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RESEARCH ARTICLE
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Abstract

Autism spectrum disorder (hereafter referred to as “ASD”) is a heterogeneous neurodeve-

lopmental condition characterized by impaired social communication and interactions, and

restricted, repetitive activities or interests. Alterations in network connectivity and memory

function are frequently observed in autism patients, often involving the hippocampus. How-

ever, specific changes during early brain development leading to disrupted functioning

remain largely unclear. Here, we investigated the development of dendritic arbor of hippo-

campal CA1 pyramidal neurons in the BTBR T+tf/J (BTBR) mouse model of autism. BTBR

mice display the defining behavioural features of autism, and also exhibit impaired learning

and memory. We found that compared to control C57BL/6J (B6) animals, the lengths of

both apical and basal dendrites were significantly greater in neonatal BTBR animals. Fur-

ther, basal dendrites in the BTBR mice had higher branching complexity. In contrast, cross-

sectional area of the soma was unchanged. In addition, we observed a similar density of

CA1 pyramidal neurons and thickness of the neuronal layer between the two strains. Thus,

there was a specific, compartmentalized overgrowth of dendrites during early development

in the BTBR animals. Biochemical analysis further showed that the extracellular signal-regu-

lated kinases (ERK) pathway was up-regulated in the hippocampus of neonatal BTBR ani-

mals. Since dendritic structure is critical for information integration and relay, our data

suggest that altered development of dendrites could potentially contribute to impaired hippo-

campal function and behavior observed in the BTBR model, and that this might be related to

increased activation of the ERK pathway.
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Introduction

Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder,

characterized by deficits in socio-emotional functions and language development, as well as

repetitive and/or restrictive behaviours [1–4]. In addition, ASD has broad and heterogeneous

clinical manifestations, which has been associated with many potential etiological factors

including both genetic and environmental ones, making it challenging to investigate its neuro-

biological basis and find interventions for affected individuals. Currently, only co-morbid

manifestations of the disorder can be alleviated, but not the core symptoms.

Efforts to identify consistent neural features of ASD have revealed larger brain volumes

compared to age-matched controls, particularly in early childhood [5–11]. In addition, large

amount of data point to age-dependent changes in structural and functional connectivity [12,

13], which may underlie the heterogeneous symptomatology seen in ASD. Together, these

findings suggest that alterations in early neurodevelopment may contribute to disease patho-

genesis, and that these early changes may be very dynamic.

Outgrowth of neuronal processes, including both dendrites and axons, is an important step

during the critical window of early neurodevelopment. The elaborate structure of the dendritic

arbor is a hallmark of neurons, and is a major defining factor of how input information is

integrated and how synaptic plasticity is induced by the neuron [14, 15]. Not surprisingly,

changes in dendritic structure occur in multiple psychiatric disorders, including ASD [16–18].

Collectively, the evidence to date, mostly from animal models of ASD, suggests that dendritic

structure could be altered in ASD brain [19–26]. However, developmental trajectory and

underlying mechanisms of these changes remain largely unclear. Nevertheless, previous stud-

ies on dendritic development have provided many molecular candidates, including neuro-

trophic factors [27–30], the cascade of mammalian target of rapamycin (mTOR) [31], and the

pathway of extracellular signal-regulated kinases (ERK) [22, 25, 32, 33]. Notably, recent studies

have shown that pharmacological inhibition of ERK signaling reverses increased dendritic

arborization observed in two mouse models of ASD [22, 25].

Studies on neuronal density in brains of autistic individuals have yielded inconsistent re-

sults. While some reported elevated neuronal density in cortical areas and hippocampus of

autistic individuals compared with typically developing controls [10, 34, 35], others observed

similar densities between the two groups [35–37]. This may be due to small sample sizes, or

heterogeneity of alterations in neuronal density in different brain regions or distinct cytoarchi-

tectural domains. Interestingly, a recent study showed that overproduction of upper-layer neu-

rons in the neocortex produced autism-like features in mice [38], emphasizing the potential

importance of neuronal density in ASD.

