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" I. INTRODUCTION

"~ Qur objective in this paper is to investigaté consistency
conditions thaf are imposed by crossing symmetry. and analyticity when
a given high energy behavior is assumed for a scattering amplitude.
These consistency conditions are obtained by the use of phase contours,
which were introduced and studied in the previous paperl (hereafter
denoted by I).

Our assumption for the high energy behavior is based on single
pole dominance in a Regge model having a continuously rising Regge
trajectory. This establishes the phase of the scattering amplitude
in the s-channel for fixed t, or for fixed u, as s — co. We assume
a siﬁgle symmetric scattering amplitude that corres@onds to equal
mass spinless bosons. vWeldefine a phase contour as a curve of constant
phase, or more generally a surface of constant phase ih the complex -
space of the invariant energies s, t, and u.

A consistent Regge model requires that the trajectories should

be complex above threshold and that they go through integer values on

the unphysical sheets at resonance poles. In addition zeros are

required in residues to avoid the existence of nonphysical poles in the

. scattering amplitude,; or in partial wave amplitudes. These zeros and

the resonance poles play an essential role in establishing a consistent
topology for the phase contours.»vThis is because phase contours that

correspond to‘different_(real constant) values of the phase cannot
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" intersect each other, except possiblylat singularities or zeros of b3
the invariant scattering'amplitude. |

iIn additior to our'aSSomptions dbout Reggetbehavior at high
eneréy, our hainisimplification is the neglect of local distortions
of phase contoufs‘at low energies‘due to nearby‘resohances. These
distortions were illustrated and:discussed in the previous paper, I,
vHoWever; they are not»essential‘to the derivation of a consistent
,topology of phase contours under the conditions assumed in thls
paper, although they would be 1mportant if We 1mposed a stronger
form: of bootstrap consistency. LWevdo take{accdunt‘ofvreSOnances
in their crossed charinel high ehergy effects,'and in the resulting_
interference that determines the cohtinuatiOh between phase contours
in different fegions.' We also take account of an ihdirect effect of
. resonances that we describe in terms of a generalized scattering
length.f This relates to real zeios of the amplitude on the crossed
branch cuts, just as. the scattering'length itself may be related to
real zeros below threshold.

ln.this‘paper we are working_towards a consistent solution
for phase.contours that describes the interfeience pattern comihg
from the resonance poles and thé zeros. Our’arguments‘for the location ~

of zeros on the physical sheet are'based<mainly on consiStency.‘

«

-Although some of these zeros may be 1dent1f1ed as different parts of
the same complex surface, “their. éccurrence on ‘the phys1cal sheet can

be deduced. from different requirements. Tn order to separate these
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feqﬁiremenfé'we start from a very simplified model and obtdin its - :
phase contoUrsbﬁsing crossing symmeﬁry; We then introduce successive
com?lications that iead_eventually'td the phase contours for oﬁf _
Regge model.

In Section 2 Wé summarize thé properties ofvphase contours

that are reQdired for our subse@uent discussion. Most of these

properties were discussed in more detail in I. In Section 3 we
introduce a phase model that has no poles or zeros on the physical.
sheet, and from it we obtain a solution for the phase contours. In

Section 4, we discuss zeros below threshold that depend on the

scattering length;'and extend this to deduce a sequence of real zeros

on the crossed branch cuts. Associated with these real zefos, there

are curves of coﬁplex zefbs‘on the phjsical sheet thaf lead to a
modification of the phase contours of our first simple model; This
modificétion‘cén be interpreted as afising when Zeros move o; to the
physicai sheet through tﬁé crossed br;nch cuts at infinity. i

In SBection 5, we study the complex zeros on the phyéical
sheet that come from zeros of the residues of the leading Reégge
terms, and we show how they modify the.phase confours. These zeros
may be identified as parts of the complex surfaces of zeros that
disappear through the érossed branch cuts and are related to the
generalized scattering length. in Section 6 we intfoduce the effects
of the Reggefﬁodel above the thresholds where the trajectofies becone

complex. Resonance poies on the physical sheet produce striking
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changes in,the‘agymp;otic_phasg,gqntqurs;that:are“aﬂa;agous to those y
:produceg by the zeros of réSidués below thrgshbld. There is, however,
én essenfiai difference in the way fhe Zerég ﬁové on the physical
sheet. Below the t thréshold, they move out to iﬁfinity'at fiﬁite
values of t where the residﬁes are zero. Above threshold they»move
té infinity only when t._becomes infihite. Thisubeq?méscevident iﬁ'
: Seétion 7,‘wherg-we give. the crossing §ymmetric phase_contOurs for
the Regge mpdel. We_a;so inaiqate in Section Y_tpe_wgy }esonahces
andvzeros are_related? byvconsidering a complex section of thé phase.
cbntbgrs on the physicalvﬁheet,and on neighboring‘ﬁnphysiCal‘sheets.

i

In Section 8 we give a brief discussion of our results.

-
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2. ASSUMPTIONS AND PROPERTIES OF PHASE CONTOURS

The phase ¢(s,t) of a scattering amplitude F(s,t) is

defined by -
B(s,t) = Im[log [ F(s,8) J1. - . (2.1)

It 'is also necessary to specify the phasé at an initial point

' (so,to). When F(s,t) has zeros or poles on the physical sheet,

the phase may be changed by multiples of 2x by chobsing_different
routes from the initial point to the point :(s;t). Wé must therefore
specify the . route that we use when relatiﬂg the'fhases at two
different points. | | | |

A phaée contoﬁr is defined by
@(s,t) = ¢, S _ (2.2)

where C 1is a real constant. We will sfudy phase contours both for
real s and t, and for complex s when t is held at real values.

For fixed t and complex s (S,: s, + isg), the phase 1is a

1

harmonic function of s and s

7 o7 when F  1s regular. 1In the s

plane the phase contours are orthogonal to the modulus contours, but
this doeﬁ not apply in other planes, like s agd -t real, for
example; |

‘Phase‘contours, for different constant values df the phase,

cannot meet except at singularities or zeros of the amplitude F(s,t).
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% <t < b, S (2.6)

where tlo denotes the first zero of the residué, that occurs for

negative t, when

oz(tlo) - -1, | (2.7)

provided b(t) does not have any zeros in the range (2.6). We will
discuss the effects of zeros at a(t) = -(2§ + 1) in Section 5.
Above the threshold ¢t = hmg, o(t) becomes complex, and the phase
of the Regge term (2.3) is no longer given by Eq. (2.5). We will
consider the resulting phase in Section 6.

