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I. DrTRODUCTION 

Our objective in this paper is to investigate consistency 

conditions that are imposed by crossing symmetry and analyticity when 

a given high energy behavior is assumed for a scattering amplitude. 

These c6nsistencY,conditions are obtained by the use of phase contours, 

1 which were introduced and studied in the prt;=vious paper (hereafter 

denoted by I). 

Our assumption for the high energy behavior i-8 based on single 

pole dominance in a Regge model having a continuously rising Regg.e 

trajectory. This establishes the phase of the scattering ruaplitude 

in the s-channel for fixed t, or for fixed u, as s ~ 00. We assume 

a single symmetric scatte~ing amplitude ,that corresponds to equal 

mass spinless bosons. We define a phase, contour as a curve of constant 

phase, or more generally a surface of constant phase in the complex 
I 

space of the invariant energies s, t, and u. 

A consistent Regge model requires that the trajectories should 

be complex above threshold and that they go through integer values on 

the unphysical sheets at resonance poles. In addition zeros are 

required in residues to avoid the existence of nonphysical poles in the 

scattering amplitude, or in partial wave amplitudes. These zeros and 

the resonance poles play an essential role in establishing a consistent 

topology for the phase contours. This is because phase contours that 

correspond to, different (real constant) values of the phase cannot 



UCRL-17922 

. -2-

intersect each other, except possibly at singularities or zeros of 

the invariant scattering amplitude. 

In addition to our assumptions about Reggebehavior at high 

energy, our main simplification is the neglect of local distortions 

of phase contours at low energies due to nearby (esonances. These 

distortions were illustrated and discussed in the previous paper, I. 

However, they are not essential to the derivation of a consistent 

. topology of phase contours under the conditions assumed in this 
,. - I 

paper, although they would be important if we imposed a stronger 

form of bootstrap consistency. We do take'accdu:nt of resonances 

in their crossed channel high energy effects,and in the resulting 

interference that determines the continuation between phase contours 

in different regions. We also take account of an indirect effect of 

resonances that we' describe in terms of a generalized s'cattering 

length. This relates to real zeros of the amplitude on the crossed 

branch cuts, just as the scattering length itself may be related to 

real zeros below threshold. 

In this paper we are working towards a consistent solution 

for phase contours that describes the interference pattern comihg 

from the resonance poles and the zeros. Our arguments for the location 

of zeros on the physical sheet are based mainly on consistency. 

Although some of tlJ,ese zeros may be identified as different parts of 

the same complex surface, their, occurrence'on<the physical sheet can 

be deduced,fI,'om different requirements. In order to separate these 

~\ 
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requirements we start from a very simplified model arid obtain its ' 

phase contours using crossing symmetry. We then introduce successive 
.' . 

complications that lead eventually to the phase contours for our 

Regge model. 

In Section 2 we summarize the properties of phase contours 

that are required for our subsequent discussion. Most of these 

properties were discussed in more detail in I. In Section 3 we 

introduce a phase model that has no poles or zeros on the physical 

sheet, and from it -we obtain a solution for the phase contours. In 

Section It, we discuss zeros below threshold that depend on the 

scattering length, and extend this to deduce a sequence of real zeros 

on the crossed branch cuts. Associated with these real zeros, there 

are curves of complex zeros on the physical sheet that lead to a 

modification of the phase contours of our first simple model. This 

modification can be interpreted as arising when zeros move on to the 

physical sheet through the crossed branch cuts at infinity. 

In Section 5, we study the complex zeros on the physical 

sheet that come from zeros of the residues of the leading Regge 

terms, and we show how they modify the phase contours. These zeros 

.. 
may be identified as parts of the complex surfaces of zeros that 

disappear through the crossed branch cuts and are related to the 

generalized scattering length. In Section 6 we introduce the effects 

of the Regge model above the thresholds where the trajectories become 

complex. Resonance poles on the physical sheet produce striking 
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changes in the aSYl,rrptotic . phase contours that. are ana],agous to those 

produced by the zeros of rE:sidu~s below threshold. There is~ however, 

an essential difference in the way the zeros move on th.e physical 

sheet. Below the t threshold, they move out to infinity at finite 

values of t where the residues are zero. Above threshold they move 

to infinity only when t becomes infinite. This. becomes evident in . 

Section 7, where we give the crossing symmetric phase contours for 
, 

the Regge model. We also indicate in Section 7 the way resonances 

a;n.d zeros are related, by considering a complex section .of the phase 

contours on the physical sheet and on neighboring unphysical sheets. 

In Section 8 we give a brief discussion of our results. 
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2. ASSUMPTIONS.AND PROPERTIES PF PHASE CONTOURS 

The phase ¢(s,t) of a scattering amplitude F(s,t) ~s 

defined by 

¢(s,t) 1m [log ( F ( s, t ) }] . 

It is also necessary to specify the phase at an initial point 

(sO' to)' When F(s,t) has zeros or poles on the physical sheet, 

the phase may be changed by multiples of 2n by choosing different 

(2.1) 

routes from the initial point to the point (s,t). We must therefore 

specify the.route that we use when relating the phases at two 

different points. 

A phase contour is defined by 

¢(s,t) C, (2.2) 

where C is a real constant. We will study phase contours both for 

real s and_t, and for complex' S when t is held at real values. 

For fixed t and complex s (s sl + iS2 ), the phase is a 

harmonic function of. sl and s2' when F. is regular. In the s 

plane the phase contours are orthogonal to the modulus contours, but 

this does not apply in other planes, like sandt real, for 

example: 

Phase contours, for different constant values of the phase, 

cannot meet except at singularities or zeros of the amplitude F(s,t). 
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where t
l

O denotes the first zero of the residue, that occurs for 

negative t, when 

-1, 

(2.6) 

provided b(t) does not have any zeros in the range (2.6). We will 

discuss the effects of zeros at aCt) == -(2N + 1) in Section 5. 

Above the threshold t == 4m2
, aCt) becomes complex, and the phase 

of the Regge term (2.3) is no longer given by Eq. (2.5). We will 

consider the resulting phase in Section 6. 

Our initial simplifying assumptions about the phase are based 

on Eq. (2.5). We as sume that the phase of the amplitude has the form 

( 2 .5) as s ~ (1) along real s + iO, for any fixed real t. We 

also assume that aCt) is real for all real t, even above threshold. 

This is no longer a Regge model but it is useful for illustrating the 

first requirements of the consistency problem. Crossing s~netry is 

achieved by making analagous asymptotic 'assumptions for fixed u and 

fixed s. 

In the forward direction, t - 0, the optical theorem requires 

that, along s + iO, 

1m F(S,O) >0, 

... ,-. 

for 2 
S > 4m , (2.8) 
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in order that ,the; total cross seGtion shall oe positive. Since our 

amplitude is to be symmetric, there is a similar condition in the 

backward direction, u =: O. 

The relation (2.9) can be extended to any value of t· in the 

range 

2 o ~ t < 4m . 

