,y − ez · ∇ · πi +RRiz +RSmiz −miRVi,zS
n
i

−min(ez · Vi · ∇Vi).
(2.55)

Note that the second term on the RHS can be rewritten as

−ZienRBxVi,y = ZienVi · ∇ψpol (2.56)

= ZieΓi · ∇ψpol,
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the radial particle flux scaled by the ion charge.73 The ambipolarity condition requires

that there be no net radial charge flows. Summing Eq. (2.55) over the species and taking

the flux surface average provides a relationship between the torque associated with the net

radial particle flux and the toroidal projections of the remaining terms in the momentum

balance. Setting that sum to zero provides a condition that determines the radial electric

field necessary for quasineutrality,

〈Γi · ∇ψpol〉 − 〈Γe · ∇ψpol〉 = 0, (2.57)

thus allowing the determination of the toroidal rotation using the lower order force balances.

Note that the inductive radial electric field does not enter the total toroidal force balance

and does not play a direct role in determining the radial electric field.77,78 The above is

tantamount to enforcing the standard requirement for net ambipolar flows,

∇ · J = 0. (2.58)

The identification of the currents flowing in the plasma and the satisfaction of Eq. (2.58)

determines the equilibrium radial electric field and toroidal rotation of the plasma.

The orbit loss model developed in this thesis considers the calculation of a single radial

current in the plasma edge associated with the orbit lost ions. Implementation of the orbit

loss current into the continuity equation necessitates the further consideration of the other

relevant non-ambipolar transport processes in the plasma edge. The fluid transport code

SOLPS is chosen to determine the background equilibrium plasma and the associated current

balance. The response of the simulated plasma to the orbit loss current will be studied

in Chapter 6. The SOLPS model solves a particular regime of equations, encapsulating

the physics held within the first three fluid moment equations and the current continuity

equation. The modeled equations are presented in the next section, with a focus on the

terms most important for the inclusion of the orbit losses. See the Appendix for a short
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discussion on the boundary conditions used in the simulations.

2.4 SOLPS (Scrape-Off Layer Plasma Simulation)

The SOLPS code package was born of the B2 multifluid code designed for modeling the

transport of helium and impurities in the edge of a tokamak plasma.79 In its present state,

SOLPS comprises several distinct components, where the upgraded 2d multi-fluid plasma

transport code, B2.5,70 is of greatest relevance for this work. In 2005, the ITER organization

merged several existing improvements to the SOLPS code, presenting a new code suite named

SOLPS-ITER.80 Release 3.0.6 of the SOLPS-ITER package81 is used in this thesis and is

coupled to an ion orbit loss subroutine developed as part of the work of this thesis.

B2.5 solves a modified set of the Braginkii equations, including the effects of drifts and

fluid neutral particles. The 3D Monte Carlo neutral code EIRENE,82 another component

of the SOLPS package, allows for coupling with B2.5 to include the effects of kinetic neu-

trals, replacing the simpler fluid neutral model. Throughout this thesis, the fluid neutral

model is used due to its lesser computational weight, a typical choice when investigating

the leading order drift effects.83 The neutral physics does not enter directly into the orbit

loss calculations, only playing a more secondary role in the heat flux and ion-neutral friction

current.

The DG and Carre codes,71 also part of the SOLPS-ITER package, are used to respec-

tively generate the tokamak geometry and computational grids used for the B2.5 and Eirene

simulations, only each needing to be run once. Since the fluid neutral model is acceptable

for the orbit loss studies, the orbit loss model is more specifically only coupled to the B2.5

plasma solver, only requiring standalone runs of B2.5. Below, we present the B2.5 equations

with a focus on the terms most important for the orbit loss studies. The equations are not

fundamentally reworked and the orbit losses are included as kinetic source terms. The lead-

ing order effects of the orbit loss are investigated. Existing extensions to the fluid equations
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for a simpler orbit loss model should be explored to investigate the next order orbit loss

effects of the presented model.86–88

2.4.1 B2.5 equations

The modification of the Braginskii equations solved in the B2.5 code are presented below

for reference.70,89 Refer to the SOLPS user manual71 or the literature70,84 for further infor-

mation. The electron and ion energy equations are omitted from the discussion as they do

not necessarily provide further context for the orbit loss studies and can be found in the

literature.70 Refer to Section 2.3.2.1 for the coordinate system conventions used in B2.5.

Also, refer to Appendix A.3 to see the mapping of the computational cells to the real-space

coordinates. SOLPS performs calculations on a two-dimensional grid, with indices labeling

the radial and poloidal coordinates.

The average species velocity can be decomposed into components parallel and perpen-

dicular to the local magnetic field,

Vj = V‖b+ V⊥, (2.59)

where the perpendicular velocity is further decomposed into the y-direction, which is per-

pendicular to both the magnetic field and the flux surfaces, and the ∧-direction, which is

perpendicular to both the magnetic field and the y-axis,

Vj = V‖b+ Vy + V∧, (2.60)

such that

∧̂ =
Bz

B
x̂− Bx

B
ẑ. (2.61)

The perpendicular velocity can be expressed as the sum of the drifts and the diffusive trans-
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port velocities,70,84

V⊥ = V (E×B) + V (in) + V (vis) + V (s) + V (dia) + V (D) + V (AN). (2.62)

In order, the terms represent the E × B drift, the inertial drift, the viscosity drifts, the

ion-neutral friction drift, the diamagnetic drift, the strictly ambipolar classical and ther-

modiffusive processes, and the anomalous transport.

We write down the standard projected forms of the E×B and diamagnetic velocities for

the ions.

V (E×B)
y =

bz
B

1

hx

∂Φ

∂x
, V

(E×B)
∧ =

1

B

1

hy

∂Φ

∂y
, (2.63)

and

V (dia)
y =

bz
ZenB

1

hx

∂nTi
∂x

, V
(dia)
∧ = − 1

ZenB

1

hy

∂nTi
∂y

. (2.64)

The diffusive particle motions due to the neoclassical and anomalous particle transport take

the following forms:

V (D)
y = − D

Te + Ti

1

hy

(
1

n

∂p

∂y
− 3

2

∂Te
∂y

)
, V

(D)
∧ = − D

Te + Ti

bz
hx

(
1

n

∂p

∂x
− 3

2

∂Te
∂x

)
, (2.65)

and

V (AN)
y = −Dn

AN

1

hyn

∂n

∂y
−Dp

AN

1

hyn

∂pi
∂y

, V
(AN)
∧ = −Dn

AN

bz
hxn

∂n

∂x
−Dp

AN

bz
hxn

∂pi
∂x

. (2.66)

Here, D is the classical diffusion coefficient,

D =
Te + Ti
eB

νei
ωce

. (2.67)
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In Eq. (2.67), νei is the electron-ion collision frequency and ωce is the electron cyclotron

frequency. The DAN are the anomalous diffusion coefficients which approximate the un-

resolved turbulent transport; the classical diffusion can be neglected in favor of the more

significant anomalous diffusion.84 The remaining terms in Eq. (2.62) can be read off from

the enumerated currents in Section 2.4.1.4 as V (j) = j(j)/en.

2.4.1.1 Ion continuity equation

Expanding Eq. (2.34) using Eq. (2.60) results in,

∂n

∂t
+

1
√
g

∂

∂x

(√
g

hx
nbxV‖

)
+

1
√
g

∂

∂x
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= Sn. (2.68)

Numerical problems arise in calculations that rely on the small differences between large

flows. To avoid this, when appropriate, the SOLPS derivation makes use of effective terms

that provide the same result under the divergence operation.70,84 The effective diamagnetic

velocity is introduced,

Ṽ
(dia)
∧ =

TiBz

Zebz

1

hy
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(
1

B2

)
, (2.69)

Ṽ (dia)
y =

TiBz

Ze

1

hx

∂

∂x

(
1

B2

)
. (2.70)

These effective diamagnetic velocities represent the vertical guiding center drifts caused by

the inhomogeneous magnetic field, and take on a form proportional to derivatives of the

magnetic field, requiring accurate representation of the field geometry.85 A comparison

between the guiding center and fluid approximations indicates that the divergence of the

diamagnetic flux is of the same order as the fluxes associated with the ∇B and curvature

drifts.89,90 The forms seen in Eqs. (2.69) and (2.70) have been quite successful for simulating

L-mode plasmas, but need suitable replacement for the correct calculation of density profiles

when modeling H-modes due to the interplay between the convective and diffusive terms in

the numerics.70 In the present version of the code, the 3.0.6 release, the effective diamagnetic
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drifts are modeled by the following:
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, (2.71)
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. (2.72)

The bracketed terms correspond to the flux surface average in the usual way. Both sets of

equations have the same divergence.70

Insertion of the effective drifts transforms Eq. (2.68) into
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where the Ṽ terms have the diamagnetic flows replaced with their respective effective coun-

terparts. The orbit loss density source terms shown in Chapter 5 are implemented on the

RHS of Eq. (2.73).

2.4.1.2 Parallel ion momentum equation

SOLPS solves the parallel ion momentum equation for the ions. As in the previous section,

the parallel projection of Eq. (2.35) is taken,

mi
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taking the following form in the code:
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(2.75)

In both Eqs. (2.74) and (2.75), the velocities correspond to the ion flows. There are sev-

eral notable changes in from between Eqs. (2.74) and (2.75). The inertial and gyroviscous

terms have been combined, completely canceling the divergence-free diamagnetic veloci-

ties.70,84,91,92 Here, Fk is the Coriolis force associated with the diamagnetic drift velocity

and the parallel rotation,70,84

Fk = −mi

[
1

hz
√
g

∂

∂x

(
hz
√
g

hx
nbzV‖Ṽ
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η0 is the Balescu parallel viscosity coefficient93 which differs slightly from the Braginskii clas-

sical parallel viscosity coefficient,89 η2 = nmiD
n
AN is the perpendicular viscosity coefficient

where the diffusion coefficient has been replaced by an anomalous value,91,94 and Rie‖ is the

parallel component of the total Braginskii friction force,

Rie‖ = −en
j‖
σ‖

+ 0.71bxn
1

hx

∂Te
∂x

. (2.77)
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The fifth term on the RHS corresponds to the parallel viscosity driven by the parallel heat

flux,

q
(0)
i = q

(0)
i‖ + q

(dia)
i∧ (2.78)
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∂Ti
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e

1

hy

∂Ti
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,

which is not included in the standard Braginskii equations and is on the same order as

the parallel viscosity in a tokamak.70,84 The α(NEO) is related to the coefficient seen in

Eq. (2.54) and roughly equals one in the collisional regime. Here, κi‖ is the classical ion

thermal diffusivity and na specifies the ion density.

The source terms for the parallel ion orbit momentum loss discussed in Chapter 5 are

implemented via the Smi‖ in Eq. (2.75).

2.4.1.3 Parallel electron momentum equation

The parallel electron momentum equation takes a much simpler form, the so-called parallel

Ohm’s law, as one is justified in omitting both the inertial and viscosity terms due to the

small electron mass,

j‖ = σ‖

[
bx
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1

hx

(
1
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∂pe
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+ 0.71
∂Te
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)
− bx

1

hx
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∂x

]
. (2.79)

It is well known that the physics of Eq. (2.79) largely determines the potential in the scrape

off layer.68,84

2.4.1.4 Current continuity equation

The current continuity equation satisfies the quasineutrality condition,

∇ · j = 0, (2.80)
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and when written in the SOLPS geometry, has the form

1
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(√
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)
+
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√
g

∂
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(√
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hy
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where

j̃x = bxj‖ + bz j̃∧. (2.82)

Again, tildes are used to represent the use of effective terms that are equivalent in divergence.

The model does not explicitly involve a continuity equation for the electrons. Electron flows

are implied via the coupled ion continuity and current continuity equations. Current flows

without corresponding terms in the ion continuity equation are in effect movements of the

electrons.

To be clear, throughout the text, discussions of current balance are always concerning

the balance of the divergenceful currents, in other words, the balance of the depositions of

charge. Insofar as current continuity is concerned, self-contained divergenceless current loops

do not change the story. What is necessary is one or many divergenceless current loop(s) in

the absence of sources. For any divergent plasma current, there must exist opposing currents

to close the loop. The physics here is driven by the plasma quasineutrality and the ambipolar

nature of equilibrium plasma flows.

The SOLPS literature shows that the toroidal rotation profile, and thus the radial electric

field profile, very near the separatrix is increasingly governed by the anomalous transport,

and the neoclassical assumption that 〈B ·∇ ·πi〉 = 0 breaks down.84,95 The parallel momen-

tum and current balances predict a radially thin annulus, about 1–2 cm within the separatrix

at the outer midplane, described as a ‘viscous layer.’95 Here, the effects of the parallel vis-

cosity and the anomalous perpendicular viscosity tend to deepen the electric field well below

the neoclassically predicted values. It will be shown that this annulus similarly describes the

approximate domain of the thermal orbit losses leading up to the L-H transition, and the
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interplay of the orbit loss and the viscous layer will be explored in Chapter 6.

2.4.2 The currents in the B2.5 model

The current continuity equation, the quasineutrality condition, is an essential balance be-

tween the flows of charged particles. The gridding of space into cells paints a clear picture:

whatever flows in through the cell faces must be matched by an equal flow out, else, there

would be an accumulation of charges. An implication, across the closed flux surfaces the

radial current flows must sum to zero.

The B2.5 model accounts for several currents in the plasma: the diamagnetic current,

the viscosity currents, the inertio-gyroviscous current, the ion-neutral friction current, the

parallel current, etc. An anomalous electron current is also introduced into the system for

numerical stability and should not contribute to any final solution.84,96 One must ensure

that the divergence of this current is subordinate to the other terms in Eq. (2.81). In the

context of the orbit loss studies, the effective diamagnetic current and the perpendicular

viscosity current are most important for the current balance in the edge, with the parallel

and heat viscosity currents dominating the second order contributions. Expressions for the

perpendicular currents are obtained by taking the cross product of the magnetic field with

the sum of the ion and electron momentum equations,84

j⊥ =
B ×mi

d(nVi)
dt

B2
+
B ×∇P

B2
+
B ×∇ · π

B2
+
B ×RiN

B2
+
B × Sm
B2

. (2.83)

The work of this thesis establishes the introduction of an additional current into the balance,

the radially outward flow of orbit lost ions near the separatrix. The implemented forms of

the currents in the SOLPS model are shown below for the relevant case of a single ion species.
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2.4.2.1 The diamagnetic current

The diamagnetic current has the standard form

j(dia) =
B ×∇P

B2
, (2.84)

where only the divergent part need enter into Eq. (2.81),84,89,90,97

j̃(dia) = P

(
B ×∇B

B3
+
B × (B∇)b

B3

)
, (2.85)

which takes the following form in tokamak field geometry:84,97
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hy
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)
, (2.86)

j̃(dia)
y = −n(Te + Ti)Bz

hx

∂

∂x

(
1

B2

)
. (2.87)

The effective diamagnetic current, Eq. (2.85), corresponds to the averaged single particle

motions due to the spatial inhomogeneity of the magnetic field. The two terms can be

respectively identified as the species-summed velocity-space averages of Eqs. (2.3) and (2.4)

over assumed equilibrium Maxwellian distributions.

The divergence of this current, although comparatively small to the flow itself, is typically

the largest in the SOLPS system, with the others typically acting to balance it.84 The value

of the net radial current through a flux surface due to the effective diamagnetic current is

determined by quite subtle details in the pressure distribution along the flux surface. For this

reason, the E × B flow can affect the magnitude of this net current flow by redistributing

the pressure on closed flux surfaces.84 Furthermore, the ion temperature is more free, in

comparison to the electron temperature, to vary poloidally around a given flux surface.

Consequently, rearrangements of the density about a flux surface disproportional affect the

effective ion diamagnetic flows. It will be seen that the interplay between the orbit loss
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current and the effective diamagnetic current is of principle importance in the plasma edge.

2.4.2.2 The viscosity currents

The viscosity current in Eq. (2.81) has the form

j(vis) =
B ×∇ · π

B2
. (2.88)

It is instructive to consider the classical viscosity tensor as the linear combination of tensors

associated with distinct physical processes,

παβ = −η0W0αβ − η1W1αβ − η2W2αβ − η3W3αβ − η4W4αβ (2.89)

≈ −η0W0αβ − η1 (W1αβ + 4W2αβ)− η3 (W3αβ + 2W4αβ) ,

where

η0 ∼ niTiτi, η1 ∼
niTi
Ω2
i τi
, η3 ∼

niTi
Ωi

. (2.90)

The viscosity coefficients in Eq. (2.90) respectively correspond to the parallel viscosity, per-

pendicular viscosity, and the gyroviscosity. The above and the tensor components, the Wiαβ,

in Eq. (2.89) can be found in the seminal work of Braginskii.89 The insensitivity of the gyro-

viscosity to the collisionality, τ−1
i , allows for the combination of the inertial and gyroviscous

terms as seen in Eq. (2.75). In a strongly magnetized plasma, the gyrofrequency sets one of

the fastest timescales in the plasma, and

Ωiτi � 1. (2.91)

Consequently, η0 � η1.

The viscosity current in the SOLPS model is composed of three parts: the parallel vis-
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cosity, the perpendicular viscosity, and the parallel heat viscosity,

j(vis) = j(vis‖) + j(vis⊥) + j(visq). (2.92)

The heat viscosity is an additional term not included in the standard Braginskii model.84

The combined gyroviscous and inertia terms are represented in the current balance by the

inertio-gyroviscous current, see Section 2.4.2.3. Similar to the diamagnetic current, the

parallel and heat viscosity currents are conveniently replaced with expressions with equivalent

divergences, thereby still satisfying the continuity equation.70,84

Parallel viscosity current

The parallel viscosity current is expressed as an effective current with the same divergence:
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In the model equations, only the dominant parallel velocity terms are maintained,
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The parallel viscosity current, along with the heat viscosity current, appears to play a signif-

icant role in balancing the effective diamagnetic current;84 however, very near the separatrix,

near the location of the Er well, the perpendicular viscosity current plays a pivotal role.

Perpendicular viscosity current

The implemented form for the perpendicular viscosity current follows from the complete clas-

47



sical viscosity where only the largest term is maintained,84 that involving radial derivatives

of V∧, the perpendicular flows within flux surfaces,

j(vis⊥)
x ≈ 0, (2.97)
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)
. (2.98)

The classical perpendicular viscosity coefficient, η2, has been replaced with an anomalous

value, ηAN = nmiD
n
AN. The enhanced perpendicular viscosity coefficient functions as a model

for the anomalous transport, maintaining the structure of the classical equations91 The fast

parallel transport is sufficiently described by the classical physics and only the perpendicular

coefficients are enhanced. The electric potential has been shown to be relatively insensitive

to the magnitude of ηAN.91,94

Very near the separatrix in the SOLPS model, the perpendicular viscosity current is the

dominant term that balances the effective diamagnetic current, primarily responsible for the

compensating inward flow of cold ions from the SOL.84 The dependence of this current on

radial derivatives of the perpendicular flows within flux surfaces closely ties this current to

the equilibrium Er behavior. The eventual balance between the newly implemented ion orbit

loss current, the effective diamagnetic current, and the perpendicular viscosity current will

be explored in Chapter 6.

Heat viscosity current

The final viscosity current is associated with the heat fluxes,
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where

q
(0)
i = q

(0)
i‖ + q

(dia)
i∧ , (2.101)

as defined by Eq. (2.78), considers the largest heat fluxes within the separatrix and is taken

as zero beyond the LCFS.

The heat viscosity current often plays a role similar to the parallel viscosity current, as

can been seen by the similar forms of Eqs. (2.95) and (2.96) and Eqs. (2.99) and (2.100).

The currents often act in concert due to the similar nature of the parallel velocity and heat

flux.

2.4.2.3 The inertio-gyroviscous current

The inertio-gyroviscous current, simply referred to as the inertial current in the SOLPS

literature, combines the inertial and gyroviscous terms:
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(2.103)

The final terms are deemed to be the most significant and the others are ordered out.84

Thus, the inertio-gyroviscous current is approximated by the following:
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Derivatives of the scale factor hz are proportional to those of the magnetic field, and the

inertial currents are implemented by the following:
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Physically, these currents represent the vertical drifts associated with centrifugal forces.70,84

2.4.2.4 The ion neutral friction current

The ion neutral friction current is treated by accounting for the associated momentum sinks,

j(s)
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Smiy
B

= −bz
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B
. (2.109)

where µiN is the effective mass, νiN is the ion-neutral collision frequency, nN is the neutral

density, and the VN terms are the neutral particle mean velocities. Combining Eq. (2.108)

and (2.109) with the forms given by Eqs. (2.63)–(2.66) results in the following forms for the

ion neutral friction current,
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where the ion-neutral collision frequency has been replaced by the ion-neutral perpendicular

conductivity,

σIN =
nmiνiN

2B2
. (2.112)
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The ion-neutral collision frequency is taken to be84

νiN = nN(3.2 · 10−15 m3/s)

√
Ti

0.026 eV
. (2.113)

2.4.2.5 The anomalous current

An anomalous current carried by the electrons is included in the code to provide conver-

gence of the numerical scheme, replacing the polarization current in the evolution of the

electrostatic potential,96

j(AN)
x = − 1

hx
σ(AN)∂Φ

∂x
, (2.114)

j(AN)
y = − 1

hy
σ(AN)∂Φ
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with Eq. (2.115) contributing more greatly to the current balance due to the smaller radial

length scale. It is possible that such a current exists within the edge region;84,98 however,

within the SOLPS model the term is artificial. For sufficiently small values of the anomalous

conductivity, σ(AN), it has been shown that this anomalous current does not affect the steady-

state solution while providing the necessary stability to the regime.84,96 It is suggested that

for AUG,

σ(AN) = σ̃(AN)ene ≤ (1–5) · 10−5 Sm2/C · ene, (2.116)

is necessary for physically meaningful solutions to the potential equation.96 We find that the

potential retains a perceptible sensitivity to σ(AN) for the values prescribed by Eq. (2.116).

Since the work of this thesis explicitly concerns the solution to the current continuity equa-

tion, σ̃(AN) is chosen to be 10−6 Sm2/C across the parameter space, ensuring that the anoma-

lous current does not alter the solution.

The reported value for σ(AN) such that the anomalous current does not influence the

equilibrium solution is linear in the electron density, requiring lesser anomalous conductivities

for lower density plasmas. The SOLPS model exhibits a numerical instability96 that requires
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timesteps proportional to σ(AN) and inversely proportional to the plasma pressure,

δtmax ≈
σ(AN)B2R2

n(Te + Ti)
. (2.117)

Over a constant input power and thermal diffusivity, one expects the plasma temperature to

be inversely proportional to the electron density to ensure energy conservation via the radial

heat flux. Assuming that there is a linear increase in the plasma temperatures with heating

power, and one sees that

δtmax ∼
n

P
, (2.118)

where the recommended σ(AN) was inserted into Eq. (2.117) and P , here, refers to the input

heating power.

We find with the desirably small σ(AN), for a given input power there is some lower

density threshold where the numerical instability prevents convergence in realistic times.

Comparisons over increasing input power are therefore restricted by the density threshold

at the maximum input power of interest. For the work in this thesis, the SOLPS runs are

typically along the high density branch of the L-H transition power threshold.

The speed up scheme ‘Method of partial flux surface averaging ’, discussed in the work of

Kaveeva et al ,96 designed specifically for the SOLPS code package has been implemented into

the runs with results presented in Chapter 6, widening the explorable region of parameter

space; however, the severity of the numerical instability seems somewhat greater than stated

in the literature,96 so it is likely that it is being exacerbated for the low density plasmas for

some other unknown reason. The residuals associated with the neutral particle continuity and

momentum equations are typically the highest, trailed by the potential equation, perhaps

indicating an issue with the fluid neutral model. Future work will be done to allow for

investigations of the orbit loss current’s interactions with the low density plasmas within the

SOLPS framework.
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2.4.2.6 The ion orbit loss current

The main goal of this thesis is to develop a new method for estimating the local steady-state

thermal ion orbit loss current in the edge of a diverted tokamak plasma valid for the collisional

L-mode plasmas nearing the L-H transition and to present an analysis of its primary role in

establishing the radial electric field. We study the impact of adding a new term, j
(iol)
y , to the

radial current balance, such that

1
√
g

∂

∂y

(√
g

hy
(j̃(dia)
y + j̃(vis)

y + j(in)
y + j̃(s)

y + j(iol)
y + j(AN)

y )

)
= 0. (2.119)

The term is included by way of kinetic source terms, corresponding to the divergence of the

orbit loss current. Secondary orbit loss source terms associated with the particle, momentum,

and energy loss will also be included in the continuity, ion parallel momentum, ion energy

equations, although they have a comparatively muted effect.

2.4.3 Some notes on the use of SOLPS in this work

The orbit loss model detailed in Chapters 3–5 has been implemented into the SOLPS code

suite, creating a back and forth between the source terms determined by the orbit loss model

and updated plasma profiles determined by the transport equations of SOLPS. The entire

SOLPS model has not been reworked to account for the obit loss on a first principles basis,

and such an effort is probably best handled by kinetic models. The first order effects of the

orbit loss current and other source terms are investigated though the coupling.

The geometry of ASDEX Upgrade discharge 16151, a test case available to SOLPS users,

is used as the backdrop for all the presented plasma simulations. The simulations are mod-

ified forms of this baseline case achieved through manipulation of the core boundary condi-

tions. The simulations treat a single ion species, deuterium, the electrons, and fluid neutral

particles. Refer to Appendix A for further details concerning the field geometry, plasma

profiles, and the boundary conditions.
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As discussed in Section 2.4.2.5, simulation convergence is often in direct relation to the

value of σ(AN), a parameter governing the fictitious radial anomalous current that provides

numerical stability. Since the content of this thesis is directed interested in the radial current

balance and equilibrium Er, σ̃
(AN) = 10−6 Sm2/C was chosen to ensure physically meaningful

solutions to the current continuity equation. Simulations of denser plasmas converge more

quickly than less dense counterparts for such small anomalous conductivities, with there

being some minimum threshold density that converges with a reasonable timestep or even

converges at all. The simulations in this thesis are generally restricted to the high density

branch of the L-H transition power threshold for this reason. For the orbit loss studies,

convergence is determined when the parameters determining the orbit loss are no longer

meaningfully changing over periods of time longer than the dynamics of the problem. For

the lowest density simulations, especially at the higher levels of input power, the convergence

is more tenuous, with some seemingly persistent dynamics that do not meaningfully alter

the solution both with and without the additional orbit loss terms. Here, convergence can

be easily achieved by increasing the anomalous conductivity, resulting in similar equilibrium

solutions. The leading order difference is that the Er well is generally shallower with a larger

σ(AN),84 since a non-negligible anomalous current softens the imbalance between the in- and

out-flowing ions in the viscous layer. The orbit loss is sensitive to the electric field strength,

and a self-consistent Er response to the orbit losses demands that the anomalous current be

driven down. Thus, the quasi-steady-state solutions are preferred for the orbit loss study to

necessarily more stable simulations with non-negligible j(AN).
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Chapter 3

Ion orbit loss cone characterization

Following the discovery of the high confinement regime, the H-mode, on the ASDEX toka-

mak, there have been many attempts to theoretically describe the L-H transition. To date,

there is no first principles theoretical model which explains the seemingly spontaneous tran-

sition to a regime of suppressed turbulence and improved confinement. Prevailing consensus

is that the some physics drives an increase in the edge rotational shear tied to the larger

magnitude radial electric fields present in the H-mode edge. The current body of evidence

suggests that some combination of turbulent effects and the neoclassical loss of thermal ions

is responsible for driving the increased shear.32

Ion orbit loss has long been considered a potential catalyzing factor for the L-H transition.

In 1989, Shaing and Crume presented a model for the transition which considered the poloidal

rotation driven by ion orbit losses in the edge,64,99 showing a possible bifurcation in the

poloidal rotation at low

ν∗i =
νii,T R̄q

vT ε3/2
. (3.1)

Here, νii,T is the ion-ion collisionality evaluated at the thermal velocity, vT , R̄ is the major

radius, q is the safety factor, and ε is the inverse aspect ratio. Eq. (3.1) can be thought of as

the product of the collisionality and a typical orbit period for a thermal ion, suggesting that

an increase in low collisionality ions could trigger the transition. Improved upon by Shaing
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in 1992, the model is perhaps the most complete analytic approximation for the collisionally

driven steady-state orbit loss.100 The model relies on several assumptions and simplifications,

focusing on the gross scaling and the order of magnitude of the losses. Some examples include

the use of a simple loss cone boundary, the use of a cylindrical field geometry,101 simplifying

the collisionless condition, omitting some important effects of the electric potential, not

radially102 or poloidally resolving the orbit loss, and averaging some important energetic

scalings. At any rate, the model includes some features that appear lacking from more

recent works in the literature, namely the importance of the ion-ion collisionality in terms

of both loss cone repopulation and depopulation.

Contemporary studies often focus on studying the static structure of the loss cone both

numerically33,34,45,47 and analytically.41–44,104 The loss cone is well understood for both

analytic and experimental geometries, under the influence of a radial electric field, and

under different plasma shaping conditions, where it is seen that an accurate representation

of each is necessary to ascertain the loss trajectories. The static problem in relation to

the ion-ion collisionality has not been sufficiently studied, a gap in the literature rectified

within this thesis. Furthermore, insufficient progress has been made to model a steady-state

description of the orbit loss beyond the Shaing model. Development of a comprehensive

steady-state orbit loss model is necessary to investigate the interaction between the losses

and the confined plasma.

Steady-state solutions are determined by the processes responsible for resupplying the

loss cone, driving the orbit losses. Some recent steady-state solutions do not consider the

scattering of ions on loss orbits into those confined, lacking a fundamental feature of the prob-

lem. Additionally, these solutions also employ some set of understandable but far reaching

assumptions similar to the Shaing model, including the use of a liberal definition of loss, the

under-resolution of the problem, and the averaging out of some important energy depen-

dencies, leaving further room for improvement. Chapters 3–5 of this thesis develop a loss

cone model that seeks to improve upon those existing, presenting a steady-state orbit loss
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model that accounts for experimental tokamak geometry, effects of the radial electric field,

and pitch angle scattering both into and out of the loss cone, while retaining sensitivity to

the energetics of individually lost ions with regard to their pitch angle scattering and loss

orbit period.

It is noted that kinetic models of tokamak plasmas are also able to resolve ion orbit losses

depending on their set of assumptions. The first-principles-based electrostatic gyrokinetic

simulations of the XGC1 code are reported to both include and be highly sensitive to the

orbit losses in the plasma edge, indicating a coupled role of the losses and turbulent effects

in the generation of the edge E × B shear.32 The fully kinetic Monte Carlo orbit following

simulations of the ASCOT code have also been used to calculate the orbit loss current and

have found that it contributes to the E ×B shear.101,103 The expense of kinetic simulations

provokes the study of the orbit losses in a reduced computationally light setting, like that

of a fluid code. The assumptions made in the presented orbit loss model are typically made

to ensure the levity of simulations when coupled to a fluid model. The final Chapter of

this thesis presents the leading order effects of the steady-state collisionally driven orbit loss

current coupled to the SOLPS transport code.