Qur initial simplifying assumptions about the phase afe based
on Eg. (2.5). We assume that the bhase‘of the amplitude  has the form
(2.5) as s - ® -along real s + i0, for any fixed real t. We
also assume that a(t) is real for all real t, even above threshold.
This is no longer a Regge model but it is useful for illustrating the
first requireméhts of the consistency problem. Crossing symmetry is
achieved by making analagous asymptotictassumptions forifixed~ u and
fixed s.

| In the forward direction, t = O, the optical theorem reqguires

that, along s + 10,

Im F(s,0) >0, for s> umg,-' o : (2.8)

e

e
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in order that the total .cross seétion shall be positive. Since our

amplitude is to be symmetric, there isra similar condition in the

"‘/' . . . P
backward direction, u = O.
The relation (2.9) can be éxtended to any value of +t ' -in the
range
0<t < hm®. , o (2.9)
Hence, using Eq. (2.5), which holds also for the Regge amplitude
(2.%) in this region, we must have
0 < @(s,t) < m, : ' o -~ (2.10)
for s > Mmg, in the range (2.9). There is a similar condition.in
—— pgu<mEs | (2.11)
From this result we see that the phase at threshold s = hm?, reached
along t =0 from s =+ oo, must be zero or . If there are no
poles or zeros below threshold, the phase must be either O or =«
“throughout the region
s < hmg; t < hmg, u < bat, o (2.12)
Which of the values, = 0 or s, is relevant will depend on the.
A scattering length, which will be discussed in Section L. The value of

the phase @, in the triangle (2.12) also depends on the route by which

it is reached from our starting point given in Eq. (2.4).
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3. A MODEL WITH NO ZEROS ON THE PHYSICAL SHEET ° ’ N
We assume an asympfbtic behavior that is consistent with a ®

symmetric amplitude and has thekphasé_(2.5), as 8 -+,
#(s,t) ~-utn““)em>&ﬂ{;.-gcﬂtﬁ]; (3.1)

We aséume that b(t) has no poles or zeros on the ﬁhysical éheet, and
thaﬁ‘ a(t). is réal, and corresponds to a continuously rising tréjec-‘
tory, for all t. We make similar asymptotic;assumptiqns for fixed
real u, and s. |

Our. first objective is to obtain a solution for phase contours
’onrthe physical sheet, ‘when theré are no zeros,orvpoles‘of the
_ amplitude oﬁ the physiecal shéet. It is not evident, a priori, that
such a solution wili exist. Our reason for requiring no zefos (or
ﬁolés), is that the phase of F will be unambiguously defined, so.
thaﬁ it is independent of the path on the physical sheet by which it
is obtained from the initial value in Eq. (2.h).

It is important to specify the limit in which the boundary of
the physical sheet is approached,sinde this will affect the phase.
Thus Eq. (3%.1) holds in the 1imi£ (s'+ i0) .with_ S ieél. In ﬁhé

limit * (s + 10) . as s - -0o along the real axis the phase will be

e«

R I P05 G
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" We begin by_obtainingLphase:contours-in the physical s
channel (in the limit s + 10), ‘on the assunmption that the amplitude

has the form

F(s,t) = b(t) Sa(t) exp iq{].- %~a(t)}

: . v N
+ bu) soz(u) exp in{l - %Ot(u)}
+ background (3.3)
Instead of the variable s in‘Eq.v(B,B), we could use the variable

z, “in the first term and z, in the second term, where

z, = 1+ ——g§~—§ , ooz, o= 1+ —-gi——E . (3.3a)
t - lm u - hm
However in the region t < 0, u < O, these would lead to the same

topology as we obtain from Eq. (3.3). We take a(0) = 1, so as to

give a constant total cross section, and we take the background to have

only a slowly varying phase. At high energies the background is

neglected at all angles in the physical regions. We will find that

-we cannot neglect the effects of the background in all unphysical regions.

The phase contours for ?eal 8 ‘and t 1in the s-channel are
shown in Fig.‘(B;l). We have neglected sméll oégillations of thé type
discussed in-I; It is néf evidenﬁ at this stage, whether the phase
contoﬁrs ¢'= %:n bend away from the ?hyéical région as shown, or
whether they join'thfough the physical region like‘the otﬁer contours
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shown. We will see that” the contours shown are the‘simplest ones that
‘are compatible with our reguirement that our solution’is:to have no
Zeros on‘the physical sheet.

From Fig. 3.1 we can obtain phase contours-in other real .
regions in two esSentiallyrdifferent ways._’These depends onrwhether
we require the phase in the limit (s + 10, t + i0), or in the limit
(s + 10, t - ioﬁ.' ther.limits'give contours topologioally sinilar
to one of these, for the model considered here. |

The phases in the.limitsv (s + iO, t o+ i0, u + iO) forveach
relevant varlable, or palr of varlables, have the same form in each -
physical reg;on as Fig. (5.1). In the unphy51cal reglons, for example

s > Mmg, t > hmz, we write the amplitude

F(s,t) = b(t) zto-‘(t) exp[in {1. _%a(t)}

S n(s) 2. X5) exp i}({l - go[(s)} e

+ ~ background,

where Zy isvgiven by Eq (3.32a) and zS'AisAdefined similarly.
With assumptlons about the smoothness of the backgrounis1mllar to
those made in the phys1cal reglon, the asymptotlc contours above the
.s threshold 301n smoothly to those above the t threshold. The‘
resultlng phase contours in the real (s t u) plane in the llmlts _

from the upper half planes are shown 1n Flg 3 2.
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The analagous diagram showing phase contours in the limits
(s + 10, t - i0, u - i0) is more interesting. The phases in the
t-channel and the u-channel are obtained by analytic continuation in

Ims > 0 along

s =K exp(i0), 0o, ' (3.5)

where K 1is large. In this simple case with no zeros, one obtains
phaée contours in the u-channel (u - i0), which are complex conjugate
to those in the s-channel (s + 1i0). In the regions of crossed branch

cuts, we replace (3.L) by

a(s%}

+ background. (3.6)

P+

+ b(s) zsa(s) exp [iff{l -

This is appropriate to the limit (s + i0, t -"10). Along s = t,
the background must be feal; so the phase will be g, 'since it has
this value asymptotically and there are no zeros by assumption.

The resulting phase contours are shown in Fig. 3%.3. We see

PO

that along t = O, the phase is n a8 s - +oo but is % % as

§ - - (keeping on s + i0). In the region.of crossed cuts, say

(t - 10, s + i0), the 5 x 'phase contour is required to separate the

1
2 .
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o c&nﬁéﬁr ffbm tﬁé Hdv“éontbﬁf:.hsiﬁiiariJ‘tﬁé '%'} COhfoﬁf must lie
between the -ﬂ and' 2n  édntbufé in-ihis fegion. This deterﬁines that 23
these\contoﬁrs ﬁﬁst bénd away-frdm the‘physical regions in this
diagram, and also in Fig.;3;2 since below t % Mmg, the % Bl contour
follows the same pathias:in Fig.!j.}! We see also that the phase in
the triangle beldw threshold must be equal to «; this is a consequence
of ohr'éssumption that thefe aré no zeros on the thsical>sheet. We
ieiéx this aséumption in the‘néxtvéecti§n.

in Fig. BLH wé shéﬁ compléx éeétions of the phase contour
surfaces.for three real values of t, in the coﬁplex s plane; The
values of t are ghdsen with one well below t = O, the second just
abéve t = 0, and the third well abéve t = hmg. The phase'cohtours in

Fig. 3.4 indicate the asymptotic phase’as s — 00,

. . l ‘\‘l

§(s,t) ~ « [1 -5 oaft)| o+ ea(t) | (3.7)
where s = |s| exp 16. The phase lines @ = n meet at stagnation
points, so that ,¢ =g =-¢ and @ =y + ¢ diverge away from,these

points as indicated in Fig. 3.4(b).

©
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"4, ZEROS AT FINITE REAL POINTS

In this section we Will extend the model described in Section 3,
so that there aré zeros at finite real points} Attached to these
zeros are curveé of complex zeros that lie on the physical sheet.

