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Abstract 

Building A Better Transcriptome 

By Ashley L. Byrne 

 
From a single embryo to billions of cells, a whole organism is constructed in a carefully 

regulated symphony. Every cell in our body shares the same sheet of music in the form of 

DNA but it is through RNA transcription that rhyme and meter are kept; comprised of a 

complex regulatory system determining when genes get turned on or off. It is through this 

regulation that alterations occur, allowing two identical cells to ultimately give rise to 

completely separate organs and tissue systems. Our current understanding of these 

processes relies heavily on using short-read sequencing technology to analyze whole 

transcriptomes. However, this method requires fragmentation of full-length molecules, 

making it difficult to recapitulate the transcriptome landscape in its entirety. Requiring 

heavy computational tools to assemble the transcriptome, which only provides an 

estimation. This loss of contiguity makes it clear we cannot depend on short-read RNA 

sequencing alone to truly understand the complexities within our transcriptome. Thus, I 

have established a toolset for creating better, more precise transcriptomes from single 

cells to bulk RNA studies. This body of work entails how we can elucidate transcript 

features that tend to be lost in short-read sequencing data. These improvements include 

developing a 5’ capturing method for single cell data, employing a long-read single cell 

full-length cDNA sequencing method, increasing throughput and limiting length bias for 

bulk transcriptomic studies. Together, these improvements create a better snapshot of the 

transcriptome and will help change how we analyze transcriptomes.  
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Abstract 
 
Long-read sequencing holds great potential for transcriptome analysis because it offers 

researchers an affordable method to annotate transcriptomes for not only well-studied 

organisms but for less researched organisms such as non-models. However, non-model 

organisms have much more to gain using this technology as they  cannot rely on large 

consortia projects to generate these transcriptome annotations. To utilize this 

technology to its full potential, several remaining molecular and computational 

challenges will have to be overcome. In this review, we have outlined the limitations 

of short-read sequencing technology and how long-read sequencing technology 

overcomes these limitations. We have also highlighted the unique challenges still 

present for long-read sequencing technology and provided some suggestions on how to 

overcome these challenges going forward.  
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Introduction 

The rapid progress and application of sequencing technology after the completion of 

the Human Genome Project has led to a vastly expanded knowledge of the genome 

sequences present in the eukaryotic tree of life. However, due to cost and technological 

limitations, truly high-quality genome references have been limited to a core of 

organisms of large scientific or economic interest. Further, our knowledge of which 

parts of genomes constitute genes and which transcript isoforms these genes produce, 

i.e. high-quality transcriptome annotation, is even more scarce (Salzberg 2019). 

However, sequencing technology might be reaching a point where it will become 

feasible to affordably generate high-quality genome references and transcriptome 

annotations of a much wider range of organisms.     

High-throughput sequencing technologies have grown massively more 

powerful over the last decade. During this time the ability to assemble genomes has 

outpaced the ability to annotate the transcriptomes they produce. Genome assembly is 

now entering a golden age where, for a moderate investment, high-quality “centromere-

to-telomere” genome sequences can be assembled through a mix of several 

technologies, including short-read sequencing, linked short-read sequencing (HiC), 

long-read sequencing and optical mapping (Jain et al. 2018; Putnam et al. 2016; Dixon 

et al. 2018). These powerful and relatively affordable approaches are going to be of 

outsize benefit for non-model organisms from unicellular eukaryotes to polar bears that 

in the past did not receive the attention and large sums of money required to generate 



	 4	

a high-quality genome reference the hard way - Chromosome maps, Sanger sequencing 

of BAC libraries, etc.  

However, while we are quickly reaching a point at which genomes can 

relatively reliably be assembled into chromosome-scale scaffolds, transcriptome 

annotation lags behind in its ability to identify the genes and isoforms expressed from 

these chromosomes.  

Transcriptome annotations are required for us to understand how genome 

sequences and changes to these sequences are interpreted by the cellular machinery. 

They are also required for many functional analyses. The process of genome 

annotation, using RNAseq often relies heavily on machine learning using in-silico ab 

algorithms to predict protein coding genes. However, these predictions become less 

accurate when dealing with organism specific protein coding genes when intron-exon 

boundaries and transcript features such as transcription start (TSS) and end sites (TES) 

differ substantially. Thus, without accurate transcriptome annotations, it can be 

difficult to investigate differential expression of mRNA isoforms or predict which 

proteins are present in a particular tissue or organism.  Further, transcriptome 

annotation allows us to modify cellular behavior by allowing the design of siRNA or 

gRNA sequences that will effectively silence the expression of a targeted gene. This 

can especially be problematic for researchers who cannot accurately identify these 

features causing headaches for those trying to perform knock-in or knock-down 

experiments. 
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  Currently, short- and long-read sequencing are used for transcriptome 

annotation but have underlying limitations that make reaching a “reference-level” 

transcriptome annotation both highly labor intensive and often simply impossible.  

Here we discuss the potential and limitations of long-read based full-length 

transcriptome sequencing for transcriptome annotation and lay out a path towards 

realizing said potential. 

 

1) What are the limitations of short-read sequencing technology? 

The analysis of what RNA transcripts (annotation) are present in a sample and at what 

level (quantification) has relied on a mix of technologies over the last three decades. 

Early efforts to annotate and quantify complex eukaryotic transcriptomes were highly 

labor intensive. During the early 1990’s, efforts to evaluate RNA sequences on a large 

scale relied heavily on  ESTs (Expressed Sequence Tags) whereby cDNA molecules 

were individually cloned, screened, and Sanger-sequenced to determine full-length 

mRNA sequences and observe semi-quantitative changes in gene expression (Adams 

et al. 1992). The Sanger-sequencing based SAGE (Serial Analysis of Gene Expression) 

method improved quantification and reduced cost by concatenating smaller 15-20 bp 

fragments of many cDNA molecules together for sequencing (Velculescu et al. 1995). 

However, because of the short length of analyzed fragments SAGE was inherently less 

useful for annotation. Hybridization-based microarray approaches completely 

eschewed annotation but simplified the quantification of already annotated genes 

(Lockhart et al. 1996).  
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The introduction of massively parallel sequencing in the mid-to-late 2000s 

completely changed transcriptome annotation and quantification. When massively 

parallel sequencing – best represented by the now dominant Illumina technology – 

became available to research labs it could generate millions of sequencing reads at a 

length of ~30 nucleotides (nt). Although initially intended for the sequencing of 

genomic DNA, researchers quickly found ways to leverage the power of these 

sequencers for transcriptome analysis in the form of the RNA-seq assay. RNA-seq 

sequences short cDNA fragments at extremely high throughput and quickly displaced 

microarray-based transcriptome analysis for a number of reasons including cost 

considerations as well as the ability to detect previously unknown transcripts and 

quantify the use of individual splice sites. In the last decade, Illumina sequencers have 

steadily and massively improved, although these improvements have come with 

compromises in experimental design. Most prominently newer Illumina sequencers 

require additional precautions to avoid sample cross-contamination during the 

sequencing reaction (Sinha et al. 2017).  

Current Illumina sequencers like the NovaSeq can generate billions of 

sequencing reads at a length of 250 nt allowing the multiplexed analysis of hundreds 

to thousands of samples in a single run (Table 0.1). At this read-length and output, 

RNA-seq reads aren’t only useful for transcriptome quantification but also for 

annotation. Consequently, efforts like GENCODE and RefSeq heavily rely on this data 

type for their respective annotation approaches (Harrow et al. 2012; Pruitt et al. 2014). 

Paired with literally hundreds of sample preparation techniques and analysis pipelines, 
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transcriptome analysis by short-read RNA-seq (Mortazavi et al. 2008) is now a core 

component of research in nearly all fields of biology.  

So, while it is clear that RNA-seq has revolutionized transcriptome annotation 

and quantification it is also becoming increasingly clear that it is ultimately a stop-gap 

solution of limited power born out the limitations of short-read sequencing. These 

limitations prevent RNA-seq from annotating and quantifying transcriptomes on the 

level of RNA transcript isoforms, i.e. transcript variants expressed by the same gene 

utilizing combinations of alternative splice sites, transcription start sites, and 

transcription termination or polyA sites. Thus, to fully understand the fundamentals of 

gene expression, isoform information is crucial. 

Technology Read Throughput 

per $1K 

Accuracy Base Accuracy Max 

Read Length 

 

Illumina NextSeq  ~2x108  99.9% N/A   75-300 bp  

Pacific Biosciences 

(PacBio) Sequel 

~4x105 89% >99%   50,000 bp 

Oxford Nanopore 

Technologies  

(ONT) MinION 

~5x106 88% >97.5%* Up to 2Mb 

 
Table 0.1: Sequencing technology characteristics. Read number per dollar is hard to 
establish considering different pricing structures and instrument costs. Here, we assume 
a lab would use sequencing cores for Illumina and PacBio sequencing while performing 
Oxford Nanopore Technologies (ONT) MinION sequencing themselves. *Consensus 
accuracy using our R2C2 approach as published (Volden et al., 2018).   
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a) Limitations in transcriptome assembly algorithms 

Despite its dominant position in transcriptome analysis, short-read RNA-seq has failed 

at capturing the true complexity of eukaryotic transcriptomes. While RNA-seq can 

interrogate individual transcript features like splice sites, transcription start sites, and 

polyA sites, it fails at determining how these individual features are combined together 

into comprehensive transcript isoforms. This is due to the fact that the read length of 

short-read sequencers is too short to capture entire transcripts from end-to-end (Fig. 

0.1). Incomplete fragments of transcripts therefore have to be computationally 

assembled into full-length isoforms. This is done using powerful algorithms 

performing de-novo (e.g. Trinity, rnaSPAdes (Grabherr et al. 2011; Bankevich et al. 

2012)) or genome-guided transcriptome assemblies (e.g. Cufflinks, StringTie (Pertea 

et al. 2015; Trapnell et al. 2010)). All of these assemblers ultimately fail at discerning 

complex transcript isoforms expressed by the same gene because of limitations of the 

underlying data. First, RNA-seq reads often do not cover the ends of transcripts leaving 

TSS and polyA sites unresolved (Picelli, Faridani, et al. 2014). Second, although early 

studies have indicated that the mean exon size in the human genome is 147 bp, large 

exons > 300 bp are thought to occur in about 5% of the genome (Lander et al. 2001; 

Bolisetty and Beemon 2012). Large exons that are > 300bp may be too far apart to be 

resolved by normal short-read RNA-seq raw data, i.e. if a transcript has two alternative 

splice sites 1000 bp apart, no individual RNA-seq read will ever connect those two 

events. Given the relatively small exons sizes, exon chaining whereby exons are linked 
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together by identifying all splice junctions is still problematic due to unequal read 

coverage. Computational methods that take this into account have been developed, 

however they still fail at deconvoluting complex isoform mixtures (Kanitz et al. 2015). 

b) Limitations in short-read sequencing technology 

To date, no RNA-seq protocol has succeeded in providing data capable of overcoming 

this assembly challenge and recovering full-length isoforms in a high-throughput 

manner. Although short-read sequencing technology has increased its sequencing 

length capability to ~300 nt from the original ~30 nt, it still can’t sequence the vast 

majority of transcripts from end-to-end. To get around the read length limitation, 

creative specialized protocols have been developed. The most successful methods 

include Synthetic Long Read (SLR) and spISO-seq which operates on the principle of 

splitting one sample into hundreds or thousands of separate reactions using either 384-

well plates or microdroplets (Tilgner et al. 2015, 2017). This separation allows the 

generation of individual sequencing libraries that ideally only contain one transcript 

isoform for any specific gene. These libraries can then be sequenced and analyzed 

separately which massively simplifies computational assembly and reduces mis 

assemblies. However, while improving on general RNA-seq methods, neither method 

succeeds at effectively generating transcript isoforms. SLR generates a low number of 

transcripts most of which are incomplete at the 3’ end while spISO-seq generates sparse 

“read-clouds” that can connect individual splice sites but fail at consistently capturing 

5’ and 3’ ends of transcripts. Additionally, both SLR and spISO-seq approaches have 
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complex library preparation workflows that cannot be multiplexed and require 

specialized instrumentation which has prevented them from being widely adopted.  

While it is not inconceivable that a future short-read based protocol will 

ultimately succeed at isoform-level analysis, this task currently appears to be well 

beyond the capabilities of short-read sequencing. 

2) How can the potential of long-read transcriptome sequencing be realized? 

We believe that long-read sequencing is on the verge of transforming transcriptome 

analysis similarly to how short-read sequencing did a decade ago. In contrast to short-

read sequencing, long-read sequencing technology as provided by Pacific Biosciences 

(PacBio) and Oxford Nanopore Technologies (ONT) has the potential to identify and 

quantify isoforms simply by sequencing cDNA or mRNA molecules end-to-end from 

3’ polyA tail to 5’ CAP.  

 

Figure 0.1: Fundamental difference between short- and long-read sequencing of 
transcripts. Short RNA-seq reads only capture small fragments of transcripts. RNA-seq 
data therefore lacks unambiguous isoform data leading to the inference of many erroneous 
isoforms. Long-read full-length cDNA data captures transcripts end-to-end making 
isoform inference unambiguous. 
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Just like short-read sequencing, long-read technology was initially intended for 

genomic DNA sequencing, but it was only a matter of time until cDNA copies of RNA 

transcript molecules were sequenced on PacBio and ONT sequencers.  

Initial studies used long reads for the targeted analysis of specific highly 

complex transcripts (Treutlein, Gokce, et al. 2014) or to add small amounts of long-

read data to short-read RNA-seq data (Koren et al. 2012; Au et al. 2013). Increasing 

read throughput has allowed the analysis of whole transcriptomes of diverse organisms 

with long-read data alone (B. Wang et al. 2016; Sharon et al. 2013; Tilgner et al. 2013, 

2014) and in addition to the analysis of cDNA, ONT sequencers now offer the ability 

to sequence RNA directly (Workman et al. 2018; Garalde et al. 2018). Finally, long-

read technology has been used to analyze the transcriptomes of single cells (Gupta et 

al. 2018; Volden et al. 2018; Byrne et al. 2017).  

These papers clearly highlight the potential of long-read sequencing to identify 

new isoforms and isoform features like new splice sites, TSSs, and polyA sites which 

is essential to unambiguously annotate and quantify transcriptomes. These papers also 

lay out a path for the future: In the short-term, long-read technology will be a boon for 

the transcriptome annotation. With a moderate investment generating long-read 

transcriptome data for a variety of tissues and organs present in a non-model organism, 

transcriptome annotations will get closer to the comprehensiveness and quality of 

highly curated mouse and human transcriptomes. In the long-term, we believe long-

read technology has the potential to entirely replace short-read RNA-seq for 
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transcriptome analysis. However, to realize this potential, long-read transcriptome 

analysis still has to overcome several challenges that are currently limiting its progress.  

3) What are the challenges of long-read sequencing? 

Although the above examples have highlighted the potential of long-read technology, 

there still remains significant challenges which affect both PacBio and ONT to varying 

degrees: a) RNA integrity, b) length bias, c) read throughput, d) read accuracy, and 5) 

data analysis.  

In order for long-read sequencing to be a main driver in pushing the 

transcriptome field forward these challenges will have to be overcome:  

 

a) RNA integrity 

All current long-read transcriptome sequencing approaches suffer from experimental 

artifacts caused by degraded RNA molecules. While ONT and PacBio sequencers make 

it possible to sequence entire transcripts from end-to-end, this only matters if the vast 

majority of sequenced transcript molecules are fully intact. The integrity of RNA going 

into long-read sequencing experiments is therefore of the highest importance. 

However, it is not yet clear what represents the best extraction and processing method 

for RNA. 

Single-cell studies circumvent this issue by performing reverse transcription 

(RT) directly on cell lysates resulting in high quality results (Byrne et al. 2017; Gupta 

et al. 2018), but this is not the case for bulk samples comprised of tissues or many cells 

because highly concentrated cell lysates tend to inhibit RT reactions. Current efforts to 
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dissociate, lyse, and extract RNA from bulk samples mostly rely on physical disruption 

and Trizol or Tri-reagent based protocols. These protocols are either followed by 

precipitations often resulting in Phenol and Guanidium contamination which can 

compromise RNA integrity or require a column-based clean-up potentially fragmenting 

long RNA transcripts in a way similar to high molecular weight genomic DNA.  

Going forward we will need systematic studies comparing extraction methods 

for the integrity for very long transcripts (>10kb) which cannot be measured by the 

frequently used RIN value which is calculated by evaluating the integrity of the much 

shorter rRNA transcripts at ~2kb (18S) and ~5kb (28S). Additionally, similar to how 

Spike-In RNA Variants (SIRVs) or ERCC spike-ins are used to validate quantification 

it is possible that 5’ capped synthetic transcripts could help indicate the integrity of 

RNA transcripts to identify the percentage of RNA degradation occurring within a 

given method (Cronin et al. 2004; Hardwick et al. 2016).  

We believe these efforts are likely to succeed. Moving from short-read to long-

read sequencing has already led to the genomics community rethinking the way it 

extracts DNA - from mostly column-based to precipitation-based approaches - leading 

to the successful sequencing of DNA molecules almost 1 million base-pairs in length 

(Jain et al. 2018). 
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b) Length bias 

All current long-read transcriptome sequencing approaches are biased towards 

shorter transcripts. As a result, the read lengths produced do not reflect the transcript 

lengths as determined by annotation efforts like GENCODE. While the expression of 

short and long transcripts surely varies for each sample and each sample will only 

include a fraction of all transcripts in the GENCODE annotation, the fact remains that 

current long-read approaches appear to have a hard time capturing long transcripts. 

 
Figure 0.2: Long-read transcriptome sequencing approaches don’t cover long 
transcripts. Swarmplots of length distributions of 1000 randomly sampled PacBio 
(Tilgner et al. 2014), ONT dRNA, and cDNA (Workman et al. 2018) reads covering the 
GM12878 (human lymphoblast cell line) transcriptome. These distributions are not 
representative of the length distribution of the human transcriptome as annotated by 
GENCODE.  *While we show the most recent data set on GM12878 we could find for 
PacBio technology it is several years old and might not be fully representative of current 
platform performance. 
 

This bias is rooted in the way samples are prepared for sequencing as well as the 

sequencing technology itself. To prepare full-length eukaryotic mRNA molecules for 

sequencing, protocols for PacBio and ONT sequencers today rely on some version of 

reverse transcription (RT) using oligo-dT priming most often paired with template 

switching as featured in the Smart-seq2 protocol (Picelli, Faridani, et al. 2014). This 

reverse transcription step generates cDNA with known 3’ and 5’ ends that can be PCR 
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amplified. PCR amplification is required to generate enough cDNA for sequencing 

library preparation - several micrograms for either technology. However, if cDNA is 

PCR amplified, shorter transcripts are more likely to be successfully amplified, thereby 

generating a pool of cDNA skewed towards full-length short transcripts (<2kb) and 

shorter amplification artifacts of long transcripts.  

While ONT sequencers can now sequence RNA directly, recent studies have 

shown that this does not overcome RNA degradation or length-bias issues. In fact, 

incomplete transcript sequences represent the majority of the produced data and this 

issue gets exacerbated with increased transcript length making direct RNA sequencing 

currently challenging for transcripts over 2kb in length (Fig. 0.2) (Workman et al. 

2018).  

In addition to length biases of sample preparation, both PacBio and ONT 

sequencers themselves have a bias towards shorter molecules. To systematically test 

this bias derived from different RNA extraction, sample preparation and sequencing 

methods new approaches will be needed. Unfortunately, current synthetic RNA spike-

in mixtures like ERCC and SIRV (Lexogen), only contain molecules <2.5kb which is 

simply not long enough to determine bias against long transcript molecules (Fig. 0.2). 

To truly determine length bias, it would require sequencing of a well-defined 

eukaryotic human transcriptome, e.g. human cell line GM12878, using an RNA 

molecule length independent short-read RNA-seq method. While short-read RNA-seq 

won’t be able to systematically resolve isoforms, assemblies of these reads can be used 

to estimate transcript lengths. Comparing representation of transcripts of different 
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lengths in long-read data sets prepared with different protocols will then help reveal 

biases of these protocols.  

The question then still remains: How do we overcome the inherent limitations 

of PCR amplification, sequencing library preparation, and the cDNA and direct RNA 

sequencing process itself. One thing is for certain future efforts will have to overcome 

these limitations or, ironically, the world of long transcripts will remain closed to long-

read transcriptomics. 

It will be up to the wider genomics community as well as PacBio and ONT to 

address these limitations. While adding complexity to sample preparations and 

distorting sample compositions, size selections on the RNA or cDNA level might 

mitigate length bias in sample preparation. Also, reducing cDNA amounts required for 

sequencing reactions might eliminate the need for PCR entirely. Additionally, PacBio 

sequencers have already made big strides reducing the length bias of their library 

preparation and sequencing reactions in the last few years and it would be surprising if 

this wasn’t a big focus of ONT as well. Finally, one way to get around the length-bias 

of sequencing library preparation and sequencing reactions themselves is to dissociate 

transcript length from the length of the DNA/RNA being sequenced, i.e. making all 

DNA/RNA going into a sequencing reaction approximately the same length. This could 

be done by randomly ligating transcripts into large chimeric molecules or generating 

large DNA concatemers containing many copies of the same transcript (Volden et al. 

2018). 
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c) Read throughput 

All sequencing based transcriptome analysis is ultimately limited by the number of 

reads available for analysis. More reads result in better data but so far there hasn’t been 

a rigorous study to identify the exact numbers of long sequencing reads required to 

exhaustively analyze a complex eukaryotic transcriptome. Because sequencing-based 

transcriptome analysis follows the same sampling principle regardless of read length, 

it stands to reason that these numbers will be similar to those required for short-read 

RNA-seq assays. Therefore, >30 million reads will be required for a shallow analysis 

of a transcriptome of a bulk sample capturing the isoforms of genes with medium and 

high expression (Sims et al. 2014). This however represents an ideal scenario assuming 

a single isoform per gene. If we think about treating individual isoforms as individual 

genes, it follows that significantly deeper sequencing will be needed to identify and 

quantify them. Indeed, it has been suggested by a deep-sequencing survey of 

alternative-splicing in human tissue that there are, on average, seven alternative 

splicing events per multi-exon gene (Pan et al. 2008). Therefore, to truly explore the 

complexity of mammalian transcriptomes, >100,000,000 of reads covering full-length 

transcripts will be required per tissue or organ.  

In contrast to bulk samples, estimating the read depth required for single cell 

analysis is more straightforward as it is limited by experimental constraints. Most 

workflows in the rapidly expanding field of single cell transcriptome analysis attach 

unique molecular identifiers (UMIs) to each cDNA molecule generated for each 

individual cell, thereby giving us a direct way to determine the number of reads needed 



	 18	

to capture all or most of these molecules (Ziegenhain et al. 2017). 10X Genomics single 

cell analysis approach for example generates <20,000 cDNA molecules per cell (Zheng 

et al. 2017). To reliably capture >90% of these molecules, sampling statistics dictate 

the need for ~45,000 sequencing reads per cell and consequently 45,000,000 

sequencing reads for the analysis of a 1,000 cell cDNA pool. 

In short, future long-read transcriptome analysis of bulk and single cell samples 

will require tens to hundreds of millions of reads at a reasonable cost. While ONT 

sequencers now routinely generate several millions of reads per $1000 of sequencing, 

PacBio sequencers produce ~400,000 reads per $1000 of sequencing (Table 0.1). This 

means that achieving the sequencing depth required for exhaustive transcriptome 

analysis is now borderline feasible with ONT sequencers but would deplete all but the 

largest of research budgets if using PacBio sequencers. It will be interesting to see how 

the newly released ONT PromethION and PacBio Sequel II will change this equation 

once in researchers’ hands as they both represent significant improvements in read 

throughput over the ONT MinION and PacBio Sequel, respectively. 

 

d) Read accuracy 

As long as a PacBio or ONT read captures the sequence of a full-length transcript and 

is accurate enough to be correctly aligned to a single genomic location, it is useful for 

analysis. There is no line in the metaphorical read-accuracy sand beyond which this 

transcript sequence becomes useless for analysis, because different downstream 
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applications will require different levels of accuracy to be implemented. It is, however, 

no surprise that more accurate reads are always preferable over less accurate reads.   

Both PacBio and ONT long-read technologies sequence individual DNA (or 

RNA) molecules and as such are inherently more error-prone than short-read Illumina 

sequencing which can rely on the combined signal of thousands of copies of DNA 

molecules to determine base sequence. Because the raw read length of PacBio 

sequencers is much longer than an average transcript molecule, circularized cDNA 

molecules can be read multiple times to generate a more accurate consensus. As a 

result, PacBio’s IsoSeq protocol generates cDNA circular consensus sequences (CCS) 

that can achieve >99% (Q20) accuracy (Table 0.1) (Gupta et al. 2018; Tilgner et al. 

2014). 

While ONT raw read length far exceeds transcript length, there currently exists 

no commercial product to - like PacBio’s CCS approach - take advantage of this read 

length to improve read accuracy through consensus generation. Because of this, cDNA 

or direct RNA sequencing on ONT (1D) generates sequences of 88% (Q9) accuracy 

(Fig. 0.3).  

This low accuracy creates some serious drawbacks regarding downstream 

analysis including the inability to accurately demultiplex single cell data. Single cell 

approaches like 10X Genomics Chromium workflow or the Drop-seq protocol can 

process many hundreds to thousands of cells in parallel using water-in-oil emulsions to 

produce highly multiplexed single cell cDNA pools (Zheng et al. 2017; Macosko et al. 

2015). In this process, cell-specific identifiers - short nucleotide sequences - are 
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attached to each cDNA molecule that is reverse transcribed from mRNA. 

Consequently, assigning a cDNA molecule to the cell it originated from, i.e. 

demultiplexing, requires accurately determining the sequence of its cell-specific 

identifier. Without sufficiently accurate sequencing, molecules will therefore be mis-

assigned or lost (Gupta et al. 2018). 

 

Figure 0.3: Error-prone reads pose analysis challenge. Representative alignments of 
ONT cDNA (Workman et al. 2018) reads. 30 read alignments (grey) to the first two exons 
of the CD19 gene (dark blue) are shown. Read alignments contain many insertions 
(orange), mismatches (red), and deletions (thin line) within exons. These errors complicate 
detection of exact transcript sequences and exact positions of splice sites, TSSs, and polyA 
sites. 
 

Currently, ONT is working on improving their basecalling accuracy and have 

announced a commercial consensus approach to be released in 2019 that should address 

this issue. Until then the ONT research community including our own laboratory has 

recognized this issue and developed consensus sequencing approaches (C. Li et al. 

2016). Specifically targeted for cDNA, the R2C2 approach we developed circularizes 

cDNA and uses rolling circle amplification to generate long concatemeric molecules 

that can be sequenced and processed into consensus sequences (Volden et al. 2018) 

(Fig. 0.4). At $1000 sequencing cost the R2C2 approach can currently produce several 

million sequencing reads at >97.5% (~Q16) (Fig 0.5) median accuracy (Byrne et al. 

2019).  Additionally, the R2C2 approach has proven very useful for de-multiplexing 
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single cell data where 74% of the total reads containing cellular indexes derived from 

7nt and 8nt combinations were able to be assigned. Given ONT’s new basecalling 

algorithm we are confident this number will eventually increase. 

  
 
Figure 0.4: R2C2 method overview. Figure adapted from (Volden et al., 2018). cDNA 
is circularized using Gibson Assembly, amplified using RCA, and sequenced using the 
ONT MinION. The resulting raw reads are split into subreads containing full-length or 
partial cDNA sequences, which are combined into an accurate consensus sequence 
using our C3POa workflow, which relies on a custom algorithm to detect DNA splints 
as well as poaV2 and racon. 
 

It is unclear whether ONT consensus approaches will be able to reach the 

accuracy of PacBio circular consensus reads, since the errors in PacBio sequencing 

data aren’t entirely random they are less systematic than ONT errors (Weirather et al. 

2017). Systematic errors which recur in the same base context, e.g. around 

homopolymers (stretches of the same base longer than 5nt) can pose insurmountable 

challenges for consensus-based error-correction. Error-correcting algorithms like 

Nanopolish (Loman, Quick, and Simpson 2015), Racon (Vaser et al. 2017), or Medaka 

(Medaka n.d.) are beginning to address this by either making use of the ionic current 



	 22	

based raw signal generated by ONT sequencers or by incorporating ONT specific error 

models. While it is not yet clear what accuracy will be sufficient for reliably identifying 

regular transcript isoforms, increasing the accuracy of individual reads to beyond 99% 

will not only be required for single cell cDNA demultiplexing but also the analysis of 

individual transcripts that contain unique sequences not encoded in the genome, i.e. B 

and T cell receptor transcripts, as well as transcripts containing base modifications.  

 
Fig. 0.5 Increase R2C2 subreads decreases indels and mismatches.  
Figure adapted from (Volden et al., 2018). PacBio Isoseq, standard ONT 1D, and 1D2 
are compared with R2C2 at different subread coverages. Read accuracy is determined 
by minimap2 alignments to SIRV transcripts. Median accuracy is shown as a red line. 
Accuracy distribution is shown as a swarm plot of 250 randomly subsampled reads. 
Average raw read quality of ONT reads is indicated by the color of the individual 
points. 
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e) Data analysis 

The goal of long-read transcriptome analysis is two-fold. First, it aims to identify all 

transcript isoforms present in a sample, then quantify their expression (ideally in an 

allele specific manner). 

In contrast to short-read RNA-seq where bioinformaticians have spent the last 

decade creating a large number of tools for data analysis steps including read 

alignment, expression quantification, and transcriptome assembly, the tools for long-

read analysis are still in their infancy. Although long-read technology circumvents 

many of the bioinformatic assembly challenges of short-read data, error-prone long-

read data has created its own new set of challenges. These challenges have necessitated 

new algorithms for the efficient analysis of longer reads.  

Nevertheless, interest among bioinformaticians towards long-read technology 

is steadily increasing and off-the-shelf tools to analyze long reads are being developed 

and published. Below is an overview of what the current state of tools is and what we 

perceive the outstanding challenges in the long-read cDNA field are. 

 
 
 
 
 
 
 
 
 
 
 
 



	 24	

 
Figure 0.6: Analysis challenges of long-read full-length sequencing. A simplified  
schematic shows the steps required to extract information out of long-read sequencing data. 
Each read has to be aligned, ideally in an allele-aware manner to the genome it originated 
from. Read alignments then have to be analyzed to identify RNA modifications as well as 
new isoform features that are missing in the current transcriptome annotation. For each 
allele, reads then have to be grouped into isoforms which allows isoform identification and 
quantification. For real data sets, all these steps have to take into account the often-
substantial rates of sequencing errors and incomplete reads in long-read sequencing. These 
will complicate all steps of the analysis.  
 

i) Aligning long-read data 

Aligning reads to a genome sequences is at the core of most transcriptome analysis 

(Fig. 0.6). Luckily there are several good options available for the spliced alignment of 

noisy long reads. The GMAP (T. D. Wu and Watanabe 2005) and BLAT (Kent 2002) 

aligners, originally developed for the alignment of ESTs perform surprisingly well for 

aligning noisy long reads. However, just like the PacBio developed BLASR (Chaisson 

and Tesler 2012) aligner, they are simply too slow for the effective analysis of millions 

of reads. The recently released minimap2 (H. Li 2017) aligner seems to address the 

issue of speed while maintaining alignment accuracy and has quickly been adopted 

amongst the ONT community. The only trade-off we have observed (however not 

systematically investigated) is that minimap2 – potentially due to the relatively large 
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default seed size of 15nt – seems to lack sensitivity when aligning reads to very short 

terminal exons. We hope that future improvements in long-read accuracy will allow 

alignment algorithms to “dial in” that trade-off between avoiding spurious short 

alignments and detecting even the shortest of potentially un-annotated terminal exons.   

 

ii) Isoform identification 

Transcriptome annotation includes the identification of new gene features as well as 

how these new features are combined with known features into isoforms (Fig. 0.6). 

This is where long-read transcriptome sequencing holds the largest promise. However, 

the tools available for the identification isoforms from long read data are still in their 

infancy. 

