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Abstract
Background: Case studies have shown ChatGPT can run clinical simulations at the medical student level. However, no data
have assessed ChatGPT’s reliability in meeting desired simulation criteria such as medical accuracy, simulation formatting,
and robust feedback mechanisms.
Objective: This study aims to quantify ChatGPT’s ability to consistently follow formatting instructions and create simulations
for preclinical medical student learners according to principles of medical simulation and multimedia educational technology.
Methods: Using ChatGPT-4 and a prevalidated starting prompt, the authors ran 360 separate simulations of an acute asthma
exacerbation. A total of 180 simulations were given correct answers and 180 simulations were given incorrect answers.
ChatGPT was evaluated for its ability to adhere to basic simulation parameters (stepwise progression, free response, interac-
tivity), advanced simulation parameters (autonomous conclusion, delayed feedback, comprehensive feedback), and medical
accuracy (vignette, treatment updates, feedback). Significance was determined with χ² analyses using 95% CIs for odds ratios.
Results: In total, 100% (n=360) of simulations met basic simulation parameters and were medically accurate. For advanced
parameters, 55% (200/360) of all simulations delayed feedback, while the Correct arm (157/180, 87%) delayed feedback
was significantly more than the Incorrect arm (43/180, 24%; P<.001). A total of 79% (285/360) of simulations concluded
autonomously, and there was no difference between the Correct and Incorrect arms in autonomous conclusion (146/180, 81%
and 139/180, 77%; P=.36). Overall, 78% (282/360) of simulations gave comprehensive feedback, and there was no difference
between the Correct and Incorrect arms in comprehensive feedback (137/180, 76% and 145/180, 81%; P=.31). ChatGPT-4
was not significantly more likely to conclude simulations autonomously (P=.34) and provide comprehensive feedback (P=.27)
when feedback was delayed compared to when feedback was not delayed.
Conclusions: These simulations have the potential to be a reliable educational tool for simple simulations and can be
evaluated by a novel 9-part metric. Per this metric, ChatGPT simulations performed perfectly on medical accuracy and basic
simulation parameters. It performed well on comprehensive feedback and autonomous conclusion. Delayed feedback depended
on the accuracy of user inputs. A simulation meeting one advanced parameter was not more likely to meet all advanced
parameters. Further work must be done to ensure consistent performance across a broader range of simulation scenarios.
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Introduction
Background
With the rise of generative artificial intelligence (AI)
applications such as OpenAI’s ChatGPT, research into
its medical application has expanded. Early investigations
assessed whether large language models (LLMs) could pass
medical trainee licensing examinations [1-5]. Such studies
indicated that LLMs can pass medical exams and possess
solid foundations in medical reasoning [3,6-8].

An expanding body of literature has focused on LLMs
in medical education, including the perspectives of both
students and seasoned clinicians [9-13]. Medical students
have shown interest in LLMs and frequently use or intend to
use them educationally [14]. Studies have also suggested that
ChatGPT can be an effective tool for students when entering
the clinical wards [15]. Moving from theoretical, classroom-
based instruction to hands-on patient care introduces new
challenges [16]. The steep learning curve heightens the need
for reliable training tools, and generative AI technologies may
satisfy this need.

Current literature suggests a need for rigorous validation
of student use of generative AI. Frameworks such as RISE
(role, input, steps, expectations; ie, inputting the LLM’s

role, anticipated input, required steps, and desired expect-
ations) exist for prompt engineering but have been infre-
quently applied to medical student LLM use [17]. Initial work
established prompts for medical trainees to practice common
clinical scenarios in platforms such as ChatGPT [9,18]. These
studies established that, given the precise wording of prompts,
LLMs can act as an effective simulator of basic clinical
scenarios. Despite this promising result, these technologies’
unknown accuracy and precision in displaying desirable
parameters limits their broader applicability [19-21].