We begin gy stating the results that have been established
by Jin and Martin2 for_a syﬁmetric scattering amplitude Eelow thréshold.
These give an indication of where we may eXpect to find a set of real
or complex zeros of the scattering amplitude on the physical sheet.
FWe will extrapolate heuristically from the rigorous results of
Jin and Martin to deduce the-effects_on‘phase contours of the first
real zero. These lead us to obtain é consistent éélution for phaée
contours with an infinite sequence of real zeros on the crossed branch
cuts in the limits from opposite half planes, forvéxaméle (s + i0,
u - 10). This solution can be continuously varied so that it goes
over to the solution obtained in the previous section when the zeros

move through ihfinity,to unphysical sheets.

(a) The Amplitude Below Threshold

Define the variable =z by
1 2 : 2 1 .52 :
z = T (s ~u)™ = (s -o2m" + 5 )", | A (4.1)

When t is in the range (-hme, +Mm2), the amplitude can be expreésed

by a dispersion relation in =z, with one subtraction.g’5 Let G(z,t)
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denote the amplitude F(s,t) expressed in terms of the variable z. v
Then
' ' z - x. ¢° i
; ' B ‘Im G(x,t) .
= 4 e ax = . <. h.2
G(z,t) = c(t) = — J %) (x - 2) (4.2)
X0

In the region o) <t <fhm2, ImG is positive for x >,x0, hence

wheré " o ‘ - | '
o A . “ ‘ e ? o . .
(e 0L Y :
w}xo = (%m + Q'L:)“ . S : (b.4)

When 2z 1is real and less than X the function G(z,t) will be real
for 0Kt < hmeé _Hence for t in this range

(i)u if clt) < 0, G(x,t) will have no zeros when x < X3
. (ii)V if c(t) > 0, a(x,t) will have al most one zero when
X < Xye |

Using cfossing.symmetry, this resuit can be extendéd to give information
about the amplitgde ‘F(s,t), within the.triangie vhere it is real, ‘ ®

namely

2

s < hmg, t <lm™, u< hmt. o . (k.5)

It has been shown by Jin and Martin~ that F(s,t) has an absolute

- minimwa at the symmetry point
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A . S L (e

The amplitude F increases (inside the triangle) along any straight

~ line originating at this symmetry point.

If we assume asymptotic power behavior as indicated in
Section 2, there will be one real zero of G(x,0) for x < Xy, when
the scattering length C(0) is positive. More generaily for t in

the range,
s} ) ) .
“hn® < t < ln®, | | (4.7)

there will be one reél zero of G(x,t), when the subtraction term in

(4.2) is positive, C(t) > 0. Let this zero be at 2z, (t,f),

%ot
Glzg(t,0), £ = O, o (k8)

where- f denotes a parameter that permits us to vary the scattering

length C{0) and other values of the subtraction term C(t). For

example, let f denote the valuevqf F at the symmetry point
. 2 2y - , :
f = F(m™/3, n"/3). ' , (4.9)

If f 1is positive, there will be no zeros of F inside the triangle
(k.5), but there will be a real zero of G(x, hm2/3) in x < O.

This real zero =z

0 corresponds to two complex conjugate zeros of F,

hn® H '
S = 3 % i[zol . (k.10)
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If f is decreased and becomes negative, the tro.zeros (4.10) become
‘real and separate inside the triangle (4.5). If f “is sufficiently
negative, the zeros reach the threshold branch poinfs and move through
" them on to unphysical sheets. | | |

The various situations of real zeros, that re.wish to consider
are shown in’Fig. 4.1. The first diagramr(a) corresponds to the
51tuatlon when f > O and there are no real zeros, but there will be
complex zeros. It is due to these complex zeros that we can choose
different phases indicated in the diagram'by P = O; or 2yx. In
Fig. h.i (b) we ﬁave decreased - f so tﬁatrit:isﬁpegetive and there
“is a loop of real zeros in'the.triengle. fﬁéqﬁeiﬁé "f"quthér gives
.(c); in'whichvfhe broken 1inesAindicate seros that have moved on to
the second sheet. In Fig. 4.1 (d) soﬁe of the second sheet zeros
have become complex, as zo(t;f) decreases past zero on the second
sheet. In Fig. 4.1 (e), all second sheet zeros are complex except
for the'bleck circles Where-the complex ceros move‘through its real
boundary (s +1io,fu - i0) etc;'oh to‘the.ﬁhysical sheet. The complex
‘zeros on the physical sheet are indiceted by dotted lines in diagram (e).
There are also complex zeros on the physical sheet for all the other
-diagrams shown, They rise out from the curves of real zeros; except
in Fig. 4.1 (a) when they are at complex parts of the phy81cal sheet

and have no 1ntersectlon with the real trlangle

3
ks

)

. .
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(b) Complex Sections of Phase Contours .

The location of zeros and their relation to the phase contours

becomes clearer by considering complex sections. For illustration, we

consider two complek sections when the real zeroé have the form of

Fig. 4.1 (b). These show the phase contours and zeros in the éomplex
s plane when t = 0, in Fig. b2 (a), and}when f < 0, so that there
are no real Zeros, in Fig. 4.2 (b) aﬁd (e). |

Since there'are.zeros of tﬁé amplitude F(s,t), the value of
the phése ¢(s,t) will depend 6ﬁ the route taken from our initial

point, s — o along s + i0, and t = O, when the phase is % 7

In Fig. 4.2(a) we define the phase by keeping in the upper half s
plane, so we always go above the real zeros at 5o and Sy In |

Fig. 4.2 (b), the zeros have become complex, and only sy is in

Ims > 0. The path by which the phases have the values shown apev

indicated by arrows. The Fig. L. 2 (g) is:an identical section to

Fig. M.E:(b) but we obtain different phases by pasSing below the complex
zero S,, as indicated by the arrows. The phaseé in diagram (b)_are
relevant if we use a route through asymptotié values in Ims > O,

but those in (c) are relevant if we proceed along s + iO.

(¢) 'Crossing Symmetric Phase Contours

We now ektrapolatevfrom the location of the zeros shown in

Fig. 4.1 (e), and assume an infinite sequence of real zeros on the

crossed cuts in the limits
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(s + 10, u - 10) aléng s'=w; ~ .- % . o v (K1)

1
ct+

(s +i0, t - i0) along s (k.12)

Cniy‘the leadiné zero‘may éo ‘below thresho;d, when it may have
"the form shown in Fig. h 1 (b), (c), (d) Hoﬁever, we have chosen to
take it on the crossed cuts as in Flg h 1 (e), since the résultlng
phase contours,are slightly mgre simple than in the~other cases.
The phase ;ontours‘with pairs vavariables in @he iimits

(s + 10, t + 10, ﬁ + 10) can be taken to be the same as those in
Fig; 3.2{ éincé,they,are consistent withouﬁ the introduc%ion. of any
real zer&s oﬁbthé‘pﬁysical‘sheet in‘these limits. |

’ The:phase contours in.the iimits (s + 10, ﬁ.-biO; t - 10) are
shown in Fig. M;B.- Thé-labeiingiof phases'is dbtained by going from
the phyéical region for the s~channel ﬁear t = O; of u = 0, thfough

asymﬁtdtic valﬁes in Ims >JO' to the'physiéai regions for other

channels. Then we use continuity out of these physical regions to their

neighboring unﬁhyéiCal regions on the‘indicated.sides of theybranch
cuts. | | | |

Ih Fig;‘h.B zeros are shown as.émall black circles, and the
attached complexbzeroé‘as dotted iines; Thé direction in‘the compléx
space taken by thesevzeros depends on whether We vary t ’and coﬁsi@er
complex s, .or vary u and consider complex s, etc.' The heavy line
through the zeros has a dlfferent phase on- elther 81de It is part

of the complex surface of branch cuts of log F(s,t). Similar cuts
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should be drawn through the :_comple;(. Zeros along the dotbed lines.
However, we will find it convenient to disguss various routes for
defining the pﬁasé 8o we will not normally consider such branch>cuts,
which specify.the phase in a less flexible manner.