3.1 Ion orbit loss basics

The content of this chapter serves to develop an understanding of the phase-space loss cone

that envelops all ions instantaneously on loss orbits with trajectories that intersect either

the wall or the divertor, largely following the work of Brzozowski et al .44 The guiding

center orbits of particles in a toroidally symmetric field geometry are trivially known, being

determined by their constants of motion. Therefore, the phase-space loss cone is immediately

known for a given field geometry. It is often useful to project the phase-space loss cone to

some observation point in configuration-space, resulting in a velocity-space loss cone. In

the text, the velocity-space loss cones are also referred to as local loss cones, projected loss

57



cones, or even just as loss cones. A given velocity-space loss cone accurately describes orbits

local to the given observation point, with these trajectories connecting disparate points in

configuration space. For any given observation point the distribution of ions about the cone

in velocity-space must be locally determined. The phase-space loss-cone is understood in the

following by studying the projected velocity-space loss cones as a function of their projected

location, in terms of its local energy and pitch angle dependencies and in response to the

radial electric field.

Aside from edifying the basic physics of the orbit loss, the novel takeaways from this

chapter include the focus on the study of the projected loss cones over the poloidal plane

and the method used to determine the energy-dependent trapped-passing boundary in the

presence of a non-trivial radial electric field. The former becomes important in treating the

steady-state problem, where ions are fed into the loss cone upstream at arbitrary location.

The timescale of the loss orbit is sensitive to this initial position, as is the structure of the

local loss cone of which ions on lost orbits can diffuse out. The simplification in determining

the trapped-passing boundary maintains computational levity while retaining the most im-

portant features of the radial electric field. An assumption made in Section 3.4 concerning

the particle trajectories under an Er further simplifies the collisionality considerations in the

following chapter.

3.1.1 Guiding center constants of motion

Collisionless orbits in the axisymmetric toroidal tokamak geometry are classified using the

familiar guiding center constants of motion:41–43,45,104–106

E =
1

2
mv2 + ZeΦ =

1

2
mv2

0 + ZeΦ0, (3.2)
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µ =
mv2
⊥

2B
=
mv2
⊥0

2B0

(3.3)

=
mv2

2B
(1− ζ2) =

mv2
0

2B0

(1− ζ2
0 ),

pφ = mRv‖fφ + Zeψ = mR0v‖0fφ0 + Zeψ0 (3.4)

= mRζvfφ + Zeψ = mR0ζ0v0fφ0 + Zeψ0.

Here, m and Ze are an ion’s mass and charge, R is the coordinate major radius, B is

the magnitude of the magnetic field, Φ is the electric potential, ψ is the poloidal flux in

(Wb/2π), v is an ion’s velocity with components v‖ = v ·B/B and v⊥ representing parallel

and perpendicular directions with respect to the local magnetic field vector, ζ = v‖/v is the

cosine of the pitch angle, and fφ = Bφ/B. All quantities are in SI units unless otherwise

noted. Spatial quantities are evaluated at the guiding center location, introducing possible

errors first order in the gyroradius.107,108 As discussed in Section 3.2, ions are considered lost

when entering the divertor region after crossing the X-point plane typically in the vicinity

of the X-point. In this region, the flux expansion mitigates the impact of the finite Larmor

radius effects on the orbit loss. The subscript ‘0’ represents the arbitrary initial conditions

for the orbit under consideration. Note that the second line in Eq. (3.4) enforces that v is a

positive quantity. It is noted that the conservation properties of each guiding center constant

of motion are not equivalent.

The energy, E, shown in Eq. (3.2) is a perfectly conserved quantity, as for any other

isolated system. An ion’s total energy is conserved throughout a collisionless orbit and is

allowed to exchange between the particle velocities and the electrostatic potential. The

form of Eq. (3.2) suggests that the electrostatic potential can act as a barrier, trapping

particles within a potential well, as is typically the case for the ions in the tokamak edge.

Although particle collisions allow for the energy exchange between particles, the dominant

collisional process for thermal ions only deflects the trajectories by some small angle, typically
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conserving the energy.109

The magnetic moment, µ, of Eq. (3.3) is the well known first adiabatic invariant as-

sociated with the fast gyromotion about magnetic field lines. Its invariance relates to the

‘slowness’ of changes experienced by a gyrating orbit in an inhomogenous field structure. The

magnetic moment is approximately conserved in the fields typical of a tokamak,107,108,110 and

it is common to treat µ as a true invariant in the tokamak environment. The ion velocity

components are closely linked to the tokamak field structure by the conservation of the mag-

netic moment. In a larger magnitude magnetic field, a larger component of the ion velocity

must be directed orthogonal to the magnetic field, reducing the component along the field

line. The magnetic moment sets some threshold magnetic field magnitude that would require

a perpendicular velocity greater than the ion’s energy allows. Orbiting charged particles are

prevented from entering into regions with such strong magnetic fields, and the particles

bounce at this barrier, reversing their parallel velocities. The near vertical symmetry of

the tokamak’s magnetic field results in two vertically opposed bounce locations occurring

at nearly the same major radii, largely determined by an ion’s pitch. Such particle orbits

pass through the outer midplane on the LFS moving between the bounce locations, being

commonly referred to as ‘trapped’ or ‘banana’ orbits due to the shape of their trajectories.

Particles that transit the poloidal plane without experiencing a parallel bounce, their µ never

demands that v‖ = 0, are referred to as ‘passing’ particles.

The toroidal canonical momentum, pφ, seen in Eq. (3.4) is an invariant that corresponds

to the Lagrangian’s invariance in the toroidal coordinate, φ, as prescribed by Noether’s the-

orem. It is an exactly conserved quantity in axisymmetric magnetic fields. The canonical

momentum relates the instantaneous toroidal angular momentum measured from the central

axis to the local poloidal magnetic flux. Recall that the equilibrium poloidal flux is often

used as a radial coordinate, so pφ explicitly details the radial orbital motions. Here, the

poloidal flux plays a similar role to the electrostatic potential in Eq. (3.2); for an initial

toroidal angular momentum, conservation of pφ determines which values of ψ are not strictly
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forbidden for the particle. Contrary to the kinetic energy, the toroidal angular momentum

is not inherently lower bounded, complicating the consideration of the poloidal flux as a

trapping scalar field. Nonetheless, the poloidal flux acts like a trapping surface with devia-

tions allowed through the changes in the toroidal angular momentum dictated by the other

conserved quantities. It can be clearly seen that the trapped particle population experiences

larger radial variations throughout their motions since their parallel velocities change sign

over their orbits.

It should be noted that the discrete nature of the toroidal field coils creates a cyclic

toroidal variation in the field strength, a field magnitude diminished by about one part in

one hundred.6 This toroidal field variation, referred to as the toroidal field ripple, allows for

the asymmetrization of the parallel bounce locations of ripple trapped orbits, resulting in a

drift out of the plasma. The direct ripple trapping occurs for orbits with banana tips within

the so called ‘ripple well region,’ typically found along the LFS and across the midplane to

the HFS.6 The deeply trapped particles on the LFS that are potentialily ripple trapped are

not candidates for the X-point mediated thermal orbit loss and only a small portion of the

orbit losses from the HFS midplane are directly affected. However, a ripple well region can

exist in the vicinity of the X-point in a diverted geometry,111 likely enhancing the so-called

X-losses attributed to the vertical drifts of trapped particles.33 Tokamaks are generally

designed to minimize the ripple effects and axisymmetry is assumed.

The work of this thesis proceeds under the assumption that these quantities are appro-

priately conserved for the thermal ion population. The three constants over their domains

label all possible orbits. Since all thermal collisionless orbits in a tokamak pass through the

outer midplane at the low field side, it is commonplace to label the trajectories along this

line. As mentioned, we aim to eventually consider the effects of collisions on the orbiting

ions, differentiating the properties of ions at differing locations along the same trajectories,

and the orbits will be instead considered across the confined region. Any particular obser-

vation location sets an initial (R0, z0), or alternatively (ρ0, θ0). For a given species of ion,
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all that remains to specify a particular trajectory, and thus its constants of motion, are the

quantities (v0, ζ0).

The constants of motion are rearranged, solving for the parallel velocity as a function of

the initial conditions and the location of the guiding center,

v‖(R, z;R0, z0, v0, ζ0) = ±v0

√
R∗b +

2Ze

mv2
0

(Φ0 − Φ), (3.5)

where

R∗b = 1− B

B0

(1− ζ2
0 ). (3.6)

The ‘±’ in Eq. (3.5) signifies that for an ion described by initial conditions (E, µ, pφ) the

parallel velocity is double-valued for a spatial position (R, z). Orbits for which the radicand

in Eq. (3.5) is always positive are the so-called passing particles and continuously circulate

the tokamak with a consistently signed parallel velocity. The other class of orbits trapped in

the magnetic mirror centered along the outer midplane bounce where the radicand is zero,

reversing the sign of their parallel velocities in the process. At these bounce locations, the

poloidal motions of the orbit are no longer primarily driven by the parallel motion along the

poloidal component of the magnetic field lines, and the perpendicular guiding center drift

velocities play a pivotal role. A similar effect naturally comes into play for orbits passing

near the X-point. The null poloidal magnetic field at this location and its reduced value in

the vicinity inhibit the parallel velocity’s ability to contribute to the poloidal motion, again

allowing for the prominence of the drift motions.

Inserting Eq. (3.5) into Eq. (3.4) gives an expression for the poloidal flux as a function

of the initial conditions and the instantaneous guiding center position,

Ψ±(R, z;R0, z0, v0, ζ0) =
1

Ze

(
pφ ±mRv0fφ

√
R∗b +

2Ze

mv2
0

(Φ0 − Φ)

)
. (3.7)
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Eq. (3.7) can be thought of as either a double-valued surface, Ψ±, or as two single-valued

surfaces, Ψ+ and Ψ−, in (R, z, ψ)-space. Such surfaces will hereby be referred to as the

constraint surfaces, defining the allowable values of the poloidal flux for the orbiting ion to

conserve its constants of motion. Passing particles spend their entire orbits on either the

Ψ+ or Ψ− surface, and the trapped orbits bounce at locations where the two surfaces touch,

with the poloidal flux necessarily taking the value Ψ+ = Ψ− = pφ/Ze.

In (R, z, ψ)-space, Eq. (3.7) is a general structure that preserves a particle’s initial con-

stants of motion and is practically independent from the particular equilibrium field struc-

ture, taking a similar form for any axisymmetric toroidal field geometry with a dominant

toroidal component. The few sensitivities are found within the constant pφ and in the fφ

and R∗b terms. A change in pφ does not meaningfully change the structure of Ψ±, there is

only an overall shift in the surface. The quantity fφ essentially is the sign of the toroidal

field, due to its dominance in the field structure, |fφ| ≈ 1, and for the same reason, we can

approximate

R∗b ≈ 1− R0

R
(1− ζ2

0 ), (3.8)

since the field ratio is essentially a spatial dependence. Note, that for a trapped orbit in the

absence of an electric field, a parallel bounce occurs when R∗b = 0,

Rb,no E ≈ R0(1− ζ2
0 ). (3.9)

The motion of a charged particle in a magnetic field clearly should be sensitive to the

detailed structure of said field. The information missing within the constraint surfaces is

supplemented by the true values of the poloidal flux determined by the equilibrium magnetic

field. The intersection between the constraint surfaces and the surface representing the

equilibrium poloidal flux corresponds to the poloidal projection of the guiding center orbit.

A typical intersection of a confined trapped orbit is illustrated in Fig. 3.1. Recall that the
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equilibrium poloidal flux is determined by the Grad-Shafranov equation, Eq. (2.8) in Chapter

2.

Figure 3.1: A sample intersection between the constraint surfaces, colored mauve and nude,
and the equilibrium poloidal flux in the case of a negligible electric potential.

For an ion with a given initial location and pitch direction, the constraint surfaces allow

for the determination of the initial velocity magnitude, thus the kinetic energy, required for

some part of those surfaces to intersect the poloidal flux surface determined by the Grad-

Shafranov equation at some given location,

E± =
(Ze)2

2mξ2

[
R0

R2

fφ0

f 2
φ

ζ0(ψ − ψ0)∓

√
R∗b

(ψ − ψ0)2

f 2
φR

2
+

2m

Ze
ξ(Φ0 − Φ)

]2 ∣∣∣∣∣
P

, (3.10)

where

ξ =
R2

0

R2

f 2
φ0

f 2
φ

ζ2
0 −R∗b , (3.11)

and all variable spatial quantities are evaluated at P , the intersection location of interest. In

the context of ion orbit loss, the determination of this loss point, or a family of loss points,

is critical in diagnosing the magnitude of the effect and will be discussed in Section 3.2.
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Eq. (3.10) corresponds to two equations: one for the energy of an intersection of Ψ+,

E+ =
(Ze)2

2m

[
1

ξ

(
R0

R2

fφ0

f 2
φ

ζ0(ψ − ψ0)−

√
R∗b

(ψ − ψ0)2

f 2
φR

2
+

2m

Ze
ξ(Φ0 − Φ)

)]2 ∣∣∣∣∣
P

, (3.12)

and the other for Ψ−,

E− =
(Ze)2

2m

[
1

ξ

(
R0

R2

fφ0

f 2
φ

ζ0(ψ − ψ0) +

√
R∗b

(ψ − ψ0)2

f 2
φR

2
+

2m

Ze
ξ(Φ0 − Φ)

)]2 ∣∣∣∣∣
P

. (3.13)

A cursory investigation suggests something problematic with the equations; they are equiv-

alent under reversals in the initial pitch direction. In other words, the equations state that

two identical ions only mirrored in motion about the local magnetic field vector will intersect

the location P at the same minimum energy, given by Eq. (3.12) for ζ0 < 0 and Eq. (3.13) for

ζ0 > 0, assuming fφ < 0,Ψ− ψ0 > 0, and ξ > 0. Under the same assumptions Ψ− > Ψ+ for

all locations, by construction. Considering the possible intersections of orbits starting from

within the separatrix, while maintaining that ψsep > ψcore, it must always be energetically

favorable to be lost on Ψ−. The caveat here is that the bracketed expressions in the equations

are proportional to v0, and per the definition of pφ in Eq. (3.4), they must be non-negative

to correspond to a physical orbit.

Under the conditions stipulated in the previous paragraph, the energy required for Ψ−

to intersect the equilibrium poloidal flux at some loss point P must be less than the energy

for Ψ+ to do the same. One might expect that the minimum loss energy is then always

given by Eq. (3.13). This is only the case if the intersection of Ψ− is actually part of the

guiding center orbit, if there is a continuously connected intersection between Ψ± and the

equilibrium flux beginning at ψ0 and ending at the loss location. In the case of a passing

orbit starting on Ψ+, no transfer between the constraint surfaces takes place and the loss

can only occur upon first intersection of Ψ+ with the loss location. If an orbit starting on

Ψ+ is trapped, there is a bounce mediated at Ψ± = pφ/Ze, and the loss becomes possible.

In the absence of an electric potential, the determination of the trapped-passing boundary
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in velocity-space is trivial. In the presence of an electric potential, the validity to applying

Eq. (3.13) becomes more nuanced.

Another subtlety within Eqs. (3.12) and (3.13) again comes from the double-valued nature

of the constraint surface. For a case again with fφ < 0 and Ψ− ψ0 > 0, an ion with ζ0 < 0

is initially on Ψ+. This can be seen by a quick calculation;

Ψ±(R0, z0) =
1

Ze

(
pφ ±mR0v0fφ0

√
ζ2

0

)
(3.14)

=
1

Ze

(
mR0ζ0v0fφ0 + Zeψ0 ±mR0v0fφ0

√
ζ2

0

)
= ψ0.

The above is only true if the ‘+’ corresponds to ζ0 ≤ 0 and the ‘-’ to ζ0 > 0.

3.1.2 Mass and charge dependence

Inspection of Eq. (3.7) highlights why one studies the ‘ion orbit loss’ rather than the ‘electron

orbit loss’. For simplicity, consider the case of a constant electric potential,

∆ψ =
m

Ze
Rfφv‖, (3.15)

where the parallel velocity suffers no species dependent spatial behavior. The orbital widths

of ions and electrons with the same parallel velocity are proportional to the ratio of their

mass to charge ratios. Here, the basic logic of the plasma confinement is followed; the Lorentz

force is linear in the charge and the affected inertia is linear in the mass. Comparing ionized

deuterium to the electrons shows that the ion width is three orders of magnitude larger. If

the species are considered to be in thermal equilibrium with each other, the electron thermal

velocity is larger by the square root of the ion-electron mass ratio and the width ratio is

nearly 102. The electron orbit losses are negligible by comparison.

Clearly the orbit loss is sensitive to the inherent properties of the ion. Unless otherwise
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specified, referenced ions concern a thermal population of deuterium ions. The mass depen-

dence of the collisionless orbit loss trajectories is completely contained within the preceding

paragraph; heavier ions and those of lesser charge are more prone to orbit loss via their wider

orbits. Accounting for the effects of particle collisions introduces another layer of ion mass

dependence, discussed in Chapter 4.

3.2 Loss definition

The previous section established a method for determining the necessary energy for the

constraint surfaces of an ion at a given observation point (R0, z0) with some initial pitch

direction, ζ0, to intersect the equilibrium poloidal flux at some location P . In principle,

this location is entirely arbitrary; for the classification of lost ion orbits, a choice of P is

equivalent to defining what is meant by a lost orbit.

Ideally, P would be a family of points along the divertor and vessel wall, describing

all orbits that lead to removal from the plasma. Such a choice mitigates the advantages of

working with Eqs. (3.12) and (3.13), as the wall geometry requires a sufficiently dense number

of points to resolve the general orbit loss problem. Furthermore, the poloidal structure of the

plasma becomes increasing important in the SOL, both removing some symmetry properties

of the core plasma and necessitating highly accurate two dimensional experimental data.

Orbit following codes serve as a supplement when capturing the exact particle orbits up to

the loss surfaces is desireable.112

The thermal orbit loss problem is easily reduced in scope since the diverted X-point geom-

etry motivates the significant losses of the thermal population about that location.33,34,41,45

Some authors choose P to be the horizontal plane running through the X-point,34,42 captur-

ing the topologically open orbits due to its influence. Another choice present in the literature

defines P as the series of points along the separatrix.43 Such a choice captures the relative

scalings of the orbit loss but vastly overcounts the magnitude of the losses and discounts the
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importance of the diverted geometry.

It has been shown using a fourth order Runge-Kutta algorithm for simulating guiding

center orbits in a tokamak geometry that the energetic minima for loss orbits originating at

some observation point as a function of the pitch angle is well-approximated by the class of

orbits that directly intersect the X-point.34 Orbits with energies above this threshold are

unlikely to intersect the X-point but have paths open to the divertor passing through the

X-point plane. This definition nearly captures all the losses found with the X-point plane

loss condition. A class of, as far as the loss cone is concerned, relatively deeply-trapped

high-energy loss orbits are missed by this definition.34 This subset of the losses is relatively

small and occupies less densely populated regions of velocity-space. However, such losses

become important in the presence of a radial electric field, where the electrostatic potential

more deeply traps ions at the outer midplane, preventing a sizeable fraction from reaching

the X-point. If these ions are able to overcome their local E×B drift motions, they are able

to cross the X-point plane on the low field side of the X-point. Therefore, P is defined to

include the X-point and positions along the X-point plane at a greater major radius.113

As always, for a given observation point, an orbit with some initial pitch direction can

possibly intersect the points in P on either constraint surface. In the event that both inter-

sections are possible, the intersection of lower energy will define the lower bound of the loss

region. In other words, for ions starting on the unfavorably lost constraint surface, the ions

presently moving antiparallel to the induced plasma current, it must be determined if the con-

stants of motion correspond to a trapped or passing particle. The trapped-passing boundary

in velocity-space must be determined for particles local to any position in configuration-

space. The existence of a non-trivial electric potential complicates this boundary by making

it non-trivially energy dependent.
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3.3 The case of a constant electric potential

First, consider the illustrative case of a constant electric potential. The constraint surfaces

simplify to

Ψ±,no E =
1

Ze

(
pφ ±mRv0fφ

√
1− R0

R
(1− ζ2

0 )

)
. (3.16)

To assess the orbit loss, the trapped-passing boundary in velocity-space must be determined

to clarify for a given observation point if either Eq. (3.12) or Eq. (3.13) determines the

minimum loss energy for a given ζ0 or if there even is a minimum energy corresponding to

an intersection with a point in P . Of course, arbitrarily high energy orbits will intersect

the first wall at some arbitrary poloidal position but are exceedingly rare for the thermal

population. It can be seen that the energy for intersection, Eq. (3.10), goes like (∆ψ)2; the

energy required to traverse the radial extent of the SOL is far greater than to reach saddle

point in the poloidal flux along the separatrix.

A particle bounces when its parallel velocity changes sign due to the conservation of

the magnetic moment along a path of increasing field strength. Eq. (3.16) indicates that

this occurs when Ψ+ = Ψ− = pφ/Ze. Since the poloidal projection of the guiding center

orbit corresponds to the intersection of the constraint surfaces and the equilibrium flux, if

the latter’s contour corresponding to ψ = pφ/Ze intersects with the vertical line defined by

Eq. (3.9), then the orbit is trapped,

Rmin(ψ = pφ/Ze) ≤ Rb ≤ Rmax(ψ = pφ/Ze) −→ trapped. (3.17)

Since the threshold loss orbit is generally taken as the orbit of X-point intersection, the lowest

energy trapped losses have Rb . RX . Loss orbits that bounce with Rb ≥ RX are lost along

the LFS X-point plane and require comparatively larger energies to traverse the greater ∆ψ

deeper in the SOL. Although in the absence of a radial electric field Rb is energy independent,
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the evaluation condition for the other terms in Eq. (3.17) have a weak dependence on the

initial parallel velocity, given an initial observation point.

Consider a deuterium ion localized to the outer midplane, R0 ≈ 2.0, with ζ0fφ0 = 1.0,

pφ
Ze
≈ (4 · 10−8 Wb s/(2π m))v0 + ψ0. (3.18)

Consider the changes in pφ/Ze when increasing the initial kinetic energy from 100 eV to

1 keV,

∆
pφ
Ze
≈ 0.009 Wb/(2π). (3.19)

For the equilibrium geometry for the baseline SOLPS case, see Appendix A, the change

corresponds to a ∆Rmin ≈ 0.015 m, a minor effect. Regardless, counter-current ions of an

increased energy have an unchanged Rb and a smaller contour that sustains bounces, slightly

reducing the trapping of higher energy particles.

One might be tempted to write down something of the following form

|ζ0,t-p,no E| =

√
1−

Rmin

∣∣
ψ=

pφ
Ze

R0

, (3.20)

to establish the trapped-passing boundary. As previously discussed, the evaluation condition

for Rmin explicitly depends on the initial pitch angle, and Eq. (3.20) is in effect transcen-

dental. If one were using an analytic formulation for the equilibrium, it is possible that

Eq. (3.20) could be further solved. For any local observation point and initial pitch angle,

the satisfaction of Eq. (3.17) is checked over a range of energies to determine if Eq. (3.12)

or Eq. (3.13) provides the threshold orbit loss energy for the counter-current ions. The co-

current threshold energies simply correspond to loss on their initial constraint surface. Over

the velocity-space, these threshold energies form a boundary that is a commonly referred to

as the velocity-space loss cone, a projection of the phase-space loss cone to a given obser-
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vation point. Local ions with instantaneous velocities within the loss cone have trajectories

open to the divertor via the X-point’s influence. For a given pitch angle, all energies greater

than the boundary are within the cone. At arbitrarily large ion energies, it is likely that

these orbits do not all reach the divertor but are lost to the first wall at some location.

The presented loss cones do not encapsulate the high energy orbits with pitch direction that

intersect the first wall but are not lost via the diverted geometry at lower energies.

Figure 3.2: Typical velocity-space loss cones in the absence of a radial electric field pro-
jected to three observation points in configuration-space. The dashed black and red lines
respectively correspond to energies of 102 and 103 eV.

Fig. 3.2 simultaneously plots velocity-space loss cones for three different locations in

configuration-space along the same flux surface (ρpol ≈ 0.993): along the outer and inner

midplanes and directly above the X-point. The qualitative deformation from one to the

other as a function of the poloidal angle is easily imagined. For any pitch direction, a single

energy defines the loss cone boundary, a feature lost in the presence of a radial electric field.

Collisionless orbits with greater energies will be lost on their first orbit. A few general truths

can be discerned from the figure. The lowest energy losses from a given flux surface pass

through that surface at the outer midplane, with the average threshold energy increasing as

a function of the poloidal coordinate. The lowest energy losses for all locations correspond to
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trapped orbits, generally those locally flowing antiparallel to the plasma current; for locations

nearer the inner midplane, locally co-current trapped orbits can also lie in the local loss cone.

The shapes of the local loss cones reflect both the trapped fraction for the local observa-

tion point, all trapped orbits pass through the outer midplane and therefore the fraction is

greatest at that location, and the ability of trapped or passing orbits with either orientation,

co- or counter-current, to be lost via the X-point. For instance, co-current passing orbits

in the confined region at the outer midplane will drift radially inward and will not be lost;

however, such orbits found at the inner midplane drift outward from this position and are

candidates for loss.

The large jump in the threshold loss energy for the local loss cone at the outer midplane

lies upon the trapped-passing boundary and represents the energetic discrepancy between

loss on Ψ+ or Ψ−. Moving poloidally toward the X-point does not wash this feature out

but exacerbates the discontinuity; in Fig. 3.2, the jump is obfuscated for the local loss cone

at RX since the passing losses occur only at extremely large energies. Nearer the outer

midplane, there is no discontinuity in the structure for the losses on the co-current half of

velocity-space. Here, there is a smooth transition between the counter-current trapped, co-

current trapped, and co-current passing losses, since all instances of loss do so on the same

constraint surface.

Figure 3.3 plots several sample loss orbits while marking the poloidal locations corre-

sponding to the mapped loss cones seen in Fig. 3.2. Subplot (a) shows a superthermal

trapped loss orbit with a large width, allowing for an easier inspection of the trajectory.

Subplots (b), (c), and (d) respectively show a counter-passing loss (within the confined re-

gion on the LFS), a trapped loss, and a co-passing loss (within the confined region on the

HFS), each of which is more representative of trajectories contributing to the steady-state

orbit loss on approach to the L-H transition. Each lost orbit is topologically open, being lost

via the saddle point due to having sufficient energy for its pitch direction along any point

on the trajectory such that the X-point deforms the orbit, leaving it open to the divertor.
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(a) (b)

(c) (d)

Figure 3.3: Example loss orbits in the geometry seen in Fig. 2.1. The line segments labeled
in (a) correspond to the loss cones seen in Fig. 3.2.
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Comparing the orbits in Figure 3.3 to the local loss cones in Fig. 3.2 deepens one’s

understanding of the orbit loss; the types of orbits passing through each location naturally

determines the structure. The only thermal losses that pass through the loss cone mapped

an appreciable distance directly above the X-point are trapped orbits. Any counter-current

trapped ions within this velocity-space loss cone must each be connected to some more inward

radial position along the outer midplane. The mapping between different velocity-space loss

cones containing loss orbits passing through some location is quite complex. The trajectory

of any loss orbit allows one to find the mapping of the velocity-space loss cone about the ion

as it is lost.

Since the orbit loss is studied as a potential driver of larger magnitude radial electric

fields, a self-consistent solution must consider the effects of Er on the particle orbits and

thus the loss. Recovering a non-trivial electric potential significantly affects the loss cone,

most prominently shifting the trapped-passing boundary and allowing for the electrostatic

trapping of low energy ions within the separatrix. The leading order effects of the radial

electric field on the orbit losses are studied and maintained within the model throughout the

thesis unless otherwise specified.

3.4 The case of a monotonically-increasing poloidally-

constant electric potential

Restoring a non-trivial electric potential introduces a few complications into the loss cone

calculation. With regard to the guiding center constants of motion, the potential only

explicitly enters into the energy conservation with the obvious consequence of electrostatic

trapping. Naturally, the parallel velocity is sensitive to the potential, complicating the

boundary between trapped and passing orbits. An additional effect of the radial electric

field is best understood by explicitly considering the E ×B drift, which acts to decouple to

parallel mirror bounce from the apparent bounce seen in the poloidal plane.
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The electic potential is taken to be a flux function, Φ(ρ, θ) ≈ Φ(ρ), simplifying the

determination of the trapped-passing boundary. Furthermore, the potential is assumed to

monotonically increase with the radial coordinate, Φ(ρ2) > Φ(ρ1) where ρ2 > ρ1. The

former is a standard assumption and the latter is a hallmark of the negative radial electric

field well typical in the plasma edge. The standard choice of reducing the potential’s degrees

of freedom is well founded but becomes increasingly fraught on approach to the separatrix.

There can be local extrema in the electric potential near the X-point,114–116 encouraging

the future relaxation of the flux function assumption. A first correction retains the poloidal

variance of Φ in checking that no electrostatically trapped orbit is lost.

A parallel bounce still satisfies v‖ = 0 where Ψ+ = Ψ− = pφ/Ze and therefore occurs

when

0 = 1− Bb

B0

(1− ζ2
0 ) +

2Ze

mv2
0

(Φ0 − Φb) (3.21)

≈ 1− R0

Rb

(1− ζ2
0 ) +

2Ze

mv2
0

(Φ0 − Φb),

resulting in

Rb ≈
R0(1− ζ2

0 )

1 + 2q
mv20

(Φ0 − Φb

∣∣
ψ=

pφ
Ze

)
. (3.22)

Again, consideration of the parallel bounce location is only necessary for the counter-current

ions, those whose application of Eq. (3.12) or (3.13) to determine the threshold loss energy

depends on their access to the preferred loss surface. For these ions, ρ0 < ρ(ψ = pφ/Ze) and

the denominator of Eq. (3.22) is necessarily less than one, ensuring that

Rb ≥ Rb,no E. (3.23)

Note that the case of electrostatic trapping within the separatrix occurs before the problem-

atic instance of the denominator in Eq. (3.22) reaching zero.
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The electric potential pushes this bounce location to a greater major radius. Barely

passing orbits can become trapped, and the most deeply trapped orbits that were lost via

the X-point in the previous section are now more tightly trapped on the LFS and do not

necessarily correspond to loss. For negligible ratios of the change in potential to the initial

kinetic energy, Eq. (3.9) is recovered. It should be noted that the electric potential tends

only to strictly increase into the near SOL. Particles with bounces beyond the separatrix

can have Rb < Rb,no E; however, the concern is mitigated as the higher energy ions that are

more apt to bounce at ρ > 1 are less sensitive to the electric field.