The hippocampus is a well-studied structure in the vertebrate brain, due to its defined loca-

tion, structure, and importance to learning and memory. Thus far, neuroimaging studies have

not consistently reported difference in the overall volume of hippocampus between ASD and

control groups [35, 39]. However, other studies have indicated that declarative memory in

ASD patients is characterized by selective impairment in both encoding and retrieving of epi-

sodic memory, which is relational and contextual. In contrast, semantic memory, which is fac-

tual and item-based, is relatively preserved [39]. Some individuals with ASD even exhibit

superior memory that depends on repetition and familiarity, but have difficulties with memory

that uses relation and context. It has been hypothesized that these impairments may be due to

alterations in hippocampal function and/or connectivity [39]. For example, recent studies

reported that male carriers of the FMR1 premutation, who are at increased risk of developing

ASD, showed altered hippocampal-prefrontal connectivity during memory encoding [40] and

reduced hippocampal activation during memory recall [41]. These results suggest that more
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detailed anatomical and functional assays may help to uncover the neurobiological basis of

memory impairments observed in ASD.

Recently, the BTBR T+tf/J (BTBR) inbred mouse strain has been increasingly used as a

rodent model of autism [4, 42, 43]. Extensive tests conducted in multiple independent labora-

tories have confirmed that BTBR animals display prominent deficits in various social interac-

tion and communication assays, and significantly more repeated and stereotyped behaviours

[4, 42, 43]. Thus, the BTBR strain has been considered as a consistent animal model of ASD

and affords an opportunity to identify structural and functional changes underlying its robust

behavioural phenotype. Notably, in addition to showing behavioural impairments in the core

domains of ASD, BTBR mice also display learning and memory deficits in various settings

[44–48]. Moreover, using magnetic resonance imaging, it was discovered that the hippocam-

pus had greater relative volume [49, 50] and increased local connectivity [51] in the BTBR ani-

mals than the C57BL/6J (B6) strain.

In the present study, we investigated the development of dendritic arbor and neuronal den-

sity of pyramidal neurons in hippocampal CA1 region in the BTBR mice. We compared the

results to those from the B6 mice, a strain with relatively normal social phenotype and low

repetitive behaviours. B6 animals have been routinely used as the control for the BTBR mice in

autism-related studies [4, 42, 43], including those addressing learning and memory function

[44–48]. Here, we report that during early postnatal development, the BTBR animals had both

longer and more complex dendritic arbors, but similar neuronal densities, than the B6 mice.

In addition, the observed overgrowth of dendrites in the BTBR animals was associated with a

hyper-activation of the ERK signaling pathway in the hippocampus.

Materials and methods

Animals

Breeder B6 and BTBR animals were obtained from the Jackson Laboratory (ME) and the lines

were maintained at the mouse facility of the Cumming School of Medicine, University of Cal-

gary. Mice were housed in a humidity- and temperature-controlled room with a 12-h light/

dark cycle and were fed ad libitum. Neonatal B6 and BTBR male animals at postnatal day 8

(P8) were used. All procedures in this study were performed in accordance with the recom-

mendations in the Canadian Council for Animal Care. The protocol of this study was

approved by the Health Sciences Animal Care Committee of the University of Calgary.

Golgi staining and image acquisition

After euthanization of the animals with overdose of isoflurane, brains were dissected. A Rapid

GolgiStain Kit (FD Neurotechnologies, MD) was then used following the manufacturer’s

directions. Coronal sections were cut with a cryostat at the thickness of 100 μm. Images of iso-

lated and intact pyramidal neurons in the anterior to middle hippocampal CA1 region were

acquired with a Zeiss LSM 510 confocal microscope (ON) using a 20x lens and the bright-field

setting. A stack of images with an interval of 1 μm were taken for each cell to include all visible

dendritic branches. The stack was then collapsed using the method of minimum intensity

projection.

Dendritic arbor tracing and measurement

Images were imported to the Imaris software (Bitplane, MA) and the dendritic arbors were

reconstructed using the Filament function. The total length of the tracing was calculated by

Imaris. Parameters of each dendritic arbor, including terminal points, dendritic segments,
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branch points, and branch levels were also analyzed. ImageJ (NIH, MD) was used to outline

and measure the cross-sectional area of the soma.

Sholl analysis

Dendritic branching pattern was further analyzed by using Sholl analysis in ImageJ [52]. This

method creates a series of concentric circles centered at the soma of the neuron in interest,

and counts how many times the dendritic arbor intersects the sampling circles, as a function of

the distance from the soma. The diameters of the concentric circles were set to have an incre-

ment of 20 μm.