The intermediate phase lines, on the (u,s) and (t,s) crossed
cuts in Fig. 4.3, do not cross the heavy phase contour ¢ = nx-
that goes through the zefos. The detailed form of these contours 'is
shown in Fig. L.4, which is an enlargement of the region.laﬁeleda
(u - 10, s +_iO) in Fig. 4.3, Thié figure indicates more intermediate
contours, but omits the symmetric @ = ngx contour. |

Complex sections, for real t and complex s, of Figs. 4.3
and 4.4 are similar to the sections given. in Fig. 4.2 for small values
of (-t). For large values of 'it, they are more complicated'buf we

will proceed to a more realistic version of the Regge model before

_-considering further complex sections.
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5. ZEROS OF REGGE RESIDUES

B

The asymptotic Regge amplitude (2.3) is zero for t ~ below

threshold, whenever the residue vanishes,‘h namely at
a(t) = -(2n + 1), n = 0,1,2,+++ _ (5.1)

In order to obtain the effects of this zero on phase contburs,’We must
~ consider more than one term in the Regge'asymptotic‘expansipn. We
will study the first two terms and will assume that the zeros of their

residués do not coincide. We write them in the forﬁ
' o (t) . 1
F(s,t) ~ 51(t) s exp [in <l - = a. (t)
L 2 71
aE(t). ' i :l -
+. Bg(t) s exp |in(1l - 3 ag(t)
where ' | (5.2)

b, (t)

. B (t) ;._._:.‘ ,
i sin [-;- ﬂai(t)] Pl ()]

i=1,2. (5.3)

We assume that o and a2 are real for -t <,hm2, and that

o (t) > oy(t). - (5.4)

For simplicity we will assume also that their difference is constant,

and
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There would be no significant change in our results if we took any
constant difference between O and 2. For a larger -difference, the
results would be mdfé complicéted.

Thevoptical theorem requires
@ (0) = 1, D,(0) > O. : . (5.6)

The residue £ could have additional zeros in. t < O, due to zeros
in bl(t).' However, we will limit the possibilities that we need to

consider by taking

l(t) > 0, for t real. ‘ ‘ (5.7)

An important»asject'of the phase contours depends on whether bg(t)'
has the same sign or a different sign ffom bl(t), whgn the residue’
51(t) vanishes at values of t satisfying Eq;‘(5.l);» Although

bg(t) should be positive at resonance poles above threshold in our

model, it could change sign in -t < Mmg, before we reach the first

~zero of the leading Regge residue Bl(t).- We will therefore consider

the two situations (a) bl(t) > 0, bg(t) > 0, and
(v) bl(t) > 0, bQ(t) < .0. 1In the general case we could have
situation (a) holding at some zeros of Bl(t), and situation (b)

holding at other zeros. However, we will limit our discussion by



UCRL-17922

e ) I

assuming that either (a) or (b) holds for all t < 0. The former
‘leads to an oscillating phase in the physical regions, the latter

leads to an increasing phase.

(a) .An Oscillating Phase; bl'(t:) >0, bg(t) >0,7in t < 0

We consider firstly the phase chahge_of F(s,ﬁ), given by
Eq. (5.2)1 as t decreases from zero at a fixed ﬁositive real value
of s -along ABC ‘in Fig. 5.1 (a) (on s + 10). Since -Bi(t)_ is

zero, when ai(t) = -(2n + 1), the term

o a; (t) . 1 -

will describe a spiral in the half plane ReFi < 0. This spiral will
touch the imaginary Fi axis whenever t takes a value so that vai
is a negative odd integer. On account of our assumption (5.5) about

1 2
of phase in general, but they'will be in the same half-plane. ‘The

thé trajectory difference; the spirals for- P, and F. will be out

spirals for ;Fl ~and- F, are shown in Fig. 5.1 (b) and (c), together
] 2

‘with® the path of their sum in Fig. 5.1 (d), as t decreases for fixed

- real s. Note that the relative size of the -spiral-(c) will decrease
if s 1is increased.
For any finite real s, it is evident that the phése of the

amplitude F, given by Eq. (5.2), will ¢scillate Between'(:% 7+ {)

. and (:%'n - é) , where € -0 as s — oo,
o
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Bot) ~ a8, Exocn® € 2. (5.9)

The_phase, for finite large s, is shown in Fig. 5.2 (a) as a function
of Oi(t)'

Before discussing the lodation of the zeros on the physical
sheet that come from the zeros of fesidues, we donsider the phase in

case (b).

(b) An Increasing Phase; bl(t)v> 0, bQ(t) <0, int <0

In this case, as we follow the path ABC in Fig. 5.1 (a)
for fixed s and decreasing t, the term Fl given by Eq. (5.8)
with 1 = 1, follows the spiral shown as (b) in Fig. 5.1. However,

F, will follow the spiral shown as (e) in Fig. (5.1) in ReF, > 0.

2
The resultihg sum, that gives the asymptotic phase of F(s,t) will

follow the path indicated by diagram (f) in Fig. (5.1). For a larger
fixed vslue ng‘s, there will be a smaller part of the curve in

ReF >.Oz bﬁt it will always loop round the origin for any finite

s (no matter how large).

The asymptotic phase as s —+00, in this case, is given by
gs,t) ~ =x[1 -0 (8)] + £(t), | (5.10)
where

1 : 1
- 3 < _c(t)\<-2—n. : . : (5.11)
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This phase, for finite large s, is shown in Fig. 5.2 (b) as a function

of‘-o&(t), (note that -0 increases as t decreases).

" (c) ‘Zeros on the Physical Sheet

We consider now, how the zeros from_the residues in céée (a)
movehinbthevfinite regions»of the_phyéical.sheet as vt is decreased
through negative values. We begin from the fixed value of t fhat
gave point B in Fig. 5.1 (b), (c¢) and (d), for some fixed reél s,

o+ We then follow the path in Ims >0,

~which we denote by s
s =8, exp(i®), 0 < 6 < r. , (5.12)

Along this path,

F(s,t) ~ F

where

e i)y e o) | | |
.};_1-;; ‘.{%%}so.%‘ % enp [i(a2 - ozl}(%. " e)]. ._ (5.14)

N

\V]

This ratio is real and negative when 6 :,% r, that is, when s is
pure imaginary. We can nbw hold t fixed and choose o so that
at _9:%11, B

—-1. (5.15)

F

@
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If we have chosen the point B -in Fig. 5.1 (a).-:(d), so-that

Bl(t) is very small, then the solution s, of Eq. (5.15) will be

‘large. As t moves further above the valie tln: at which
o (") - -(en 1), o | o N - (5.16)
the ‘ratio ”51/52 increases and 5, Z.So(t), decreases, until So = 0,
when t = tgn, ﬁhere »
ae(ten)- = -(2n +.1). I : f’ o (5.17)