In this study, we reviewed evidence-based resources
for medical simulation and multimedia educational design.
Using The Society for Simulation in Healthcare guidelines
along with Richard Mayer’s multimedia design principles,
we created an evaluation system with 3 main evaluation
categories: basic simulation parameters, advanced simulation
parameters, and medical accuracy parameters. Each category
was further divided into 3 subparameters. Basic parame-
ters were composed of stepwise progression, free response,
and interactivity. Advanced parameters were composed of
autonomous conclusion, delayed feedback, and comprehen-
sive feedback. Medical accuracy parameters were composed
of clinical vignette, updates based on treatment, and feedback.
See Figure 1 for definitions.
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Figure 1. Simulation parameters. Desirable simulation parameters of ChatGPT clinical simulations were based on multimedia educational technology
principles and simulation in health care recommendations. Three major parameters were each divided into 3 corresponding subparameters with clear
definitions. Subparameters constitute the total 9-part metric by which ChatGPT simulations were evaluated. “P” or green indicates a pass, and “F” or
red indicates a fail for whether a simulation exhibits that characteristic.

Basic Parameters
Stepwise progression in simulation is supported by the
segmenting principle of multimedia learning, meaning that
learning is maximized when broken into smaller units [22].
At breaks between units, the learner provides the next steps
in the simulated patient’s management with reasoning. This
is supported by Mayer’s self-explanation principle, which
shows strong learning when previous knowledge is integra-
ted into current learning by explaining one’s reasoning [23].
An user-responsive design further facilitates this and creates
a generative learning activity poised to improve learning
acquisition and retention [24]. These are both in-line with real
medical practice where every step of a treatment or diagno-
sis must be chosen. The free-response format for responses

similarly mimics real medical practice, as it allows space
for treatment justifications. It is also supported by the active
processing principle, which asserts that learning is improved
when people actively organize information into cognitive
models and integrate prior knowledge to address the new task,
rather than passively absorbing teaching points. Just like in
real life, where physicians create treatment plans de novo,
rather than choosing from a selection of options [25]. Finally,
interactivity promotes cognitive engagement and is beneficial
to learning outcomes, especially when planned and augmen-
ted by peer-to-peer and peer-to-teacher learning [26,27].
Advanced Parameters
Advanced parameters were selected to improve authentic-
ity and decrease the cognitive load devoted to simulation
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mechanics, allowing greater focus on learning engagement
[28]. An autonomous conclusion is valuable because it
provides a specific end point and prevents learners from
following extraneous threads when learning goals have been
achieved. Learners do not have to decide when they have
learned enough, rather they must meet the simulation goals
to finish. Delayed feedback keeps novice learners from
overrelying on immediate feedback cues to make decisions
and promotes active learning in simulations [29]. However,
Mayer suggests immediate feedback may be better for some
tasks such as solo novice learning or guided reasoning with
an expert, but the Society for Simulation in Healthcare
guidelines suggest that delayed debrief is most appropriate,
and we accordingly chose delayed feedback for our metric
[30]. This also mimics the real-life practice of medicine,
where the only indication of a treatment’s accuracy is a
change in patient stability. Delaying feedback also keeps
these simulations in-line with the active-processing principle
that active learning is more effective than passive learn-
ing from regular performance feedback cues [29]. Finally,
comprehensive feedback falls in-line with Mayer’s signal-
ing principle. Signaling, or indicating what information is
vital, highlights specific learning points rather than gener-
alizing about a user’s performance [31]. Comprehensive
feedback thus ensures meaningful performance assessments
with specific takeaways.
Medical Accuracy Parameters
Medical accuracy is perhaps the most important. This is
a common-sense principle that undergirds all the other
parameters’ efficacy. Medical accuracy categories were
defined whenever there were physiologic, pharmacologic, or
pathologic assertions.

A 9-part model for evaluating AI medical simulations
is therefore proposed. Using a previously engineered and
verified starting prompt, this model helps quantify the
consistency of an LLM (ChatGPT-4) in following prompt
commands to create simulations exhibiting these 9 features
of effective simulations. The provided results aim to better
inform recommendations to students and educators who use
such resources in their clinical education and establish a
method for future evaluation of simulation reliability.

