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Abstract

In this paper we present direct formulations of the effective thermal linear expansion (TLE) of het-
erogeneous materials or multi-constituent composites with temperature dependent constituent properties
and with an arbitrary initial incompatible eigenstrain distribution. The effective properties are expressed
in terms of the stress and strain concentrators. The effective coefficient of thermal linear expansion
(CTLE) is then defined as the temperature derivative of the effective TLE. The development is based
on the linear theory of uncoupled thermo-elasticity. For a special class of bi-constituent composites,
the effective thermal expansion is expressed in terms of the effective elastic properties rather than the
concentrators. An example is presented for niobium (Nb) fibers embedded in a copper (Cu) matrix at
cryogenic temperatures. It is shown that this composite achieves negative CTLE despite the fact that the
CTLE of both Nb and Cu are strictly greater than zero. In addition, it is shown that the presence of an
initial feld of incompatible eigenstrains is capable of causing anisotropic thermal expansion coefficients in
an otherwise macroscopically isotropic material of isotropic constituents. Due to the form equivalence of
the governing equations the developments which are presented are also applicable to the area of moisture
swelling.

— 71 "Introduction

One of the first scientific investigations of thermal expausion concerned the keeping of accurate timne through
the use of pendulums. The linearized approximation to the period of a pendulum is proportional to the
square root of the length of the pendulum. Thus dimensional changes in the length of the pendulumn due
to thermnal Auctuations effect the accuracy of the instrumnent. The first experiinents concerning these issues
were perforined by Musschenbrock (Desaguliers, 1745, pp. 436-46) in the early 18-th century.

The two-and-a-half centuries since the work of Musschienbrock have not lessened the demands on engineers
in dealing with thermal expansion. One needs ouly to consider the $2.5 billion Hubble Space Telescope (HST)
deployed into Earth orbit in April of 1990. The pointing accuracy of the telescope was severely affected by
thermnally induced vibrations in the solar panels every tiine the telescope passed into or out of the Earth's
shadow (Burrows et al, 1991). The problemn was corrected during a repair mission of the Space Shuttle in
December of 1993; the solar panels were replaced.

As with the pendulum, thermal expansion design issues are not exclusive to exotic systems like the
HST. Thermal expansion has loug been a concern of the bridge and aircraft engineers to name just two



professions., However, it is the extreme envirnoments that many of today’s high-technology systews are
being asked to endure that gives rise to the research presented in this paper. Techmological interest in the
areas of superconductivity (Vidali, 1993) and functionally graded materials (FGMs) (Cherradi, 1994) are
two such areas. Interest in FGMs, which are materials that are both microscopically and macroscopically
heterogeneous, was born from experimental work that demonstrated their admirable perforinance when
subjected to severe thermnal gradients.

In the near totality of previous studies, interest in thermal response of heterogeneous or couposite
materials has been Limited to the coefficient tensor of thenmnal linear expansion. This is defined as the
temperature derivative of the thermual linear expansion, and is thus appropriate when the temperature
interval is sufficiently small and the thermnal expansiou varies linearly with temuperature. In general, however,
thermal expansion of a material depends nou-linearly on the temperature. Figure 1 illustrates this non-linear
temperature dependence for polycrystalline copper aud niobium. Thus it is advantageous from a theoretical
standpoint to initially consider the effective thermal expausion. Specifically, this paper concerns the effective
thermal linear expansion (TLE) since a linearized straiu measure is used.

As a point of clarification we note that this paper is not concerned with efforts at predicting the thermal
expausion of homogeneous materials through the use of anharnonic oscilators and lattice dynamics. Rather
we assuine the properties of the homogeneous materials to be known and we concern ourselves with the
prediction of the effective TLE properties of heterogeneous materials or composites. We do not consider
phase transformnations of the coustituents nor chemical interactions amongst the coustituents. Expressions
for the effective coefficients of therinal linear expausion (CTLE) are then obtained, by definition, by taking
the temperature derivative of the effective TLE.

The earliest theory of effective CTLE appears to be that of Guertler (1922, as cited by Hughes and
Brittain (1964)) for two-phase alloys. Guertler spedifically proposed the volume weighted average of the
coustituent CTLE, i.e., the rule of mixtures. Turner (1946), altermatively, arrived at an expression that can
be viewed of as the bulk modulus weighted average of the isotropic constituents’ CTLE. More mechanically
based theories then emerged in the works of Keruer (1956), Hughes aud DBrittain (1964), Levin (1967),
Schapery (1968) and Rosen and Hashin (1970).

In the experimental literature on thennal expansion there exists data which are not supported by theory.
Lototskaya et al (1989) observed negative coefficients of thernal expansion of a Cu composite with Ti-Nb
filamnents at cryogenic temperatures in apparaut contradiction to the data supporting that the Cu and Ti-Nb
individually have positive coefficients of thiennal expausion at the sawe temperatures. Finlayson et ol (1981)
observed anisotropic thermal expansion in cormnposites that to the best of their knowledge were isotropic i
all of their properties, We do not attemnpt to explain fully the behavior observed in these experimnents—since
sufficient data is not available—but rather demonstrate that the theory of thermnal expansion developed
herein is cousistent with the observed behavior.

The developients presented in this paper are not limited to the thermomechanical field, but actually
address several plienomena that are governed by equations analogous to those of thermomedchanics. Oue
such phienomena is moisture swelling (Hashin, 1983). This arvea is also of techmological interest. For an
examnple we retuim to the HST. During its service to date, there have been numerous mirror adjustineuts
on the HST to correct for moisture desorbtion in the graphite epoxy wmetering truss (Hasan, Burrows and
Scliroeder, 1993).

This paper is organized in the following manuer. Section 2 presents mathematical prelininaries conceruing
the basic governing equatious. Section 3 prepares for later sections by presenting effective elastic properties.
Section 4 presents the definitions for effective thermal expansion followed by section 5 which explidtly
evaluates the definitions of section 4 in terins of strain and stress concentrators. Section 6 then specializes
the results of section 5 for a specific class of bi-constituent composites, Section 7 presenuts an exainple.

2 Preliminaries

The thermomechanical behavior of a phiysical body P is modeled in this paper by application of the theory
of contimuun uncoupled thermoelasticity (Boley and Weiner, 1985). This assuines the identification of P
with a region B C R%, with boundary 88 on which there are assigned teusor fields that characterize physical
properties (e.g., thernal expansion, elasticity) and field variables (e.g., temperature, strain). In general.



unless otherwise explicitly stated, all tensor fields are assuined to be spatially variable or, in other words,
non-homogeneous, and in yet other words, dependent on x where x is au element of the domain on which
the tensor field is defined. A tensor field is said to be homogeneous if it is not spatially variable. A domain
is said to be homogeneous if the coustitutive relations (whidh are tensor fields) defined on that domain
are homogeneous. Boundary conditions are said to be homogenous if the same boundary couditions when
applied to a homogenous domain result in homogeneous solution fields.