Hence, using Eq. (2.5), which holds also for .the Regge amplitude 

(2.3) in this region, we must have 

o < ¢(s,t) <. :n:, 

for s > 4m2, in the range (2.9). There is a similar condition in 

(2.10) 

(2.11) 

From this result we see that the phase at threshold 2 s =: 4m , reached 

along t=:O from s =. + 00, must be zero or 11 • If there are no 

poles or zeros below threshold, the phase must be either 0 or :n: 

throughout the region 

2 s < 4m , (2.12) 

Which of the values, ¢ =: 0 or :n:, is relevant will depend on the. 

scattering length, which will be ~iscussed in Section 4. The value of 

the phase ¢, in the triangle (2.12) also depends on the route by which 

it is reached from our sta;rting point given in Eq. (2.4). 
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3. A MODEL WITH' NO" ZEROS ON 'THE PHYSICAL -SHEET 

We assume an asymptotic behavior that is consistent with a 

symmetric amplitude and has the phase (2.5), as s ~ +00, 

We assume that b(t) has no poles or zeros on the physical sheet, and 

that a( t) is real, and corresponds to a continuously ris,ing trajec­

tory, for all t. We make similar asymptoticassumptioIlS for fixed 

real u, and s. 

Our first objective is to obtain a solution for phase contours 

on the physical sheet,when there are no zeros or poles of the 

amplitude on the physical sheet. It is not evident, a priori, that 

such a solution will exist. Our reason for requiring no zeros (or 

pol'es), is that the phase of F will be unambiguously defined, so 

that it is independent of the path on the physical sheet by which it 

is obtained frorn the initial value in Eq. (2.4). 

It is important to specify the limit in which the boundary of 

the phYSical sheet ,is approached,since this will affect the phase. 

Thus Eq. (3.1) holds in the limit (s + iO) with s real. In the 

limit (s+ iO) as s ~ - 00 along the real axis 'the phase will be 
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We tegin byobtaining.phase·contours in the physicals 

channel (in the limit s + iO ),on the assuniption that the amplitude 

has the form 

F(s,t) b(t) s,,(t) exp [irt{l -~,,(t)lJ 

+ b(u) sa(u) exp [1" { 1 - ~ a(u)}J 

+ background 

Instead of the variable s in Eq. (3.3), we could use the variable 

Zt in the .first term and Zu in the second term, where 

2s 
1 + ----

2 ' t - 4m 
Z 
U 

1 + 
2s 

2 . 
u - 4m 

However in the region t < 0, u< 0, these would lead to the same 

topology as we obtain from Eq. (3.3). We take a(O) = 1, so as to 

give a constant total cross section, and '\ve take the background to have 

only a slowly varying phase. At high energies the background is 

neglected at all angles in the physical regions. We will find that 

we cannot neglect the effects of the background in all unphysical regions. 

The phase contours for real sand t in the s-channel are 

shown in Fig. (3.1). We have neglected small oscillations of the type 

discussed in I. It is not evident at this stage, whether the phase 

contours 1 ¢ = 2- n bend away from the physical region as shown, or 

whether they join through the physical region like the other contours 
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shown .We will see that the contour's shown are the simplest ones that 

are compatible with burte'quirement that our solution is to have no 

zeros on the physical sheet. 

From Fig. 3.1 we can obtqin phase contours in other real 

regions in two essentially different ways. These depends on whether 

we require the phase in the limit (s + iO, t + iO)" orin the limit 

(s + iO, t - iO'). Other limits give contours topologically similar 

to one of these, for the model considered here. 

The phases in the limits (s + iO, t + iO, u + iO) for each 

relevant variable, or pair of variables, have the same form in each-

physical region as Fig. (3.1). In the unphysical regions, for example 

s > 4m2
, t > 4m2, we write the amplitude 

F(s,t) b(t) <:x(t) exp [io {I ~ a(t)}] 

+ b(s) Zs"(S) exp [in {I -~ d(s)}] (3.4) 

+ background, 

where is given by Eq. U.3a) and zs is defined Similarly. 
r 

Wi th assumptions about the smoothness of the backgrouni similar to 

those made in the physical region, the asymptotic contours above the 

s threshold join smoothly to those above the t threshold. The 

resulting phase contours in the real (s,t,u) plane in the limits 

from the upper half planes are shown in Fig. 3.2. 
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The analagous diagram showing phase contours in the limits 
, " . ,." . . 

(s + iO, t - iO, u - iO) is more interesting. The phases in the 

t-channel and the u-channel are obtained by analytic continuation in 

rms > ° along 

s K exp(ie) , 

where K is large. In this simple case with no zeros, one obtains 

phase contours in the u-channel (u - iO), which are complex conjugate 

to those in the s-channel (s + iO). In the regions of crossed. branch 

cuts, we replace (3.4) by 

-F(s,t) 

+ b (s ·) 0:( s) zs exp 

+ background. 

This is appropriate to the limit (s + iO, t --iO). Along s = t, 

the background must be real; so the phase will be n,since it has 

this value asymptotically and there are no zeros by assumption. 

The resulting phase contours are shown in Fig. 3.3. vIe see 

3 that along t = 0, the phase is 1 
-rr 2 as S -7 +00 but is "2 T( as 

S -7 - CD (keeping on s + iO). In the region of crossed cuts, say 

(t - iO, s + iO), the ~ J(phase contour is required to separate the 
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J[ contour from the ° contour. Similarly the 2 2 11 contour must lie 

between the 11 and 211 contours in this region. This deterniines that 

these contours' must bend away from the physical regions in tllis 

diagram, and also in Fig. 3.2 since below 2 
t = ~m , the 1 

2'11 contour 

follows the same path as in Fig . .3.3. We see also that the phase in 

the triangle below threshold must be equal to :rt; this is a consequence 

of our assumption that there are no zeros on the physical sheet. We 

relax this assumption in the next section. 

In Fig. 3.4 we show complex sections of the phase contour 

surfaces for three real values of t, in the complex s plane. The 

values of tare chosen with one well below t = 0, the second just 

above t =0 0, and the third well above t == 4m2 . The phase contours in 

Fig. 3. J+ indicate the asymptotic phase' as s -7 00, 

¢(s,t) [ 
1 ~ 

1, 1 - "2 a( t) i 
.'" 

I- ~(t) ') 

where S:= / s/ exp i9. The phase lines ¢ == J[ meet at stagnation 

points, so that ¢ = :rt - E and¢ == )1 + E ~iverge away from these 

points as indicated in Fig. 3:4(b). 

" .", -

, . , 
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4. ZEROS AT FINITE REAL POINTS 

In this section we will extend the model described in Section 3, 

so that there ar~ zeros at finite real points~ Attached to these 

zeros are curves of complex zeros that lie on the physical sheet. 

We begin by stating the results that have been established 

by Jin and Martin2 for a symmetric scattering amplitude below threshold. 

These give an indication of where we may expect to find a set of real 

or complex zeros of the scattering amplitude on the physical sheet. 

We will extrapolate heuristically from the rigorous results of 

Jin and Martin to deduce the effects on phase contours of the first 

real zero. These lead us to obtain a consistent solution for phase 

contours with an infinite sequence of real zeros on the crossed branch 

cuts in the limits from opposite half planes, for example (s + iO, 

u - iO). This solution can be continuously varied so t0at it goes 

over to the' solution obtained in the previous section I."hen the zeros 

move through infinity to unphysical sheets. 