Methods
Study Design
The Society for Simulation in Healthcare recommends
simulation sessions be high or low fidelity with low physi-
cal realism, making AI simulation sessions acceptable when
high-fidelity sessions are unavailable [30]. This is also
congruent with the authentic learning environments principle

which suggests that learning can happen equivalently in
any environment as long as the design adheres to effec-
tive learning principles [32]. The Society also recommends
training should be spaced, frequent, short, and skill-orien-
ted sessions. Therefore, we built our prompt around asthma
exacerbation management, a short lesson with evidence-based
best practices to be done in 5 to 10 minutes with specific
learning takeaways. This is further supported by the Society’s
recommendation that each session end with focused feedback
via structured debrief, so our prompt accordingly addressed
this. The only criteria we were unable to meet were recom-
mendations for in-situ practice and the use of interprofes-
sional teams. However, the authentic learning environments
principle again suggests that these simulations can have
educational benefits even though they are not in situ, given
our use of educational design principles. The following
prompt, developed with features of RISE prompt engineering,
was subsequently used [9]:

“Please create a clinical scenario on a patient presenting
to the hospital with an acute asthma exacerbation and quiz
me on what the proper next step of management is. Please
make it free response and interactive, meaning you ask
me what the next step is one question at a time, and
then I write out what I would do, and then you ask me
another question based on how my answer would affect
the patient. Please update/change the patient’s condition
based on my actions, and do not tell me the right answers
until the end of the scenario.”

Simulations were run on 1 of 3 ChatGPT-4 accounts due
to ChatGPT-4’s token limits and split across Safari, Google
Chrome, and Firefox browsers from March 29, 2024, to
April 24, 2024. Each simulation was run on its own browser
tab session of ChatGPT-4 to eliminate session-dependent
memory. All cases simulated an acute asthma exacerbation
and focused on treatment steps.

An appropriate treatment algorithm for acute asthma
exacerbation was developed based on the review of recom-
mendations from the American Thoracic Society (a lead-
ing pulmonology society) and the American Academy of
Family Physicians, and confirmed by author RR, a board-
certified emergency medicine physician at a high-volume
academic medical center [33]. Movement to the next step of
the algorithm depended on the simulated patient’s clinical
condition, and the tester could proceed to the final step
(discharge) if the patient was appropriately stabilized in a
stepwise manner. For example, if a patient was no longer
in respiratory distress and had normal oxygen saturation
after administration of a short-acting muscarinic antagonist,
the tester would skip magnesium sulfate and endotracheal
intubation and proceed to patient education and counseling.
See Figure 2 for treatment workflow.
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Figure 2. Acute asthma simulation treatment algorithms. Treatment algorithms for acute asthma exacerbation simulations were developed on societal
guidelines and were used as a template for ChatGPT simulation inputs. The green pathway represents “correct treatment” and was followed for 180
simulations in the correct subgroup. The red path represents “incorrect treatment,” a variation of the correct treatment algorithm, and was followed for
180 simulations in the incorrect subgroup.

Simulations were divided into 2 subgroups based on
adherence to the treatment workflow. The “Correct Treat-
ment” subgroup followed the treatment workflow. The
“Incorrect Treatment” subgroup added administration of a
macrolide antibiotic (azithromycin) as the third step (Figure
2). Progression through the algorithm for each simulation
depended on the patient’s response to treatment, but all
incorrect simulations included steps 1, 2, 3, and 6 at
minimum. In total, 180 simulations each were run for the
Correct and Incorrect treatment arms, leaving a total of
360 simulations for analysis. Simulations were evaluated
according to our 9-part model using the definitions in Figure
1.

Author RS resolved unclear data points. Simulations were
reviewed by all authors for medical accuracy and con-
firmed with author RR, a licensed, board-certified emergency
medicine physician with 8 years of clinical experience.

Descriptive statistics were run on GraphPad Prism (version
10.2.3; Graphstats Technologies) and Excel (version 16.85;

Microsoft Corp). Statistical significance was determined by χ²
test, with an α level set at .05.

Ethical Considerations
Study data were collected by an author (AD) and did not
involve personal information or observation of any person’s
private or public information. As such data were collected
from ChatGPT, all study data were inherently anonymous.
This study was reviewed under the University of Califor-
nia, Irvine’s Institutional Review Board Protocol #3213
and deemed not human subjects research and not requiring
institutional review board review.

Results
A summary of the results is listed in Table 1 and represented
in Figure 3.