While PacBio supplies the IsoSeq3 analysis pipeline for the analysis of their 

cDNA CCS reads, previous work indicates that this pipeline tends to over-report 

potential isoforms (Tardaguila et al. 2017). There currently exist three pipelines for the 

analysis of ONT direct cDNA or direct RNA sequencing data. Both Pinfish released by 

ONT and FLAIR released by the Brooks lab at UCSC are intended for regular 1D ONT 

data and deal with the high error-rate in different ways. Of these two pipelines, only 

FLAIR has been used in a publicly available manuscript [ref] and deals with inaccurate 

ONT reads by using short-read Illumina reads to correct splice junctions and identifies 

and quantifies isoform data; however, it does not use nanopore reads for de novo splice 

site detection and relies on annotation and short-read data (Workman et al. 2018).  
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Specifically designed for the analysis of R2C2 reads, the Mandalorion pipeline 

developed by our lab at UCSC takes advantage of the higher accuracy of R2C2 reads 

to identify and quantify isoforms without the need for Illumina data, while also 

identifying new gene features and isoforms (Volden et al. 2018).  

One consideration when identifying isoforms is how to deal with raw data 

containing molecular biology artifacts. First and foremost, this includes the 

amplification of either fragmented RNA or genomic DNA. While, ideally, these 

artifacts should be minimized during sample preparation, any pipeline should be 

equipped to recognize potentially incorrect isoforms stemming from them. Tools like 

Sqanti which can detect these types of artifacts can serve as quality control for future 

isoform identification pipelines (Tardaguila et al. 2018). 

 

iii) Isoform quantification 

Quantifying and performing differential expression analysis of transcript levels on the 

isoform instead of the gene level brings with it a large set of new challenges.  

First, it will be a challenge to decide at which point a known and a newly identified 

isoform should be treated as the same or equivalent isoforms. Containing different 

splice sites surely differentiates isoforms, but whether different TSSs that are only 3 

nucleotides apart and reside within the 5’ UTR differentiate isoforms is not at all clear.   

FLAIR and Mandalorion deal with this by analyzing all samples that have to be 

compared at the same time to create a shared list of isoforms. This creates large 
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computational overhead because adding a single sample to a data set requires the 

reanalysis of the entire data set.  

Second, it will be a challenge to systematically differentiate allele-specific 

isoform expression (Fig. 0.6). To differentiate alleles, we will need accurate and phased 

information of sequence variants differentiating the haplotypes present in a sample, 

because extracting this information from error-prone long-read transcriptome data is 

inherently suboptimal. However, if sequence variants are known, tools like HapCUT2 

can be used to assign full-length cDNA to parental alleles (Edge, Bafna, and Bansal 

2017). This in principle allows for allele-specific expression analysis.  

We are, however, optimistic that approaches that sort aligned reads based on 

variants are only a temporary solution. In the future, it is likely that alignment 

algorithms will be able to take advantage of fully diploid genome sequences during 

alignment to immediately align reads to the haplotype they originate from. Then, 

ideally, future tools will identify allele-specific isoforms based on these alignments and 

quantify them using approaches similar to RSEM which uses expectation maximization 

to accurately quantify expression using short read data (B. Li and Dewey 2011).  

 

iv) Modification detection 

RNA transcripts are known to host a variety of base modifications than genomic DNA. 

Except for A-to-I modifications which are read by the RT enzyme as G and therefore 

appear in cDNA, RNA modification cannot be detected by standard cDNA sequencing 

as performed by Illumina, PacBio and ONT (Park et al. 2012).  
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Direct RNA sequencing, which is now possible on ONT sequencers, therefore 

holds great potential for modification discovery (Fig. 0.6). To realize this potential both 

computational and experimental workflows will need to be developed and improved. 

Although anecdotal evidence exists that modification information can be extracted 

from ONT base and raw data, no experimental and computational workflows exist yet 

to systematically establish and validate the detection of the large variety of 

modifications present in RNA (Workman et al. 2018). Furthermore, improvements to 

experimental workflows will have to reduce the RNA input requirements which 

currently limit direct RNA sequencing to large samples or cell lines. 

The detection of DNA modifications using raw PacBio data may serve as a 

cautionary tale here (Flusberg et al. 2010). While the detection of methylated bases was 

shown to be possible using raw PacBio data, this approach never managed to compete 

with Illumina-based bisulfite sequencing for methylation detection. However, direct 

RNA sequencing has the potential to detect RNA modifications for which currently no 

other sequencing assay exist and might therefore fill a unique niche in the genomic 

toolset. 

 

Conclusion  

There is little doubt in my mind that full-length transcriptome sequencing using long-

read technologies is the future of transcriptome annotation because it has too many 

inherent advantages over short-read approaches. 
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A single long read covering a full-length transcript can determine its 

transcription start site (TSS), all splice sites, and polyA site, thereby immediately 

identifying the isoform the transcript represents. In contrast, regular short-read RNA-

seq protocols rarely detect TSSs and polyA sites and usually only cover a subset of 

splice-sites, leaving the researcher with a large computational problem when trying to 

identify isoforms which often has no clear solution.  

We are confident that in the next few years, by addressing the challenges we 

describe here, long-read sequencing will make high-quality transcriptome annotations 

readily achievable within a reasonable budget. This will be of particular interest to 

researchers working on organisms that haven’t attracted the attention of large consortia. 

Going forward, using 10X Genomics or Drop-seq approaches paired with long-read 

sequencing technology would allow for the amplification and sequencing of full-length 

cDNA from single-cell organisms to generate detailed isoform-level transcriptome 

annotations. Processing tens of thousands of cells this way could help generate an atlas 

of cells and would vastly expand our knowledge of the diversity of eukaryotic 

transcriptomes.  
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Abstract 

RNA-seq is a powerful technique to investigate and quantify entire transcriptomes. 

Recent advances in the field have made it possible to explore the transcriptomes of 

single cells. However, most widely used RNA-seq protocols fail to provide crucial 

information regarding transcription start sites. Here we present a protocol, Tn5Prime, 

that takes advantage of the Tn5 transposase based Smartseq2 protocol to create RNA-

seq libraries that capture the 5’ end of transcripts. The Tn5Prime method dramatically 

streamlines the 5’ capture process and is both cost effective and reliable. By applying 

Tn5Prime to bulk RNA and single cell samples we were able to define transcription 

start sites as well as quantify transcriptomes at high accuracy and reproducibility. 

Additionally, similar to 3’ end based high-throughput methods like Drop-Seq and 

10X Genomics Chromium, the 5’ capture Tn5Prime method allows the introduction 

of cellular identifiers during reverse transcription, simplifying the analysis of large 

numbers of single cells. In contrast to 3’ end based methods, Tn5Prime also enables 

the assembly of the variable 5’ ends of antibody sequences present in single B-cell 

data. Therefore, Tn5Prime presents a robust tool for both basic and applied research 

into the adaptive immune system and beyond.  
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Introduction 

As the cost of RNA-sequencing has decreased, it has become the gold standard in 

interrogating complete transcriptomes from bulk samples and single cells. RNA-seq 

is a powerful tool to determine gene expression profiles and identify transcript 

features like splice-sites. However, standard approaches lose sequencing coverage 

towards the very end of transcripts. This reduced coverage means that we cannot 

confidently define the 5’ ends of mRNA transcripts which contain crucial information 

on transcription initiation start sites (TSSs) and 5’ untranslated regions (5’UTRs). 

Analyzing TSSs can help infer the active promoter landscape, which may vary from 

tissue to tissue and cell to cell. Analyzing 5’UTRs, which may contain regulatory 

elements and structural variations can help infer mRNA stability, localization, and 

translational efficiency. Identifying such features can help elucidate our 

understanding of the molecular mechanisms that regulate gene expression. 

The loss of sequencing coverage towards the 5’ end of transcripts is often 

attributed to how sequencing libraries are constructed. For example, the widely used 

Smart-seq2 RNA-seq protocol, a powerful tool in deciphering the complexity of 

single cell heterogeneity (Picelli, Faridani, et al. 2014; Treutlein, Brownfield, et al. 

2014; Darmanis et al. 2015), features reduced sequencing coverage towards transcript 

ends. This lost information is a result of cDNA fragmentation using Tn5 transposase. 

Several technologies have tried to compensate for the lack of coverage by specifically 

targeting the 5’ ends of transcripts. The most notable methods include cap analysis of 

gene expression (CAGE), NanoCAGE, and single-cell tagged reverse transcription 
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sequencing (STRT) (S. Islam et al. 2011, 2014; Salimullah et al. 2011; Shiraki et al. 

2003). CAGE uses a 5’ trapping technique to enrich for the 5’-capped regions by 

reverse transcription (Shiraki et al. 2003). This technique is extremely labor intensive 

and involves large amounts of input RNA. The NanoCAGE and STRT methods target 

transcripts using random or polyA priming and a template-switch oligo technique to 

generate cDNA (S. Islam et al. 2011; Salimullah et al. 2011). While NanoCAGE can 

analyze samples as low as a few nanograms of RNA, and STRT can be used to 

analyze single cells, they both require long and labor-intensive workflows including 

fragmentation, ligation, or enrichment steps. These workflows can become costly and 

labor intensive, making it difficult to interrogate complex mixtures of cells like those 

found in the adaptive immune system or cancer. 

New droplet based high-throughput single cell RNAseq approaches like Drop-

Seq and 10X Genomics Chromium platform can process thousands of cells but 

require intricate or expensive proprietary instrumentation. Importantly they are 

primarily focused on the 3’ end of transcripts due to integrating a sequencing priming 

site onto the oligodT primer used for reverse transcription. By losing information of 

the 5’ end almost entirely, these approaches are not capable of comprehensively 

analyzing cells of the adaptive immune cells which express antibody or T cell 

receptor transcripts featuring unique V(D)J rearrangement sequence information on 

their 5’ end. While 10X Genomics has recently introduced their new Single Cell 

V(D)J solution platform to address this we have yet to discover how well this new 

method works. 
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To overcome this lack of easy-to-implement, inexpensive, and high-

throughput single cell 5’ capture methods, we chose to modify the Smart-seq2 library 

preparation protocol, which is relatively cost-effective and simple with features of 

STRT which captures 5’ ends effectively. Here we describe a robust and easily 

implemented method called Tn5Prime that performs genome-wide profiling across 

the 5’ end of mRNA transcripts in both bulk and single cell samples. The protocol is 

based on integrating one sequencing priming site into the template switch oligo used 

for reverse transcription and subsequently tagmenting the resulting amplified cDNA 

by Tn5 enzyme loaded with an adapter carrying the other sequencing priming site. 

This combination allows for the construction of directional RNAseq libraries with 

one read anchored to the 5’ end of transcripts without the need for separate 

fragmentation, ligation, and, most importantly, enrichment steps. Additionally, by 

incorporating cellular identifiers into the template switch oligo makes it conducive for 

pooling samples after reverse transcription, thereby increasing throughput and 

reducing cost. Finally, data produced by this novel approach allows for the 

identification of transcription start sites, the quantification of transcripts, and the 

assembly of antibody heavy and light chain sequences from single B cells at low 

sequencing depth.  
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Results 

Construction of Tn5Prime libraries 

Tn5Prime libraries can be constructed from either purified total RNA or single cells 

sorted by Fluorescence-activated cell sorting (FACS) into multiwell PCR plates. 

Tn5Prime libraries create a directional paired-end Illumina RNAseq library with read 

1 anchored to the 5’ end of transcripts. Directionality and read 1 anchoring is 

achieved through the use of our modified template-switch oligo and custom Tn5 

enzyme. After the addition of reverse transcriptase to total RNA or cell lysate, first-

strand synthesis occurs using a modified oligo-dT and a template-switch oligo (TSO) 

containing a partial Nextera A adapter sequence and, optionally, a cellular index 

sequence (Supplementary Table S1.1, Fig. 1.1A). During reverse transcription, the 

oligo-dT serves as a primer at the 3’ polyA tail of mRNA transcripts, while the 

sequence of the partial Nextera A template-switch oligo is attached to the 3’ end of 

the synthesized cDNA corresponding to the 5’ end of transcript sequences. After 

reverse transcription, samples with non-overlapping cellular indexes can be pooled. 

The cDNA product is then amplified using a complete Nextera A primer and a primer 

complementary to the modified 5’ end of the oligo-dT. After amplification, the cDNA 

product will contain a complete Nextera A adapter including Illumina indexes. At this 

point, samples that contain the non-overlapping Illumina indexes can be pooled. By 

pooling after reverse transcription and PCR amplification, we can dramatically reduce 

the workflow complexity and reagent usage. 
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Next, Tn5 transposase, loaded only with a partial Nextera B adapters, 

fragments the cDNA and attaches the partial Nextera B adapters to the cDNA in a 

single reaction. The cDNA fragments are then amplified using a universal A primer 

and a Nextera B primer that primes off the partial Nextera B adapter sequences 

attached by the Tn5 enzyme. The final product is compatible with the Illumina 

platform by containing the complete Nextera A and Nextera B adapters. Libraries are 

then ready to be size selected and quantified prior to sequencing. At this point, no 

enrichment step is necessary, as only molecules containing both Nextera A and B 

adapters will be targeted for sequencing. Since only the TSOs associated with the 5’ 

end of transcripts contains Nextera A adapters, read 1 of all read pairs in the 

sequencing reaction begins at these 5’ ends and extends into the transcript body, 

thereby identifying transcription start site and directionality (Fig. 1.1A-C). Read 2 is 

distributed throughout the gene body, as each location represents the random insertion 

of Nextera B adapters by Tn5 and library size selection (Fig. 1.1B, C)  
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Fig. 1.1 Tn5Prime Library construction and 5’ capture 
A.) Schematic of the Tn5Prime library construction. No enrichment steps are required to 
generate a library that captures the 5’ end of transcripts. B.) Read alignment plots 
comparing 5’ end capture by Tn5Prime to random fragmentation by Smartseq2 using 
lymphoblast cell line GM12878. A total input of 50 ng of RNA was used. Individual 
alignments for the first (Read1, blue) and second (Read2, red) read of each read pair are 
shown. Read1 density is shown for both library types as a histogram (blue). Gene models 
are shown on the top panel (Color indicates transcriptional direction.) 
 

Creating and analyzing Tn5Prime data of GM12878 cell line RNA                   

To evaluate whether our Tn5Prime protocol consistently identifies the 5’ end of the 

transcript we first performed low coverage RNAseq of total RNA of GM12878 

cultured lymphoblast cells. We performed a side-by-side comparison of our protocol 

with a modified version of the Smart-seq2 (Picelli, Faridani, et al. 2014; Byrne et al. 

2017) (see Methods) protocol using the same starting material. Using the HiSeq2500 

platform (Illumina) we obtained 570805 and 453761 raw read pairs for two replicate 

Tn5Prime libraries. We next obtained 1094530 raw read pairs from the Smart-seq2 
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library. Adapter sequences and low quality reads were removed using Trimmomatic 

(Bolger, Lohse, and Usadel 2014). In the Tn5Prime replicates, 92.51% and 92.62% of 

the trimmed and filtered reads mapped uniquely to the human genome using the 

STAR alignment tool (Dobin et al. 2013), surpassing the Smart-seq2 protocol at 

88.50%. The uniquely aligned reads from the TN5Prime replicates collectively had a 

redundancy of 1.34. This high unique alignment percentage indicates that our 

Tn5Prime protocol produces libraries of high complexity. 

  

Detecting Transcription Start Sites using Tn5Prime 

We analyzed the read distribution across transcripts both visually and systematically 

to determine the 5’ specificity of our protocol. Visual inspection found that while 

Smart-seq2 reads are distributed across the entire body of genes, Tn5Prime reads 

follow two distinct patterns: First, the start of the read 1 is anchored to the 

transcription start site. Second, the start of read 2 is variable and likely dependent on 

size selection during library preparation (Fig. 1.1B-C). Next, systematic analysis was 

based on mapping the start of read 1 to identify putative transcription initiation start 

sites (TSSs). To test our ability to identify TSSs, we compared our Tn5Prime data to 

the Gencode genome annotation and CAGE data which was generated from the same 

GM12878 cell line from the ENCODE project. We identified putative TSSs by 

calling peaks enriched from the start of read 1 in our Tn5Prime data (see Methods). 

We found that 89.7% of the 17,853 peaks fell within TSSs (0-25bp upstream) with 

the vast majority of them falling near promoter regions (26bp-1000bp upstream) or 
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5’UTRs (Fig.1.2A). Next, we subsampled the CAGE data to levels similar to the 

Tn5Prime data and called peaks in the same manner. We found 73% of the 17,853 

Tn5Prime peaks fell within 25bp to the nearest of 27,526 CAGE peaks, indicating 

high concordance between the two approaches (Fig. 1.2B). Tn5Prime peaks (3,746) 

that were not within 25bp of a CAGE peak contained far less sequencing reads on 

average than those within 25bp of a CAGE peak. These results indicate that these 

transcripts might be expressed at lower levels and show more variance between the 

Tn5Prime and CAGE datasets (Fig. 1.2B). Next, as a comparison we looked at our 

GM12878 data generated using the Smart-seq2 method in the same way. We found 

that 7.9% of the 23,451 peaks called based on the Smart-seq2 fell within TSSs (0-

25bp upstream) (Fig. 1.2C). Further, we found 10.4% of the 23,451 peaks fell within 

25bp to the nearest CAGE peaks (Fig. 1.2D). This showed that in contrast to the 

Smart-seq2 method our TN5Prime approach effectively identified putative TSS sites. 

Ultimately, this data suggests that our Tn5Prime protocol is equivalent to the gold 

standard CAGE technique in targeting transcription start sites. 
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Fig. 1.2 Tn5Prime peaks are highly concordant with GENCODE annotation and 
CAGE peaks  
Peaks were detected from sequencing reads produced by Tn5Prime and Smart-seq2 
libraries generated from total GM12878 RNA. (A and C) Tn5Prime (A) and Smart-seq2 
(C) were matched to features in the Gencode annotation and the feature they matched are 
shown as a pie chart. (B and D) Tn5Prime (B) and Smart-seq2 (D) peaks were matched to 
CAGE peaks.  The yellow bar on top indicates the peaks within 25 bp and the green bar 
indicates all other peaks. Peaks in each were rank sorted according to their read coverage 
and shown as a histogram. 
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Quantifying the Transcriptome using Tn5Prime 

After validating the ability of Tn5Prime to detect transcription start sites, we next 

wanted to examine whether it is capable of transcript quantification. To determine 

whether our Tn5Prime method is quantitative we compared GM12878 data generated 

from four different protocols: Tn5Prime, Smart-seq2 data generated by our lab, as 

well as CAGE and RNA-seq data produced by the Encyclopedia of DNA Elements 

(ENCODE) project (Fig. 1.3). We used the Tn5Prime data mentioned in the previous 

section and generated the Smart-seq2 data on the same cell line as described by 

(Picelli, Faridani, et al. 2014). We performed replicates using the Tn5Prime protocols 

to define overall reproducibility and accuracy. Based upon our results, transcript 

quantification by Tn5Prime replicates showed extremely high correlation with a 

Pearson correlation coefficient of r=0.97 (95% C.I. 0.97-0.97). Quantification by 

Tn5Prime also correlated very well with Smart-seq2 with a Pearson r of 0.87 (95% 

C.I. 0.86-0.87). Tn5Prime and Smart-seq2 data were comparable with ENCODE 

RNA-seq and CAGE data (Fig. 1.3), indicating that the Tn5Prime protocol is 

equivalent to the conventional Smart-seq2 method in measuring transcript abundance. 

Together, these data show that Tn5Prime can accurately identify transcription start 

sites and quantitatively measure transcript abundance. 
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Fig 1.3. Tn5Prime quantifies transcriptomes accurately and reproducibly. 
Pairwise correlations of transcript levels between Tn5Prime, Smartseq2, ENCODE 
CAGE and ENCODE RNAseq experiments using GM12878 cell line are shown as 
scatter plots. A total of 50 ng of input RNA was used. Each transcript is shown as a black 
dot with an opacity of 5%. Distribution of transcript levels is shown on the outside of the 
plots in grey histograms. 
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Transcript quantification and start site localization in single B cells. 

 As the Tn5Prime protocol is based on the same cDNA amplification strategy as the 

Smart-seq2 protocol, we expected it capable of generating sequencing libraries from 

single cells. Indeed, we successfully generated single cell libraries using the 

Tn5Prime protocol from primary murine B-lymphocytes (B2 cells; IgM+B220+CD5-

CD11b-) (n=12) isolated from the peritoneal cavity. We generated between 17,534-

93,429 2x300 bp read pairs per cell using the Illumina MiSeq of which 62% passed 

quality filtering. Of the filtered reads, an average of 91.48% uniquely mapped to the 

mouse genome. The high alignment percentage indicates we are able to generate high 

quality libraries from single cells using our Tn5Prime. Despite the very low total 

number of read pairs we collected, we still detected 339 expressed genes per cell on 

average. Although these numbers may seem low, they are in line with previous 

published single B cell RNAseq studies (Gierahn et al. 2017; Zheng et al. 2017; Jaitin 

et al. 2014). Also, it is known that B cells can show transcriptional heterogeneity 

depending upon their cell state (Y. L. Wu et al. 2017). Among the genes expressed in 

many of the single cells were genes corresponding to B cell function, including 

CD19, CD79a and components of the MHC complexes (Supplementary Fig. S1.1). 

This data indicates that we were able to effectively identify cell type specific genes. 

 

Analysis of 192 Single CD27high CD38high Human B Cells 

After successfully testing our Tn5Prime method on single mouse B cells, we next 

wanted to develop a multiplex approach capable of evaluating hundreds of human 
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single cells. To this end, we FACS sorted 192 single B cells into individual wells of 

96 well plates using the canonical surface molecules CD19, CD27 and CD38 to sub-

select the plasmablast subpopulation (Supplementary Fig. S1.2). Plasmablasts are one 

of the most widely studied B cell populations and are frequently monitored after 

vaccination or infections by flow cytometry. The plasmablast cell compartment can 

be defined primarily by looking at high levels of surface markers CD27 and CD38, 

however memory B cells may also express these markers, albeit at lower levels, 

making it difficult to parse out these two populations. Therefore, analyzing these cell 

types at the single cell level should help further delineate these populations. 

Our multiplex strategy entails inserting cellular indexes into the template 

switch oligo allowing the libraries to be pooled after reverse transcription. This 

streamlines our method and increases our throughput by decreasing the PCR and Tn5 

reactions required. Using our multiplexing strategy, we generated Tn5 libraries for 

192 single B cells using 192 RT reactions, 24 PCR reactions and 24 Tn5 reactions. 

Although this was not performed, library pools carrying distinct Illumina sample 

indexes could have been further pooled following PCR to reduce the numbers of Tn5 

reactions from 24 to 2. The entire Tn5Prime library preparation workflow for 

hundreds of cells can be completed in two days. 

We generated 194,553,648 150 bp paired end reads total. To determine gene 

expression for each cell, reads were assigned to one of 192 single cells based on its 

Illumina index reads and by comparing the sequence of the first 8 bases of read 1 to 

the cellular index sequences.  91% of the 194,553,648 150bp paired end reads were 
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successfully assigned to one of the 192 single B cells. 90.75% of cell-assigned reads 

were successfully aligned to the human genome using the STAR alignment tool with 

a median of 74.59% or 505,665 of cell-assigned reads being uniquely assigned to an 

annotated gene. Each cell expressed a median of 534 genes. We then compared the 

number of genes detected by Tn5Prime and modified Smart-seq2. To this end, we 

sequenced 13 Smart-seq2 B cells libraries to a median depth of 275,762 reads 

uniquely aligned to genes. When subsampled to the median Smart-seq2 read depth of 

275,000 reads Tn5Prime detected a median 409 genes while Smart-seq2 detected 910. 

While detecting less genes than Smart-seq2, the Tn5Prime method is comparable to 

other high-throughput single cell methods like MARS-seq (Jaitin et al. 2014) (Median 

of 671 genes per B cell), 10X Genomics (Zheng et al. 2017) (Median of 478 genes 

per B cell), and Seq-well (Gierahn et al. 2017) (Median of 874 genes per B cell). 

Overall, of the 58234 annotated genes in GENCODE, 5414 genes had at least 

one read per cell on average among the 192 B cells analyzed with Tn5Prime. The 

median redundancy for each cell is 13.92 which means that, on average, each 

uniquely aligned cDNA fragment was sequenced 13.92 times. This indicates that the 

libraries were sequenced exhaustively. 

 

Detecting Transcription Start Sites in single CD27high CD38high B cells using 

Tn5Prime 

To determine if transcription start site specificity is maintained within the single cell 

data, read 1 start distribution was compared to annotated transcription start sites 
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found in the ENCODE and CAGE datasets. By calling peaks, we found that our 

single cell results were able to maintain transcription start site specificity, with peaks 

predominantly falling within the annotated transcription start sites with 92.4% of the 

peaks falling within TSSs (Fig. 1.4A-B). In addition to the transcription start site, the 

directionality of transcription can be inferred due to our custom template switch oligo 

incorporating a forward-read priming site to the 5’ region of the transcript which is an 

advantage over many other single cell RNAseq protocols (Fig. 1.4C-D). 
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Fig 1.4. Transcription start sites detected in single CD27high CD38high B cells 
A) CD27high CD38high Tn5Prime peaks matching features in the Gencode annotation. TSS 
= on or < 25bp behind the start of an annotated GENCODE gene, 5’UTR = inside 5’ 
UTR, Promoter = between 26 -1000bp behind start of annotated gene. B) Tn5 peaks 
shown in two groups. Group 1 contains all peaks within 25bp of a peak identified in the 
complete RIKEN CAGE peak Human peak database and group 2 contains all other 
peaks. Peaks were sorted by the number of cells associated with that peak in CD27high 
CD28high B cells and displayed in figure 5a. The yellow bar indicates peaks within 25bp, 
and the green bar indicates all other peaks. C, D) Genome Browser view of reads of Actb 
(C) and LTB (D) genes. In addition to TSS information, read alignments also show 
differential isoform usage between cells.   
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Detecting Subpopulations within CD27high CD38high B cells using Tn5Prime 

Since separating memory B cells and plasmablasts by FACS based on surface 

markers can be challenging, especially when the adaptive immune system is 

unperturbed, we wanted to see whether we could do so post-sorting using their gene 

expression profiles. Cells outside more than three median absolute deviations from 

the median for percent alignment, Mitochondrial transcript percentage, or number of 

detected genes were marked as outliers and eliminated prior to normalization of 

transcript counts (Supplementary Fig. S1.3). After normalizing raw gene expression 

counts and removing non-recombined and therefore non-applicable antibody gene 

segments from the annotation (Lun, Bach, and Marioni 2016), we clustered the 

remaining 159 sorted B cells using t-SNE dimensional reduction. The clusters were 

robust when the data was subsampled to 100,000 reads per cell (Supplementary Fig. 

S1.4). We then identified genes that showed significant differences between the two 

clusters. We detected 411 genes with significant changes including J-chain, LTB 

(Lymphotoxin Beta), XBP-1 (X-box binding protein 1), HSPA5 (Heat-shock protein 

family A), and MZB1 (Marginal Zone B1).  We also found genes HLA-DRA, HLA-

DRB5, and HLA-DPB1, which encode for the alpha and beta chains of the MHC II 

(Major Histocompatibility Complex II) to be differentially expressed (Supplementary 

Table S1.2). The J-chain was upregulated in cluster 2 and is involved in antibody 

secretion of IgM and IgA (Lamson and Koshland 1984) (Fig. 1.5). XBP-1, MZB1 and 

HSPA5 were upregulated within cluster 2 and are known targets of BLIMP-1. 
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BLIMP-1 and XBP-1 are known to be essential in plasmablast differentiation 

(Supplementary Fig. S1.5) (Minnich et al. 2016; Nutt et al. 2015). LTB was 

downregulated in cluster 2 and has been shown to be downregulated upon B cell 

activation (Zhu et al. 2004) (Fig. 1.5). HLA-DRA, HLA-DRB5, and HLA-DPB1 

were downregulated in cluster 2, indicating less MHC II presentation to T cells, 

which is indicative of plasma cells and plasmablasts (Calame, Lin, and Tunyaplin 

2003). Together, this suggests that cluster 2 does represent activated plasmablasts, 

which are known to secrete more antibodies and display less MHC II than the 

memory B cells represented in cluster 1. 

 
 
Figure 1.5. Clustering of CD27high CD38high B cells 
159 B cells were divided into two populations by t-SNE dimensionality reduction 
(Maaten and Hinton 2008). In the three subplots, cells are colored based on their 
expression of example genes that were significantly differentially expressed between the 
two populations as determined by a multiple hypothesis testing corrected Mann-Whitney 
U tests. The cells inside the boxed area belong to cluster 2 and all other cells belong to 
cluster 1. 
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Assembly of antibody heavy and light chain sequences from single B cell 

Tn5Prime data 

 Ideally, we would not only want to identify plasmablasts based on their gene 

expression profile, but also determine their antibody sequences. Sequencing 

antibodies has been a long-standing challenge in B cell biology and antibody 

engineering because it requires the identification of unique pairs of rearranged 

antibody heavy and light chains for each cell. Current techniques rely either on the 

targeted amplification and sequencing of antibody heavy and light chain genes 

(Wrammert et al. 2008) in single cells or on the assembly of their sequences from 

non-targeted RNA-seq data (Canzar et al. 2017). As a result, our 5’ capturing 

approach we could potentially provide antibody sequence information in addition to 

genome wide expression profiling, because the 5’ region contains the unique V(D)J 

rearrangement of heavy and light chain transcripts. 

To determine if our Tn5Prime protocol could be used for assembling antibody 

heavy and light chain sequences, we assembled whole transcriptomes using SPAdes 

(Bankevich et al. 2012). IgBLAST (Ye et al. 2013) was then used to identify 

transcripts containing V, D, and J gene segments rearranged in a productive manner. 

These transcripts were aligned on to Constant gene segments to identify isotype. The 

list of putative antibodies was then filtered for obvious cross-contamination and mis-

assemblies (see Methods). In this way, we effectively determined heavy and light 

chain sequences and identify their unique pairings within single B cells (Fig. 1.6A). 
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Of the 192 B-cells we analyzed, we were able to assemble one heavy chain 

and one light chain to 117 B-cells. Of these 117 B-cells 46 cells had a Lambda light 

chain and 71 cells had a Kappa light chain. Five additional cells had one heavy chain 

and two light chains, 35 cells had no heavy chains but at least one light chain, and 35 

cells had no heavy chains and no light chains. To determine the sequencing depth 

requirement for successful heavy and light chain assembly, subsampling was 

performed on the reads and the assembly and pairing analysis redone (Supplementary 

Fig. S1.6). We found 100,000 reads per cell was sufficient to assemble one heavy and 

one light chains for 91 of 117 B cells with successfully assembled chain pairs without 

subsampling. 

We found that 101 of the 117 cells with paired heavy and light chains also 

passed all other quality filters and were clustered by t-SNE into the putative 

plasmablast and memory B cell clusters. This combination of single cell identity and 

paired antibody sequences allowed us to perform detailed analysis of differences in 

antibody usage and characteristics between those two populations. Firstly, the 

putative plasmablast population featured less IgM antibodies than the memory B cell 

population (19% IgM in plasmablasts vs 53% in memory B cells). Secondly, using 

IgBlast (Ye et al. 2013), we found that both heavy (Fig. 1.6B) and light chain 

sequences showed significantly higher levels of somatic hypermutation in 

plasmablasts than memory B cells (Heavy chain: median 8.0% vs 3.8% somatic 

hypermutation, two-sided Monte Carlo permutation test p-value=0.0081; Light chain: 

median 4.9% vs 2.7% somatic hypermutation, two-sided Monte Carlo permutation 
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test p-value=0.0117). Thirdly, by counting and normalizing sequencing reads 

originating from antibody transcripts, we could determine and compare heavy and 

light chain expression in these two populations. Generally, light chains were 

expressed about 3-fold higher than heavy chains (Fig. 1.6C) with no significant 

difference between plasmablasts and memory B cells (two-sided Monte Carlo 

permutation test p-value=0.533). However, the percentage of all aligned sequencing 

reads that originated from antibody transcripts showed dramatic differences between 

plasmablasts and memory B cells. The median percentage of reads that originated 

from antibody transcripts was 23.5% in plasmablasts and only 2.2% in memory B 

cells (Fig. 1.6D) (Monte Carlo Permutation test two-sided p-value=0). In one 

plasmablast over 60% of all aligned sequencing reads originated from antibody 

transcripts indicating just how much of the plasmablast transcriptome can be 

dedicated to the production and secretion of antibodies. In summary, our analysis of 

antibody usage and characteristics showed that plasmablasts express more mutated 

and class-switched antibodies at much higher levels than memory B cells. 
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Figure 1.6. Assembling Antibody transcripts from Tn5Prime data 
Antibody transcripts were assembled by generating complete assembled transcriptomes 
for each cell with SPADES and then using IGBLAST to search for transcripts with 
antibody features. Antibody transcripts for each cell were filtered for mis-assemblies and 
mis-annotations. Cells were sorted by the abundance of heavy chain transcripts in their 
Tn5Prime data and V (D) and J segment information for their heavy and light chains are 
shown in the schematic in the center. The putative cell type determined by clustering with 
t-SNE is indicated on the left. Yellow: plasmablasts, Green: Memory B cells. (B-D) 
Antibody usage and characteristics were compared between plasmablasts and memory B 
cells. Somatic Hypermutation rates (B), light to heavy chain expression ratios (C) and the 
percentage of all aligned sequencing reads that originated from antibody transcripts (D) 
were compared using dot plots. Yellow: plasmablasts, Green: Memory B cells. Medians 
are shown as red lines. All p-values are calculated using two-sided Monte Carlo 
permutation test with 10000 permutations. 
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Discussion 

 Here we present a novel method for the genome-wide identification of transcription 

start sites in bulk samples and single cells. The method combines aspects of both 

Smart-seq2 and STRT. By modifying template-switch oligos used during reverse 

transcription to carry one sequencing adapter and loading the other sequencing 

adapter on the Tn5 enzyme used for cDNA fragmentation we anchor the sequence 

priming sites for read 1 of an Illumina read pair to the 5’ end of transcripts without 

the need for fragmentation, ligation, and enrichment steps. The resulting workflow is 

easy to implement and capable of generating hundreds of libraries within a day. An 

important feature of our Tn5Prime method is the option to integrate cellular indexes 

during reverse transcription and Illumina sample indexes during PCR before Tn5 

tagmentation. This allows the pooling of samples early in the workflow and thereby 

reduces experiment complexity and reagent costs. 