(a) The Amplitude Below Threshold 

Define the variable z by 

z 1 ( )2 4' s - u 
2 . 1 2 

(s -?~ + 2 t) . (l~.l) 

When t is in the range (_4m2, +4m2 ) , the amplitude can be expressed 

by a dispersion relation in z, with one subtraction. 2,3 Let G(z,t) 
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denote the amp1i:t)lde F(S', t). ,e2Wressed. in tenns of the variable z. 

Then 

G(z,t) c(t) -I-
dx 1m G(x,t) 

(x - 'xO)(x - z) 

In the region 0 < t <' 4m2 
J ImG is positive for x >x

O
' hence 

> 0, for zreal <. 

where 

(4.4) 

When z is real and less than xo' the function G(zjt) will be real 

for 0;:( t < 4m2
• Hence for t in this range 

(i) if C(t) < 0, G(x,t) vTill have no zeros when x < x . 
0' 

(ii} if C(t) > 0, G(x,t) will have at most one zero "Then 

Using crossing s~Tmmetry, this result can be extended to give information 

about the amplitude ,F (s, t), within the triangle "1here it isreal, 

namely 

222 
s <. Inn, t < hm, u . < 11m • 

It has been shown by 'Jin and nartin
2 

that r(s, t) has an absolute 

minimum at the symmetry point 
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The amplitude F increases (inside the triangle) along any straight 

line originating at this symmetry point. 

If we assume asymptotic power behavior as indicated in 

Section 2, there will be one real zero of G(x,O) for x < xo ' when 

the scattering length C(O) is positive. More generally for t in 

the range, 

2 2 -,4m < t < 4m -- , 

there will be one real zero of G(x, t), ,vhen the subtraction term in 

(4.2) is positive, C(t) > O. Let this zero be at zo(t,f), 

0, (4.8) 

where f denotes a parameter that permits us to vary the scattering 

length C(O) and other values of the subtraction term C(t). For 

example, let f denote the value of F at the symmetry point. 

f (4.9) 

If f is positive, there will be no zeros of F inside the triangle 

(4.5), but there will be a real zero of 2 
G(x, 4m /3) in x < o. 

This real zero zOcorresponds to two complex conjugate zeros of F, 

± (4.10) 
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If f is decreased and becomes negative, the two zeros (4.10) become 

. real and separate inside the triangle (4.5). If f is sufficiently 

negative, the zeros reach the threshold branch points and move through 

them on to unphysical sheets. 

The various situations of real zeros, that we wish to consider 

are shown in Fig. 4.1. The first dfagram (a) corresponds to the 

situation when f > 0 and there are no real zeros, but there will be 

complex zeros. It is due to these complex zeros that we can choose 

different phases indicated in the diagram by ¢ = 0, or 2rr. In 

Fig. 4.1 (b) we have decreased f so that:it~s<:I1egative and there 

is a loop of real zeros in the triangle. Reducing f further gives 

(c), in which the broken lines indicate zeros that have moved on to 

the second sheet. In Fig. 4.1 (d) some of the second sheet zeros 

have become complex, as zo ( t, f) decrease s past zero on the ,second 

sheet. In Fig. 4.1 (e), all second sheet zeros are complex except 

for the black circles where the complex zeros move through its real 

boundary (s + iO '" u - iO) etc. on to the physical sheet. The complex 

zeros on the physical sheet are indicated by dotted lines in diagram (e). 

There are also complex zeros on the physical sheet for all the other 

diagrams shown, They rise out from the curves of real zeros,except 

in Fig. 4.1 (a) when they are at complex parts of the physical sheet 

and have no intersection with the real triangle. 
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(b) Complex Sections of Phase Contours, ( 

The location of zeros and their relation to the phase contours 

becomes clearer by considering complex sections. For illustration, we 

consider two complex sections when the real zeros have the form of 

Fig. 4.1 (b). These show the phase contours and zeros in the complex 

s plane when t = 0, in Fig. 4.2 (a), and when t < 0, so that there 

are no real zeros, in Fig. 1+.2 (b) and (c). 

Since there are zeros of the amplitude F(s,t), the value of 

the phase ¢(s,t) will depend on the route taken from our initial 

point, s --) (]) along s + iO, and t = O,when the phase is 1 
2' JT. 

In Fig. 4.2(a) we define the phase by keeping in the upper half s 

plane, so we always go above the real zeros at and In 

Fig. 4.2 (b), the zeros have become complex, and only sl is in 

Ims > 0. The path by which the phases have the values shown are 

indicated by arrmvs. The Fig. 4.2 (c) is an identical section to 

Fig. 4.2 (b) b:ut .we obtain different phases by passing below the complex 

zero sl' as indicated by the arrO'loJs. The phases in diagram (b) are 

relevant if we use a route ,through asymptotic values in Ims > 0, 

but those in (c) are relevant if we proceed along s + iO . 

(c) Crossing SyJiJmetric Phase Contours 

We now extrapolate from the location of the zeros shown in 

Fig. 4.1 (e), and assume an infinite sequence of real zeros on the 

crossed cuts in the limits 
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(s + iO, u - iO) a16ng s - U~ (4.11) 

(s + iO, t - iO) along's - L (4.12) 

Only the leading zero may go below threshold, when it may have 

, the form shown in Fig. 4.1 (b), (c), (d). However, we have chosen to 

take it on the crossed cut s as in Fig. 4.1 (e'), since the resulting 

phase contours are slightly more simple than in the, other cases. 

The phase contours with pairs of variables in the limits 

(s + 10, t + iO, u + iO) can be taken to be the same as those in 
\ 

Fig. 3.2, since they are consistent without the introduction of any 

real zeros on the physical sheet in these limits. 

The phase contours in the limits (s + iO, u - iO, t - iO) are 

ShO,ill in Fig. 4.3. The labeling of phases is obtained by going from 

the physical region for the s-channel near t = 0, or u = 0, through 

asymptotic values in Ims > ° to the physical regions for other 

channels. Then we use continuity out of these physical regions to their 
--,. 

neighboring unphysical regions on the indicated sides of the branch 

cuts. 

In Fig. 4.3 zeros are shown as small black circles, and the 

attached complex zeros as dotted lines. The direction in the complex 

space taken by these zeros depends on whether we vary t and consider 

complex s,or vary u and consider complex s, etc. The heavy line 
. , .' . ': ~ 

through the zeros has 'a different phase on either side. It is part 

of the complex surface of branch cuts of log F(s,t). Similar cuts 
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should be drawn through the cOIlllllex zeros along the dotted lines. 

However, we will find it convenient to discuss various routes for 

defining the phase so we will not normally consider such branch cuts, 

which specify the phase in a less flexible manner. 

The intermediate phase lines, on the (u,s) and (t,s) crossed 

cuts in Fig. ~-. 3, do not cross the heavy phase contour ¢ = nrr 

that goes through the zeros. The detailed form of these contours is 

shown in Fig. 4.4, which is an enlargement of the region labeled, 

(u - iO, s + iO) in Fig. lL 3. This figure indicates more intermediate 

contours, but omits the symmetric ¢ nrr contour. 