Table 1. Simulation characteristicsa.
Combined (n=360), n (%) Correct (n=180), n (%) Incorrect (n=180), n (%) χ² (df) P valueb

Basic parameters 360 (100) 180 (100) 180 (100) 0 (1) ≥.99
Medical accuracy 360 (100) 180 (100) 180 (100) 0 (1) ≥.99
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Combined (n=360), n (%) Correct (n=180), n (%) Incorrect (n=180), n (%) χ² (df) P valueb

Comprehensive feedback 282 (78) 137 (76) 145 (81) 1.05 (1) .31
Autonomous conclusion 285 (79) 146 (81) 139 (77) 0.825 (1) .36
Delayed feedback 200 (55) 157 (87) 43 (24) 146.2 (1) <.001

aSimulations were given the correct or incorrect treatment algorithm inputs and evaluated on exhibition of characteristics against the 9-part metric.
Successful exhibition of a parameter was calculated as a percent of all simulations in a subgroup. The table provides a summary of simulation
outcomes.
bP values were calculated from χ² values

Figure 3. ChatGPT performance on simulation parameters by correct and incorrect inputs. Radar plot showing correct (blue) and incorrect (green)
ChatGPT-4 performance on simulation parameters. Each point represents a simulation parameter. Lines indicate the percentage of simulations
exhibiting that parameter, with the circumference of the shape indicating 100%. Simulations were given the correct or incorrect acute asthma
exacerbation treatment algorithm inputs and evaluated by the 9-part metric developed from multimedia education and simulation principles.
Successful exhibition of a parameter was calculated as a percent of all simulations in a subgroup and plotted on the radar plot. Correct and Incorrect
subgroups performed similarly on all metrics except “delayed feedback.”

In 360 completed simulations, ChatGPT adhered to basic
parameters of stepwise progression of treatment, appropriate
patient status adjustments based on treatment inputs, and
free response format in 100% (n=360) of simulations. It was
also found to be 100% medically accurate in its vignettes,
treatment updates, and feedback. There was no difference in
medical accuracy between ChatGPT-4 outputs after correct
versus incorrect tester treatment responses.

Results for advanced parameters were mixed. Among
the correct treatment subgroup (n=180), 87% (157/180)
of simulations delayed feedback until the end of the sce-
nario. Only 24% (43/180) of the simulations with incorrect
treatment (n=180) delayed feedback (P<.001). In all but 2
of these simulations with immediate (nondelayed) feedback,
the feedback came after the administration of azithromycin.
When combining correct and incorrect simulations (n=360),
ChatGPT-4 demonstrated a 55% success rate in delaying
feedback.

Simulations with correct treatments concluded the scenario
autonomously 81% (146/180) of the time, while those with
incorrect treatment concluded autonomously 77% (139/180;
P=.36). Overall, 79% (285/360) of all simulations, regardless
of treatment accuracy, concluded autonomously without tester
input.

Correct simulations provided comprehensive feedback
76% (137/180) of the time while incorrect simulations
provided comprehensive feedback 81% (145/180) of the
time (P=.31). Combined analysis showed ChatGPT-4
provided comprehensive feedback on 76% (137/180) of
outputs.

Further analysis revealed that ChatGPT-4 was not more
likely to conclude the simulation autonomously (P=.34) and
provide comprehensive feedback (P=.27) when feedback was
delayed compared to when feedback was not delayed (Table
2).
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Table 2. Impact of delayed feedback on simulation autonomous conclusion and comprehensive feedback.
Delayed feedback Early feedback

Autonomous conclusiona 162 123
No autonomous conclusion 38 37
Comprehensive feedbackb 161 121
No comprehensive feedback 39 39

aNumber of all simulations regardless of subgroup that reached an autonomous conclusion versus those that did not based on delayed or early
feedback timing.
bNumber of all simulations regardless of subgroup that provided comprehensive feedback versus those that did not based on delayed or early
feedback timing.