The governing equations of the thermomedchanical mnodel are presented below. For our purposes we shall
restrict our attention to siruply connected domaing and to time-invariant problems with no heat sources or
body forces, Siuce the theory is uncoupled in the manner mentioned we shall begin by preseuting the theory
of heat conduction followed by the theory of thero-elasticity.

7 Heat couduction through the phiysical body is modeled by

divg=0 inbB (1)

and
arl H=0 mB ¢ H=-gradf® B {(2)

where 6 is the scalar temperature field, q is the heat flux density and H, as defined above in equ (2}, is the
negative of the temperature gradient. The symbols div, grad and cwl denote the divergence, gradient and
curl operators, respectively. The vector fields ¢ and H are hereiy taken to be related through the Fournier
law: q = x H, where & is the second-rauk thernal conductivity tensor. Let the boundary 8B be partitioned?
into {8B¢,0D,} where the boundary conditious ou 88 aud 88, are of the Diriclilet and Neumaun type,
respectively. That is,

=6 ondbBs (3)

gn=q-n=¢, ondb, (4)

where n is the outward unit normal and 6 and ¢, denote prescribed scalar fields. The boundary couditions
are homogeneous if either § = H® - x 4+ 8° on 8B or §, = q° - n on 08 where x € B and where H®, ¢° and
8° are homogeneous tensor fields of rauk 1, 1 and 0, respectively.

We now consider the thermno-mechanical response of the phiysical body. Let u denote the displacement
field over the domain 8. Ou the assumption of infinitesiinal displacemnent gradients, the strain field € is given
by € = grad®[u] where 2grad®[u] := grad[u] + grad”[u]. A superscript T denotes the transpose operator.
The strain field is assumed to be additively decomnposed into two parts: € = €° + €*. The second pait
€ is termed the eigenstrain (Mura, 1987) (or, non-elastic strain, or stress-free strain). Examples of such
eigenstrains are thermal expausion strains, plastic strains, moisture swelling strains, trausformation strains
ete, The first part €° is termned the elastic strain aud is taken to be related to the stress field o through a
constitutive relation

o=C:(e—¢€) (5)

‘where the stiffess tensor C = C(0, x) is taken to be a function of temperature. In many practical applications

it is a reasonable assunption to take the elastic properties as being temuperature independent. For this reason,
the implications of this siinplifying assumnption on the theory of thermal expansion presented in this paper
will be addressed. However, there are instances, as will be presented in section 7, where the effects of the
temperature dependence of the elastic constitutive relation is significant.

For the present developinent we shall restrict our attention to two sources of eigenstrains. It is a relatively
sirnple matter to include additional sources of eigenstrain in a more general analysis. For our purposes.
however, it is sufficient to cousider only thermal expansion and an iuitial eigenstrain field. The thernal
expansion incurred on the domaiu B by a change in temperature from €, to § will be denoted by Y =
Y (6.6-,x). The initial eigenstrain field is denoted by €; and it quantifies the the physical body's state
of incompatible strains in its initial or reference state. In a physical body a set of incompatible strains
produces what is cormnmonly called a residual stress field. It is common in mathematical models of plysical
systems to make the approximation that in the initial state of the domain €} = 0. This implies that the

Ilet T and P denote sets and suppose that for each { € I there is associated a subset of P denoted by P;. The family of
the sets P;, denoted by {P;}, is termed a partition of P iff (i) UjezPi =P and (i) Vi, € Z, P; NP, = D for i # j. The set T
is termed the index set of the partition.



initial stress and strain fields are also zero. The physical body, however, may not possess sudi a stress-free
strain-free state thus immplying that the initial eigenstrain field is non-zero. As will be shown in the sections
that follow the effective thertnal expansion of a body is a function of tlis initial eigenstrain field when the
temperature dependence of the elastic coustitutive relations are taken into account. It will be shown that the
effective thermal expansion is independent of the initial eigenstrain field when the assumnption of tetnperature
independence of the elastic coustitutive relation is invoked.
The presentation of governing equations for the thermo-elastic problem is completed with the equilibrium
equation
dive =0 in B (6)

and boundary conditions. To present the boundary conditions let the boundary 8B be partitioned into
{6DB,,8DB,} where the boundary conditious ou 80, and 8D, are of the Dirichlet and Neutnann type, respec-
tively. That is,

u=10 oudb, (7)

t,:=on=1t, ondb (8)

where @ and t,, denote prescribed tensor fields. The boundary conditions are homogeneous if either 4 =
€°x +u® onu 8B, or t, = 0°n on 8B, where €° and o° are both homogeneous tensor fields of rank 2. The
vector field u® is a vector field consistent with a rigid body translation of the domain. Since u® does not
result in any strains we can conveniently take u® = 0 without any loss in generality with respect to the
resulting strain field. Therefore, in what follows, homogeneous displacement boundary conditions will be
taken in the forin 0 = €°x.

This concludes the presentation of the goveruiug equations. In the following section the definitions of a
representative volumne elernent and effective elastic properties are introduced. The effective elastic properties
are then evaluated using the direct approach.

3 Effective Elastic Properties and the Direct Approach

Prior to discussing the effective thermal expansion we deemn it convenient to introduce the concepts of a
representative volumne element (RVE) and effective elastic properties of au RVE. The direct approach of Hill
is then presented to vield expressions for the effective elastic properties in terns of quantities called strain
and stress concentrators.

Throughout this paper we concern ourselves with the effective properties of a microscopically hetero-
geneous or cowposite material. We assuine that on a sufficdently large scale the composite material may
be regarded as being mwacroscopically homogeneous. The volumne of composite material required to achieve
this ideal of macroscopic homogeneity is termmed the representative volume element (RVE). For a further
discussion of RVEs the reader is referred to Hashin (1983).

I the realin of effective property calculations the spatial average of specific tensorial quantities is required
- over thedomnain of interest. We shall denote the spatial average of an arbitrary quantity T defined on X by
{T)x where by definition

Ve

and Vg = [y, dx is the volumne occupied by the domain R. When the domain of definition R is unambiguous
the subscript R will be dropped from the notation.

Given an RVE subjected to homogeneous boundary conditions the effective elastic properties are defined
in the following way. The effective stiffuess C* is defined as the quantity that relates the average stress (o)
to the average strain {€) through the relation

1
()r = o /R () dx )

{o) = C*: (¢). (10)

Siinilarly, the effective compliance S* is defined as the quantity that relates the average strain {€) to the
average stress (o) through the relation

() = S* : {o). (11)



If we now assumne a special structure to the elastic constitutive relation C it is possible to develop explicit
expressions for the effective elastic properties. We proceed therefore by restricting our attention to physical
bodies comnprised of a nmumber of distinct homogeneous waterials, That is to say that the coustitutive relation
C defined on the domain R is *piecewise”™ homogeneous. We now require a partition {RR;} with index set
T of the domain R such that for ¢ € Z the constitutive relation C restricted to the domain R;, herein to
be denoted by C* is homogeneous. A convenient way of denoting this statement mathematically is to write
Y! = Y | R; which may be read as Y* equals Y restricted to the domain R;. We shall encounter this
notation again,

In general, the index set 7 may be uncountable. In particular, thiere may exist situations where a sum
over a subset of T may be replaced by an integral. Such a situation will occur in section 6 where orientational
averaging will be utilized.