Complex sections, for real t and complex s, of Figs. 4.3 

and 4.4 are similar to the sections given in Fig. 4.2 for s~all values 

of (-t). For large values of it, they are more complicated but we 

will proceed to a more realistic version of the Regge model before 

'considering further complex sections. 
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5 . ZEROS OF REGGE RESIDUES 

The asymptotic Hegge amplitude (2.3) is zero for t· below 

threshold, whenever the residue vanishes,4 namely at 

a( t) -(2n + 1), n 0,1,2,'" 

In order to obtain the effects of this ·zero on phase contours, we must 

consider more than one term in the Regge asymptotic e::q:>ansion. We 

will study the first two terms and will assume that the zeros of their 

residues do not coincide. We write them in the form 

F(s,t) 
a l (t) [r 

~ t31 (t) sex.}) irri 1 

.. ~ a2 (t)}] 
vlhere (5. 2 ) 

t3. (t) 
1. 

b. (t) 
1. 

i 1,2. 

We assume that 01 and a 2 are real for . t < 4m2, and that -

For simplicity we will assume also that their difference is constant, 

and 
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~l(t) 

There would be no significant change in our results if we took any 

constant difference between ° and 2. For a larger ,difference, the 

results would be more complicated. 

The optical theorem requires 

1, bl(O) > 0. 

The residue ~ could have additional zeros in t < 0, due to zeros 

in b
1 

(t). However, we will limit the possibilities that we need to 

consider by taking 

bl(t) > 0, for t real. 

An important, aspect of the phase contours depends on whether b
2

( t) , 

has the same sign or a different sign from bi(t), when the residue 

~l(t) vanishes at values of t satisfying Eq. (5.1). Although 

b2 (t) should be positive at resonance poles above threshold in our 

model, it could change sign in 2 t < 4m , before we reach ,the first 

zero of the leading Regge resid~e ~l(t). We will therefore consider 

the two situations (a) b
l 
(t) > 0, and 

(b) bl (t) > 0, b2 (t) <.:0. In thegen,eral case we could have 

situation (a) holding at some zeros of ~l(t), and situation (b) 

holding at other zeros. However, we will limit our diSCUSSion, by 
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assuming that either (a) ~ (b) holds for all t < O. The former 

leads to an oscillating phase in the physical regions, the latter 

leads to an increasing phase. 

fa) -An Oscillating Phase; bl(t) >0, b2(t) >0, in t <: 0 

We consider firstly the phase change of F( s, t)) given by 

Eq. (5.2), as t decreases from zero at a fixed positive real value 

of s along ABC -in Fig. 5.1 (a) (on s + iO). 

zero, when 

F. 
~ 

a. (t) 
~ 

-(2n + 1), the term 

a. (t) [. {' - )] ~~i (t) s ~ exp ~J[ 1- -tai (t) .. ' 

Since B.(t) is 
~ 

will describe a spiral in the half plane ReF. ~ O. 
~ 

This spiral will 

touch the imaginary F. axis whenever t takes a value so that a. 
~ ~ 

is a negative bdd'integer. On account of our assumption (5.5) about 

the trajectory difference, the spirals for- Fl and F2 "Till be out 

of phase in general, but they will be in the same half-plane. The 

spirals forF 1 and F'l 
c.. 

are shown in Fig; 5.1 (b) and (c), together 

with the path of their sum in Fig. 5.1 Cd), as t decreases for fixed 

real s. Note that the relative size of the spiral (c) will decrease 

if s is increased. 

For any finite real s, it is evident that the phase of the 

amplitude F, given by .. Eq. (5.2), will oscillate hetweenC~ J1 + E) 
and C~ J[ -0 ' where E ~ 0 as s ~ 00, 
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¢(s,t) ~ ~(t), 
1 ~ • 
2"1C ~ ~(t).~ 2 1T • (5.9) 

The phase, for finite large s, is shown in Fig. 5.2 (a) as a function 

of OJ. (t) . 

Before discussing the location of the zeros on the physical 

sheet that come from the zeros of residues, we consider the phase in 

case (b). 

(b) An Increasing Phase; bl(t) > 0, b2(t) < 0, in t < ° 

In this case, as we follow the path ABC in Fig. 5.1 (a) 

for fixed s and decreasing t, the term Fl given by Eq. (5.8) 

with i = 1, follows the spiral shown as (b) in Fig. 5.1. However, 

F2 will ~ollow the spiral shown as (e) in Fig. (5.1) in ReFl > O. 

The resulting sum, that gives the asymptotic phase of F(s,t) will 

follow the path indicated by diagram (f) in Fig. (5.1). For a larger 

fixed value of s, there will be a smaller :part of the curve in 

ReF> 0, but it will always loop round the origin for any finite 

s (no matter how large). 

The asymptotic phase as s ~+oo, in this case, is given by 

where 

¢(s,t) ~ 1T[1 - al(t)] + ~(t), 

1 
2 1C 

1 
~ ~(t)~21C· 

(5. 10 ) 

(5·11) 

I ' 
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This phase, for finite large s, is shown in Fig. 5.2 (b) as a function 

of - ~ (t), (note that -<1
1 

increases as t decreases) . 

(c) 'Zeros on the Physical Sheet 

We consider now, how the zeros from the residues in case (a) 

move in the finite regions of the physical sheet as t is decreased 

through negative values. We begin from the fixed value of t that 

gave point B in Fig. 5.1 (b), (c) and (d), for some fixed real s, 

which we denote by sO. We then follow the path in Ims > '0, 

·s 

Along this path, 

where 

F(s,t) "" Fl + F 2 F2 [;1 + 1], 
2 

This ratio is real and negative when 1 
9 = 2' rr, that is, when 

pure imaginary. 

1 
at9 = 2' rr, 

We can nOvf hold t fixed and choose so 

(5.12 ) 

(5.14 ) 

s is 

that 
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If we have chosen the point B in Fig. 5.1 (a) ":". (d), so ,that 

f\ (t) is very small, then the solution So of Eq. (5. 15) will be 

large. As t moves further above the value t n 
1 at which 

,- (2n + 1), (5. 16 ) 

the 'ratio el /e2 increases and So 

when t = t 2
n , where 

so(t) decreases, until So = 0, 

-(2n + 1). 

Before we reach the value n to , we must of course replace 
'-

F2 in Eq. (5.13) by' another correction term or a sum of such terms. 

We should also use the variable (s - u), instead of s, in order 

to preserve crossing symmetry. The zero associated with (5.16) then 

moves in from infinity along a curve in the plan~ t real (s - u) pure 

imaginary, as t increases from t n 
1 

given by (5.16). We will see 

that after these modifications, it is still consistent to assume the 

zeros become real, although this will no longer occur at 

We denote the real zeros by 

t t = a2 ,··· (5. 18) 

arid since they move in along .' (s - u) pure imaginary, we will assume 

that they are real along the symmetry line Re(s) = Re(u). 
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We have already, . in Section 4 , established a'need f'or zeros 

of' the amplitudeF(s,t) that are real along s = u, and are at 

complex values on the physical sheet along curves that go through the 

real zeros. It seems natural to identify those curves of' zeros with 

the curves of' zeros that are asymptotic to t = t n 
1 

satisfying 

Eq. (5.16), along (s - u) pure imaginary. The resulting comp~ex 

section containing these zeros is shown in Fig. 5.3 (a), where the 

axes are t (real) and (s - u) (pure imaginary). In order to establish 

the consistency of' this f'igure, we should also consider the complex 

s plane (or (s - u) plane) f'or The ratio in Eq. (5.14) 

becomes modif'iedbecause ~l(t) is now negative. If' 

o < (a - a ) < 2 
2 1 ' 

the ratio F
l
/F

2 
does not become real and negative f'or any value of' 

9. Hence there are no zeros of' F in the asymptotic region f'or 

case (a) with t < t 0 
1 ' 

when is small. 