We validated the Tn5Prime protocol on both bulk RNA and single cells. First, 

using 5ng of total RNA from the GM12878 cell line, we yielded similar results as the 

ENCODE CAGE data with respect to the identification of transcripts start sites. 

However, the CAGE protocol used by the ENCODE consortium used several orders 

of magnitude more RNA. As the Smart-seq2 protocol is already widely used, we 

expect that the Tn5Prime assay with its similar workflow and low RNA input has the 

potential to become a valuable tool for transcriptome annotation and quantification in 

the RNA-seq toolbox. 
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In addition to the analysis of bulk samples, we show that our Tn5Prime 

method can be utilized for interrogating single cells, both human and mouse. The 

TSO-based multiplexing approach we implemented makes it possible to efficiently 

analyze thousands of cells, thereby increasing the throughput of plate based RNAseq 

library protocols in a manner that is straightforward and economical. While the 

Tn5Prime approach detects less genes than the Smart-seq2 approach, as determined 

by gene detection, this could be improved by increasing the amount of cDNA pooled 

for amplification (currently only ~60% of cDNA is used) as well as by using LNA 

bases in the Tn5Prime TSOs (Picelli, Faridani, et al. 2014), although the latter 

approach might affect 5’ specificity (Harbers et al. 2013). 

Our Tn5Prime approach interrogates the 5’ ends of transcripts, thereby 

capturing the unique sequence information of adaptive immune system receptors 

expressed on B and T cells. These receptors are often hard to assemble due to their 

unique genomic rearrangement. Our data shows that by limiting sequencing reads to 

the 5’ end of transcripts we can analyze both transcriptomes as well as paired 

antibody heavy and light sequences with the low sequencing coverage of ~100,000 

reads per cell, thereby enabling the analysis of thousands of B cells in a single 

sequencing run. This approach should, without any modification, also be applicable to 

T cells to map rearrangement of the T cell receptors. This can provide novel insights 

into the composition of B and T cell malignancies as well as the state and 

composition of the adaptive immune system with regards to solid tumors. This sets 

Tn5Prime apart from general purpose high-throughput single cell library preparation 
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methods like Drop-Seq, Seq-well, and 10X Genomics which target the 3’ end of the 

transcripts making them incapable of interrogating antibody sequences. We are 

looking forward to more published data on the recently released 10X Genomics 

Single Cell V(D)J platform which should be able to, like Tn5Prime, investigate V(D)J 

expression and gene expression in parallel. Overall, determining per cell library 

preparation cost, required sequencing depth, and cell capture rate will help establish 

ideal use-cases for either Tn5Prime or 10X methods. 

To highlight the power of our Tn5Prime approach we isolated 192 single 

human B cells from PBMCs using canonical plasmablast markers. Not only were we 

able to assemble paired antibody transcripts, but we succeeded in clustering the cells 

into two populations based on their gene expression profiles. The genes differentially 

expressed between those clustered suggested their putative cell types. Cells in the 

putative plasmablast cluster expressed more XBP-1, J-chain, HSPA5, and MZB1, 

which are all involved in either B cell activation or antibody production and secretion. 

Consistent with less antigen presentation, cells in the putative plasmablast cluster also 

expressed less MHC II transcripts including HLA-DRA, HLA-DRB5, and HLA-

DPB1. Finally, MS4A1 (CD20) is also expressed less in the cells of the putative 

plasmablast cluster and is known to be downregulated in activated B cells. Overall, 

this clearly established that we could distinguish activated, antibody secreting 

plasmablasts from resting, antigen presenting memory B-cells; cell-types which are 

difficult to distinguish using conventional FACS analysis. 
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In addition to cell-types, we showed that Tn5Prime can be used to determine 

individual B cells’ paired antibody sequences. Together, these data allowed us to 

compare antibody usage in plasmablasts and memory B cells, showing that 

plasmablast expressed higher levels of more mutated and class-switched antibodies. 

In addition to providing functional insight into cell populations, this information will 

make it possible to make informed decisions as to which antibody sequences could be 

further cloned and tested functionally for clinical, diagnostic, and research 

applications. 

         In summary, Tn5Prime is an RNAseq library construction protocol with a 

streamlined workflow that surpasses the economy and throughput of other plate-based 

protocols. While not reaching the throughput of droplet- and microwell-based 

protocols, it generates high quality data that enables the identification of transcription 

start sites and could be useful for analyzing 5’ UTR features or help improve 

incomplete genome annotations. Finally, Tn5Prime is currently the highest 

throughput library preparation method that doesn’t require proprietary 

instrumentation to comprehensively analyze the individual cells of the adaptive 

immune system by determining both paired adaptive immune receptor sequences and 

gene expression profiles. 

 
Materials and Methods 

Cell purification, RNA isolation and sorting 

GM12878: RNA from 500,000 GM12878 cells was extracted using the RNeasy kit 

(Qiagen) according to manufacturer’s instructions. 
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Murine B2 cells: Mice were maintained in the UCSC (University of California, Santa 

Cruz) vivarium according to IACUC (Institutional Animal Care and Use Committee) 

approved protocols. Single murine Ter119-CD3-CD4-CD8-B220+ IgM+CD11b- CD5- 

B2 cells were isolated from wild-type C57Bl/6 mice by peritoneal lavage and 

incubated with fluorescently-labeled antibodies prior to sorting. The following 

antibodies were used to stain B-cells: Ter119, CD3 (Biolegend; 145-2C11), CD4 

(Biolegend; GK1.5), CD8a (Biolegend; 53-6.7), B220 (Biolegend; RA3-6B2), IgM 

(Biolegend; RMM-1), CD5 (Biolegend; 53-7.3), and CD11b (Biolegend; M1/70). 

Cells were analyzed and sorted using a FACS Aria II (BD), as described(Ugarte et al. 

2015; Smith-Berdan et al. 2015; Beaudin, Boyer, and Forsberg 2014). 

Human B cells: Primary human cells were collected from the blood of a fully 

consented healthy adult in a study approved by the Institutional Review Board (IRB) 

at UCSC. For the Tn5Prime analysis, single human B cells were isolated from 

Peripheral Blood Mononuclear Cells (PBMCs) using negative selection using 

RosetteSep (StemCell). The resulting B cells were sorted for CD19+ CD27high and 

CD38high.The following antibodies were used for staining B cells: CD19 (BD 

Pharmingen; HIB19), CD27 (Biolegend; 0323), and CD38 (Biolegend; HB-7). Cells 

were sorted using FACS Aria II (BD) and analyzed using FlowJo v10.2 (FlowJo, 

TreeStar Software, Ashland, OR). For the Smart-seq2 analysis, individual PBMCs 

were sequenced and B cells for further analysis were identified based on their 

expression of antibody genes.  
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Both murine and human single cells were sorted into 96 well plates and 

directly placed into 4ul of Lysis Buffer - 0.1% Triton X-100, 0.2ul of SuperaseIn 

(Thermo), 1ul of oligodT primer (IDT), 1ul of dNTP (10mM each)(NEB) - and 

frozen at -80°C. 

 

RNA-seq library construction and sequencing 

2ul of RNA (5 ng) or Single Cell Lysate was reverse transcribed using Smartscribe 

Reverse Transcriptase (Clontech) in a 10ul reaction including either a Smart-seq2 

TSO (Smart-seq2 libraries) or a Nextera A TSO (Tn5Prime libraries) according to 

manufacturer’s instructions for 60min at 42°C (Table S1). The resulting cDNA was 

treated with 1 ul of 1:10 dilutions of RNAse A (Thermo) and Lambda Exonuclease 

(NEB) for 30min at 37°C. The treated cDNA was then amplified using KAPA Hifi 

Readymix 2x (KAPA) and incubated at 95°C for 3 mins, followed by 15 cycles 

(GM12878) or 27 cycles (single B cells) of (98°C for 20 s, 67°C for 15 s, 72°C for 4 

mins), with a final extension at 72°C for 5 mins. For our Tn5Prime method, the 

cDNA amplification requires both the ISPCR primer and a Nextera A Index primer. 

For the Smart-seq2 method, the cDNA amplification requires only the ISPCR primer 

(Table S1). The resulting PCR product was then treated with our Tn5 enzyme (Picelli, 

Björklund, et al. 2014) custom loaded with either Tn5ME-A/R and Tn5ME-B/R 

(Smart-seq2) or Tn5ME-B/R adapters only (Tn5Prime). The Tn5 reaction was 

performed using 5ul of the PCR product, 1ul of the loaded Tn5 enzyme, 10ul of H2O 

and 4ul of 5X TAPS-PEG buffer and incubated at 55°C for 5 mins. The Tn5 reaction 
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was then inactivated by the addition of 5ul of 0.2% SDS and 5ul of the product was 

then nick-translated at 72°C for 6 minutes and further amplified using KAPA Hifi 

Polymerase (KAPA) using Nextera_Primer_B and Nextera_Primer_A_Universal 

(Tn5Prime) or Nextera_Primer_A (Smart-seq2) (Table S1) with an incubation of 

98°C for 30 s, followed by 13 cycles of (98°C for 10 s, 63°C for 30 s, 72°C for 2 

mins) with a final extension at 72°C for 5 minutes. The Tn5 treated PCR product was 

then size selected using a E-gel 2% EX (Thermo) to a size range of 400-1000bp. 

GM12878 RNA Smart-seq2 and Tn5Prime libraries were sequenced on an Illumina 

HiSeq2500 2x150 run, mouse B2 cell Tn5Prime libraries were sequenced on an 

Illumina MiSeq 2x300 run, human B cell Tn5Prime libraries were sequenced on two 

Illumina HiSeq3000 2x150 run and human B cell Smart-seq2 libraries were 

sequenced on a MiSeq 2x75 run. 

  

Sequencing alignment and analysis 

Datasets generated from Smart-seq2, Tn5Prime, ENCODE CAGE (GEO accession 

GSM849368; produced by the lab of Piero Carnici at RIKEN), and ENCODE 

RNAseq (GEO accession GSM958742; produced by the lab of Barbara Wold at 

Caltech) (ENCODE Project Consortium 2012) derived from the GM12878 cell line 

were all trimmed of adapters and low quality bases using trimmomatic (v0.33) 

(Bolger, Lohse, and Usadel 2014) with a quality cutoff of Q15. Tn5Prime and Smart-

seq2 data generated from human single B cells were all trimmed of adapters 

containing low quality bases using Cutadapt (Martin 2011) and with a quality cutoff 
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of Q15. All paired reads where one or more of the reads contain a post-trimming 

length of less than 25 bp were filtered out. 

  Trimmed reads derived from the GM12878 cell line and human single B cells 

were aligned to the human genome (GRCh38) annotated with Ensembl GRCh38.78 

GTF release using STAR (v2.4) (Dobin et al. 2013). Trimmed reads derived from the 

B2 cells were aligned to the mouse genome (GRCm38) annotated with Ensembl 

GRCm38.80 GTF release using STAR (v2.4). Expression levels were quantified 

using featureCounts (v1.4.6-p1) (Liao, Smyth, and Shi 2014) and normalized by total 

read number resulting in RPM (Reads Per Million). 

  Peaks for CAGE, Tn5Prime and Smart-seq2 data were called by counting the 

number of unique fragments which began their forward read alignments (R1 for 

Tn5Prime) at each position within each chromosome and for each orientation 

(positive or negative). A peak was called at a position and orientation if at least five 

alignments begin at that position, the position one nucleotide downstream has fewer 

alignments beginning at that position, and the position one nucleotide upstream has 

fewer alignments beginning at that position. For the single cell data, peaks were 

filtered out unless they appeared in more than one cell. The distance between the 

Tn5Prime/Smart-seq2 peaks and the nearest CAGE peak was called by inserting the 

nucleotide coordinates of the CAGE peaks into kd-trees and then performing a 

nearest neighbor search on them using the Tn5Prime/Smart-seq2 peak coordinates. 

Each chromosome and orientation had its own kd-tree. 
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Antibody Assembly 

Data generated from our single human B cells were used to identify antibody 

transcripts. After assigning reads into each cell based upon their cellular index, they 

were then assembled into transcriptomes using rnaSPAdes (Bankevich et al. 2012) 

using the single-cell parameters. Putative immunoglobulin transcripts are detected 

and annotated by running IGBLAST (Ye et al. 2013) against the assembled 

transcriptome using Human V,D and J segments from the IMGT database (Lefranc et 

al. 2004). Isotypes are assigned to putative IG transcripts by aligning constant regions 

to the transcripts with BWA-MEM (H. Li 2013). 

Antibody transcripts were filtered using the following process: 

 

1. A table is generated from the SPADES/IGBLAST/BWA pipeline listing each 

putative IG transcript for each cell in which each row represents one assembled 

antibody transcript and contains information indicating which cell it came from, 

overall abundance (as determined by BWA), the CDR3 sequence and the type IGH 

(Heavy) ,IGK (Kappa) ,IGL (Light) as well as the inferred segments used during VDJ 

recombination. 

2. The transcripts are then clustered by CDR3 sequencing similarity using a single-

linkage clustering algorithm Based on the Levenshtein distance where two clusters of 

transcripts are merged when at least one transcript CDR3 has a Levenshtein distance 

of 2 or less with the CDR3 of any transcript in another cluster. 
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3. Transcripts belonging to the same cluster are merged so that highly similar 

transcripts belonging to the same cell are combined and their transcript counts are 

added together. This is done to correct for spurious alternative assemblies produced 

by SPADES within each cell's assembled transcriptome. 

4. A list is then generated for each transcript of the cells in which they appear. The 

lists are then sorted by the transcript abundance within each cell. 

6. Each entry in the list are marked by its relative abundance. If the number of reads 

aligned to the transcript in a cell is less than 10% of the largest number of reads 

aligned to that transcript within any cell, it is marked as being a potential 

contaminant. 

7. For each type of immunoglobulin transcript (i.e. IGH,IGK,IGL) found within each 

cell, the largest unique (non-contaminant) transcript (i.e. only found in that cell) is 

chosen. If a unique transcript cannot be found, then the most highly expressed 

immunoglobulin transcript is selected. 

8. If both a IGK and IGL are present within a cell, the unique transcript is selected. If 

both are unique or non-unique then the most highly expressed transcript is selected 

unless either transcript has an abundance of at least 10% of the other. 

9. After this elimination process, most cells should have a single heavy chain and 

light chain. 

 

Visualization 
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All data visualization was done using Python/Numpy/Scipy/Matplotlib(Hunter 2007; 

Oliphant 2007; van der Walt, Colbert, and Varoquaux 2011; Jones, Oliphant, and 

Peterson 2001--). Schematics were drawn in Inkscape (https://inkscape.org/en/).  

 

Data and Script Access 

Raw data has been uploaded to the Sequence Read Archive (SRA) and processed 

gene expression counts are available as supplementary tables S3 (GM12878 Smart-

seq2 and Tn5Prime), S4 (Mouse B2 Cells), S5 (Human CD27high CD38high 

Tn5Prime), and S6 (Human B cells Smart-seq2). Bioproject accession for the SRA 

are as follows: PRJNA320873 (GM12878 Smart-seq2 and Tn5Prime), PRJNA320902 

(Mouse B2 Cells), and PRJNA415475 (Human CD27high CD38high Tn5Prime) and 

PRJNA433736 (Human B cells Smart-seq2). A UCSC genome browser track is 

available at 

https://genome.ucsc.edu/cgi-

bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=chkcole&hgS_other

UserSessionName=TN5_Prime_Alignments 

The Tn5Prime/Smart-seq2, and CAGE Peak Caller and peak distance calculator are 

available at https://github.com/chkcole/Peak-Calling. All other Scripts are available 

upon request. 
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Supplemental  

 

 
 

Fig S1.1. Tn5Prime detects B cell specific genes in single B2 cells.  
A.) Genes are sorted by the number of B2 cells their transcripts are detected in. Each row 
represents a gene with its name given on one side. Each column represents are cell. A 
grey box indicates that gene’s transcript was detected in the respective cell. MHC 
transcripts are bold. B cell markers in red  
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Fig. S1.2. FACS gating strategy for the isolation of CD27high CD38high human B 
cells  
Fluorescence-activated-cell-sorting (FACS) profile of human CD27high and CD38high

 B 
cell population. Purified B cells were isolated from PBMCs using a human B cell 
enrichment method, RosetteSep. Single B cell suspensions were made and stained with 
anti-CD19-FITC, anti-CD27-BV421 and anti-CD38-PE-A and analyzed using FLOWJO 
v10.2. Doublets were excluded by SSC-W x SSC-H and FSC-W x FSC-H. Dead cells 
were excluded using Propidium Iodide staining, only cells which were PI- were kept for 
analysis. 
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Fig S1.3. Quality Metrics Determined By Alignment Percentage and Read 
number 
A scatter plot of the library size of 192 single CD27+ CD38+ B cells versus their percent 
alignment. Cells outside more than three median absolute deviations from the median for 
percent alignment, Mitochondrial transcript percentage, or number of detected genes 
were marked as outliers and eliminated prior to normalization of transcript counts.   
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Fig. S1.4. tSNE on subsampled data 
In order to test the robustness of the embedding, sampling was performed on each cell’s 
data to a uniform level of depth and t-SNE performed. The embedding was plotted, and 
cells were colored by the abundance of J-chain. These results indicate that discrimination 
between the two populations can still be achieved at 100,000 reads, one tenth of the 
average sequencing depth achieved for each cell. 
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Fig. S1.5. Clustering of CD27+ CD38+ B cells 
Cells were plotted in two dimensions using t-SNE based on their normalized transcript 
counts and colored by the normalized transcript counts of several genes of interest.  
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Fig S1.6. Heavy and Chain Pairings Determined by Read Depth 
Reads were subsampled in increments of: 1000, 10000, 50000, 100000, 500000 and 
1000000 reads per cell to determine read depth necessary for assigning proper heavy and 
light chain transcripts together. Plot shows on the x-axis reads subsampled per cell and y-
axis shows number of light/heavy chain pairs assembled.  
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RT 
 
Primer 
 
Oligo-dT-smartseq2 /5Me-
isodC/AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTVN 
 
TSOs - Tn5Prime 
      
GM12878 
TSO_Nextera_Index1 TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG 
GCCTAAGCCATC rGrGrG  
B2 cells 
TSO_Nextera_Index2 TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG GATCTG 
rGrGrG 
Human CD27high;CD38high 

TSO1_Nextera  TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG rUGA 
ArU rUC TGGTrGrGrG 
TSO2_Nextera  TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG ACrU CrU 
GrU TGGTrGrGrG 
TSO3_Nextera  TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG CrUC rUG 
rUA TGGTrGrGrG 
TSO4_Nextera  TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG rUAG 
rUA CrU TGGTrGrGrG 
TSO5_Nextera  TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG GGrU CrU 
rUG TGGTrGrGrG 
TSO6_Nextera  TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG ArUA 
GrU ArU TGGTrGrGrG 
TSO7_Nextera  TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG rUCC rUA 
rUC TGGTrGrGrG 
TSO8_Nextera  TCGTCGGCAGCGTCAGATGTGTATAAGAGArCAG CArU rUC 
GrU TGGTrGrGrG 
 
TSO - Smartseq2 
 
TSO_Smartseq2  AAGCAGTGGTATCAACGCAGAGTACATrGrGrG 
 
Primers for amplifying cDNA 
 
ISPCR   AAGCAGTGGTATCAACGCAGAGT 
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Nextera_Primer_A AATGATACGGCGACCACCGAGATCTACAC [8bp i5 index] 
TCGTCGGCAGCGTCAGATG 
 
*Tn5 Oligos 
 
Tn5ME-R   [phos]CTGTCTCTTATACACATCT 
Tn5ME-A   TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
Tn5ME-B   GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 
 
Primers for amplifying Tn5 Product 
 
Nextera_Primer_B  CAAGCAGAAGACGGCATACGAGAT [8bp i7 index] 
GTCTCGTGGGCTCGGAGATGTGTAT 
Nextera_Primer_A_Universal AATGATACGGCGACCACCGAGATCTACAC 
 
*Note: Tn5ME-A primer is used for SmartSeq2 protocol. 
 
Table S1.1 Oligos used in the Tn5 Prime Manuscript 
All oligos are shown 5’->3’ and were ordered from Integrated DNA Technologies (IDT).  
Lower case ‘r’ indicates RNA bases. Spaces in sequences are for visual emphasis only. 
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Nanopore Long-Read RNAseq Reveals 
Widespread Transcriptional Variation Among the 

Surface Receptors of Individual B cells 
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Abstract 
 
Understanding of gene regulation and function requires a genome-wide method 

capable of capturing both gene expression levels and isoform diversity at the single 

cell level. Short-read RNAseq, while the current standard for gene expression 

quantification, is limited in its ability to resolve complex isoforms because it cannot 

sequence full-length cDNA copies of RNA molecules. Here, we investigated whether 

full-length RNAseq can be accomplished using the long-read single-molecule Oxford 

Nanopore MinION sequencing technology (full-length cDNA RNAseq) would be 

able to identify and quantify complex isoforms without sacrificing accurate gene 

expression quantification. After successfully benchmarking our experimental and 

computational approaches on a mixture of synthetic transcripts, we analyzed 

individual murine B1a cells using a new cellular indexing strategy. Using our 

computational approaches, we identified thousands of novel, unannotated 

transcription start and end sites, as well as hundreds of alternative splicing events in 

these B1a cells. We also identified hundreds of genes expressed across the B1a cells 

that displayed multiple complex isoforms, including several B cell specific surface 

receptors and the antibody heavy chain (IGH) locus. Our results show that not only 

can we identify complex isoforms, but also quantify their expression, at the single cell 

level. 
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Introduction 

Over the last decade, RNAseq has vastly increased our knowledge of eukaryotic gene 

expression and the unique transcript isoform signatures that differentiate 

developmental stages, organs, and single cells (A. R. Wu et al. 2014; Treutlein, 

Brownfield, et al. 2014; Shalek et al. 2013; Welch, Hu, and Prins 2016). Proteins that 

arise from transcript isoforms of a single gene can vary in their biological properties 

including stability, intracellular localization, enzymatic activity, and post-translational 

modifications (Stamm et al. 2005). Transcript isoforms are the product of alternative 

transcription start sites (TSSs), transcription end sites (TESs), and alternative splicing 

events that include alternative splice sites, intron retention, and exon skipping (Sugnet 

et al. 2004). It has been predicted that a large fraction of human genes are 

alternatively spliced (Modrek and Lee 2002; E. T. Wang et al. 2008). Although 

alternative splicing enables increased transcriptome diversity, aberrations in splicing 

have been implicated in several human diseases, including cancer. In fact, it has been 

observed that 15% of point mutations are associated with splicing defects, resulting in 

human genetic disorders (Krawczak, Reiss, and Cooper 1992) and somatic mutations 

within 12 different cancer types (Brooks et al. 2014). 

Consequently, it is important to determine the true transcriptional diversity of 

cells. This requires that gene expression is analyzed not only at the gene-level but 

also at the isoform-level. However, current short-read RNAseq methods are 

inherently limited in their ability to identify complex transcript isoforms, as they 

cannot sequence full-length transcripts. Instead, transcripts are fragmented for 
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sequencing, resulting in short individual reads that fail to span the entirety of the 

transcript. Computational tools can be used to assemble full-length transcripts from 

these reads, but different assembly algorithms can result in conflicting outcomes and 

varying overall assembly quality (Salzberg et al. 2012).  

To offset this limitation of short-read RNAseq, studies have successfully used 

both single-molecule long-read PacBio and synthetic long-read MOLECULO 

methodologies (Tilgner et al. 2015; Sharon et al. 2013; Treutlein, Gokce, et al. 2014; 

Vollmers et al. 2015) to sequence full-length cDNA. However, PacBio technology 

has a strong bias toward shorter fragments necessitating the separation of cDNA by 

length before library preparation, which complicates sample preparation and analysis 

(Bulletin, n.d.). Furthermore, MOLECULO  depends on the assembly of short 

Illumina reads that suffer from the biases inherent in Illumina data and relies on the 

separation of individual transcript molecules into distinct wells. This complicates 

quantification as well as the analysis of highly abundant or similar isoforms. 

Recently, the Oxford Nanopore Technologies (ONT) MinION has been used to 

analyze  full-length cDNA samples derived from both defined synthetic RNA 

molecules as well as RNA from tissue culture cells (Oikonomopoulos et al. 2016).  

With the exception of a single study using single cell RNA-seq to focus its 

analysis on a single gene locus using PacBio technology (Macaulay et al. 2015), these 

long-read technologies have been used exclusively to evaluate transcriptome diversity 

across bulk cell populations. However, recent studies have highlighted that cells 

found within seemingly homogeneous populations can differ in gene expression (Graf 
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and Stadtfeld 2008),(Irish, Kotecha, and Nolan 2006),(Warren et al. 2006). 

Understanding heterogeneity within cell populations has shown promise across 

multiple disciplines including developmental biology, neurobiology, cancer and 

immunology. Single cell approaches can help illuminate biological questions 

regarding cell function, development and dysfunction. Knowing the exact state of the 

cell can help determine its fate or reflect changes with response to stimuli or drug 

treatment, as well as its ability to neutralize a pathogen, respectively. Cell-to-cell 

heterogeneity (Shalek et al. 2013) makes immune cells a fascinating target for in-

depth analysis of transcriptional diversity. Current approaches that measure RNA 

transcripts within single cells rely on short-read RNA-seq, single molecule RNA-

fluorescence in-situ Hybridization (SM-RNA FISH), or single-cell RT-qPCR 

(Cornelison and Wold 1997; Raj et al. 2008),(Tang, Lao, and Surani 2011; Femino et 

al. 1998). These current methods can either be applied to a few genes or are under the 

same constraints of short-read RNA-seq, which we described earlier. Ultimately, 

these approaches are unable to identify and quantify complex isoforms on a 

transcriptome-wide level.  

To make it possible to identify and quantify complex isoforms on a 

transcriptome-wide single cell level, we have developed a nanopore sequencing 

approach for the analysis of full-length cDNA in single cells. The Oxford Nanopore 

Technologies (ONT) MinION sequencer is a portable device that is based on single 

molecule sequencing technology that provides reads of unprecedented length by 

performing voltage driven molecule translocations through small nanosensors (Cherf 
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et al. 2012). Although the MinION platform has been most useful for interrogating 

viral and bacterial genomes, recently it has been applied for analyzing cDNA in both 

targeted as well as genome-wide approaches (Hargreaves and Mulley 2015; Kilianski 

et al. 2015; Jain et al. 2015; Bolisetty, Rajadinakaran, and Graveley 2015; 

Oikonomopoulos et al. 2016). Taking advantage of its unprecedented read length, we 

wanted to interrogate single-cell transcriptomes of mouse B1a cells by sequencing 

full-length cDNA molecules using the ONT MinION sequencer.  

We implemented an integrated informatics pipeline for gene-level and 

transcript isoform-level expression quantification to overcome the sequencing 

accuracy limitations of the ONT MinION. To identify transcript isoforms, this 

pipeline predicted  transcription start and end sites, as well as splice sites and their 

alternative usage. After benchmarking the ONT RNAseq approach on a complex 

mixture of synthetic transcripts, we sequenced seven individual mouse B1a cells and 

showed that we could accurately quantify gene expression and identify and quantify 

novel isoforms at the single-cell level. Our analysis identified differential usage of 

complex isoforms in over a hundred genes including several surface molecules like 

CD19, CD20, and IGH, the very receptors defining B cell identity. 

 

Results 

Generating and Sequencing Single-Cell RNAseq Libraries 

We first investigated the ability of the ONT MinION platform to interrogate 

transcriptomes at the single-cell level. To test this, we used our ONT RNAseq 
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approach to analyze seven individual mouse B1a cells (Beaudin et al. 2016; Beaudin 

and Forsberg 2016) and compared it with the standard Illumina RNAseq approach . 

To this end, we FACS-sorted single B1a cells into individual wells containing lysis 

buffer and amplified cDNA from each individual cell using the Smartseq2 protocol 

with  modifications (see Methods, Supplementary Table S2.1) (Picelli et al. 2013). 

The cDNA generated by the Smartseq2 protocol was split and processed in-parallel 

using the Illumina and ONT library preparation protocols. Sequencing the fragmented 

cDNA of the seven cells on the HiSeq2500, we generated between 73,086-351,876 

150bp  Illumina reads per cell. Sequencing the full-length cDNA of the first three 

cells on individual ONT MinION flow cells using the R7.3 chemistry generated 

between 17,749-52,696 ONT 2D reads per cell (Supplementary Table S2.2). Taking 

advantage of the improved MinION throughput using the R9.4 chemistry, we 

multiplexed the full-length cDNA of the other four cells on a single MinION flow cell 

and generated between 57,874-128,726 ONT 2D reads per cell. To enable this 

multiplexing, we introduced custom 60 nucleotide cellular indexes during PCR 

amplification (see Methods, Supplementary Table S2.1, Fig. 2.1a). 
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Figure 2.1: Experimental Design and Oxford Nanopore Sequencing read 
characteristics. 
a) Schematic of experimental design. FACS-sorted single B1a cells were lysed. PolyA-
RNA was then reverse transcribed, and PCR amplified using template switching. Full-
length cDNA was split into two reactions. Half of the reaction was tagmented by Tn5 and 
sequenced using a Illumina HiSeq2500 sequencer. The other half of the reaction was 
ligated to ONT adapters and sequenced on an ONT MinION sequencer. b) Schematic of 
the computational pipeline for ONT 2D read data. 
 

Comparison of Gene Expression Quantification 

To assess whether ONT RNAseq is capable of quantifying gene expression, we 

compared RNAseq data produced with ONT and Illumina, the current benchmark for 

gene expression quantification. Because standard gene quantification tools (e.g. 

STAR (Dobin et al. 2013), Cufflinks (Trapnell et al. 2010)) are not compatible with 

nanopore reads, we aligned the ONT 2D reads using BLAT (Kent 2002) and 

quantified gene expression using our own algorithm. This algorithm determines how 

many reads overlap with the exons of a gene to produce a Reads Per Gene per 10K 
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reads (RPG10K) value. As ONT 2D reads are long enough to span the full-length of 

the transcripts, normalization for gene length was not performed (Fig. 2.1b). 

Comparing Illumina and ONT RNAseq gene expression quantification for the same 

cell showed high correlation (Pearson r ≥ 0.84-0.89 for R7.3 and 0.9-0.92 for R9.4), 

confirming that our ONT RNAseq approach recapitulates Illumina gene expression 

quantification (Fig. 2.2). Comparing Illumina and ONT RNAseq gene expression 

quantification across different cells showed low correlation with a Pearson r < 0.45, 

suggesting that ONT RNAseq can identify cell-to-cell variability (A. R. Wu et al. 