The direct approach originated with Hill (1963). The features of Hill's approach required here are
those of the concept of the strain and stress concentrators., When a domain is subjected to homogeneous
displacernent boundary conditions—quantified by the homogeneous field €>—the equilibriuin strain field €
is uniquely determined by and linearly related to the homogeneous field €°:

e=A :¢° (12)

where A is termed the straiu concentrator. Since (€) = €° it follows from equ (12) that (A) = I where I
is the fourth rank syminetric ideutity tensor. Simmilarly, when a domasin is subjected to homogeneous trac-
tion boundary conditions—quantified by the homogeneous field o°—the resulting stress field o is uniquely
determined by and linearly related to the homogeneous field o°:

c=B:o° (13)

where B is termned the stress concentrator. Siuce (o) = o° it follows fromn equ (13) that (B) = 1. For nota-
tional convenience define A’ := (A)r, and B’ := (B)g, which are the volume averages of the concentrators
over the subdomain R; of the RVE R.

The ideutities (A) = I and (B) = I can be rewritten as

> FA=T (14)
el

and o
ZC'B' =1, (15)
Hya

respectively, where ¢! 1= Vg, /Vz is the volumne fraction of the i-th subdomain R;. Trnposing homogeneous
displacernent boundary conditions and using the volume averaged strain concentrators, it follows from the
defining relation (10) that the effective stiffiiess of the RVE can be expressed as

C'=) JdCHAL (16)
€T
Simnilarly, iiuposing homogeneous traction boundary conditions and using the voluine averaged stress con-
centrators it follows that the effective compliance of the RVE can be expressed as

' =3 /s : B (17)

i€l

From the defining relations (10) and (11) it is clear that the effective properties are inverses of one another:
C*:8 =1

In section 5 we shall return to the strain and stress concentrators presented here to evaluate explicit
expressions for the effective thermnal expansion of an RVE. Before doing so we must define the effective
thermal expansion. We do this in the following section.



4 Definitions of Effective Thermal Expansion

Thertal expansion of a homogeneous material is by definition related to the difference in thie two states
of strain after the material is subjected to a uniforin change in temperature. Thermnal expansion may be
qualitatively described in the following manner for the majority of materials. An increase in temperature
typically has the effect of causing the material to expand (a net “positive” strain) while a decrease in
temperature causes a contraction (a net “negative” strain) of the material. This is not a universal behavior
since some materials contract along particular directions when subjected to an increase i temperature.
Graphite is such a material. These two states will be referred to as the reference and current states. Since
the reference state can be coustrued as a previous current state it will be convenient to discuss soine elernents
common to both states first. The particular differences between the two states will then be discussed.

The following coustruction is common to both the current and reference states. Cousider a RVE R with
boundary OR. In regards to the preseutation of the previous section we can take the governing equatious to
apply to the RVE by taking B = K. We assumne there to be no heat sources or body forces. The theral
boundary condition is homogeneous with a uniformn temperature 6°, (i.e., 0 = 6° on 9R). The domain T is
loaded by a general eigenstrain field *. The medianical boundary conditions are also homogeneous. As was
alluded to above two different but equivalent definitions for the effective thermal expausion will be presented.
These two definitions result from cousidering the two possible types of homogeneous mechanical boundary
conditions:

e Case A Zero-displacement boundary condition: i =0 on oB.
e Case B Zero-traction boundary condition: t, = 0 on OB8.

The equilibriun solution to both of the above boundary value problems will be denoted by the ordered pair
(6,u). Notation will not be introduced to distinguish between the equilibriumn solutions of Cases A and B
since it will be clear from the context in what follows which solution is iutended.

We are now interested in the equilibriuin solution to the thermo-mechanical problem of the RVE. Since
the temperature boundary condition is uniforin, the temperature field is given by 8 = 0° regardless of the
thermnal conductivity field k. The solution of the thermo-elastic proble. i.e. u, is, in general, non-trivial
due to the eigenstrain field €*. If, however, € = 0 then u = 0. Thus, € = 0 and ¢ = 0 and the state
is strain- and stress-free. Conversely, if the state is both strain- and stress-free then €* = 0 due to the
uniqueness of solution. We shall return to this point when we discuss the reference state below.

The reference or initial state will be quantified by the ordered pair of equilibrium solutions (6. u,) when
the uniform temperature boundary coudition is 8° = 87 and the eigenstrain field is €* = €;. The initial
eigenstrain field €} models the initial state of incompatible strains in the physical body. This field is assumed
to be known and is independent of the current temperature. The reference state is typically taken to be
strain- and stress-free whicly, as stated above, fiplies that €} = 0. It the remnainder of this paper a subscript
r on any quantity will denote that quantity in the reference state. For example, o, and €, denote the stress
and strain fields, respectively, in the reference state. L

The current state will be quantified by the ordered pair of equilibriuin solutions (6,u) when the uniforu
tanperature boundary condition is 6 = 6° and the eigenstrain field is €* = Y + €] where Y is the field
of local therinal expansion for the diange in tewnperature from 62 to 6°. In other words, upon altering the
temnperature from 82 to 6° it is assumned that the only eigenstrains induced during the change in temperature
result fromn thermal expansion.

In the following two subsections, the definitious for effective thermal expansion are presented for the
two cases of homogeneous mechanical boundary conditions presented above. These cases have been labeled
above by Case A and Case B. In both cases the definitions for effective thermal expansion are guided by
those definitions for thermal expausion of homogeneous materials.

Case A: Zero-displacement boundary condition

We consider here the case of homogeneous, zero-displacemnent mechanical boundary conditions, ie. G = 0
on OR. The effective thermnal expausion Y* of the RVE as its uniform temperature is altered from 67 to 6°



18 defined as

Y i=(-0):8" = (~0,): 8] (18)
where 8* (S}) is the effective compliance of the RVE in the current (reference) state. To motivate this defini-
tion recall that a straiu- and stress-free homogeneous domain with homogeneous zero-displacement boundary
conditions and temperature independent elastic constitutive relation when subjected to a temperature change
from 67 to 6°, thus incurring a homogeneous thermal expansion strain of Y, also incurs a homogeneous stress
field o = —C: ¥ = —Y : C. Solving this last equation for the thermal expansion yields Y = —¢ : S. If we
now assune that the thertal aud mechanical constitutive relations are non-homogeneous then this last equa-
tion is still valid with the difference that all three quantities are non-homogeneous. We define the effective
thermal expansion by the volume average of the field Y. This leads to Y* :={Y) = (~0 : 8) = (—0) : §*.
Equation (18) follows by allowing for a non-zero initial eigenstrain field and teruperature dependence of the
elastic constitutive relation.

