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1 Introduction

Economists have devoted a large research effort to the estimation of cost func-
tions and profit functions. Since the popularization of the dual approach to
such functions, econometricians have focussed particularly on methods for fit-
ting functions that satisfy the restrictions implied by optimizing behavior, min-
imizing costs or maximizing profits. For the most part, researchers have sought
simple parametric functional forms that are sufficiently flexible to approximate
well all possible functions in the families of cost and profit functions. Given
such parametric functions, much of the estimation has followed the method of
least squares.

In this paper, I will describe a computational approach to fitting cost and
profit functions by the method of least squares subject only to the restrictions
imposed by the theory of optimizing behavior. Instead of tightly parameterized
functional forms, I will use as many parameters as required to cover all the
permissible functions. The computational approach has a tong history, but this
paper grows specifically out of previous, joint research with my colleague. Steven
Goldman. I will illustrate the computation with two examples drawn from the
empirical literature on the estimation of cost functions.

There are several reasons to pursue the least squares fit of cost and con-
ditional factor demands. First of all, researchers have worked for many years
on appropriate functional forms for these functions) Economists have pro-
posed various parametric functional forms designed to exhibit their theoretical

*Paper prepared for invited symposium "Computationally Intensive Methods in Econo-
metrics," Seventh World Congress of the Econometric Society, Tokyo, August 22-29, 1995. I
thank Eva Balslev and Erik Heitfield for research assistance. This paper grows out of joint
research with Steven M. Goldman and Theodore Keeler. I am especially indebted co Steve
for many helpful discussions. Financial support of the U. C. Transportation Center at the
University of California, Berkeley is gratefully acknowledged.

tThe econometric literature on parametric functional forms is extensive and so we point
to some leading examples. Diewert (1973) initiated much of the analysis of flexible functional
forms. Lau (1978) proposed a transformation of parameters for imposing monotonicity and
convexity in quadratic functions.



properties and to be amenable to conventional parametric statistical estima-
tion methods.2 This requirement explains the popularity of such parametric
cost functions as the translog. In addition, researchers desire flexible functional
forms so that their inferences are not misled by statistical artifacts of parametric
misspecification. The approach presented here also yields a specification that
accommodates factor and output levels of zero naturally.

Another motivation for our line of research is the desire to explore various
ways to let the data determine the amount of smoothing in regression estima-
tion. Nonparametric research has focused heavily on such techniques as kernel
smoothing. In this paper, we obtain smoothness through structural restrictions
of monotonicity and concavity on the regression function. One can also view the
fits we compute here as the least smooth function that satisfies these structural
constraints. Anything else is a further restriction. Thus, one can learn what
additional structure must be imposed to sharpen one’s empirical inference.

This paper focuses on computational problems. We do not consider the
statistical properties of the least squares estimator. Hanson & Pledger (1976)
have demonstrated the consistency of the estimator for the univariate case.
Approximate (asymptotic) distributions are non-normal and quite complicated
for the simplest cases. See Yazhen (1993) for an analysis.

2 The Computational Approach

Computing the least squares fit of a cost or profit function is a classic quadratic
programming problem. Our computational approach is to compute the solution
to a duaI problem. The solution to the dual quadratic programming problem is
computed by a combination of standard Gauss-Seidel and programming algo-
rithrns. However, the dimensions of "typical" problems in econometrics are too
large for software engineered for a wide range of applications. We exploit the
special structure of our particular problems to overcome this dimensionality.

2.1 Statement of the Problem

2.1.1 Univariate Concave Regression

To introduce our discussion, consider a particular example of restricted least
squares, fitting a univariate, concave regression function, as proposed by Hil-
dreth (1954). Given observations {(z,~,y,) ; n = 1,..., N}, ordered so 

xl < z~_ < ..o < ZN, find
min ily - zll; (1)

subject to
Znq_1 ~ Zn+1 ( Zn+l -- Zn , n=l .... ,N-2. (2)
Xn+2 -- XnR-I -- ~TnJrl -- Xn

2Diewert & Wales (1987) call the construction of restricted parametric functions "one
of the most vexing problems applied economists have encountered" and comment that the
comprises which researchers strike have often proved unsatisfactory. They propose a family of
semifiexible functions with which one can impose convexity and choose the degree of fleMbility.