A poloidal bounce is now given by

0 = Vθ ≈
Bx,bp

Bbp

v‖ −
Bz,bp

B2
bp

Er,bp, (3.24)

where the magnetic drifts in the poloidal direction are taken to be negligible compared to the

E ×B drift. For the moment, consider the case with Bx < 0 and Bz > 0. Ions with v‖ < 0,

the counter-current ions, at the outer midplane will drift outwards and are thus interesting

to consider for losses. A negative radial electric field, the only possibility under the assumed

electric potential, shifts the poloidal bounce location to a more negative parallel velocity,

occurring earlier in the loss orbit than the parallel bounce. Rearranging Eq. (3.24) for the

major radius gives

Rbp ≈
R0(1− ζ2

0 )

1 + 2Ze
mv20

(Φ0 − Φbp)−
(

Er,bp
Bx,bpv0

)2 , (3.25)

which also clearly corresponds to Eq. (3.9) in the absence of an electric field. Note that

the usual small decoupling of the parallel and poloidal bounce by the poloidal projection

of the curvature and ∇B drift motions has been ignored. It is further noted that for the

counter-current ions of interest, is is possible that ρ0 > ρbp, and the considered ion has

already poloidally bounced.
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To better understand the relationship between the bounce locations, consider their ratio,

Rb

Rbp

=
1− 2Ze

mv20
∆Φbp

1− 2Ze
mv20

∆Φb

−

(
Er,bp
Bx,bpv0

)2

1− 2Ze
mv20

∆Φb

, (3.26)

where the ∆Φj = Φj − Φ0. As expected, Eq. (3.26) is independent of Rb,no E and purely

depends on the relative size of the ion’s kinetic energy and the radial electric field. The

parallel bounce location is only sensitive to the changes in the electrostatic potential through

the energy lost by climbing out of the well. The poloidal bounce location exhibits a similar

sensitivity but also directly feels the E × B drift perpendicular to the magnetic field. For

a modest strength Er, both the decoupling of these positions and resultant changes in the

orbital dynamics are expected to be small.113

The quantity 2Ze∆Φb/mv
2
0 is positive but less than unity for the counter-current non-

electrostatically trapped ions whose trapping is of interest for the thermal orbit loss, pro-

voking a Taylor expansion keeping only the leading order terms,

Rb

Rbp

≈ 1 +
2Ze

mv2
0

(Φbp − Φb)−
(

Er,bp

Bx,bpv0

)2

. (3.27)

The hastened reduction in the parallel energy acts to push both bounce locations to greater

major radii, with a more pronounced effect on the parallel bounce location since ρb > ρbp,

whereas the E×B drift acts similarly but only for the poloidal bounce position. The side of

unity that Eq. (3.27) falls on depends on the relative strength of the second and third terms

corresponding to the two described effects. For potential profiles typical of the tokamak edge,

it seems that Rb/Rbp > 1, describing loss orbits that suffer an early poloidal bounce while

continuing to drift outwards. The necessity of the continuation of the outward drift for the

counter-current ions can be understood by considering the constants of motions just before

and during the poloidal bounce. As the ion moves toward its poloidal bounce location, toward

smaller major radii, the magnitude of the parallel velocity decreases via the increase in the
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perpendicular energy demanded by the magnetic moment conservation. The parallel energy

loss is exacerbated by the radial movement through the electric potential. After reversing

direction at the poloidal bounce, the growth in the parallel velocity due to approaching the

low field side cannot match the parallel velocities experienced before the poloidal bounce at

the same major radius due to the net energy lost to the electric potential. Thus, after the

poloidal bounce for the same R the lesser |v‖| must correspond to a further radial position.

More simply put, the vertical magnetic drifts are unaltered and determine the projected

particle motion at the poloidal bounce; in the upper and lower halves of the plasma, these

drifts move the ion either radially inward or outward depending on the orientation of toroidal

field component.

The primary effect of the electric field is determined by the parallel energy exchange

between the ions and the electrostatic potential. For L-mode conditions in particular, the

the separation between the bounce locations plays a minor role and is no greater than 10%

for 100 eV ions in a 15 kV/m Er well. On the basis of collisionality, lower energy ions are

typically excluded from the collisionless portion of the loss cone, as will be seen in Chapter

4, and are not the focal point of the orbit loss problem.

We continue by assuming that Rbp ≈ Rb, allowing for simpler estimations of the orbital

paths in Chapter 4. It is important to point out that in this case Rbp ≈ Rb 6= Rb, no E, and the

most significant effects of the electric field on the orbit loss are maintained: there is a shift in

the trapped-passing boundary and low energy ions can be electrostatically trapped.34,45,47,113

For H-mode conditions, where the electric field wells are more pronounced, the radial and

horizontal distances between the two bounce locations are greater. Higher energy ions are

strongly affected by the electric field and a significant portion of the ions cannot overcome

the large E × B flows manifesting as a more pronounced v‖ loss barrier. The barrier exists

for ions on the low field side with local E × B drifts larger than the poloidal projections of
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their parallel velocities,

VE×B >
Bx

B
v‖, (3.28)

introducing an E2
r scaling for the minimum energy describing the boundary.34,45,47

This thesis opts to focus on L-mode plasmas with a particular interest on those near the

L-H transition criteria, in order to assess the possible role played by the ion orbit loss in

the transition. The full effects of the radial electric field are included under the conditions

necessary for the assumptions that the bounce locations are not strongly separated and

that the potential is approximately a flux function. The results presented in the upcoming

section well reproduce the effects of the radial electric field on the loss cone structure seen in

the literature,34,45,47,113 even for H-mode like field strengths. At any rate, the approximate

methods for determining the orbital shapes and periods that will be discussed in Chapter 4

make use of the Rbp ≈ Rb assumption, and further care is required for quickly constructing

the orbit characteristics under the influence of an H-mode like radial electric field.

Figure 3.4: The effects of a modest L-mode magnitude radial electric field on the standard
velocity-space loss cones. The lines of constant energy are the same seen in Fig. 3.2.
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3.4.0.1 The loss cone in the presence of a radial electric field

For a given ion’s orbit, all of the terms in Eq. (3.22) are precisely known. The major radius

that sustains a parallel bounce exhibits a twofold energy dependence: in the kinetic energy

term and also within the appropriate radial position to evaluate the electric potential. The

former dependence dominates the relationship and the electrostatic potential has a marked

influence on the local loss cone structure. A similar procedure to the one discussed in

the previous section is performed to assess the possibility of a counter-current ion with a

given pitch direction at a given observation point to have a mediated transfer between the

constraint surfaces, allowing for a loss on the preferred surface.

Contrary to the previous section, the electrostatic potential can allow for a finite energy

range that corresponds to trapped losses for a given pitch direction and observation point.

Local loss cones with the upwardly bounded energy regions have three energies describing

the loss cone boundary as a function of ζ0: ET describes the threshold energy such that any

more energetic ions of similar pitch are lost, and EU and EL respectively describe the upper

and lower boundaries of the finite loss regions. Again, the discussion is only relevant for the

counter-current ions as those co-current are initially found on the preferred loss surface.

Fig. 3.4 shows the typical changes in the projected loss cone structures under the influence

of an electric field typical of an L-mode. The electric field shifts the distribution function to

favor the trapping of counter-current directed orbits, corresponding to a v‖ shift in the loss

region by Er/Bx.
47,117 The shifted finger-like regions corresponding to the trapped losses

narrow, most noticeably at the outer midplane, with the threshold energy for these losses

being minimally changed. Sizable changes only occur when the orbits first become electro-

statically trapped.45 The counter-current passing losses from the LFS and the co-current

passing losses from the HFS approach the X-point in the opposite directions, respectively

against and with the local E×B rotation. Consequently, in the presence of the negative Er

well, the former require lesser loss energies and the latter greater. The increase (decrease) of

the poloidal velocity due to the E ×B drift decreases (increases) the ions’ orbital widths.45

80



The progressive changes are studied over a scan in the electric field strength, presented

in Fig. 3.5 subplots (a) (c) and (d), with subplot (b) showing the potential profiles scaled

from the baseline SOLPS simulation. The radial electric field’s impact on the local loss

cone structure can be understood in terms of the ratio of the electric potential increase to

the loss condition to the minimum loss energy for a particular velocity-space loss cone.45

The qualitative behaviors match those seen in the literature34,45,47,113 with quantitative

differences being primarily attributed to differences in the equilibria, notably the horizontal

location of the X-point, a dependence expounded upon in Chapter 5. Even for H-mode

strength Er profiles, the cones are effectively reproduced.

The trends first seen in Fig. 3.4 embolden in response to strengthening Er. Notably, the

finger-like projections thin and bend toward more counter-current orbits, and the multivalued

nature of the loss cone for a given ζ0 can be clearly seen. The deformation of the trapped

loss region continues until such losses are made impossible. For a given flux surface, orbits

originating at the outer midplane achieve this threshold first because the lowest energy losses

are associated with this location. In the presence of strong electric fields, where Eq. (3.28) is

satisfied for a growing subset of the ions, those on the low field side are unable to overcome

their poloidal E × B drifts. This effect manifests as the eventual vertical boundary seen in

Figure 3.5 subplot (a), delineating a cutoff v‖ required to overcome the local E ×B drift.

Projected loss cones nearer the inner midplane have perhaps the most nuanced response

to a growing Er. Although the losses in these regions typically require larger energies for the

standard positive triangularity tokamak, the minimum loss energy decreases with increasing

Er until around when the electrostatic trapping condition is met. This decrease corresponds

to the possibility of relatively low energy trapped losses that were confined barely passing

orbits in the presence of a weaker Er profile. Here, the overall shift in the loss region steadily

increases the angular width of the high energy portions of the local loss cone. This effect

coupled with the rising loss energies for the co-current passing losses creates a structure that

deviates from the Er = 0 baseline by having a lower loss energy nose region while the rest of
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(a) (b)

(c) (d)

Figure 3.5: A closer look at the Er sensitivity of the velocity-space loss cones over a scan
of potential profiles of increasing steepness. Subplots (a), (c), and (d) respectively consider
the outer midplane, above the X-point, and the inner midplane. Subplot (b) illustrates the
potential profiles. Again, the lines of constant energy are the same seen in Fig. 3.2.

the local loss cone is at slightly higher energies but with an increased angular width.

This section developed the method by which one applies the loss energy Eqs. (3.12) and

(3.13) in the case of a poloidally-constant monotonically-increasing electric potential in the
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edge of a typical tokamak plasma. The generic effects of the radial electric field in pushing

the poloidal and parallel bounce locations toward greater major radii and the electrostatic

trapping of ions are the most significant consequences of Er, whereas the decoupling of the

poloidal and parallel bounce only plays a minor role. Changes in the local loss cones in

relation to the poloidal positions of their projection have also been explored. Naturally, the

projections exhibit a radial dependence suggesting the domain of flux surfaces supportive of

thermal orbit losses.

3.5 The scope of orbit losses

The poloidal sensitivity of the projected loss cones has already been discussed, specifically

at the inboard and outboard midplanes along with directly above the X-point. There is a

smooth transition between the boundaries as a function of the poloidal coordinate over a

given flux surface. It is worth pointing out the the orbits contained within any of the local

loss cones over a flux surface are necessarily different, except in the case of an up-down

symmetric tokamak where vertically mirrored local loss cones contain identical trajectories.

At any rate, there exits an obviously fundamental and predictable radial dependence for the

ion orbit loss: orbits nearer the separatrix tend to require less energy to be lost.

The previous statement is exactly true in the case of a constant electric potential, as

seen in Eq. (3.10), E± ∼ (∆ψ)2. The radial electric field can inhibit losses in a such way

where more radially inward starting losses are preferred. For instance, in Fig. 3.5.a, the

minimum energy jumps dramatically between 1.5 . Ze∆Φ/Emin . 2.0. A slightly more

radially inward position with Ze∆Φ/Emin . 1.5 could be described by a lower threshold loss

kinetic energy. This phenomenon is the exception to the rule, and for a poloidal position, the

threshold energy typically decreases on approach to the separatrix. The general E± ∼ (∆ψ)2

scaling persists until the point of potential trapping, where the radial scaling of the electric

potential sets the loss minima.
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Figure 3.6: The radial dependence for the minimum kinetic energy achieving ion orbit loss for
various observation points under different electric field conditions, corresponding to potential
profiles of similar color in Fig. 3.5.b.

The radial dependencies for the minimum loss energies for the three previously discussed

observation points in configuration-space are shown in Fig. 3.6. Very near the separatrix, the

loss energies approach sub-thermal values. Here, the orbits are highly collisional, unlikely to

complete a loss orbit before colliding out of the loss cone. For relatively weak electric fields,

the projected loss cone shape is largely unchanged as a function of the radial position, and the

poloidal hierarchy with respect to minimum loss energy remains unchanged. The significance

of the potential trapping can be seen when comparing the L-mode Er case to the case of no-

Er in Fig. 3.6. A deviation is seen very near the separatrix, where the energetic minima are

given by the energy required to overcome the electrostatic potential barrier. Although the

poloidal dependence for the potential is neglected in the model, when available, for instance

in SOLPS simulations, the electrostatic trapping condition is checked using the maximum

of the 2-d potential, often found near the X-point. When considering a stronger electric

field, the lowest energy losses are not necessarily attributed to orbits localized to the outer

midplane.34 Here, a v‖ barrier in the local loss regions correspond to the increased poloidal

trapping of ions on the LFS.
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At this point, the projected loss cone structure has been studied over the confined region

in the poloidal plane and under the influence of a realistic radial electric field. The phase-

space loss cone envelops all trajectories that are lost to the wall or the divertor in the absence

of collisions. Here, the phase-space loss cone omits the large energy losses that intersect the

first wall but do not correspond to divertor losses for identical ions of lower energy. The

magnitude of the orbit loss effect depends on the population of phase-space near the loss cone.

For any given local loss cone, this dependence becomes one of the population of particles

local to the configuration-space observation point near the loss structure in velocity-space.

3.5.1 The equilibrium Maxwellian overlap

The distribution function describing the confined plasma determines if the thermal ions

populate regions of velocity-space with energies relevant for the orbit loss. If the loss regions

occur at energies far above the local ion temperatures, only the vanishingly small high energy

tail of the distribution can contribute to the orbit loss. The existence of the loss cones at

subthermal energies would predicate strongly non-Maxwellian local distribution functions,

that is if the loss cone is appreciably empty due to the loss mechanism. The increasing

collisionality of ions of decreasing energy suggests that the lowest energies of any loss cone

are most likely to be collisionally in equilibrium with the local distribution and not empty

at all.

The exact form for the equilibrium distribution function is not known, and a simple

Maxwellian distribution function,

f(ρ0, θ0, v) = n(ρ0, θ0)

(
m

2πTi

)3/2

e−mv
2/2Ti , (3.29)

is often chosen when modeling a plasma, both for its relative ease of implementation and since

it naturally satisfies the equilibrium kinetic equation. The existence of a velocity-space loss

cone in the edge region of a tokamak plasma necessarily precludes such a distribution function
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from serving as a complete description, unless the loss region only exists at superthermal

energies (∼ 10Ti) or the loss cone is considered full. As shown in the previous sections, the

former is not generally the case in the edge; the latter will be discussed in the upcoming

chapter.

The general scope of the thermal ion orbit loss seen in Fig. 3.6 can be specified with local

Maxwellian distributions described by some temperature Ti and density n by calculating the

overlap of the assumed distribution function and local velocity-space loss cone. The local

plasma density is defined by

n(ρ0, θ0) =

ˆ
fdv3 (3.30)

= 4π

ˆ ∞
0

fv2dv.

Since the orbits deviate from flux surfaces, connecting radial positions at arbitrary poloidal

angle, the local Maxwellian overlap, F (ρ0, θ0), is considered, being defined as the ratio of the

density captured by the local loss region,

nLR(ρ0, θ0) =

ˆ

Σ

fdv3 (3.31)

= 2π

ˆ 1

−1

dζ

(ˆ ∞
vT

fv2dv +

ˆ vU

vL

fv2dv

)
,

to the local plasma density n(ρ0, θ0), such that

F (ρ0, θ0) =
1√
π

ˆ 1

−1

dζ

(ˆ ∞
εT

√
εe−εdε+

ˆ εU

εL

√
εe−εdε

)
(3.32)

=
1√
π

ˆ 1

−1

(Γ(3/2, εT)− Γ(3/2, εU) + Γ(3/2, εL)) dζ.

The Maxwellian overlap for a flux surface is simply the flux surface average of the local
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calculation,

F (ρ) =

´ 2π

0

´ 2π

0
F (ρ0, θ0)

√
gdφdθ´ 2π

0

´ 2π

0

√
gdφdθ

(3.33)

=

¸
F (ρ0, θ0)dl

B¸
dl
B

.

The subscript ‘T’ in Eqs. (3.31) and (3.32) refers to energy of the upwardly unbounded

portions of a local loss cone, while the subscript ‘U’ and ‘L’ respectively refer to the upper

and lower bounding energies for the finite loss regions. The Γ functions seen in Eq. (3.32)

are the well-known upper incomplete gamma functions.

(a) (b)

Figure 3.7: Subplot (a) plots the Maxwellian overlap with the baseline temperature profile,
see Appendix A, over an Er scan, see Figure 3.5.b. Subplot (b) presents a coupled scan
about the baseline temperature and potential profiles.

The Maxwellian overlap signifies the magnitude of the ion orbit losses as a function

of the radial coordinate and has been referred to as the loss fraction in the literature.43

Furthermore, this overlap can be used as a litmus test of sorts to determine the impact of

errors introduced when modeling the plasma edge using simplistic Maxwellian functions. In

fact, Eq. (3.33) could be generalized for any distribution function, providing a sanity check
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for a particular choice of f used in edge modeling; however, without first making a meaningful

statement about the true distribution function within the loss cone, any discussions of the

overlap will overestimate the influence of the orbit loss.

Within the Maxwellian overlap, a few notable features are worth mentioning. Fig. 3.7.a

shows the generic radial dependence of ion orbit loss in terms of the overlap for the base-

line SOLPS test case AUG 16151 with electric potential profiles corresponding to those of

matching color in Fig. 3.5.c and the baseline temperature profile seen in Appendix A. The

gradient of the temperature profile is less steep than the orbit loss energy dependence seen in

Fig. 3.6, and the overlap grows on approach to the separatrix, generally peaking somewhere

around 40%. The electric field typically reduces the losses, but as discussed in Section 3.4.0.1

it can enhance losses from a particular locale. For large enough electric fields, the losses are

significantly reduced for the same temperature profile.

Subplot (b) investigates the overlap’s dependence on the ion temperature profile. Here,

the electric field is scaled with the ion temperature, as will be discussed in the forthcoming

Section 5.5. As expected, the overlap increases for increasing temperatures, with the mit-

igating Er insufficient to generally suppress F at the higher temperatures. Notably, very

near the separatrix the overlap decreases for sufficiently large electric field and temperature

profiles. For temperatures far above the energy scale of the loss cone, increasing the average

ion temperature inefficiently grows the overlap of the assumed Maxwellian. Here, the electric

field growth eventually wins out, reducing F .

3.5.2 The intrinsic rotation

Another static feature of the loss cone that has been studied in the literature113 is the intrinsic

rotation associated with an empty loss cone structure. Under this tenuous assumption that

the loss cone is strictly empty, one can easily find the rotational speed associated with the

Maxwellian distribution over the loss region and posit that a Maxwellian with a hole rotates

at the opposite speed.
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A similar calculation to the Maxwellian overlap is performed to calculate the intrinsic

parallel rotation under the assumption that the loss region is indeed empty,

V‖,iol(ρ0, θ0) = − 1

n

ˆ

Σ

v‖fdv
3 (3.34)

= −2π

n

ˆ 1

−1

ζdζ

(ˆ ∞
vT

fv3dv +

ˆ vU

vL

fv3dv

)
= −

√
2Ti
πm

ˆ 1

−1

ζdζ

(ˆ ∞
εT

εe−εdε+

ˆ εU

εL

εe−εdε

)
= −

√
2Ti
πm

ˆ 1

−1

ζ (Γ(2, εT)− Γ(2, εU) + Γ(2, εL)) dζ.

Again, the calculation is performed considering a poloidally localized Maxwellian since the

velocity-space loss cone boundary is only applicable to ions at the location of projection. The

flux surface average of Eq. (3.34) can also be taken, corresponding to the average intrinsic

rotation about a flux surface.

(a) (b)

Figure 3.8: The intrinsic rotation, (a), with the baseline temperature profile, see Appendix
A, over an Er scan, see Figure 3.5.b. Subplot (b) presents a coupled scan about the baseline
temperature and potential profiles.

A significant difference between Eqs. (3.32) and (3.34) is that the integrand of the former
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is strictly positive while the latter’s changes sign with the velocity’s orientation with respect

to the local direction of the magnetic field. While the Maxwellian overlap measures the scope

of the ion orbit loss, the intrinsic rotation measures the asymmetry in the co- and counter-

current losses, a property influenced by the field geometry. Any loss cone symmetric about

the v⊥-axis will not contribute to the intrinsic rotation, no matter how large the Maxwellian

overlap, granted that the distribution function is also symmetric about reflection across v⊥.

The intrinsic rotation calculations are performed for the same cases shown in Figure 3.7,

with the results displayed in Figure 3.8. Subplot (a) illustrates computations of Eq. (3.34)

for both the inner and outer midplanes for the three potential profiles. Here, the rotation

along the outer midplane has a larger radial width due to the positive triangularity of the

equilibrium, see Section 5.8. The flows are larger at the HFS and LFS for small and large

Er magnitudes respectively. The intrinsic rotation at the inner midplane is more sensitive

to the radial electric field. As can be seen in Fig. 3.5.d, the electric field both raises the

energies of the co-current particle losses while allowing for more coverage of the loss cone in

the counter-current half of velocity-space.

There is a strong poloidal variation in the local value for V‖,iol which can be expected after

inspection of Fig. 3.2, with the rotation being co-current directed near the outer midplane

and counter-current directed nearer the inner midplane. Such strongly antisymmetric flows

have been demonstrated in the edge of H-mode discharges in ASDEX Upgrade119,120 for

the impurity species. However, the impurity polodial asymmetry has been modeled without

invoking the orbit loss physics.121 Such rotations are also seen for the main ions in the

standard SOLPS simulations, although the rotations seen in subplot (a) are several times

larger than those seen in the corresponding SOLPS simulation, see Appendix A. It will be

seen in the next chapter that correcting for the collisionality reduces the predicted rotation

to values closer to the SOLPS results.

Subplot (b) shows the outer midplane parallel intrinsic rotation for the same scaled

temperature and electric field profiles as in Fig. 3.7.b. The local intrinsic rotation typically
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follows the behavior of the Maxwellian overlap since any local loss cone is typically dominated

by co- or counter-current losses. The plotted results agree with those in the literature113 in

terms of both shape and magnitude, with differences being attributed to the present use of

non-constant temperature and electric field profiles. The flux surface average of the intrinsic

rotation is lesser in magnitude than either of the midplane flows due to their cancelation.

The magnitudes of such flux surface averaged profiles are of the order of those seen in the

literature.118
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Chapter 4

Demarcating the loss cone on the

basis of collisionality

In the previous chapter, the orbit loss basics were introduced and a method was presented to

determine the region in velocity-space that contains orbits with paths to the divertor for a

particular observation point in configuration-space. The construction of the local loss cones

relies on the conserved quantities defining a collisionless ion orbit. In approaching a solution

to the steady-state problem, the phenomena that resupply the loss cone must be studied.

Before one is prepared to estimate the rate of the steady-state losses, the probability of any

ion within the loss cone to be lost on a first orbit must be considered. If an ion is transported

into the loss region but is also practically guaranteed to scatter out of the loss cone before

it is lost, the original refueling event would not contribute to the orbit loss. In order to

determine the rate of orbit loss, the behaviors of orbits within the cone must be assessed.

All ion orbits that cross the separatrix must do so at two locations, with the inflowing

and outflowing locations determined by the ∇B drift direction. The summed difference

between the particle flux for all such pairs must exactly equal the net flux of ions across

the separatrix. For any one pair, this difference must equal the net transport and sourcing

onto the orbit throughout the portion of its trajectory through the confined region of the
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tokamak.35

The problem is reduced by considering the net transport and sourcing into the loss cone

within the confined region rather than the net movement onto particular trajectories. An

ion transferring from one loss orbit to another within the orbit loss time scale is largely

inconsequential; both trajectories lead directly to the divertor. Ions fed into the loss cone

and then scattered out before being lost do not contribute to a prompt orbit loss current and

must be handled appropriately. It becomes clear that the loss cone needs to be demarcated

about this qualitative difference in the orbit loss, creating a ‘collisional’ region corresponding

to ions that are not expected to be lost before they scatter out of the loss cone and a

‘collisionless’ region where the opposite holds true. To be clear, the term ‘collisionless’ here

does not truly mean ‘without collision’ but indicates that the collisions over the loss orbit

are sufficiently small, allowing for loss.

Neither portion of the loss cone is truly empty. Any ion scattered into the collisional

portion of the cone is scattered into a confined orbit before a loss occurs. It is possible that the

particular ion can later scatter back into the loss region and be promptly lost. The collisional

portions of the local loss cones are effectively in equilibrium with the local Maxwellians, and

over timescales much longer than any individual collisions, a roughly constant number of

particles are housed within this portion of the loss cone.33 Any loss trajectory would at

some location interior to the LCFS fulfill the collisionless loss condition. The magnitude of

the orbit loss along any one trajectory is essentially determined by how deep into the plasma

this condition is met. The collisionless part of the loss cone is comparatively empty. Ions

within this region have a statistically non-negligible chance of completing a loss orbit before

removal via Coulomb scattering. Here, ions were either just recently driven into the loss

region or did so upstream, with a non-negligible fraction destined for the divertor. These

orbits support the prompt losses, with a rate driven by resupply into the region.

In demarcating a local velocity-space loss cone, there are several details that are neces-

sary to consider: the rates of the local collisional processes, the sheer size of the loss cone
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projection (particularly the angular width), and the loss orbital periods. Each of these de-

tails will be considered in the following sections. Pitch angle scattering of ensembles of ions

flowing through a Maxwellian background of their own species is considered for scattering

out of the loss cone, and will also be considered for the collisional resupply of the collisionless

loss cone in Chapter 5. Analytic results for guiding center orbital frequencies in a circular

geometry serve as the starting point in determining the loss timescale. Two corrections to

these periods will be discussed to adapt them to orbit loss calculations in experimental di-

verted tokamak equilibria. The magnitude of the ion orbit loss is in direct relation to these

considerations, so care must be taken in demarcating the collisional-collisionless boundary.

4.1 Collisionality rates

Consider the collisional velocity-space relaxation of an ensemble of test ions of species α

streaming with some velocity vα through a background Maxwellian of ion species β of the

form

fβ(v) = nβ

(
mβ

2πTβ

)3/2

e−mβv
2/2Tβ , (4.1)

a well-known result of the Fokker-Planck theory.8,51,109,122,123 Here, large angle scattering

by Coulomb collisions is treated as the sum of many small angle deflections due to the

long-range interactions between charged particles within a Debye sphere. For thermal ions,

the self-collisions between the main ions drive their relaxation in the presence of only trace

impurities.122,123 Therefore, α = β and the subscripts are dropped altogether. Such motions

are typically regarded as the diffusive, momentum exchange (slowing-down), and energy

exchange processes, respectively defined by

d

dt
(v − v̄)2

⊥ = ν⊥v
2, (4.2)
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d

dt
(v − v̄)2

‖ = ν‖v
2, (4.3)

dv

dt
= −νsv, (4.4)

dv2

dt
= −νεv2. (4.5)

Eq. (4.2) describes the perpendicular velocity-space diffusion process, while Eq. (4.3) de-

scribes the related parallel process, with the v̄0 terms representing the average velocity of

the ensemble as it spreads out across velocity-space. For an ensemble of test particles initially

localized in velocity-space, a competition develops between velocity-space diffusion, which

seeks to achieve the thermal spread of the background, and the dynamical friction, which

drives the average ensemble velocity to that of the background, driving equilibration.51,123

Note that here the ‘⊥’ and ‘‖’ directions are defined with respect to the initial velocity vector

of the ensemble, not with respect to any magnetic field vector.

The collisionality rates are given by

ν⊥ = 2ν0

(
1 +

γ′(3/2, x)

γ(3/2, x)
− 1

2x

)
γ(3/2, x), (4.6)

ν‖ = ν0
γ(3/2, x)

x
, (4.7)

νs = 2ν0γ(3/2, x), (4.8)

νε = 2ν0 (γ(3/2, x)− γ′(3/2, x)) , (4.9)

ν0 =
4πZ4e4λn

m2v3
, (4.10)

where

x =
mv2

2T
, (4.11)

and

γ(3/2, x) =
2√
π

ˆ x

0

t1/2e−tdt. (4.12)
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Here, λ is the Coulomb logarithm evaluated for ion-ion collisions and all quantities are in

CGS units. The primed quantities correspond to single derivatives in x. The processes

are not independent from each other, and the rates are connected through the following

relationship for the thermal ions

νε = 2νs − ν⊥ − ν‖. (4.13)

As expected, a net loss of energy translates to a loss of momentum. The interplay between

the diffusive processes and the others are clear but more subtle. For instance, the completely

perpendicularly diffused ensembles illustrated in Fig. 4.1 no longer have any net momentum

due to the spherical symmetry of the delocalized ensemble; as the ensemble spread over

the sphere, the total momentum decreased as the components held by each ion start to

cancel those held by the others. One only need consider any three of the processes listed in

Eqs. (4.2)–(4.5) to understand the relaxation.

Figure 4.1: An illustration of a three dimensional loss cone (in pink) and two spheres rep-
resenting the perpendicular velocity-space diffusion of two ensembles after a long period of
time, t � 1/ν0. The inner sphere has two lines of intersection with the loss cone while the
outer sphere is at the minimum energy to only sustain one.
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Ions within the loss cone are statistically treated as ensembles, whose velocity-space

motions are estimated by considering pitch angle scattering over a constant energy with

rates determined by the local Maxwellian distribution. The momentum exchange is implied

via Eq. (4.13) by considering the diffusive and energy exchange processes. As can be seen in

Fig. 4.2, the parallel diffusion process occurs on a longer timescale than the other processes

across nearly the entire energy spectrum and can be ordered out as a first approximation.

The dominant process is the perpendicular diffusion, often described as pitch angle scattering

in the presence of a strong magnetic field. The fast gyro-motion of the ion about the

magnetic field quickly smooths out the distribution function over the now ignorable gyro-

angle, and the diffusion only meaningfully occurs over the pitch angle. In any case, the

perpendicular diffusion has a tendency not to alter the average energy of the ensemble as

it acts symmetrically about the initial v0 vector, allowing for the process to be effectively

decoupled from the energy exchange. As seen in Fig. 4.2, ν⊥ > |νε| over the approximate

range 0.25 < x < 3.45. Within this range, corresponding to a majority of the relevant ions

for the prompt orbit loss, see Section 4.4, the perpendicular diffusion occurs on a faster

timescale than the average energy changes, and one can comfortably assume that the RHS

of Eq. (4.2) does not exhibit a strong temporal dependence over the pitch angle scattering.

Beyond this range, the two processes occur on essentially the same timescale. For the lower

energies, the plasma is typically too collisional for any ions to be lost before scattering out

of the loss cone. At the energetic tail of the Maxwellian, one must ensure that the energy

loss does not remove orbits from the loss cone. The sharp decrease of a projected loss cone’s

energetic minimum on approach to the separatrix paired with the inherent E−3/2 dependence

of the ion-ion collisions and the decaying distribution function reduces the import of such

considerations. Thus, the likelihood of some fraction of an ensemble to scatter out of the loss

cone is determined by the one-dimensional pitch angle scattering diffusion process within a

projected loss cone taken over a constant energy.
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(a) (b)

Figure 4.2: Typical behaviors for the collisional relaxation rates for the diffusive and energy
exchange relaxation processes. A dashed line indicates a negative frequency. Subplot (a)
illustrates the general behaviors of the ν0 coefficients. Subplot (b) shows physical values
under typical L-mode edge conditions: ne = 1019 m−3 and Ti = 100 eV.