The effective thernal expausion (18) of a RVE is dependent on the initial eigenstrain field €? since both o
and o, are iuplicitly functions of the initial eigenstrain field. Due to the linearity of the governing equations,
the effective elastic properties are independent of the initial eigenstrain field. There are, however, at least
two sufficient conditions which render the current theory for the effective thermal expansion independent of
the initial eigenstrain field. These two sufficient conditions are discussed next.

The first sufficient condition is homogeneity of the elastic properties. If 8 is homogeneous then $* = S
and the definition (18) reduces as

Y* = {(-0):8" ~{(~0.):8; (19)
= —((e—Y—-€):C):S+((e,—€):C,): S, (20)

= —(e-Y —€.)+{e —¢€}) (21)

= =&+ (Y)+{e7) + (&) — (€]} (22)

(Y). (23)

To obtain equ (23) frow equ (22) recall that the homogeneous displacernent boundary condition is @1 = 0. i.e.

° =0, thus (€) = €° = 0 aud, likewise, (€,} = 0. Thus, if the elastic properties of the RVE are homogeneous
theu the effective thermnal expansion is independent of the initial eigenstrain field. Furthermore, if the thernal
expausion Y of the RVE is also homogeneous (in addition to the homogeneity of C) then Y* = Y. Note
that homogeneity of Y does not in and of itself itnply that Y* = Y.

The second sufficient condition to ensure independence of the effective thernal expansion with respect
to the initial eigenstrain field is temperature independence of botli the elastic properties C and the effective
elastic properties C*. By temperature independence of the elastic properties we mean that C = 0 aud C* = 0
for all possible current temuperatures 6° where the over-dot notation denotes differentiation with respect to
the current temperature 8°. That is. () = () = d(-)/d8°. We shall frequently encounter occasious, as
in the previous sentence, when the over-dot notation must be applied to a quantity which has superscripts
and/or subsaipts, i.e., C* For notational simplicity we note that C* = (C*)". Note that if $ = 0 for all §°
‘then 8, = §; buml.:uly. if $* = 0 for all 6° then S; = 8*. The proof proceeds from definition (18) as follows:

Y* = (~0):8" —(~0o,):8] (24)
= {o,-0):S (25)
= {(e,—€):C—(e-Y —¢}):C): 8" (26)
= {(e&,—e€+Y¥):C):8%, (27)

This does not conclude the proof since both € and €, are implicitly functions of the initial eigenstrain field.
We now show, however, that the right-hand-side of eqn (27) as a whole is independent of €2, To proceed
it is convenient to introduce some auxiliary notation. Let €(e*) denote the equilibrium strain field of the
domain loaded by the eigenstrain field €*. Our usual notation may therefore be equivalently expressed as
€= &Y + €!) and ¢, = €.(€}). Returning to equ (27) we have

Y = (e () —-&Y +e)+Y]:C): 8 (28)
= ([&e)-e(Y+e)+Y]:C):8* (29)
([Y -€(Y)]:C): 8" (30)



From equ (30) it is clear that the effective thermual expansion is independent of the initial eigenstrain field. In
obtaining equ (29) from equ (28) temperature independence of the elastic properties was utilized. Linearity
of the governing equations provided the meaus of obtaining equ (30) from equ (29).

This concludes the presentation of the definition of effective thermal expansion utilizing homogeneous
zero-displacernent boundary conditions. In the following subsection effective thernal expansion is defined

utilizing homogeneous traction free boundary conditions.

Case B: Zero-traction boundary condition

We consider here the case when the mechanical boundary conditions on the RVE are traction free, ie.,
t, = t, = 0 on OR. The effective thermnal expansion Y* of the RVE as its uniform temperature is altered
from 02 to 0° is defined as

Y= (e) — (&), (31)

Equation (31) is the difference in the volume averaged strain fields of the current and reference states,
Definition (31) situplifies to the more familiar definition Y* = (€) under the assunption that the reference
state is strain- and stress-free, i.e. €} = 0.

As with Case A presented above, this definition (31) of effective therinal expansion is a function of the
initial eigenstrain field. Proofs similar to those given for Case A can be coustructed for Case B to yield the
results that (i) homogeneous elastic properties and (i) temperature independernce of the elastic properties are
both, independently, sufficient for the effective thertnal expansion to be independent of the initial eigensirain
field. The proofs are omitted liere for brevity.

We now define the effective coefficient of thermal expausion. Recall that if Y is homogeneous thermual
expansion then the homogeneous coefficient of thermnal expansion o is by definition the temperature deriva-
tive of the thermnal expausion Y. That is, a = Y. I an analogous manuer, the effective thermal expansion
a* 15 then defined as

at =Y, (32)

In the next section we utilize the concentrators of section 3 to evaluate explicit expressions for the
definitionus of effective thermal expansion given above.

5 Effective Thermal Expansion

Prior to developing expressious for the effective thermal expansion we present a useful identity. Cousider a

domain B endowed with a stiffuess tensor C and no body forces. Let ol be a statically admissible stress

field and let €! Le a kinematically adinissible strain field. The fields ol and €7 are not necessarily related

through a coustitutive relation. If either o! or €/! is compatible with homogeneous boundary conditions
————— then the following relation exists between volume averages of the admissible fields

(a!:€lly = (o) : (') (33)

If o7 and €7 are related through the linear coustitutive relation C, then o! = ¢ and €/ = € where o
and € are the solutious to the elasticity problem. The relation (33) then reads (o : €) = (o) : (€}, which is
sometimmes known as the Hill condition (Bishop and Hill, 1951; Hill, 1963).

We now develop expressions for the effective thernal expansion for the mechanical boundary conditions
of Case A and Case B presented above. To proceed, however, we assuine that the partition {R;} is such
that for i € Z not only is C' ;= C | R; homogeneous but so too are Yi:=Y|R;and e := € | R;.