Discussion
Basic Parameters
ChatGPT-4 performed perfectly on basic simulation
parameters, which is a requirement for it to be a viable
educational tool. Its performance agrees with other research
on prompt engineering showing proper prompt generation
can produce high-quality results [34]. However, even given
the use of proper prompt engineering techniques, perfect
performance is surprising given ChatGPT’s known inconsis-
tencies [4,34,35]. This may reflect its algorithmic refinement
and increased LLM training from widespread use. Given this
known feature of LLMs, we should expect it to continue
improving over time.
Medical Accuracy
ChatGPT was also medically accurate for both patient
progression within the simulation and in its feedback;
simulated patients had reasonable clinical presentations,
responded appropriately to therapies, and feedback was in
accordance with basic pharmacology, physiology, antibi-
otic stewardship, and clinical practice. This agrees with
other findings on ChatGPT’s clinical reasoning abilities,
but the consistently excellent performance is again impres-
sive. However, acute asthma exacerbation is not an exceed-
ingly complex problem and has well-established management
guidelines that likely exist in ChatGPT’s training data, so
its medical accuracy cannot be generalized to more complex
clinical simulations like intensive care management [2,4].
Further research needs to be done into LLM performance
differences between complex and simple simulations.
Advanced Parameters
ChatGPT’s performance on feedback was variable. The
observed significant difference in delaying feedback is
noteworthy. Delayed feedback best mirrors real-life clinical
scenarios where immediate feedback is not always available
to redirect incorrect thought processes [36,37]. However,
immediate feedback to incorrect answers mirrors the role a
teacher might take with a student in simulation, where the
teacher does not give a correct answer but instead explains
why a learner’s answer was incorrect in an attempt to give
a better chance at the correct answer. It is also in-line with
the expertise reversal effect that suggests novice learners
will do better with more intense educational guidance, while
advanced learners do better with less [38]. One possibility is

that ChatGPT may be intentionally providing more structured
guidance to learners who make errors, recognizing the need
for additional support.

Delayed feedback best mirrors real-life clinical scenar-
ios where immediate feedback is not always available to
redirect incorrect thought processes. This may be particu-
larly important for learners intent on practicing in smaller
community settings where there are fewer opportunities
for collaboration. However, this independence is a major
developmental process in residency training, and thus, may
be above the training level for which these simulations
were targeted. Additionally, health care systems are interdis-
ciplinary and collaborative. Expecting completely delayed
feedback on patient care may be unrealistic considering shift
hand-offs, pharmacists, nurses, medical record alerts, and
other checks. Furthermore, the difference between delayed
feedback for correct and incorrect treatments may offer
different learning experiences for learners of different skills;
it is unclear whether these different learning experiences
would be inequitable or if they would offer new opportuni-
ties for learning (ie, learners who know the proper treat-
ment are ready to practice independently, whereas learners
still mastering treatment protocols are not forced to practice
independently when they are not ready).

Another consideration is that different prompt engineer-
ing could resolve this variability. A prompt could include
the instructions to “not give feedback until the end of
the scenario, and instead of giving feedback on incorrect
answers, make the patient more unstable as a sign that the
choice was incorrect, then explain this incorrect choice in the
summary feedback at the end of the simulation.” Alterna-
tively, because ChatGPT’s algorithm learns from user inputs,
learners running simulations in the same chat window could
give ChatGPT feedback as they run simulations to hone
in on their desired parameters, including desired feedback
mechanisms. Future studies will need to evaluate differen-
tial prompt engineering, learner experiences, and learner
preferences.

Of note, ChatGPT also gave hints to guide the tester
after incorrect inputs. For example, ChatGPT could change
from asking about the “next step in management” to asking
about the “next step in controlling bronchoconstriction,” thus
nudging the tester toward administering a bronchodilator.
This feature, as well as not delaying feedback after incorrect
inputs, might be ChatGPT exhibiting flow, the educational
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and gaming principle that tasks should be made difficult
enough to optimally challenge the learner, but not so difficult
that the learner quits [39]. Again, further studies will need to
evaluate learner experiences and preferences.

Comprehensive feedback was not significantly different
between correct and incorrect simulations, with an overall
rate of 78% (282/360). This high performance is encourag-
ing, as comprehensive feedback offers more detailed learning
opportunities and touchpoints for self-study. While this
study did not explore the possibility of learners requesting
expanded feedback, doing so could potentially increase the
rate of comprehensive feedback to close to 100%, thereby
enhancing the educational value of the simulations. ChatGPT
concluded autonomously at similar rates to comprehensive
feedback, which is also encouraging. Autonomous conclusion
prevents learners from becoming “trapped” in the simula-
tion, primed by the continuing simulation to believe there is
more treatment needed even when the patient is stable and
treatment should conclude. While autonomous conclusion at
100% would be best for efficiency and ease of use, forcing a
learner to decide when to end the simulation can also mimic
the testing style of oral examinations used by some medical
specialties for board certification. This is a skill expected of
advanced learners who have completed residency, but earlier
learners could be easily prompted to end the simulation
when they feel they have completed their treatments. Proper
instructions and framing could address this problem from the
prompt generator’s perspective.