4.2 Scattering out of the loss cone

As discussed, the primary collisional process responsible for removing ions from the loss cone

is pitch angle scattering.33 Ideally, a comparison would be made between an exactly known

loss time, Tloss, and a similarly known rate of scattering out of the loss cone, νscatter. Since

the Coulomb collisions occur via proximate neighbors within a Debye sphere, the scattering

rate is determined by the local Maxwellian. This rate is given by ν∆θ, the rate of diffusion

in pitch by the local loss cone width ∆θ, measured from the approximate location of null

diffusive flux determined by symmetry. It will be shown in Section 4.2.1 that the angular

width of the local loss cones housing a particle over its loss orbit typically grows, so ∆θ is

taken to be the average angular width over the trajectory. Here, an expression for ν⊥∆θ will

be determined.

Continuing from Eq. (4.2) under the assumption that the diffusion approximately oper-
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ates under a constant v and Ti,

du2
⊥

dt
= ν⊥v

2 (4.14)

σ ≈ u⊥
v

=
√
ν⊥t,

where u = v − v̄ and σ describes the velocity-space angular width of a one-dimensional

Gaussian distribution diffusing in the pitch angle.123 It can be seen that the time required to

diffuse some angle is quadratic in the angle, and small angles are therefore diffused dispro-

portionately faster compared to large angles.33,34,123 For this reason, the angular width of

the projected loss cone plays a vital role in determining the collisional cutoff for the prompt

orbit losses.

Figure 4.3: The distribution of an ensemble of particles pitch angle scattering within the
velocity-space loss cone. The shaded portions approximate the fraction that has scattered
out of the loss cone at least once during the diffusion.

For some angular width local loss cone, ∆θ, the fraction of the ensemble within the loss

cone as a function of time is given by a well-known result concerning Gaussian distributions:

Fin loss cone(t) = erf

(
∆θ√
2σ

)
, (4.15)
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where ‘erf’ is the well-known error function. Note that for the portions of the local loss cone

twice bounded in pitch angle, the finger-like regions corresponding to trapped losses, the

diffusive flux is null roughly at the center of the cone, and the width is measured from this

location.

However, the concern lies not with the fraction of the ensemble within the cone following

the loss timescale but with the fraction of the ensemble that has been within the loss cone

throughout the entire diffusive process. It can be easily shown using one-dimensional random

walks that the fraction outside the loss cone at some t is roughly proportional to the fraction

within the loss cone that was outside the loss cone for some t′ < t = σ2/ν⊥. Therefore, the

fraction within the loss cone for all t′ < t is nearly identified with

Fin ∀t′<t(t) ≈ 2erf

(
∆θ√
2σ

)
− 1, (4.16)

where Eq. (4.16) is taken as zero when negative, being interpreted as a negligible portion of

the ensemble remaining within the cone over the entire diffusion. Eq. (4.16) is referred to

as the unscattered fraction. Figure 4.3 illustrates the evolution of the Gaussian distribution

as the pitch angle scattering progresses. The shaded regions represent the fraction of the

ensemble that was scattered out of the loss cone at least once and the unshaded region

represents the unscattered fraction. When the spread of the Gaussian is of the same order

as ∆θ, Eq. (4.16) describes a minority of the ensemble.

Figure 4.4 plots both Eqs. (4.15) and (4.16) as a function of the Gaussian width to

local loss cone width ratio, essentially as a function of time. For widths smaller than the

characteristic ∆θ, nearly all of the ensemble is within the cone throughout the process.

Following this period, the unscattered fraction decays far more quickly than the total fraction

of the ensemble within the loss cone, becoming negligible around σ ∼ 1.5∆θ. Also plotted

are the results of one-dimensional random walks where the unscattered fraction was tracked.

It can be seen that the analytic estimate gives a near perfect match over much of the process
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and slightly underpredicts the fraction over longer timescales. The work continues using

the analytic function in an attempt to more conservatively estimate the losses, providing an

approximate hard boundary to a statistical estimate.

Figure 4.4: The fraction of an ensemble of ions that are not scattered out of the loss cone
over the diffusive process. The dots correspond to 1d random walk simulations and the
orange line to the fraction of the ensemble instantaneously within the loss cone.

The non-linear relationship between the time required to diffuse some angle and the angle

itself makes the angular width of the loss cone an interesting parameter for the ion orbit

loss. Before continuing, it would be prudent to familiarize oneself with the typical angular

widths of different local velocity-space loss cone structures mapped to various observation

points in configuration-space.

4.2.1 The angular width of the velocity-space loss cone: ∆θ

The angular width of a local loss cone exhibits a strong poloidal sensitivity. For all mapped

loss cones, the lowest energy reaches corresponding to trapped losses are also the most

narrow. At some increased energy, passing losses are possible, greatly increasing the angular

width of the loss region, with the passing losses being favored for orbits locally at either
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midplane. Conversely, the loss cones mapped directly above the X-point only experience

substantial ∆θ growth over energetic changes inaccessible to the thermal population.

Figure 4.5: The angular width of the projected velocity-space loss cone exhibits poloidal and
energetic dependencies and is measured from the approximate location of null diffusive flux.
The lines of constant energy serve as a visual aid.

Fig. 4.5 shows the apparent ∆θ growth for the local loss cone mapped to the standard

three positions along a flux surface. The angular width is measured from the cone boundary

to the approximate location where the diffusive flux is zero by symmetry. For the narrower

regions of a local loss cone twice bounded in pitch angle for a given energy, this is estimated

to be in the center of the region, whereas the angular width is measured from the symmetry

axis for regions that are singly bound in the pitch angle. For the local loss cone at the outer

midplane, the jump in ∆θ when the passing losses are energetically accessible is more severe

than the gradual growth characteristic of the velocity-space loss cone at the inner midplane,

highlighting the similarity in the trapped and passing orbital losses that pass through the

high field side. It should be noted that the maximum angular width of a loss cone mapped to

the inner midplane is typically the largest for energies achievable by the thermal population.

As discussed in Section 3.5, the local loss cone shape is relatively insensitive to its radial

location of projection, whereby all points along the projected loss cones experience the same
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(a)

(b)

(c)

Figure 4.6: Approximate mapping of the velocity-space loss cone over three sample loss
orbits: (a) a trapped orbit, (b) a passing-like orbit from the outer midplane, and (c) a
passing orbit from the inner midplane. Marker colors align with the loss cone colors.
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generic radial (∆ψ)2 scaling. The exception to this rule can be seen in Fig. 3.6 due to the

effect of the electric potential, enforcing a new energetic minimum for a given radial position.

Up to the threshold for electrostatic trapping, these regions of increased ∆θ are sustained

at lowering energies with increasing radial position in the same fashion.

Although the projected loss cone seems to narrow upon poloidal approach of the X-point,

this is only true when restricted to a given flux surface. The ions are candidates for loss

explicitly because they are able to appreciably drift off of their initial flux surfaces. Typically,

a prompt loss orbit does not approach the X-point from directly above but rather at an angle

from either the low or high field side; on the last leg of these journeys the orbital path does

not pass through the region characterized as being above the X-point.

Figure 4.6 characterizes the typical mapping of the velocity-space lone cone about an ion

over a loss trajectory. As each ion completes its orbit, the local loss cone it occupies generally

grow in angular width. When determining if an ensemble is likely to scatter out of the loss

cone, the angular width is taken as the average over the loss orbit. This is possible since orbits

of the same energy within a local loss cone are typically either mostly trapped or passing-like

in nature and exhibit similar characteristics. For ions above the local minimum loss energy

for their given pitch direction, the minimum energy of the projected loss cones they inhabit

later in their orbit will decrease, as shown in Figure 4.6. Ions with the minimum energy for

their given pitch angle typically have orbits that intersect the X-point while orbits above this

energy will intersect the X-point plane at a poloidal flux value determined by their energy

relative to the minimum and the remaining local change in poloidal flux to the separatrix,

roughly following the E ∼ (∆ψ)2 scaling.

4.3 Loss orbit period

Eq. (4.16) approximates the fraction of an ensemble of ions initially localized within the loss

cone that remains within the loss cone in variable time t. Evaluating this function at the
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characteristic time for the orbits to be lost leads to the fraction of the ensemble that will be

lost before scattering out of the loss cone. It is of course possible that an ion that scatters

out will rescatter into the loss region and should be counted as a loss at the local position

in configuration-space where this occurs. To that end, it is necessary to determine the time

periods associated with ion orbit loss.

Analytic formulae are readily available for the orbital frequencies in ciruclar flux geome-

tries.124,125 In the following, modifications to these periods are discussed, which make them

appropriate for application to ion orbit loss in experimental diverted tokamak flux geometry.

First, a method for determining the lost orbit period rather than a confined orbit period

is presented. Second, a correction is made for the discrepency between the experimental

poloidal magnetic field and the one included in the circular model. This section of the thesis

introduces the strong dependence of the ion orbit loss on the drift direction and its eventual

influence on the radial electric field through significant loss period discrepencies dependent

on the drift orientation. We find that the results of our calculations match theoretical ex-

pectations38 as well as orbit following simulations to a high degree.34,39

4.3.1 Orbit periods in a circular geometry

In a finite inverse aspect ratio circular tokamak geometry the orbital frequencies for trapped

particles,

ωt ≈
πω0

2K(κ)
, (4.17)

and for passing particles,

ωp ≈
πω0κ

K(κ−1)
, (4.18)

are known.124 Here, a small inverse aspect ratio, ε = r/R̄, approximation has been made, r

is the minor radius, R̄ is the major radius at the magnetic axis, κ is a trapping parameter
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which describes trapped orbits when below unity and passing while above, K is the complete

elliptic integral of the first kind,

K(κ) =

ˆ π/2

0

dφ√
1− κ2 sin2(φ)

, (4.19)

ω0 is the characteristic frequency,

ω0 ≈
√
E/m

√
ε

l0
, (4.20)

l0 is the characteristic length,

l0 ≈ q̄R̄, (4.21)

q̄ is a modification of the true safety factor q,

q(r) =
1

2π

ˆ 2π

0

dθ
B · ∇φ
B · ∇θ

=
q̄(r)√
1− ε2

, (4.22)

and θ and φ respectively refer to the poloidal and azimuthal angles.

The trapping parameter κ is defined by the following:124

µ

E
B̄

√
1 +

ε2

q̄2
= 1 + ε− 2εκ2, (4.23)

with bounds

0 ≤ κt ≤ 1 ≤ κp ≤
1 + ε

2ε
, (4.24)

where the subscript ‘t’ referring to ‘trapped’ and ‘p’ to ‘passing’. The barely trapped and

barely passing orbits have comparatively long periods compared to those further from the

trapped-passing boundary as these orbits have vanishing parallel velocities at the high field
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side. Additionally, the barely trapped orbits traverse larger poloidal angles than the deeply

trapped ions localized to the LFS.

The calculations for the above periods do not take into account the effects of the radial

electric field. Primarily, this means that κ does not take into account the shift in the

trapped-passing boundary earlier discussed. Secondarily, the E × B rotation is omitted,

which averages to zero for trapped orbits considered tied to a flux surface and imbalances

the orbital periods of the co- and counter-passing orbits. It is noted that the E×B rotation

can play an interesting role for orbits that cross the separatrix, where the direction of the

flow is typically poloidally reversed, although such an effect is beyond the scope of this thesis.

Figure 4.7: Normalized orbital frequencies for trapped and passing orbits in a circular ge-
ometry as a function of the trapping parameter, κ. Only particles within the blue field are
candidates for X-point mediated orbit loss.

We are not interested solely in the periods of lost orbits in general, but in families of

lost orbits that span a local loss cone at the same energy; these are roughly the orbits that

can be sampled by an ensemble of some initial energy undergoing perpendicular diffusion

over a loss orbit. The known properties of the orbits on the local loss cone boundary and

the behaviors of those in between allow for the estimation of a statistical loss time for such
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families. The primary relevant features of κ on the orbital periods seen in Figure 4.7 are

maintained. Trapped orbits within the loss cone are consistently the least trapped, with

the cutoff dependent on the X-point position. Approximately only those with κ ≥ 0.707,

corresponding to bounce locations at the plasma’s top and bottom, are able to reach the X-

point. The baseline trapped orbital period for orbits relevant for loss is taken as the average

over the range 0.707 ≤ κ < 1.0,

Tt ≈ 0.633 · 2π

ω0

≈ 0.633 ·
√

2

ε

2πq̄R̄√
2E/m

. (4.25)

For any local loss cone, either the co- or counter-current passing orbits contribute to the ion

orbit loss with the entire domain of corresponding pitch angle having an energy threshold

corresponding to loss. Since all values of the trapping parameter greater than unity can

correspond to orbit losses, and the periods of passing orbits are more sensitive to κ than

trapped orbits, the baseline passing orbital period is determined by linearly mapping κ,

κ2 ∼ ζ2 in Eq. (4.23), to the angular width in velocity-space corresponding to the passing

orbits, such that

κ̃p ≈
1 + ε

2ε
− 1− ε

2ε

(
1− ζ

1− ζtp

)
, (4.26)

where ζtp corresponds to the pitch direction of the trapped-passing boundary. The baseline

passing period is then taken to be

Tp ≈
2K(κ̃−1

p )

ω0κ̃p
. (4.27)

The statistical loss time is defined as the average loss time for orbits spanned by a local loss

cone for a given energy, discussed further in Section 4.3.4.34 The baseline orbital periods

need to first be transformed into lost orbit periods and then corrected for an outstanding

disparity between a circular and X-point geometry, the poloidal stagnation.
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4.3.2 From confined orbit period to lost orbit period

The thermal velocity-space loss cone results from the topologically changed ion orbits in the

vicinity of an X-point, a null in the poloidal magnetic field and thus a saddle point in the

poloidal flux. Ions with sufficiently large energies sustain orbits that intersect with the first

wall at arbitrary location; however, the thermal population of interest typically escapes via

the X-point geometry. In a circular geometry defining the orbit periods found in the previous

section, orbits that intersect the separatrix near where the X-point would be located in a

diverted geometry continue their uninterrupted confined orbits, only the most energetic of

which will be lost to the first wall. The confined orbit periods are transformed into loss

orbit periods by considering the remaining fraction of the circular orbital path to reach the

horizontal plane containing the X-point.

The orbital shapes of both trapped and passing orbits are robust, necessitating little

information to estimate an orbit’s shape in the poloidal plane. The fraction of the projected

orbital path between the initial position and the loss location estimates the ratio of the loss

period to the orbital period,

Tl = FlT =
remaining poloidal path

total poloidal path
· T. (4.28)

Below, methods for determining Fl are presented. For now, only the favorable ∇B drift

direction will be considered, with a lower active X-point. The impact of reversing the drift

direction will be discussed in Section 4.3.5.

First, consider the passing losses. In order to estimate a passing loss period, the relevant

points along its orbit are its initial location and the X-point, taken to be very near the loss

location. The points are projected radially outward to the separatrix of the experimental

geometry, introducing little error since the orbits of interest are thermal near-edge orbits and

the taken ratios wash out the first order path length differences. For counter-current passing

ions, the remaining poloidal orbital distance is taken as the clockwise distance, as seen from
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above the poloidal plane, along the separatrix from the initial location to the X-point. For

co-current passing ions, the counter-clockwise direction is taken. The remaining fraction

is simply the ratio of these distances to the approximate total orbital path of the confined

orbit present in the circular geometry, taken as the length of the separatrix enclosing the

core region. The loss period is simply

Tlp = FlpTp. (4.29)

The trapped losses require a different approach. The banana-like paths of the trapped

particles are the result of strong variations in the parallel velocity characterized by high field

parallel bounce locations. To first order, the angular motion of such orbits is sinusoidal,124

θ(t) ≈ θb sin

(
2π

t

Tb

)
, (4.30)

with θb corresponding to the poloidal bounce angle. Eq. (4.30) implies that the guiding

center spends an inordinate period of time near the bounce locations, where the parallel

velocity vanishes and the drift motions dictate the particle motions. For a typical trapped

orbit in a circular flux geometry, roughly 20% of the orbital period is contained in the final

∼ 5% of the angular domain surrounding the bounce angle.124

The remaining portion of a trapped orbit is calculated in a similar way to that of the

passing-like lost ions, only with the slow bounces artificially added. Third and fourth lo-

cations are necessary to approximate the orbital path, those being the bounce locations.

For the classically trapped losses, a bit of mundane bookkeeping is introduced to classify

which of three sections of the banana orbit the initial position is on: being segmented by

the bounce locations and approximately by the X-point. Co-current ions instantaneously

moving away from the X-point experience two parallel bounces before loss, counter-current

ions one, and co-current ions moving toward the X-point none. For the passing-like trapped

losses, sufficiently high energy counter-current trapped ions on the LFS that are lost on their
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initial flux surfaces, no bounce occurs on the loss trajectory.

Again, the points are projected to the separatrix. The total poloidal orbital length for

a trapped particle is estimated as twice the distance passing through the low field side

from one bounce location to the other. For co-current bounce orbits presently moving away

from the X-point, the remaining poloidal path length is taken as the shorter distance along

the separatrix from the initial location to the upper bounce location, then the clockwise

distance to the lower bounce location, followed finally by the counterclockwise distance to

the X-point. The ratio of the projected remaining path to the projected total path is applied

to the ∼ 0.8T of the orbital path that is well approximated as being spread evenly over the

poloidally projected orbit. For the present case, both bounces must occur before the loss,

so 0.2T must be added. The cases where fewer parallel bounces occur before loss follow in

a straightforward manner, omitting the already traveled poloidal distances and the already

bounced bounce(s). For initial positions within the last 5% of the angular domain near the

bounce locations, the remaining portion of the bounce is linearly estimated as a function of

this angle. The trapped loss period takes the following form:

Tlb = (0.8Flb + 0.1Nb)Tb, (4.31)

where Nb corresponds to the, perhaps fractional, number of remaining bounces.

Considering only the remaining poloidal distance of the orbit leads to the logical conclu-

sion that orbits in the vicinity of the X-point will be lost extremely quickly. This is only

partially true. Ions near the X-point on loss orbits have generally traversed a greater frac-

tion of their poloidal path, but the stagnation of motion in the poloidal plane due to the

vanishingly small poloidal component of the magnetic field near the X-point enhances the

time required to complete the final stretch of the loss orbit.
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4.3.3 Poloidal field stagnation

The X-point behaves as a saddle point in the scalar function ψ exactly because the poloidal

component of the magnetic field vanishes on approach to this location, as illustrated in

Fig. 4.8. An orbital path projected onto the poloidal plane advances typically via the poloidal

component of the parallel velocity,

v‖,x =
Bx

B
v‖, (4.32)

with the exception being very near the parallel bounce locations for trapped orbits, where

the perpendicular drifts dominate. Near the X-point, apparent motion in the poloidal plane

is increasingly governed by the slow local ∇B, curvature, and E × B drifts, regardless of

the magnitude of the parallel velocity, poloidally stagnating the motion. The stagnation

significantly enhances the parallel orbit length and thus the orbital period.

Figure 4.8: The typical structure of the poloidal magnetic field in an X-point geometry,
shown in particular for AUG discharge 16151. The vanishingly small poloidal field in the
vicinity of the X-point reduces the poloidal projection of the parallel ion velocity.

This effect is not included in the circular geometry orbits calculated with the following
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magnetic field:

B =
B̄R̄

R

(
φ̂+

ε

q̄
θ̂

)
, (4.33)

where the poloidal field component only exhibits a poloidal variation due to the inverse

dependence on R. Neglecting the poloidal stagnation both misrepresents the periods of

orbits in an X-point geometry, having significant consequences directly relevant for the ion

orbit loss. Orbits with sizable fractions of their poloidal projections near the X-point will be

lost more slowly and are thus more likely to scatter out of the loss cone.

Assuming a shared form for the dominant toroidal field component, the poloidal compo-

nent of the parallel velocity in the X-point geometry is lesser than in the circular geometry

by the ratio of the respective poloidal magnetic fields,

vX‖,x ≈
BX
x

BC
x

vC‖,x, (4.34)

where the superscripts refer to the circular expectation and the X-point reality in the ob-

vious way. The orbit period in the X-point geometry is estimated by effectively stretching

the poloidal distance by the ratio that the poloidal component of the parallel velocity is

diminished,

TX =
T

S

˛
vC
‖,x

vX
‖,x
ds (4.35)

≈ T

S

˛
BC
x

BX
x

ds.

Here, S refers to the orbital path in the poloidal plane. Shifting the effect from the poloidal

ion velocity to a static effect on the configuration-space allows for the stagnation to be

estimated as soon as the orbit’s path is approximately known, a process outlined for the loss

orbits in Section 4.3.2. In the context of a discretized spatial grid, like that used in SOLPS,

the poloidal dimensions of the computational cells are stretched based on the average field
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values over the cell. The drift motions are ever present, and a maximum threshold for the

effective stretching can be implemented to ensure that stagnation only occurs up to the drift

motions.

It is noted that projecting the orbital paths to the flux surface corresponding to the

separatrix overestimates the stagnation because the poloidal field exactly vanishes at the X-

point. For this reason, the orbital shapes are projected on the mean flux surface between the

point of origin and the separatrix surface, and the lost orbit period calculated in the previous

section is scaled by the ratio of the stretched remaining path to the physical remaining path,

TlX =
Tl
Sl

˛
BC
x

BX
x

ds, (4.36)

where Sl is the remaining poloidal path projection determined using the methods of the

previous section, and the field quantities are evaluated along this path. A sensitivity is lost

here, in that higher energy loss orbits cross the X-point plane further from the X-point itself.

The structure of the poloidal magnetic field seen in Figure 4.8 indicates that the stagnation

effect decays with distance from the X-point. Orbits above the threshold loss energies should

feel the stagnation effect to a lesser degree.

4.3.4 Statistical loss times

Let us take a moment to regain the big picture here. For any location in configuration-

space, we are able to generate a boundary in velocity-space that separates the confined

orbits from those that will reach the divertor as a result of the X-point’s influence on the

orbit topology. Orbit loss is driven by the net transport and sourcing into the loss cone

within the confined region of the tokamak. Flux into the loss cone contributes to the orbit

loss only if it is not removed from the loss cone before it is lost from the plasma. Section

4.2 establishes the rate of scattering out of any local loss cone and finds that it is essentially
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a monotonically decreasing function of the ion energy for a given plasma background: the

rate of pitch angle scattering reduces with energy while the width of the velocity-space cone

tends to grow, both acting to reduce the rate of removal from the loss cone. Methods for

approximating the periods of loss for ions in an X-point geometry have also been discussed

in Sections 4.3.1–4.3.3. To facilitate comparison with the rates of scattering out of the loss

cone, statistical loss times, τl, are calculated for loss cone projections mapped to various

locations in configuration-space. These loss times are taken as the average loss period across

a local loss cone for a given energy,

τl(ρ, θ, E) =
1

∆ζ

ˆ
TlX(ρ, θ, E, ζ)dζ. (4.37)

Throughout this section, we again take the ∇B drift to point down, toward the active X-

point.

Figure 4.9: Statistical periods of orbit loss from local observation points as a function of the
ion energy.

Figure 4.9.a shows the statistical loss times under favorable drift conditions for lost orbits

contained within the local loss cones structures as a function of the kinetic energy for the
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usual observation points along the ρ = 0.993 flux surface: at the outer midplane, above the

X-point, and at the inner midplane. For comparison to Ku et al ,34 the chosen flux surface

passes above the X-point at a distance of about ten centimeters. As expected, for each

location, the loss time decreases for increasingly energetic particles. Beyond this, the trends

are perhaps less than obvious and will be thoroughly discussed.

First consider the blue line corresponding to the local loss cone for ions passing through

the given flux surface at the outer midplane, see Figure 3.2 for reference. The lower energy

finger-like portion of the local loss cone, E < 500 eV in Fig. 4.9.a, corresponds to trapped

orbits. The segment of this portion’s boundary that can be identified with the trapped-

passing boundary describes orbits that bounce at the inner midplane. These orbits typically

experience a greater poloidal stagnation as they have greater portions of their orbit in the

vicinity of the X-point. The opposite side of this boundary corresponds to orbits that bounce

near the angular position of the X-point. The loss orbits of the finger region generally

have comparatively long loss times due to their low energies, moderately long paths to the

divertor, enhanced poloidal stagnation, and the fact that the baseline trapped orbital periods

are long. This combined with the narrow angular width of the finger region often results in

highly collisional loss trajectories.

The loss orbit periods for higher energy portions of the local loss cone describing orbits

at the outer midplane are substantially smaller. As discussed in Chapter 3, a parallel bounce

is the mediated transfer from one constraint surface to the other by the equilibrium poloidal

flux surface. In the trapped portion of this velocity-space loss cone, there is a threshold

energy such that the orbit reaches the loss condition on its initial constraint surface before

undergoing the parallel bounce. The threshold can be seen by a continuation of the curve

corresponding to the passing losses into the trapped region of the cone.33,34 Thus, the loss

orbits for the higher energy ions found at the LFS are passing-like in nature across the entire

angular width of the local loss cone. Such orbits exhibit the shortest loss periods since they

have higher energies, short paths to the divertor, a reduced poloidal stagnation, and do not
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suffer any parallel bounces before loss.

Next, consider the local loss cone for orbits passing just above the X-point, drawn in

orange in Figure 4.9. For all energies thermally accessible, the lost orbits are trapped,

and thus there is no reasonable threshold for which the trapped orbits can escape on the

initial constraint surface. Consequently, the statistical loss times have a smoother energy

dependence. The lowest energies here correspond to faster losses than loss orbits at the outer

midplane since they have already undergone some portion of their poloidal stagnation, have

shorter remaining paths to the divertor, and simply are more energetic. The structure of

this loss region is relatively static as the energy increases; the width only grows slightly with

the energy. As expected, the behavior in the statistical loss period goes nearly like E−
1
2

when the shape of a local loss cone minimally changes with the energy, requiring substantial

growth in ion energy for appreciably faster losses.

Finally, consider the local loss cone for orbits at the inner midplane. Per usual, the loss

orbits with the lowest energies are the trapped orbits. In Fig. 4.9 two lines are plotted which

correspond to this location: in purple just below the midplane and in yellow just above.

Bounce locations at the former close downward while those at the latter close upward.

Trapped orbits near their lower bounce locations have far shorter paths to the divertor, and

have similar loss times to the passing orbits, having already completed most of the trapped

trajectory. The higher energy portions of the inner midplane projected loss cone contain

trapped orbits that have yet to bounce, trapped orbits that have already bounced, and co-

passing orbits. The proportions described by these three classes changes with the energy

until the angular width reaches its maximum value. The trapped orbits here are unable to

be lost on their initial constraint surface, omitting the narrow range of low energy orbits

dominated by the E × B drift, so there is no effective change in the loss behavior for the

trapped portion as a function of the energy, like the passing-like losses originating from the

LFS. Thus, the average loss period is slightly higher for the upper energies of the high field

side losses compared to the low field side. The passing losses for the position just above the
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inner midplane occur on practically the same time scale as those slightly below; however,

the average of the high energy portion of this cone is greater due to the far longer trapped

loss periods.

4.3.5 The up-down ∇B drift direction asymmetry

The expected strong asymmetry of the ion orbit loss with the ∇B drift direction was briefly

mentioned as motivation in Chapter 1 and will be discussed here in more detail. Although

the loss trajectories remain identical under both drift directions, there are significant path

length differences to the divertor for the loss orbits.34,38,39,45 For the favorable configuration,

with the ∇B drift pointing toward the active X-point, the orbits cross the separatrix in the

proximity of the X-point, already near the divertor. In the unfavorable configuration, the

orbits leave the separatrix at the vertically opposite side of the active X-point, necessarily

traversing the SOL on their paths to the divertor. Many of the ion trajectories in the

near SOL are closed and the likelihood that the ions in the latter case scatter out of the

loss cone while in the scrape off layer must be considered. This difference manifests in the

model as an on-average increase of the τl in the unfavorable drift configuration, which can

be considered as an increase in the effective collisionality.39 Without loss of generality, the

favorable configuration is taken as the case where the ∇B drift points downward.

As noted in the literature,38,39,45 for orbits originating at the outer midplane, there is a

typical increase in the projected poloidal loss orbit distance by a factor between 5/3 and 3

for trapped orbits and 3 for passing orbits, when comparing loss orbits in the unfavorable

drift configuration to those in the favorable configuration. For orbits originating elsewhere,

these factors can be even larger, as can be easily seen from analysis of poloidal projections of

orbits. One should not expect a one-to-one correspondence between the remaining poloidal

orbital distance and the orbital period; the poloidal velocity is non-constant over the orbit.

As discussed in Section 4.3.3, the poloidal stagnation due to the vanishingly small poloidal

field near the X-point exacerbates the inherent asymmetry of the poloidal velocity over an
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ion’s orbit. The stagnation effect is typically greater in the favorable drift case where the

lost ions are brought nearer the X-point on average, a feature present in orbit following

simulations in the literature.34 The up-down drift asymmetry of the statistical loss periods

is determined by a competition between the increased poloidal paths for loss orbits in the

unfavorable drift and the increased poloidal orbit stagnation for losses in the favorable drift.

Figure 4.10: The drift orientation asymmetry of the periods of orbit loss for vertically op-
posing observation points.

Figure 4.10 compares the average loss times for the velocity-space loss cones mapped to

the three usual locations in configuration-space and their vertically opposite positions under

reversal of the ∇B drift direction, corresponding to losses from the same flux surface as in

Fig. 4.9. Since the ions cross the separatrix at vertically opposite positions in the different

configurations, it is more telling to compare the statistical loss times at these vertically

mirrored positions for opposing ∇B drift directions.34 Although the inner midplane does

not have a vertically opposite position, this location is studied at some ε above and below,

capturing the effects of the orbits closing respectively upward and downward, similarly to
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Figure 4.9.

For the outer midplane, in the region of the local loss cone corresponding to passing-like

losses, these orbits with minimal up-down poloidal stagnation asymmetry experience a rough

doubling of the loss periods in the unfavorable drift.39 These orbits reach the X-point plane

on the same side as their initial approach, only significantly stagnating in the final stretches

of their trajectories. A similar orbit stagnation is felt in the unfavorable configuration, in the

sense that the trajectories only pass nearby the X-point once. Therefore, the asymmetry is

dominated by the disparity in the poloidal path-length. For the passing-like trapped losses,

the difference in the poloidal distance is even greater, between a factor of 3 and 5, since

the particle still reaches the bounce location in the unfavorable drift. Since the increases

in the poloidal distance do not affect the disproportionate time spent in the stagnated final

leg, the overall increase is somewhat less than the ratio of the poloidal distances. The drift

asymmetry for the passing losses is similar for the two midplanes.

The up-down drift asymmetry is more nuanced for the trapped losses that necessarily

bounce on the HFS before being lost. Such thermal ions originating at the outer midplane, as

discussed in the previous section, pass near the X-point twice in the favorable drift: on their

initial constraint surface moving toward the HFS and again on the loss constraint surface.