Case A: Zero-displacement boundary condition

Cousider a typical RVE R with no body forces or hieat sources subjected to a uniforin temperature boundary
condition 8 = 6° where it is recalled that 6° is a homogeneous field. Let the ordered double (€°,€*) whose
elements denote the fields which fully quantify the homogeneous mechanical boundary conditions and loading



of the domain R, respectively. Qur goal is to develop au expression for {(—eo) when the mechanical boundary
condition is @ = 0 aud the domain is loaded by a plecewise homogeneous eigenstrain field €*. To this end.
we can consider two problemns: 4" = (€°,0) and 4" = (0, €*). In problemn 4’ the tensor €° is arbitrary. Note
that the negative of the spatial average of the stress field associated with problem 4" is the quantity we
desire. An expression for such a spatial average can be obtained using eqn (33) twice. First use J = 4 and
IT = A" to deduce that (¢4 : C: e*”) = 0. Then use I = 4" and IT = A', together with the previously
obtained result, to arrive at the desired result:

(=a)= | e Al (34)
€T
In dedudng the above equation, the arbitrariness of €° was utilized. Using the eqn (34) to evaluate eqn (18)
yields
Y = Zci (Yi+e):C: A 8" — Zci e CL Al 8. (35)
ieT €T

The effective coeficient of thermal expansion is given by

o = D {ai (C AT (Yt e (C‘ PAT+C A“)} : 87
i€T
=Y (Yi+e):C A8 Ot 8 (36)
€T

upon substituting equ (35) iuto the definition (32).

There arve many situations when it is valid to assume that the elastic properties C’ are temperature
independent. For this reason we now present the imnplicatious of such an assumption of the forin of equs (35)
and (36). Temperature independence of the elastic properties implies that CL = C’ and Ci = 0. As aresult
of sudi an asswnption, equs (35) and (36) reduce, respectively, to

Y = Zc“Y"‘:C":A’A . S* (37)
i€z

ot = |Y dal:Cl A s (38)
s

Note that egns (35)-{38) are expressed iu termus of both strain and stress concentrators because of the
presence of the effective compliance in these equations which is expressed in terms of the stress concentrators
by eqn (17). In the exact theory this does not pose a problemn since, as we stated above, the effective elastic
properties are inverses of one another. However, in practice the exact concentrators, and thus the exact
effective elastic properties, are not kuown and so recourse is made to approximate concentrators. This is
where the issue of consistent approximate presents itself. For a choice of both strain and stress concentrators
it is generally true that the corresponding effective properties are not inverses of one another. Therefore,
what we mean by a cousistent approximation is evaluatiug an eflfective property ou the choice of either a set
of strain concentrators or a set of stress coucentrators but not both.

The equations given above, namely (35)-(38) are appropriate for evaluation for a given set of strain
concentrators. In order to conform with a consistent approxiination it is necessary to define the effective
compliance in the following manner $* := (C*)~! where C* is given in terms of the strain concentrators A’
by equ (16). In the next subsection a similar set of equations to those of this subsection are developed which
are applicable when a choice for a set of stress concentrators is emnployed. In that case it so happens that
the issue of cousistent approximate does not arise,

Equation (38) includes the theory of Turner (1946) as a sub case. Restrict all constitutive relations o'
and C' to be isotropic. The result of Turner (1946) then follows from the the approximation that A’ =1
forvieZ.



Case B: Zero-traction boundary condition

As with Case A above, consider a RVE R with no body forces or heat sources subjected to a uniform
texnperature boundary condition 6 = 6°. Let the ordered double (o°, €*) denote the fields which fully
quantify both the homogeneous traction boundary condition and IOddulg of the domain R. The goal is to
develop an expression for {(€) when the boundary condition is traction free (i.e.. t, = 0) and the domain is
loaded by a piecewise homogeneous elgeustrdm field €*. To this end, we consider two problems: B’ = (¢°,0)
and B” = (0,¢*). Iu problem B’ the teusor ¢° is arbitrary. Note that the spatial average of the strain
field dssoudted 'mth problemn B is the quantity we desire. An expression for such a Spdtld.l dwerage cau be
obtained using eqn (33) twice. First take I = B” and I = B’ to deduce that {¢?" : S: & B’y = 0. Then
use I = B’ and IT = B", together with the previously obtained result, to arrive at the desired result:

<€>:Z ieri . BE (39)
i€l

In deducing the above equation, the arbitrariness of o° was utilized. Using the above equation to evaluate
definition (31) for the effective thermal expansion of the RVE R yields

:Zci [(Yi+6:i) ;B — €t :Bi] . (40)
i€l
The effective coefficient of thermal expansion is given by
ot = Zci [ai B+ {Y +e'}: B‘] (41)
i€T

upon substituting equ (40) iuto the definition (32).
If the elastic properties are independent of temperature it follows that

Y = Y AYLB (42)
i€l

ot = ZC'iai:Bi. (43)
i€l

Equation (43) has been previously obtained by Rosen and Hashin (1970). The approximation of Guertler
{1922, p.118) can be obtained fromn (43) by taking B =1.Vi € 7.

6 A Special Class of Bi-constituent Composites

In this section, the results of the previous section are specialized for a specific class of bi-coustituent comn-

———=—posites. The specific cdlass being quantified by the sufficient conditions necessary to express the effective

properties of the previous section in termns of the effective elastic properties rather thaun the concentrators.
Tlis proceedure has been previously considered by Leviu (1967) and Rosen and Hashin {1970) for a unidi-
rectional bi-coustituent composite. Rosen and Hashin's (1970) result for the effective coefficient of thermnal
expansion was conveniently expressed as

a*=a™+(af —a™): (8 —8s™)": (8* -8™). (44)

A word of dlarification is in order here so that the applicability of the above equation (44) is not mnis-
construed. When in a later review article (Hashin, 1983) it is stated that the above equation (44) is valid
for the “most general kind of thermoelastic two-phase composite” the reader must not interpret “phase”™ as
meaning “coustituent.” In short, the plrase “two-phase composite” is equivalent to what we have hLerein
been referring to as a *uni-directional bi-constituent™ composite. The reader is referred to Nadeau and
Ferrari (1995) for a discussion on phases and their distinction from constituents.

Returning to the objective of this section, we shall inplement the methodology which Rosen and Hashin
(1970) used to arrive at eqn (44) to find shnilar results for the expressions presented in the previous section.
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In doing so we shall show that the expression (44) is applicable to a wider class of bi-constituent composites
other than uni-directioual (or two-phase). To emphasize that the results of this section are not applicable to
all bi-constituent composites we shall preseut a proof by counter-example.

Consider a bi-coustituent comnposite in the forin of identically shaped ellipsoidal inhomogeneities (or
short-fibers; or fibers, for short) embedded in a matrix. The constitutive relations for the Imatrix material
are represented by the usual symbology but with a superposed m to denote matrix, ie. C™ and Y™,
A typical fiber is given a local coordinate frame K'. The constitutive relations for the fiber material—
distinguished by a superscript f—are such that their components with respect to the local fiber-fixed frame
are the same for all fibers. The orientation of a specific fiber relative to the global or specimmen fixed frame
K is given by the Euler triad g := (¢1,0,42) € SO(3) where ¢, ¢ and y; are Buler angles. The probability
of a single fiber having au orientation within the “iuterval” [g. g +dy) is given by f(g)dg. The function f(g)
is the orientation distribution function (ODF).