ChatGPT-4 was not significantly more likely to con-
clude simulations autonomously and provide comprehensive
feedback when feedback was delayed. This suggests that
ChatGPT-4 does not necessarily perform desirable actions in
clusters, meaning that learners who make mistakes are not at
risk of losing some of the simulation’s desirable characteris-
tics.
Future Work
This study focused on a single mistake in the treatment
workflow, but future studies should look at performance with
multiple mistakes. ChatGPT-4’s ability to display desirable
simulation parameters in the presence of multiple mistakes
would be crucial for it to be a viable educational tool; real
learners may make multiple mistakes of varying severity, and
ChatGPT-4 would need to handle this. As is, the feasibility
of using this tool given ChatGPT’s varied performance on
advanced parameters is still unclear. Medical educators may
be hesitant to use a tool that is not completely standardized
and risks inequitable learning outcomes, while others may
welcome a tool that seemingly adapts to the learner’s level.
Quantified student learning gains after simulation use are
thus needed for educators to make informed decisions in
their classrooms and simulation centers and are the subject
of ongoing work. However, with the aforementioned testing,
we foresee the following potential implementation: educators
would use the most advanced version of ChatGPT availa-
ble and tailor the prompt provided here to their students’
learning goals. Simulations would focus on simple diagnostic

or therapeutic problems with straightforward algorithms.
Simulations would be paired with robust pre- or postsimula-
tion didactics to reinforce simulation concepts and not be
the sole method of instruction. Ideally, simulations would be
overseen by an experienced educator capable of monitoring
simulations for accuracy.

Future work should focus on measuring student perform-
ance after using simulations to assess educational utility,
trialing simulations on different LLMs to assess if the best
LLM exists for this purpose, and trialing LLM performance
on increasingly complex, nonalgorithmic simulations with
multiple wrong answers. All of these are important for this
tool’s external validity.
Limitations
This study has several limitations which should be addressed.
First, the simulations were limited to a single clinical
scenario—acute asthma exacerbation—which may not be
representative of ChatGPT-4’s performance across a wider
range of medical conditions. More complex scenarios
reflecting the breadth of clinical practice and training level
cannot be assumed to function as the simulations provided
here. Our simulations were also run on only 1 prompt
to limit confounders, but different prompts may produce
varied results. Additionally, the study only compared correct
treatment and 1 type of incorrect treatment, excluding a
broader spectrum of clinical inaccuracies that may occur
in real-world educational settings. Furthermore, simulations
were run on 3 different ChatGPT-4 accounts and across
different browsers, which, although necessary due to token
limits, might introduce variability in the model’s respon-
ses. Finally, the results of this study are contingent on the
current application program interface settings established by
ChatGPT and each new update of the LLM can potentially
impact reproducibility. However, this does not detract from
this study’s conclusions given its intent to establish the
methodology for evaluating simulations, rather than being
a definitive recommendation for implementing LLM into
preclinical medical education.
Conclusions
The 9-part model described here can be useful in evaluating
ChatGPT simulations as a learning tool in accordance with
established principles of medical simulation and multimedia
design in educational technology. The use of this model can
help standardize the evaluation of LLM simulation research.
As an example use of this model, ChatGPT performed well
in creating practice clinical scenarios that adhered to 3
simulation parameter categories. It performed excellently on
2 primary features, medical accuracy and basic simulation
parameters, and reasonably well on advanced parameters.
Variation in simulation characteristics based on the accuracy
of learner inputs is a point of concern. This tool’s impact
on student learning is an important next step to explore,
but these simulations demonstrate ChatGPT’s potential to be
a reliable educational tool for the appropriate preclinical-to-
clinical learning level.
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Data Availability
All data generated or analyzed during this study are included in this published article and in Multimedia Appendix 1.
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