Similar ions in the opposite orientation only feel the X-point stagnation near the ends of

their trajectories, like a passing-like loss. The stagnation up-down drift asymmetry roughly

cancels the poloidal path up-down asymmetry, and the statistical loss periods are similar.34

This rough balance is not exactly maintained for different poloidal positions. Although an

interesting feature, this has little influence on the steady-state orbit losses in the presented

model, since the long statistical loss times coupled with the narrowness of these regions of

the local loss cones results in highly collisional trajectories in both cases.

The orange lines in Figure 4.10 compare the statistical loss times for the local loss cones

above the X-point in the favorable configuration and at the top of the plasma in the unfavor-

able configuration. In the former case, the ions have already progressed through some portion
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of their initial stagnation, reducing its ability to compensate for the increased length of the

poloidal trajectories in the unfavorable drift. Here, the discrepancy is moderate, and the

unfavorable configuration typically corresponds to losses that are longer by about a factor of

1.25. The stagnation asymmetry is further mitigated for ions on the HFS, and the statistical

trapped loss periods at the inner midplane experience a similar up-down drift asymmetry

to the passing-like losses. For vertically opposite positions in both drift configurations, the

losses are only stagnated on final approach to the X-point, and the asymmetry is dominated

by the poloidal path length difference.

The analytic formuale for the circular orbit periods and the subsequent approximations

transforming them into loss orbit periods in a diverted experimental geometry with sensitivity

to the ∇B direction well reproduce the orbital loss times, in both magnitude and behavior,

seen in orbit following simulations presented in the literature for similar geometries.34,39 The

narrow regions of any velocity-space loss cone have typically longer average loss times while

the angularly wide regions correspond to faster losses, instigating a nonlinear dependence of

the unscattered fraction, Eq. (4.16), on the ion energy.

4.4 The demarcated loss cone

The unscattered fraction, Eq. (4.16), can now be evaluated along the boundary of a local

loss cone at the rate of pitch angle scattering, loss cone angular width, and statistical loss

period determined as functions of the ion energy for the given velocity-space loss cone. This

function monotonically increases with the ion energy, describing ions that are less collisional,

lost faster, and are more likely to collide onto other loss trajectories, exactly related to the

monotonic increase of the angular width coupled with the monotonic decrease in both the

scattering rate and the loss period with the ion energy. There is typically a large jump in

the unscattered fraction at energies where the passing losses are made possible.

Portions of a local loss cone where the unscattered fraction is zero over the statistical
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loss period are considered ‘collisional’. Ions scatter into and out of the region at a sufficient

rate that over a period of time longer than individual collisions, there is a roughly constant

number of particles in these regions,

n(ρ0, θ0)collisional ≈
ˆ

Σcoll

fd3v, (4.38)

each contributing to some small segment of a lost orbit before scattering out again.33 Eq. (4.38)

is only valid over the location in configuration-space accurately described by the loss cone

projection. Note that ‘collisional’ here is in a sense an effective collisionality since the mea-

sure is of the rate of scattering out of the loss cone compared to the rate of loss. Two loss

regions with the same true particle collisionality can return different unscattered fractions

dependent on the rate of loss and the local loss cone angular width.

(a) (b)

Figure 4.11: The collisionless (solid) and collisional (dashed) local loss cones for two different
radial positions. The collisionless energy scale is set by the passing losses in the former and
the collisionality in the latter. Here, Er = 0 for simplicity.

The remainder of the loss cone, where the unscattered fraction is greater than zero, con-

tributes to the prompt losses of ions fed into the loss regions and is considered ‘collisionless’.
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Upstream, ions supply the loss cone and the fraction determined by Eq. (4.16) are lost on

a first orbit. By continuity, in the steady-state the rate of resupply is equal to the rate of

the loss; the refueling mechanisms drive the rate of loss, only requiring modification by the

fraction expected to survive the transit.

Demarcating the loss cone along the collisional-collisionless cutoff introduces two radial

regions with differing energy scaling for the projected collisionless loss cone, similar to the

effect of the electric potential seen in Chapter 3. Figure 4.11 illustrates the typical collisional-

collisionless cutoffs characteristic of these two regions: one more core-like and the other

roughly occupying the so-called viscous layer, approximately within a centimeter of the

separatrix measured at the outer midplane. In the former, the energy scale of the local

collisionless loss cone is typically that of the passing losses. The narrow regions of a loss

cone comprising the slow trapped losses do not typically satisfy the presented collisionless

condition. Nearing the separatrix, the general ∼ (∆ψ)2 decrease in the threshold energies for

the passing losses eventually reaches energies where the pitch angle scattering is too great for

the lengthening loss periods, and the large ∆θ regions of the velocity-space loss cones cannot

support prompt losses at their lowest energies. Here, the threshold energy is primarily set

by the collisionality of the plasma and ∆θ. It can be seen that the inner midplane supports

lower energy losses very near the separatrix, resulting from the larger angular width of the

local loss cone.

Figure 4.12 compares the radial dependence for the minimum energy of the collisional

and collisionless velocity-space loss cones mapped to the inner and outer midplanes. The

threshold energies of the collisional local loss cones correspond to those of the undemarcated

projected loss cone, and the energy scale is still determined by the lower energy trapped

losses. It can be easily seen that the collisionless energy scale is set by the passing losses

and more directly by the collisionality very near the separatrix. The energetic minima of

the collisionless velocity-space loss cones are typically above the threshold for electrostatic

trapping for the L-mode like radial electric field profiles and are only sensitive to the shift in
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Figure 4.12: The radial energy scale for minimum energy loss for the collisionless and colli-
sional portions of the loss cone about the outer and inner midplanes with a constant electric
potential.

the trapped-passing boundary, as can be seen in Fig. 3.6. For more substantial Er-wells, like

those found in the H-mode, the local collisionless loss cones can begin to feel the influence of

the electrostatic trapping, and as discussed in Chapter 2, for large Er magnitudes such that

the poloidal Mach number for the E × B rotation, VE×B/(v‖Bx/B), is greater than one at

the outer midplane, the E ×B drift can trap otherwise lost ions and dominate the low field

side energy scales.34,47

4.5 The equilibrium Maxwellian overlap and intrinsic

rotation collisionality corrections

As discussed in Section 3.5, the Maxwellian overlap has been referred to as the loss fraction

in the literature,43,44 and has previously overestimated the effects of the ion orbit loss by

including the collisional portion of the loss cone which should be considered full. In the

following, both the overlap and the intrinsic rotation are reconsidered, now only assuming

that the collisionless portion of the loss cone is empty. Again, both measures will overestimate
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the orbit loss since the sparsely filled collisionless loss cone is refueled upstream in the steady-

state; however, the error is expected to be far less than that of Section 3.5.

(a) (b)

Figure 4.13: The collisionality corrected Maxwellian overlap and intrinsic rotation. The
baseline temperature and potential profiles are scanned at both the baseline density profile
and a case twice as dense.

The Maxwellian overlap is corrected to only include the collisionless loss cone,

F (ρ0, θ0) =
1√
π

ˆ 1

−1

Γ(3/2, ε∗T)dζ. (4.39)

where ε∗T is the energy threshold for the local collisionless loss cone for a given pitch direction.

Figure 4.13.a shows the corrected Maxwellian overlap for the same temperature profiles

corresponding to the lines in Fig. 3.7.b. The overlap profiles are presented at both the

baseline density and a case that is twice as dense and therefore twice and collisional.

The collisionality reduces the overlap in two distinct ways. The narrow loss regions

comprising the trapped orbits rarely contribute to collisionless losses and the overlap suffers a

global reduction that appears more or less binary in accounting for reasonable collisionalities.

Very near the separatrix, where the energy thresholds are determined by the collisionality, as
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shown in Fig. 4.12, the effect of the scattering is more finely sensitive to the edge collisionality.

The higher density plasma directly raises the energy thresholds of the local collisionless loss

cones near the edge, proportionately reducing the maximum overlap by an amount inversely

dependent on Ti.

Additionally, the intrinsic rotation is corrected to only account for the rotation of the

collisionless loss cone,

V‖,iol(ρ0, θ0) = −
√

2Ti
πm

ˆ 1

−1

ζΓ(2, ε∗T)dζ. (4.40)

Subplot (b) illustrates the reduction in the outer midplane rotation associated with the

omission of the highly collisional orbit trajectories for the same profiles used in subplot (a).

Like the overlap, the collisionality reduces the radial extent of the rotation and reduces the

magnitude near the separatrix by an amount inversely proportional to the ion temperature.

Recall that the average loss times discussed in Sections 4.3.4 and 4.3.5 are about a factor

of two longer for collisionless ions in the unfavorable drift, equivalent to a similar increase

in the collisionality of the ions within the loss cone. The collisionality correction introduces

an up-down drift asymmetry that has been experimentally observed; the intrinsic rotation

along the outer midplane is more co-current in the favorable configuration. The difference

in the rotation due to the orbit losses in the opposing configurations appears less than that

experimentally measured; however the measured difference is greatest in the SOL and the

orbit loss calculations here only approach the separatrix.39 The calculated difference within

the separatrix appears to be on the same order as seen in the experiment. Furthermore, the

corrected intrinsic rotation calculation predicts the parallel rotation profiles in the matching

baseline SOLPS simulation to a high degree, see Appendix A.
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Chapter 5

Steady-state ion orbit loss

It is now appropriate to extend the orbit loss model to estimate the steady-state losses.

Chapter 3 established a framework for the construction of the ion orbit loss cone for ther-

mal orbits lost via the influence of the X-point, classifying the ion trajectories open to the

divertor. Chapter 4 considered the effects of collisions on ions with these instantaneous

trajectories, determining their likelihood for a first orbit loss. Velocity-space loss cones de-

scribing ions localized to a spatial observation point have unique separations demarcated

about the qualitative change in the probability that a non-negligible fraction of ions in the

local cone will be lost on first orbits. The two regions, discussed in Chapter 4, are referred

to as the collisional and collisionless loss cones.

The collisional portions of the local loss cones describe a roughly constant number of

particles in thermal equilibrium with the local Maxwellian that each undergo a small seg-

ment of a lost orbit before scattering out, being replaced by a different ion.33 Any loss

trajectory within the collisional loss cone will satisfy the collisionless criterion at some point

sufficiently near the loss condition. For the collisionless velocity-space loss cone mapped to

some observation point, any ensemble of ions within the cone launched from that location

will perpendicularly diffuse in velocity-space such that an appreciable fraction remains in

the loss cone throughout the loss orbit, by construction. It follows that this very fraction of
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ions resupplying the loss cone are lost to the divertor on their first orbit. Continuity informs

that in the steady-state, the rate of refueling the loss cone, modified by the fraction that

are lost on a first orbit, is equivalent to the rate of loss. Any mechanism that refills the

collisionless loss cone contributes to the prompt orbit loss current. Naturally, pitch angle

scattering should also be considered as a refueling mechanism. Such a collisional process

is largely unaware of the downstream field structure and simply acts to spread initially di-

rected ensembles of ions across the pitch angle space. Simply put, the physics driving the

scattering into and out of the loss cone is the same. In the presence of the loss mechanism,

the collisionless loss cone is expected to be more sparsely filled, corresponding to a diffusive

particle flux into the cone.

The collisional refueling of the loss cone does not capture the complete picture. The

anomalous radial particle flux associated with the ambipolar turbulent transport contributes

to the net transport of ions from confined trajectories to those lost. The typical dominance of

the anomalous transport compared to the neoclassical transport suggests that this contribu-

tion could be significant. In Section 5.10.1, an estimate for the orbit loss current associated

with the radial particle flux into orbits within the loss cone is adapated from the literature49

for the presented orbit loss model, where it appears that the anomalous contribution is of

the same order as the current resulting from the collisional processes. Furthermore, the

ionization of neutral particles contributes to the sourcing of the collisionless loss cone and

is briefly discussed in Section 5.10.2. The remainder of the thesis maintains a focus on the

interplay of pitch angle scattering into and out of the loss cone structure over the timescales

of orbit loss.

The appearance of the upcoming section title as an oxymoron deserves a brief reprisal of a

discussion found in the previous chapter. The definition of the collisionless loss cone does not

exclude orbits that experience collisions. Orbits on loss trajectories scattering to other loss

trajectories will still correspond to a loss and are thus maintained. The interplay between

the local ion collisionality and the local loss cone structure is influential in demarcating the
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collisional and collisionless portions. The collisionless loss cone can be appreciably refilled by

collisions exactly because the orbits within this portion experience a non-negligible amount

of collisions on their paths to loss. The lack of collisional drive into the truly collisionless

parts of the loss cone will be found to be of crucial importance for the temperature and

density dependencies of the orbit loss.

5.1 Collisionally refilling the collisionless loss cone

A Maxwellian distribution with a hole caused by the magnetic field structure can never relax

this feature away. Even for local ion temperatures far below the loss cone boundary, some

portion of the energetic tail will interact with the loss structure. In the steady-state, the

collisions continue to redistribute the constituents of the distribution function, with no clearly

defined beginning nor end to the process. All locations in the velocity-space experience such

motions.

This steady-state is captured by averaging the perpendicular diffusion, Eq. (4.2), over a

period of time longer than its characteristic scale,

〈
du⊥
dt

〉
=

1

T

ˆ T

0

du⊥
dt

dt (5.1)

= v

√
ν⊥
T
,

where u = v − v̄. The forms of the slowing down and energy exchange processes and their

connection to the diffusion processes via Eq. (4.13) suggest that T should be taken to be

some number of time constants τ⊥ = 1/ν⊥,

〈
du⊥
dt

〉
=
ν⊥v√
n
, (5.2)

where n is the chosen number of time constants, acting as a tunable model parameter. The

model is, perhaps surprisingly, relatively insensitive to reasonable changes in n due to the
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slow growth of the inverse root dependence. For the duration, this parameter is chosen to

be n = 3, mirroring a standard choice for decaying processes. The motions described by

Eq. (5.2) are immaterial for Maxwellian distributions without loss regions; fungible ions are

replaced by each other; the diffusive and dynamical friction processes are balanced.51,123 In

the presence of a loss cone, Eq. (5.2) finds utility. A symmetry of the system is lost. Ions

diffusing towards the loss cone are not necessarily replaced by those diffusing out of that

region, since the latter is depopulated by the loss orbits open to the divertor.

Accounting for the probability of rescattering out of the local loss cone and the alignment

of the loss cone’s surface in regard to the direction of pitch angle scattering modifies the

characteristic steady-state width per unit time, seen in Eq. (5.2), to only include the ions

that contribute to the fruitful refueling of the loss cone,

〈
dw⊥
dt

〉
= F (E)

ν⊥v√
3
|cos(α)| . (5.3)

Here, α is taken as the angle between the normal of a velocity-space loss cone surface and

the direction of the scattering in velocity-space, and F (E) is the unscattered fraction seen

in Eq. (4.16), which is evaluated at the statistical loss periods of Eq. (4.37). The change

from u to w is meant to highlight that Eq. (5.3) no longer considers the velocity-space flows

but rather those across the local collisionless loss cone boundary that result in first orbit

losses. Eq. (5.3) represents the effective velocity-space width per unit time that contributes

to the refueling of the loss cone and will simply be referred to as the effective width. In the

steady-state, the number of ions that flow into the loss cone over a given time is directly

proportional to this time frame.

Figure 5.1.a investigates the effective width as a function of energy over a simple velocity-

space loss cone boundary that is assumed to lie upon a line of constant pitch angle, α = 0.

Each line corresponds to a velocity-space loss cone of a different and constant angular width,

in effect each similar to a standard local collisionless loss cone comprising the passing-like
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(a) (b)

Figure 5.1: The effective width for a variety of constant angular width simple loss regions,
subplot (a). The steady-state collisionless orbit loss’s temperature dependence is estimated
in (b) via integration over the simple loss cone boundary with the effective width.

orbit losses. The effective width is normalized such that the maximum for the ∆θ = π/2 case

is unity, and the energy scale is normalized to the cutoff energy for this case. It is also chosen

that the normalization energy is equal to the local ion temperature. A different choice for

the ion temperature would explore the sensitivity of Eq. (5.3) to the discrepancy between the

ion-ion collisional frequency, Eq. (4.10), and the perpendicular diffusion frequency, Eq. (4.6).

The collisionless cutoff energy, where F (E) = 0, scales with the inverse of the angular width

of the local loss cone, and consequently, the wider cones are more supportive of steady-state

orbit loss. For each case, the contributing width peaks about some energy, typically slightly

above twice the cutoff energy, with the lower energy branch being suppressed by the increased

rate of scattering out of the loss cone and the higher energy branch by the decreased rate

of scattering into the region. The crucial implication here is that the collisionality and local

loss cone structure set an energy that is most efficient at driving the prompt orbit losses. If

the distribution function places local ions at these energies, the losses will be great.

Figure 5.1.b considers the effect of the velocity-space particle distribution by integrating
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local Maxwellian distribution functions of differing temperature over the effective width.

The same constant angular width cases shown in subplot (a) are presented, with the ion

temperature again being normalized to the same cutoff energy. The integrated orbit loss

was normalized to unity at the normalized ion temperature for the ∆θ = π/2 case. For

temperatures beneath the cutoff energies, there is a strong growth in the rate of orbit loss

with increasing temperature. The orbit loss reaches a maximum when the distribution

function optimally concentrates particles at energies that effectively refill the loss cone with

ions on orbits that can be lost sufficiently quickly. This temperature is called the saturation

temperature as the orbit losses decrease for higher temperatures at the same density, albeit

at a slower rate than the low temperature growth. Although higher energies of the local

loss cone are thermally accessible at the higher temperatures, the conservation of particles

dictates that the lower energy regions of velocity-space become more dilute. Beyond the

saturation temperature, the peaked contributing width seen in subplot (a) spans a decreasing

number of ions. Compared to estimates in the literature,50,64 the effective width features two

notable improvements: the scattering of ions out of the loss cone is considered by comparing

the energy dependent collisionality to the loss orbit timescales and the energy dependence

of the collisional refueling is maintained.

We briefly expand on a subtlety that is only mentioned in the above. The contributing

widths illustrated in subplot (a) are sensitive to the ion temperature, with a weak sensitivity

in the Coulomb logarithm evaluated in ν0 and a stronger sensitivity in the perpendicular dif-

fusion rates found in the time-averaged pitch angle scattering and the unscattered fraction.

For a position along the velocity-space loss cone boundary corresponding to some fixed en-

ergy, increasing the temperature decreases the rate of pitch angle scattering at this position,

as seen in Figure 4.2.a, shifting the cutoff and peak to lower energies and increasing the rate

of the high energy falloff. Increasing the temperature by an order of magnitude maximally

results in a reduction of ν⊥ by about a factor of three, simultaneously reducing the effective

width by the same factor and lowering the cutoff energy by its root. These lower energies
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now supportive of the orbit losses are prone to depopulation in the distributions of greater

temperature.

5.2 The collisionless ion orbit loss current

The number of ions lost due to the fruitful scattering of ions into the collisionless loss regions

in the steady-state is calculated by integrating the distribution function over the loss cone

with a width given by ∆t
〈
dw
dt

〉
, see Eq. (5.3). Here, ∆t is simply a reference change in the

time over which the losses are counted, analogous to a timestep in a numerical scheme. For

simplicity, the distribution function is taken to be constant over this width. Thus, the local

charge density loss rate takes the form

∇ · jc-less = Ze

ˆ

S

〈
dw

dt

〉
fdS (5.4)

=
Ze√

3

ˆ

S

ν⊥v

(
2erf

(
∆θ√
2ν⊥τl

)
− 1

)
|cos(α)| fdS.

S refers to the surface of the collisionless loss cone in velocity-space. Eq. (5.4) can easily

be reduced to a line integral due to the symmetry about the v‖ axis. Additional loss terms

beyond the current can be similarly constructed and will be discussed in Section 5.9. Since

the projected velocity-space loss cones only accurately describe the lost orbits for a given

observation location, the distribution function in Eq. (5.4) is local. To be consistent with

the chosen particle distributions to estimate the collisionality rates, local Maxwellian dis-

tributions determined by the local temperature and density are chosen. The distribution

in Eq. (5.4) can easily be changed, but more care is necessary to determine the collisional

behaviors in different backgrounds. It is assumed that the anomalous radial transport of

energy and particles maintains these profiles in the steady-state, as is seen in the SOLPS

code.

The analysis is continued by investigating the results of calculating Eq. (5.4) within the
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(c)

Figure 5.2: The log-scaled distribution of collisionless ion orbit losses in the physical plane,
(a) and (b), and the computational plane, (c).

SOLPS framework under the assumption of Maxwellian distributions described by the local

plasma conditions. Configuration-space is represented by cells, gridding the poloidal plane

along a radial and poloidal component. The orbit loss calculations are performed at the cell

centers and applied over the cell. Cells at the same radial position correspond to the same

flux surface, therefore the configuration-space radial resolution is finest near the separatrix

along the midplanes and coarsest near the X-point. Poloidally, the resolution is chosen to

be greatest near the X-point. The results shown are for the baseline L-mode case nearing

the L-H transition, seen in Appendix A.
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The loss distribution corresponding to the baseline case is presented in Figure 5.2. As

expected, the losses are significant in the edge region where the collisionless loss cone is

thermally accessible. The radial domain for non-negligible losses is quite narrow, about

half a centimeter at the outer midplane, making it difficult to analyze when plotted in

the physical domain, subplots (a) and (b). For this reason, the computational domain is

preferred for analysis. Refer to Appendix A or the SOLPS user manual for a visualization of

the mapping between the computational and physical domains in SOLPS. The collisionless

ion orbit loss current consists of a similar order of particles flowing from the low field and

high field sides, with the losses centered about the X-point; however, the qualitative behavior

of the collisionless losses flowing from either side are different.

The radial domain of the collisionless loss orbits originating from the low field side is

greater than those from the high field side. Toward the core, the energy scale of the colli-

sionless portions of the local loss cones is determined by the minimum energies associated

with passing losses. For a standard positive triangularity tokamak, the energy threshold for

the HFS co-passing losses is naturally higher, being only accessible over a narrower radial

annulus than the LFS counter-passing losses, see Section 5.8 for a discussion on the plasma

shaping and the orbit loss current. Very near the separatrix where the collisionality deter-

mines the energy scale of the collisionless losses, the large angular widths of the HFS local

loss cones sustain collisionless losses at lower energies, enhancing the HFS losses near the

LCFS. The uniformly slightly diminished losses very near the LCFS are a consequence of

the localized radial electric field well and the slower baseline orbit periods associated with

an increased safety factor.

5.3 The collisional ion orbit loss current

Any loss orbit contained within a collisional portion of a local velocity-space loss cone will

satisfy the collisionless condition at some more advanced position along the loss trajectory.
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The collisionless loss cone model estimates the collisional transport onto these segments

where a non-negligible fraction of the loss cone refueling is lost on a first orbit. Within the

considered framework, there are two classes of orbit losses that are missed by the collisionless

current calculated in the previous section. The first is simply related to an under resolution

in configuration-space; trajectories within collisional portions of projected loss cones very

near the separatrix are not resolved to a position near enough the loss condition where they

inhabit a local collisionless loss cone. The second is the so-called X-loss, a particular subset

of the general orbit loss where the trapped particles bounce in the vicinity of the X-point.33

As seen in Fig. 4.11, the local loss cone mapped very near and directly above the X-point

does not contribute to the losses calculated in the previous section.

This current is modeled following the work of Chang et al ,33

j∇B,coll(ρ, θ) = Ze

ˆ

Σcoll

(v∇B + vC) fd3v, (5.5)

where Σcoll is the local collisional loss cone, housing particles that are taken to be in thermal

equilibrium with the local Maxwellian. The flow described by Eq. (5.5) is vertically directed

and models the vertical drift motions of the roughly constant number of particles within

the local collisional cone. In form, the so-called collisional loss current behaves similarly to

the effective diamagnetic current employed in SOLPS; however, the collisional ion orbit loss

current only includes the effects of orbits satisfying the loss condition, and only a subset of

the ions contribute. Therefore, it is assumed that the length scale is given by the vertical

distance above the X-point, the point defining the loss plane,

∇ · jcoll ≈
Ze

z − zX

ˆ

Σcoll

(v∇B + vC) fd3V (5.6)

≈ m

2RB(z − zX)

ˆ

Σcoll

v2
(
1 + ζ2

)
fd3v,
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where it has been assumed that the ∇B and curvature drifts can be combined,126

v∇B + vC =
m

2Ze
(v2
⊥ + 2v2

‖)
B ×∇B

B3
. (5.7)

In implementation, the length scale is extended by about an order more than a typical

Larmor radius, ∼ 1 cm for a 100 eV ion, to ensure the ions are destined for the divertor.

(a) (b)

Figure 5.3: The log-scaled distribution of collisional current source terms in the physical
plane (a) and the computational plane (b).

The collisional losses for the same L-mode parameters behind Fig. 5.2 can be seen in

Fig. 5.3, taking on a much simpler distribution. For these parameters, the collisional losses

are lesser in magnitude compared to the collisionless losses, although they are non-negligible.

The losses are also centered around the X-point. This is partially by construction, as the

length scale was knowingly selected, but this choice is rooted in the fact that the loss cones

for orbits vertically above the X-point are narrow up to typically superthermal energies due

to the rarity of passing losses at these positions. The energy scale for the collisional losses is

the favored loss energy scale of the trapped orbits, allowing the collisional losses to contribute

from deeper inside the plasma.

Figure 5.3 reflects a notable feature of the equilibrium that will be further discussed in
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Section 5.6. The collisional losses are far easier to perceive in the physical domain due to

the flux surface expansion near the X-point. The same source terms mapped to the top of

the plasma would correspond to fewer losses because the plasma density is roughly the same

over the radially thinner cells bounded by identical flux surfaces.34

5.4 The total ion orbit loss current

The distributive nature of the divergence operation allows for the representation of the total

ion orbit loss current in the current continuity equation to simply be the sum of Eqs. (5.4)

and (5.6),

∇ · jiol = ∇ · jc-less +∇ · jcoll. (5.8)

Figure 5.4 illustrates the full distribution of the ion orbit loss current for this particular L-

mode. The constituent parts of the total current can be recognized following the discussions

in Sections 5.2 and 5.3. Here, the dominant part of the current results from perpendicular

velocity-space diffusion into upstream local collisionless loss cones, with a smaller component

coming from the collisional loss estimate. This relationship will be studied over parameter

space in Section 5.5.

Subfigures (a) and (b) in Fig. 5.4 illustrate the same current distribution in terms of the

absolute contributions to the radial current per cell, with units Amperes, and as the source

terms found in the continuity equation, with units Amperes per cubic meter. When plotted

in absolute terms, the collisional contributions above the X-point appear more significant

due to the larger cell volumes via the flux expansion. Similarly, the HFS losses appear less

dominant since the poloidal plane sweeps out a smaller volume at smaller major radii when

rotated about the toroidal coordinate. The edge-most cells at the outer midplane appear to

contribute less due to the flux squeezing.

The last closed flux surface satisfies a simple steady-state quasineutrality condition: there

138



(a) (b)

Figure 5.4: The log-scaled distribution of the total ion orbit loss in the computational plane.
Subplot (a) is presented in terms of the absolute contribution while (b) presents the source
terms as current per volume.

must be no net charge flowing across the separatrix, or else there would be a build-up of

charge and quasineutrality would be destroyed. From this perspective, the two-dimensional

structure of the ion orbit losses is less important. The cumulative radial sum, starting from

the core boundary, of the poloidal sum of the losses seen in Fig. 5.4.a results in the radial

current profile for the orbit loss. The radial current profiles corresponding to the earlier plots

in this chapter are shown in Figure 5.5. The radial domain of influence nearly matches that

of the collisionless Maxwellian overlap, with a qualitatively similar profile. The dominance of

the collisional current nearer the core and of the collisionless losses very near the separatrix

can be clearly seen. We note that the order of magnitude of the orbit loss current reproduces

that seen in the literature.100,101,127

To maintain quasineutrality, there must be some composition of currents with the equal

and opposite divergence. This topic is discussed in the upcoming chapter in the environment

of the tokamak edge as modeled by SOLPS. As seen in Chapter 2, the equilibrium solution

for this radial current balance simultaneously sets the toroidal rotation and the radial electric

field, within the context of the force balance. Before that discussion begins in earnest, we
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Figure 5.5: Radial current profiles for the distributions seen in Figures 5.2–5.4

will investigate the orbit loss current as a function of both the ion temperature and density,

the ∇B drift direction, ions of different mass, and the horizontal position of the X-point.

The chapter will conclude with brief descriptions of the secondary ion orbit loss source terms

and additional mechanisms that resupply the loss cone.

5.5 Analytic parameter scans: Ion temperature and

electron density

Here, we will investigate the dependency of the orbit loss current on both the ion temperature

and the electron density. The corresponding baseline profiles are taken from an L-mode

SOLPS simulation with an input heating power of 1.2 MW split evenly between the ions

and electrons and a core density level held at 2.4 · 1019 m−3, see Appendix A. The electric

potential profile is obtained in a similar way. Here, and for the remainder of the thesis, the

core boundary specifically refers to the ρpol = 0.973 flux surface, the inner boundary chosen

for the simulations. The analytic scans are performed with profiles related to the baselines by
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multiplicative factors, essentially under the assumption that the profiles maintain a constant

shape and the length scales do not considerably change. In Chapter 6, similar parameter

scans will be investigated over a necessarily more narrow parameter space with the plasma

background being self-consistently modeled within the SOLPS framework.

Let us first gather our expectations and intuitions about these parameters. The ion tem-

perature primarily determines the access of the thermal ions to the loss region, as can be seen

in Figures 3.6 and 4.12, with the lowest energy access occurring nearest the separatrix. The

radial coordinate energy dependence for the local collisionless loss cones is locally far steeper

than the collisional portions of the loss cone; shape preserving increases of the temperature

profile will favor growth in the collisional current. Beyond simply providing access to the

local loss cone structures, the ion temperature determines the specific distribution of ions

in velocity-space along the loss cone boundary, where the effectiveness of ions contributing

to the orbit loss is maximized about an energy dependent on the local loss cone structure

and plasma parameters, see Fig. 5.1. To ideally maximize the orbit losses, the temperature

profile would need to become steeper rather than increase as a whole, allowing for losses

originating deeper from the core without reducing the losses nearer the separatrix.

The radial electric field is neoclassically expected to grow with the ion temperature under

constant length scales. Consider the pressure gradient term,

Er ∼
∇p
n
∼
(
T
∇n
n

+∇T
)
∼ T

hy
∼ T. (5.9)

Scanning over the ion temperature should naturally be coupled with a similar scan over the

electric field strength. For L-mode strength Er wells, the local collisionless loss cones are

typically only shifted in velocity-space whereas the lower energy collisional portion can be

appreciably affected by the electrostatic trapping.

Scanning over the ion temperature can be thought of as scanning over the input power.

For reference, the ion temperature at the baseline density increases linearly with the input
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power by about 45 eV over an increased heating of 1 MW, again evenly distributed to the

ions and electrons. In the SOLPS scans in the upcoming Chapter 6, the ion temperature is

scanned via a scan in the energy flux through the inner core boundary at a constant plasma

heat conductivity χi associated with the anomalous transport.