Let R™ C R denote the domain of the matrix material in the RVE R. The domain occupied by the
fiber material is thus given by Rf = R\ R™. Let 725 C R denote the domain occupied by all fibers with
orientation g € SO(3). Thus, {7?,5} is a partition of RY where Z, € SO(3) is the index set. The index set
may or may not be countable. We now choose {R™ {R/}} as the partition of the RVE R. That is, we
have taken I = {m,Z,;}. The partition {R™, RS} is not appropriate since the constitutive relations are not
homogeneous on R? due to the ODF and the general anisotropy permitted to the constitutive relations,

Tt is now assurned that the comnponents of the concentrators Ag and Bg with respect to their local basis
ave independent of the orientation of the local basis with respect to the global basis. Recognizing that it is
an abuse of notation, we will write Aé = Al aud Bg = B7 for all g € I, where the components of AS and
BS with respect to the local fiber fixed frame are independent of g.

For future reference we now present two conditions:

e C1 Unidirectional ODF.
e C2 Isotropic constitutive relations (mnechanical aud thermal) and isotropic initial eigenstrain field.

Eadi of these two conditions will be shown below to be independently suffident to allow for the effective
properties of the previous section for a bi-constituent composite to be expressed in terms of the effective
elastic properties.

For reasous of brevity aud clarity, the proof of the sufficiency of the two conditions C1 and C2 is only
presented for Case B below. We begin, however, by preseuting the results for Case A.

Case A: Zero-displacement boundary condition

In a procedure sitilar to that outlined below for Case B, it may be shown that when either or both of C1
and C2 hold the eflective thermnal expansion and effective coefficient of thernal expansion can be expressed
in tertus of the eflective stiffitess as

S ——

Y = [(Yr+em):Cr+ (Y +ef):Cf = (Y™ + 7). Cm}:Cl]: 8
- [gm:cr+{ef:Cl-gm:Cr}:Cl]: St (45)
o = [am;cm+(Ym+e:m);C'"

+{of:Cl—amicm 4 (Y 4 &) LG = (Y™ 4+ g™ Em )t
+ {(Y +ef): O — (¥ +qm):cm) L] st
—[(Ym+em™):Ccm 4+ {(¥Y +ef):Cf = (Y™ +em):CmY:Cl] 8 Ch s (40)
where
ct = (cf-c™m . (ct-Ccm) (47)
¢t o= (cf-c'“)"‘;[c’:*-cm-_(c':f-é"'):(cf-cm)“:(c*—cm)]. (48)
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The definition for C} follows from the definition (47) in a logical manner. It was assuined in the derivation
that the difference Cf — C™ is invertible.
If the elastic properties are independent of temnperature then the above eqns (45) and (46) reduce to

Y = [Y":Cm4(Y/:C/-Y™:C™):Cl]: 8 (49)
a = [@™:C"+(af:CT-a™:C™):CY 8" (50)

In the following subsection we illustrate the procedure used in developing the results preseuted in this
subsection.

Case B: Zero-traction boundary condition

Expanding equ (40) for the effective thermal expansion of a bi-coustituent corposite yields
Y =(1-v) (Y™ +e™) BT+ u{(Y +e2™) : Bf)y— (1 -v)ei™: B - v{er) - B, (51)

where (-)y denotes orientational averaging (Ferrari aud Johuson, 1989) with respect to an arbitrary ODF
and v = Vg, [Vg is the volume fraction of fiber material in the RVE. The effective compliance (17) (at the
temnperature 8°) reads

§* =(1-v)S™:B™ + (87 : BY), (52)

and the identity (15) takes the forn
1-v)B™+v(B), =1 (53)

Equations similar to (52) and (53) may be written for the domain in the reference state at the uniformn
temperature 82, These quantities will be distinguished, as above, by a subscript r.

We now explore sufficient conditions for when the effective thermal expansion Y™ of equ (51) cau be
expressed in termns of the effective comnpliances $* and S} rather than the stress concentrators, B™, B/,
B and B/, It is sufficient that if either C1 or C2 holds then the equs (52) and (53) can be solved for the
quantities B™ and (B7),. Likewise, similar equations will exist for B and (B{)y. The proofs follow from
the following properties. If the ODF is unidirectional then there is no orientational averaging required and
{T)y = T. If, say, T is isotropic then (T : U)y = T : (U), since T is independent of orientation and may be
taken outside of the orientational averaging brackets.

In order to substitute the expressious for (Bf), aud (Bf), into equ (51) it is sufficient that either C1 or
C2 hold. It follows that if either C1 or C2 holds then the effective properties ¥Y* aud a* can be expressed
int the following form

Y =YY"+ (Y +ef -Y™—e™): 8t —(e&f —ex™): St (54)
o' =a™+(af —a™): ST+ (Y +ef - Y™ — ™) S (55)
Where
st = (8/-8m)"1.(8*~-8™) (56)
§t = (8f—sm)t: [S* —§m (8 —§m) . (sf —s™)1; (8* -s"')] (57)

with a similar expression for SI. In the derivation of the above equations it was assuned that the difference
(S — 8™) is invertible.

If the elastic properties are independent of temnperature then equs (54) and (55) take the following form

Y = Y+ (Y -Y™): st (58)

ot = o™+ (af —a™): st (59)

The form of equ (59) was originally obtained by Roseu and Hashin (1970) iu the context of unidirectional

composites. Equatiou (59), however, also holds for au arbitrary ODF when the coustitutive relations aud
the initial eigenstrain fields are isotropic. More importantly, it should be recognized that the results of
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this section have only been proven to be valid for bi-constituent composites for which condition C1 and/or
C2 holds. To emphasize that these results are not necessarily applicable in more general dreurnstances we
present a proof by means of a counter example,

Let us consider the effective coefficients of thermal expansion for a bi-constituent composite consisting
of trausversely isotropic cylindrical fibers embedded in au isotropic matrix, We shall further consider the
elastic properties of both matrix and fiber material to be temnperature independent. Qur objective here is
to show that there exists a composite not satisfying either C1 nor C2 such that the effective coeffident of
thermal expansion a* as evaluated from equ (59) is not identical to the “exact”™ result from equ (43).