In case (b), considered in subsection(b ) above, the situation 

is reversed. For t > t l
O . there are no zerdsin the. asymptotic region, 

but f'or t < t 0 
1 

there will be one zero. The resulting curves of' 

zeros in the complex section, t real and (s - u) pure imaginary, 

are shown in Fig. 5~3 (b). 

The· shape· of' the phase contours in the real region 
2 

s > 4m , 

2 
u > l~m , in the·limit (s + iO, u -iO) in both cases' (a) and (b), 

obliges us to draw tpe attached complex curves of' zeros as shown in 
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Fig. 5.3 (a) and (b) .. The zeros are on the intersectiop of. phase 

contour surfaces. In case (b) they will normally remain in the finite 
I 

part of the· complex section :shown in Fig. 5.3 (b) even when t -7. -00. 

In this case (b) we are unable to identify directly, the zeros coming 

from the real symmetry points, s := u; with the zeros coming from the 

~anishing of the Regge residues. However, by a variation of the 

parameters t 0 and 
1 

al , for example, we can cross over from situation 

(a) to situation (b) for the first zero. It is then evident that the 

zero at al conn~cts to the zero coming in from t l O 'on the physical 

sheet in case (a), but on an unphysical sheet in case (b). 

Mor.e complicated situations can occur if we relax the condition 

° < (CX2 - ~) <. 2. This " would permit more than one zero to, come from 

each vanishing residue. Apart from these possibilities, there will in 

general be local distortions of phase contours, and hence of the' curves 

of zerQs, due to resonances. These would have their greatest effect 

on the physical sheet near the real axes. 

(d) Phase Contours in t < ° 
W:i, th so many zeros .onthe physical sheet it is necessary to 

specify the ,. routes by which the phase is defined. Unfortunately the 

route that gives the most natural phase labeling for one section of 

the ,surfaces of.constant phase becomes rather unnatural for other 

sections. We will therefore sometimes change the routes used for 

defining the phase, when we change to a differerit section of the 

phase surfaces. 
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We assume that. the z~ros 'at realpoihts in t < 0, are located 

in position similar to those shown in Fig. 4.3, on the overlapping 

branch cuts 2 u >4m , 2 
t > 4m . Taking account of the zeros of 

residues, we find that Fig. 4.3 for t < 0, in case (a) is replaced by 

Fig. 5.4. Here we have used a phase labeling beginning from t = 0, 

along s + iO,where the phase ,is I 
2' rr. The phases in the 

s-channel are found by continuity along t real. The phase in the 

u-channel is found by crossing along s =/s /exp i9, for large s 

I 
with t = 0, giving a phase .L11 2· Then we proceed by continuity along 

t real. In the' physical regions of the s- and u-channHs the phase 

is never equal to a half integer multiple of 11. For a more realistic 

model that had resonance distortions 01' phase contours at 1'ini te 

energies, one would expect this result to continue to hold for large 

s and for large u. 

In Fig. 5.5 .we show for case (a) some complex sections of the 

phase contour, for several fixed real values of t, in Ims > ° in 

the complexs ... plane. The labeling in Fig. 5.5 (a) corresponds to 

'that in Fig. 5.4 for small negative t .. In F:i.g . 5.5 (b) t has become 

more negative. The labeling in brackets corresponds to a route above 

the zero (in agreement with Fig. 5.4), the other corresponds to a 

route below the zero. .The latter is the most natural labeling to use 

in Fig; 5·5 (c) , when t has decreased just below al · At the value 

to 
I 

of t (see Fig. 5~3 (a)) , the zero shoWn-in Fig. 5·5 (b) has 

moved upwards to infinity. As t decreases below the value 
(J 

tl 
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the contours 1 
2" Jl and (~0 in Fig. 5.5 (b) have stretched to 

ioo and separated as shown in Fig. 5.5 (c). In the latter figure, 

t has decreased below a2 ' (see Fig. 5.5 (a)), so there is a .new zero 

on the imaginary (s ... u) axis, which connects the - ~ 1T . and C~ IT) 

contours. In Fig. 5.5 (d), we have taken a value of t in the range 

> t > 

and have used the phase labels in the complex (s - u) plane that are 

appropriate for this value of t, given that the phase of the right .. 

most contour is rr, as in the s-channel of Fig. 5.4. 

'We see that in case (a), defined in Section 5 (a) above, the 

phase remains near to the value Jl in the s-channel, as shown in 

Fig. 5.4. The phase contours that are relevant to the high energy 

behavior are those in the region of overlapping branch cuts. This is 

illustrated by Fig. 5.5 (d), where' the power behavior ex s has 

ex ~-4. Thus the oscillations of ImF are ineffective in the physical 

region. An approximation to a superconvergence relation that included 

only the physical regiQns would give a completely wrong result in this 

case (a), where the region of crossed cuts plays a vital role. 

The situation is different in case (b) described in subsection 

5 (b), and giving zeros as shown in Fig. 5.3 (b). The phase has the 

asymptotic value given by Eq. (5.10) as s -7 +00. If we defined the 

phase in. the u-channel by crossing asymptotically, in Ims> 0 near 

t = 0, the phase there as s -7 -00 ,would satisfy 
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¢(s,t) 

'Thus the net phase change is 20]..:r( , which is twice as much as that 

obtained at each fixed negative t from the asymptotic behavior 

aCt) s . The discrepancy is taken up by the zeros that move in from 

infinity when aCt) = -(2n+ 1). In this case, however, the zeros 

that come in from infinity do not leave the physical sheet. 'l'bey are 

in addition to the zeros that enter the physical sheet through the 

real points t al ,a2,a
3
,··· along s = u. The two types of zeros 

are separated on the physical sheet by the phas~ contour ¢(s,t) = :r(, 

in this case. 

The phase contours for case (b) are shown for real sand t 

in Fig~ 5.6, which is analagous to Fig. 5.4 (which applies to case (a)). 