. n '
Before we reach the value t,°, we must of course replace

2

F, in Eq. (5.13) by’anothervcorrection term or a sum of such terms.
We should also use the variable (s - u); instead of s, in order

to preserve crossing symmetry. The zero associated with (5.16) then
moves in from-iﬁfinity along a curve in the planeg t réal (s - u) pure

imaginary, as t increases from tln given by (5.16). We will see

~ that after these modifications, it is still consistent to assume the

zeros become real, although this will no longer occur at t = tgn.
We denote the real zeros by
t = a5,  to=ay,ce v (?718) ;

and since they move in .along . (s - u) pure imaginary, we will assume

that they are real along the symmetry line .Re(s) = Re(u).
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. We ‘have already, in Section 4, established a‘néed for zeros
of the amplitude F(s,t) that are real along s = u, and are at
complex values on the physical sheet aldng curves that go throuththe
real zeros.b It seems natural to identify those curves of zeros with
the curves of zeros that are asymptotic to t = tln éatisfying
Eq. (5.16), along (s - u) pure imaginary. The resulting complex
section containing these zeros is shown in Fig. 5.3 (a),-wﬁere the
axes are t (real) and (s - u) (pure_iﬁaginary). In order to establish
the consistency of this figure, we should also consider the complex

s plane (or (s - u) plane) for t < tln. The ratio in Eq. (5.1L)

becomes modified because Bl(t)i is now negative, If

0 < (o, - al) <2,

the ratio Fl/F2 .does not become real and negative for any value of
©. Hence there are no zeros of F 1in the asymptotic region for

when |t - £.°] is small.

case (a) with t &t 0 1

l 3
In-case (b), considered in subsection (b) above, the situation
is reversed. For t > tlo 'there are no zeros in the asymptotic region,

but for t'< tlo there will be one zero. The feSultihg'cufves of
zeros in the complex section, t real and (s - u) pure imaginary,
are shown in Fig. 5;3 (v). |

The-éhape“of:the phase contours in the real region s > 4m2,

u > hmg, in the-limit (s + i0, 4 --i0) in both cases’ (a) and (v),"

obliges us to draw the attached complex curves of zeros as shown in
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Fig. 5.3 (a) and (b). -The zeros are -on the intersection of. phase

contour surfaces. In case (b) they will normally remain in the finite

z
part of the complex section 'shown in Fig. 5.3 (b) even when t - -oo.

In this case (b) we are unable to identify directly,the zeros.coming
from the real symmetry points. s = u; with the zeros coming from the
vanishing of the Regge residues. However, by a variation of the

0 ' . .
parameters t. - and -a., for example, we can cross over from situation

1 1’
(a) to situation {(b) for the first zero. It is then evident that the

connects to the zero coming in from 1 0 ‘on the physical

zero at a 1

1
sheet in case (a), but on an unphysical sheet in case (b).
More complicated situations can occur if we relax the condition

0 < (a2 - al) < 2. [This-would permit more than one zero to . come from

each vanishing residue. : Apart from these possibilities, fhere will in

general be local distortions of phase contours, and hence of the curves

of zeros, due to resonances. These would have their greatest effect

on the physical sheet near the real axes.

' (4) ' Phase Contours in t < O

With so many zeros on -the physical sheet it 1s necessary to

specify the routes by which the phase is defined. Unfortunately the

-route that gives the most-natural phase labeling for one section of

the surfaces of constant phase becomes rather unnatural for other

sections. We will therefore sometimes change the routes used for

defining the phase, when we:change to a different section of the.

phase surfaces.
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-We assume -that .the éeros-at'realnpoihtsain‘ t <0, are located
in position similar to those shown " in Fig.~h.3,roh the overlapping
branch cuts u >'hm2, t > hmgT Taking account'of'the zerds of
residues, we find that Fig. 4.3 for t < 0, in case (a) is replaced by
Fig. 5.4. Here we have uséd a phase labeling beginning from t = O;

l’n; The.phases.in'the

s - ® along s + i0, where the phase is 5

s-channel are found by continuity along t real. The phase in the

u=-channel is found by crossing along s = Js[exp ie, for large s
b : . ,
-with t = O, giving a phase % n. Then we proceed by continuity along

t real. Iﬁ the‘physical.regions of the s- aﬁd u-channels the'phaée
. 1s never equal to a half integer multiplé Qf 5. For a more realistic
model that had resonance distortions oi phase contours dt tinite
energies, one woﬁld expect this result to continué to hold for large

s and for large u.

In Fig. 5.5 we show for case (a) some complex sections of the
phase contour, for several fixed reai values .of t, in Ims > 0O in
the complex .s..plane. The labeling in Fig. 5.5 (a) corresponds to
that in Fig. 5.4 forrsﬁall negative> t._'InvFig. 5.5 (b). t has beéome
more negative. .The-labéling in Brackets corré8p§nd§~fo a fouﬁe abéve
the zero (in agreement with Fig. 5.4), the other corresponds to a -
route below the zero. The latter is the most natural labeling to use

in Fig. 5.5 (c), when t has decreased just below “a At the value

li
0 . ‘ .
t,. of t (see Fig. 5.3 (a)), the zero shown in Fig. 5.5 (b) has.

1
moved upwards to infinity. “As t decreases below the value tf?,

R
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2

ioo and separated as shown in Fig. 5.5 (c¢). In the latter figure,

the contours 1 n and (%D in Fig. 5.5 (b) have stretched to

t has decreased below - a, (éee Fig. 5.5 (a)), So there is a new zero
. . l ) :
on the imaginary (s = u) axis, which connects the=- =5 5 and_(:% {)

contours. In Fig. 5.5 (d), we have taken a value of t in the range
a, > t > t.2 (5.19)

and have used the phase labels in the complex (s - u) plane that are

appropriaté for this value of t, given that the phase of the right

" most contour is 7, as in the s-channel of Fig. 5.4.

"We see that in case (a), defined in Section 5 (a) above, the
phase remains near to the value s in thevs-chénnel, as shown in
Fig. 5.4. The phase contours that are relevant to the high energy
behavior are those in the region of overlapping branch cuts. This is
illustrated by Fig. 5.5'(d), where the power behavior sa has
Q@ X~ -4, Thus the oscillations of ImF are ineffective in the physical
region, An‘épproximation to a superconvergence.relatibn that inéluded
only the physical regions would give a completely wrong result in this
case‘(a); where the region of crossed cuts plays a vital role.

The situation is different in case (b) described in subsection

5 (b), and giving Zeros as showﬁ in Fig. 5.3 (b). The phase has the
asymptotic value given by Eq. (5.10) as s — +00.: If we defined the
phase in:the u-channel by crossing asymptotically.in. Ims >.0 near

t = 0, the phase there as s — -o00, would satisfy
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'Thué the net phase éhange is EOin,.which is twice‘as,mUCh as that
-obtéihed at eéch fixed negative t from the asymptotic»behavior
sa(t). The discrepancy is taken up by the zeros that move in.from
infinity when ba(t) = -(2n+ 1). In this case, however, the zeros
that come in from infinity do not leave the phyéical’sheet. They are
in addition_to the zeros that enter the physical sheet through the
real points t = al,ag,aB,---

are separated on the physical sheet by the ﬁhasé contour’ @(s,t) = n,

dlong s = u. The two types of zeros

in this case.