The compouents of the coeffident of thermal expansion tensors are taken as

100 10 9
[a™]=10 1 0|; [@fl=}0 1 0 |. {60)
0 0 1 0 0 10
while the components of the elastic properties are taken as
311000 51 1 0 00
1 31000 1510 00
1 13 000 115 000
m] f1 —
C™=106 00100 €1=]000200 (61)
0000 10 O 00 0 20
0000 01 00000 2

The components of the matrix material properties are with respect to the global framne while the components
of the fiber material properties are with respect to the local fiber-fixed frame. The fibers are taken to occupy
20% of the total volume (i.e., v = 0.20) and are assumed to be uniforiuly distributed (ie., f(g) = 1).
The components of Eshielby’s tensor E with respect to the local fiber-fixed frame for a circular-cylindrical
inclusion for the elastic constitution of the matrix material given in eqn (61) (i.e., Poission’s ratio is 1/4) are
given by (Mura, 1987)

2/3 0 1/6 0 0 0
0 2/3 1/6 0 0 0
0 0 0 0 0 0
= 9
[E] 0 0 0 1/4 0 0 (62)
0 0 0 0 1/4 0
0 0 0 0 0 1/3
Evaluating the “exact™ expression (43) yields
[ 1.7800 0.0000 0.0000 ]
[a*] = | 0.0000 1.7800 0.0000 (G3)

S 0.0000  0.0000 1.7800

while, as autidpated, equ (59) yields a different result:

0.8720 0.0000 0.0000
[a*] = | 0.0000 0.8720 0.0000 |. (64)
0.0000  0.0000  3.3560

This concludes the proof.
In the following section a niobium reinforced copper matrix composite is cousidered.
7 Discussion: Cu-Nb Composite
In this section we begin by recalling sowe of the observed phenomenon cited iu the literature conceruing the

CTLE of heterogeneous materials at cryogenic temperatures. An examnple is then preseuted which illustrates
that the present theory does not exclude the apparently anomalous behavior found in the literature.
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Fitting Parameter Cu Nb
a 10.033465 1.0014257
Qo 5.2663378 x 10° | 9.7822321 x 10°
k 3.8132719 1.5624603
T 264.35295 435.77836

Table 1: Fittiug parameters for thermal expausion of copper (Cu) and uiobiuiu {I90)

The approximations of Guertler (1922) and Turner (1846) have been shown by Schiapery (1968) to be
upper and lower bounds, respectively, for a bi-constituent composite of temperature independent isotropic
constituents. It follows that if each of the two constituents have CTLE which are greater than zero then
the effective thermal expansion of the composite must be also be greater than zero. In the experiiental
investigations of Lototskaya, Popov et al (1989) a superconducting wire of Ti-Nb filamnents in a Cu ma-
trix, negative coefficients of thermal expausion were observed below 7-8 K. Additional experimental work
confirmned that the Ti-Nb filamnents possessed positive thernal expansion coefficients at these temperatures.
Previous investigations were cited to support the positiveness of copper’s thernal expansion coefficdients in
the temnperature range. The authors explain this phenomena by considering that plastic straius are developed
in the Cu matrix as well as a bimetallic effect. We do not deny these explanations. Rather, what we shall
illustrate below is that the present theory of thermal thernal expansion cau predict this type of behavior
when the tetnperature dependence of the elastic properties is considered.

In the early 1980, Finlayson, Gibbs and Smith (1981) perforined experiments on the coefficients of
thermnal expansion of a polycrystalline samnple of cubic V3Ge in three mutually perpendicular directions.
Their results indicated anisotropic thermmal expansion below 90 K. To the best of their knowledge the samnple
was mnacroscopically isotropic and the single crystals of V3Ge did not experience a distortion away from cubic
syuunetry. As a result the anisotropy observed in the polycrystalline sample was “most surprising.” Finlayson
et al speculated that the observed behavior was the result of an anisotropic internal stress (Finlayson, 1981
also see Gibbs, Finlayson aud Swith (1981)). In the example below we show that the initial eigenstrain field—
which is capable of giving rise to an aunisotropic internal stress—cau engender such auisotropic behavior in
an otherwise isotropic composite.

To illustrate the behaviors that were mentioned above we consider a bi-constituent composite as described
inn section 6. In addition we take the composite to couform with both conditions C1 and C2. The specific
composite considered is that of niobium (Nb) fibers embedded in a copper (Cu) matrix. The physical
properties of Nb and Cu were extracted from experimental data available in the literature, and then curve-
fit with a least squares procedure.

Thermal expansion data for Cu were obtained fromn Touloukian ef al (1970, curves 16 and 24, pp. 77-91)
and that for Nb also from Touloukiau et al (1970, curves 7 and 33, pp. 236-243). The data for both Cu and

B — Nb-were then curve-fit with a function of the following formn (Wachtman, 1962)

-1 E 1—a
) Q-S-G(Qo__k_E)ﬂu - (65)

where

o AT [ 1
T4 ST/ 1t eTee -1

and nn = 1, It = 8.31434, 6 is the absolute temperature aud a, (o, k and T are constants to be detertnined
by non-linear least-squares curve-fitting. The results of the least squares curve-fitting are preseuted in Table
1. The experimental data and curve-fit functions are displayed graplically in Figure 1.

Single crystal elastic properties within the temperature interval [0,300] Kelvin (K) were obtaiued for Cu
from Overton and Gaffuey (1955) and for Nb from Carroll (1965). The effective, isotropic polycrystalline
elastic properties of both Cu and Nb were then estimated by the self-consistent theory of effective elastic
properties (Hershey, 1954; Kroner, 1958). The estinates to the effective isotropic bulk and shear moduli

(66)
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COPPER (Cu) and NIOBIUM (Nb)
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Figure 1: Thernal linear expansion of polycrystalline copper {Cu) and niobiutu (Nb). Experimental data are
depicted by + for Cu and o for Nb. The results of the least-squares curve-fit to thie data are also presented:
Cu, solid line; Nb, dashed line.

Fitting parameter | Bulk modulus | Shear modulus
A 137.87700 48.313947
B 0.29207180 -(.051245974
C 2.9207612 7.8698101

Table 2: Fitting parameters in equ (67) for elastic properties of copper (Cu)

were then curve fit. In the case of Cu, the bulk modulus and shear modulus were fitted by functious of the
fortu (Sutton, 1953)
f=Ae 380 (143Y)°¢ (67)

where 6 is the absolute temperature, « is the coefficient of linear thermal expausion at the temperature 6,
Y is the TLE given by equ (65) and 4, B and C are constauts to be detertuined by non-linear least-squares
curve-fitting. The uuits of f ave GPa. The results of the curvefitting are presented in Table 2. As an
indication of gooduess of fit, the root-inean-square (RMS) error is 0.0219 GPa and 0.0117 GPa for the curve
fits to the bulk and shear data, respectively.

The isotropic bulk and shear moduli of Nb were fit by polynomials in 6/1000. The linear termu of the
polynommial was removed prior to curve-fisting so that the slope of the polynomial curve-fit at absolute zero
is zero. This constraint is noted by Huntington (1958, p.320). The results of least-squares curve-fitting for
a 5-th order polynomial is presented in Table 3. The RMS values for goodness of fit are 0.1848 GPa and
0.0649 GPa for the bulk and shear imnodulus, respectively. For comparison purposes a 4-th order polynomial
fit was also performed. Those results are presented in Table 4. The RMS values for goodness of fit are 0.3407
GPa and 0.0925 GPa for the bulk and shear modulus, respectively. The data and the least-squares curve fit
funictions to the bulk and shear properties of both Cu and Nb are presented in Figures 2 and 3, respectively.