Fluorescent Nissl and immunohistochemical staining and image

acquisition

Brain tissue was processed according to previously described methods [53]. Briefly, brains

were removed and post-fixed, embedded in gelatin, cryoprotected in 30% sucrose, sectioned

in the coronal plane using a cryostat. For Nissl staining, sections including the anterior to mid-

dle hippocampus were stained with the NeuroTrace Fluorescent Nissl Stains Kit (Molecular

Probes) according to the manufacturer’s protocol. For immunohistochemical staining, same

procedures of tissue processing were used, and sections were then incubated with primary

(anti-Ctip2, Abcam, MA, 1:500) and secondary antibodies [53]. Images were then acquired

with a Zeiss LSM 510 confocal microscope. CA1 pyramidal neurons in 4–6 Nissl-stained sec-

tions from each animal were counted at least twice manually and the CA1 layer thickness was

measured using the Zen software (Zeiss).

Western blot

Hippocampus and cortex from brains of P8 mice were dissected and homogenized in RIPA

buffer (Pierce Biotechnology, MA) with protease and phosphatase inhibitor cocktails (Roche,

QC). Protein concentrations were determined using the BCA protein assay kit (Pierce Biotech-

nology, MA). 10–50 μg of the protein extract was separated by SDS-PAGE, and transferred to

polyvinylidene fluoride (PVDF) membranes. After blocking, blots were incubated with anti-

bodies and visualized with an enhanced chemiluminescence detection system. Bands were

imaged and quantified using a ChemiDOC MP gel imaging system (Bio-Rad, CA). The follow-

ing primary antibodies were used: p-MEK (1:1,000, Cell Signaling, MA, #9154), MEK (1:1,000,

Cell Signaling, #9122), p-ERK (1:1,000, Cell Signaling, #9101), ERK (1:1,000, Cell Signaling,

#9102), p-CREB (1:2,000, Millipore, MA, #06–519), CREB (1:1,000, Millipore, #06–863), p-

4EBP1 (1:200, Cell Signaling, #9459), 4EBP1 (1:200, Cell Signaling, #9452), p-rpS6 (1:1,000,

Cell Signaling, #2215 and #2211), rpS6 (1:1,1000, Cell Signaling, #2217), BDNF (1:1,000,

Abcam, MA, #ab6201), and actin (1:10,000, Cell Signaling, #4970). After the phosphorylated

form of a protein was analyzed, the same membranes were stripped and used to analyze the

total form. Finally, the membranes were stripped again and actin was probed. The expression

levels of the phosphorylated and total forms of a protein were normalized by actin, and the

ratio of the two was computed using the normalized relative expression levels.

Statistical analysis

Student’s t test was performed to determine statistical significance between the sets of BTBR

and B6 data, assuming two-tailed distribution and two-sample unequal variance. Values repre-

sented the mean ± SEM. Two-way repeated measure ANOVA and Holm-Sidak pairwise com-

parison were used to determine statistically significant differences with the Sholl analysis.
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Results

CA1 pyramidal neurons had longer dendrites in neonatal BTBR mice

We first carried out Golgi staining to investigate the dendritic structure in neonatal (P8) mice,

which is an age translating to newborn in the human in terms of brain growth [54]. Fig 1

shows representative examples of images taken from Golgi-stained pyramidal neurons and the

corresponding tracings in the anterior-to-middle hippocampal CA1 region. In total, 115 pyra-

midal neurons in seven B6 animals, and 96 neurons in eight BTBR animals, were analysed.

Number of analysed neurons in each animal ranged from 8 to 24. We found that the lengths of

both apical and basal dendrites, and thus the total length of the dendritic arbor, were signifi-

cantly increased in the BTBR animals compared with B6 mice (Fig 2A–2C, P = 0.006 for apical

dendrites, P = 0.041 for basal dendrites, and P = 0.008 for total dendritic length). We also ana-

lysed the cross-sectional area of the soma of these neurons (n = 4 animals from each strain),

but found no significant difference between the two strains (Fig 2D). Thus, there was specific

overgrowth of the dendrites in the BTBR animals but no overall stimulation of cellular growth.