2014; Macosko et al. 2015) (Fig. 2.2).   
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Figure 2.2: ONT RNAseq recapitulates Illumina RNAseq gene expression 
quantification. 
Scatter plot grid at the center of the figure shows gene expression levels for each  
gene as determined by Illumina RNAseq and ONT RNAseq for the indicated cells. 
Correlations of transcript expression levels are given as reads per gene per 10,000 reads 
(RPG10K) across 7 single cells. Pearson r is given for each cell per sequencing method 
combination with each point representing transcript expression level (x-axes =Illumina 
and y-axes=ONT). Same cell comparison have a blue border. ONT sequencing chemistry 
is shown on the right. Histograms found on the left and top of the figure represent 
number of genes found binned by their expression levels. 
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These results show that even with the relative low number of reads produced, ONT 

RNAseq gene-expression quantification largely detects the same genes as Illumina 

RNAseq (Fig. 2.3a). Furthermore, subsampling ONT and Illumina raw reads showed 

that, for five of the seven cells analyzed, the detection of expressed genes had reached 

saturation (Supplementary Fig. 2.2). Unsurprisingly, genes that were detected by 

either ONT or Illumina RNAseq alone were expressed at lower levels, indicating that 

these genes were expressed at levels close to the detection limits of both technologies 

(Fig. 2.3b). We also observed that the genes detected by ONT RNAseq alone were 

comprised of smaller transcripts (Fig. 2.3c). Additionally, genes that were < 600 bp in 

length and were detected by both ONT and Illumina RNAseq had relatively lower 

expression levels in Illumina RNAseq data (Fig. 2.3d). While this is consistent with 

smaller transcripts being strongly selected against in the Tn5 based Illumina library 

prep, we couldn’t exclude that ONT RNAseq might have a bias towards shorter 

transcripts. To exclude this possibility, we chose to analyze a mix of synthetic 

transcripts. 
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Figure 2.3: Quantifying gene and transcript expression with ONT RNAseq data 
a) Stack barplots showing number of genes detected by each cell corresponding to 
different sequencing technologies (Ill - Illumina, ONT - Oxford Nanopore). b) Median 
expression levels of genes detected by both or individual technologies. Two expression 
levels (Ill and ONT) are given for genes detected in both technologies. c) Gene length of 
genes detected by both or individual technologies. d) Ratio of gene expression levels for 
genes detected by both technologies. Ratios are binned according to gene length and 
shown as boxplots with whiskers indicating 10th and 90th percentiles. e) SIRV transcript 
levels of Replicate 1 (Rep1: 100fg SIRV pool E2) as measured with ONT RNAseq. 
Transcripts are binned by their starting molecule numbers. f) SIRV transcript levels of 
Replicate 1 are plotted against transcript length with colors corresponding to groups in e). 
g)  Scatter plot showing correlation of SIRV transcript expression levels of Replicate 1 
(Rep1: 100fg SIRV pool E2) and Replicate 2 (Rep2: 100fg SIRV pool E2) , both 
measured by ONT RNAseq. r-value shown is Pearson-r. 
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Analysis of synthetic transcript mixtures 

To test whether transcript length had an effect on expression levels as measured by 

ONT RNAseq, we sequenced synthetic Spike-in RNA Variant Control Mixes (SIRVs, 

Lexogen) of known length, structure and sequence. SIRV transcripts provided in the 

E2 mix contained 69 transcripts ranging from 191-2528 nt. In the E2 mix 69 

transcripts were present in four groups of varying concentrations containing 19, 21, 

17 and 12 transcripts in each group, respectively. To test a wide range of possible 

transcript levels, we amplified (sub-) single cell amounts  (i.e. 10fg and 100fg) of the 

Lexogen SIRV E2 mix in duplicate. This reflected a wide range of possible transcript 

levels with 8-10,240 molecules of individual SIRV transcripts present before the 

amplification step. 

We quantified the 69 transcripts by aligning the resulting 5367-17915 2D 

ONT reads directly to the spliced SIRV transcriptome using BLAT and then counting 

and normalizing the matched ONT 2D reads for each transcript. As expected, when 

amplifying (sub-) single cell amounts of RNA, we observed transcript drop-out in the 

lower concentration groups and found that transcript quantification showed variations 

within each concentration group (Fig. 2.3e, Supplementary Fig. 2.3a). Most 

importantly, however, quantification was not affected by transcript length, with the 

exception that transcripts shorter than 500 bp were underrepresented or missed 

entirely (Fig. 2.3f). Generally, ONT RNAseq quantification agreed with the nominal 

concentration of the spike-in transcripts and, interestingly, the intra-group variations 

in transcript quantification were reproducible between replicates (Fig. 2.3g). This 
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intra-group variation might be due to variation in initial transcript levels, systematic 

amplification bias, or data analysis bias. Overall, the observed underrepresentation of 

short transcripts in ONT RNAseq and the differences between Illumina and ONT 

RNAseq quantification are consistent with cDNA molecules below 500 bp in length 

being selected against during cDNA synthesis and again during the Illumina library 

preparation using the Tn5 method. Ultimately, analyzing these synthetic transcripts at 

different concentrations allowed us to exclude the possibility that ONT RNAseq 

favors shorter transcripts. 

 Next, we wanted to test whether, in addition to largely unbiased 

quantification of SIRV transcripts 500-2,500 bp in length, ONT RNAseq reads cover 

transcripts in their entirety which would make them uniquely suitable to identify and 

quantify complex isoforms.  

 

Genome annotation and isoform identification with SIRV ONT RNAseq data 

The 69 synthetic SIRV transcripts are derived from 7 artificial gene loci that have 

been modeled after human genes with high isoform diversity, making them suitable 

for testing ONT RNAseq’s capability to capture isoform diversity in a genome 

annotation independent manner. To this end, we developed algorithms to analyze 

ONT RNAseq 2D read data to annotate the SIRV gene loci, which in turn could be 

utilized to further identify and quantify SIRV isoforms. First, we used read 

alignments to annotate Transcription Start Sites (TSS) and Transcription End Sites 

(TES), as well as splice sites (SS) of SIRV transcripts in the SIRV gene loci. The 
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annotation of TSS and TES was accomplished by end to end coverage of the entire 

RNA transcript by complete ONT 2D reads (i.e. reads for which both ISPCR adapters 

could be identified and trimmed, Supplementary Table 2.2) (Fig. 2.4a-c). Complete 

ONT 2D reads contained information regarding both TSS, TES in their read 

alignments. 

After combining and aligning ONT 2D reads of all replicates to the artificial 

SIRV genomic loci (Fig. 2.4c, Supplementary Figure S2.4), we categorized 20 bp 

bins containing TSS, TESs and splice sites using custom algorithms (see Methods). 

To avoid the detection of spurious TSS and TES by prematurely terminated read 

alignments, we required TSS/TES to be at least 60 bp apart. In this manner, we 

detected 20 TSS and 24 TES that all directly overlapped with an actual TSS and TES 

and were within 60 bp of 38 (of 57) actual TSSs and 41 (of 59) actual TESs present in 

the SIRV transcript annotation. Furthermore, we detected 76 (of 89) 5’ splice sites 

and 73 (of 93) 3’ splice sites present in the SIRV genome annotation. By analyzing 

the actual splicing pattern of ONT 2D reads we detected 11 (of 12) alternative 3’ 

splice site combinations and 12 (of 14) alternative 5’ splice site combinations as well 

as 12 (of 12) intron retention events present in the SIRV transcripts. 

ONT 2D reads were then sorted into isoform groups based on their TSS/TES 

and alternative splice site usage. We generated consensus sequences of these groups 

using POA (Lee, Grasso, and Sharlow 2002) (Partial Ordered Alignment) and 

compared these consensus sequences to SIRV transcript sequences using BLAT. All 

of the 33 consensus sequences we generated matched a SIRV transcript with between 
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97.8% and 100% identity (BLAT identity score) and in all cases matched its 

directionality. Of the resulting 33 consensus sequences, 26 matched one of the 29 

SIRV transcripts present in the two highest abundance groups (Fig. 2.4c,d , 

Supplementary Fig. 2.4). The other 7 consensus sequences matched one of the 40 

SIRV transcripts in the two low abundance groups. While this approach did not 

succeed in consistently identifying lower abundance isoforms, the consensus isoform 

sequences detected were very accurate. We also observed high correlation between 

quantification determined by sorting the reads into their isoform groups and  

quantification derived from directly aligning reads to the transcriptome (Fig. 2.4e) 

This means that in addition to identifying sequence, structure, and directionality of 

complex isoforms, we can also accurately quantify them in a genome annotation 

independent manner. As a result, we were encouraged to apply this pipeline to our 

single cell data. 
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Figure 2.4: Identifying and quantifying isoforms in SIRV E2 mixture 
a) Scatter plot shows correlation between ONT 2D reads and SIRV transcripts they align 
to. Pearson r is shown. Coloring same as Figure 3e-g b) Distance between read alignment 
ends and transcript ends are shown as heatmap, color indicating the normalized alignment 
numbers. 90% of read alignments terminated outside the red lines  c-d) Genome Browser 
view of SIRV3(c) and SIRV6(d) gene loci. Top box contains transcript annotations, 
second and third box contain TSS (Teal) /TES (Purple) and splice sites (5’SS: yellow, 
3’SS: blue) locations predicted from the read data. Black lines and grey areas in box 3 
indicate alternative splicing and intron retention events predicted from read data. Box 4 
contains read alignments of isoform consensus reads. Box 5 contains ONT 2D read 
alignments. Directionality of ONT 2D reads are indicated by color (Teal: 5’ to 3’, Purple: 
3’ to 5’). e.) Scatter plot shows correlation between SIRV transcript quantification by 
aligning to annotated transcripts or annotation-free isoform grouping. Pearson r is shown. 
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Identification of Transcription Start and End Sites used in individual B1a cells 

By analyzing the ONT 2D reads generated from the seven B1a cells we sequenced, 

we detected 4234 TSSs and 3883 TESs with only 2476 TSSs and 2448 TESs 

overlapping with the TSSs or TESs present in the Gencode annotation (vM10) 

(Stanke et al. 2004; Mudge and Harrow 2015) of the mouse genome (Fig. 2.5a). To 

determine whether the unannotated TSS and TES we detected were artifacts of our 

experimental and computational pipelines, we determined their Fantom5 (FANTOM 

Consortium and the RIKEN PMI and CLST (DGT) et al. 2014) CAGE peak and 

polyA signal enrichment. Fantom5 CAGE peaks are derived from capturing and 

sequencing the 5’ end of transcripts and should therefore be enriched in TSSs. Indeed, 

we found that in contrast to TESs (49/3883 or 1.3%), a high percentage of both 

annotated (2356/2476 or 95%) and unannotated (1052/1799 or 58%) TSSs overlapped 

with high scoring Fantom5 CAGE peaks (Fig. 2.5b). Conversely, both annotated and 

unannotated TESs were highly enriched for polyA signals, while TSSs were not (Fig. 

2.5c). When we assigned the detected TSSs and TESs to annotated genes, we found 

that most genes contained exactly one TSS and one TES, as expected. However, 696 

genes contained more than one TSS or TES indicating the presence of more than one 

isoform (Fig. 2.5d). Overall, this suggested that we successfully identified thousands 

of unannotated TSSs and TESs and hundreds of genes with differential TSS/TES 

usage by analysing individual cells.  
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Figure 2.5: Analysis of ONT RNAseq data identifies isoform features in mouse 
B1A cells  
a) TSSs and TESs predicted based on read data were separated into sites with or without 
GENCODE vM10 annotation matches. b-c) TSSs/TESs with or without GENCODE 
matches were tested for FANTOM5 CAGE area enrichment (b) and polyA signals (c). d) 
Overlap of TSSs and TESs with genes. Genes were sorted according to the number of 
TSSs and TESs they overlapped with. e) Predicted base composition at 5’ and 3’ SS 
based on read data is shown as sequences logos. f) Schematic for detection and 
corresponding number of detected alternative splice site combinations. g-i) Genome 
Browser view of CD19, CD20, and IGH gene loci as shown  in Figure 4. ONT 2D reads 
and consensus sequence alignments are shown for the indicated cells. Splice sites for the 
highly repetitive IGH locus were not considered for isoform grouping due to the 
difficulty of aligning reads unambiguously. 
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Identification of Alternative Splicing Events used in individual B1a cells 

In addition to TSSs and TESs, we identified a total of 24,887 5’ splice sites and 

24,756 3’ splice sites. The vast majority of these splice sites were supported by the 

GENCODE annotation or splice junctions found in Illumina reads. Of the 24,887 

5’SS and 24,756 3’SS we identified, 24,298 (97.6%) and 24,220 (97.8%) matched 

GENCODE annotation, respectively. Of the 589 5’SS and 536 3’SS that did not 

match GENCODE annotation, 250 (42.4%) and 216 (40.2%) were supported by 

splice junctions in Illumina reads, respectively. Even if all splice sites that were not 

supported by GENCODE annotation or Illumina reads were false, which is unlikely, 

the false discovery rate of our approach would only be 1.3% (659/49,643). 

Furthermore, while we defined our splice sites as 20 bp bins, we were relatively 

successful in defining the exact splice site as shown by the base context of the 

determined splice sites (Fig. 2.5e). By determining alternative splice sites, we found 

296 intron retention events, 134 alternative 5’ splice sites and 173 alternative 3’ splice 

site combinations. The majority of these events were also observed in Illumina read 

data, which supported 216 (of 296) intron retention events, 99 (of 134) alternative 5’ 

splice sites, 123 (of 173) alternative 3’ splice sites and 72 (of 92) exon skipping 

events (Fig.2.5f). Alternative events not supported by Illumina read data had 

significantly lower ONT 2D read counts than those that were supported 

(Supplementary Table S2.3), indicating they might be closer to the detection limits of 

both technologies. 
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Identification of Complex Isoforms 

Having established that ONT RNAseq can be used to identify isoform features like 

TSSs and TESs as well as alternative splicing events, we aimed to identify complex 

isoforms. We defined genes as expressing complex isoforms if they contained 

alternative TSS/TES as well as alternative splice sites. We identified 169 genes that 

expressed complex isoforms. By identifying and quantifying all isoforms we detected 

of these 169 genes, we found highly significant differential isoform usage between 

cells in 55 of the genes (Chi2-contigency test, alpha=0.001, holm-sidak multiple-

testing correction). These genes with significant differential isoform usage included B 

cell specific surface receptors CD19 and CD20, the antibody heavy chain locus (IGH) 

(Fig. 2.5g,h,i), CD37 (Fig. 2.6), as well as CD2 and CD79b, and CD45 

(Supplementary Fig. 2.5). We created consensus sequences of the isoforms at these 

gene loci in each B1a cell and found that across the individual B1a cells, isoforms 

derived from CD19 showed a combination of alternative TSSs and intron retention 

events. Isoforms derived from CD20, on the other hand, showed a combination of 

alternative TESs, as well as an exon skipping event including a previously 

unannotated exon. The IGH locus was even more complex, with canonical isoforms 

containing VDJ recombinations and the IGHM constant region exons. In addition, we 

observed isoforms containing the IGHM constant region exon but originating from 1.) 

abortive DJ recombinations 2.) I-exon 3.) miRNA loci in the IGHM Switch-region, 

and 4.) a J-segment. Finally, one isoform in cell 1 originated from the IGHM I-exon 

but contained the IGHD constant region exons. While IGH isoform diversity has been 
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previously observed and has been known for a long time to be involved in class-

switching (K. B. Islam et al. 1994), the ability of ONT RNAseq to sequence full-

length cDNA at the single cell level truly highlights and confirms the exceptional 

transcriptional diversity of the IGH locus. 

The ability to sequence entire cDNA molecules from end to end presents an 

advantage over assembling transcript isoform using Illumina data. While assembling 

Illumina data using Trinity (Grabherr et al. 2011) is likely to succeed if a gene locus 

only expresses a single isoform, it appears to struggle with analyzing multiple 

isoforms of a gene locus that contain multiple distant alternative features. For 

example, ONT RNAseq identified several distinct isoforms of the CD37 gene across 

the individual cells analyzed. In most cases, when we assembled the Illumina data 

from individual cells, Trinity was either unable to form complete contigs or produced 

contigs that were shown by ONT RNAseq to be misassembled (Fig. 2.6). The CD37 

gene and its isoforms therefore highlight the strength of the ONT RNAseq approach 

to identify the diversity of complex isoforms beyond what is possible with either bulk 

or short reads technologies. 
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Figure 2.6: Uncovering isoform diversity in B cell surface receptors 
Genome Browser view of the CD37. 
In addition to isoform consensus derived from ONT 2D reads, contigs assembled  
from Illumina data using Trinity are shown in grey for the indicated cells. 
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Discussion 

The data we present here shows that RNAseq studies using the Oxford Nanopore 

Technologies MinION sequencer have the potential to redefine the level of 

information gathered by a single RNAseq experiment.  

By benchmarking our experimental and computational pipelines on ONT 

MinION data derived from a mix of synthetic transcripts, we showed that our 

approach identifies the location of transcription start and end sites as well as splice 

sites in a genome. Furthermore, we have shown that these experimentally determined 

annotations can then be used to identify and quantify complex isoforms longer than 

~500 bp in an otherwise largely transcript length independent manner. It is likely that 

if we use less stringent size selection methodologies during library preparation, we 

could capture transcripts < 500 bp as well. Although we were only able to 

consistently identify the SIRV transcripts found among the high abundance groups, 

we expect that the less abundant transcripts could be identified using our pipeline by 

increasing the sequencing depth. Variation in the quantification of transcripts in the 

SIRV mix indicated that quantification might be improved by using Unique 

Molecular Identifiers (UMI) (S. Islam et al. 2014) during cDNA amplification. 

However, UMI length would have to be at least >30bp to be resolved unambiguously 

with the current error-rate of the ONT MinION. Introducing random nucleotides of 

this length during priming is likely to create short, unwanted PCR artifacts which 

would greatly increase the noise of the amplification reaction. Ultimately, until ONT 
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sequencing accuracy improves, the Smart-seq approach employed in this study is 

currently the best choice for UMI free library generation, as it has been shown by a 

comparison study to generate the smallest amount of PCR duplicates and the highest 

transcriptome coverage when comparing low input methodologies (Bhargava et al. 

2014). 

By focusing on single cells transcriptomes, we demonstrated the capability of 

sequencing read output and accuracy of ONT MinION sequencer.  We showed that 

ONT RNAseq can not only quantify known genes with a high correlation to Illumina 

RNAseq but also annotate transcript features, thereby allowing us to identify and 

quantify complex, never before observed, isoforms. Using ONT RNAseq on only 

seven B1a cells, we identified thousands of unannotated transcription start and end 

sites which we then validated using FANTOM5 CAGE data and polyA signals, 

respectively. Furthermore, we identified 696 genes displaying alternative 

transcription start and end site usage, and 354 genes with alternative splicing events. 

Although not all alternative splicing events we detected were supported by single cell 

Illumina data, the events that weren’t supported were of significantly lower coverage, 

indicating they might be closer to the detection limits in either technology 

(Supplementary Table 2.3). Combined with the relatively low Illumina sequencing 

depth per cell in our study, this suggests that larger Illumina depth might aid in the 

validation of individual events in future studies.  

In addition to the identification of individual alternative events, the read 

length of the ONT MinION sequencer paired with our analysis pipeline enabled us to 
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identify 169 genes expressing complex isoforms containing both alternative TSS/TES 

and splice sites. Interestingly, among the genes expressing these complex isoforms 

were surface receptors, including the very surface receptors distinguishing B cells 

from other immune cells. For example, we found that CD19, CD20 (Ms4a1), IGH, 

CD45 (B220 or Ptprc), CD2, CD79b, and CD37 were expressed as multiple complex 

isoforms across the seven B1a cells. This indicates that the diversity of the surface 

receptors found on B-cells is not fully understood, which could have important 

implications on all facets of B cell biology. Our data suggest that we are currently 

only scratching the surface of the true transcriptional diversity of B1a cells. In the 

future, we aim to use the multiplexing strategy that we have developed to analyze 

hundreds of individual cells. This will make it possible to truly reconstitute the full 

transcriptome complexity of B1a and other cell types and will likely lead to discovery 

of additional subpopulations with distinct functional properties (A. R. Wu et al. 

2014). While we currently estimate the cost per cell at ~ $100-200, this is likely to 

decrease considering the rapidly increasing throughput of the ONT MinION and the 

soon-to-be-released ONT PromethION sequencer.  

Nanopore sequencing is still rapidly maturing and we believe that 

advancements in sequencing chemistries, nanopore design and analysis algorithms 

will vastly improve the technology and address the shortcomings of low read numbers 

and high error rates in the near future. Lower error-rates will, for example, allow us to 

improve our analysis pipeline further by allowing for the base accurate identification 

of TSS/TES and splice sites, instead of identifying 20 bp bins for these features. Even 
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with its current limitations, the data and analysis tools we present here demonstrate 

the potential of ONT RNAseq to revolutionize analysis of transcriptomes. Finally, 

while the ONT MinION has not quite caught up with the very capable PacBio Sequel 

long read sequencer, it is only a fraction of its price (~$1,000 vs. $300,000).  At this 

price, any molecular biology lab will be able to perform their own RNAseq 

experiments on-site, thereby increasing adoption of the single cell RNAseq approach 

and accelerating research. 

   

Methods 

FACS sorting of individual B cells 

Mice were maintained in the UCSC vivarium according to IACUC-approved 

protocols. Single murine Ter119-CD3-CD4-CD8-Gr1-B220+ IgM+CD11b-CD5+ B1a 

cells were isolated from wild-type C57Bl/6 mice by lavage and incubated with 

fluorescently-labeled antibodies prior to sorting (Beaudin et al. 2016). The following 

antibodies were purchased from Biolegend to stain B-cells: Ter119, CD3 (145-2C11), 

CD4 (GK1.5), CD8a (53-6.7), B220 (RA3-6B2), Gr1 (RB6-8C5), IgM (RMM-1), 

CD5 (53-7.3), and CD11b (M1/70). Cells were analyzed and sorted using a FACS 

Aria II (BD), as described previously (Ugarte et al. 2015), ,(Smith-Berdan et al. 

2015),(Beaudin, Boyer, and Forsberg 2014). Single cells were sorted into 96 well 

plates and directly placed into 4 ul of Lysis Buffer - 0.1% Triton X-100, 0.2 ul of 

SuperaseIn (Thermo), 1ul of oligodT primer (IDT), 1ul of dNTP (10mM each)(NEB) 

- and frozen at -80°C. 
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Smartseq2 cDNA synthesis 

Single cell lysate was reverse transcribed using Smartscribe Reverse Transcriptase 

(Clontech) in a 10 ul reaction including a Smartseq2 (Picelli et al. 2013)  TSO 

(Supplementary Table S1) according to manufacturer’s instructions at 42°C. The 

resulting cDNA was treated with 1 ul of 1:10 dilutions of RNAse A (Thermofisher) 

and Lambda Exonuclease (NEB) for 30 minutes at 37°C. A PCR amplification step 

using KAPA Hifi Readymix 2x (KAPA) step was performed incubating at 95°C for 3 

mins, followed by 27 cycles of (98°C for 20 s, 67°C for 15 s, 72°C for 4 mins), with a 

final extension at 72°C for 5 mins.  

 

Illumina Sequencing 

The resulting full-length cDNA PCR product was treated with Tn5 enzyme (Picelli, 

Björklund, et al. 2014) which was loaded with Tn5ME-A/R and Tn5ME-B/R adapters 

(Supplementary Table S1). The Tn5 treated PCR product was then nick-translated 

and amplified for 13 cycles with KAPA Hifi Polymerase (KAPA) and Nextera Index 

Primers (Supplementary Table S1). Libraries were then size selected using a E-gel 

2% EX (Thermo-Fisher) to a size range of 400-1000 bp and sequenced on an Illumina 

HiSeq2500 2x150 run.  
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Nanopore Sequencing 

To achieve the 1ug of DNA needed for the Oxford Nanopore library prep, the full-

length cDNA product was split into five aliquots and amplified for 13 cycles with 

KAPA Hifi Readymix 2X (KAPA) using the ISPCR or multiplex cellular index 

primers. The following reaction was incubated at 95°C for 3 mins, followed by 13 

cycles of (98°C for 20 s, 67°C for 15 s, 72°C for 4 mins) with a final extension at 

72°C for 5 mins. The single cDNA or multiplex product was further end-repaired and 

dA-tailed using NEBNext Ultra End Repair/dA tailing mix (NEB), and adapter 

ligated using the sequencing adapters provided by ONT (HP Adapter/Adapter Mix). 

Ligation reaction was performed using Blunt/TA ligase master mix (NEB). Reactions 

were then enriched using Dynabeads MyOne C1 Streptavidin (Life Technologies) to 

capture molecules that contain the HP Adapter. Enriched libraries were then mixed 

with Fuel mix and Running buffer provided by ONT. Single cell libraries were either 

sequenced solely on one (Cell1 and Cell2) or two (Cell3) separate MinION R7.3 flow 

cells and ran on the 48 hr 2D protocol. For our multiplexing strategy, single R9.4 

flow cells were used (Pool1: Cells4-7, Pool2: Lexogen libraries) and ran on the 48 hr 

2D protocol.    

 

Data Analysis 

Illumina data 

Illumina paired end 150 bp reads in fastq format were quality and adapter trimmed 

using trimmomatic (v0.33) (Bolger, Lohse, and Usadel 2014). The trimmed reads 
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were aligned using STAR (v2.4) (Dobin et al. 2013) to the mouse genome (Sequence: 

GRCm38, Annotation: gencode vM10 (Mudge and Harrow 2015)). Illumina reads 

were assembled for each cell separately using the Trinity (v2.2.0) (Grabherr et al. 

2011) set of tools.  

 

ONT data 

ONT reads were processed using the Metrichor cloud platform 2D workflow. For 

R7.3 runs, both reads that passed or failed Metrichor quality cutoffs were retained. 

For R9.4 runs, reads that failed Metrichor quality cutoffs were discarded as they also 

failed our alignment criteria. Fast5 files generated by Metrichor were converted into 

fastq and fasta formats using poretools (v0.5.1) (Loman and Quinlan 2014). For 

demultiplexing, index-sequences were aligned to the reads using BLAT with 

parameters: -noHead -stepSize=1 -minScore=20 -minIdentity=20. Reads for which 

index-sequences could be identified were trimmed and assigned to the respective 

libraries. Next, for multiplexed and non-multiplexed reads alike, ISPCR adapter 

sequences were identified and trimmed using Levenshtein distances. Reads for which 

ISPCR adapters could be identified and trimmed were marked but all reads, trimmed 

or not, were aligned to the mouse genome (GRCm38) using BLAT(v35x1) (Kent 

2002) with parameters: -stepSize=5 -repMatch=2253 -minScore=100 -

minIdentity=50 -maxIntron=2000000. Alignments were filtered for a single 

alignment per read. This filtering process involved three steps: (i) the highest scoring 

alignment for each read is identified, alignment scores within 2% of each other were 
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treated as ties, (ii) in case of ties the alignment with largest number of gaps is selected 

(this selects against alignment to unspliced pseudo-genes) and (iii) if the best 

alignment of a read has a ratio of aligned bases to read bases ≤0.6 the read and its 

alignment are discarded.  

 

 

Gene Expression 

Gene Expression for ONT and Illumina RNAseq was analyzed using custom scripts. 

For each gene, the number of reads overlapping with its exons was counted, 

normalized to total number of aligned reads in a library and reported as Reads Per 

Gene per 10,000 reads (RPG10K). Genes were counted as expressed if they had a 

RPG10K value>0. RPG can be calculated as: 

𝑅𝑃𝐺10𝐾 = (𝑡𝑜𝑡𝑎𝑙#	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑎𝑙𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑎	𝑔𝑒𝑛𝑒′𝑠	𝑒𝑥𝑜𝑛𝑠	
÷ 𝑡𝑜𝑡𝑎𝑙	#	𝑜𝑓	𝑎𝑙𝑖𝑔𝑛𝑒𝑑	𝑟𝑒𝑎𝑑𝑠	𝑖𝑛	𝑠𝑎𝑚𝑝𝑙𝑒) × 10,000 

 

Transcription start and end site detection 

For the detection transcription start and end sites we limited our analysis to reads for 

which we detected and trimmed ISPCR adapter prior to read alignment. We then 

identified positions in the genome at which at least 2 alignments of these complete 

reads ended. We then further restricted our analysis by only considering positions 

with a median and 75th percentile of the number of clipped (unaligned) read bases 

between 6-15 and ≤ 20, respectively. This number of clipped (unaligned) bases 

corresponds to the length of bases contained in ISPCR TSO and oligodT primers that 
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were not trimmed. We then placed a 20 bp bin around these positions to include the 

highest number of read alignment ends possible. 

To filter false positive bins caused by incomplete read alignments in highly expressed 

genes bins were only considered as containing true TSS/TES if they met the 

following conditions:  

i) The total number of read alignment ends in the bins had to be > 2% of the total 

number of reads in the next 50 read covered bases. ii) The candidate site had to be at 

least 60 read covered bases away from the next closest TSS/TES.  

By only counting bases covered by read alignments we didn’t take non-covered 

introns into account which would skew our analysis. Next, in order to distinguish TSS 

and TES bins, we calculated median Levenshtein distances of the unaligned bases at 

all read alignment ends in a bin to nucleotides present in TSO (ATGG) or the 

OligodT (TTTT) primer. If the median Levenshtein of a bin to ATGG was ≤2 it was 

declared a TSS. If the median Levenshtein of a bin to TTTT was ≤2 it was declared a 

TES.  

 

Transcription start and end site validation 

To assess Fantom5(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et 

al. 2014) CAGE scores we downloaded combined CAGE data 

(mm9.cage_peak_phase1and2combined_coord.bed.gz), converted the data to mm10 

coordinates using https://genome.ucsc.edu/cgi-bin/hgLiftOver (Kent et al. 2002) and 

investigated direct overlap between TSS/TES and CAGE peaks. We considered 
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TSS/TES and CAGE peaks to be overlapping if they were within 10 bp of each other. 

To assess polyA enrichment in TSS/TES, we extracted genomic sequences up- and 

downstream of these sites and looked for identical string matches to “AATAAA” and 

“ATTAAA”.  

 

Splice Site detection 

To identify 20 bp bins as splice sites only ONT 2D reads with a ratio of aligned 

bases/read bases of  > 0.9 were analyzed. We then identified positions in the genome 

at which at least two read alignments of these reads opened or closed an alignment 

gap larger than 50 bp. 

The 20 bp bins surrounding these positions were considered as containing a splice site 

if the following conditions are met:  

To filter false positive bins caused by spurious read alignment gaps in highly 

expressed genes bins were only considered as containing true splice sites if they met 

the following conditions:  

i) the number of reads opening or closing an alignment gap in the bin was at least 2% 

of the total number of reads in the preceding (5’) or subsequent (3’) 40 read covered 

bases. ii) not closer than 30 bp to another splice site. The directionality of the splice 

site bin containing either 5’ or 3’ status was based on the direction of the majority of 

reads containing the splice site. 
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Alternative Splicing 

To detect alternative splice sites, we counted how often 5’ and 3’ splice sites were 

spliced together in ONT 2D reads with aligned bases/read bases ratio of > 0.85. A 5’-

>3’ combination had to be present in at least 2 reads to be considered. We scored 

alternative splice site usage if the same 5’ splice site was spliced into two different 3’ 

splice sites or vice versa. To detect intron retentions, we identified areas between 5’ 

and 3’ splice sites that were covered to at least 70% by at least one ONT 2D read. 

 

Isoform identification and quantification. 

We detected isoform by grouping reads according the TSS/TES and alternative splice 

sites they contained. ONT read alignment ends found within 60 bp of a TSS and a 

TES were sorted based on which alternative splice sites it contained. Isoforms that 

contained at least 1% of all reads at a gene locus were retained. All the reads in these 

retained isoform groups were used to create consensus reads using POA(Lee, Grasso, 

and Sharlow 2002). In short, fasta files containing all read sequence are passed to 

POA which generates a consensus of the reads by creating a multiple sequence 

alignment of the reads in the form of a partially ordered graph. The program then 

returns the most heavily-weighted path as the consensus of the reads. The consensus 

reads are then aligned to genome using BLAT parameters: -stepSize=5 -

repMatch=2253 -minScore=10 -minIdentity=10. There was however, one exception 

regarding the highly complex variable regions derived from the IGH transcripts 

which were first aligned with IgBlast (Ye et al. 2013) and then with BLAT. IgBlast 
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alignment coordinates were converted to genome coordinates and BLAT and IgBlast 

portions of the read alignments were merged. 