The electron density plays a fundamental role in the ion orbit loss. First and foremost,

a larger density makes available more ions to be orbit lost, f ∼ n, while the matching

increase in the number of electrons still correspond to orbits more closely tied to a flux

surface. Furthermore, the ion collisionality is directly proportional to the density, a first

consequence being that the boundary between the collisional and collisionless loss cone for a

given field geometry ∼
√
n, see Fig. 5.1. The increased pitch angle scattering out of the loss

cone is matched by an increased pitch angle scattering into the cone, and the receded local

collisionless loss cones are refueled at a greater rate. These properties suggest that a high

density plasma corresponds to a greater orbit loss, which can be true if the ion temperature

is held constant, a condition that clearly requires an increased input power for the greater

particle densities.

Over the parameter scan, one expects energy to be conserved such that the heat flux

through each closed flux surface remains constant,

qi = nχi∇Ti. (5.10)

For a constant heat conductivity and spatial scale, one expects that T ∼ 1/n. However,

it is seen in SOLPS simulations that the effective heat conductivity including the effects

of the neutrals is sensitive to the electron density. For low density plasmas, the neutrals

can penetrate more deeply into the core from the SOL and are able to more effectively cool

the edge. For a given input power, the relation between the temperature and density more
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closely resembles

T ∼ 1/
√
n. (5.11)

Subplots (a) and (b) in Figure 5.6 illustrate the temperature scan with the baseline

density profile: (a) maintains the baseline electric field profile while (b) also scans over the

radial electric field strength as indicated by Eq. (5.9). The two collisionless currents are

relatively similar, both experiencing a steep initial growth at the low plasma temperatures.

In both cases, the collisionless current peaks for some scaled temperature profile, generalizing

the notion of the saturation temperature. There is an enhanced reduction in the collisionless

losses at the high temperatures when coupled with scaled electric fields; the discrepancy

grows with increasing Er. Here, the E×B rotation is able to trap ions on the low field side.

The radial electric field further plays the significant role of suppressing the lower energy

collisional loss current, which exhibits a moderate linear growth with the ion temperature

when the field is held constant. In the coupled scan, the collisionless losses dominate until

the two components contribute roughly equally at high temperatures atypical of an L-mode,

resulting in the plateaued total orbit loss current at high temperature.

The dashed lines in subplots (a) and (b) correspond to an artificial 50% increase in the

baseline potential profile, since the orbit loss current is expected to positively contribute to

the magnitude of the edge electric field. An enhancement of the radial electric field profile

has little effect on the initial period of strong growth and influences the magnitude of the

current plateau.

Subplots (c) and (d) illustrate the density scans. The former, again, presents a näıve

viewpoint where the other parameters are held constant. The latter figure alters the temper-

ature and electric field profiles as specified by Eqs. (5.9) and (5.11), approximating a density

scan over a constant input power. When comparing the two cases, the change in the losses

inflects about the point of normalization; the simpler case has enhanced losses for ne/ne0 < 1
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(e) (f)

Figure 5.6: Analytic scans of the loss current flowing across the separatrix in temperature,
density, and Er strength. The x-axes indicate which quantities participate in each scan.
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and reduced losses for ne/ne0 > 1 compared to the more complete scan. In the first range,

the ion temperature is underpredicted, with the opposite occurring in the second. The colli-

sionless loss at the lowest densities are notably greater with the underpredicted temperature

due to the collisionless oversaturation.

A well-defined high and low density branch can be seen in Figure 5.6.d. Along the low

density branch, there is a rapid increase in the orbit loss with increasing density. In the

context of Fig. 5.1, the edge local collisionless loss cones here have lower threshold energies

but experience both a reduction in number of ions available for scattering into the loss cone

and the rate at which they do so. The collisionless velocity-space loss cones achieve their

maximum loss at a lower temperature, and, in a sense, saturate at some level of loss related

to the density. The low density branch corresponds to the oversaturation of an increasing

number of thermally accessible local collisionless loss cones. The total loss’s peak occurs near

the peak of the collisionless losses, slightly shifted toward higher density by the collisional loss

current. The high density branch is characterized by a reduction in the collisionless losses

that is replaced, typically at a reduced rate, by the collisional current. The collisionless

loss reduction follows the classical principles of the ion orbit loss: the thermal ions at low

temperatures are not able to access the collisionless loss cone, which here is receding toward

higher energy due to the
√
n dependence for the collisionless cutoff. The collisional current

grows with the density for two reasons: the number of particles uniformly increases and the

collisional region increases in size. The growth is mitigated by reduced accessibility to the

loss cone with decreasing temperature.

Subplots (e) and (f) illustrate the density scans over a constant input power at three

different levels, introducing scans corresponding to a 50% and 100% increase in the ion tem-

peratures. Subplot (e) shows the total current while (f) shows the breakdown by component.

As the input power is increased, both the maximum orbit loss current and the density that

it occurs at increase, signifying a dynamic change in the density branches. As the local colli-

sionless loss cones for a given density profile approach saturation, the loss growth stagnates.
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An increase in the input power naturally increases the range of densities corresponding to

this behavior, thus increasing the range of the low density branch where increases in the

ion temperature have diminishing returns. Along the high density branch, the majority

of thermally accessible local collisionless loss cones are still in the initial period of strong

growth with increasing temperature as seen in Fig. 5.6.b, and the losses strongly respond

to increasing temperatures until they join the low density branch. The high density branch

for the collisionless losses inherently decays more slowly than the growth in the low density

branch. This rate of decay is mitigated in the total loss current by the growing collisional

current found at higher densities.

Both the collisionless orbit loss current and the total orbit loss current exhibit high and

low density branches at a constant input power. This feature of the orbit loss is newly

reported and helps cement the role played by the orbit losses in the L-H transition, which

shares the behavior in its power threshold. For both, the low density branch is steeper

than the high density branch, and the maximum orbit loss occurs at similar densities to

the minimum power threshold.22,23 The branching behavior is thought to emphasize the

importance of the ion channel as the low density branch at AUG is typically characterized

by Te > Ti;
19,23 however, the behavior is also exhibited on JET where Te = Ti along the

low density branch,19,22 suggesting that the phenomenon persists for well-heated ions. The

results suggest that a more detailed survey of the orbit loss current should be performed using

experimental equilibria and profiles for different density plasmas near the L-H transition

power thresholds to determine to what degree the suppressed low density branch orbit loss

current is responsible for the behavior. In a similar vein, Sections 5.6–5.8 explore other well-

known behaviors in the empirically known L-H transition power threshold: the ∇B drift

direction, the main ion mass, and the horizontal position of the X-point.
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5.6 ∇B drift direction

The lost orbit periods calculated in Section 4.3.5 are sensitive to the ∇B drift direction, see

Figure 4.10. In the unfavorable drift, the minimum energy losses cross the separatrix at the

top of the plasma, about the position vertically opposite the X-point. In the SOL, these

ions have long trajectories around the core plasma toward the lower divertor and are able to

rescatter onto confined orbits before being lost. In other words, the loss orbit paths in the

poloidal plane are generally far greater in the unfavorable drift; however, this discrepancy

overestimates the increase in the orbital period due the poloidal orbit stagnation effect near

the X-point. In the unfavorable drift, the unscattered fraction, see Eq. (4.16), is evaluated at

statistical loss periods that are roughly a factor of two greater for the important regions with

large ∆θ, a similar effect to a reduction of the local loss cone angular width by a factor of
√

2,

see Figure 5.1. The on-average increase of the loss orbit periods under the unfavorable drift

can alternatively be thought of as an effective increase in the particle collisionality in terms

of scattering out of the loss cone: orbits are more likely to be removed from the loss cone

before achieving loss but are not more likely to scatter in.38,39 Consequently, the average

local loss cone supports fewer collisionless losses due to the greater cutoff energies.

The increased energetic threshold for collisionless losses with the ion drifts pointing away

from the active X-point naturally increases the proportion of the loss cone deemed colli-

sional. In spite of this, the collisional orbit loss current is not substantially greater in this

regime. The centralization of the losses about the top of the plasma consequently describes

locations with more moderate flux expansion compared to the region near the X-point. The

steady-state collisional current covers larger areas of velocity-space that correspond to radi-

ally thinner areas of configuration-space.34 The loss condition for orbits considered in the

collisional loss current is also weaker in the unfavorable drift, and the assumed length scale

is extended by a few centimeters to ensure loss.

Figure 5.7.a illustrates the loss distribution in the unfavorable configuration, while sub-

plot (b) reproduces the downwards drift case from Section 5.4 with a matching scale for
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(a) (b)

Figure 5.7: The log-scaled distribution of the total ion orbit loss in the computational plane
for the unfavorable, subplot (a), and favorable, subplot (b), configurations.

comparison. Both cases have identical plasma profiles, taken from the baseline favorable

drift configuration case. The basic features are easily seen: a shift in the losses, now center-

ing about the top of the plasma, along with a total reduction in the loss.

Figure 5.8 is analogous to Figure 5.6.e, presenting the total orbit loss current in the un-

favorable drift direction as a function of the electron density over a constant input power.

The comparison is again made for identical profiles taken from the baseline favorable drift

simulation, with the same input powers shown in the earlier figures. The loss current still

exhibits low and high density branch behaviors in the same way as in the favorable con-

figuration. The local collisionless loss cones in the unfavorable configuration recede toward

higher energy, requiring an increased temperature to reach saturation. A rough doubling

of the input power in the unfavorable drift corresponds to a similar total loss current in

the favorable configuration. The high density current plateau is slightly elevated for the

unfavorable drift, due to the slight increase in the collisional current.

Again, the total orbit loss current displays another known feature of the L-H transition

power threshold. Although such a behavior has been suspected of the orbit loss current,38,39

it is newly reported here for the steady-state orbit loss current. A next step would be to
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Figure 5.8: The total orbit loss current as a function of the edge density at a constant input
power for the unfavorable drift configuration. The dashed line corresponds to the favorable
configuration.

compare the orbit loss current in the opposite drift orientation using profiles determined

under these conditions.

5.7 Main ion mass

Section 3.1.2 briefly introduced the dependence of the ion orbit loss, through the orbital

width, on the mass of the orbiting particle. The conclusions reached were that the electron

loss is negligible compared to the ions, since me � mi, and that heavier ions with the same

electric charge have loss trajectories at lesser energies. This qualitative relationship between

the orbit loss and the ion mass is another common factor with the L-H transition power

threshold, which exhibits an m−1
i dependence,25 and should be explored in greater detail.

The orbital width mass sensitivity manifests a similar mass dependence in the threshold

orbit loss energies, Eq. (3.10). Since the X-point mediated orbit loss trajectories approach
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arbitrarily low energies near the separatrix, see Fig. 3.6, the ion mass dependence essentially

expands or contracts the radial domain where the loss cone is thermally accessible and,

as seen in Fig. 4.12, the radial domain where the collisionality sets the threshold for the

collisionless losses.

Figure 5.9: The temperature dependence born from the effective width for different hydrogen
isotopes.

Although the more massive ions have thermally accessible local loss cones that penetrate

deeper into the core for similar temperatures,40 the rates of the collisional refueling of the

cones are decreased, complicating the steady-state orbit loss dependence on the ion mass.

The ion-ion collisionality, Eq. (4.10), exhibits an m−1/2 dependence when considering ions of

the same kinetic energy. This behavior propagates into the effective width, Eq. (5.3), in the

collision frequency and in the unscattered fraction, Eq. (4.16), which shifts toward a larger

cutoff energy, F (E) = 0.

The influence of the ion mass on the orbit loss via the collisionality can be seen in Figure

5.9, which is similar in nature to Fig. 5.1.b. Again, the orbit loss is estimated by integrating
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the flux into a simple loss region that lies upon a line of constant pitch direction. The energy

and ion temperature are normalized to the cutoff energy for the deuterium case shown in

blue. Also plotted are cases where the ion mass corresponds to that of hydrogen or tritium.

The shift in the cutoff energy materializes as a shift in the saturation temperature for the

loss and follows an m−1/4 trend. Below the saturating temperatures, the losses are roughly

equivalently driven into the loss cone, with a slight preference for the higher masses due to

the shift in the cutoff energy. For the higher temperatures nearing and above the peaking

temperatures, the less massive species are more effectively driven into the loss cone due to

the increased collisionality. For increasing temperatures, the scaling approaches the m−1/2

dependence of the collisionality. Comparatively, the asymmetry is significantly reduced for

lower energies where a significant fraction of the distribution functions lie along F (E) < 1.

Figure 5.10: The total orbit loss current flowing across the separatrix as a function of the edge
density at constant input powers for the different hydrogen isotopes: hydrogen, deuterium,
and tritium. The temperature profiles correspond to those in Fig. 5.6.e for matching colors.

The interplay between the increase in the orbital width and the decease in the ion-

ion collisionality with mass can be seen in Figure 5.10. The total orbit loss currents are
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plotted for the three ion species seen in Fig. 5.9 over the same density, temperature, and

Er profiles matching the lines of corresponding color seen in Fig. 5.6.e and Fig. 5.6.f and

Fig. 5.8. It is assumed that the relationship between these parameters is the same for the

three species, neglecting changes in the ion-neutral interactions with the ion mass. Also, note

that the stated input powers for the referenced figures only directly apply to the deuterium

case. There is experimental evidence that the edge (here ρpol ∼ 0.98) ion temperatures and

gradients are similar between the different isotopes just before the L-H transition, implying

that the heat diffusivities at the transition ∼ m−1
i .25,26 Under the strong assumption that the

similarity continues to the separatrix, the ion temperature profiles would be similar for the

respective required input powers. To that end, it is fruitful to compare the different species

under the same profiles, with the understanding that the exact conditions corresponding to

these profiles are murky.

It can be generally seen under these conditions that the orbit losses scale with the ion

mass. For a given edge density, the losses scale directly with the ion temperature, again

displaying low and high density branches where the temperatures scaling is reduced in the

former. Along the low density branch, the losses are virtually identical for each species. Here,

the increased collisional loss cone refilling of the light species is approximately canceled out

by the increased radial ranges of the heavier species. For the constant yet not precisely

known input powers that correspond to the same temperature profiles, the peaked orbit loss

current is lesser and occurs at a lower density for smaller mass isotopes. The peaking location

here shifts due to the shift in the collisionless cutoffs due to the increased collisionality for

decreasing ion mass. For the high density branch, the losses are greater for the higher mass

isotopes. The absolute difference between the species grows with the ion temperature for

a given density. Here, the isotope dependence is dominated by the increase of the radial

range enjoyed by the heavier ions, as the rates of collisional refueling are similar between the

isotopes at temperatures below the saturation temperatures, see again Fig. 5.9.

The similarity between the forms seen in Figures 5.9 and 5.10 is a bit deceptive. The
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x-axes in the two plots are essentially reversed; the ion temperature decreases with increasing

density at a given input power in Fig. 5.10. The high temperature behavior seen in Fig. 5.9

mirrors the high density behavior seen in Fig. 5.10, where the relative magnitudes of the

lines for each ion mass are inverted. The near cancellation of the orbit width and collisional

effects for the low density orbit loss branch can be understood here. The ratios of the orbit

loss for the different species along the high density branch, where the mass dependency is

governed by the orbit width, is nearly the inverse of those for the simple loss cone orbit loss

estimate at temperatures above saturation. Since the orbit loss width effect is insensitive

to the collisionality, it is maintained for the low density branch, and the two effects nearly

cancel in the region.

A more rigorous study on the relationship between the plasma profiles and the input

power for the different isotopes is necessary to make more concrete connections between the

orbit loss and L-H transition power threshold’s ion mass dependencies. Nonetheless, a few

of the salient features can be listed. For similar ion temperatures, the orbit loss currents

are of a similar magnitude. Even so, the lighter mass ions require greater temperatures to

exactly match the orbit loss currents associated with heavier ions. The peaking position

of the orbit loss current is both dependent on the ion mass and the input power. A more

precise relationship between the input power and the ion temperature for a given mass is

necessary to determine if the orbit loss calculations predict the shift, with ion mass, in

the density that minimizes the power threshold seen on AUG.25 Furthermore, the decreased

mass dependence seen on the low-density branch insinuates that the power thresholds for the

different isotopes, if stongly and linearly dependent on the orbit loss current, should at least

approach one another along the low density branch, a feature which appears to be the case

for AUG25 but not for JET.26 At any rate, the above has not considered inherent changes

to the plasma resulting from changing the ion species. It is possible that significant changes

to the return current that closes the orbit loss current result from the isotope change, and

an analysis of the orbit loss current in isolation is not sufficient. Future work should be
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done to understand the complete role played by the lost ions as a function of their mass. A

natural start would be to investigate SOLPS runs with hydrogen as the main ion species.

The remainder of this thesis continues with the assumption that the bulk ions are deuterium

ions.

5.8 Plasma shaping: Triangularity and the horizontal

position of the X-point

So far, we have largely discussed the loss cone structure and the associated orbit loss current

within the context of a standard positive trangularity tokamak, specifically within the context

of the geometry of ASDEX Upgrade shot 16151. As discussed in Chapter 3, the lowest energy

thermal orbit losses are a product of the X-point field geometry. Clearly, the static loss cone

structure will be sensitive to the position of the X-point.47,48 Furthermore, the steady-

state orbit loss model highlights the importance of the angular widths of the local loss cone

provoking further study of ∆θ manipulation.

Consider the velocity-space loss cones presented in Fig. 3.2. Loss cones projected to

locations with R ≥ RX have finger-like projections describing the minimum energy trapped

particle losses. These regions of the cones are bounded in pitch angle by the trapped-passing

boundary and the minimum |ζ0| such that the saddle point remains accessible for ions at this

locale. Manipulating the radial position of the X-point directly affects the angular width,

∆θ, of the local loss cone while also affecting which fraction of the plasma is on either side

of the X-point. To clarify, the manipulation of RX manifests this behavior only if the rest of

the plasma shape remains more or less constant, akin to a triangularity sweep in the half of

the plasma with the active X-point. For a greater RX , the angular width of the LFS local

loss cones are greater while a greater portion of the plasma is on the HFS of the X-point.

The opposite holds when decreasing RX .

An additional effect of changing the radial position of the X-point is felt in the passing
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orbit loss energy thresholds. Consider passing orbits on the same closed flux surface localized

to the inner and outer midplanes. At the inner midplane, the co-passing orbits are able to

be lost, while the counter-passing trajectories are possibilities at the outer midplane. For

the positive triangularity tokamak, it was shown that the passing trajectories from the outer

midplane were lost at far lower energies than those from the inner midplane, see Fig. 3.2. The

reason for this is purely geometric; the inner midplane was horizontally closer to the X-point

than the outer midplane. The orbit width is essentially a comparison of the perpendicular

drifts to the poloidal projection of the parallel velocity. The typically lesser in magnitude

magnetic drifts grow directly with the ion’s energy while the parallel velocity grows like
√
E,

resulting in larger orbital widths with increasing energy. The longer the orbital path to the

X-point, the longer the ∇B drift has to widen the orbit. Manipulating RX to greater values

decreases the threshold energies for the HFS passing losses while increasing the threshold

energies for the LFS passing losses.

The trapped losses experience a more minor version of this effect. Those nearest the

trapped-passing boundary already have long orbital paths that are made longer by the

additional distance they now need to travel back to the X-point. The most deeply trapped

orbits will have slightly shorter paths since they still bounce near the X-point, which has

been pushed closer to their initial positions. Overall, for trapped orbits localized to R > RX ,

the most deeply trapped losses correspond to slightly higher energies while the least trapped

losses correspond to slightly lower energies. For trapped orbits localized to an R < RX , the

energies are typically lower since the most deeply trapped losses do not access these regions.

The inverse relationship holds true when decreasing RX . It is important to keep in mind

that the processes that allow for the lower energy losses explicitly correspond to longer loss

orbit periods, potentially disfavoring the orbit losses. It must be considered if particles on

these trajectories are likely to contribute to loss following the procedures detailed in Chapter

4.

It has been seen that very near the separatrix, the collisionless boundary is determined
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by the collisionality and the angular width of the local loss cones, see Figure 4.12. The

width of this region is set by the threshold energies of the passing losses. Increasing RX

increases the radial width of this region near the inner midplane and decreases this width

near the outer midplane, while increasing the proportion of the plasma that exhibits the HFS

behavior. Furthermore, the radially narrower outer midplane region supports collisionless

loss at lower energies due to the increased angular width of the local loss cones. The changes

in the orbital periods associated with the increased (decreased) poloidal path from the HFS

(LFS) to an X-point with a greater RX is expected to be minimal for the more important

passing-like losses due to the hardly changing disproportionate portion of the orbit spent

near the X-point due to the poloidal stagnation.

Figure 5.11: The velocity-space loss cone dependence on the horizontal position of the X-
point.

Figure 5.11 illustrates the change in the velocity-space loss cone structure for the cones

mapped to the outer and inner midplanes on the same flux surface with a changing horizontal

position of the X-point. For simplicity, the analysis is performed for a constant electric

potential. The cone shapes are still robust when considering different flux surfaces, with

the loss energies scaling like (∆ψ)2. The features discussed in the above paragraphs are
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easily seen. Under increases in RX , the LFS local loss cones grow in angular width, have

an increasing passing loss energetic threshold, and have a decreasing trapped loss energetic

threshold. The HFS local loss cones maintain their angular width, since all trapped orbits

localized to an R < RX either interact with the X-point or would at some increased energy,

and experience a wholesale decrease in their energetic thresholds.

(a) (b)

(c)

Figure 5.12: A deeper look at the orbit loss under changing RX . Subplot (a) shows the
passing loss energy threshold with changing X-point position, subplot (b) the growth of the
angular width with decreasing triangularity, and subplot (c) an estimate for the orbit loss
current dependence including contributions from the midplanes.

Figure 5.12 details the projected loss cone’s sensitivities to the horizontal position of

the X-point. Subfigure (a) plots the minimum energy for the passing losses for both the

inner and outer midplane. Here, the energies are normalized to the threshold energy for

counter-passing orbits at the outer midplane in the baseline positive triangularity case. The

threshold energies are quadratic in RX , with the counter-passing (co-passing) losses requiring

increased (decreased) energies for a larger RX . The energies are equal at an RX nearly
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equidistant in major radius to the inner and outer midplanes, slightly toward the HFS due

to the increased parallel velocities on the LFS. Energetically, the counter-passing (co-passing)

orbits are preferential for loss in the positive (negative) triangularity configuration, agreeing

with the literature.47

Subfigure 5.12.b shows the change in the angular width of the local loss cones at the outer

and inner midplanes. The velocity-space loss cones on the LFS have significantly larger ∆θs

for increasingly negative triangularity field configurations, with the proportional growth of

the narrow region being significantly greater. The angular width of the high energy portion

of the local loss cone is constant at the inner midplane. As seen in Figure 5.11, the disparity

between the threshold energies of the smaller narrow region and the passing losses decreases

with increasing RX , increasing the fraction of the loss region described by this ∆θ.

The influence of RX on the orbit loss current is assessed by considering the loss current

source terms along the midplanes. As seen in Figure 5.2, the outer and inner midplanes

capture the respective LFS and HFS loss behaviors. The losses are estimated by evaluating

the orbit loss calculations with an artificially shifted RX . The loss periods from the base-

line geometry are maintained, thus the assumption is made that the loss periods from the

midplanes are not strongly changed across the RX scan. Here, changes to the orbital period

are primarily caused by changes to the poloidal path lengths; however, such changes are

expected to be far less than those seen under a ∇B reversal, see Section 4.3.5 and 5.6. As

seen in Figure 5.12.c, the loss current shows a modest change over the horizontal position of

the X-point, increasing with decreasing triangularity. Analysis with experimental equilibria

covering the RX scan is necessary to fully investigate this particular shaping parameter on

the orbit loss current. In that vein, experiments have been proposed for the internal ASDEX

Upgrade 2020 and 2021 campaigns128 to investigate the radial electric field and plasma rota-

tion in response to the triangularity of the active X-point. The experiments are performed

under both ∇B directions to couple the drift reversal and shaping effects, creating maximum

and minimum orbit loss scenarios. Scans over RX have been performed on NSTX, showing
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a decreased PL-H for greater RX ,29 in line with the expectations of this section.

5.9 Secondary orbit loss terms

Similar integrals to those seen in Eqs. (5.4) and (5.6) can be evaluated to return source terms

for the ion continuity, ion parallel momentum, and ion energy equations. Each scales with

the magnitude of the orbit loss, but the effects of these terms are found to be minor compared

to the current supplied by the ion losses, typically by an order of magnitude, but should be

considered within a full treatment of the problem. The impact of the terms are discussed

for the baseline SOLPS parameter set, where it will be seen in the upcoming chapter that

the Er well is deepened by ∼ 20% in response to the orbit loss current. Beyond this section,

the SOLPS simulations are performed only accounting for the loss current terms of primary

importance.

5.9.1 Density source

The ion orbit loss particle flux is exactly equal to the current density unscaled by the charge

per ion, resulting in the same relationship between the source terms, such that

Sn,c-less =

ˆ

S

〈
dw

dt

〉
fdS, (5.12)

Sn,coll =
1

z − zX

ˆ

Σcoll

(v∇B + vC) fd3v. (5.13)

Both the collisionless and collisional density source terms are accounted for.

The density source terms are the most significant of the secondary orbit loss sources,

decreasing the separatrix density by a few parts in one hundred. Even slighter changes,

yet of similar order, are seen in the temperature, electric field, and rotation profiles. The

disparity is centered about edge region contributing to the orbit loss and decreases in either
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radial direction. Although the trend favors the steepening of the density profile in the edge

region, it does not appear that the orbit loss in isolation can produce such steep changes

necessary to form an H-mode pedestal.

5.9.2 Parallel momentum source

Estimating the parallel momentum loss directly associated with the ion orbit losses is less

clear than calculating either the density or energy sources. The parallel momentum is a

dynamic quantity over an orbit. To estimate the order of the momentum source, the calcu-

lation is performed in two ways. First, the lost parallel momentum is taken at the boundary

of the loss cone where a previously confined orbit is considered scattered in,

Sm‖,c-less = mi

ˆ

S

ζv

〈
dw

dt

〉
fdS. (5.14)

The second calculation estimates the parallel momentum of the orbit as it crosses the sepa-

ratrix and considers this the lost momentum,129

Sm‖,c-less =

ˆ

S

pφ
RXfφ

〈
dw

dt

〉
fdS, (5.15)

where it is assumed that ψsep = 0 and that the orbit is lost near the X-point. Note that

pφ is not a constant in Eq. (5.15), as the integral is over orbits on the boundary of the loss

cone surface. It is assumed that pφ does not greatly change due to the possible collisions

from one loss orbit to another. Since the higher energy ions carry more momentum, only

the collisionless portion of the loss cone is considered for either case.

Both methods result in apparent changes of the plasma density and temperature at the

separatrix of far less than 1% for the baseline case. The more relevant term to compare, the

parallel velocity, changes on the order of 1% at the separatrix, in absolute terms, changing

by tens of m/s. The order of these changes is roughly maintained farther into the core. The
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direct influence of the ion orbit loss on the parallel momentum is subordinate to both the

effects in the particle and current continuity equations, and does not appear to be driving

new physics. The orbit loss plays a more indirect role in influencing the parallel rotation via

the mere existence of the loss cone structure, as seen in Sections 3.6.2 and 4.6.

5.9.3 Energy source

The energy source term is determined by the following:

SE =
1

2
mi

ˆ

S

v2

〈
dw

dt

〉
fdS. (5.16)

Again, only the collisionless loss cone is considered due to the disproportionate energy carried

by faster ions.

Figure 5.13: The log-scaled distribution of the orbit loss heat sources.

The distribution of the heat sources closely follows that of the collisionless losses, as seen

in Figure 5.13. Although the loss cone contains trajectories up to arbitrarily large energies,

the loss cone is refilled at a diminished rate at such high energies, tempering the heat loss.

Similarly to the particle sink term, the energy sink slightly steepens the relevant profile,
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here the ion temperature. Again the effect is small for the baseline case; the temperature is

reduced at the separatrix by about one part in one hundred.

The density sink appears to largely wash out the energy sink term when simultaneously

implemented. The natural inverse proportionality between the plasma temperature and

density, Eqs. (5.10) and (5.11), coupled with the slightly larger magnitude density source

term results in a slightly raised ion temperature at the separatrix, at about the difference in

the magnitudes of the individual effects.

5.10 A brief look at further refueling mechanisms

In the preceding sections, pitch angle scattering was considered as the sole mechanism for

refilling the collisionless loss cone. Any mechanism that contributes to the net transport of

ions from confined to lost orbits contributes to the orbit loss and should be considered in

a full treatment. Two neglected mechanisms are the anomalous radial transport resulting

from turbulent plasma flows and the ionization of neutral particles within the loss cone.

This chapter concludes with brief investigations of these two processes within the framework

developed in Chapters 2–4.

5.10.1 Anomalous transport

The radial transport of particles in a tokamak plasma is typically dominated by the so-called

anomalous transport, a namesake born from its unexpected observation in light of standard

neoclassical calculations. Its origin is the plasma turbulence and the transport is fluctuation-

driven. The significant role of the anomalous transport for the radial particle flux suggests

importance for the radial orbit loss current. Particles driven radially outward enter regions

with energetically accessible local collisionless loss cones, potentiating an annulus where the

ions can be lost on a first orbit via the X-point and the electrons are fixed to the anomalous

transport process. If the timescale for the anomalous radial transport across the separatrix
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is slower than a typical loss orbit period, then the electrons lag the ions, necessitating a

return current of cooler ions from the scrape off layer. If the radial transport outpaces the

loss timescale, then the orbit loss effect is negligible. We precede under the assumption that

the former is true and investigate a formulation for the orbit loss current rooted in the radial

particle flux seen in the literature.49

It is assumed that the particle flux is evenly distributed in velocity-space over the local

Maxwellian and flows radially outwards. Such an assumption is in no way guaranteed.

Nonetheless, at some radial position, some fraction, F , of the particle flux, Γ, overlaps the

local loss cone. The radial transport of ions already within the loss cone is immaterial for

the orbit loss, and we only consider the first flux into the loss region,

∇ · j(iol, AN) ∼ Γ

hy

∂F

∂y
, (5.17)

where F is the Maxwellian overlap, see Sections 3.6.1 and 4.4, of the collisionless loss cone,

the fractional overlap of the local collisionless loss cone with the local Maxwellian. Here,

we differ from the literature in that we only consider the anomalous flows into the loss cone

that will be lost on a first orbit.

It is not immediately obvious how to directly implement Eq. (5.17) within the framework

developed within the scope of this thesis. A local collisionless loss cone is demarcated by

a hard boundary which represents the evaluation of the unscattered fraction, Eq. (4.16), as

zero. For energies above this boundary, the unscattered fraction grows toward unity as a

function of both the plasma and loss cone properties. To make a first order estimate of the

orbit loss current driven by the anomalous radial particle flux, we redefine the collisionless

loss cone to be demarcated by F (E) = 1/2 (Note: F (E), the unscattered fraction, is a

different quantity than F , the Maxwellian overlap) and take the unscattered half of the ions
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refueling the loss cone to be lost,

∇ · j(iol, AN) =
Ze

2

Γ

hy

∂F

∂y
, (5.18)

where the radial particle fluxes are conveniently determined by SOLPS.