The structure of the dendritic arbor in BTBR animals was also altered

To analyse the branching pattern of the dendritic arbor in more detail, we next performed

Sholl analysis, which counts the intersections of the dendritic tree with a series of concentric

circles centred at the soma, as a way to measure the number of branches at a fixed distance

along the dendrite (Fig 2E). We found more branch density at proximal-to-middle range of

both apical and basal dendritic arbors in the BTBR mice compared to B6 animals. Specifically,

the basal dendrites in the BTBR mice had significantly more branches 40–60 μm away from

the soma (Fig 2F, P< 0.001), and the apical dendrites had significantly more branches at 60–

140 μm distance from the soma, compared to that seen in the B6 mice (Fig 2G, ��: P< 0.01, �:

P< 0.05). The increases in branch density were consistent with the greater dendritic length in

the BTBR mice shown in Fig 2A–2C, and could be due to either longer branches or more

braches, or both, in the BTBR animals. To investigate these possibilities, we further quantified

the terminal points, dendritic segments, branch points, and branch level in both apical and

basal dendritic arbors. The results revealed that the basal dendrites in BTBR animals showed a

significant increase in branch level, and a trend toward an increase in the other parameters,

while the apical dendrites showed mostly similar values compared with those in the B6 mice

(Fig 2H–2K). Together, these data indicate that compared with the B6 animals, the basal den-

dritic arbor of the BTBR animals was more complex at proximal-to-intermediate distances

from the soma, mainly due to oblique dendrites branching more times before terminating.

Conversely, the apical dendritic branches of the BTBR animals were longer, but had similar

structural complexity as the B6 animals.

Pyramidal neuron density and thickness of the CA1 neuronal layer were

similar between the two strains in both neonatal animals

Dysgenesis of the cerebral cortex has been one of the most consistent abnormalities reported

in ASD [1, 55–57], including disrupted layer structure. To examine whether the overgrowth of

dendritic arbors in the BTBR animals was associated with overall changes in the cytoarchitec-

ture of the hippocampal CA1 layer, we carried out fluorescent Nissl staining. We did not

observe obvious displacement of the pyramidal neurons in the neonatal (P8) BTBR or B6 ani-

mals (Fig 3A). In addition, fluorescent immunohistochemical staining of Ctip2, a zinc finger

transcription factor expressed in postmitotic neurons, including hippocampal pyramidal neu-

rons [58, 59], also showed similar pattern between neonatal BTBR and B6 brains (Fig 3B).
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Fig 1. Representative images of Golgi-stained pyramidal neurons in hippocampal CA1 region

and the tracings. (A) First row: two examples of CA1 pyramidal neurons from the B6 animals, and their

Dendritic overgrowth and elevated ERK in neonatal autism mouse model
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Quantification of neuronal density and thickness of the CA1 layer using Nissl-stained sections

did not show any significant difference between the two strains (Fig 3C).

Activation of the ERK pathway was increased in the BTBR mice

To investigate the possible mechanisms that might contribute to the dendritic overgrowth

observed in the BTBR animals, we used Western blot to measure the relative expression levels

of proteins involved in dendritic growth in P8 animals. We focused on the ERK signaling path-

way because it has been shown to regulate dendritic growth and structure, including in mouse

models of ASD [22, 25, 32, 33]. In addition, evidence suggests that the ERK cascade may be

one of the common, converging signaling pathways dysfunctional in ASD [60–62]. Our results

showed that the relative expression levels of both phosphorylated MAPK/ERK kinase (MEK)

and ERK were increased in the hippocampal lysate from P8 BTBR animals compared to

control B6 animals (Fig 4). The relative level of total MEK was also increased, while the level

of total ERK as well as the ratios of p-MEK to MEK and p-ERK to ERK showed a trend of

increase (Fig 4). As ERK signaling is also critically involved in cortical development [63], we

quantified the relative ERK expression levels of cortical homogenates from P8 B6 and BTBR

animals. Results showed that although there was a trend of increase in the ratio of p-ERK/actin

and p-ERK/ERK expression levels of the BTBR animals compared with B6 mice, the differ-

ences did not reach statistical significance, and large variations among the BTBR samples were

observed. Thus, the effects of ERK signaling on cortical development in the BTBR mice and

how they may influence the development of hippocampal dendritic arbor need to be further

explored.