 

Statistical test and multiple testing correction 

We used the ‘chi2_contingency’ function in the scipy.stats (Jones et al., n.d.) package 

to implement the Chi2 contingency test to detect differential expression of complex 

isoforms between cells. Multiple testing holm-sidak correction was performed with 

the ‘statsmodels.sandbox.stats.multicomp’ (Seabold and Perktold, n.d.) package. 

 

Data Visualization 

All data analysis and visualization was performed in python (Oliphant 2007) using 

the numpy/scipy/matplotlib (Jones et al., n.d.; van der Walt, Colbert, and Varoquaux 

2011; Hunter 2007) packages.  

 

Data Availability 

Illumina and ONT sequencing reads were uploaded to the SRA under accession 

number  SRP082530. All scripts are available upon request or will be available at 

https://vollmerslab.soe.ucsc.edu/ 
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Supplemental 

 
Fig. S2.1: Sequencing run characteristics 
The scatter plots on top shows read length and average sequence quality for ONT 2D 
reads that passed (blue) or failed (orange) the Metrichor analysis pipeline quality 
threshold in individual R7.3 (left) and R9.4 (right) sequencing runs. The histograms on 
the right of the scatter plots show the reads binned by read length using the same colors 
as the plot in the center to indicate passed (blue) or failed (orange). Using the same color 
scheme, the histogram at the bottom shows alignment success (percent of reads 
successfully aligned by BLAT) for reads binned by sequence quality score. 
The scatter plot on the bottom shows ONT 2D reads successfully aligned by BLAT. The 
ratio of aligned/total bases of each read (blue=pass, orange=fail) plotted against average 
sequence quality score. The alignment quality cut-off of 60% aligned bases is shown as a 
black line. 
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Fig. S2.2: Gene detection with 
subsampled data 
For each cell Illumina and ONT reads were 
subsampled in 5000 read bins until either the 
total number of Illumina or ONT reads was 
reached. The subsampled reads were used to 
quantify gene expression. Genes with a 
RPG10K value >0, i.e. with a single mapped 
read were scored as detected (x-axis = # of 
genes detected, y-axis= # of reads 
subsampled). Reads detected in both or 
either technology are shown in different 
colored bars. 
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Fig. S2.3: Quantifying SIRV transcripts amplified from 10fg starting material 
with ONT RNAseq 
Left: SIRV transcript levels of Replicate 1 (Rep1: 10fg SIRV pool E2) as measured with 
ONT RNAseq. Transcripts are binned by their starting molecule numbers.  
Middle: SIRV transcript levels of Replicate 1 are plotted against transcript length with 
colors corresponding to groups in shown on left.  
Right: Scatter plot showing correlation of SIRV transcript expression levels of Replicate 
1 (Rep1: 10fg SIRV pool E2) and Replicate 2 (Rep2: 10fg SIRV pool E2) , both 
measured by ONT RNAseq r-value is shown as Pearson-r. 
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Fig. S2.4: Identifying Transcript isoforms using ONT RNAseq 
Genome Browser view of indicated SIRV gene loci. Top box contains transcript 
annotations, second and third box contain TSS (Teal) /TES (Purple) and splice sites 
(5’SS: yellow, 3’SS: blue) locations predicted from the read data, respectively. Black 
lines and grey areas in box 3 indicate alternative splicing and intron retention events 
predicted from the read data. Box 4 contains read alignments of isoform consensus reads. 
Box 5 contains ONT 2D read alignments. Direction of transcripts, isoform consensus, 
and ONT 2D reads are indicated by their color (Teal:5’to3’, Purple:3’to5’). 
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Fig. S2.5: Diverse Isoforms of B cell surface receptors identified using ONT 
RNAseq 
Genome Browser view of the indicated B cell surface receptor gene loci. Top box 
contains transcript annotations, second and third box contain TSS (Teal) /TES (Purple) 
and splice site (5’SS: yellow, 3’SS: blue) locations predicted, respectively. Black lines 
and gray areas in box 3 indicate alternative splicing and intron retention events predicted. 
Below boxes alternatingly contain read alignments of isoform consensus reads and ONT 
2D read alignments. Direction of transcripts, isoform consensus, and ONT 2D reads are 
indicated by their color (Teal: 5’ to 3’, Purple: 3’ to 5’). 
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Table S.2.1 List of Oligos 
All oligos in the study are shown above 
1) Spaces in sequences are for visual emphasis and do not indicate gaps in the sequences. 
2) Nextera_Primer_A and Nextera_Primer_B represent groups of sequences. 3) (i5) and 
(i7) indicate different illumina indexes 
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Table S.2.2: Illumina and ONT Read Numbers 
Illumina Reads: Numbers indicate individual reads, not read pairs. “Aligned” Reads are 
reads successfully aligned using STAR. ONT 2D Reads: “Pass Filter” and “Fail Filter” 
are reads determined by Metrichor software based on quality scores. “Pass Alignment 
Filter” are reads that were aligned using BLAT and more than 60% of their bases aligned 
to the genome. Complete reads as mentioned in the manuscript are defined as reads for 
which both the ISPCR sequences are identified on both ends and trimmed. 
 

 

 

Table S2.3: Alternative Splice Site Predictions 
Median ONT 2D read count is shown for alternative splice sites. Splice sites are 
separated into sites with and without illumina read support. p-values are calculated using 
scipy.stats.mannwhitneyu function with keyword argument alternative = ‘greater’. 
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Abstract 

Transcriptome studies evaluating whole blood and tissues are often confounded by 

overrepresentation of highly abundant transcripts. These abundant transcripts are 

problematic as they compete with and prevent the detection of rare RNA transcripts, 

obscuring their biological importance. This issue is more pronounced when using long-

read sequencing technologies for isoform-level transcriptome analysis, as they have 

relatively lower throughput compared to short-read sequencers. As a result, long-read 

based transcriptome analysis is prohibitively expensive for non-model organisms. 

While there are off-the-shelf kits available for select model organisms capable of 

depleting highly abundant transcripts for alpha (HBA) and beta (HBB) hemoglobin, 

they are unsuitable for non-model organisms. To address this, we have adapted the 

recent CRISPR/Cas9 based depletion method (Depletion of Abundant Sequences by 

Hybridization) for long-read full-length cDNA sequencing approaches that we call 

Long-DASH. Using a recombinant Cas9 protein with appropriate guide RNAs, full-

length hemoglobin transcripts can be depleted in-vitro prior to performing any short- 

and long-read sequencing library preparations. Using this method, we sequenced 

depleted full-length cDNA in parallel using both our Oxford Nanopore Technology 

(ONT) based R2C2 long-read approach, as well as the Illumina short-read based Smart-

seq2 approach. To showcase this, we have applied our methods to create an isoform-

level transcriptome from whole blood samples derived from three polar bears (Ursus 

maritimus). Using Long-DASH, we succeeded in depleting hemoglobin transcripts and 
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generated deep Smart-seq2 Illumina datasets and 3.8 million R2C2 full-length cDNA 

consensus reads. Applying Long-DASH with our isoform identification pipeline, 

Mandalorion we discovered ~6,000 high-confidence isoforms and a number of novel 

genes. This indicates there is a high diversity of gene isoforms within Ursus maritimus 

not yet reported. This reproducible and straightforward approach has not only improved 

the polar bear transcriptome annotations but will serve as the foundation for future 

efforts to investigate transcriptional dynamics within the 19 polar bear subpopulations 

around the Arctic. 

 

Introduction 

Accurate isoform-level differential expression analysis of transcriptomes is essential 

for interpreting gene regulation under different biological, environmental or 

physiological conditions. RNA transcript isoforms – which are often unique among 

different cell types, tissues, developmental stages, and organisms (Zhang et al. 2016; 

E. T. Wang et al. 2008; Kalsotra et al. 2008) – are defined by the use of alternative 

transcription start sites (TSSs), polyA sites, and splice sites. Use of alternative isoforms 

is highly regulated and thought to contribute to cellular and organismal diversification 

within higher eukaryotes (Graveley 2001), adaptation and speciation (Harr and Turner 

2010; Shi et al. 2012) and can also reflect certain disease states (Busslinger, 

Moschonas, and Flavell 1981; Andreadis 2005; Ilagan et al. 2015).  

To perform this type of differential expression analysis on the isoform-level 

requires both short- and long-read sequencing technology. Short-read RNA-seq 
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provides the read depth necessary for gene expression quantification, but requires 

accurate and exhaustive isoform-level transcriptome annotations for its analysis. 

However, existing transcriptome annotations of non-model organisms are often 

incomplete or inaccurate (Ungaro et al. 2017) because they cannot rely on labor-

intensive efforts like Gencode, which are working to exhaustively annotate the isoform-

level transcriptomes of human and mouse. While short-read RNA-seq data can itself 

be used for transcriptome annotation, it fails at annotating transcriptomes on the 

isoform-level because it cannot recapitulate full-length transcripts. This inability to 

define full-length transcripts is due to the fragmentation of RNA, or their cDNA copies, 

prior to sequencing making it difficult to computationally re-assemble reliably 

(Grabherr et al. 2011; Pertea et al. 2015; Bankevich et al. 2012). To provide an accurate 

isoform-level transcriptome annotation for non-model organisms, long-read 

sequencing technology is required to sequence full-length cDNA molecules. 

The ability to perform combined short- and long-read transcriptome analysis on 

non-model organisms is further complicated by sample availability. In contrast to the 

organs and tissues of model organisms which can be easily acquired, availability of 

samples from non-model organisms are often more limited. In rare circumstances 

sampling can be performed through fat and muscle tissue biopsies (Khudyakov et al. 

2017), but the current gold standard still relies on whole blood RNA samples, especially 

for large non-model organisms (Du et al. 2015). This is particularly true for protected 

and endangered species (Huang et al. 2016; Hernández-Fernández, Pinzón, and 

Mariño-Ramírez 2017). While whole blood samples can be easily acquired and provide 
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a wealth of information regarding physiological or disease states in surrounding tissues 

(Liew et al. 2006), polyadenylated RNA extracted from whole blood can be comprised 

of >50% hemoglobin transcripts (Shin et al. 2014; Mastrokolias et al. 2012). In any 

high-throughput sequencing-based assay, these highly abundant transcripts will 

compete for a limited number of sequencing reads and as a result will be sequenced 

over and over again without generating any new information. This would waste 

valuable reads which could otherwise detect less abundant transcripts.  

Currently, there is no approach to deplete hemoglobin transcripts from whole 

blood RNA while enabling downstream analysis of the depleted RNA/cDNA with both 

short- and long-read sequencing. Commercially available hemoglobin depletion kits – 

including GLOBINclear (Ambion) or RiboZero (Illumina) – are specifically designed 

for human samples and rely on hemoglobin RNA pull-down methods (Field et al. 

2007). Even if they would succeed in depleting hemoglobin from non-model organism 

samples, which is far from guaranteed (Choi et al. 2014), these pull-down approaches 

use harsh conditions and high temperatures during long incubation steps which 

contribute to RNA fragmentation and introduce unwanted technical variability (Debey 

et al. 2004). While fragmented RNA is suitable as input into short-read RNA-seq, it is 

not suitable for long-read full-length cDNA sequencing.  

To perform a comprehensive analysis of non-model organism transcriptomes 

from whole-blood with short- and long-read technologies, we require a new approach 

that can deplete highly abundant transcripts like hemoglobin from whole-blood 

samples of a wide range of organisms without fragmenting transcripts. To this end, we 
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chose to adapt the powerful, recently published DASH (Depletion of Abundant 

Sequences by Hybridization) (Gu et al. 2016) method which utilizes a recombinant 

Cas9 to perform in-vitro depletion using sequence specific sgRNAs. Our adapted 

method which we will refer to as Long-DASH also takes advantage of the 

CRISPR/Cas9 system to selectively deplete hemoglobin alpha (HBA) and beta (HBB) 

transcripts but targets full-length cDNA instead of fragmented short-read Illumina 

sequencing libraries like regular DASH. By depleting full-length cDNA prior to any 

library preparation, this allows the user the choice to use any short- or long-read 

sequencing platform.  

As a proof-of-concept we evaluated three hemoglobin-depleted and non-

depleted polar bear whole blood transcriptomes using our ONT-based R2C2 (Volden 

et al. 2018) full-length cDNA sequencing method and an Illumina-based modified 

Smart-seq2 method. We found that by incorporating Long-DASH, we successfully 

depleted hemoglobin transcripts without non-specifically affecting the rest of the 

cDNA pool. Finally, we generated ~3.8 million ONT-based R2C2 consensus reads, 

dramatically refining the polar bear transcriptome annotations.  

 

RESULTS 

Long-DASH depletes hemoglobin transcripts from full-length cDNA 

We used a modified Smart-seq2 protocol (Picelli, Faridani, et al. 2014; Cole et al. 2018; 

Volden et al. 2018) to reverse transcribe and amplify full-length cDNA from 70 ng of 

whole blood RNA of three polar bears (PB3, PB19, PB21). We then performed a 
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targeted depletion of hemoglobin transcripts by incubating the full-length cDNA with 

Cas9 protein loaded with 16 guide RNAs (sgRNAs) specific to hemoglobin transcripts 

– 8 sgRNAs targeting the HBA transcripts and 8 sgRNAs targeting the HBB transcripts. 

The sgRNAs were selected to deplete hemoglobin transcripts from human and polar 

bear samples. The sgRNAs were chosen based upon sequence homology between these 

two species to eventually allow the removal of abundant of hemoglobin transcripts in 

whole blood from both human and polar bear samples using the same sgRNAs (Field 

et al. 2007) (Supplementary Fig. S3.1). Using the 16 sgRNA probes we designed should 

also allow for the depletion of samples of other vertebrates although sequence 

similarity should be checked before this is attempted.   

The depletion process using the Cas9 system should cut the ~700-800 bp 

transcripts at different sites allowing us to do two things. First, we can re-amplify the 

sample, thereby only enriching for full-length molecules since the cut cDNA molecules 

no longer contain two priming sites required for exponential amplification during PCR 

amplification (Fig. 3.1). Second, we can remove the cut transcripts by performing a 

SPRI-bead based size selection whereby only transcripts > 500 bp are retained. Indeed, 

prior to any depletion, we observed very strong bands located at ~700-800 bp in our 

agarose gels indicating the presence of a substantial amount of HBA and HBB 

hemoglobin transcripts (Fig. 3.2). After depletion, reamplification, and size selection, 

the full-length cDNA product was visualized again to reveal the removal of the putative 

hemoglobin bands (Fig. 3.2). After hemoglobin depletion is confirmed, the cDNA is 
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ready to be converted into ONT- and Illumina-based libraries, with each protocol using 

the same input cDNA (Fig. 3.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Schematic of Long-DASH (Long Read Depletion of Abundant 
Sequences by Hybridization)  
A) Whole Blood RNA is extracted and full-length cDNA is generated with the first half of 
the Smart-seq2 protocol. The cDNA is then depleted of hemoglobin transcripts using the 
recombinant S. pyogenes Cas9 protein bound to hemoglobin specific sgRNA which cuts 
hemoglobin cDNA molecules by introducing double strand breaks (△) in a sequence 
specific manner. The cut molecules can no longer be exponentially amplified with PCR, 
so a subsequent PCR step is performed to enrich for complete non-hemoglobin cDNA 
molecules. The resulting hemoglobin depleted cDNA pool is then sequenced using the 
ONT-based R2C2 library prep and the Illumina-based Smart-seq2 library prep. 
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Figure 3.2: Long-DASH depletes hemoglobin from full-length cDNA.  
A) Depleted (D) or undepleted (U) cDNA was visualized on a 2% Agarose gel. DNA 
ladder (L) suggests highly abundant cDNA species - putatively hemoglobin around 
~700bp. B) Fluorescence analysis of the gel by ImageJ (Rasband 2011) further 
emphasizes the difference between depleted (blue) and undepleted (black) cDNA pool. 
Select size markers in the DNA ladder (red) are indicated. 
 

Long-DASH is compatible with Smart-seq2 library preparation and does not 

distort cDNA composition 

Next, we aimed to validate whether Long-DASH truly depletes hemoglobin transcripts 

in the cDNA pool and can be used for Illumina’s short-read RNA-seq sequencing 

platform. To show this we prepared independent Tn5 based Smart-seq2 sequencing 

libraries for each depleted and undepleted cDNA pool. We then sequenced the Smart-

seq2 libraries on a multiplexed Illumina HiSeq X 2 x151 bp run. We generated ~20 

million reads for depleted and ~60 million reads for undepleted samples. By sequencing 

the undepleted samples deeper, we reasoned that the non-hemoglobin genes should 
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receive equivalent read coverage in depleted and undepleted samples. This allowed us 

to perform a side by side comparison of the depleted and non-depleted samples to 

ensure no off-target effects. 

First, we analyzed the resulting sequencing data using a custom kmer based 

approach to estimate the number of reads originating from hemoglobin transcripts. In 

the undepleted cDNA pools 48-68% of reads were scored as originating from 

hemoglobin transcripts. In depleted samples this was reduced to 1-4% reads (Fig. 

3.3A). As a consequence, at the same read depth, RPM values for non-hemoglobin 

genes increased by a factor of 3 on average. 

Second, to show that the depletion of hemoglobin transcripts did not distort the 

rest of the cDNA pool, we aligned the reads to the polar bear genome and quantified 

the expression of all previously annotated genes. We observed that when reads aligning 

to the hemoglobin loci were included in the analysis, the reads aligning to the few 

hemoglobin loci in our undepleted samples skewed the RPM calculations. By 

sequencing undepleted samples to great depth, this allowed us to exclude hemoglobin 

from quantification of gene expression while matching non-hemoglobin read depth of 

depleted samples. This analysis showed that the overall gene expression patterns were 

not dramatically distorted between depleted and undepleted samples. The three polar 

bear samples showed a Pearson r-value of 0.97-0.98 (Fig. 3.3B) when the gene 

expression values of depleted and undepleted samples were compared and reads 

aligning to hemoglobin loci were discarded.  
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Next we checked for genes whose expression was systematically affected by 

depletion. No genes were downregulated more than 4-fold in all three polar bear 

samples suggesting that there was no strong systematic off-target effects using the Cas9 

based depletion. We did however find 151 genes out of ~12000 expressed genes to be 

upregulated by at least 4-fold in all 3 polar bears suggesting that Cas9 based depletion 

and subsequent second PCR amplification have had a systematic impact on a number 

of genes. We then investigated whether this effect would affect differential expression 

analysis between depleted samples. To this end, we calculated gene expression 

differences for each pair of polar bears twice, once pre- and once post-depletion. We 

then compare the pre- and post-depletion gene expression differences and found that, 

while depletion does introduce differences in the upregulated genes, these effects 

appear to be small, random in direction, and similar to a random selection of genes with 

similar expression levels (Supplementary Fig. S3.2).   

Overall, this indicates that the depletion of hemoglobin from full-length cDNA 

pools was successful, thereby freeing up the vast majority of sequencing reads to 

analyze the rest of the polar bear transcriptome. Although, the data suggests that a 

number of genes were systematically affected by depletion and additional PCR steps, 

further experiments including several technical replicates should enable differential 

expression analysis between depleted samples.  
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Figure 3.3: Long-DASH specifically targets hemoglobin from cDNA.  
A) Hemoglobin content was measured in Smart-seq2 (Illumina) libraries of depleted (blue) 
or undepleted (black) cDNA pools. B(Top) and C) Scatterplots comparing gene expression 
in undepleted and depleted Smart-seq2 libraries of PB3, PB19, and PB21 with reads 
aligning to hemoglobin loci (red) (Liu et al. 2014) either included (B) or excluded (C). 
B(Bottom) Scatterplots showing log2(fold-change) between depleted and undepleted 
cDNA pools as calculated by [Depleted (log2(RPM+1))-Undepleted (log2(RPM+1))] with 
hemoglobin loci included in the RPM normalization. 
 

Long-DASH is compatible with full-length cDNA sequencing methods 

Having established the compatibility of Long-DASH with the short-read RNA-seq 

assay, we investigated whether we could generate a long-read data set from the depleted 

cDNA using our R2C2 approach. By incorporating R2C2 we can generate error-
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corrected full-length cDNA reads using long-read ONT sequencers. We used 5 partially 

multiplexed flowcells to generate ~3.8 million R2C2 consensus reads of 5 depleted 

cDNA pools – two Long-DASH replicates (R1 and R2) for PB3 and PB19 as well as a 

single Long-DASH run for PB21. The R2C2 reads we generated had a median accuracy 

of 94%, which is between 8-10% more accurate than standard ONT cDNA sequencing 

protocols (Supplementary Table S3.1).  

We also generated ~5,000 R2C2 consensus reads of undepleted cDNA from 

one polar bear which allowed us to compare hemoglobin content and consensus read 

length distributions between depleted and undepleted samples (Fig 3.4). In the 

undepleted sample, the majority of R2C2 reads were of two distinct lengths, both 

around 700 bp, likely representing 79.3% of hemoglobin transcripts present in that 

sample. The 5 depleted samples showed a much more evenly distributed read length 

with a median hemoglobin content of 1.2% (0.6%-8.3%) (Fig. 3.4). Higher hemoglobin 

levels for R2C2 compared to Smart-seq2 based library preps (1-4%) using the same 

cDNA might be explained with R2C2 being somewhat biased towards transcripts 

between 500-1000 bp.  

The median read length of the depleted samples was slightly below 1 kb which 

is in line with cDNA read length distributions published to date (Workman et al. 2018). 

This means that despite the less than ideal conditions for RNA integrity given difficult 

field conditions and the lag time between sample collection and processing, the 

analyzed RNA molecules were largely intact.  
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Figure 3.4: Long-DASH depletes hemoglobin from cDNA.  
Length distribution of R2C2 consensus reads is shown as swarmplots in the indicated 
samples. Independent Long-DASH replicates (R1 and R2) were performed for samples 
PB3 and PB19 but not PB21. Percent of Hemoglobin reads as determined with a kmer 
approach is given in red on top.    
 

R2C2 reads of depleted full-length cDNA can refine transcriptome annotations 

Next, we generated high confidence isoform-level information from our full-length 

cDNA to refine the currently available polar bear transcriptome annotation. To this end, 

we analyzed our 3.8 million R2C2 consensus reads using the Mandalorion pipeline we 

previously developed (Byrne et al. 2017). We aligned the R2C2 reads to the polar bear 

genome sequence (Liu et al. 2014) using minimap2. These alignments, together with 

previously known individual splice sites (Genomic Resources Development 

Consortium et al. 2014; Liu et al. 2014), then serve as input into our Mandalorion 

pipeline which processes read alignments into high-confidence isoforms. 
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The Mandalorion pipeline first complements known splice sites with new splice 

sites it identifies de novo from R2C2 read alignments. It then groups R2C2 reads based 

on the splice sites they use. Pairs of transcription start sites (TSSs) and polyA sites are 

then determined for each group to identify full-length isoforms. Two additional 

processing steps were performed whereby isoforms were excluded if they were fully 

contained within longer isoforms or unspliced. This was to ensure removal of any non-

full-length isoforms that may result from RNA degradation, as well as isoforms 

potentially caused by DNA contamination, respectively. In total, this analysis produced 

5,831 high-confidence isoforms with a median accuracy of 99.1%.  

We then classified these 5831 high-confidence spliced isoforms using the 

Sqanti algorithm (Tardaguila et al. 2018) that determines what relationship an 

experimentally determined isoform has to genes and isoforms in a reference annotation 

(Fig. 3.5). As a reference, we downloaded 28,880 known and predicted mRNA 

sequences from NCBI by selecting “RefSeq” and “mRNA” filters in the NCBI 

Nucleotide database, most of which are based on the NCBI Ursus maritimus 

Annotation Release 100 catalog of polar bear mRNA sequences (Pruitt et al. 2014). 

1239 of the 5831 Mandalorion isoforms were classified as 

“novel_not_in_catalog” (NNC) which means that they overlapped a known gene but 

contained at least one unannotated splice site. In-depth analysis of this NNC group 

found that they contained a total of 521 new exons. In addition to R2C2 read coverage, 

Smart-seq2 read coverage was elevated in these new exons providing additional 

evidence for their inclusion in transcripts. Further, 1301 isoforms were classified as 
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“novel_in_catalog” (NIC), which means that they overlapped a known gene and used 

only annotated splice sites but at least once as part of a previously unannotated splice 

junction. In total we observed 2540 (1239 NNC and 1301 NIC) new isoforms with 

unannotated exon configurations. An additional 1893 isoforms were classified and 

“full_splice_match” (FSM) which means that their splice junctions matched an 

annotated isoform completely but it doesn’t mean that TSS and polyA sites also 

matched this isoform. In-depth analysis of the putative full-length NNC, NIC, and FSM 

isoform groups identified 2885 new TSSs and 1817 new polyA sites. R2C2 read 

coverage declined rapidly at TSSs and polyA sites providing clear evidence for their 

validity. Smart-seq2 read coverage was elevated inside TSS and polyA sites but 

declined slowly towards the respective features which is characteristic for standard 

short-read Illumina data (Fig.3.5). This is not surprising as short-read based protocols 

have to be specifically designed to capture those features (Salimullah et al. 2011; Cole 

et al. 2018; Ruan and Ruan 2011). So, while this data validates the existence of these 

features, it cannot be used for confirming their exact location.  

Finally, 769 isoforms were classified as “incomplete_splice_match” (ISM) 

which means that they contain a subset of splice junctions of an annotated isoform. 

While these isoforms could represent real, shorter transcripts, they might also represent 

experimental artifacts so we excluded them from TSS and polyA analysis. 

Considering RefSeq mRNA sets are in part based on deep short-read data and 

computational annotation, we did not expect to discover many entirely new gene loci. 

However, 509 of the 5831 isoforms were classified as “intergenic” (IG) which means 
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that they did not overlap with any annotated gene locus. By determining which of these 

isoforms overlapped with each other, we identified 176 new gene loci.  

Overall, this analysis dramatically refined our isoform-level knowledge of the 

whole blood polar bear transcriptome (Fig. 3.5). To make this knowledge 

straightforward to use for future analysis, we have generated a gtf annotation file 

containing RefSeq mRNA entries merged with our R2C2/Mandalorion isoforms. 

How these new isoforms and isoform features have improved the current 

annotation can be seen clearly in these three following examples. In the RBX1 gene, 

we discovered 10 new isoforms containing new TSSs and polyA sites, several of which 

were associated with new terminal first or last exons (Fig. 3.6A). In the GMFG gene, 

we similarly identified new isoforms containing unannotated internal and terminal 

exons, intron retention events, TSSs, and polyA sites (Fig. 3.6B). Finally, we 

discovered a new gene locus that contains two isoforms and is entirely absent in the 

polar bear RefSeq mRNA set. However, aligning the two isoforms to the Panda genome 

(R. Li et al. 2010) resulted in unique matches to the CCDC72 gene (Fig. 3.6C). 
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Figure 3.5: R2C2/Mandalorion identifies new isoform features in the polar bear 
transcriptome.  
(Top) General workflow for comparing RefSeq mRNAs and Mandalorion isoforms is 
shown on the left. RefSeq mRNAs were aligned to the polar genomes using minimap2 and 
converted to gtf format to create a reference annotation. Isoforms determined by 
Mandalorion were then classified using this reference annotation using the sqanti_qc 
algorithm. Isoforms were classified as Novel_not_in_catalog (NNC), Novel_in_catalog 
(NIC), Full_splice_match (FSM), Incomplete_splice_match (ISM) and Intergenic (IG). 
New transcriptome features were then determined based on the minimap2 alignments of 
isoforms in the indicated categories. (Bottom) R2C2 and Smart-seq2 read coverage around 
newly identified TSS, the splice sites (3’ and 5’) of newly identified exons, and newly 
identified polyA sites.  
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Figure 3.6: R2C2/Mandalorion refine transcriptome annotations.  
Genome Browser views of the RBX1 locus (A), the GMFG locus (B), a locus likely 
corresponding to the CCDC72 gene not yet included in the RefSeq mRNA set (C). From 
top to bottom, 1) RefSeq mRNAs alignments, 2) new features based on Mandalorion 
isoforms (green: TSS, red: polyA site, blue: new exon or locus), 3) Mandalotion isoforms, 
and 4) R2C2 reads. Plus, strand alignment are in blue, minus strand alignments in orange. 
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Discussion 
 
To better understand how humans and environmental perturbations impact threatened 

or endangered species, it is critical to understand changes in transcriptome dynamics. 

Fluctuations at the molecular and cellular level are sensitive indicators of 

environmental change (Brown et al. 2017; Kim et al. 2011); they are analogous to 

veterinary medicine where blood transcriptomes serve as proxies for identifying health 

status, disease, and exposures to environmental toxicants (Lv et al. 2018; McLoughlin 

et al. 2014; Burgess et al. 2012; Watson et al. 2017). Changes at the transcriptome level 

may also be useful indicators of ecological specialization, and therefore useful to design 

strategies for species management and conservation (Supple and Shapiro 2018). 

However, existing approaches to generate transcriptome data from whole blood RNA 

are either specifically designed for short-read sequencing (DASH) or human samples 

(commercial hemoglobin depletion kit like GLOBINclear) and therefore lack a cost-

effective approach for analyzing isoform-level transcriptomes of non-model 

organisms. 

Any study investigating whole blood transcriptomes using short- or long-read 

sequencing will greatly benefit from the Long-DASH method. Long-DASH effectively 

and economically depletes hemoglobin transcripts from whole blood full-length cDNA 

which can then be sequenced with short- or long-read sequencing. We validated Long-

DASH by depleting hemoglobin transcripts from polar bear whole blood cDNA pools 

and generated deep short-read Smart-seq2 RNA-seq data as well as 3.8 million R2C2 

full-length cDNA consensus reads. We processed the 3.8 million full-length R2C2 
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reads to identify close to 6000 high confidence isoforms which we then used to refine 

and improve the polar bear whole blood transcriptome annotation.    

 In addition to polar bear hemoglobin transcripts, the sgRNAs designed for this 

study will also target human hemoglobin transcripts making them useful for basic 

research as well as clinical applications in cancer biology and disease diagnosis (Fig. 

S1) (Valk et al. 2004; Borovecki et al. 2005; Gervasoni et al. 2008; Morey et al. 2016). 

Further, the sgRNA sequences used in Long-DASH can be easily adapted to any 

organisms or gene. The ease and adaptability places Long-DASH at an advantage over 

“as-is” commercial kits like GLOBINclear (Ambion), which promises >95% of 

depletion of human and mouse hemoglobin transcripts, but fails to efficiently deplete 

hemoglobin transcripts from pig whole blood RNA samples (Choi et al. 2014).  

Since cDNA can be generated from femtogram levels of polyA-RNA, Long-

DASH requires very little RNA input compared to RNA pull-down methods. This 

allows the investigator to gather small samples, or only process small aliquots of 

existing samples, thereby maximizing the usefulness of each sample collection and 

minimizing harm to animals. In its current state depletion by Long-DASH is still 

somewhat variable, resulting in hemoglobin levels from 0.6%-8.3%. While still a large 

improvement compared to the undepleted samples, future work on the method will 

center on removing this variability through either longer incubation times or higher 

number or concentration of sgRNA probes and the Cas9 protein. It may also be 

beneficial to measure depletion success by qPCR before sequencing a depleted cDNA 

pool.  
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 Going forward, the Long-DASH depletion method and the R2C2 long-read 

sequencing method will form a very powerful combination for transcriptome analysis 

and annotation from whole blood samples and beyond. The transcriptomes of many 

tissues contain several highly abundant transcripts that represent >50% of all transcript 

molecules (Mure et al. 2018). A set of sgRNAs targeting any abundant transcripts can 

be easily generated, making Long-DASH conducive for surveying other tissues as well. 

Specifically, depleted full-length cDNA libraries can be sequenced using our R2C2 

method, which currently represents the most powerful combination of throughput and 

accuracy in the long-read sequencing field. Our most recent R2C2 run emphasizes this 

by generating ~1,000,000 R2C2 reads at a median accuracy of 97.5% on a single ONT 

MinION flowcell at a cost of ~$650 (Table S1). This represents an increase in accuracy 

of >10% over standard ONT cDNA sequencing and 10-times more complete reads than 

the PacBio Sequel at the same cost. Combining our Long-DASH and R2C2 methods 

therefore brings the exhaustive annotation of non-model organisms within reach. 