In Fig. 5.7, we show a complex section that corresponds to fixed real 

t in Fig. 5.6 just below the first real zero, 

The phase labeling in Fig.' 5. '7 is obtained by continuity in the s 

plane for this particular value of t, so it does not correspond to 

that on the left of Fig. 5.6. The upper zero in Fig. 5.7 comes froin 

the zero at the residue, whereas the lower, zero comes from the unphysical 

sheet through the real 'zero t = aI' 

begin from case (b) and increase al 

case (a). 'l'be flip of thecbntours 

s '= u, 

until 
I 
I 

whe~ a' 
i 1 

in Fig. 5.6. If we 

t () '. al = l' "'Ie obtaln 

= t (J will, occur at 
l' , 

," 



UCRL-17922 

-33-

infinity where the two zeros become coincident; For al > til, they 

are separated again but one of them is on the unphysical sheet. The 

other is the zero discussed in case (a). More complicated situations 

can be obtained by varying parameters so that the two zeros in Fig. 5.7, 

meet along Re(s) = Re(u), at finite In(s). They could then separate 

again on opposite sides of the line Re(s) = Re(u), and could move 

down towards the physical regions. 
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6. RESONANCE POLES AND ASYMPTO.TIC. PHASES 

In this section we investigate the asymptotic phase above 

threshold in the Regge model related to Eq. (2.3), and find the 

associated phase contours. Above threshold the Regge trajectory becomes 

complex, and it is important to distinguish whether we,have t above 

or below the branch cut along the real axis. We will find that the 

presence of nearby resonance poles on the second sheet produces an 

important change in phase from the simple model that vie used in 

Sections 3 and 4. It is necessary to consider the phase for different 

limits before we can study the associated phase contours. 

(a) s + iO, t + iO, With S --t +00 and t > 4m2 

The phase can be obtained from the asymptotic e)~ression (2.3) 

for F in the Regge model, namely 

F(s,t) 

We write for 

b(t) scx(t) exp[i1T{l - ~CX(t)}] 
sin [~1T o:(t~r[cx(t)J 

2 t > 4m , 

cx( t) .:= ~ + iCX
2

, with cx2 > 0. 

(6.1) 

(6.2) 

The residue b(t) is assumed to be nearly real and to have a slowly 

changing phase in 2 t > 4m , and the gamma function is almost real, 

since ~ > 1 and we assume cx2 is much less than ~. The power 
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of s leads to a factor 

The phase of this term is a slowly varying function of s, so we will 

ignore it in our present discussion of phases and phase contours. 

It may become important vlhen considering more detailed questions of 

consistency, but it does not appear to be relevant for our work in 

this section. 

However, the phase of the sin~~ rr~ term in the denominator 

of the expression (6.1) is importrult. This term can be written, 

+ 

(6.4) 

Its phase lies in the same quadrant as the. phase of 

Hence neglecting the factor (6.3), the asymptoti'c phase ¢(s,t)of 

the scattering amplitude' F, given by (6.1) will satisfy 

¢(s + iO, t + iO) 1 
2 rr 

X (t) a 0, when 

+ X (t), a as 

n, n 1,2,3,'" 

s ~ +00, (6.6) 

(6.7a) 



1 
o < Xa < 2' rr, 

1 
- rr < X < 0, 2 a 

X (t) -70, a 
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when 1 
2n < 2' a1 < 2n + 1, 

when 
1 

2n + 1 < 2' a l < 2n + 2, 

IIi this limit, the phase oscillates about the value 
1 
2' :r: 

UCRL-17922 

(b: 7b) 

sbthat 

ImF ~ O. The corresponding complex section of the phase contours in 

the t plane is shown in Fig.· 6.1 (a). This diagram shows part of 

the physical sheet in Imt > 0, and also part of the unphysical sheet 

re~ched through the t -branch cut along the real axis. There are 

many such unphySical sheets that depend on hOl<1 many threshold branch 

cuts are crossed. On all these unphysical sheets there will be poles 

or shadow poles corresponding to resonances. 5, In Fig. 6.1 (a) vie have 

considered only one such sheet. We have indicated zeros on this sheet, 

in addition to the resonance poles~since they are required for a 

consistent pattern of phase contours. There are no such zeros from 

the term (6.1) alone, .but there will be zeros when. a correction term 

is added, that has a.slowly varying phase. 

The resonance poles occur at the usual values for an ·amplitude 

of even signature, namely at the zeros of sin [~rra( t)] , 

a(t) 2n, n 1,2,3,'" (6.8a) 

t (6 .8b) 
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The S-state pole will lie below threshold on the real axis of the 

unphysical sheet, since we have assumed that there are no bound state 

poles on the physical sheet.' 

(b) s + iO, t - iO, with 2 s ~ + co and t > 4m 

The phase contours near and on the boundary of the phys'ical . 

sheet in this limit are quite different from those considered above 

in case (a). Now we have 0:2 < ° j and the phase of (6.4) will be in 

the same quadrant as that of 

[
. '- 1 1 ).1 exp l:n: (" 2 + '2 0:1 ~ , (6.9) 

instead of (6.5). From (6.1) the asymptotic phase of F will satisfy 

¢(s + iO, t - iO) L :n: 
2 O:lJT ~ (t), (6.10) 

as s ~ co, where 

1 
~(t) 

1 
-"2 JT < <:: '2:n: ~ 

(6.lla) 

~(t) ~ ° when n. (6.llb) 

There is some ambiguity in choosing the phase of!- ~ :n:) in (6.9). We 
\ . 

determine it by continuity of ¢ from the region ° < t <4m2, where 

the asymptotic phase must satisfy 1 
0<¢<'2:n:. 
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The phase. contours for complextin tliis limi trelat.e to 

poles that are reached from the.physical. sheet below .the real branch 

cut. They are shown in Fig. 6.1 (b), where Imt <0 . corre sponds to 

the physical sheet .. We have also indicated zeros on the physical 

sheet in Fig. 6.1 (b). These occur illhen the Regge term (6. i) 1"s 

combined with a suitable background. Asymptotically in s, these zeros 

will recede to infinity on the physical sheet, so the phases.have been 

labeled along the real axis corresponding to this asymptotic situation. 

We will identif'y these zeros with those deduced for other reasons on 

and near the crossed branch cuts in Sections 4 and 5. As indicated 

in Fig. 6.1 (b), the zeros are expected to become real and then go 

into the unphysical sheet whell Ret is increased so that Ret:= s. 

It should,be noted that our previous discussion) in Section 5)of zeros 

of this type was for real negative t on the s,u crossed branch 

cuts. The analogue of that discussion here would be for fixed real 

u on the s,t crossed branch cuts. However, although we are now 

concerned with the same complex surface of zeros, we are varying t 

(and not u) through real values. The complex path of these zeros 

is therefore different from that found in Section 5. The simplest 

behavior, consistent with Eq. (6.1), is that the zeros move steadily 

towards infinity in the complex .s 'plane as t increases through' 

real values to plus infinity. 

rrhe phase ¢ (s, t ) given asymptotically by. (6.10) will take 

the value, r 
! 
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¢(s,t) . (-2n + ~)rr, (6.12) 

when cxl(t) (2n + 1). This value of C). does not correspond to 

a resonance pole since the amplitude has even signature .. The phase 

contours (6.12) go through the zeros of F, while the phase contours 

(6.13) related to cxl(t) 2n, go through the resonance pole, 

¢(s,t) (6.13) 

Before obtaining the phase contours in the full s,t,u plane, we. 

require information about the asymptotic phase in three more types of 

limits on to the boundary of the physical sheet. 