It is well known that ERK signaling controls diverse cellular functions through the regula-

tion of both transcriptional and translational processes. Among others, ERK can activate

cAMP response element-binding protein (CREB), a transcription factor [64], promote phos-

phorylation of ribosomal protein S6 (rpS6) and hence translation [65], as well as phosphorylate

the eukaryotic translation initiation factor 4E (eIF4E) binding protein 1 (4EBP1), a repressor

of translation, and release it from eIF4E [66]. Our data indicated that both phosphorylated and

total 4EBP1 was up-regulated in the hippocampus of P8 BTBR mice compared with B6 ani-

mals, while the levels of CREB and rpS6 remained unchanged (Fig 5A & 5B). We also exam-

ined the expression level of brain-derived neurotrophic factor (BDNF), which could activate

the ERK pathway [67]. However, the hippocampal BDNF level showed a trend toward decrease

in the BTBR mice compared to B6 animals (Fig 5C).

Discussion

Potential mechanisms of the observed dendritic overgrowth in the

neonatal BTBR animals

In the present study, we observed dendritic overgrowth in the BTBR mouse model of ASD

when compared with the B6 mice, while the soma size was similar between the two strains,

suggesting that the mechanisms underlying the differences are specific to dendritic develop-

ment, rather than overall cellular growth. In addition, branching complexity was only in-

creased in the proximal-to-intermediate range of the basal, but not apical, dendritic arbor in

the BTBR animals, suggesting differential regulation of specific dendritic compartments [29].

corresponding tracings. Second row: more examples of tracings from the B6 mice. (B) Similar images of CA1

pyramidal neurons and tracings from the BTBR animals.

https://doi.org/10.1371/journal.pone.0179409.g001
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Fig 2. Neonatal BTBR animals had significantly greater dendritic lengths of both apical and basal

arbors, and more branching complexity of basal dendrites, compared to the B6 mice. Bar graphs

quantifying the length of (A) apical dendrites, (B) basal dendrites, and (C) total dendritic arbor in CA1

pyramidal neurons in B6 versus BTBR animals. Data were collected from 115 cells of seven B6 mice, and 96

cells of eight BTBR mice. Cross-sectional area of the soma was quantified in (D). n = 7 animals for B6 and 8

animals for BTBR. *: P < 0.05, **: P < 0.01 by Student’s t test. (E) Sholl analysis measures the number of

intersections between a series of concentric circles centered at the soma and the dendritic arbor of a neuron.

Line graphs showing the number of (F) basal and (G) apical dendritic branches at 20 μm intervals away from

the soma in B6 versus BTBR animals. For both basal and apical dendritic tree, P < 0.05 comparing B6 vs.

BTBR, using two way repeated measure ANOVA. *: P < 0.05, **: P < 0.001 by Holm-Sidak pairwise

comparison. The following parameters of both apical and basal dendritic arbor were further compared

between the two strains: (H) terminal points, (I) dendritic segments, (J) branch points, and (K) branch level. P

values were from Student’s t test.

https://doi.org/10.1371/journal.pone.0179409.g002
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Fig 3. Neonatal B6 and BTBR animals had similar densities of CA1 pyramidal neurons and thickness

of the neuronal layer. (A) Representative images illustrating fluorescent Nissl (first column) and DAPI
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The separation of basal and apical dendrites on all pyramidal neurons suggests that these

compartments have distinct functions [68, 69]. For example, basal dendrites of pyramidal neu-

rons are relatively short and close to the soma; thus electrical signals originating there may

exert a strong effect on action potential output. Similarly, somatic action potentials could

propagate back into the basal dendrites from the axon-soma compartment to influence synap-

tic plasticity [70]. Furthermore, different dendritic domains receive distinct synaptic inputs

and may integrate the inputs differently. In hippocampal CA1 region, the basal and proximal

apical dendrites of pyramidal cells receive input primarily from CA3 neurons, whereas the api-

cal tuft receives input from the entorhinal cortex and the thalamus [69]. Studies have also

shown that synaptic plasticity could be modulated in a domain-dependent manner. For exam-

ple, pairing of synaptic and global activity could potentiate synapses on proximal basal den-

drites but not on distal ones in neocortical pyramidal neurons. In the distal basal dendrites,

synaptic potentiation could occur under unusual conditions when synaptic activation is paired

with BDNF application [71]. In addition, it has been shown that synaptic cooperativity at distal

dendritic compartments is increased compared with proximal dendritic locations [72]. In this

context, it would be interesting to investigate how compartment-specific changes in the den-

dritic structure observed in the BTBR animals may affect synaptic physiology at different den-

dritic locations.

Multiple signaling pathways have been implicated in the development of dendritic arbor.