 

Materials and Methods 

 Sample Collection/RNA Extraction from Whole Blood  

Permits for field operations and animal care were provided by the Government of 

Greenland (Permit numbers 2015-110281 and 2017-5446). Polar bear whole blood 

samples were collected in PAXgene Blood RNA tubes (PreAnalytiX GmbH, BD 

Biosciences, Mississauga, ON, Canada). Total RNA was isolated from whole blood 

(2.5mL) thawed at room temperature for 2 hours prior to using the PAXGene RNA 
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extraction kit (Qiagen, Chatsworth, CA, USA) according to manufacturer’s protocol. 

All samples were DNAse (Qiagen) treated and eluted in 50μL. The RNA yield and 

purity were accessed using a NanoDrop 8000 UV Spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA). RNA quantities ranged from 110 - 310 ng/μL and the 

A260/280 ratio values were > 2.0. Human whole blood RNA was purchased from 

Zyagen Labs (NC1453913). 

  

 

Full-length cDNA Generation 

RNA was reverse transcribed (RT) using Smartscribe Reverse Transcriptase 

(Clonetech). We generated full-length cDNA using a modified Smart-seq2 approach 

(Cole et al. 2018). During the RT reaction a template-switch oligo and an oligodT 

primer was used to select for polyA+ RNA (Table S2). The RT reaction was performed 

in 10 μL reactions with an input of 70 ng of RNA and took place at 42°C for 1 hour. 

After cDNA synthesis, 1 μL of 1:10 dilutions of RNAse A (Thermofisher) and Lambda 

Exonuclease (NEB) were added and incubated at 37°C for 30 minutes. Following the 

incubation, an amplification step was performed in 25 μL final volumes using KAPA 

Hifi ReadyMix 2X (KapaBiosystems) containing 1 μL of the ISPCR primer (10 μM) 

primer. Samples were incubated at 95°C for 3 minutes, followed by 12 cycles of (98°C 

for 20 s, 67°C for 15 s, and 72°C for 4 minutes), with a final extension of 72°C for 5 

minutes. Samples were purified using Agencourt AMPure XP SPRI beads (Beckman 
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Coulter) and eluted at 25 mL. The final cDNA product was then visualized on an 

agarose gel to confirm distribution (Fig. 3.2). 

 

In-vitro Preparation of CRISPR/Cas9 

SpCas9-2xNLS was purified based on the protocol described in (Jinek et al. 2012). 

Briefly, a plasmid encoding His6MBP-SpCas9-2xNLS (Addgene plasmid #69090) was 

transformed into Rosetta2(DE3) E. coli cells. Cultures were grown at 37ºC in 2YT 

medium with shaking until they reached an OD600 of ~0.6, and then placed on ice for 5 

minutes before adding IPTG to a final concentration of 0.25 mM; cultures were then 

grown overnight at 18ºC with shaking. Cell pellets were harvested by centrifugation, 

and then lysed in an Avestin cell extruder in Ni-A buffer (20 mM Tris pH 8.0, 500 mM 

NaCl, 5% vol/vol glycerol, 25 mM imidazole) with EDTA-free protease inhibitors 

(Pierce). Clarified supernatants were purified by gravity column on Ni-NTA agarose 

(QIAGEN) using Ni-A buffer to load and wash, and Ni-B buffer (20 mM Tris pH 8.0, 

500 mM NaCl, 5% vol/vol glycerol, 250 mM imidazole) to elute. Peak fractions were 

concentrated in an Amicon Ultra spin concentrator with a 30 kDa molecular weight 

cutoff at 4ºC, and then loaded onto a 50 mL HiPrep Desalting Column (GE Healthcare) 

pre-equilibrated with 17% IEX-B (IEX-A buffer: 20 mM HEPES pH 7.5, 150 mM KCl, 

5% vol/vol glycerol; IEX-B 20 mM HEPES pH 7.5, 1 M KCl, 5% vol/vol glycerol). 

The flow-through was then loaded onto a 2 mL HiTrap SP column (GE Healthcare) in 

17% IEX-B buffer. After thoroughly washing the column in 17% IEX-B, the protein 

was eluted with a linear gradient from 17-50% IEX-B. Peak fractions were pooled and 



	 139	

loaded onto a Superdex 200 16/60 column (GE Healthcare) pre-equilibrated in 20 mM 

HEPES pH 7.5, 150 mM KCl, 1 mM DTT, 10% vol/vol glycerol. Peak fractions were 

concentrated in an Amicon Ultra spin concentrator with a 30 kDa molecular weight 

cutoff at 4ºC until a concentration of 40 μM, which was estimated using the calculated 

molar extinction coefficient of 120,575 M-1 cm-1. The protein was aliquoted into small 

volumes (10 μL), quick frozen in liquid nitrogen, and stored at -80ºC. 

  

sgRNA Design and Construction 

Other studies have shown that sgRNAs designed between 17-20 bp showed increased 

efficacy (Ren et al. 2014; Fu et al. 2014). As a result, the sgRNAs were designed 

between 17-20 bp in length. sgRNAs were designed to target hemoglobin transcripts in 

human and polar bear. A multi-sequence alignment was performed on the human and 

polar bear annotated HBA and HBB gene transcripts to find conserved regions using 

the Clustal Omega tool (W. Li et al. 2015; Sievers et al. 2011; McWilliam et al. 2013) 

(Fig. S3.3). Regions with high homology were chosen for sgRNA design. sgRNAs that 

did not share complete homology were designed to contain degenerate bases to ensure 

compatibility across species using the same sgRNA (Fig. S3.4). sgRNA specificity was 

determined by using BLAST (Altschul et al. 1990). One sgRNA was designed even 

though the N-GG (PAM motif) had been lost in the human but was still kept in the pool 

for the polar bear depletion (Fig. S3.3). A total of 16 sgRNAs were designed to target 

alpha and beta hemoglobin transcripts. The target oligos were then constructed into 

sgRNAs as previously described (Ren et al. 2014). Single stranded oligos were 
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designed to contain a T7 promoter attached to each sgRNA sequence (IDT) followed 

by the first 22 bases of the tracrRNA sequence (Fig. S3.3). The complementary 

tracrRNA and single stranded oligo were annealed and extended to form a dsDNA 

product containing the T7-sgRNA and tracrRNA template. The template was then used 

for in-vitro transcription using the HiScribe T7 High Yield RNA synthesis kit (NEB). 

The in-vitro transcription reaction was carried out at 37°C for 16 hrs. The in-vitro 

transcribed RNA was then purified using MEGAclear Transcription Clean-Up Kit 

(Invitrogen). The final sgRNA product was then checked for purity and quantified 

using NanoDrop 8000 UV Spectrophotometer (Thermofisher). All sgRNAs were then 

pooled at equal molar concentrations and stored in single-use aliquots at -80°C. 

  

CRISPR/Cas9 Treatment  

Since it has been predicted that human whole blood samples can contain up to ~50-

80% of hemoglobin transcripts of the total sample (Field et al. 2007; Mastrokolias et 

al. 2012), we calculated the ratio of sgRNA and Cas9 molar amounts to sample based 

upon this assumption. According to the DASH protocol it was determined that 150-

fold of Cas9 and 1500-fold of sgRNA should be sufficient (Gu et al. 2016). All cDNA 

samples were quantified by Qubit using the dsDNA HS assay kit (Thermofisher) to 

calculate the molar amounts. To calculate the expected molar amounts we use the 

following formula: 

 

𝑛𝑀 =	 [𝐷𝑁𝐴	(𝑛𝑔/𝜇𝐿)] 	÷ (660𝑔/𝑚𝑜𝑙	𝑥	𝑠𝑖𝑧𝑒	𝑜𝑓	ℎ𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠	𝑖𝑛	𝑏𝑝) 
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Once the molar amounts were determined, the ribonucleoprotein (RNP) complex was 

formed by adding the 150-fold Cas9 and 1500-fold sgRNA excess amount with 1.0 μL 

of the 10X Cas9 Buffer (final concentration 50 mM Tris pH 8.0, 100 mM NaCl, 10 

mM MgCl2, and 1 mM TCEP) and incubated for 25°C for 10 minutes. Following the 

25°C incubation, the calculated cDNA amount was then added (final volume of 10 μL) 

and incubated at 37°C for 4 hrs to overnight. After the Cas9 depletion, 1 μL of 

Proteinase K and RNAse A were added to inactivate the Cas9 and remove excess 

sgRNAs from the reaction and incubated at 37°C for 15 minutes and 95°C for 15 

minutes. It is critical that the Proteinase K is deactivated properly as the samples are 

immediately used for amplification. Treated samples were PCR amplified (95°C for 3 

minutes, followed by 13 cycles of (98°C for 20 s, 67°C for 15 s, and 72°C for 4 minutes) 

followed by a final extension of 72°C for 5 minutes). PCR was performed using KAPA 

Hifi ReadyMix 2X (KapaBiosystems) and 1 μL of the (10 μM) ISPCR primer. The 

amplified product was then purified using SPRI beads to remove everything below 500 

bp. Selecting against cDNA below 500 bp ensured that all cut hemoglobin products 

were removed before making the Tn5 libraries. The depleted cDNA product was 

visualized on a 1-2% agarose gel to confirm depletion. Once confirmed, the depleted 

cDNA product was then prepped for either Illumina or Nanopore sequencing. 

 

R2C2 Library Preparation and ONT sequencing 

To prepare R2C2 libraries ~30 ng of the depleted cDNA was used. The R2C2 libraries 

were made as previously described (Volden et al. 2018). Briefly, an equal concentration 
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of splint to cDNA were combined (30ng of depleted cDNA and 30ng of our (~200 bp) 

DNA splint). The full-length cDNA was then circularized using the 2X NEBuilder Hifi 

DNA Assembly Mix (NEB). The reaction took place at 50°C for 1 hour per 

manufacturer protocol. Once the full-length cDNA was circularized, linear ssDNA and 

dsDNA was digested by adding 3μL each of Lambda Exonuclease, Exonuclease I and 

Exonuclease III (all NEB) and incubated at 37°C overnight. We performed the longer 

incubation overnight to ensure complete digestion. After digestion, the sample was 

further purified using SPRI beads and eluted in 30μL of ultrapure water. 30μL of 

sample was then split into three reactions containing 10μL each for the Phi29 

amplification. The Phi29 amplification took place in a reaction volume of 50μL 

containing 5μL of 10X Buffer, 2.5μL of 10uM each dNTPs, 2.5μL of random hexamers 

(10uM), 29μL of ultrapure water and 1μL of Phi29 Polymerase. The Phi29 reactions 

were incubated at 30°C for 16 hrs, 65°C for 15 minutes and held at 4°C. All three 

samples were pooled together and ultrapure water was added to make up the final 

volume to 300μL. The product was purified using SPRI beads with a 1:0.5 sample to 

bead ratio. This ratio was chosen as it removed all fragments < 2000 kb. The sample 

was then eluted in 90μL of ultrapure H20, 10μL of NEB2 Buffer (NEB) and 3μL of T7 

endonuclease (NEB) and incubated at 37°C for 2 hrs to ensure complete debranching 

of the Phi29 product. The eluted sample was again purified using SPRI beads with a 

1:0.5 sample to bead ratio. The product was eluted in 30μL and quantified using Qubit 

dsDNA HS kit (Thermofisher). The length distribution was verified on a 1% agarose 

gel prior to performing the ONT library prep.  
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For the library preparation ~1-2 μg of the final R2C2 product was converted 

into a ONT compatible library using the SQK-LSK109 kit according to ONT 

instructions with minor modifications. First, during the End Repair and A-tailing 

reaction we performed incubations for 30 min each at 20°C and 65°C instead of 5 min 

each. Second, we adjusted the ligation reaction time to 30 minutes at room temperature 

instead of 10 minutes per the protocol. We also found that loading between ~200-500 

ng of the final library onto the flowcell was the most optimal. Loading more library 

resulted in severe loss in throughput as can be seen for the R2C2 runs 

PB3_depleted_R1 and PB19_depleted_R1 (Table S3.2). R2C2 libraries were 

sequenced on a MinION device using the 48hr sequencing protocol using the FLO-

Min106 R9.4 Rev D chemistry flowcells. All reads were basecalled with Albacore 

v2.1.3. 

 

Smart-seq2 Library Preparation and Illumina Sequencing  

Illumina libraries of the depleted and non-depleted samples were prepared using a 

tagmentation based method using our own Tn5 (Picelli, Faridani, et al. 2014). The Tn5 

enzyme was custom loaded with Tn5ME-A/R and Tn5ME-B/R adapters (Table S3.2). 

The Tn5 reaction contained 5μL of the full-length cDNA product, 1μL of the loaded 

Tn5 enzyme, 10μL of ultrapure water and 4μL of the 5X TAPS-PEG buffer and 

incubated at 55°C for 7 minutes. After incubation, 5μL of 0.2% of Sodium Dodecyl 

Sulfate (SDS) was added to the product to inactivate the Tn5 enzyme. Due to the Tn5 

generating gaps, 5μL of the Tn5 product had to be nick translated at 72°C for 5 mins. 
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The Tn5 product was then amplified using KAPA Hifi Polymerase (KAPA) with 10 

cycles of PCR using (98°C for 10 s, 63°C for 30 s, 72°C for 2 min) with a final 

extension at 72°C for 5 min. The final reaction volume was 25μL and contained 0.5μL 

KAPA Hifi Polymerase (KAPA), 5μL of  5X Buffer, 0.8μL of dNTPs (10mM each), 

11.7μL of ultrapure water, 5μL of the nick-translated product and 1μL each of 

Nextera_Primer_A and Nextera_Primer_B primers (Table S3.2). The amplified Tn5 

libraries were then size selected from 300 - 800 bp on a 2% EX E-gel (Thermofisher) 

and purified using QIAquick gel extraction kit (Qiagen). The libraries were then pooled 

at equal concentrations and ran on a HiSeq X 2x151 bp run.  

 

R2C2 read processing and isoform analysis 

R2C2 consensus reads were generated from raw reads using the C3POa pipeline 

(https://github.com/rvolden/C3POa). C3POa identifies subreads in the raw reads and 

uses poaV2 (Lee, Grasso, and Sharlow 2002) and racon (Vaser et al. 2017) to determine 

a more accurate consensus of these subreads. The consensus reads were then aligned 

to the polar bear genome (Liu et al. 2014) using minimap2 (H. Li 2017) using standard 

setting and the ‘-ax splice’ flag. The resulting sam files are converted to psl files using 

samtools (H. Li et al. 2009) and jvarkit samtopsl utility (Lindenbaum 2015).  

The resulting psl, sam, and fasta files of all depleted samples were merged and 

used as input into the Mandalorion (https://github.com/rvolden/Mandalorion-Episode-

II) pipeline to determine isoforms. To accomodate issues regarding RNA degradation 

and genomic DNA contamination, we integrated two new optional filter into 
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Mandalorion. We implemented the filtering of isoforms that are entirely contained 

within one other isoform, which indicates degraded input RNA molecules, and the 

filtering of unspliced isoforms which might stem from DNA contamination. 

Accuracy of R2C2 reads and Mandalorion isoforms were determined using 

alignments in sam format containing md-strings and a custom script that calculates  

 

Accuracy= Matches/(Matches+Mismatches+Indels) 

 

Smart-seq2 read processing 

Paired fastq files were downloaded from basespace and aligned to the polar bear 

genome using STAR with standard settings. The STAR index for the polar bear genome 

was built without a transcriptome reference because the gff file provided by (Liu et al. 

2014) did not conform to gff standard (no “exon” features) and could therefore not be 

used. Read alignments in ordered bam format were converted to psl as described above. 

 

Hemoglobin and gene expression quantification.  

Hemoglobin content was determined through a kmer based counting method using a 

custom script. In short, all possible 10nt kmers were extracted from the sequence of 

hemoglobin alpha and beta transcripts. The presence of these kmers were then 

determined in each R2C2 or Smart-seq2 read from depleted and undepleted samples. 

Cutoffs for read assignments to hemoglobin were then determined by also analyzing 

R2C2 and Illumina reads of the GM12878 cell line which does not express hemoglobin.  
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Gene expression was determined using Smart-seq2 (Illumina) read alignments 

in psl format and a custom script. Reads aligning to hemoglobin loci were not counted 

towards total aligned reads in the RPM calculations.  

Both script are available are available at https://github.com/christopher-

vollmers/PB_scripts. 

 

Data Visualization  

Schematics were prepared using inkscape (https://inkscape.org). All others figures 

were prepared using python/matplotlib/numpy/scipy (Millman and Aivazis 2011; 

Jones, Oliphant, and Peterson 2001--; van der Walt, Colbert, and Varoquaux 2011; 

Hunter 2007) 

 

Data Availability 

All Illumina and ONT raw read data is available at SRA under Bioproject accession 

PRJNA514749. 
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Supplemental 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3.1: Long-DASH sgRNA also depletes human hemoglobin transcripts 
from full-lengthcDNA.  
Technical replicates of depleted (D) or undepleted (U) human whole blood cDNA were 
visualized on an agarose gel. DNA ladder (L) suggests highly abundant cDNA species - 
putatively hemoglobin around ~700bp.  
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Figure S3.2: Depletion of hemoglobin affects expression levels within but not fold-
change between samples 
Expression levels(bottom) as well as the changes in differential expression between polar 
bears pre- and post-depletion are shown for genes that are upregulated in all 3 polar bears 
post-depletion (Systematically “UP”) and a random selection of genes with similar 
expression distribution (Random).  
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A) Hemoglobin, alpha (HBA) 
 
XM_008696690.1   --------------------CCGCCCCGCACATTTCTGGTCCTCACAGACTCAGAAAGAA    40 
NM_000558.4     
 CATAAACCCTGGCGCGCTCGCGGCCCGGCACTCTTCTGGTCCCCACAGACTCAGAGAGAA    
60 
NM_000517.4     
 CATAAACCCTGGCGCGCTCGCGGGCCGGCACTCTTCTGGTCCCCACAGACTCAGAGAGAA    
60 
                                        * * ** ****  ********* ************ **** 
 

XM_008696690.1  
 GCCACCATGGTGCTGTCTCCCGCCGACAAGAGCAACGTCAAGGCCACCTGGGATAAGATC    
100 
NM_000558.4     
 CCCACCATGGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTC    
120 
NM_000517.4     
 CCCACCATGGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTC    
120 
                   ******************* ********** ************* ****** **** ** 
 

XM_008696690.1  
 GGCAGCCACGCTGGCGAGTATGGCGGCGAGGCTCTGGAGAGGACCTTCGCGTCCTTCCCC    
160 
NM_000558.4     
 GGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGATGTTCCTGTCCTTCCCC    
180 
NM_000517.4     
 GGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGATGTTCCTGTCCTTCCCC    
180 
                 ***   ***************** *  ***** **********  ***  ********** 
 

XM_008696690.1  
 ACCACCAAGACCTACTTCCCCCACTTCGACCTGAGCCCTGGCTCCGCCCAGGTCAAGGCC    
220 
NM_000558.4     
 ACCACCAAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTAAGGGC    
240 
NM_000517.4     
 ACCACCAAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTAAGGG
C    240 
                 ******************** ****************  ***** ******** **** * 
 

XM_008696690.1  
 CACGGCAAGAAGGTGGCCGACGCCCTGACCACCGCCGCAGGCCACCTGGACGACCTGCCG    
280 
NM_000558.4     
 CACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCC    
300 
NM_000517.4     
 CACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCC    
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300 
                 ************************ ******* *****  *  *** ******** **** 
 

XM_008696690.1  
 GGCGCCCTGTCCGCTCTGAGCGACCTGCACGCGCACAAGCTGCGAGTGGACCCGGTCAAC    
340 
NM_000558.4     
 AACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAAC    
360 
NM_000517.4     
 AACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAA
C    360 
                    *** ******** ************************** ** *************** 
 

XM_008696690.1  
 TTCAAGTTCCTGAGCCACTGCCTGCTGGTGACCCTGGCCAGCCACCACCCCGCGGAGTTC    
400 
NM_000558.4     
 TTCAAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTC    
420 
NM_000517.4     
 TTCAAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTC    
420 
                 ****** **** ***************************  ***** ****** ****** 
 

XM_008696690.1  
 ACCCCTGCCGTCCACGCCTCCCTGGACAAGTTCTTCAGCGCCGTGAGCACCGTGCTCACC    
460 
NM_000558.4     
 ACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTGACC    
480 
NM_000517.4     
 ACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTGACC    
480 
                 ******** ** ********************* *  * ********************* 
 

XM_008696690.1  
 TCCAAATACCGTTAAGCTGGAGCCGCGCGACCCTCCCGCTCCCGGCCTGGGGCCTCTTGC    
520 
NM_000558.4     
 TCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCC    
540 
NM_000517.4     
 TCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCTCCCAA    
540 
                 ************************ **  ***  *     *   *******     
 

XM_008696690.1   GC--------------TCCACGCGCCTGAACTTCCCGATCTTTGAATAAAGTCTGAGTGG    
566 
NM_000558.4     
 CAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGG    
600 
NM_000517.4      CGGGCCCTCCTCCCCTCCTTGCACC-
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GGCCCTTCCTGGTCTTTGAATAAAGTCTGAGTGG    599 
                                   *      *     *  *  * ********************** 
 

XM_008696690.1   GCTGCAG--------------------    573 
NM_000558.4      GCGGCAAAAAAAAAAAAAAAAAAAAAA    627 
NM_000517.4      GCAGCAAAAAAAAAAAAAAAAAA----    622 
                 **  ** 
 
B) Hemoglobin, beta (HBB)                   
 
 

XM_008709611.1  
 GAGCAGGGCCAGCTGCTGCTTATACTTGCTTCTGACACAACCGTGTTCACTAGCAACCAC    
60 
NM_000518.4      ---------------------ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTC    39 
                                      * * **************** **************** * 
 
XM_008709611.1  
 AAAGAGACACCATGGTGCATCTGACTGGTGAGGAGAAGTCTCTCGTCACCGGCCTGTGGG    
120 
NM_000518.4     
 AAACAGACACCATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGG    
99 
                 *** **********************  *************  *** ** * ******** 
 
XM_008709611.1  
 GCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTTCTGGTTGTCTACC    
180 
NM_000518.4     
 GCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGTCTAC
C    159 
                 ********************************************** ***** ******* 
 
XM_008709611.1  
 CCTGGACTCAGAGGTTCTTTGACTCCTTTGGGGACCTGTCCTCTGCTGATGCTATTATGA    
240 
NM_000518.4     
 CTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGG    
219 
                 * ***** ************** *********** ****** ** ******** ***** 
 
XM_008709611.1  
 ACAACCCCAAGGTCAAGGCCCATGGCAAGAAGGTGCTGAACTCCTTTAGTGATGGCCTGA    
300 
NM_000518.4     
 GCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGG    
279 
                   ****** ***** ***** *********** *****     ***************** 
 
XM_008709611.1  
 AGAATCTGGACAACCTCAAGGGCACCTTTGCTAAGCTGAGCGAGCTGCACTGTGACAAGC    
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360 
NM_000518.4     
 CTCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGC    
339 
                       * ************************** *  ***** ******************* 
 
XM_008709611.1  
 TGCACGTGGATCCCGAGAACTTCAAGCTCCTGGGCAACGTGCTGGTGTGTGTGCTGGCTC    
420 
NM_000518.4     
 TGCACGTGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCC    
399 
                 ************* ********** ********************* *********** * 
 
XM_008709611.1  
 ACCACTTTGGCAAAGAGTTCACCCCTCAGGTGCAGGCTGCCTATCAGAAGGTGGTGGCTG    
480 
NM_000518.4     
 ATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCT
G    459 
                 * ************** ******** *  ******************** ********** 
 
XM_008709611.1  
 GTGTGGCCAACGCCCTGGCCCACAAGTACCACTGAGCTCCTGGCCTGTTTCCTGGTGATC    
540 
NM_000518.4     
 GTGTGGCTAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTTTCTTGCTGTCCAATTTC    
519 
                 ******* ** ***************** **** *****     **   *        ** 
 
XM_008709611.1   CCTG-
GAAGACCCTGTTCCCCTAAATTCTATCTTCTGAACTGGGGGAAATAATGTCCACC    599 
NM_000518.4     
 TATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGC    
579 
                     *   * *  *** *   **  ** ** * ** ** ********** ** ***     * 
 
XM_008709611.1   ATCAAGGGTATGGTTTCTGCCTAATAAAGAACCTTCAGCTCAA----    642 
NM_000518.4      CTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC    626 
                   *  **  * *** ************** *** ** *  *  *     
 
 
Figure S3.3. Alignment of orthologous HBA and HBB mRNA sequences in 
human and polar bear. Multi-sequence alignment from Clustal Omega v1.2.4. * 
indicates a match. Underline and bold indicates target sequences used for sgRNA 
design for Globin depletion. Red indicates (N-GG) PAM sequence  a) Hemoglobin, 
alpha (HBA) b) Hemoglobin, beta (HBB).  
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A) Construction of sgRNAs  
 
#1 tracrRNA oligo (in Reverse Orientation/Anti-sense) 
   <-------------------tracrRNA--------------------------------- <-------Primer-----> 
5’–
AAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTT 
GCTATTTCTAGCTCTAAAAC–3’ 
 
The oligo above is a universal tracrRNA template which allows you to generate full sgRNA templates 
with any target sequence oligo as long as the target sequence oligo meets the following requirements 
below: 
1. The oligo contains the reverse complement of the primer sequence on the 3' end. 
2. the oligo contains 'GG' on the 3' end of the target sequence for T7 RT. 
 
#1 HBA1/HBA2 target oligos based upon mRNA prediction of Polar Bear/Human genes. 
 
       <--------T7-----------------><--target_sequence--><-------Primer------> 
oligo 1 5'-GAAATTAATACGACTCACTATAGG AAGGSCCACGGCAAGAAGG 
GTTTTAGAGCTAGAAATAGC-3' 
       <--------T7-----------------><--target_sequence--><-------Primer------> 
oligo 2 5'-GAAATTAATACGACTCACTATAGG CACTGCCTGCTGGTGACCC 
GTTTTAGAGCTAGAAATAGC-3' 
       <--------T7-----------------><--target_sequence--><-------Primer------> 
oligo 3 5'-GAAATTAATACGACTCACTATAGG GGTYAAGGSCCACGGCAAGA 
GTTTTAGAGCTAGAAATAGC-3' 
       <--------T7-----------------><--target_sequence--><-------Primer------> 
oligo 4 5'-GAAATTAATACGACTCACTATAGG ACCTCCAAATACCGTTAAGC 
GTTTTAGAGCTAGAAATAGC-3' 
        <-------T7----------------><--target_sequence--><-------Primer------> 
oligo 5 5'-GAAATTAATACGACTCACTATAGG GCCGACAAGASCAACGTCA 
GTTTTAGAGCTAGAAATAGC-3' 
        <-------T7----------------><--target_sequence--><-------Primer------> 
oligo 6 5'-GAAATTAATACGACTCACTATAGG GGGAAGTAGGTCTTGGTGGTG 
GTTTTAGAGCTAGAAATAGC-3' 
        <-------T7----------------><--target_sequence--><-------Primer------> 
oligo 7 5'-GAAATTAATACGACTCACTATAGG TCCTRAGCCACTGCCTGC 
GTTTTAGAGCTAGAAATAGC-3' 
        <-------T7----------------><--target_sequence--><-------Primer------> 
oligo 8 5'-GAAATTAATACGACTCACTATAGG CAGGTCGCTCAGRGCGGACA 
GTTTTAGAGCTAGAAATAGC-3' 
 
#2 HBB target oligos based upon mRNA prediction of Polar Bear/Human gene. 
 
      <-------T7-----------------><--target_sequence--><-------Primer------> 
oligo 1 5'-GAAATTAATACGACTCACTATAGG CACTGTGACAAGCTGCACG 
GTTTTAGAGCTAGAAATAGC-3' 
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       <-------T7-----------------><--target_sequence--><-------Primer------> 
oligo 2 5'-GAAATTAATACGACTCACTATAGG GAAGTTGGTGGTGAGGCCCT 
GTTTTAGAGCTAGAAATAGC-3' 
       <-------T7-----------------><--target_sequence--><-------Primer------> 
oligo 3 5'-GAAATTAATACGACTCACTATAGG CAGGCTGCCTATCAGAARG 
GTTTTAGAGCTAGAAATAGC-3' 
       <-------T7-----------------><--target_sequence--><-------Primer------> 
oligo 4 5'-GAAATTAATACGACTCACTATAGG GCAACCWCAAASAGACACCA 
GTTTTAGAGCTAGAAATAGC-3' 
       <-------T7-----------------><--target_sequence--><-------Primer------> 
oligo 5 5'-GAAATTAATACGACTCACTATAGG GAGGTTCTTTGABTCCTTTG 
GTTTTAGAGCTAGAAATAGC-3' 
      <-------T7-----------------><--target_sequence--><-------Primer------> 
oligo 6 5’-GAAATTAATACGACTCACTATAGG AAGGTGAACGTGGATGAAGT 
GTTTTAGAGCTAGAAATAGC-3' 
      <-------T7-----------------><--target_sequence--><-------Primer------> 
oligo 7 5’-GAAATTAATACGACTCACTATAGG GCTCCTGGGCAACGTGC 
GTTTTAGAGCTAGAAATAGC-3' 
      <-------T7-----------------><--target_sequence--><-------Primer------> 
oligo 8 5’-GAAATTAATACGACTCACTATAGG CAGAARGTGGTGGCTGGTG 
GTTTTAGAGCTAGAAATAGC-3' 
 
B) Target sequences and oligo sequences for hemoglobin depletion 
 

HBA targets  
 
   (1) AAGGSCCACGGCAAGAAGG 
Human- AAGGGCCACGGCAAGAAGG 
Polar- AAGGCCCACGGCAAGAAGG 
 
   (2) CACTGCCTGCTGGTGACCC 
Human- CACTGCCTGCTGGTGACCC 
Polar- CACTGCCTGCTGGTGACCC 
 
   (3) GGTYAAGGSCCACGGCAAGA 
Human- GGTTAAGGGCCACGGCAAGA 
Polar- GGTCAAGGCCCACGGCAAGA 
 
   (4) ACCTCCAAATACCGTTAAGC 
Human- ACCTCCAAATACCGTTAAGC 
Polar- ACCTCCAAATACCGTTAAGC 
 
   (5) GCCGACAAGASCAACGTCA 
Human- GCCGACAAGACCAACGTCA 
Polar- GCCGACAAGAGCAACGTCA 

HBB targets  
 
   (1) CACTGTGACAAGCTGCACG 
Human- CACTGTGACAAGCTGCACG 
Polar- CACTGTGACAAGCTGCACG 
 
   (2) GAAGTTGGTGGTGAGGCCCT 
Human- GAAGTTGGTGGTGAGGCCCT 
Polar- GAAGTTGGTGGTGAGGCCCT 
 
   (3) CAGGCTGCCTATCAGAARG 
Human- CAGGCTGCCTATCAGAAAG 
Polar- CAGGCTGCCTATCAGAAGG 
 
   (4) GCAACCWCAAASAGACACCA 
Human- GCAACCTCAAACAGACACCA 
Polar- GCAACCACAAAGAGACACCA 
 
   (5) GAGGTTCTTTGABTCCTTTG 
Human- GAGGTTCTTTGAGTCCTTTG 
Polar- GAGGTTCTTTGACTCCTTTG 
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   (6) GGGAAGTAGGTCTTGGTGGTG (r) 
Human- GGGAAGTAGGTCTTGGTGGTG 
Polar- GGGAAGTAGGTCTTGGTGGTG 
 
   (7) TCCTRAGCCACTGCCTGC 
Human- TCCTAAGCCACTGCCTGC 
Polar- TCCTGAGCCACTGCCTGC 
 
   (8) CAGGTCGCTCAGRGCGGACA (r) 
Human- CAGGTCGCTCAGGGCGGACA 
(Lost PAM sequence) 
Polar- CAGGTCGCTCAGAGCGGACA 
 
 

 
   (6) AAGGTGAACGTGGATGAAGT 
Human- AAGGTGAACGTGGATGAAGT 
Polar- AAGGTGAACGTGGATGAAGT 
 
   (7) GCTCCTGGGCAACGTGC 
Human- GCTCCTGGGCAACGTGC 
Polar- GCTCCTGGGCAACGTGC 
 
   (8) CAGAARGTGGTGGCTGGTG 
Human- CAGAAAGTGGTGGCTGGTG 
Polar- CAGAAGGTGGTGGCTGGTG 
 

 