(c ) s + iO, t + iO, With t ~+(X), 
2 

s > 4m 

By symmetry, this limit gives phases that are exactly analagous 

to those in (a) above 

¢(s + iO, t + iO) + x (t), a 

where X satisfies the conditions (6.7). a 

(d) s - iO, t+ iO, With s ~+CD, 

as t ~+CD, (6.14 ) 

The Regge term in the amplitude on this boundary, that is 

analagous to (6.1), is 
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1 
1 + 2" aCt) 

(6.15) 
rEaCt)] 

Hence the asymptotic phase will be 

¢(s - iO, t + iO) as s ~ +00, 

(6.16) 

where Xd(t) = ° when a l = n, and satisfies conditions analagous to 

(6. '-r) . 

( e) s - iO, t - iO, With 
') 

t > 4m
L 

s -7+00, 

The phase in this case follows from (6.15) and (6.4), giving 

¢(s - iO, t - iO) ~ L2 n + X (t), _ e as s -7 +00, (6.17) 

where Xe(t) = 0, whencq = Il, and satisfies conditions analagous to 
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7. CROSSING S"XMIv1ETRIC PHASE CONTOURS 

Using the results of;'Section 6 we cahbbtain the simplest 

family of phase contours' for the Regge model in the region t real 

above threshold. Combining these with the contours obtained in 

Section 5 for t real below threshold, we obtain the phase contour 

diagram shown in Fig. 7;1. In this figure 'we have assumed that, in 

the physical s-channel, the conditions of Section 5 subsection (b) 

hold. Thus the phase contours in this region are the same as those 

shown for the s-chanhel in Fig. 5.6. The phase in the u-channel can 

be obtained by crossing symmetry near t == 0 and then by continuity 

along (u - iO) 'for decreasing real t. This gives the phase labels 

shown in Fig. 5.6. The'labeling in Fig. 7.1 in the u~channel corre-

sponds to that obtained through asymptotic values of s in Ims > 0 

from the s~chahnel for each fixed t < O. The dotted lines from the 

zeros on the, u and s overlapping branch cuts are complex in 

Ims > 0 alongRe~) == Re(u) for decreasing real t. For case (b) of 

Section 5, these zeros remain on the physical sheet as t decreases 

indefini t'ely. In adeli tionthere are complex zeros along Refs) == Re{u) 

in Ims > 0, that come from the zeros of residues. " In this case the 

two kihds of'zerosdo not identify with each other on the physical 

'sheet. This contr~sts With case (a) considered in Section 5. 

'Above 
, ,2 

t == ~m , as, t increases, complex zeros come out of 

the's and't'overlapping branch cuts from real points along 

R~S) =: R$,). These zerosrem~in on the physical sheet as t increases 
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and go to infinity as t -,)+00. For finite' t' we have the s plane 

analogue of Fig. 6.1 (b), :which shows the t plane for real s. Note 

that the complex path of these zeros for increasing real t is 

different from the complex :path for decreasing real u.. The latter 

is the anal()gue, on the s,t crosse<i cuts, of our discussion in 

Section 5 on the s, u crossed cuts. In the present case we dopot 

expect thE; zeros to go to infinity for finite real t above 

threshold. 

A complex section, based on Fig. 7.1 is shown in Fig. 7.2. 

This section shows the complex s plane for real t at a value 

above 2 4m ,when two 
, 

of the zeros are complez and the third is 

nearly real but still on the unphysical sheet. The right hand and 

left hand branch cuts (s > 4m2 and t > 4m2 ) have been pulled down 

to show part of the unphysical sheets. The lack of symmetry is due 

to the fact that we are above the threshold in t, at a real point 

t - iO approached from the t physical, sheet Imt < O. 

If, instead of case (b) of Section 5, we had taken case (a), the 

lower half of Fig. 7.1 would change to the pattern indicated in 

Fig. 5;4, with complex sections in t <. 0 as shown in Fig. 5.5. 

However, the contours for t > 0 will remain the same a,s those shown 

in Fig. 7.1. In case (a) the 11',11',11', pattern applies in all pl'lysical 

channels. 'The same phases are obtained in case (a) above threshold in 

t, either by crossing near t = 0 (or u = 0) through asymptotic 

values of s, or by crossing at each fixed value of t (or u), 
, '." ."' '. 
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through asymptotic values of s. This shows that the number of zeros 

encircled is the same either way, and confirms our remark above that 

the zeros, emerging from the symmetry points s = t, do not leave the 

(Ims > 0) physical sheet as t increases through positive real values 

(along t - iO). Thus, as t increases, the zeros on the right of 

Fig. 7.2 will move upwards in Ims > 0, and more zeros will emerge 

from the unphysical sheet. 
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8. DISCUSSION 

'rhe method of phase contours has Deen used'to 'study crossing 

syrrimetry in a Hegge model based on rising Regge trajectories. Families 

of isolutions have been obtained that show how zeros and poles of 

scattering amplitudes can be related by means of phase contours. Z"eros 

of the amplitude were shown to arise from three initially independent 

sources. The first source, discussed in Section 4, may be called 

symmetry zeros, since they occur along Re(s} = Re(u}and are deduced 

from crossing symmetry arguments. The symmetry zeros may move on to 

the unphysical sheet if "scattering length" parameters could be varied 

sufficiently. The resulting phase contours would be those considered 

in Section 3. 

The second source of zeros comes from the zeros of Regge 

residues f3(t) in t,<. O. Two main possibilities were considered in 

subsection (a) and (b) of Section). In the first one (a), as t is 

decreased through negative real values, the residue zeros move in from 

infini ty 1tlong Re(s) = R~I in Ims > 0, and leave the physical sheet 

at the real symmetry zeros. In this case-the phase in the physical 

regions for fixed t <. 0 does not cycle as s moves along the real 

axis, but only oscillates about the value n. The high energy 

behavior is directly related to the-zeros and the oscillations of the 

phase in the region where the sand u branch cuts overlap. This 

is indicated by the phase contours in Fig. 5.5 (d), for example. 
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In case (b) of subsection 5, the residue zeros and the .symmetry 

zeros cannot be identified by connecting curves of zeros on the 

physical sheet.. Both types remain on the physical stieet after they 

have entered it, but their paths do not meet. Presumably they will 

meet on an unphysical sheet since a continuous variation is possible 

from case (a) to case (b) in which the complex curves of zeros flip 

at certain critical values of the parameters. 

The third type of zero is deduced asa consequence of inter­

ference between resonance poles. For t ~ +00, these zeros Will move 

along Ims ~ + co. As t is decreased the interference zeros 

successively leave the physical sheet through the symmetry zeros. A 

typical section of the complex s plane is shown in Fig. 7.i, for a 

real value of t (t - iO) such that. only three of the interference 

zeros remain complex. 

The value of an analysis of families of phase contours in a 

crossing symmetric model lies in the insight they give about the 

relation between-low energy and high energy behavior. For example 

in case (a) of Section 5, one would obtain a completely wrong 

evaluation of high energy behavior for large negative t, if one 

considered only the behavior of the amplitude in the physical channels. 

In this case the phases on the crossed cuts essentially control the 

high energy behavior at fixed negative t. 