The phése contours for case (b) are showﬁ for real s and t
in Fig. 5.6, which is analagous to Fig. 5.4 (ﬁhichfapplies to case‘(a)).
InvFig. 5.7, wWe show a complex section that corresponds to fixed real

t in Fig. 5.6 just below the first real zero,

1 | 0 - '
B <t St <ap <t | 3 (5.21)

The-phase labeling in Fig.75.7 ié obtained by continuity in the vs

plane for this particular'value of t, so it'does not_correspond to

that on fhe left of Fig. 5.6.  The upper_zefo in Fig. 5.7 comes from

the zero~ét the residue, whereés the lower. zero comes_from the unphysical

sheet through the real zero t = aqs

s =u, in Fig. 5.6. If we

='t{l, we obtain

begin from case (b) and increase-‘al untilx ay
. : | v - .
case (a). The flip of the contours when ai = t{t will occur at
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infinity where the two zeros become coincident. . For 8y > tfg, they
are separated'again but one of them is on the unphysical sheet,v The
other is thevzeré discuéséd in éaée (a).> Mbre‘comﬁlicated situations
can be obtained by vdrying parameters- so that thé two zeros in Fig. 5.7,
meet along Re(s) = Re(u), at finite In(s). They could then separate
again on opposite sides of fhe line Ré(éj = Re{u), and could move

¢

down towards the physical regions.
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6. RESONANCE-POLES AND ASYMPTOTIC.PHASES. -~ - . e ‘ -
In thls sectlon we 1nvest1gate the asymptotlc phaSe above “

threshold in the Regge model related to Eq. (2 3), and find the
vassoclated phase contours. Above threshold the Regge traJectory becomes
com?lex, and it is importaﬂt tb distinguish whether we\havef>t abéve
or below the branch cut along the réal axis. We will find thét the
'presence.of nearby resonance poles on thebsecond sheet produces an
important change in phase from thé simﬁle model that we ﬁsed in

Sections 3 and L. It is neceSsafy to consider the phase for different

1limits before we can study the associated phase contours.

() s + 10, t + 10, With s - +00 and 't > hm

- The phase can be obtained from the asymptotic expression (2.3)

for F in the Regge model, namely

b(t)> s 7 exp [1:1 {l - = O/(t)}] ' ' (6.1)

sin v— ﬂ(l(] r[a(t)]

F(s,t)w_w

o
We write for +t > Lm~,

=0y +iq,, with o, > 0.~ (6.2) o

The residue b(t) is assumed to be nearly real and to have a slowly -
changing phase in t > hmg, and the gamma, function is almost real,

since Oi > 1 and we assume a2 is much less than Oi’ ‘The power
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of s leads to a factor

exp[ioélog s]. ) o . (6.3)

The phase of this term is a slowly Varying function of s, 8O we.wiil.
ignore it invoﬁr present.discussion of phases and phase contours.

It may become important when'considériﬁg more detailed questions of
consistency, but it does not appear'to_be relevant for ouf wbrk in
this section. o _

However, the‘phase of the sin(:% ﬂ%) term in the denominétor

of the expression (6.1) is important. This term can be written,

v} Fad

. 1 ~, N tl' N, » '. ” . h/l »
sin éiﬂal,) cos (35 mxg) o+ i ggsk\; ndi) sin (;§‘na2 .
- - _ : _ (6.14)

Its phase lies in the same quadrant as the phase of
i P! | 1 1 | ' ) ’
eXp [lﬁ(é— ) Otl)l . (6.5)

Hence neglecting the factor (6.3), the asymptotic phase @(s,t) of

the scattering amplitude F, given by (6.1) will satisfy

o

w4 X (%), as s o +oo, (6.6)

@(s + 10, t + 1i0) ~ o

2

where Xa(t) depepds on a; and Q3

Xa(t) = 0, when O‘l =1, n = l’2y5:"l; | (6'73')
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1 1 R AT AL S
0<X <3z=x, when 2n<30a < on + 1, | (6.70)
1 , . 1 6
- ~5n <X <0, when 2n+1l<ZFa <2n+2, (6.7¢)
S % (8) -0, as a,(t) - . , (6.74)
In this Iimit,”the.phase'oscillates about the value % 7 80O that

ImF 2 O. The cor}esponding complex section of_the phase contourélin
théh t plane ié shown}in Fig.jé.l (a)."ThiS diagram:éﬁdws part of
the physica1 §héet in Tmt > 0, and also part of the anphysical sheet
reached through the +t -branch cut along. the real axis. There are
maﬁy’such ﬁnphyéicél éhéets that dépend on ﬂéw mény thréshoid branch
cuts are crossed. On all these unphysical sheefs there wili be poles
or shadow poles cérresponding'to resonances.” In Fig. 6.1 (a) we have
-cpnsidered only one such sheet. We have indicaterzeros oﬁ this shéet,
inv addition to the resonance polesﬁsince“they are‘requiréd for a
consistent péffé;n of phase contours. Théfe are no such zeros from |
the term (6.1)‘alone; but there will be zeros when a correction term
is added, that has a slowly varying phase. |
Thé resonance poles occur at fhe usual values for an‘amplitude

of even signature, namely at the zeros of sin [%.ﬂa(le y

(X(t) = 2n, n = 1;2._;5)"' ) v l (6.8&)

<

t=t,, tu; tepeee : . (6.8p)
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The S-state pole will lie beldWathreshold on- the real axis of the
unphysical sheet, since we have assumed that there are no bound state

poles on the physical sheet,.-

(b) s+ i0, t -~ i0, with s - +o0. and t > i

The phase contours near and on the boundary of the physical
sheet in this 1limit are quite different from those considered above
in case (a). Now we have a, <0, and the phase of (6.4) will be in

the same quadrant as that of
L (1.1 . _
exp [}H(EME + 5 oi:i] s _ _ (6.9)
instead of (6.5). “From (6.1) the asymptotic phase of F will satisfy

| @#(s + 10, t - i0) ~ % to- Ogm - Xb<t),: (6.10)

as s — o, where

c5n < %) < Fay (6.112)
xb(t)” - 0  when o ='n. ' ' (6.11b)

There is some ambiguity in choosing the,phase'ofﬁ.—% ﬂ) in (6.9). We
, o .

determine it by continuity of ¢ from the region 0 < t <shm2,-where

the asymptotic phase must satisfy 0 < @ <:% T.
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The phase.contour;:for complex -t 'in this limit relate to
.a poles that are reached from the,physical:sheet below the real branch
cut. They are shown in Fig. 6.1 (b), where Iﬁt < 0 . corresponds to
the physical sheet. We have also indicated zeros on the physical
sheet in Fig. 6.1 (b). Thése‘occur when'thé‘Réggémferm C6.1)Vis:
combined with g suitablé background. Asymptotically in s, these zeros
'will‘recede to infinity on the physical sheet, so the phases have been
labeled along the real axis corresponding to this asymptotic situation.
We will identify these zeros with those deduced for other reasons on
‘and near the crossed branch cuts in Sections 4 and 5. As indicated
in Fig. 6.1 (b), the zeros are expected to become:real andvthen g0
. into the unphysical sheet when Ret 1is increased so that Ret = s.
It should.be noted that our previous discussion)in‘Section 5}of zerosv
of this type was for real negative t on the s,u crosééd branch
cuts. The analogue of that diséussion here would bé for fixed real |
u on the s,t crossed branch éuts. However, although.we are now
concerned witﬂffhe éame complex surface of zeros, we are varying t
(and not wu) through real values. -The coﬁplex path of these zeros
is therefore different from that found(in Section 5. The sim@lest
behavior, consisteht with Eq. (6.1), is that the zeros move steadily
towards infinityiin the complex s plane as t increases throhgh"
real values to plus infinity{

The phase @(s,t) gi&en asymptotically by (6.10) will take

the value, ' ' _ /
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;zs(s,tj» = (-zn + %)n, ’_ - o o (6.12)

when Oi(t) = (2n + 1). This value of ¢, does not correspond to

a resonance pole since the amplitude has even signature. ' The phase

contours {6.12) go through the zeros of F, while the phase contours

(6.13) related to Qi(t) = 2n, go through the resonance pole,

Bs,t) = -(2n | g)ﬁ. | (6.13)

Before obtaining the phaséxcontours in the full s,t,u plane, we .
require information about the asymptotic phase in three more types of

limits on to the boundary of the physical‘sheet.