Figure 5.14: A comparison between the collisionally driven steady-state orbit losses and an
estimate for the turbulence driven losses, each across the separatrix.

Figure 5.14 compares the total orbit loss current presented earlier in the chapter with

the anomalous radial flux driven orbit loss current, Eq. (5.18), for two different input powers

over the high density branch. Here, the density value represents the specified value for the

core (ρpol = 0.973) ion continuity boundary condition, see Appendix A. The two currents are

of the same order of magnitude and exhibit a similar behavior over the explored parameter

space. The similar magnitudes can be understood by considering the radial particle flux into

a numerical cell in SOLPS. The loss current sourced in the ith cell considers only the ion flux

into the local loss cone from radially inward confined orbits,

(
∇ · j(iol, AN)

)
i

=
Ze

2

Γi

hy
(Fi − Fi−1) , (5.19)
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where i labels cells of increasing radius, Γi is the radial particle flux into the cell, and Fi is

the Maxwellian overlap calculated at the cell center. It is seen that on the thermal collisional

timescale, the radial particle flux into the cell is similar to the number of particles within

the cell. Thus,

ν−1
0 (Ti)

(
∇ · j(iol, AN)

)
i
≈ Zen

2
(Fi − Fi−1) , (5.20)

where ν−1
0 (Ti) is the ion-ion collisionality for thermal ions. Over the same timescale, the

resupply of the local collisionless loss cone can be thought of as over the entire angular

domain for the preferred thermal loss energies, see Figure 5.1.a, and the loss is on the

order of the cone’s overlap with the local Maxwellian over this band of energies, hence the

similarities seen in Fig. 5.14.

A full treatment of the ion orbit loss should consider the net turbulent transport into

the loss cone along with the net collisional transport into the loss cone. A more nuanced

understanding of the velocity-space distribution of the radial particle transport is necessary

to more accurately model the anomalously driven losses. Under the simple assumption that

the distribution follows that of the local Maxwellian, it is seen that the contributions are

of the same order. Furthermore, it is possible that turbulent fluctuations enhance the orbit

losses,34 and a systematic integration of turbulent effects into the loss cone model is a natural

next step.

5.10.2 Neutral ionization

It should be noted that an additional source of ions refilling the loss cone is the ionization

of neutrals.35 Neutral particles flow through the plasma with first order disregard of the

magnetic and electric fields. As they probe deeper into the plasma, entering regions of

higher temperature, their interactions with the background are increasingly likely to leave

them ionized. If the ionization occurs within the bounds of the collisionless loss cone, then
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the ion will be lost on its first orbit, contributing to the steady-state ion orbit losses.

As it stands, the ionized neutrals are considered within the SOLPS framework and in-

fluence the equilibrium solution beyond the orbit loss calculations. Future work should be

performed to investigate the velocity-space distribution of the ionized neutral particles in

the edge, in order to determine their contributions to the ion orbit loss. Initial estimates

indicate that the neutral ionization is not a main instigator of the orbit losses but plays a

supplementary role. For the baseline SOLPS case presented throughout the chapter, the

orbit loss current from the neutral ionization is on an equal footing with the total orbit loss

current driven by pitch angle scattering if all ions born on flux surfaces with thermally ac-

cessible local collisionless loss cones are assumed lost. This assumption grossly overestimates

the loss as it neglects the probability of scattering out of the loss cone and the more likely

than not chance that the ionization occurs outside of the collisionless loss cone.

Throughout this thesis, SOLPS runs were performed using a fluid model for the neutral

population. The SOLPS-ITER code package couples the fluid plasma code B2.5 with a

Monte Carlo neutral transport code Eirene, which can assist in future investigation of the

role played by the neutral ionization.
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Chapter 6

The plasma response in SOLPS

The thermal ion orbit loss current in a diverted tokamak has been studied in isolation

and has been shown to share several features with the empirically known L-H transition

power threshold: branching density behavior, a strong ∇B drift direction dependence, and a

dependence on the horizontal position of the X-point. It is naturally of interest to determine

if the current that displays such behaviors interacts strongly enough with the plasma in

order to play a role in catalyzing the transition. The non-ambipolar nature of the orbit

losses necessitates closure via some other process. The tokamak edge environment modeled

by the SOLPS fluid transport code is used to investigate the plasma response to the orbit

loss current, largely focusing on the return current responsible for ambipolar closure and the

resulting Er response.

Naturally, the particulars of the plasma model in which the orbit loss calculations are

embedded determines this physics and should be kept in mind. For instance, the SOLPS

model, see Chapter 2, does not explicitly resolve the small spatial scale turbulent physics and

models the phenomenon via the standard anomalous radial diffusion of energy and particles.

The governing diffusivities are kept constant over the scans, thus the turbulent dynamics is

not studied. Additionally, SOLPS is not built upon a framework which is sensitive to non-

Maxwellian distribution functions in the plasma edge resulting from the loss cone structure,
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and thus the model does not perfectly capture the orbit loss physics. In essence, the first

order plasma response to the orbit loss current is presented. Significant developments would

be necessary to study the higher order effects,86–88 an effort beyond the scope of this thesis.

Taken as a baseline, the SOLPS edge environment must shift in response to the radially

outward ion orbit loss current to supply some combination of similarly flowing electrons or

a return ion current, the expectation being an inward flow of cooler ions from the SOL.64

The interplay between these currents and the physics driving them sets a new equilibrium

condition near the separatrix, influencing the toroidal rotation and the radial electric field.

As seen in Chapter 2, there are a plethora of electric currents worthy of study within

the edge of a tokamak plasma; refer to Section 2.4.2 for reference to the currents modeled in

SOLPS. Although a research topic of great interest, we neglect the modeled current behaviors

in the far scrape off layer and private flux regions, focusing on the core and SOL immediately

beyond the separatrix. These currents in the far open field regions are effectively treated as

boundary conditions for the ion orbit loss studies. With that in mind, we first take a look

at the radial current balance in the absence of an orbit loss current, followed by a discourse

on the impact of including the ion orbit loss current into the SOLPS framework. Again, the

discussion is centered around the baseline ASDEX Upgrade discharge 16151 case, with scans

occurring about this baseline, see Appendix A.

6.1 The radial current balance in the absence of ion

orbit loss

The edge radial current balance as modeled by SOLPS under L-mode conditions can be

separated into two qualitatively different regions: one nearer the core and the other within

around one centimeter of the separatrix when measured along the outer midplane. The

one-dimensional radial current balance is illustrated in Figure 6.1. Recall that many of the

currents in the SOLPS model are effective currents with the same divergence as their physical
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counterparts. Refer to Section 2.4.2 or the SOLPS user manual71 for their exact forms.

Figure 6.1: Divergenceful radial current flows within the separatrix in SOLPS obtained by
integrating the contributions over the flux surfaces.

The more core-like region contains a current balance primarily involving a radially out-

ward effective diamagnetic current that is closed by a combination of inward currents caused

by the parallel and heat viscosities.84,95 The effective diamagnetic current, Eq. (2.87), takes

on a form which is sensitive to poloidal asymmetries in the plasma pressure, which result

in divergent current flows in the plasma edge. Recall that this current is identified with the

average guiding center motions of orbits in a spatially varying magnetic field,70,84,89,90 and

is thus inclined to disproportionately represent ion motions. The parallel and heat viscosity

currents have similar forms, Eq. (2.96) and Eq. (2.100), and often appear to support the

other, with possible dominance between the terms shifting due to subtle differences in the

parallel ion particle and heat fluxes. Contributing less are the inertial current associated

with centrifugal forces, Eq. (2.107), the perpendicular viscosity current, Eq. (2.98), and the

current generated from the ion-neutral momentum sinks, Eq. (2.111). The first and third ap-

pear to be relatively divergenceless throughout the entire plasma edge, contributing relatively

little to the current balance. The perpendicular viscosity current contains radial derivatives
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of flux surface flows, which are expected to have limited importance toward the core. For

nearly all radial positions, the anomalous current, Eq. (2.115), plays no significant role in

the current balance, a consequence of setting the anomalous conductivity to a sufficiently

small value.84,96 Here, σ̃(AN) = 10−6 Sm2/C. At the soft boundary between this region and

the one nearer the separatrix, the role of the effective diamagnetic flow is replaced by a

perpendicular viscous ion flow while the effective diamagnetic current has been suppressed.

It would appear the the parallel and heat viscosity currents are reluctant to balance the

outward flow of ions caused by the perpendicular viscosity current driven by the inner shear

of the plasma rotations, requiring a dampening of the radial effective diamagnetic current

flow.

Within about a centimenter of the separatrix measured at the outer midplane is the

so-called viscous layer.95 Here, the divergence of the effective diamagnetic current begins

to grow on approach to the last closed flux surface, reaching values an order of magnitude

greater than those involved in the balance toward the core boundary. The parallel and heat

viscosity currents do not similarly become more divergent, a statement that the poloidal

variation of the parallel ion and heat flows are not greatly changed from the inner region.

However, the perpendicular viscosity current has a large divergence for these radial positions,

providing closure for the effective diamagnetic current.84,95 Such a current is associated with

radial derivatives of flux surface flows, which can be extreme when crossing the separatrix.

The other currents near the separatrix are at least an order of magnitude smaller than the

discussed currents and do not appear to have a strong effect on the equilibrium solution.

Figure 6.2 shows the two-dimensional flow patterns for the two dominant currents in the

near-separatrix balance, where the orbit loss current is significant. Subplot (a) shows the

global current structure of the effective diamagnetic current in configuration-space, where

the connection to the vertical drifts is more apparent. In the upper half of the confined

plasma the flux surfaces are concave down and the ion (electron) flows are radially inward

(outward) and vice versa for the lower half. More easily seen in subplot (b), the local core
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(c)

Figure 6.2: The effective diamagnetic and anomalous perpendicular viscosity currents in
SOLPS.

divergent diamagnetic current flows are quite large and average to much smaller values over

a closed flux surface. The poloidal pressure asymmetries which govern the magnitude of

the net effective diamagnetic current flow across a flux surface are greatest very near the

separatrix, see Fig. 6.1, and will be further discussed in the upcoming section. The relevant

perpendicular viscosity flows involved in the edge current balance are centered about the

separatrix near the outer midplane and, to a lesser extent, the inner midplane, as seen in

subplot (c). Ions in the near SOL tend to flow either inward or outward depending on

their relative positioning around the peak of the flux surface flows in the SOL. Those that
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flow radially inward provide the bulk of the necessary closure for the effective diamagnetic

current.

The thermal ion orbit losses are of primary importance within the annulus described

by the viscous layer near the separatrix. The interplay between the ion orbit loss current

and the effective diamagnetic and perpendicular viscosity currents will define the new radial

current balance in this region. Before introducing the orbit loss current, the behavior of

the driving effective diamagnetic current is studied over parameter space, and thus also the

necessary perpendicular viscosity current for closure.

6.1.1 The current balance over parameter space

The behavior of the standard current balance in terms of the relevant parameters for the

orbit loss, the ion temperature and the electron density at a constant input power, is briefly

studied, providing context for the orbit loss studies. The radial current balance near the

separatrix typically reflects the specific instance plotted in Figure 6.1, so the focus is turned to

the balance between the effective outward diamagnetic current and the inward perpendicular

viscosity current. Since the perpendicular viscosity current can be thought of as the response

to the outward diamagnetic ion flow, it is natural to study the driving effective diamagnetic

current.

The effective diamagnetic current takes the form of the distribution averaged vertical

drifts resulting from single particle motion in an inhomogeneous magnetic field. The velocity-

space average removes any sensitivity to the loss cone structure and describes the averaged

drift motions for each species in terms of pressure disparities about a given flux surface.

Orbits both inside and outside of any loss cone contribute equally to this current. For a

circular flux surface with a constant pressure profile, vertical drifts in the upper half of the

plasma move ions radially inward, exactly canceling the current associated with the outward

motion of the same drifts in the lower half of the plasma, assuming that ∇B points down.

The larger orbital widths for the ions allow for greater poloidal temperature asymmetries,
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allowing for a greater poloidal deviation in the ion pressure away from the density variation.

This and the strong shaping of the flux surfaces near the separatrix allow for a net divergent

radial current flow. Larger average pressures over one half of a flux surface indicate either

higher temperatures or larger densities, both increasing the vertical flux of ion in the inward

(outward) direction for the top (bottom) half of the device and vice versa for the electrons,

again, assuming that ∇B points down.

It would be remiss not to note an inconsistency born of simultaneously treating the effec-

tive diamagnetic current and the orbit loss current. The orbit loss current tracks an excess

ion flow through the separatrix due to topologically open orbits lost to the divertor via the

X-point while the effective diamagnetic current counts an imbalance of flux surface averaged

vertical drifts linked to poloidal pressure asymmetries. The possibility for these currents to

flow in opposing directions is noted. This particular form of the effective diamagnetic cur-

rent is not directly sensitive to the features of a non-Maxwellian distribution function caused

by the presence of the loss cone and neglects the sparse population of the collisionless loss

cone. The effective diamagnetic current could be recalibrated to exclude orbits within the

collisionless loss cone, instead averaging over a Maxwellian with a hole. Such a correction is

left for future works, and in Section 6.2 the orbit loss current will be implemented into the

standard SOLPS regime.

Figure 6.3.a illustrates the effective diamagnetic current flow across the separatrix over a

scan in the input power for two different core density cases. Here and throughout the chap-

ter, the density values represent the specified value for the core (ρpol = 0.973) ion continuity

boundary condition, see Appendix A. The simulated densities are typically limited to the

high density branch for the orbit loss current due to a numerical instability in SOLPS found

below some threshold density for a given input power, see Section 2.4.2.5.96 Also plotted

for reference is the instantaneous orbit loss current for similar profiles. Both currents are of

similar magnitude and scale directly with the input power, with the effective diamagnetic

current responding more greatly. Interestingly, the gap between the two density cases lessens
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Figure 6.3: The effective diamagnetic current flowing across the separatrix in SOLPS over
parameter scans. The instantaneous orbit loss current is shown for comparison. The hollow
point in (b) corresponds to artificially reducing the electric field to half strength.

for the largest input power. The reasoning for the two currents is different, as can be seen

by the steepened slope of the effective diamagnetic current for the high density case and the

tempered slope of the orbit loss current for the lower density case. The poloidal ion temper-

ature variations are proportionally smaller for the former at increasing input power, bringing

the electron and ion pressure asymmetries more into phase with each other via the growing

dominance of the density asymmetry. The density variations do not change in relative size,

but shift toward an up-down asymmetry, further increasing the net effective diamagnetic cur-

rent. As discussed in Section 5.5, the low density orbit loss case suffers a decreased current

due to surpassing the saturation temperatures of the average local collisionless loss cone.

Figure 6.3.b illustrates the effective diamagnetic current flowing through the separatrix

over a core density scan with a constant input power of 1.2 MW. Over the high density branch

of the orbit loss current, the two currents are similar in magnitude and unsurprisingly scale

similarly since both effects are dependent on the orbital widths. Although, the diamagnetic

current appears to experience accelerated growth with decreasing density, and unlike the

orbit loss current, it does not exhibit a low density branch within the probed parameter
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space. As will be seen in the Fig. 6.5, the electric field strength is about a factor of two

larger for the lowest density case compared to the next least dense. The disconnected orange

marker with a white center corresponds to the instantaneous orbit loss current calculated

using an electric field profile at half strength. It serves to remind that the low density

branch results largely from the decreases in the density and collisionality paired with the

higher temperatures and is secondarily suppressed by the larger field strength.

Figure 6.4 illustrates the near separatrix poloidal asymmetries in the pressure, density,

and temperatures for the minimum and maximum density cases seen in Fig. 6.3.b. Subfig-

ures (a) and (b) plot the ion, electron, and plasma pressures about a flux surface very near

(ρ ∼ 0.999) the separatrix, respectively for the low and high density case. Subfigures (c) and

(d) show the poloidal variations of the constituent parts of the pressures. The larger effec-

tive diamagnetic current flow through the separatrix is linked to larger pressure asymmetries

about the near separatrix flux surfaces in the low density cases. Here, the density asymmetry

is proportionally large and dominates the pressure asymmetry, affecting both the ions and

electrons similarly. The density is largely up-down antisymmetric, forcing both species to

experience the same up-down asymmetry in their pressures, resulting in a significant effective

diamagnetic current flow. At the higher densities, the ion temperature asymmetry propor-

tionally dominates the ion pressure variation and has nearly the inverse distribution of the

density asymmetry, which for the high density cases shifts toward an in-out asymmetry. The

smaller electron temperature variations leave the electron pressure asymmetry more closely

tied to the density. Thus, the ions and electrons experience an opposite in-out pressure

asymmetry, resulting in a lesser net diamagnetic current flow across the LCFS. The physics

determining the poloidal symmetry differences is beyond the scope of this thesis and could

be further explored using the SOLPS model. Likely candidates include differences between

neoclassical collisional regimes or the poloidal distribution of ionizing neutrals.

The electric field well depths for the simulations corresponding to the points seen in

Fig. 6.3 are shown in Figure 6.5. The linear growth of the electric field in response to increased
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Figure 6.4: The poloidal pressure asymmetries driving the effective diamagnetic current at
low, subplots (a) and (c), and high, subplots (b) and (d), density.

heating is seen in subplot (a), with the Er wells in the lower density plasmas deepening at

a faster rate. The Er strength follows the basic scaling of the effective diamagnetic current;

however, the high density case is, in a sense, less effective at converting the diamagnetic

current into the Er response. The two simulations corresponding to the highest input power

have nearly identical radial current balances, with differences on the order of the subordinate

parallel and heat viscosity currents. The higher density case is necessarily driven to a lesser

radial electric field in order to support the necessary equal inward perpendicular viscosity
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Figure 6.5: The minimum Er well depth in SOLPS without the orbit loss current.

current. The neoclassical poloidal rotation in the closed field line region is lesser for the

higher density case with lower temperature, see Eqs. (2.48) and (2.54), but the poloidal

rotation is of the same order in the near SOL for both cases. In the perpendicular viscosity

current, the decreased shear across the separatrix of the poloidal rotation in the high density

plasma is scaled by ηAN ∼ n, allowing for a similar return current in a lesser shear system. It

is noted that the classical perpendicular viscosity shows an identical scaling when the plasma

pressure is held constant, but η2 ∼ n3/2 when including the effective χi of the fluid neutrals,

see Eq. (5.11).

Subplot (b) illustrates the Er well magnitude as a function of the core density for 1.2 MW

of input power, mirroring subplot (b) of Fig. 6.3. Again, the field strength follows the basic

behavior of the diamagnetic current, which non-linearly grows with decreasing density as

discussed above. The Er response deviates from the effective diamagnetic current behavior

again due to the ease of higher density plasmas supplying the necessary return current with

lesser shear poloidal flows. This trend continues throughout the chapter, where the orbit

loss current is less effective at generating a large Er response at higher densities.
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6.2 Implementation of the orbit loss model into SOLPS

The orbit loss model is implemented into the SOLPS source code as a subroutine that can

be called any set number of timesteps. The static field geometry used by the simulation and

the dynamically evolved plasma profiles are provided to the subroutine, the field quantities

at cell vertices and the profiles at cell centers. Finer data is required to determine the

electric field sensitive trapped-passing boundary and simple interpolations on this data are

performed.

The orbit loss calculations are performed at the cell centers. The local loss cones for

orbits passing through the center of each cell are calculated following the guidelines seen

in Chapter 3. The cones are then demarcated into the local collisional and collisionless

loss cones using the local plasma conditions, as described in Chapter 4. The orbit loss

current source terms shown in Chapter 5 are determined again by assuming local Maxwellian

distributions functions with the temperatures and densities provided by SOLPS. The source

terms are applied evenly over each cell. The altered SOLPS equations contribute to the

evolution of the profiles, and the cycle between the orbit loss subroutine and the SOLPS

code is established. As seen in Section 5.9, the secondary orbit loss source terms effect minor

changes to the plasma and are not included in the following simulations.

6.3 The radial current balance in the presence of orbit

loss

We next introduce the steady-state total ion orbit loss current as discussed in Chapter 5.

The orbit loss current contributes to the current balance on the same scale as the most

significant contributors very near the separatrix, the effective diamagnetic current and the

perpendicular viscosity current. Toward the core, the orbit losses are negligible and only

affect the solution here by virtue of the core’s response to changes near the LCFS. The orbit
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loss current enters the current continuity equation through its divergence and the associated

flows are not modeled, leaving the plasma response insensitive to these flows themselves.

Corrections would modify terms that depend on the radial particle and heat flows, such as

the poloidal ion neutral friction current, Eq. (2.108). The presented results represent the

first order effects of the orbit loss current on the tokamak plasma.

The new radial current balance in the presence of the orbit losses can be seen in Figure 6.6.

The core region’s current balance remains relatively unchanged; the qualitative behaviors of

each current here appear robust with magnitudes slightly shifting to ensure quasineutrality.

The most flexible currents appear to be the parallel and heat viscosity currents, responding

to the changed parallel flows at the separatrix.

Figure 6.6: Divergenceful radial current flows within the separatrix in SOLPS including the
ion orbit loss current.

Nearer the separatrix, there is an obviously more significant change in the current balance.

The ion orbit loss contributes on an equal footing with the effective diamagnetic current.

Nonetheless, the dynamics of the current balance are relatively unchanged; now, an outward

flow of diamagnetic ions and orbit lost ions are compensated by an inward flow of ions due
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to the perpendicular viscosity. The next order contributions again come from the heat and

parallel viscosity currents, with the inertial and ion-neutral friction currents contributing to

a lesser degree. The artificial anomalous current has been ordered down to the level of these

latter two via the appropriate choice of σ̃AN = 10−6 Sm2/C.

At the interface of the two regions described in the above, there is an interesting behavior

briefly mentioned in Section 6.1, which grows in prominence in response to the orbit losses.

The perpendicular viscosity current changes signs more or less at inflection points of the

perpendicular flux surface flows. For typical core plasma rotations, see Appendix A, the

required rotations at the separatrix that ensure quasineutral particle flows across the LCFS

must be part of a radial profile that inflects further towards the core, thus requiring a change

in the current flow associated with the perpendicular viscosity. The other viscous currents

within the SOLPS framework appear inadequate at balancing the necessary, albeit small,

outward flow, generally requiring a dampening of the effective diamagnetic current. The

orbit loss exacerbates this effect as it tends to both increase the shear of the near separatrix

flows and push the minima of well-like phenomena closer to the separatrix. A result being

that the effective diamagnetic ion flows in this intermediate region can further dampen to

the point that this radial current locally reverses orientation.

A poloidal redistribution of the plasma pressure, largely tied to a poloidal redistribution

in the electron density, reduces the net effective diamagnetic current through the separatrix

in the presence of the orbit loss. As seen in Figure 6.7, the electron and ion temperatures

remain relatively fixed, and there is a displacement of particles from the lower half of the

plasma on the HFS to the upper half of the plasma, maintaining a roughly constant number

of particles about a flux surface. Quasineutrality ensures that the redistribution is ambipolar,

and both species are shifted uniformly; however, the larger variation in the ion temperature

results in a disproportionate change in the effective diamagnetic current carried by the ions.

The change in the poloidal density profile near the separatix is an unsurprising display,

considering the redistribution seen when switching on the E × B and diamagnetic drifts in
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the SOLPS regime.84

Figure 6.7: The poloidal pressure redistribution in the presence of the ion orbit loss current.

For the standard case omitting orbit losses, the equilibrium state is achieved through the

balance of the effective diamagnetic flows and the return ion current largely supplied via

the perpendicular viscous effects. The introduction of the orbit loss current instantaneously

increases the outward current flow, instigating a matching return current. The current

balance does not occur in a vacuum, necessitating a response in the plasma rotations driving

the viscous current. The plasma equilibrium met in the absence of the orbit losses is broken

and evolves into a new state where the effective diamagnetic current is suppressed. Although

this effective current flow through the last closed flux surface is reduced for a given input

power and density, its sum with the ion orbit loss current corresponds to a greater current

carrying ion flow across the separatrix into the SOL. A roughly 50% increase is typically seen

over the explored parameters. For instance, compare the currents of the baseline case seen in

Figures 6.1 and 6.6. The net increase is the outflowing radial current is naturally matched by

a stronger inward current carried by the perpendicular viscous flows. The implication is the

presence of stronger sheared flux surface flows that are also perpendicular to the magnetic
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field. Per the discussions of Chapter 2, the terms in the lowest order equilibrium radial force

balance are further constrained by other typically higher order projections of the momentum

balance. The toroidal force balance can be rewritten in terms of radial particle fluxes, finding

equivalency with the quasineutrality condition. In the steady-state, this balance sets the

toroidal rotation and thus the equilibrium radial electric field. The introduction of the orbit

loss current generically increases the magnitude of the radial electric field well near the

separatrix through its interaction with the other currents in the force balance.

(a) (b)

Figure 6.8: The plasma response to the ion orbit loss current: Rotations and Er. Subplot
(a) is along the inner midplane while subplot (b) is along the outer midplane.

The impact on the plasma rotations and the radial electric field of the orbit losses is

illustrated for the baseline case in Figure 6.8, presented as radial profiles along the inner and

outer midplanes. Approximately proportional changes occur over the poloidal coordinate.

The responses scale with the net orbit loss and diamagnetic currents and will be explored

over parameter space in the next section. The changes are mostly isolated to the domain of

the orbit loss current. The far scrape off layer remains relatively unchanged by the orbit loss,

a result of the assumption that the orbit lost ions are effectively removed from the system

at the divertor, and the ion orbit loss current is divergenceless in the open field line region.
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The fluid velocity profiles are steepened near the separatrix, with the changes in the toroidal

velocity decaying over a longer distance, being felt in both the near SOL and deeper into

the core. The changes in the plasma rotation are matched by a deepened Er well. In this

specific instance, the well has deepened by about one part in five, a magnitude still on the

same order of the neoclassical electric field. The deeper Er well following the inclusion of the

orbit losses is reminiscent of the discrepency seen between SOLPS simulations and particle

following ASCOT simulations that numerically determine the orbit loss current.103,130

There is an outward radial shift in both the well position within the separatrix and the

peak position in the SOL by about half a millimeter at the outer midplane. The ion orbit

losses increase both the inner and outer Er shear. The effectiveness of the orbit losses in

increasing the magnitude of the Er gradient appears to be dependent on the neoclassical Er

values describing the more core region for the inner shear and the SOL Er determined largely

by the parallel electron dynamics for the outer shear, both of which are mostly insensitive to

the modeled ion orbit loss. In any case, the ion orbit loss steepens the plasma rotation and

radial electric field profiles in the plasma edge, emblematic features of the L-H transition.

6.4 SOLPS parameter scans with the orbit loss current

The radial current balance and leading order force balance responses are investigated over

scans in the input power and the core electron density. This section focuses on the combined

effects of the orbit loss current and the other currents modeled in SOLPS in establishing

the tokamak edge environment. For a discussion on the dependence of the orbit loss current

on the plasma parameters, refer to Section 5.5. As earlier mentioned, the density scan is

limited by a lower bound set by a numerical instability seen below some threshold density for

a given input power,96 necessitating unfavorably small time steps for the desirably small σAN.

Unfortunately, the low density branch of the orbit loss current lies in this omitted region,

and only the high density branch is effectively studied over the parameter scan. Future work
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will be done to investigate the lower densities.

(a) (b)

Figure 6.9: The orbit loss and effective diamagnetic currents flowing across the separatrix.

Figure 6.9 illustrates the dominant outward radial current flows across the separatrix.

Again the perpendicular viscosity current is largely responsible for the compensating inward

flow of ions and can be thought of as nearly equal in magnitude to the sum of the outward

orbit loss and effective diamagnetic flows, with leading order differences attributed to the

parallel and heat viscosity currents. Subplot (a) scans over the input power, under the

assumption that the power is delivered equally to the electrons and ions: an input power

of 1.0 MW delivers 0.5 MW to each species. Similarly to Figure 6.3.a, two core density

cases are presented. Recall that the density values represented in the SOLPS scans are

for the specified value for the core (ρpol = 0.973) ion continuity boundary condition, see

Appendix A. As discussed in Section 6.3, see Figure 6.6 and ultimately Figure 6.7, the

effective diamagnetic current is reduced in the presence of the orbit loss current and is of

the same magnitude but subordinate to the orbit loss current over the parameter space.

The suppression of the effective diamagnetic current is non-trivial as it depends on both the

strength of the orbit loss current, the effective diamagnetic current in the absence of the

orbit losses, and the plasma parameters. In general, the suppressed current grows with the
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orbit loss current, although the proportional suppression appears to wane with increasing

input power. The orbit loss current is less than that seen in Fig. 6.3.a due largely to the

growth in the Er magnitude in response to the orbit loss current.

The total outward current flow largely maintains a linear scaling over the range of input

powers since the simulations occur over the high density branch of the orbit loss. Slight

deviations in the linear behavior can be seen because the lower density case is transitioning

to the low density branch at the largest input power, manifesting as a decreasing slope.

Additionally, the high density case shows signs of non-linear growth for the largest input

power, a consequence of the effective diamagnetic current discussed in the previous section.

The total outward flowing current grows roughly 30% faster with increasing input power

compared to the effective diamagnetic current in the absence of orbit losses and over the

plotted range corresponds to an increase between a factor of 4/3 and 3/2.

(a) (b)

Figure 6.10: The minimum Er well depth in SOLPS with the orbit loss current. The lines
determined in the absence of the orbit losses are reproduced from Fig. 6.5.

The magnitude of the electric field well at the outer midplane in the presence of the

orbit loss is presented in Figure 6.10 with conditions matching simulations represented by

the points in Fig. 6.5. The electric field responses in the absence of the orbit loss current are
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reproduced for comparison. The low density instability is exacerbated by the orbit loss, and

the parameter scan is firmly set over the high density branch of the loss current. The essential

behavior of the electric field response remains: the field strengthens with increasing input

power, favoring growth for the lower density plasmas. The electric field again roughly scales

with the current flowing outward across the separatrix, and for similar reasons that cause

the lower density plasmas to exhibit larger electric fields under similar current balances, the

bolstered outward current flow results in a disproportionate growth in the electric field for

the lower densities of the high density branch.

The L-H transition is often thought to occur when some critical Er shear is sustained

by the plasma.21,31 Here, the more or less static length scales of the electric field structure

directly ties the shear to the well depth, the critical Er shear corresponding to some threshold

depth. For instance, if the threshold well depth is 104 V/m, the simulations with the lowest

electron density achieve this strength Er around 1.28 MW with the orbit losses and 1.64 MW

without. Similarly, extrapolating to larger input powers for the highest density simulations

shifts the threshold input power from 2.35 MW to 2.09 MW, a similar order, yet smaller,

reduction. The orbit losses affect the radial electric field on a scale of interest for the L-

H transition. The high density branch of the L-H transition power threshold should be

systematically studied with SOLPS coupled to the orbit loss model to probe if the enhanced

radial electric field due to the orbit loss current reproduces the input powers experimentally

required to access the H-mode.