The consistency conditions that we have studied are not a 

bootstrap method in any complete sense, -since we have not included 
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unitarity e'xceptweakly, in that it is not violatedby.our.model. We 

expect that full unitaritywHI provide strong -additional conditions 

that further limit the types of phase contours that may occur;' This 

problem could be-studied in:the limited case of coupled two body 

channels that took -into account the resonances on 'which our model is 

based. The method of phase contours could also be extended ,to more 

general collision amplitudes, although the many variables involved 

w6uldmake their -discussion somewhat elaborate. 

The most important feature that has been neglected, apart from 

unitarity, is the local distortion :that comes from resonances at low 

energies. It is not at all. obvious how to take account of direct 

channel resonances as well as the asymptotic behavior from crossed 

channel resonances. However,our study of phase contours provides a 

new method of approaching this problem, which can certainly be 

developed much further. 

The solutions for phase contours, described in this paper, 

give some' information about fixed angle behavior. More generally, the 

study of phase contours and. zeros permits a new formulation of~-the 

problem of relating asymptotic behavior at fixed momentum transfer and 

asymptotic behavior at fixed angle. We Will consider this in a later 

paper. 

ACKNOWLEDGMENT 

We are indebted to ProfeSsor G~·F • Chew for hospitality at the 

Lawrence Radiation Laboratory and for helpful discussions. 



UCRL-17922 

FOOTNO':j:'ES AND REFERENCES 

* This work was supported in part by the U. S. Atomic Energy 

Commission. 

+ At the Cavendish Laboratory, Cambridge, England,. after January 1, 

1968. 

1. C. B. Chiu, R. J. Eden and C-I Tan, Phase Contours of Scattering 

Amplitudes. I, Phase Contours, Zeros and High Energy Behavior, 

UCRL-17899 (1967). This paper is denoted I in the text. 

2. Y. S. Jin and A. Martin, Phys. Rev. ~, B1369 (1964). 

3. A. Martin, Nuovo Cimento J+2, 930 (1966). 

4. The experimental basis for zeros of residues has been discussed 

by W. Rarita, R. J. Riddell, Jr., C. B.Chiu and R. J. Phillips, 

Phys. Rev. (to be published). 

5. R., J. Eden andJ. R. Taylor, Phys. Rev. 133, B1575 (1964). 



UCRL-l 7922 

-48;..' 

:FIGURECAPTIONS .. 

Fig. 3.1. Phase contours in the physical region for the s-channel, 
I 

based on the simplified form of a Regge model given by 

Eq. (3.4). The continuous curves correspond to ImF = 0, 

and the broken curves to ReF = 0. 

Fig. 3.2. Crossing symmetric phase contours in the limits (s + iO, 

t'+ iO, u + :to) taken' in pairs, with s,t,u real on the 

physical sheet, .when there are no zeros bn the physical 

sheet. 

Fig. '3.3. Phase contours for a symmetric amplitude in the limit 

(s + iO, t - iO, u - iO) on the boundary of the physical 

sheet, for a simplified Regge model, with no zeros on the 

physical sheet. 

Fig. 3.4. Complex sections of phase contours of Fig. 3.3 in the 

complex s plane for real t, (a) t negative, (b) t 

small and positive, (c) t well above 2 
t = 4m . 

Fig. 4.1. . Curves of zeros of a symmetric amplitude in the triangle 

below threshold, shown in the real (s,t) plane: (a) there 

are no real zeros but since ¢ = ° or 2n, there will be 

... 
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complex zeros, (b) real zeros, along the ,closed, curve, 

. (c) the real zeros indicated by a broken line lie on the 

unphysical sheet, (d) some of the unphysical sheet zeros 

have become complex, (e) all z~ros are complex on the 

physical and unphysical sheets except for isolated points 

shown as small black circles, the attached dotted lines 

denote complex zeros on the physical sheet. 

Fig. 4.2. Complex sections based on Fig. 4.1 (b). In diagram (a) we 

show phase contours for complex s when there are two real 

zeros when t = 0. Diagram (b) shows the phase contours 

when t has become negative so that the zeros are complex. 

Diagram (c) shows alternative routes that lead to different 

phase values from (b). 

Fig. 4.3. Phase contours for a crossing symmetric amplitude in the 

limit (s + iO, t - iO, u .... iO). The small black circles 

denote real zeros, and the attached dotted lines denote 

complex zeros on the physical sheet. 

Fig. 4.4. The (s + iO, u - iO) phase contours. This is an enlarged 

version of the neighborhood of some zeros in Fig. 4.3. It 

showS phase contours:for intermediate values of the phase, 

,to indicate how they cross the symmetric line s = u) only 

at zeros of the amplitude. 
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Fig. 5.1. (a) The real- (-s,t) p'lane. 

(b) to (f) 'The complex plane for various Regge amplitudes 

showing how they vary along ABC in Fig. (a), when the 

residues have zeros. 

Fig. '5.2. The variation of the phase as a function -of th~ leading 

Regge trajectory, (a) when the first and second Regge terms 

have nega ti ve real parts, (b) ",hen they have real parts of 

opposite sign; 

Fig. 5.3. - The dotted lines show curves of zeros in the section 

Re(s) = Re(u)) with Im( s) and real (t) as coordinates. The 

r'esidues have zeros at tn. F,ig. (a) corresponds to 
1 

Section 5 (a) and Fig. (b) to Section 5 (b). The points 

denote real zeros. 

Fig. 5.4. PhaSe contours in the limit (s + iO,u - iO) for case (a), 

corresponding to Fig.-'5. 4 (a)., 'The dotted lines denote 

complex zeros that go to infinity for finite t, at 

and are real at t 

Fig. 5.5;- Phase contours in the complex (s - u) plane for successively 

decreasing values of treal, corresponding to case (a) and 

the real section :shownin Fig. _ 5.5. The; sand u branch 

cuts overlap in each of these figures . -
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Fig. 5.6. Phase contours for real values of the variables, in case (b), 

corresponding to Fig. 5.4 (b). The complex zeros from the 

residue zeros are not shown here. The dotted lines are 

complex zeros coming from the real symmetry zeros. 

Fig. 5.7. The complex (s - u) plane showing phase contours for 

fixed negative t in case (b)1corresponding to Fig. 5.4 (b) 

and to Fig. 5.6. 

Fig. 6.1. Phase contours in the complex t plane for real s, 

showing part of the unphysical sheet. Crosses denote 

resonance poles and small black circlesdeno'te zeros of 

the amplitude. Fig. (a) shows the sheet relevant to 

(s + iO, t + iO), and (b) shows the sheet relevant to 

(s + iO, t - iO). 

Fig. 7.1. Crossing symmetric phase contours in the real limit 

(s + iO, t - iO, u - iO), for case (b) of Section 5. Large 

black dots indicate real zeros and dotted curves indicate 

complex zeros. 

Fig. 7.2. The complex s p1:ane for fixed real t above threshold, 

showing parts of the unphysical sheets above the sand u 

thresholds. These phase contours correspond to the real 
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section given in Fig. 7.1. Pole s are denoted by crosses 
. . 

and z~ros by large black' dots. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
missiori, nbr any person acting on beh~lf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes. any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 