For example, several neurotrophic factors have been shown to regulate dendritic growth with

distinct effects on various types of neurons. In addition, they appear to exert specific, compart-

mentalized control over dendritic growth even within the same neuron [27–30]. Neurotrophic

factors are thought to regulate one or more downstream intracellular signaling pathways that

modulate transcription and/or translation, including the ERK pathway, which is central to

many cellular processes. In support of this, ERK has been shown to increase dendritic arbori-

zation in an activity-dependent manner [32, 33]. Interestingly, in animal models of ASD, it has

recently been reported that ERK promotes increased dendritic complexity in Tsc1null neurons,

and reducing ERK signaling rescued dendritic defects [22]. In addition, increased dendritic

arborization in cultured cortical neurons has been observed in a mouse model of 16p11.2

duplication, and inhibition of ERK similarly reversed dendritic alterations [25].

Here, we observed increased expression levels of activated MEK and ERK in hippocampal

homogenates from P8 BTBR mice. These results are consistent with a previous report showing

that Levels of phosphorylated ERK were significantly increased in whole brain lysate of BTBR

versus B6 mice at both P0 and P30 [73], and the notion that ERK signaling promotes dendritic

arborization described earlier. However, further research is needed to determine the causal

relation between ERK hyperactivity and dendritic overgrowth observed here. In addition, both

fibroblast growth factor signaling and Wnt signaling have been shown to regulate the develop-

ment of hippocampus [74–76], and they interact with ERK cascade [59, 63]. Thus, it would be

interesting to study these two pathways in the BTBR animals in the future. In an effort to iden-

tify the potential targets of the increased ERK signaling, we also quantified the expression

levels of phosphorylated as well as total forms of CREB, rpS6, and 4EBP1. We found that

protein levels of CREB and rpS6 were similar between BTBR and B6 animals, while both

(second column) co-staining (third column) of CA1 pyramidal neurons in B6 (upper panels) and BTBR (lower

panels) mice. Images in the boxed area are shown in higher magnification below. (B) Representative images

showing the results of immunohistochemical staining of Ctip2 in CA1 pyramidal neurons. Same organization

of panels as in (A). (C) Bar graphs summarizing the density of pyramidal neurons (left) and the thickness of

the CA1 neuronal layer (right) in P8 B6 and BTBR mice measured using Nissl staining. n = 10 animals for

each strain.

https://doi.org/10.1371/journal.pone.0179409.g003
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Fig 4. MEK and ERK signaling was up-regulated in the hippocampus of P8 BTBR mice, but not in the

cortex. (A) Western blots using hippocampal lysates against p-MEK/MEK and p-ERK/ERK. After p-MEK was

analyzed, the same membranes were stripped and used to analyze MEK. Finally, the membranes were
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phosphorylated and total 4EBP1 were increased in the BTBR mice. These observations are dif-

ferent from a previous report showing that ERK mediates activity-dependent dendritic growth

via CREB signaling [33]. It is possible that ERK may function through multiple pathways to

affect dendritic structure, and alternative targets of ERK may need to be identified to elucidate

its role in the BTBR model.

Interestingly, previous studies have suggested a link between 4EBP1 and dendritic struc-

ture. 4EBP1 has been shown to localize in the dendrites in CA1 region of hippocampus [77],

and overexpression of 4EBP1 blocked dendritic overgrowth when the phosphoinositide-3’-

kinase-Akt-mammalian target of rapamycin (mTOR) pathway was perturbed [78]. Given that

we observed an increase in both phosphorylated and total 4EBP1 protein levels in the BTBR

mice, the relation between 4EBP1 signaling and dendritic overgrowth seen here remains to be

determined. Since 4EBP1 can be regulated by multiple pathways [79], and given the compart-

ment-specific alterations in dendritic structure as discussed above, it is likely that other mecha-

nisms, such as the mTOR pathway, also play a role in the changes of dendritic structure

observed in this study. Notably, dysregulation of eIF4E has been implicated in the pathophysi-

ology of ASD [80–82], supporting a potentially important role of this pathway in the disorder.

Earlier studies have shown that BNDF promotes dendritic development in hippocampal

neurons [83, 84]. In the current study, however, we did not observe a significant difference in

hippocampal BDNF level between B6 and BTBR animals. Rather, we observed a trend toward

decreased BDNF levels in neonatal BTBR mice. The reasons for this difference are uncertain.