(¢) s + 40, t + 10, With t -+, s > km°

By symmetry, this limit gives phases that are exactly analagous

to those in (a) above
e -~--- . . ) l ) .
(s + 10, t + i0) ~ Za o+ Xa(t), as t -+, (6.14)

where X = satisfies the conditions (6.7).

(d) s - 10, t + 10, With § — +o, t > hm°

The Regge term in the amplitude on this boundary, that is

analagous to (6.1), is
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=4O~

Cn(t) ¥ exp [111{ +-a(t)>] AR (6.15)

sin [5_ :roz(tﬂ rla(t)]

Hence the asymptotic phase will be

o+ OL; + ’"Xd(t)", as s o+,

(s - 10, t +10) ~ 3
‘ - 3 L (6.16)

nojf -

where Xd(t) = 0 when «; = n, and satisfies conditions analagous to

1
(6.7).

. L ' : o
- (e). s -i0, t - i0, With s — +oo, t > km
The phase in this case follows from (6.15) and (6.4), giving
@(s - 10, t - 10) ~

%j’( + Xe(t), (as”.s - 400, (6.17)

where Xe(t) = 0, when @ = n, and satisfies conditions analagous to

(6.7).
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7. CROSSING SYMMETRIC PHASE CONTOURS

Using the results of 'Section 6 we can obtain the simplest
family of phase coﬂfoﬁrs'for the Regge model in the region' t real
above threshold. Combining these with the contours obtained in
Section 5 for t real below threshold, we ébtain the phasé contour
diaéram shown in Fig. 7.1. 1In this figure Wé have assumed that, in
the physical s-channel, the conditions of Section 5 subsection (b)
hold. Thus the phase contours in this region are the same as those
vshown.for the s-chanhel in Fig._5.6. The phase in the u-channel can
be obtained by crossing syﬁmefry near t = 0 and‘thén'by cbntinuity
along (u - i0) " for decreasing real t. This givéé the phase labels
shown in Fig. 5.6. The’labeling in Fig.-?.i in:the u-channel corre-
" sponds to that obtained tﬁrough asymptotic values of sb in Ims >0
from the s-channel for each fixed t < 0. The dotted lines from the
zeros on the u and s ovériapping branch cuts afe'complex in
Ims > O alongmi3e@)='Rdu)'for decreasing real t. For case (b) of
Section 5, thése zeros remain on the physical sheet as t decreases
indefinitely. In addition there are complex zeros aléng Re@): RQ@)
in Ims > O, that come’from the zeros of residues. In this caée the
two kinds of ‘zeros' do not idéhtify with each other on the ﬁhysicél

. )
“sheet. This contrasts with case (a) considered in Section 5.
" Above “£'=,%m2, as t increases, complex zeros éomé out of
the’ s and" t overlapping brarfich cuts from real points alongv(

R#@ = Rdﬁ.' These zeros rémain on the physicai_sﬂeef as t increases
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and go to infinity'ﬁénkt >+, Féf'finifel“f;”We have the s plane

analogue of Fig. 6.1 (b), which shows the t plane for_régl s. Note .
‘ fhat the complex path of £h¢ée zerQs fér,increéging‘rea; t »is‘.,>

different from the_compléx path for decreésing‘real u. The latter

is‘thé énalggue,lon theuvs,t c;qsséd cutg;,of pur_discuséion in

Section 5 on thé 5,u croéééd:cuté. In the‘presePt case we dQJth.
expect_the.zeros_to go to‘infinity for,finite real ‘ty abbye .

threshold;" )
| _AJcomplex,sectign, based on Fig.v7,l is ;hqwn'in Fig. 7.2.

This section shows the complex s plane for real t at a value

)
above hmg, when two df)the zeros_are_compleg'and tpe third is
nearly real but still on the unphysical sheet. The right hand and
left hand branch cuts (s §>4m2 and t > Amg) have been pulled down
to show_parf of the unphysical sheetg. The‘lack of symmetry is due m.
to the fact that we are above the th;eshold in t,;at a feal poinﬁ
f - 10 aﬁproached from the‘ t ph&sical,sheet Imt <O. |

| If,‘iﬁé£éad_pfvcase (b) of Section 5, we had taken case (a), the
lower half of'Fig7 7tl’would changg tp,the_patfern;indicated in
Fig. 5fh, ﬁith pomple# sections in t <0 as shown in Fig. 5.5.
Hoﬂever, the con@ours:fqr £ > 0 will remain the same as those shown
in Pig. 7.1. In case (g)_ﬁﬁe“ T, pattern applies.in all physical

channels; _The same phases'are_obtained in case (a) above threshold in

t, either by crossing near t =0 (or_ u = O) ~through asymptotic

values of s, or by‘crossing at each fixed value of t (or u),
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through asymptotic values of s. This shows that the number of zeros
encircled is the same eithervway;'and confirmé our remark above'fhat
the zérqs, emefgingrfrom the symmetry points,'sl; t, do not leave the
(Ims > 0) physical sheet as t increases.through positive realvyalues
(along t - i0). Thﬁs{_as t 1increases, the.zeros on the right-of‘
Fig. 7.2 will move upwards in Ims > 0, and more Zeros will.emerge

from thg unphysical sheet.
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/8. DISCUSSION

The meﬁhod of phase contours has been used 'to study c¢rossing
symmetry in a Regge model based on rising Regge trajectories. Families
of solutions have been obtained that show how zereé and pblés’of"”
scattering émplitudee can be related by means.of*phaée contours. Zeros
of the a@plitude were shown to arise from three initially ihdependent
sources. The first source, discussed in Section 4, may be called
symmetry zeres,_since they occur along Rq%)z Rdﬁ]'and are deduced -
from crossing symmetry arguments. The symﬁetry zeroé may move on to
the unphysicai'sheet if "scattering 1ength” parameters could be varied
sufficiently. The fesulting phase contours Would be those considered
in Section 3.

The second source of zeros comes from the_zeros’of Regge
residues B(t) 1in t < 0. Two main possibilities were considered in
subsection (a) and (b) of Section 5. 1In the first one (a), as t is
decreased through negaﬁive real values, the residue zeros move in from

\
infinity along Re@); Repj in Ims > O,_and leave the physical sheet
_at_the real symmetry zeros. In this case. the phase in the physical
regions for fixed t < O does.not}cycle as s moves along the real
axis, but oﬁly oscillates about the value 5. The high energy
behavior is directly related to the zeros and the oscillations of the

phase in the region where the s and u branch cuts overlap. This

is indicated by the phase.contours in Fig. 5.5 (d), for example.

i
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In case (b) of subsection 5, the residue zeros and the .symmetry
zeros cannot be identified by connecting curves of zeros on the
physical sheet.. Both types remain on the physical sheet after they

“

have entered it, but their paths do not meet. Presumably they will

‘meet on an unphysical sheet since a continuous variation is possible

from‘case (a) to case (b) in which the complex curves of zeros flip
at cerﬁain critical §alues of the parameters.