Figure S3.4. sgRNA design and construction.  
Oligonucleotides designed for hemoglobin depletion from full-length cDNA. Oligos were 
chosen to deplete Hemoglobin mRNA transcripts from Human and Polar Bear whole 
blood. A) To generate sgRNAs a template free PCR was performed to anneal the 
tracrRNA oligo to an oligo containing the target sequence to generate a full-length oligo. 
The full-length oligos were converted into sgRNA templates using in-vitro transcription. 
B) Target oligos used for generating sgRNAs. Degenerate bases are highlighted in grey. 
(r) indicates reverse orientation 
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Sample Name Sequencer Run Type Library Prep Read Number Median 
Accuracy 

PB3_depleted Illumina HiSeqX 2X151 Smart-seq2 22322746 N/A 

PB19_depleted Illumina HiSeqX 2X151 Smart-seq2 19418607 N/A 

PB21_depleted Illumina HiSeqX 2X151 Smart-seq2 22467660 N/A 

PB3_undepleted Illumina HiSeqX 2X151 Smart-seq2 58088942 N/A 

PB19_undepleted Illumina HiSeqX 2X151 Smart-seq2 105936701 N/A 

PB21_undepleted Illumina HiSeqX 2X151 Smart-seq2 63096050 N/A 

PB19_undepleted ONT MinION 9.4.1/LSK109  R2C2 5313 93% 

PB3_depleted_R1 ONT MinION 9.4.1/LSK109  R2C2 390526 93% 

PB3_depleted_R2 ONT MinION 9.4.1/LSK109  R2C2 1691780 94% 

PB19_depleted_R1 ONT MinION 9.4.1/LSK109  R2C2 59097 93% 

PB19_depleted_R2 ONT MinION 9.4.1/LSK109 R2C2 866087 97.5% 

PB21_depleted ONT MinION 9.4.1/LSK109 R2C2 830952 92% 

 
Table S3.1: High-throughput sequencing runs and characteristics  
For R2C2/ONT MinION runs, fully processed R2C2 read numbers and median 
accuracies are given. Some R2C2/ONT MinION runs were multiplexed, sometimes with 
samples unrelated to this study. Samples PB19_depleted_R2 and PB3_depleted_R2 
represent the current output of the R2C2/ONT MinION combination. 
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RT 
>Oligo-dT-smartseq2 
/5Me-
isodC/AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN 
>TSO_Smartseq2  
AAGCAGTGGTATCAACGCAGAGTACATrGrGrG 
  
Primers  for  amplifying  cDNA 
>ISPCR 
AAGCAGTGGTATCAACGCAGAGT 
  
Tn5  Oligos (Smart-seq2 library prep) 
>Tn5ME-R 
[phos]CTGTCTCTTATACACATCT 
>Tn5ME-A 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
>Tn5ME-B 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 
  
Primers  for  amplifying  Tn5  Product  
>Nextera_Primer_A 
AATGATACGGCGACCACCGAGATCTACAC  [8bp  i5  index]  TCGTCGGCAGCGTCAGATG 
>Nextera_Primer_B 
CAAGCAGAAGACGGCATACGAGAT  [8bp  i7  index]  GTCTCGTGGGCTCGGAGATGTGTAT 
  
R2C2 Splint_Oligos 
>UMI_Splint_1_Forward_ISPCR (Matches ISPCR Primer) 
ACTCTGCGTTGATACCACTGCTTTGAGGCTGATGAGTTCCATANNNNNTATATNNNNNAT
CACTACTTAGTTTTTTGATAGCTTCAAGCCAGAGTTGTCTTTTTCTCTTTGCTGGCAGTAAA
AG     
>UMI_Splint_1_Reverse_ISPCR (Matches ISPCR Primer) 
ACTCTGCGTTGATACCACTGCTTAAAGGGATATTTTCGATCGCNNNNNATATANNNNNTT
AGTGCATTTGATCCTTTTACTCCTCCTAAAGAACAACCTGACCCAGCAAAAGGTACACAA
TACTTTTACTGCCAGCAAAGAG 
>UMI_Splint_2_Forward_ISPCR (Matches ISPCR Primer) 
ACTCTGCGTTGATACCACTGCTTTGCCGGTTGGGTATCAATAANNNNNTATATNNNNNATT
GCCTTTATTCTATCTACTTAGTTTTGGCGATGTAGTCTACCTATCCTGATGCTGAATAAAG
GC 
>UMI_Splint_2_Reverse_ISPCR (Matches ISPCR Primer) 
ACTCTGCGTTGATACCACTGCTTAATTAGGTTCTAGGATCACGNNNNNATATANNNNNCT
GCCATCGAAAATTTTTCACCCGTAACAAGAACTTACAACTCTCTGACGCCTATATCATGAA
GGCCTTTATTCAGCATCAGGA 
Table  S3.2  Oligos  used  in  the  Long-DASH 
Oligos  are  shown  5’->3’  and  were  ordered  from  Integrated  DNA  Technologies  
(IDT). Lower  case  ‘r’ = RNA  bases.  Spaces  are  for  visual emphasis  only. 
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Conclusions 

 The work I present here showcases how we can overcome current limitations 

for capturing an accurate transcriptome. Short-read RNAseq still suffers from 

inherent issues of limited read length, making full-length mRNA transcript structure 

analysis challenging. This is particularly true when analyzing the ends of the 

molecules (Fig. 0.1) where annotating transcription start-sites and end-sites becomes 

difficult. In order to define these features a targeted approach must be considered. 

Thus, I have developed Tn5Prime, a single cell 5’ capturing technique capable of 

analyzing transcription start sites. This approach allows one to define 5’ ends of 

molecules that often get lost in standard RNAseq methods. Identifying features like 

these globally can help us understand how genes are regulated at the level of 

transcription, such as identifying cell-type specific transcriptional regulatory 

networks, where transcription factor binding motifs can be inferred near promoter 

regions. Elucidating such features can also help predict novel transcripts, bringing 

more data to the emerging thought that alternative transcription and not alternative 

splicing are the main drivers of promoting isoform diversity across different tissues 

(Pal et al. 2011). Although this method was developed as a 5’ enrichment tool, it 

could easily be adapted for a 3’ enrichment method as well. By integrating both data 

types it could offer insight into translational control by identifying regulatory 

elements within both the 5’ and 3’ UTRs and their effect on translational outcomes. 

Although certain features can be specifically targeted using short-read 

technology, it is simpler to capture from ‘end-to-end’ complete transcripts from single 
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cells. Here, I have shown that using a long-read sequencing approach it is possible to 

quantify and identify isoforms at the single cell level. This study also highlights how 

much mRNA isoform heterogeneity occurs within surface receptors among a seeming 

homogenous B cell population. This begs the question of how much surface receptor 

diversity is there? And how much of our receptor landscape is actually targetable? 

Beyond increasing our understanding of B cell receptor expression, I believe this 

method can be a powerful tool for patients undergoing cancer immunotherapies. 

Interactions between the immune system and cancer cells are dynamic and are always 

evolving from the initial progression of cancer to the development of metastasis. 

Cancer specific splicing events are known to alter the receptor landscape, conferring 

drug/therapy resistance due to antigen loss. The interface between immune cells and 

cancer cells are dynamic, but it can be manipulated by changing the antigen 

landscape. Patients suffering from lymphomas may contain a specific clonal 

population expressing similar isoforms, which could be targeted by immunotherapy. 

By incorporating this long-read single cell method we could make better genetic 

predictions in a preclinical setting, increasing the odds of successful treatment. 

There have already been major improvements to this method by incorporating 

R2C2 (Volden et al. 2018), which has improved the read accuracy from the standard 

84% to 97.5%. Improving base accuracy is beneficial for observing allele specific 

transcription, somatic mutations and helps resolve unique isoforms with better 

precision. Increase in base accuracy also expands the throughput capacity by 

resolving cellular barcodes, necessary for multiplexing thousands of single cells. 
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With the introduction of single-molecule sequencing, such as purveyed by 

PacBio and Oxford Nanopore Technologies (ONT), it has proven advantageous for 

identifying novel isoforms, long-noncoding RNAs and fusion transcripts. However, 

sequencing throughput and accuracy still wanes compared to the short-read 

technology. With the implementation of our R2C2 method we have improved the 

base accuracy, but throughput still remains a limitation (Table 0.1). To increase the 

read throughput, I developed Long-DASH to remove unwanted abundant transcripts 

from the sequencing pool to capture more rare transcripts. This method excludes 

transcripts that could account for the majority of sequencing reads, greatly improving 

throughput. By eliminating highly abundant transcripts such as hemoglobin and 

rRNA (unpublished), Long-DASH serves as an enrichment strategy that captures 

information about the transcriptome that would have otherwise been missed or 

require a much greater amount of sequencing reads to be detected. 

   

Future Outlook 

Another hurdle to overcome when analyzing the transcriptome is the issue 

regarding length bias. Length bias is often attributed to how samples are prepared 

specifically during PCR amplification and library preparation. PCR becomes 

problematic in that within a few cycles of PCR, longer transcripts tend to be 

overwhelmed by smaller transcripts, which tend to be picked up more easily during 

sequencing. This can lead the researcher to believe that these longer transcripts are 

rarer or simply never expressed in a given sample. One way to get around this is to 
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eliminate PCR. R2C2 is ideal for making it into a PCR-free method due to Phi29’s 

ability to copy transcripts at equal lengths independent of the raw transcript size (Fig. 

4.1). This is likely due to Phi29’s high processivity. Additionally, Phi29 performs a 

linear amplification versus exponential amplification which greatly reduces 

amplification bias. Below is a schematic of how a PCR-free method would be 

incorporated (Fig.4.2A). Preliminary data shows that transcript length distributions 

are skewed towards shorter transcripts when PCR is performed compared to the 

newest R2C2v2 where PCR is not performed (Fig.4.2B). By eliminating PCR from 

our R2C2 method, this could eliminate false chimeric molecules, PCR errors, or 

skewed quantification all of which are by-products of PCR. 

When RNAseq was first developed in the early 1990’s there were great 

expectations as to what a researcher could accomplish. It was thought that not only 

would we be able to take inventory of all the RNA species within a sample but the 

transcript structure would also be known. Short read RNAseq is most adept at 

interrogating transcriptomes to observe global changes in gene expression but fail to 

capture structure and all RNA within a single sample. Long read full-length 

sequencing opens the door to the possibility of not only capturing structural 

information, but can be quantitative as well.  Capturing all RNA species still remains 

a challenge as most long read technologies struggle with smaller RNAs. However, 

using the R2C2 approach multiple copies are made into one long concatenated read, 

making it possible to sequence smaller RNAs as well such as tRNAs.  Just like 

assembling an excellent genome requires different types of methods to be combined, 
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maybe annotating an excellent transcriptome may require different technologies as 

well. However, it is possible that in the foreseeable future ONT will dramatically 

increase their sequencing capacity and base accuracy. Since these sequencing errors 

are fairly systematic this will however be a herculean task. Until then, researchers like 

myself have been at the forefront at making changes in order to harness the power of 

the long-read technology to making the best snapshot of transcriptomes. 

 

Figure 4.1. Simple schematic of Phi29 amplification. Transcripts of varying sizes are 
amplified using linear amplification each transcript contains a different number of copies 
but the raw read length stays the same. Not shown is the branching caused by Phi29 
polymerase.  
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Figure 4.2: PCR-free R2C2 method improves transcript read length. 
A) Schematic of PCR-free method. RNA is reverse transcribed and second strand is made. 
cDNA is then circularized using Gibson Assembly. Rolling circle is performed and the 
sample is cleaned up and debranched prior to sequencing. B) Swarmplots of length 
distributions of 1000 randomly sampled PacBio (Tilgner et al. 2014), ONT dRNA, and  
dcDNA (Workman et al. 2018), R2C2 reads with no adjustments (v1) and R2C2 reads 
generated from PCR-free method covering the GM12878 (human lymphoblast cell line) 
transcriptome. These distributions are not representative of the length distribution of the 
human transcriptome as annotated by GENCODE.  *While we show the most recent data 
set on GM12878 the data provided PacBio technology is several years old and might not 
be fully representative of current platform performance. 
 

 

 

 

*PacBio 
IsoSeq 

ONT 
dRNA 

ONT 
dcDNA 

R2C2 
v1 

R2C2 
v2 

Gencode 
V28(Basic) 

A 

B 



	 164	

  

Bibliography 

Adams, M. D., M. Dubnick, A. R. Kerlavage, R. Moreno, J. M. Kelley, T. R. Utterback, J. 

W. Nagle, C. Fields, and J. C. Venter. 1992. “Sequence Identification of 2,375 

Human Brain Genes.” Nature 355 (6361): 632–34. 

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. “Basic Local 

Alignment Search Tool.” Journal of Molecular Biology 215 (3): 403–10. 

Andreadis, Athena. 2005. “Tau Gene Alternative Splicing: Expression Patterns, 

Regulation and Modulation of Function in Normal Brain and Neurodegenerative 

Diseases.” Biochimica et Biophysica Acta 1739 (2-3): 91–103. 

Au, Kin Fai, Vittorio Sebastiano, Pegah Tootoonchi Afshar, Jens Durruthy Durruthy, 

Lawrence Lee, Brian A. Williams, Harm van Bakel, et al. 2013. “Characterization of 

the Human ESC Transcriptome by Hybrid Sequencing.” Proceedings of the National 

Academy of Sciences of the United States of America 110 (50): E4821–30. 

Bankevich, Anton, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin, 

Alexander S. Kulikov, Valery M. Lesin, et al. 2012. “SPAdes: A New Genome 

Assembly Algorithm and Its Applications to Single-Cell Sequencing.” Journal of 

Computational Biology: A Journal of Computational Molecular Cell Biology 19 (5): 

455–77. 

Beaudin, Anna E., Scott W. Boyer, and E. Camilla Forsberg. 2014. “Flk2/Flt3 Promotes 

Both Myeloid and Lymphoid Development by Expanding Non-Self-Renewing 



	 165	

Multipotent Hematopoietic Progenitor Cells.” Experimental Hematology 42 (3): 218–

29.e4. 

Beaudin, Anna E., Scott W. Boyer, Jessica Perez-Cunningham, Gloria E. Hernandez, S. 

Christopher Derderian, Chethan Jujjavarapu, Eric Aaserude, Tippi MacKenzie, and E. 

Camilla Forsberg. 2016. “A Transient Developmental Hematopoietic Stem Cell Gives 

Rise to Innate-like B and T Cells.” Cell Stem Cell In press (September). 

https://doi.org/10.1016/j.stem.2016.08.013. 

Beaudin, Anna E., and E. Camilla Forsberg. 2016. “To B1a or Not to B1a: Do 

Hematopoietic Stem Cells Contribute to Tissue-Resident Immune Cells?” Blood 128 

(24): 2765–69. 

Bhargava, Vipul, Steven R. Head, Phillip Ordoukhanian, Mark Mercola, and Shankar 

Subramaniam. 2014. “Technical Variations in Low-Input RNA-Seq Methodologies.” 

Scientific Reports 4 (January): 3678. 

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. “Trimmomatic: A Flexible 

Trimmer for Illumina Sequence Data.” Bioinformatics  30 (15): 2114–20. 

Bolisetty, Mohan T., and Karen L. Beemon. 2012. “Splicing of Internal Large Exons Is 

Defined by Novel Cis-Acting Sequence Elements.” Nucleic Acids Research 40 (18): 

9244–54. 

Bolisetty, Mohan T., Gopinath Rajadinakaran, and Brenton R. Graveley. 2015. 

“Determining Exon Connectivity in Complex mRNAs by Nanopore Sequencing.” 

Genome Biology 16 (1): 204. 



	 166	

Borovecki, F., L. Lovrecic, J. Zhou, H. Jeong, F. Then, H. D. Rosas, S. M. Hersch, et al. 

2005. “Genome-Wide Expression Profiling of Human Blood Reveals Biomarkers for 

Huntington’s Disease.” Proceedings of the National Academy of Sciences of the 

United States of America 102 (31): 11023–28. 

Brooks, Angela N., Peter S. Choi, Luc de Waal, Tanaz Sharifnia, Marcin Imielinski, 

Gordon Saksena, Chandra Sekhar Pedamallu, et al. 2014. “A Pan-Cancer Analysis of 

Transcriptome Changes Associated with Somatic Mutations in U2AF1 Reveals 

Commonly Altered Splicing Events.” PloS One 9 (1): e87361. 

Brown, Tanya M., S. Austin Hammond, Bahar Behsaz, Nik Veldhoen, Inanç Birol, and 

Caren C. Helbing. 2017. “De Novo Assembly of the Ringed Seal (Pusa Hispida) 

Blubber Transcriptome: A Tool That Enables Identification of Molecular Health 

Indicators Associated with PCB Exposure.” Aquatic Toxicology  185 (April): 48–57. 

Bulletin, User. n.d. “Guidelines for Preparing cDNA Libraries for Isoform Sequencing 

(Iso-SeqTM).” http://www.pacb.com/wp-content/uploads/2015/09/User-Bulletin-

Guidelines-for-Preparing-cDNA-Libraries-for-Isoform-Sequencing-Iso-Seq.pdf. 

Burgess, Stewart T. G., Andrew Greer, David Frew, Beth Wells, Edward J. Marr, Alasdair 

J. Nisbet, and John F. Huntley. 2012. “Transcriptomic Analysis of Circulating 

Leukocytes Reveals Novel Aspects of the Host Systemic Inflammatory Response to 

Sheep Scab Mites.” PloS One 7 (8): e42778. 

Busslinger, M., N. Moschonas, and R. A. Flavell. 1981. “Beta + Thalassemia: Aberrant 

Splicing Results from a Single Point Mutation in an Intron.” Cell 27 (2 Pt 1): 289–98. 



	 167	

Byrne, Ashley, Anna E. Beaudin, Hugh E. Olsen, Miten Jain, Charles Cole, Theron 

Palmer, Rebecca M. DuBois, E. Camilla Forsberg, Mark Akeson, and Christopher 

Vollmers. 2017. “Nanopore Long-Read RNAseq Reveals Widespread Transcriptional 

Variation among the Surface Receptors of Individual B Cells.” Nature 

Communications 8 (July): 16027. 

Byrne, Ashley, Megan A. Supple, Roger Volden, Kristin L. Laidre, Beth Shapiro, and 

Christopher Vollmers. 2019. “Depletion of Hemoglobin Transcripts and Long Read 

Sequencing Improves the Transcriptome Annotation of the Polar Bear (Ursus 

Maritimus).” bioRxiv. https://doi.org/10.1101/527978. 

Calame, Kathryn L., Kuo-I Lin, and Chainarong Tunyaplin. 2003. “Regulatory 

Mechanisms That Determine the Development and Function of Plasma Cells.” 

Annual Review of Immunology 21: 205–30. 

Canzar, Stefan, Karlynn E. Neu, Qingming Tang, Patrick C. Wilson, and Aly A. Khan. 

2017. “BASIC: BCR Assembly from Single Cells.” Bioinformatics  33 (3): 425–27. 

Chaisson, Mark J., and Glenn Tesler. 2012. “Mapping Single Molecule Sequencing Reads 

Using Basic Local Alignment with Successive Refinement (BLASR): Application 

and Theory.” BMC Bioinformatics 13 (September): 238. 

Cherf, Gerald M., Kate R. Lieberman, Hytham Rashid, Christopher E. Lam, Kevin 

Karplus, and Mark Akeson. 2012. “Automated Forward and Reverse Ratcheting of 

DNA in a Nanopore at 5-Å Precision.” Nature Biotechnology 30 (4): 344–48. 



	 168	

Choi, Igseo, Hua Bao, Arun Kommadath, Afshin Hosseini, Xu Sun, Yan Meng, Paul 

Stothard, et al. 2014. “Increasing Gene Discovery and Coverage Using RNA-Seq of 

Globin RNA Reduced Porcine Blood Samples.” BMC Genomics 15 (November): 954. 

Cole, Charles, Ashley Byrne, Anna E. Beaudin, E. Camilla Forsberg, and Christopher 

Vollmers. 2018. “Tn5Prime, a Tn5 Based 5′ Capture Method for Single Cell RNA-

Seq.” Nucleic Acids Research, March. https://doi.org/10.1093/nar/gky182. 

Cornelison, D. D., and B. J. Wold. 1997. “Single-Cell Analysis of Regulatory Gene 

Expression in Quiescent and Activated Mouse Skeletal Muscle Satellite Cells.” 

Developmental Biology 191 (2): 270–83. 

Cronin, Maureen, Krishna Ghosh, Frank Sistare, John Quackenbush, Vincent Vilker, and 

Catherine O’Connell. 2004. “Universal RNA Reference Materials for Gene 

Expression.” Clinical Chemistry 50 (8): 1464–71. 

Darmanis, Spyros, Steven A. Sloan, Ye Zhang, Martin Enge, Christine Caneda, Lawrence 

M. Shuer, Melanie G. Hayden Gephart, Ben A. Barres, and Stephen R. Quake. 2015. 

“A Survey of Human Brain Transcriptome Diversity at the Single Cell Level.” 

Proceedings of the National Academy of Sciences of the United States of America 112 

(23): 7285–90. 

Debey, S., U. Schoenbeck, M. Hellmich, B. S. Gathof, R. Pillai, T. Zander, and J. L. 

Schultze. 2004. “Comparison of Different Isolation Techniques Prior Gene 

Expression Profiling of Blood Derived Cells: Impact on Physiological Responses, on 

Overall Expression and the Role of Different Cell Types.” The Pharmacogenomics 

Journal 4 (3): 193–207. 



	 169	

Dixon, Jesse R., Jie Xu, Vishnu Dileep, Ye Zhan, Fan Song, Victoria T. Le, Galip Gürkan 

Yardımcı, et al. 2018. “Integrative Detection and Analysis of Structural Variation in 

Cancer Genomes.” Nature Genetics 50 (10): 1388–98. 

Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, 

Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. 2013. “STAR: 

Ultrafast Universal RNA-Seq Aligner.” Bioinformatics  29 (1): 15–21. 

Du, Lianming, Wujiao Li, Zhenxin Fan, Fujun Shen, Mingyu Yang, Zili Wang, Zuoyi 

Jian, Rong Hou, Bisong Yue, and Xiuyue Zhang. 2015. “First Insights into the Giant 

Panda (Ailuropoda Melanoleuca) Blood Transcriptome: A Resource for Novel Gene 

Loci and Immunogenetics.” Molecular Ecology Resources 15 (4): 1001–13. 

Edge, Peter, Vineet Bafna, and Vikas Bansal. 2017. “HapCUT2: Robust and Accurate 

Haplotype Assembly for Diverse Sequencing Technologies.” Genome Research 27 

(5): 801–12. 

ENCODE Project Consortium. 2012. “An Integrated Encyclopedia of DNA Elements in 

the Human Genome.” Nature 489 (7414): 57–74. 

FANTOM Consortium and the RIKEN PMI and CLST (DGT), Alistair R. R. Forrest, 

Hideya Kawaji, Michael Rehli, J. Kenneth Baillie, Michiel J. L. de Hoon, Vanja 

Haberle, et al. 2014. “A Promoter-Level Mammalian Expression Atlas.” Nature 507 

(7493): 462–70. 

Femino, A. M., F. S. Fay, K. Fogarty, and R. H. Singer. 1998. “Visualization of Single 

RNA Transcripts in Situ.” Science 280 (5363): 585–90. 



	 170	

Field, Lori A., Rick M. Jordan, Jennifer A. Hadix, Michael A. Dunn, Craig D. Shriver, 

Rachel E. Ellsworth, and Darrell L. Ellsworth. 2007. “Functional Identity of Genes 

Detectable in Expression Profiling Assays Following Globin mRNA Reduction of 

Peripheral Blood Samples.” Clinical Biochemistry 40 (7): 499–502. 

Flusberg, Benjamin A., Dale R. Webster, Jessica H. Lee, Kevin J. Travers, Eric C. 

Olivares, Tyson A. Clark, Jonas Korlach, and Stephen W. Turner. 2010. “Direct 

Detection of DNA Methylation during Single-Molecule, Real-Time Sequencing.” 

Nature Methods 7 (6): 461–65. 

Fu, Yanfang, Jeffry D. Sander, Deepak Reyon, Vincent M. Cascio, and J. Keith Joung. 

2014. “Improving CRISPR-Cas Nuclease Specificity Using Truncated Guide RNAs.” 

Nature Biotechnology 32 (3): 279–84. 

Garalde, Daniel R., Elizabeth A. Snell, Daniel Jachimowicz, Botond Sipos, Joseph H. 

Lloyd, Mark Bruce, Nadia Pantic, et al. 2018. “Highly Parallel Direct RNA 

Sequencing on an Array of Nanopores.” Nature Methods 15 (3): 201–6. 

Genomic Resources Development Consortium, David W. Coltman, Corey S. Davis, Nick 

J. Lunn, René M. Malenfant, and Evan S. Richardson. 2014. “Genomic Resources 

Notes Accepted 1 August 2013-30 September 2013.” Molecular Ecology Resources 

14 (1): 219. 

Gervasoni, Annalisa, Rina M. Monasterio Muñoz, Georg S. Wengler, Anna Rizzi, Alberto 

Zaniboni, and Ornella Parolini. 2008. “Molecular Signature Detection of Circulating 

Tumor Cells Using a Panel of Selected Genes.” Cancer Letters 263 (2): 267–79. 



	 171	

Gierahn, Todd M., Marc H. Wadsworth 2nd, Travis K. Hughes, Bryan D. Bryson, Andrew 

Butler, Rahul Satija, Sarah Fortune, J. Christopher Love, and Alex K. Shalek. 2017. 

“Seq-Well: Portable, Low-Cost RNA Sequencing of Single Cells at High 

Throughput.” Nature Methods 14 (4): 395–98. 

Grabherr, Manfred G., Brian J. Haas, Moran Yassour, Joshua Z. Levin, Dawn A. 

Thompson, Ido Amit, Xian Adiconis, et al. 2011. “Full-Length Transcriptome 

Assembly from RNA-Seq Data without a Reference Genome.” Nature Biotechnology 

29 (7): 644–52. 

Graf, Thomas, and Matthias Stadtfeld. 2008. “Heterogeneity of Embryonic and Adult 

Stem Cells.” Cell Stem Cell 3 (5): 480–83. 

Graveley, B. R. 2001. “Alternative Splicing: Increasing Diversity in the Proteomic 

World.” Trends in Genetics: TIG 17 (2): 100–107. 

Gupta, Ishaan, Paul G. Collier, Bettina Haase, Ahmed Mahfouz, Anoushka Joglekar, 

Taylor Floyd, Frank Koopmans, et al. 2018. “Single-Cell Isoform RNA Sequencing 

Characterizes Isoforms in Thousands of Cerebellar Cells.” Nature Biotechnology, 

October. https://doi.org/10.1038/nbt.4259. 

Gu, W., E. D. Crawford, B. D. O’Donovan, M. R. Wilson, E. D. Chow, H. Retallack, and 

J. L. DeRisi. 2016. “Depletion of Abundant Sequences by Hybridization (DASH): 

Using Cas9 to Remove Unwanted High-Abundance Species in Sequencing Libraries 

and Molecular Counting Applications.” Genome Biology 17 (1): 41. 

Harbers, Matthias, Sachi Kato, Michiel de Hoon, Yoshihide Hayashizaki, Piero Carninci, 

and Charles Plessy. 2013. “Comparison of RNA- or LNA-Hybrid Oligonucleotides in 



	 172	

Template-Switching Reactions for High-Speed Sequencing Library Preparation.” 

BMC Genomics 14 (September): 665. 

Hardwick, Simon A., Wendy Y. Chen, Ted Wong, Ira W. Deveson, James Blackburn, 

Stacey B. Andersen, Lars K. Nielsen, John S. Mattick, and Tim R. Mercer. 2016. 

“Spliced Synthetic Genes as Internal Controls in RNA Sequencing Experiments.” 

Nature Methods 13 (9): 792–98. 

Hargreaves, Adam D., and John F. Mulley. 2015. “Assessing the Utility of the Oxford 

Nanopore MinION for Snake Venom Gland cDNA Sequencing.” PeerJ 3 

(November): e1441. 

Harr, Bettina, and Leslie M. Turner. 2010. “Genome-Wide Analysis of Alternative 

Splicing Evolution among Mus Subspecies.” Molecular Ecology 19 Suppl 1 (March): 

228–39. 

Harrow, Jennifer, Adam Frankish, Jose M. Gonzalez, Electra Tapanari, Mark Diekhans, 

Felix Kokocinski, Bronwen L. Aken, et al. 2012. “GENCODE: The Reference 

Human Genome Annotation for The ENCODE Project.” Genome Research 22 (9): 

1760–74. 

Hernández-Fernández, Javier, Andrés Pinzón, and Leonardo Mariño-Ramírez. 2017. “De 

Novo Transcriptome Assembly of Loggerhead Sea Turtle Nesting of the Colombian 

Caribbean.” Genomics Data 13 (September): 18–20. 

Huang, Zixia, Aurore Gallot, Nga T. Lao, Sébastien J. Puechmaille, Nicole M. Foley, 

David Jebb, Michaël Bekaert, and Emma C. Teeling. 2016. “A Nonlethal Sampling 



	 173	

Method to Obtain, Generate and Assemble Whole Blood Transcriptomes from Small, 

Wild Mammals.” Molecular Ecology Resources 16 (1): 150–62. 

Hunter, John D. 2007. “Matplotlib: A 2D Graphics Environment.” Computing in Science 

& Engineering 9 (3): 90–95. 

Ilagan, Janine O., Aravind Ramakrishnan, Brian Hayes, Michele E. Murphy, Ahmad S. 

Zebari, Philip Bradley, and Robert K. Bradley. 2015. “U2AF1 Mutations Alter Splice 

Site Recognition in Hematological Malignancies.” Genome Research 25 (1): 14–26. 

Irish, Jonathan M., Nikesh Kotecha, and Garry P. Nolan. 2006. “Mapping Normal and 

Cancer Cell Signalling Networks: Towards Single-Cell Proteomics.” Nature Reviews. 

Cancer 6 (2): 146–55. 

Islam, K. B., B. Baskin, B. Christensson, L. Hammarström, and C. I. Smith. 1994. “In 

Vivo Expression of Human Immunoglobulin Germ-Line mRNA in Normal and in 

Immunodeficient Individuals.” Clinical and Experimental Immunology 95 (1): 3–9. 

Islam, Saiful, Una Kjällquist, Annalena Moliner, Pawel Zajac, Jian-Bing Fan, Peter 

Lönnerberg, and Sten Linnarsson. 2011. “Characterization of the Single-Cell 

Transcriptional Landscape by Highly Multiplex RNA-Seq.” Genome Research 21 (7): 

1160–67. 

Islam, Saiful, Amit Zeisel, Simon Joost, Gioele La Manno, Pawel Zajac, Maria Kasper, 

Peter Lönnerberg, and Sten Linnarsson. 2014. “Quantitative Single-Cell RNA-Seq 

with Unique Molecular Identifiers.” Nature Methods 11 (2): 163–66. 



	 174	

Jain, Miten, Ian T. Fiddes, Karen H. Miga, Hugh E. Olsen, Benedict Paten, and Mark 

Akeson. 2015. “Improved Data Analysis for the MinION Nanopore Sequencer.” 

Nature Methods 12 (4): 351–56. 

Jain, Miten, Sergey Koren, Karen H. Miga, Josh Quick, Arthur C. Rand, Thomas A. 

Sasani, John R. Tyson, et al. 2018. “Nanopore Sequencing and Assembly of a Human 

Genome with Ultra-Long Reads.” Nature Biotechnology, January. 

https://doi.org/10.1038/nbt.4060. 

Jaitin, Diego Adhemar, Ephraim Kenigsberg, Hadas Keren-Shaul, Naama Elefant, 

Franziska Paul, Irina Zaretsky, Alexander Mildner, et al. 2014. “Massively Parallel 

Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types.” 

Science 343 (6172): 776–79. 

Jinek, Martin, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A. Doudna, and 

Emmanuelle Charpentier. 2012. “A Programmable Dual-RNA-Guided DNA 

Endonuclease in Adaptive Bacterial Immunity.” Science 337 (6096): 816–21. 

Jones, Eric, Travis Oliphant, and Pearu Peterson. 2001--. “{SciPy}: Open Source 

Scientific Tools for {Python}.” http://www.scipy.org. 

Jones, Eric, Travis Oliphant, Pearu Peterson, and Others. n.d. “{SciPy}: Open Source 

Scientific Tools for {Python}.” http://www.scipy.org/. 