It is possible that other neurotrophic factors are differentially regulated in the BTBR hippo-

campus. Consistent with our data, in adult and aged BTBR animals, significant reductions in

mRNA or protein levels of BDNF have previously been reported [85–87].

ERK signaling and ASD

The Ras/Raf/ERK1/2 signaling pathway belongs to the family of mitogen- activated protein

kinases (MAPKs) [88]. The MAPK/ERK signaling pathway is highly conserved and mediates

the transmission of signals from cell surface receptors to cytoplasmic and nuclear effectors. It

plays important roles during multiple stages of brain development [63], and is critically

involved in synaptic plasticity, and learning and memory [89, 90]. Notably, 16p11.2 is the most

frequent recurrently deleted (0.5%) or duplicated (0.3%) locus in sporadic ASD [91] and this

locus includes the ERK1 gene and a gene encoding the major vault protein, which is thought

to regulate signaling through the ERK proteins. In addition, network analysis has revealed that

autism risk genes converged on cellular cascades related to ERK signaling [61, 62], suggesting

that ERK may be a common pathway that is perturbed in the brain of affected individuals [60].

Consistent with genetic studies in patients, and in addition to the reports mentioned above

[22, 25, 32, 33], recent laboratory investigations have revealed that genetic manipulation of

ERK activity in mice results in abnormal brain development and behaviors associated with

ASD, including hippocampus-dependent memory [92]. In addition, in a mouse model of

16p11.2 deletion, ERK activity in cortex and hippocampus was altered, and there was impaired

stripped again and actin was probed. Same approach was used to analyze p-ERK and ERK. (B) Quantification

of relative expression levels. The expression levels of p-MEK and MEK were normalized by actin, and the ratio

of p-MEK to MEK was computed using the normalized relative expression levels of p-MEK and MEK. Same

method was used to quantify p-ERK and ERK expression levels and the ratio of the two. (C) Western blots

using cortical lysates against p-ERK and ERK. Same methods were used as in (A). (D) Quantification of

relative expression levels of p-ERK and ERK in cortical lysates. *: P < 0.05, **: P < 0.01 by Student’s t test.

Vertical line in the image of (A) and (C) indicates the position of a lane that was loaded with markers of

molecular weight and was cropped out.

https://doi.org/10.1371/journal.pone.0179409.g004
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Fig 5. 4EBP1 signaling was altered in the hippocampus of P8 BTBR compared to B6 mice, while

levels of CREB, rpS6, and BDNF were similar between the two strains. (A) Western blots using

hippocampal lysates against p-CREB/CREB, p-4EBP1/4EBP1, and p-rpS6/rpS6. Same approach as

described in Fig 4 was used, except that 4EBP1 was probed in separate gels from p-4EBP1 because more
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cortical progenitor proliferation and brain cytoarchitecture, as well as memory deficits [93].

Furthermore, transcript knockdown of ASD genes such as Mecp2, Mef2a, Mef2d, Fmr1,

Nlgn1, Nlgn3, Pten, and Shank3 has indicated that regulation exerted by a diverse set of ASD-

associated genes converges on ERK signaling. In this framework, ERK could act as a hub of

multiple pathways involved in neurogenesis, long-term potentiation and synaptic activity [94].

Structural and functional correlation in the BTBR mouse model of ASD

The BTBR inbred strain is a robust animal model of autism mainly because it displays the core

behavioural features that define autism, specifically defective social and communicative behav-

iours, as well as stereotyped and restricted behaviours and interests [42–44, 95]. In this model,

investigators have reported numerous structural and functional aberrations, including changes

in genetic and epigenetic expression and regulation, neurotransmission, neuroanatomical and

functional connectivity, as well as the immune system. While many of these abnormalities are

similar to those found in individuals with autism [4, 42, 43, 96], the causal relations between

these changes and the autism-like behaviours largely remain unclear.