Thé tbird type . of zero is deduced as a consequence of iﬁter-
feience between resonance péles. For t — +o0, these zeros will move
along Ims - +w. As t is decreased the interference zeros
successively leave the physical sheet thrdugh the symmetry zeros. A
typical section of the complex s plane is shown in Fig. 7.2, for a
real value of t (t - i0) such that only three of the interference
zeros remain complex.

The value of an analysis of families of phase contours in a
crossing symmetric model lies in the insight they give about the

relation between low energy and high energy behavior. For example

in case (a) of Section 5, one would obtain a completely wrong

evaluation of high energy behavior for.large negative t, if one

considered only the behavior of the amplitude in the physical channels.

In this case the phases on the crossed cuts essentially control the

high energy~béhavior at fixed negativé_-t. ‘
The consistency conditiohé that we have studied aré not a

bootstrap method in any complete-sense;‘since we have not iﬁcluded_
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unitarity ékcept‘WEaKly;'in~fhat.it-is not'vidlated‘by:our.model. We
.expect that fullfuhitavitY‘will provide‘strong‘additional~conditions,
that further limit the types of phase contours that may oceur.- This
problem could be-‘studied in:the limited case of coupled two body
channels that took into account the resonances on which our:mddel is
based. fhe method of phase contours could also be extendedwto more.
‘general collision amplitudes, although the many variables involved
wOuld’make*their‘discussién.somewhat elaborate.

The ‘most - important féature that has. been neglected, apart from
unitérity, is the local.distortion»that comes from resonances at low‘
energies. .It is not at all.obvious how to take account of direct
channiel resonances as well as the asymptoﬁic behavior‘from-crossed

" channel resonances. However, our study of phase contours provides a
new method of approaching this problem, which can certainly be
deveioped’much further.. |

The soiutions for phase contours, described in. this paper,
give some information about fixed angle behéviora  Mbre generally, the
study of phase contours and<zér08'permits a neW'formulatiOn of the
problem of relating asymptotic behavior at fixed momentum transfer and
asymptotic behavior at fixed angle. We will consider this in arlater

paper. = o |
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- ‘FIGURE CAPTIONS - -

PHasé contours in the physical regibn'for'tbé:SEchannel,

- based on- the Simplified form of a Regge model given by

<Eq..(5.h).- The continuous curves correspond to ImF = O,

and the broken curves to ReF = 0.

Crossing symmetrié'phase contours in the limits (s # iO,

t'+ 10, u + i0) taken in pairs; with s,t,u real on the

- physical sheet,. .when there are”no'zéros,on theiphysical

. sheet,

Phase;dontouis-for a Symmetric:amplitude in the limit

(s + 10, t - 10, u - i0) on the'bouﬁdary of the physical
sheet, for a simplified Regge model, with no zeros on the
physical sheet.

Cémplex sectiohs of phase contéurs_of Fig. 3.3 in the
complex s plane foi real t, (a) t negative, (b) t

small and positive, (¢) t well above t = b

. Curves of zeros of a symmetric amplitude in the triangle

below threshold, shown in the real (s,t) plane: (a) there

are no real zeros but since @ =0 “or 2n, there will be
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complex zeros, (b) real zeros. along the closed. curve,

‘(c) the real zeros-indicated by a broken line lie on the

unphysical sheet, (d) some of the unpﬁysical sheet zeros
have become complex, (e) all zeros are complex on the
physical and unphysical sheets except for isolated'points
shown as small black circles, the attached dotted lines

denote complex zeros on the physical sheet.

Complex sections based on Fig. 4.1 (b). 1In diagram (a) we

.show phase contours for complex s when there are two real

zeros when t = 0. Diagram (b) shows the phase contours

when t has become negative so that the zeros are complex.

. Diagram (c) shows alternative routes that lead to different

phase values from (b).

Phase contours for a crosSing_symmetric amplitude in the

 limit-- (s + 10, t - 10, u = i10). The small black circles

_ denote real zeros, and- the attached dotted lines denote

_complex zeros on the thsical_Sheet.

Fig. L.2.
Fig. 4.3,
Fig. 4.4,

The - (é_+ 10, u - i0) phase contours. . This is an enlarged
version of the neighborhood of some zeros in Fig. L.3. It

shows phase contours .for intermediate values of the phase,

to indicate how they Cross the symmetric line s = u, only

at zeros of the amplitude.
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Fig. 5.3.

© Fig. 5.k,
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“(a)  The real - (s,t) plane..
" (b) to (f) 'The complex plane for various Regge amplitudes
‘sHowing how they vary along ABC .in Fig. (a), when the

“'residues have zeros.

+ The variation of the phase as a function-of the leading

Regge trajectory, (a) when the first and second Regge terms

have negative real parts, (b) when they have real parts of

opposite Sign}

The dotted line§ show“curves of zeros in the section
Rels) = RQu),with ‘Im(s) and real (t) as coordinates. The
residues have zeros at: tln. Fig. (a) corresponds to
Section 5 (a) and Fig. (b) to Seétion'5 (b). . The points
denote real zeros.

a‘l) ag’ooc

Phase contours in the limit - (s + i0, u - i0) for case (a),

corresponding to Fig. 5.4 (a). .'The dotted lines denote

complex zeros that go to infinity for finite t, at

N |

tl 4 tl 4", and are real at t = 8y ag,a3

o«
’

Phase contours -in the eomplex (s - u) plane for successively

‘decreasing ‘values .of t real, corresponding to case (a) and

the ‘real section 'shown in Fig. 5.5.. The’ s and u branch

cuts overlap in each of these figures.-

3})
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Fig. 5.6. Phase contours for real values of the variables, in case (b),
corresponding to Fig. 5.4 (b). The complex zeros from the
residue zeros are not shown here. The dotted lines are

" complex zeros coming from the real symmetry zeros.

Fig. 5.7. The complex (s - u) plane showing phase contours for

fixed negative t- in case‘(b)1corresponding to Fig. 5.4 (b)

and to Fig. 5.6.

o Fig. 6.1. Phase contours in the complex t plane for real s,

showing part of the.unphysical.sheet. Crosses denote
resonance poles and small black circles-dendte zeros of
the amplitude. Fig. (a) shows the sheet relevant to

(s + 10, t o+ i0), and (b) shows the sheet relevant to

(s + 10, t - i0).

Fig. 7.1. .Crossing symmetric phase contours in the real limit
(s + 10, t - i0, u - 10), for case (b) of Section 5. TLarge
black dots indicate real zeros and dotted curves indicate

complex zeros.

Fig. 7.2. The complex s plane for fixed real t above threshold,
vshowing parts of the unphysical sheets above the s and u

~thresholds. These phase contours correspond to the‘real
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section given in Fig. 7.1. Poles are denoted by crosses

" and zeros By}Iargé black dots.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
' or for damages resulting from the use of any infor-

mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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