Kalsotra, Auinash, Xinshu Xiao, Amanda J. Ward, John C. Castle, Jason M. Johnson, 

Christopher B. Burge, and Thomas A. Cooper. 2008. “A Postnatal Switch of CELF 

and MBNL Proteins Reprograms Alternative Splicing in the Developing Heart.” 



	 175	

Proceedings of the National Academy of Sciences of the United States of America 105 

(51): 20333–38. 

Kanitz, Alexander, Foivos Gypas, Andreas J. Gruber, Andreas R. Gruber, Georges Martin, 

and Mihaela Zavolan. 2015. “Comparative Assessment of Methods for the 

Computational Inference of Transcript Isoform Abundance from RNA-Seq Data.” 

Genome Biology 16 (July): 150. 

Kent, W. James. 2002. “BLAT—The BLAST-Like Alignment Tool.” Genome Research 

12 (4): 656–64. 

Kent, W. James, Charles W. Sugnet, Terrence S. Furey, Krishna M. Roskin, Tom H. 

Pringle, Alan M. Zahler, and David Haussler. 2002. “The Human Genome Browser at 

UCSC.” Genome Research 12 (6): 996–1006. 

Khudyakov, J. I., C. D. Champagne, L. M. Meneghetti, and D. E. Crocker. 2017. “Blubber 

Transcriptome Response to Acute Stress Axis Activation Involves Transient Changes 

in Adipogenesis and Lipolysis in a Fasting-Adapted Marine Mammal.” Scientific 

Reports 7 (February): 42110. 

Kilianski, Andy, Jamie L. Haas, Elizabeth J. Corriveau, Alvin T. Liem, Kristen L. Willis, 

Dana R. Kadavy, C. Nicole Rosenzweig, and Samuel S. Minot. 2015. “Bacterial and 

Viral Identification and Differentiation by Amplicon Sequencing on the MinION 

Nanopore Sequencer.” GigaScience 4 (March): 12. 

Kim, Jeong Kyu, Kwang Hwa Jung, Ji Heon Noh, Jung Woo Eun, Hyun Jin Bae, Hong 

Jian Xie, Ja-June Jang, et al. 2011. “Identification of Characteristic Molecular 



	 176	

Signature for Volatile Organic Compounds in Peripheral Blood of Rat.” Toxicology 

and Applied Pharmacology 250 (2): 162–69. 

Koren, Sergey, Michael C. Schatz, Brian P. Walenz, Jeffrey Martin, Jason T. Howard, 

Ganeshkumar Ganapathy, Zhong Wang, et al. 2012. “Hybrid Error Correction and de 

Novo Assembly of Single-Molecule Sequencing Reads.” Nature Biotechnology 30 

(7): 693–700. 

Krawczak, M., J. Reiss, and D. N. Cooper. 1992. “The Mutational Spectrum of Single 

Base-Pair Substitutions in mRNA Splice Junctions of Human Genes: Causes and 

Consequences.” Human Genetics 90 (1-2): 41–54. 

Lamson, G., and M. E. Koshland. 1984. “Changes in J Chain and Mu Chain RNA 

Expression as a Function of B Cell Differentiation.” The Journal of Experimental 

Medicine 160 (3): 877–92. 

Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, et 

al. 2001. “Initial Sequencing and Analysis of the Human Genome.” Nature 409 

(6822): 860–921. 

Lee, Christopher, Catherine Grasso, and Mark F. Sharlow. 2002. “Multiple Sequence 

Alignment Using Partial Order Graphs.” Bioinformatics  18 (3): 452–64. 

Lefranc, Marie-Paule, Véronique Giudicelli, Chantal Ginestoux, Nathalie Bosc, Géraldine 

Folch, Delphine Guiraudou, Joumana Jabado-Michaloud, et al. 2004. “IMGT-

ONTOLOGY for Immunogenetics and Immunoinformatics.” In Silico Biology 4 (1): 

17–29. 



	 177	

Liao, Yang, Gordon K. Smyth, and Wei Shi. 2014. “featureCounts: An Efficient General 

Purpose Program for Assigning Sequence Reads to Genomic Features.” 

Bioinformatics  30 (7): 923–30. 

Li, Bo, and Colin N. Dewey. 2011. “RSEM: Accurate Transcript Quantification from 

RNA-Seq Data with or without a Reference Genome.” BMC Bioinformatics 12 

(August): 323. 

Li, Chenhao, Kern Rei Chng, Esther Jia Hui Boey, Amanda Hui Qi Ng, Andreas Wilm, 

and Niranjan Nagarajan. 2016. “INC-Seq: Accurate Single Molecule Reads Using 

Nanopore Sequencing.” GigaScience 5 (1): 34. 

Liew, Choong-Chin, Jun Ma, Hong-Chang Tang, Run Zheng, and Adam A. Dempsey. 

2006. “The Peripheral Blood Transcriptome Dynamically Reflects System Wide 

Biology: A Potential Diagnostic Tool.” The Journal of Laboratory and Clinical 

Medicine 147 (3): 126–32. 

Li, Heng. 2013. “Aligning Sequence Reads, Clone Sequences and Assembly Contigs with 

BWA-MEM.” arXiv Preprint arXiv:1303. 3997. https://arxiv.org/abs/1303.3997. 

Li, Heng. 2017. “Minimap2: Fast Pairwise Alignment for Long Nucleotide Sequences.” 

ArXiv E-Prints 2017. 

https://pdfs.semanticscholar.org/a703/88011f2995783e159dc21a62905753a6af44.pdf. 

Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor 

Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data 

Processing Subgroup. 2009. “The Sequence Alignment/Map Format and SAMtools.” 

Bioinformatics  25 (16): 2078–79. 



	 178	

Lindenbaum, Pierre. 2015. “JVarkit: Java-Based Utilities for Bioinformatics.” Figshare, 

May. https://doi.org/10.6084/m9.figshare.1425030.v1. 

Li, Ruiqiang, Wei Fan, Geng Tian, Hongmei Zhu, Lin He, Jing Cai, Quanfei Huang, et al. 

2010. “The Sequence and de Novo Assembly of the Giant Panda Genome.” Nature 

463 (7279): 311–17. 

Liu, Shiping, Eline D. Lorenzen, Matteo Fumagalli, Bo Li, Kelley Harris, Zijun Xiong, 

Long Zhou, et al. 2014. “Population Genomics Reveal Recent Speciation and Rapid 

Evolutionary Adaptation in Polar Bears.” Cell 157 (4): 785–94. 

Li, Weizhong, Andrew Cowley, Mahmut Uludag, Tamer Gur, Hamish McWilliam, 

Silvano Squizzato, Young Mi Park, Nicola Buso, and Rodrigo Lopez. 2015. “The 

EMBL-EBI Bioinformatics Web and Programmatic Tools Framework.” Nucleic 

Acids Research 43 (W1): W580–84. 

Lockhart, D. J., H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. 

Mittmann, et al. 1996. “Expression Monitoring by Hybridization to High-Density 

Oligonucleotide Arrays.” Nature Biotechnology 14 (13): 1675–80. 

Loman, Nicholas J., Joshua Quick, and Jared T. Simpson. 2015. “A Complete Bacterial 

Genome Assembled de Novo Using Only Nanopore Sequencing Data.” Nature 

Methods 12 (8): 733–35. 

Loman, Nicholas J., and Aaron R. Quinlan. 2014. “Poretools: A Toolkit for Analyzing 

Nanopore Sequence Data.” Bioinformatics  30 (23): 3399–3401. 



	 179	

Lun, Aaron T. L., Karsten Bach, and John C. Marioni. 2016. “Pooling across Cells to 

Normalize Single-Cell RNA Sequencing Data with Many Zero Counts.” Genome 

Biology 17 (April): 75. 

Lv, Jianliang, Yaozhong Ding, Xinsheng Liu, Li Pan, Zhongwang Zhang, Peng Zhou, 

Yongguang Zhang, and Yonghao Hu. 2018. “Gene Expression Analysis of Porcine 

Whole Blood Cells Infected with Foot-and-Mouth Disease Virus Using High-

Throughput Sequencing Technology.” PloS One 13 (7): e0200081. 

Maaten, Laurens van der, and Geoffrey Hinton. 2008. “Visualizing Data Using T-SNE.” 

Journal of Machine Learning Research: JMLR 9 (Nov): 2579–2605. 

Macaulay, Iain C., Wilfried Haerty, Parveen Kumar, Yang I. Li, Tim Xiaoming Hu, 

Mabel J. Teng, Mubeen Goolam, et al. 2015. “G&T-Seq: Parallel Sequencing of 

Single-Cell Genomes and Transcriptomes.” Nature Methods 12 (6): 519–22. 

Macosko, Evan Z., Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa 

Goldman, Itay Tirosh, et al. 2015. “Highly Parallel Genome-Wide Expression 

Profiling of Individual Cells Using Nanoliter Droplets.” Cell 161 (5): 1202–14. 

Martin, Marcel. 2011. “Cutadapt Removes Adapter Sequences from High-Throughput 

Sequencing Reads.” EMBnet.journal 17 (1): 10–12. 

Mastrokolias, Anastasios, Johan T. den Dunnen, Gertjan B. van Ommen, Peter A. C. ’t 

Hoen, and Willeke M. C. van Roon-Mom. 2012. “Increased Sensitivity of next 

Generation Sequencing-Based Expression Profiling after Globin Reduction in Human 

Blood RNA.” BMC Genomics 13 (January): 28. 



	 180	

McLoughlin, Kirsten E., Nicolas C. Nalpas, Kévin Rue-Albrecht, John A. Browne, David 

A. Magee, Kate E. Killick, Stephen D. E. Park, et al. 2014. “RNA-Seq 

Transcriptional Profiling of Peripheral Blood Leukocytes from Cattle Infected with 

Mycobacterium Bovis.” Frontiers in Immunology 5 (August): 396. 

McWilliam, Hamish, Weizhong Li, Mahmut Uludag, Silvano Squizzato, Young Mi Park, 

Nicola Buso, Andrew Peter Cowley, and Rodrigo Lopez. 2013. “Analysis Tool Web 

Services from the EMBL-EBI.” Nucleic Acids Research 41 (Web Server issue): 

W597–600. 

Medaka. n.d. Github. Accessed February 12, 2019. 

https://github.com/nanoporetech/medaka. 

Millman, K. Jarrod, and Michael Aivazis. 2011. “Python for Scientists and Engineers.” 

Computing in Science & Engineering 13 (2): 9–12. 

Minnich, Martina, Hiromi Tagoh, Peter Bönelt, Elin Axelsson, Maria Fischer, Beatriz 

Cebolla, Alexander Tarakhovsky, Stephen L. Nutt, Markus Jaritz, and Meinrad 

Busslinger. 2016. “Multifunctional Role of the Transcription Factor Blimp-1 in 

Coordinating Plasma Cell Differentiation.” Nature Immunology 17 (3): 331–43. 

Modrek, Barmak, and Christopher Lee. 2002. “A Genomic View of Alternative Splicing.” 

Nature Genetics 30 (1): 13–19. 

Morey, Jeanine S., Marion G. Neely, Denise Lunardi, Paul E. Anderson, Lori H. 

Schwacke, Michelle Campbell, and Frances M. Van Dolah. 2016. “RNA-Seq 

Analysis of Seasonal and Individual Variation in Blood Transcriptomes of Healthy 

Managed Bottlenose Dolphins.” BMC Genomics 17 (September): 720. 



	 181	

Mortazavi, Ali, Brian A. Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold. 

2008. “Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq.” Nature 

Methods 5 (7): 621–28. 

Mudge, Jonathan M., and Jennifer Harrow. 2015. “Creating Reference Gene Annotation 

for the Mouse C57BL6/J Genome Assembly.” Mammalian Genome: Official Journal 

of the International Mammalian Genome Society 26 (9-10): 366–78. 

Mure, Ludovic S., Hiep D. Le, Giorgia Benegiamo, Max W. Chang, Luis Rios, Ngalla 

Jillani, Maina Ngotho, et al. 2018. “Diurnal Transcriptome Atlas of a Primate across 

Major Neural and Peripheral Tissues.” Science 359 (6381). 

https://doi.org/10.1126/science.aao0318. 

Nutt, Stephen L., Philip D. Hodgkin, David M. Tarlinton, and Lynn M. Corcoran. 2015. 

“The Generation of Antibody-Secreting Plasma Cells.” Nature Reviews. Immunology 

15 (3): 160–71. 

Oikonomopoulos, Spyros, Yu Chang Wang, Haig Djambazian, Dunarel Badescu, and 

Jiannis Ragoussis. 2016. “Benchmarking of the Oxford Nanopore MinION 

Sequencing for Quantitative and Qualitative Assessment of cDNA Populations.” 

Scientific Reports 6 (August): 31602. 

Oliphant, Travis E. 2007. “Python for Scientific Computing.” Computing in Science & 

Engineering 9 (3): 10–20. 

Pal, Sharmistha, Ravi Gupta, Hyunsoo Kim, Priyankara Wickramasinghe, Valérie Baubet, 

Louise C. Showe, Nadia Dahmane, and Ramana V. Davuluri. 2011. “Alternative 



	 182	

Transcription Exceeds Alternative Splicing in Generating the Transcriptome 

Diversity of Cerebellar Development.” Genome Research 21 (8): 1260–72. 

Pan, Qun, Ofer Shai, Leo J. Lee, Brendan J. Frey, and Benjamin J. Blencowe. 2008. 

“Deep Surveying of Alternative Splicing Complexity in the Human Transcriptome by 

High-Throughput Sequencing.” Nature Genetics 40 (12): 1413–15. 

Park, Eddie, Brian Williams, Barbara J. Wold, and Ali Mortazavi. 2012. “RNA Editing in 

the Human ENCODE RNA-Seq Data.” Genome Research 22 (9): 1626–33. 

Pertea, Mihaela, Geo M. Pertea, Corina M. Antonescu, Tsung-Cheng Chang, Joshua T. 

Mendell, and Steven L. Salzberg. 2015. “StringTie Enables Improved Reconstruction 

of a Transcriptome from RNA-Seq Reads.” Nature Biotechnology 33 (3): 290–95. 

Picelli, Simone, Åsa K. Björklund, Omid R. Faridani, Sven Sagasser, Gösta Winberg, and 

Rickard Sandberg. 2013. “Smart-seq2 for Sensitive Full-Length Transcriptome 

Profiling in Single Cells.” Nature Methods 10 (11): 1096–98. 

Picelli, Simone, Asa K. Björklund, Björn Reinius, Sven Sagasser, Gösta Winberg, and 

Rickard Sandberg. 2014. “Tn5 Transposase and Tagmentation Procedures for 

Massively Scaled Sequencing Projects.” Genome Research 24 (12): 2033–40. 

Picelli, Simone, Omid R. Faridani, Asa K. Björklund, Gösta Winberg, Sven Sagasser, and 

Rickard Sandberg. 2014. “Full-Length RNA-Seq from Single Cells Using Smart-

seq2.” Nature Protocols 9 (1): 171–81. 

Pruitt, Kim D., Garth R. Brown, Susan M. Hiatt, Françoise Thibaud-Nissen, Alexander 

Astashyn, Olga Ermolaeva, Catherine M. Farrell, et al. 2014. “RefSeq: An Update on 



	 183	

Mammalian Reference Sequences.” Nucleic Acids Research 42 (Database issue): 

D756–63. 

Putnam, Nicholas H., Brendan L. O’Connell, Jonathan C. Stites, Brandon J. Rice, Marco 

Blanchette, Robert Calef, Christopher J. Troll, et al. 2016. “Chromosome-Scale 

Shotgun Assembly Using an in Vitro Method for Long-Range Linkage.” Genome 

Research 26 (3): 342–50. 

Raj, Arjun, Patrick van den Bogaard, Scott A. Rifkin, Alexander van Oudenaarden, and 

Sanjay Tyagi. 2008. “Imaging Individual mRNA Molecules Using Multiple Singly 

Labeled Probes.” Nature Methods 5 (10): 877–79. 

Rasband, Wayne S. 2011. “Imagej, Us National Institutes of Health, Bethesda, Maryland, 

Usa.” Http://imagej. Nih. Gov/ij/. https://ci.nii.ac.jp/naid/10030139275/. 

Ren, Xingjie, Zhihao Yang, Jiang Xu, Jin Sun, Decai Mao, Yanhui Hu, Su-Juan Yang, et 

al. 2014. “Enhanced Specificity and Efficiency of the CRISPR/Cas9 System with 

Optimized sgRNA Parameters in Drosophila.” Cell Reports 9 (3): 1151–62. 

Ruan, Xiaoan, and Yijun Ruan. 2011. “RNA-PET: Full-Length Transcript Analysis Using 

5′- and 3′-Paired-End Tag Next-Generation Sequencing.” In Tag-Based Next 

Generation Sequencing, 73–90. Wiley-VCH Verlag GmbH & Co. KGaA. 

Salimullah, Md, Mizuho Sakai, Sakai Mizuho, Charles Plessy, and Piero Carninci. 2011. 

“NanoCAGE: A High-Resolution Technique to Discover and Interrogate Cell 

Transcriptomes.” Cold Spring Harbor Protocols 2011 (1): db.prot5559. 

Salzberg, Steven L. 2019. “Next-Generation Genome Annotation: We Still Struggle to Get 

It Right.” Genome Biology 20 (1): 92. 



	 184	

Salzberg, Steven L., Adam M. Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc, 

Sergey Koren, Todd J. Treangen, et al. 2012. “GAGE: A Critical Evaluation of 

Genome Assemblies and Assembly Algorithms.” Genome Research 22 (3): 557–67. 

Seabold, Skipper, and Josef Perktold. n.d. “Statsmodels: Econometric and Statistical 

Modeling with Python.” 

http://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf. 

Shalek, Alex K., Rahul Satija, Xian Adiconis, Rona S. Gertner, Jellert T. Gaublomme, 

Raktima Raychowdhury, Schraga Schwartz, et al. 2013. “Single-Cell Transcriptomics 

Reveals Bimodality in Expression and Splicing in Immune Cells.” Nature 498 (7453): 

236–40. 

Sharon, Donald, Hagen Tilgner, Fabian Grubert, and Michael Snyder. 2013. “A Single-

Molecule Long-Read Survey of the Human Transcriptome.” Nature Biotechnology 31 

(11): 1009–14. 

Shin, Heesun, Casey P. Shannon, Nick Fishbane, Jian Ruan, Mi Zhou, Robert Balshaw, 

Janet E. Wilson-McManus, et al. 2014. “Variation in RNA-Seq Transcriptome 

Profiles of Peripheral Whole Blood from Healthy Individuals with and without 

Globin Depletion.” PloS One 9 (3): e91041. 

Shiraki, Toshiyuki, Shinji Kondo, Shintaro Katayama, Kazunori Waki, Takeya Kasukawa, 

Hideya Kawaji, Rimantas Kodzius, et al. 2003. “Cap Analysis Gene Expression for 

High-Throughput Analysis of Transcriptional Starting Point and Identification of 

Promoter Usage.” Proceedings of the National Academy of Sciences of the United 

States of America 100 (26): 15776–81. 



	 185	

Shi, Xiaoli, Danny W-K Ng, Changqing Zhang, Luca Comai, Wenxue Ye, and Z. Jeffrey 

Chen. 2012. “Cis- and Trans-Regulatory Divergence between Progenitor Species 

Determines Gene-Expression Novelty in Arabidopsis Allopolyploids.” Nature 

Communications 3 (July): 950. 

Sievers, Fabian, Andreas Wilm, David Dineen, Toby J. Gibson, Kevin Karplus, Weizhong 

Li, Rodrigo Lopez, et al. 2011. “Fast, Scalable Generation of High-Quality Protein 

Multiple Sequence Alignments Using Clustal Omega.” Molecular Systems Biology 7 

(October): 539. 

Sims, David, Ian Sudbery, Nicholas E. Ilott, Andreas Heger, and Chris P. Ponting. 2014. 

“Sequencing Depth and Coverage: Key Considerations in Genomic Analyses.” 

Nature Reviews. Genetics 15 (2): 121–32. 

Sinha, Rahul, Geoff Stanley, Gunsagar Singh Gulati, Camille Ezran, Kyle Joseph 

Travaglini, Eric Wei, Charles Kwok Fai Chan, et al. 2017. “Index Switching Causes 

‘Spreading-Of-Signal’ Among Multiplexed Samples In Illumina HiSeq 4000 DNA 

Sequencing.” bioRxiv. https://doi.org/10.1101/125724. 

Smith-Berdan, Stephanie, Andrew Nguyen, Matthew A. Hong, and E. Camilla Forsberg. 

2015. “ROBO4-Mediated Vascular Integrity Regulates the Directionality of 

Hematopoietic Stem Cell Trafficking.” Stem Cell Reports 4 (2): 255–68. 

Stamm, Stefan, Shani Ben-Ari, Ilona Rafalska, Yesheng Tang, Zhaiyi Zhang, Debra 

Toiber, T. A. Thanaraj, and Hermona Soreq. 2005. “Function of Alternative 

Splicing.” Gene 344 (January): 1–20. 



	 186	

Stanke, Mario, Rasmus Steinkamp, Stephan Waack, and Burkhard Morgenstern. 2004. 

“AUGUSTUS: A Web Server for Gene Finding in Eukaryotes.” Nucleic Acids 

Research 32 (Web Server issue): W309–12. 

Sugnet, C. W., W. J. Kent, M. Ares Jr, and D. Haussler. 2004. “Transcriptome and 

Genome Conservation of Alternative Splicing Events in Humans and Mice.” Pacific 

Symposium on Biocomputing. Pacific Symposium on Biocomputing, 66–77. 

Supple, Megan A., and Beth Shapiro. 2018. “Conservation of Biodiversity in the 

Genomics Era.” Genome Biology 19 (1): 131. 

Tang, Fuchou, Kaiqin Lao, and M. Azim Surani. 2011. “Development and Applications of 

Single-Cell Transcriptome Analysis.” Nature Methods 8 (4 Suppl): S6–11. 

Tardaguila, Manuel, Lorena de la Fuente, Cristina Marti, Cécile Pereira, Francisco Jose 

Pardo-Palacios, Hector Del Risco, Marc Ferrell, et al. 2018. “SQANTI: Extensive 

Characterization of Long-Read Transcript Sequences for Quality Control in Full-

Length Transcriptome Identification and Quantification.” Genome Research, 

February. https://doi.org/10.1101/gr.222976.117. 

Tardaguila, Manuel, Lorena de la Fuente, Cristina Marti, Cecile Pereira, Hector del Risco, 

Marc Ferrell, Maravillas Mellado, et al. 2017. “SQANTI: Extensive Characterization 

of Long Read Transcript Sequences for Quality Control in Full-Length Transcriptome 

Identification and Quantification.” bioRxiv. https://doi.org/10.1101/118083. 

Tilgner, Hagen, Fabian Grubert, Donald Sharon, and Michael P. Snyder. 2014. “Defining 

a Personal, Allele-Specific, and Single-Molecule Long-Read Transcriptome.” 



	 187	

Proceedings of the National Academy of Sciences of the United States of America 111 

(27): 9869–74. 

Tilgner, Hagen, Fereshteh Jahanbani, Tim Blauwkamp, Ali Moshrefi, Erich Jaeger, Feng 

Chen, Itamar Harel, Carlos D. Bustamante, Morten Rasmussen, and Michael P. 

Snyder. 2015. “Comprehensive Transcriptome Analysis Using Synthetic Long-Read 

Sequencing Reveals Molecular Co-Association of Distant Splicing Events.” Nature 

Biotechnology 33 (7): 736–42. 

Tilgner, Hagen, Fereshteh Jahanbani, Ishaan Gupta, Paul Collier, Eric Wei, Morten 

Rasmussen, and Michael Snyder. 2017. “Microfluidic Isoform Sequencing Shows 

Widespread Splicing Coordination in the Human Transcriptome.” Genome Research, 

December. https://doi.org/10.1101/gr.230516.117. 

Tilgner, Hagen, Debasish Raha, Lukas Habegger, Mohammed Mohiuddin, Mark Gerstein, 

and Michael Snyder. 2013. “Accurate Identification and Analysis of Human mRNA 

Isoforms Using Deep Long Read Sequencing.” G3  3 (3): 387–97. 

Trapnell, Cole, Brian A. Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J. 

van Baren, Steven L. Salzberg, Barbara J. Wold, and Lior Pachter. 2010. “Transcript 

Assembly and Quantification by RNA-Seq Reveals Unannotated Transcripts and 

Isoform Switching during Cell Differentiation.” Nature Biotechnology 28 (5): 511–

15. 

Treutlein, Barbara, Doug G. Brownfield, Angela R. Wu, Norma F. Neff, Gary L. 

Mantalas, F. Hernan Espinoza, Tushar J. Desai, Mark A. Krasnow, and Stephen R. 



	 188	

Quake. 2014. “Reconstructing Lineage Hierarchies of the Distal Lung Epithelium 

Using Single-Cell RNA-Seq.” Nature 509 (7500): 371–75. 

Treutlein, Barbara, Ozgun Gokce, Stephen R. Quake, and Thomas C. Südhof. 2014. 

“Cartography of Neurexin Alternative Splicing Mapped by Single-Molecule Long-

Read mRNA Sequencing.” Proceedings of the National Academy of Sciences of the 

United States of America 111 (13): E1291–99. 

Ugarte, Fernando, Rebekah Sousae, Bertrand Cinquin, Eric W. Martin, Jana Krietsch, 

Gabriela Sanchez, Margaux Inman, et al. 2015. “Progressive Chromatin 

Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and 

Hematopoietic Stem Cells.” Stem Cell Reports 5 (5): 728–40. 

Ungaro, Arnaud, Nicolas Pech, Jean-François Martin, R. J. Scott McCairns, Jean-Philippe 

Mévy, Rémi Chappaz, and André Gilles. 2017. “Challenges and Advances for 

Transcriptome Assembly in Non-Model Species.” PloS One 12 (9): e0185020. 

Valk, Peter J. M., Roel G. W. Verhaak, M. Antoinette Beijen, Claudia A. J. Erpelinck, 

Sahar Barjesteh van Waalwijk van Doorn-Khosrovani, Judith M. Boer, H. Berna 

Beverloo, et al. 2004. “Prognostically Useful Gene-Expression Profiles in Acute 

Myeloid Leukemia.” The New England Journal of Medicine 350 (16): 1617–28. 

Vaser, Robert, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. 2017. “Fast and Accurate 

de Novo Genome Assembly from Long Uncorrected Reads.” Genome Research 27 

(5): 737–46. 

Velculescu, V. E., L. Zhang, B. Vogelstein, and K. W. Kinzler. 1995. “Serial Analysis of 

Gene Expression.” Science 270 (5235): 484–87. 



	 189	

Volden, Roger, Theron Palmer, Ashley Byrne, Charles Cole, Robert J. Schmitz, Richard 

E. Green, and Christopher Vollmers. 2018. “Improving Nanopore Read Accuracy 

with the R2C2 Method Enables the Sequencing of Highly Multiplexed Full-Length 

Single-Cell cDNA.” Proceedings of the National Academy of Sciences of the United 

States of America, September. https://doi.org/10.1073/pnas.1806447115. 

Vollmers, Christopher, Lolita Penland, Jad N. Kanbar, and Stephen R. Quake. 2015. 

“Novel Exons and Splice Variants in the Human Antibody Heavy Chain Identified by 

Single Cell and Single Molecule Sequencing.” PloS One 10 (1): e0117050. 

Walt, Stéfan van der, S. Chris Colbert, and Gaël Varoquaux. 2011. “The NumPy Array: A 

Structure for Efficient Numerical Computation.” Computing in Science & 

Engineering 13 (2): 22–30. 

Wang, Bo, Elizabeth Tseng, Michael Regulski, Tyson A. Clark, Ting Hon, Yinping Jiao, 

Zhenyuan Lu, Andrew Olson, Joshua C. Stein, and Doreen Ware. 2016. “Unveiling 

the Complexity of the Maize Transcriptome by Single-Molecule Long-Read 

Sequencing.” Nature Communications 7 (June): 11708. 

Wang, Eric T., Rickard Sandberg, Shujun Luo, Irina Khrebtukova, Lu Zhang, Christine 

Mayr, Stephen F. Kingsmore, Gary P. Schroth, and Christopher B. Burge. 2008. 

“Alternative Isoform Regulation in Human Tissue Transcriptomes.” Nature 456 

(7221): 470–76. 

Warren, Luigi, David Bryder, Irving L. Weissman, and Stephen R. Quake. 2006. 

“Transcription Factor Profiling in Individual Hematopoietic Progenitors by Digital 



	 190	

RT-PCR.” Proceedings of the National Academy of Sciences of the United States of 

America 103 (47): 17807–12. 

Watson, Hannah, Elin Videvall, Martin N. Andersson, and Caroline Isaksson. 2017. 

“Transcriptome Analysis of a Wild Bird Reveals Physiological Responses to the 

Urban Environment.” Scientific Reports 7 (March): 44180. 

Weirather, Jason L., Mariateresa de Cesare, Yunhao Wang, Paolo Piazza, Vittorio 

Sebastiano, Xiu-Jie Wang, David Buck, and Kin Fai Au. 2017. “Comprehensive 

Comparison of Pacific Biosciences and Oxford Nanopore Technologies and Their 

Applications to Transcriptome Analysis.” F1000Research 6 (February): 100. 

Welch, Joshua D., Yin Hu, and Jan F. Prins. 2016. “Robust Detection of Alternative 

Splicing in a Population of Single Cells.” Nucleic Acids Research 44 (8): e73. 

Workman, Rachael E., Alison Tang, Paul S. Tang, Miten Jain, John R. Tyson, Philip C. 

Zuzarte, Timothy Gilpatrick, et al. 2018. “Nanopore Native RNA Sequencing of a 

Human poly(A) Transcriptome.” bioRxiv. https://doi.org/10.1101/459529. 

Wrammert, Jens, Kenneth Smith, Joe Miller, William A. Langley, Kenneth Kokko, 

Christian Larsen, Nai-Ying Zheng, et al. 2008. “Rapid Cloning of High-Affinity 

Human Monoclonal Antibodies against Influenza Virus.” Nature 453 (7195): 667–71. 

Wu, Angela R., Norma F. Neff, Tomer Kalisky, Piero Dalerba, Barbara Treutlein, Michael 

E. Rothenberg, Francis M. Mburu, et al. 2014. “Quantitative Assessment of Single-

Cell RNA-Sequencing Methods.” Nature Methods 11 (1): 41–46. 



	 191	

Wu, Thomas D., and Colin K. Watanabe. 2005. “GMAP: A Genomic Mapping and 

Alignment Program for mRNA and EST Sequences.” Bioinformatics  21 (9): 1859–

75. 

Wu, Yee Ling, Michael J. T. Stubbington, Maria Daly, Sarah A. Teichmann, and Cristina 

Rada. 2017. “Intrinsic Transcriptional Heterogeneity in B Cells Controls Early Class 

Switching to IgE.” The Journal of Experimental Medicine 214 (1): 183–96. 

Ye, Jian, Ning Ma, Thomas L. Madden, and James M. Ostell. 2013. “IgBLAST: An 

Immunoglobulin Variable Domain Sequence Analysis Tool.” Nucleic Acids Research 

41 (Web Server issue): W34–40. 

Zhang, Xiaochang, Ming Hui Chen, Xuebing Wu, Andrew Kodani, Jean Fan, Ryan Doan, 

Manabu Ozawa, et al. 2016. “Cell-Type-Specific Alternative Splicing Governs Cell 

Fate in the Developing Cerebral Cortex.” Cell 166 (5): 1147–62.e15. 

Zheng, Grace X. Y., Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, 

Ryan Wilson, Solongo B. Ziraldo, et al. 2017. “Massively Parallel Digital 

Transcriptional Profiling of Single Cells.” Nature Communications 8 (January): 

14049. 

Zhu, Xiaocui, Rebecca Hart, Mi Sook Chang, Jong-Woo Kim, Sun Young Lee, Yun Anna 

Cao, Dennis Mock, et al. 2004. “Analysis of the Major Patterns of B Cell Gene 

Expression Changes in Response to Short-Term Stimulation with 33 Single Ligands.” 

Journal of Immunology  173 (12): 7141–49. 

Ziegenhain, Christoph, Beate Vieth, Swati Parekh, Björn Reinius, Amy Guillaumet-

Adkins, Martha Smets, Heinrich Leonhardt, Holger Heyn, Ines Hellmann, and 



	 192	

Wolfgang Enard. 2017. “Comparative Analysis of Single-Cell RNA Sequencing 

Methods.” Molecular Cell 65 (4): 631–43.e4. 

 

 

 