The theory to be adopted for the stress concentrator is that of Mori and Tanaka (1973) as preseuted
by Benveniste (1987). For the special case of a unidirectional, bi-constituent composite the Mori-Tanaka
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COPPER (Cu) and NIOBIUM (Nb)
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Figure 2: Bulk modulus for polycrystalline copper (Cu) aud niobium (Nb). Self-cousistent estiinates cal-
culated from experimental data are depicted by 4+ for Cu and o for Nb. The results of the least-squares
curve-fit to the data are also presented: Cu, solid line; Nb, dashed line = 5th order polynomial: Nb, dotted
line = 4th order polynomial.
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Figure 3: Shear modulus for polycrystalline copper (Cu) and niobiurn (Nb). Self-cousistent estiinates cal-
culated from experimental data are depicted by + for Cu and o for Nb. The results of the least-squares
curve-fit to the data are also presented: Cu, solid line; Nb, dashed liue = 5th order polynomial: Nb, dotred
line = 4th order polynomial.
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Order

Bulk modulus

Shear modulus

O e (2 DD e

1.732278 x 10°

6.531043 x 102
~9.317574 x 10°
3.877096 x 107
~4.941617 x 10!

4.052584 x 10*

-3.228984 x 10?
2.919407 x 10°
—9.948849 x 103
1.139161 x 101

Table 3: Coeffidents of the 5-th order polynormial curve-fit to the elastic properties of Niobiumn (Nb)

Order

Bulk modulus

Shear modulus

s GO B

1.736223 x 10“

1.460733 x 102
-2.162619 x 103
5.730420 x 103

4.043489 x 10!

—-2.060157 x 102
1.270019 x 103
~2.332215 x 103

Table 4: Coefficients of the 4-th order polynomial curve-fit to the elastic properties of Niobiumn (Nb)

concentrator is given by

B/ =[I+(1-v»)C™:(I-E): (87 —s™)"".

(68)

where E is Eshelby’s tensor. This tensor is a function of the shape of the ellipsoid as well as the elastic

properties of the matrix material. Explicit fortns for E cau be found in Mura (1987). The stress concentrator

is exact in the dilute limit, i.e., as v — 0, since in this linit the exact result of Eshelby (1957) is obtaiued.

We now show that negative coefficients of thermal expansion are possible for a heterogeneous material

even if the coeffidents of thermal expausion of each constituent is greater that or equal to zero. This beliavior

is possible due to the temperature dependence of the elastic properties, Cousider a 50% voluine fraction of

spheroidal Nb fibers embedded in a Cu matrix. The initial eigenstrain field is taken to be zero, i.e., €} =0

at the reference temperature of 300K, The effective coefficient of thermal expansion in the direction of the

fibers for aspect ratios of 0, 1/2, 1, 2, 5 and oo are given in Figure 4. Clearly negative coefficients of thermal

expansion are achieved.

We now show that the initial eigenstraiu field €2 is capable of inducing anisotropic thermal expansion
coefidents in a heterogeneous material that is macroscopically isotropic and comprised of materials which
theruselves are isotropic. Consider a 50% voluinie fraction of splierical Nb fibers enbedded in a Cu watyix.

—~—~Fhe difference in initial eigenstrain field is taken to be

1
[ef —exm] =107% | 0
0

SN DO

0
0
0

(69)

at a reference temuperature of 300K. The non-zero coefficients of thermnal expansion are plotted in Figure 5

over the temperature interval (0, 20]. Clealy the effective CTE is anisotropic over this interval,
Finally, we illustrate the sensitivity of the effective coefficients of thermal expansion to the curve-ficting

of the elastic properties. We discuss tlis by considering the effect of a different polynomial curve-fit to the
elastic moduli of Nb. The results presented in Figure 4 were calculated using 5-th order polynomial curve-fits
to the elastic data. These results arve presented again in Figure 6. For comparison the same analysis was
perforined but using 4-th order curve-fits to the elastic properties of Nb. These results are presented in

Figure 6 with the dash-dot curves, From thiese results we mnay observe the sensitivity to the gradient of

the elastic moduli with respect to temperature. Note that the magnitude of the CTE is typically larger for
the 5-th order curve-fit thau for the 4-th order curve-fit. This indicates that as the curve-fitting functions
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Figure 4: Effective longitudinal CTLE for fiber aspect ratios, r. v = 0.50. The reference state at 300K is

strain- and stress-free.
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Figure 5: Effective CTLE for a spherically reinforced comnposite with isotropic coustituents in the o, {1). g
(2) and x3 (3) directious. v = 0.50; 62 = 300K. The relevant portion of the initial eigenstraiu field is given
by equ (69).
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Figure 6: Effective longitudinal CTLE for fiber aspect ratios, r = 0 aud oo using 5-th order (solid) and 4-th
order (dashed) polynomial curve fits to the elastic properties of niobium. v = 0.50; 82 = 300K, reference
state is strain- and stress-free.

becorne “more accurate™ the maguitude of the thermal expansion coefficients increases. Thus, the predicted
behavior can not be coustrued as an artifice of curve fitting. Though it is observed that the results are
seusitive to the temperature dependence of the elastic properties.

8 Conclusion

Equivalent expressions for the effective thermal expausion of a heterogeneous material or composite have
been developed iu terms of stress and strain concentrators, The effects of temperature dependence of the
elastic properties and of an initial eigenstrain field are included. For special classes of bi-constituent materials
the effective thermal expansion has been presented iu terms of the effective elastic properties of the material
thus removing the explicit dependence ou the concentrators. Those special classes of bi-constituent materials
beiug (i) unidirectional ODF or (ii) isotropic plysical properties and isotropic initial eigenstrain field. For
_tiphiasis, it was proven by couuter-example that the resulting expression is not valid for arbitrary bi-
coustituent composites.

It has been shown that, in general, the effective thermal expansion, and thus also the coefficients of
thermal expausion, of a macroscopically homogeneous aterial are functions of the initial eigenstrain field
€;. Under conditions of either homogeneity of the elastic properties or temperature independence of the

elastic properties and effective elastic properties it was proven that the effective thermal expansion was
independent of the initial eigenstrain field. It was demonstrated by considering a Nb-Cu composite that
negative coefficients of thermal expausion are achievable even when the coefficients of thermal expansion of
each of the constituents are positive. Negative CTEs are possible due to the temperature dependence of
the elastic properties. It was also demonstrated that the initial eigenstrain field can give rise to anisotropic
thermal expansion coeffidents in a heterogeneous material that is macroscopically isotropic in its effective
elastic properties and comprised of coustituents which are isotropic in all of their physical properties.
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