Here, we found an overgrowth of the dendritic arbor but similar neuronal density of CA1

pyramidal neurons in neonatal BTBR animals compared with B6 mice. Given the imaging

findings that adult BTBR mice have a greater hippocampal volume [49, 50] and increased local

connectivity of hippocampus [51] relative to B6 animals, yet overall immunoreactivity of

microtubule associated protein MAP2, a marker for dendritic cytoarchitecture, is similar in

adult BTBR compared with B6 animals [86], it will be interesting to examine whether the spe-

cific, compartmentalized overgrowth of individual neurons in BTBR pups persists into adult-

hood. Interestingly, a prior study showed that CA1 area of hippocampal slices from the BTBR

mice displayed normal long-term potentiation (LTP), paired-pulse facilitation and basal syn-

aptic transmission, as compared to B6 mice. However, hippocampal slices from BTBR mice

showed an increased susceptibility to de-potentiation, an activity-induced reversal of LTP

[45]. Behaviourally, BTBR mice have also been shown to display learning and memory deficits

in various settings [44–48], including reversal learning [44, 46]. It has been established that

dendritic structure could influence the firing pattern of neurons [97], and is a major defining

factor for induction of synaptic plasticity [14, 15]. Thus, it would be interesting to test whether

dendritic overgrowth observed here is linked to altered firing properties of the pyramidal neu-

rons, and whether it contributes to synaptic changes and dysfunctional learning and memory

in the BTBR animals.

Although we observed that neuronal density and thickness of the CA1 neuronal layer in a

confocal plane were similar between neonatal BTBR and B6 animals, the total volume of the

hippocampus and thus the total number of CA1 pyramidal neurons may be different. It will be

interesting to use unbiased stereological method to estimate the total number of pyramidal

neurons to detect any changes, especially considering that adult BTBR animals have reduced

hippocampal commissure [86, 98], but greater relative volume of hippocampus [49, 50].

ASD likely involves widely distributed neural systems and networks. Accordingly, it has

been proposed that ASD may represent a disorder of disrupted connectivity [1, 13]. Both over-

connectivity and under-connectivity have been reported in ASD patients, and it has been

input protein was required to obtain clear signals (p-4EBP1: 30 μg total protein; 4EBP1: 50 μg total protein).

Vertical line in the image indicates the position of a lane that was loaded with markers of molecular weight and

was cropped out. (B) Quantification of relative expression levels. Same method as described in Fig 4 was

used. (C) Western blots and relative expression levels of BDNF in the hippocampus of both B6 and BTBR

mice. *: P < 0.05, **: P < 0.01 by Student’s t test.

https://doi.org/10.1371/journal.pone.0179409.g005
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hypothesized that increased local connection and decreased long-range connection may be

cardinal features of the disorder and underlie the behavioural impairments [99]. In the BTBR

animals, results have shown agenesis of corpus callosum and reduced hippocampal commis-

sure [4, 42, 43], as well as impaired synaptic segregation of retinal ganglion cell input at the lat-

eral geniculate nucleus [100]. Thus, our results support overall altered structural connectivity

in both short and long range in this mouse model of ASD, and that these changes in connectiv-

ity may underlie its behavioural phenotype.

Studying autism from a developmental perspective

Changes during early development may contribute significantly to the pathogenesis of ASD,

but may not be evident later in life. For example, both functional hypo- and hyper-connectivity

of brain networks in ASD have been reported, and by placing these findings in a developmen-

tal perspective, a recent theory proposes that hyper-connectivity may be more characteristic of

young children with autism, while hypo-connectivity may be more prevalent in adolescents

and adults with the disorder [12]. In a related vein, many studies have shown that the size of

the corpus callosum is reduced in children and adults with ASD [101]; however, in contrast to

these findings, a recent investigation of infants less than 2 years of age showed that the corpus

callosum was larger in those who later went on to develop ASD [102]. Together, these observa-

tions strongly suggest that changes occurring in the brains of people with autism are dynamic

but not uniform across the lifespan, and that early neurodevelopment deserves more attention.

In this context, it will be interesting to investigate whether the observed dendritic overgrowth

and elevated ERK signaling during neonatal development in the BTBR mouse model contrib-

ute to its autism-like behaviour at juvenile and adult stages.

Conclusions

In this study, we showed that in CA1 pyramidal neurons, dendritic lengths of both apical and

basal arbors were greater, and the branching complexity of the basal dendrites was increased,

in neonatal BTBR mice compared to B6 animals. No significant differences were found in the

density of CA1 pyramidal neurons or the thickness of the neuronal layer between the two

strains. We further demonstrated up-regulation of ERK signaling in the hippocampus of neo-

natal BTBR mice, suggesting that this important intracellular pathway might be involved in

the observed dendritic overgrowth. Considering that dendritic pattern is critical for informa-

tion integration, our data suggest that altered development of dendritic structure could poten-

tially contribute to disrupted connectivity, as well as impaired hippocampal function and

behavior observed in this mouse model of autism.
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