It is an open question whether the damped orbit loss current along its low density branch

will suppress the effective diamagnetic current such that the total current flow exhibits a

branching behavior under a scan in the electron density. It is possible that the reduction of

the diamagnetic current through correcting for the loss cone structure makes this possible.

Furthermore, if the electric field could exhibit such a response also remains an open question,

one more tenuous thanks to the density dependence of the anomalous viscosity coefficient.

These questions necessitate pushing the SOLPS simulations to lesser densities. Once this
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is feasible with the coupled orbit loss model, a similar study to the one mentioned above

should be performed over the low density branch of the L-H transition power threshold.

The entire parameter scan is shown in Figure 6.11: scanning over input powers 0.8, 1.0,

1.2, 1.4, 1.6, and 2.0 MW and core boundary densities 2.4, 2.8, 3.2, 3.6, and 4.0 · 1019 m−3.

Each vertex in subplots (a) and (c) represent a single SOLPS simulation coupled with the

orbit loss calculation while those in subplot (b) correspond to a simulation omitting the

orbit loss current. The vertices in subplots (c), (d), and (e) represent pairs of simulations

with and without the orbit loss current implemented. An interpolation scheme is used to

represent the parameter space interior to the vertices. The basic features of the orbit loss

over the high density loss branch can be seen as well as the electric field response in the

SOLPS environment.

Subplot (a) presents the maximum radial electric field well depth found near the outer

midplane in each of the simulations with the orbit loss current added to the current balance

while subplot (b) shows the same in the absence of the loss current. Subplot (c) plots the

magnitude of the orbit loss current flowing across the separatrix in each of the simulations

in (a). The absolute change in the electric field well depth, ∆Er, following the introduction

of the orbit loss current is shown in subplot (d). The well deepens in every case. Subplot (e)

illustrates the fraction of the equilibrium radial electric field that is attributed to the orbit

loss current, that is, the change in the electric field well scaled by its final magnitude.

The stagnated growth of the orbit loss current for increased input power can be seen for

the lower densities along the high density branch, as discussed in the previous chapter. The

absolute change in the electric field is decoupled from the orbit loss current behavior due

to the weaker electric field response at higher densities for a similar current balance. The

Er magnitude seen in (a) roughly maintains the behavior seen in SOLPS before accounting

for the orbit loss, see subplot (b), since the absolute change follows the same behavior, see

subplot (d). The outward flowing current for the high density cases must exceed that seen

for the less dense plasmas by some margin in order to exhibit a stronger radial electric
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field. Although the high density plasmas exhibit a weaker response, the portion of the radial

electric field attributed to the orbit losses is more evenly distributed across the parameter

space, at the lower input powers taking a form similar to the orbit loss current. At the

greatest input power, the nonlinear growth in the electric field is noted, favoring stronger

growth at lower density, and this dependence overpowers the orbit loss current sensitivity.

The orbit loss current like behavior in subplot (e) transitions to the generic SOLPS electric

field behaviors seen in subplots (a), (b), and (c) at the highest input powers.

Over the high density branch of the orbit loss current, the response in the radial electric

field to the steady-state orbit loss current is substantial. The strength of the response grows

nearly linearly with increasing input power and decreasing density over the parameter space.

The input power required to achieve some threshold Er is reduced by ∼ 10–20% with the

reduction increasing with decreasing edge density. The magnitude of the orbit loss effect

paired with its qualitatively similar dependencies to the L-H transition power threshold

serves as strong evidence for their connection.
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(a) (b)

(c) (d)

(e)

Figure 6.11: SOLPS parameter scans. Each vertex represents at least one simulation. In
order, the minimum well depth following, (a), and preceding, (b), the orbit loss, the orbit
loss current, (c), the response change in the well depth, (d), and the fraction of the field
attributed to the orbit loss, (e), are shown.
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Chapter 7

Summary and outlook

7.1 Summary of key developments

The body of this thesis developed an orbit loss model that for the first time includes a

comprehensive consideration of the effects of pitch angle scattering on ions either interior or

exterior to the loss cone, retaining sensitivities to a particular ion’s energy, the background

plasma characteristics, and the structure of the velocity-space loss cone. A focus is placed on

the importance of the configuration-space location of loss cone refueling, impacting both the

collisional properties and the periods of orbit loss. The scattering events are self-consistently

allowed to both populate and depopulate the loss cone, giving rise to a division of the cone

about a qualitative change in the loss behavior. The collisional portion of the loss cone

describes ions that are in equilibrium with the local Maxwellian and is considered full. The

collisionless loss cone is more sparsely populated as a non-negligible fraction of ions on these

trajectories are lost from the plasma on a first orbit. In the steady-state, such losses are

driven by the rate of transport onto these trajectories. Estimates for the loss currents and

other associated kinetic source terms driven by the pitch angle scattering are detailed in the

text, allowing for the coupling of the model with a fluid code package that does not resolve

the orbit loss.
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The orbit loss model is relatively fast since it does not require the resolution of entire

particle orbits. A local loss cone specifies which trajectories are lost to the divertor when

launched from a given observation point, and partial orbit reconstruction is typically suffi-

cient to determine the likelihood of loss on a first orbit, thanks to the well-connected nature

of any local loss cone and the similarities between proximate loss orbits in velocity-space.

Compared to other loss cone models, cone construction is also simplified under reasonable

assumptions of the electric potential profile, maintaining the most significant features of the

radial electric field. Computational levity is further achieved through the approximate treat-

ment of collisions through its timescales. The significance of scattering out of the loss cone

is assessed by comparing the loss time scale, including both velocity-space sensitivities and

the poloidal stagnation near the X-point, to the timescale of perpendicular diffusion by the

relevant angular width of a velocity-space loss cone. The time-averaged asymmetric pitch

angle scattering near the boundaries of the local collisionless loss cones determines the rate

of loss cone refueling which is corrected for the probability of scattering out of the loss cone.

The order of the ion orbit loss reproduces that seen in the literature; however, this model’s

loss current exhibits newly presented behaviors.

The orbit loss model discussed in this thesis is the first to present a low- and high-density

branch for the loss current over a constant input power. The orbit losses are maximized for

some edge density, decreasing with both global increases or decreases to the profile. The

existence of such branches provides further evidence for the link between the L-H transition

power threshold and the ion orbit loss. This behavior is rooted in the existence of a saturation

temperature for any particular local collisionless loss cone. Immersion of such a loss region

in a background plasma with an ion temperature above saturation results in a reduced

collisionless orbit loss related to the increased particle concentration about the higher energies

of the local loss cone boundary where the pitch angle scattering refills the cone at a reduced

rate. Along the low density orbit loss branch, the average local collisionless loss cone is

oversaturated. The supplemental collisional current is also small here largely due to the
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direct reduction in the number of particles in these regions at lower density. Growth in the

orbit loss current with increasing ion temperature is stagnated on this branch and the losses

can even reduce. Over the high density orbit loss branch, a typical local collisionless loss cone

is not oversaturated, and there is strong growth with the ion temperature. The density that

maximizes the orbit loss is therefore dependent on the input power as densities transition to

the low density branch at increased input powers. The collisional current supports the high

density branch, reducing the orbit loss falloff with increasing density.

The steady-state orbit losses calculated by the model further cement the influential role

played by the thermal ion orbit loss leading up to the L-H transition. As long expected, the

steady-state orbit loss is about a factor of two larger for the favorable ∇B drift direction

due to an effective increase in the collisionality along a loss trajectory. The orbit loss current

profiles are similar for the two drift orientations when the input power is roughly a factor

of two larger for the unfavorable case, again echoing a known feature of the L-H transition

power threshold. The dependence of the loss current on the horizontal location of the X-

point also qualitatively agrees with experimental results on NSTX, with new experiments

on ASDEX Upgrade currently under analysis to provide a quantitative comparison. The

dependence of the orbit loss on the ion mass has been explored by considering the coupled

effects of larger orbital widths and lesser collisionalities with increased inertia.

The implementation of the new orbit loss model into the SOLPS code package allows

for the determination of the leading order plasma response to the thermal orbit losses. It is

shown that the orbit loss current instigates the largest effects, establishing itself as a leading

force in the edge current balance. The combined outward flow of the orbit loss current and

a suppressed effective diamagnetic current is largely balanced by a perpendicular viscosity

current sensitive to the anomalous transport. The new equilibrium state exhibits a more

strongly sheared radial electric field with a well deepening proportional to the orbit loss

current as a function of the density. Higher density plasmas in the SOLPS environment

can more easily supply the necessary return current, so the orbit loss effect appears most
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significant at lower density. It is noted that the simulations were necessarily restricted to the

high density orbit loss current branch due to a numerical instability found a low densities

for sufficiently small anomalous conductivities. It is an open question as to how the plasma

responds to the low density branch of the orbit loss current.

The simulations show that the electric field both grows and becomes increasingly at-

tributed in origin to the orbit loss current with increasing input power. The well depths

and associated shear appear to reach values thought necessary to trigger the L-H transition

at input power levels within the ballpark of those experimentally known to do so. In the

absence of the orbit loss current, the input powers corresponding to radial electric fields of

similar magnitude are ∼ 10–20% greater. The evidence indicates that the loss of thermal

ions due to the geometry of a poloidally diverted tokamak must be considered in any model

of the L-H transition.

7.2 The continuing path forward

There are many obvious next steps to continue the work presented in this thesis: relaxing

various assumptions and approximations in the orbit loss model, extending the parameter

scans of the SOLPS simulations, introducing new physics into the model or the model into

an environment with new physics, and bolstering comparisons made to experiment. Each of

these will be briefly discussed in the concluding paragraphs of this chapter.

Here, the weaknesses, approximations, and assumptions most deserving of further efforts

will be enumerated. The order here is by introduction in the text and not by any sense of

criticality.

• The electric potential could be allowed to vary poloidally, as evidenced by simulation

and experiment. The trapped-passing boundary, which is of importance for the loss

cone structure, would gain an additional level of complexity with a new sensitivity to

the poloidal coordinate.
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• Furthermore, the assumption that the parallel and poloidal bounce positions remain

close could be relaxed. A reliable method for determining the orbital shapes would

be necessary, but the model could be more comfortably extended to include arbitrary

strength radial electric fields following this improvement.

• In the present implementation, the collisionality rates and the particle distributions are

both determined under the assumption of local Maxwellians. A next step would be to

model local Maxwellians with a velocity-space hole or another appropriate distribution

function.

• The collisionless condition could be more finely tuned to not require the supplementary

collisional current.

• Further refueling mechanisms for the collisionless loss cone should be studied in greater

detail, particularly the turbulent transport.

• The effective diamagnetic current in the SOLPS model equations could be corrected

for the existence of the collisionless loss cone. The current would be most strongly

damped at low densities, where the collisionality is lowest. This could perhaps help

resolve the stability issues seen at the low densities that exhibit large magnitude radial

electric fields.

Each of these would do well to improve the model fidelity, but none are expected to wholesale

alter the presented results.

The SOLPS simulations along the high density loss current branch show promising signs

for the significance of the orbit loss approaching the L-H transition. Analytic analysis of the

orbit loss model additionally suggests shared dependencies with the L-H transition power

threshold, namely the branching density behaviors, the ∇B drift direction asymmetry, the

main ion mass, and the horizontal position of the X-point. The scope of the SOLPS simula-

tions should be extended to study this wide parameter space. Aside from the aforementioned
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low density numerical instability for a given input power, nothing within the B2.5 model pre-

cludes investigating these effects. Even the known instability can be resolved by allowing

for slightly larger anomalous currents or accepting the necessarily small time steps. Fur-

thermore, the model equations could be adapted to more rigorously account for the orbit

losses.

A major next step for the orbit loss model would be to consider its relation to the plasma

turbulence. Although there is evidence that the turbulence can enhance the orbit losses,34,55

a first principles analytic model does not exist which couples the effects of turbulence and

Coulomb collisions on the ion orbit loss. The suggested theory that some combination of

the orbit loss and the turbulent dynamics is responsible for triggering the L-H transition115

demands that both effects be studied in unison. There are two obvious ways of approaching

this: one could develop a similar orbit loss model, accounting for the effects of turbulence

from the ground up, or one could implement the present model into a larger framework that

resolves turbulent effects. A promising candidate for the later is the fluid turbulence code

GRILLIX.131

Finally, the strengthened connections between the ion orbit loss and the empirically

known PL-H highlight the importance of the experiment-theory feedback loop. To ensure

that the presented results are physically sound, experimental measurements must be more

directly compared to the predictions made by the coupled orbit loss and SOLPS models. As

discussed, analysis is underway for experiments that were designed to measure the influence

of the thermal orbit loss on the radial electric field in ASDEX Upgrade under changes in

both the ∇B drift direction and the horizontal position of the X-point. The insight gained

from these measurements will help direct the path forward. Furthermore, analysis should be

performed on existing discharges or new experiments should be proposed to investigate the

other known dependencies of the orbit loss.
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Appendix A

Baseline SOLPS parameter set:

ASDEX Upgrade 16151

The results presented in this thesis are largely based on calculations and simulations about a

standard example SOLPS simulation of ASDEX Upgrade discharge 16151. Unless otherwise

mentioned, the figures within the text apply to this baseline case. This appendix details

the geometry, profiles, boundary conditions, and other features of this foundational case.

Analytic scans over the profiles are referenced in the text and are contextualized in the

following. The array of simulations referenced in Chapter 6 can be first order inferred from

these simpler scans.

The baseline simulation consists of a plasma composed of a single ion species (deuterium),

the electrons, and fluid neutral particles. The field geometry is a lower single null (LSN),

with a single active X-point at the lower end of the plasma, and is positive in its triangularity.

The toroidal field strength at the major radius is |Bz| ∼ 2.9 T. The anomalous particle and

heat diffusivities are taken to be Dn
AN = 0.4 m2/s and χi,e = 1.6 m2/s. It is noted that the

effective heat diffusivity is affected by the neutral physics. The full SOLPS drift terms are

switched on as described in the literature,70,71 and the vertical ∇B and curvature drifts are

directed toward the active X-point. The anomalous conductivity, σ̃AN, has been lowered to
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10−6 Sm2/C, ensuring a physically meaningful solution to the potential equation.96 Radial

ion flows are kept in the ion channel, as opposed to the simpler modeling achieved by implying

electron motions via the coupled ion and current continuity equations sometimes invoked in

SOLPS simulations. Each simulation contributing to this thesis maintains these features.

A.1 Geometry

The magnetic field geometry used in the baseline simulation can be seen in Figure 1.1, where

subplot (a) shows the toroidal field and (b) the scaled poloidal flux, and in Figure 4.8 which

shows the poloidal component of the magnetic field. The basic R−1 field strength dependence

as well as the dominance of the toroidal component can easily be seen. The toroidal field

component is pointing out of the page, ensuring the correct drift direction. The direction

of the poloidal field component insinuates that the counter-current directed particles are

described by v‖ < 0. The shaping of the flux surfaces can be seen in Fig. 1.1.b, where the

separatrix indicates the lower triangularity δlower = 0.3.

A.2 Profiles

The plasma profiles for the baseline case along the outer midplane can be seen in Figure

A.1. The density and temperature profiles are largely set by the anomalous diffusion coeffi-

cients, which are held constant across all the simulations, and the core (interior) boundary

conditions, which will be briefly discussed in the upcoming section. Parameter scans are

thus achieved by altering the core boundary density and power flux. For every scanned

value of the power flux, the energy is even distributed between the electrons and the ions.

The analytic scans seen in Chapter 5 simply scale the profiles of Fig. A.2, while the scans

in Chapter 6 self consistently determine the profiles for each set of parameters within the

SOLPS model.

The rotation and electric field profiles are determined by the model equations as described
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(a) (b)

Figure A.1: The baseline density, temperature, Er, and rotation profiles.

in Section 2.4. The neoclassical force balance generally provides an apt description for the

poloidal rotation in the more core like region; however, there is a thin viscous boundary where

the quasineutrality condition, sourceless current continuity, sets a more nuanced balance.

This region is where the thermal orbit loss is of importance on approach to the L-H transition.

The balance is highly dependent on the value of σ̃AN, so the value 10−6 Sm2/C is chosen to

ensure a physical solution.96

A.3 Boundary Conditions

There are six boundaries for SOLPS simulations of a single-null geometry that can easily

be seen by considering the code’s computational regions illustrated in Figure A.2. The four

regions are the core (1), the SOL (2), the western divertor (3), and the eastern divertor

(4). The boundaries are described in terms of their location in the computational plane

using the compass directions: north, south, east, and west. In subplot (b), the separatrix is

the horizontal black line while the vertical lines correspond to artificial cuts separating the

private flux regions from the core. The southern boundary of the core corresponds to the
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(a) (b)

Figure A.2: The SOLPS computational regions for a single-null geometry.

interface of the confined plasma with the interior. Regions (1), (2), and (3) have a shared

northern boundary that corresponds to the plasma approaching the first wall. The eastern

and western boundaries respectively correspond to the conditions of the plasma’s interaction

with the east and west targets. The final boundaries are found on the south sides of regions

(3) and (4), corresponding to the private flux region’s interface with the divertor. These two

boundaries are treated equivalently here.

There are a wide variety of boundary conditions available to SOLPS users, each of which

is described in the user manual.71 Each boundary requires conditions for the continuity,

momentum, and energy equations for each species, as well as for the potential equation.

Recall that there is no electron continuity equation, and therefore there are only continuity

boundary conditions for the ions and neutrals. The following briefly describes the conditions

used in the baseline and other simulations. For the orbit loss studies, the core boundary

conditions are the most significant and are manipulated to scan over the parameter space of

interest.
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A.3.1 Core boundary

• The neutral particles maintain a constant null flux through the core boundary since

the plasma in near complete ionization in the core. (BCCON = 8)

• The electron density is held at a constant value at the core boundary, ne = 2.4 · 1019

m−3 for the baseline case. Quasineutrality demands that the ion density is equivalent.

The boundary condition is manipulated in the density scans. (BCCON = 1)

• The parallel velocity for each species is held to zero at the core boundary. The condition

is soft and is forced depending on a chosen variable strength, here 2 · 105. (BCMOM

= 4)

• Both the electrons and ions have a specified power flux across the interior flux surface.

The baseline case has 0.6 MW carried by each species, for a total of 1.2 MW. This

boundary condition is manipulated for the ion temperature/input power scans, with

the power evenly allotted to the ions and elections. (BCENE=16)

• The currents due to the drifts for the core boundary are imposed. (BCPOT = 12)

A.3.2 North boundary

• Both the neutrals and the ions are treated using a leakage boundary condition deter-

mined by Γloss = αCs,ana, where Cs,a is the local sound speed and na is the species

density. The coefficient α is null for the neutrals and α = −1 · 10−3 for the ions. This

condition is recommend for drift cases. (BCCON = 10)

• Again, the parallel velocity for each species is held to zero at the north boundary. The

condition is soft and is forced depending on a chosen variable strength, here 2 · 105.

(BCMOM = 4)

• The electrons and ions have a specified decay length for the temperature profiles. The

baseline case has a decay length of 0.02 m for both species. (BCENE=16)
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• The gradient of the potential, the electric field, is taken to be null at the northern

boundary. (BCPOT = 2)

A.3.3 East and west boundaries

• The neutral particles have a prescribed null particle flux through these boundaries.

(BCCON = 5)

• The ion continuity condition is set by a recommended sheath boundary condition for

the sound speed velocity flux. (BCCON = 14)

• The parallel velocity for the neutrals is held to zero at the east and west boundaries.

(BCMOM = 1)

• The sheath boundary conditions for the parallel momenta of the charged species is

implemented. (BCMOM = 13)

• The sheath boundary conditions for the ion and electron energy equations are used.

(BCENE=15)

• The sheath boundary conditions for the potential equation is used. (BCPOT = 11)

A.3.4 Private flux southern boundaries

• Both the neutrals and the ions are treated using a leakage boundary condition deter-

mined by Γloss = αCs,ana, where Cs,a is the local sound speed and na is the species

density. The coefficient α = −1 · 10−2 for the neutrals and α = −1 · 10−3 for the ions.

This condition is recommend for drift cases. (BCCON = 10)

• The parallel velocity for all species is held to zero at the southern private flux bound-

aries. The condition is soft and is forced depending on a chosen variable strength, here

2 · 105. (BCMOM = 4)
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• Here the electron and ions have a specified decay length for the temperature profiles.

The baseline case has a decay length of 0.01 m for both species. (BCENE=16)

• The gradient of the potential, the electric field, is taken to be null at the boundaries.

(BCPOT = 2)
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(2001).

47 Y. Nishimura, F.L. Waelbroeck, and L.J. Zheng, Physics of Plasmas 27, 012505 (2020).

48 J. Ou, G. Wu, and X. Li, Physics of Plasmas 21, 072505 (2014).

49 W.M. Stacey, Physics of Plasmas 21, 014502 (2014).

50 J.S. deGrassie, J.A. Boedo, and B.A. Grierson, Physics of Plasmas 22, 080701 (2015).

205



51 J.A. Bittencourt. Fundamentals of Plasma Physics. New York, Springer, (2004).

52 E.A. Azizov et al, Atomnaya Energiya 52, 2 p. 108–112 (1982).

53 G. Grieger, Europhysics News, 16, 5 p. 11–14 (1985).

54 T. Kobayashi et al, Physical Review Letters 111, 035002 (2013).

55 S. Wang, Scientific Reports 10, 6986 (2020).

56 W.D. D’haeseleer et al. Flux Coordinates and Magnetic Field Structure. Springer (1991).

57 V.D. Shafranov, Reviews of Plasma Physics 2, p. 103 (1966).

58 B. Scott (2001). Low Frequency Fluid Drift Turbulence in Magnetized Plasmas (IPP 5/92)

[Habilitation thesis, Düsseldorf University and Max Planck Institute for Plasma Physics].

59 F. Jenko et al, Physics of Plasmas 7, 1904 (2000).

60 Görler et al, Physics of Plasmas 23, 072503 (2016).

61 N. Tronko et al, Physics of Plasmas 24, 056115 (2017).

62 P. Crandall (2019). Collisional and Electromagnetic Physics in Gyrokinetic Mod-

els [Doctoral thesis, University of California, Los Angeles]

63 S-I. Itoh and K. Itoh, Physical Review Letters 60, 20 (1988).

64 K.C. Shaing and E.C. Crume, Jr., Physical Review Letters 63, 21 (1989).

65 M. Tendler, Plasma Physics and Controlled Fusion 39, B371 (1997).

66 J. Schirmer et al, Nuclear Fusion 46, 9 (2006).

67 E. Viezzer et al, Nuclear Fusion 54, 012003 (2014).

206



68 M. Cavedon (2016). The role of the radial electric field in the development of the edge

transport barrier in the ASDEX Upgrade tokamak [Doctoral thesis, Technical University

Munich]

69 U. Stroth, P. Manz, and M. Ramisch, Plasma Physics and Controlled Fusion 53, 024006

(2011).

70 V. Rozhansky et al, Nuclear Fusion 49, 025007 (2009).

71 D.P. Coster et al, SOLPS-ITER User Manual

72 D.A. Clarke, A Primer on Tensor Calculus (2011).

73 P. Helander. Collisional Transport in Magnetized Plasmas. Cambridge University Press,

(2005).

74 J.A. Holmes, Y-K.M. Peng, and K.E. Rothe, Journal of Fusion Energy 2, 2 1982

75 J.D. Callen, A.J. Cole, and C.C. Hegna, Physics of Plasmas 16, 082504 (2009).

76 E. Viezzer (2012). Radial electric field studies in the plasma edge of ASDEX Upgrade

[Doctoral thesis, Ludwig-Maximilians-University Munich]

77 P.J. Catto, R.J. Hastie, and I.H. Hutchinson, Physics of Plasmas 8, 3334 (2001)

78 P. Helander, Physics of Plasmas 8, 10 (2001)

79 B.J. Braams (1987). A Multi-Fluid Code for Simulation of the Edge Plasma in Tokamaks

[NET Report].

80 S. Wiesen et al, Journal of Nuclear Materials 463, 480–484 (2015).

81 X. Bonnin et al, Plasma and Fusion Research: Regular Articles 11, 1403102 (2016).

82 D. Reiter, M. Baelmans, and P. Börner, Fusion Science and Technology 47:2, 172–186

(2005).

207



83 E.T. Meier et al, Plasma Physics and Controlled Fusion 58, 125012 (2016).

84 V.A. Rozhansky et al, Nuclear Fusion 41, 387 (2001).

85 W.M. Stacey, Physics of Plasmas 16, 042502 (2009).

86 W.M. Stacey and T.M. Wilks, Physics of Plasmas 23, 012508 (2016).

87 T.M. Wilks, W.M. Stacey, and T.E. Evans, Physics of Plasmas 24, 012505 (2017).

88 W.M. Stacey, Nuclear Fusion 57, 066034 (2017).

89 S.I. Braginskii, Review of Plasma Physics 1, p. 205 (1965).

90 A.V. Chankin, Journal of Nuclear Materials 241–243, 199–213 (1997).

91 T.D. Rognlien and D.D. Ryutov, Contributions to Plasma Physics 38, 152–157 (1998).

92 F.L. Hinton and Y.-B Kim, Nuclear Fusion 34, 899 (1994).

93 R. Balescu, Transport processes in plasmas I, North Holland, New York, (1998).

94 T.D Rognlien et al, Physics of Plasmas 6, 1851 (1999).

95 V. Rozhansky, Contributions to Plasma Physics 46, 575–585 (2006).

96 E. Kaveeva et al, Nuclear Fusion 58, 126018 (2018).

97 V. Rozhansky, Reviews of Plasma Physics 24, p. 1 (2008).

98 J. Loizu et al, Journal of Plasma Physics 83, 575830601 (2017).

99 K.C. Shaing, E.C. Crume, and W.A. Houlberg, Physics of Fluids B: Plasma Physics 2,

1492 (1990).

100 K.C. Shaing, Physics of Fluids B: Plasma Physics 4, 3310 (1992).

101 J.A. Heikkinen et al Plasma Physics and Controlled Fusion 40, 693 (1998).

208



102 H.J. de Blank, 46th EPS Conference on Plasma Physics P2, 1020 (2020).

103 T.P. Kiviniemi et al, Physics of Plasmas 10, 2604 (2003).

104 C. Pan, S. Wang, and J. Ou, Nuclear Fusion 54, 10 (2014).

105 J.A. Rome and Y-K.M. Peng, Nuclear Fusion 19, 1193 (1979).

106 C.T. Hsu and D.J. Sigmar, Physics of Fluids B: Plasma Physics 4, 1492 (1992).

107 R.G. Littlejohn, J. Plasma Physics 29, part 1 pp. 111–125 (1983).

108 T. G. Northrop and J. A. Rome, The Physics of Fluids 21, 384 (1978).

109 B.A. Trubnikov, Reviews of Plasma Physics 1, (1965).

110 C.D. Stephens, R.W. Brzozowski III, and F. Jenko, Physics of Plasmas 24, 102517 (2017).

111 S. Putvinskii, Plasma Physics Control. Fusion 35, 219 (1993).

112 E. Hirvijoki et al, Computer Physics Communications 185, 1310–1321 (2014).

113 J.S. deGrassie, S. H. Müller, and J.A. Boedo, Nuclear Fusion 52, 013010

114 M.J. Schaffer et al, Physics of Plasmas 8, 2118 (2001).

115 C.S. Chang, S. Ku, and R.M. Churchill, Physics of Plasmas 26, 014504 (2019).

116 M. Wensing et al, Nuclear Fusion 60, 054005 (2020).

117 G. Kagan and P. Catto, Physics of Plasmas 16, 056105 (2009).

118 T. Stoltzfus-Dueck et al, Physical Review Letters 114, 245001 (2015).

119 T. Pütterich et al, Nuclear Fusion 52, 083013 (2012).

120 E. Viezzer et al, Plasma Physics and Controlled Nuclear Fusion 55, 124037 (2013).

121 V. Rozhansky et al, Nuclear Fusion 55, 073017 (2015).

209



122 J.D. Huba, 1950-. NRL Plasma Formulary. Washington, DC :Naval Research Laboratory,

1998.

123 J.D. Callen. Fundamental of Plasma Physics: DRAFT. (2006).

124 C.D. Stephens, X. Garbet, and F. Jenko, Physics of Plasmas 27, 052504 (2020).

125 A.J. Brizard, Physics of Plasmas 18, 022508 (2011).

126 H.J. de Blank, Fusion Science and Technology 49, 2T (2006).

127 J.R. King et al, Testing model of ion orbit loss (IOL), APS-DPP 2019 (2019).

128 P. Cano-Megias et al, Role of thermmal ion orbit loss on Er[Experimental Proposal for

ASDEX Upgrade campaign 2021](2020).

129 A. Chankin, How to correctly calculate the generation of toroidal momentum by ion orbit

losses [Private communication] (2019).

130 J.A. Heikkinen et al, Journal of Computational Physics 173, 527–548 (2001).

131 A. Stegmeir et al, Plasma Physics and Controlled Fusion 60, 035005 (2018).

210


	Introduction
	Nuclear fusion as a source of power
	Properties of a plasma
	The tokamak and the L-H transition
	This thesis

	Theoretical background
	Equilibrium: field structure and single particle orbits
	Kinetic and fluid modeling
	Equilibrium: force balance and the radial electric field
	Heuristic approach
	Fluid moment approach: Momentum balance

	SOLPS (Scrape-Off Layer Plasma Simulation)
	B2.5 equations
	The currents in the B2.5 model
	Some notes on the use of SOLPS in this work


	Ion orbit loss cone characterization
	Ion orbit loss basics
	Guiding center constants of motion
	Mass and charge dependence

	Loss definition
	The case of a constant electric potential
	The case of a monotonically-increasing poloidally-constant electric potential
	The scope of orbit losses
	The equilibrium Maxwellian overlap
	The intrinsic rotation


	Demarcating the loss cone on the basis of collisionality
	Collisionality rates
	Scattering out of the loss cone
	The angular width of the velocity-space loss cone: 

	Loss orbit period
	Orbit periods in a circular geometry
	From confined orbit period to lost orbit period
	Poloidal field stagnation
	Statistical loss times
	The up-down B drift direction asymmetry

	The demarcated loss cone
	The equilibrium Maxwellian overlap and intrinsic rotation collisionality corrections

	Steady-state ion orbit loss
	Collisionally refilling the collisionless loss cone
	The collisionless ion orbit loss current
	The collisional ion orbit loss current
	The total ion orbit loss current
	Analytic parameter scans: Ion temperature and electron density
	B drift direction
	Main ion mass
	Plasma shaping: Triangularity and the horizontal position of the X-point
	Secondary orbit loss terms
	Density source
	Parallel momentum source
	Energy source

	A brief look at further refueling mechanisms
	Anomalous transport
	Neutral ionization


	The plasma response in SOLPS
	The radial current balance in the absence of ion orbit loss
	The current balance over parameter space

	Implementation of the orbit loss model into SOLPS
	The radial current balance in the presence of orbit loss
	SOLPS parameter scans with the orbit loss current

	Summary and outlook
	Summary of key developments
	The continuing path forward

	Baseline SOLPS parameter set: ASDEX Upgrade 16151
	Geometry
	Profiles
	Boundary Conditions
	Core boundary
	North boundary
	East and west boundaries
	Private flux southern boundaries


	Bibliography