For exposition, we have specified that the xn have distinct values.3 A direct
approach would be to optimize the elements of z - [zn; n = 1,..., N]. But this
is awkward because most z~ must satisfy several constraints simultaneously.
Hildreth used an alternative approach.

Instead, Hildreth computed the solution to the dual problem. Let Rz <_
0 denote the inequality constraints (2) gathered into matrix form. The dual
program is

rain }ly- R’AII 2 (3)

which has an analytically simpler form for the constraints: Each element of
A must satisfy a single positivity constraint. These scalars are the Lagrange
multipliers associated with each constraint. Given the optimal A, the optimum
of the primal problem is calculated simply as

l) - Y - R’A. (4)

HiIdreth applied Gauss-Seidel to (3), optimizing iteratively over each element
of h in an (arbitrary) fixed sequence. Each optin-fization has a simple solution:

max{0, br/cr} = arg min fly- R’AII2
(5)¯

;~>0 ’

where br and c~ are taken from the expansion of the objective function in each
element At:

1 2Ily - R’ II 2 = ar - +

In this way, he converted a relatively difficult problem into a series of very simple
ones.

The basic duality is illustrated in Figure 1. The vectors R1 and R~ are two
rows in the constraint matrix R. The constrained set is K = {z [ Rz <_ 0} and
its dual is K" = {w t w’z < 0 Vz E K}. The optima ~) and R’A are denoted by
the points A and B respectively. Note that these are orthogonal projections of
y onto subspaces.

By updating each A~ with (5) sequentially as r = 1,...,M over M con-
straints, one completes an iteration of Hildreth’s algorithm. A convenient start-
ing point is to set i = 0. At every step from Ai to Ai+a, one reduces the length
of the implicit fit, 9i - Y - R~Ai. Hildreth also proved that this Gauss-Seidel

sequence converges to the optimum of (3). His proof is a classic demonstra-
tion of a contraction mapping, resting on the uniqueness of the optimal A, the
boundedness of A, and the continuity of the objective function. See Goldman &
Ruud (1993b) for a generalization of his theorem and proof that applies to the
problems we consider below.

3If there were any n such that x,~ = x,~+l, then one must insert equality constraints
za -- z,,+l. Hildreth allowed for these mu]tip|icities. We avoid such additional detail.
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Figure i: Quadratic Program Dua|ity

2.1.2 Cost Functions

This univariate case is simpler than the genera[ problem that we consider here:
fitting a cost function in for production with multiple inputs and outputs. The
basic structure is the same, but the constraints are more complicated. Let q
denote ~ vector of J output levels, y denote a vector of M input factor levels,
and p denote a vector of M corresponding factor prices. The cost function is

c(p, q) = rain p~y

where Q is the production set. 4 Such functions are characterized by four prop-
erties: (i) c(.) is monotoaicafly increasing in input prices ~nd output leve}s; 
c(.) is homogeneous of degree one in input prices; (3) c(.) is concave; and 
c(.) is continuous.5

~The production set is a.~umed to be no.empty and compact.

5In mathemati<~} terms, z E C ~f and only if z is continuous ~nd

2. p>>o, a>c~ z(a.~,q)=~.z(v,q)
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Associated with the cost function is a vector of M conditional factor de-
mand correspondences that we denote by z(p, q) - [zm(p, q); m = 1 ..... M].
These are characterized by (1) z,~(.) is monotonically decreasing in pro, 
z(-) is homogeneous of degree zero in p, (3) if z(-) is single-valued at (Pl, 
then :(P!, qI) Vpc(pl, ql ), and (4 ) if z(. ) is dif ferentiable at (Pl .ql), then

~pz(Pl. ql)’ is a symmetric, negative semidefinite matrix.6

Given a data set of N observations {(Pn, qn, Y,~) ; n = 1,..., N) on the price

vector, output vector, and input vector, we will seek

N

9 = arg z~i~ Z HYn -- z(p,~,qn)lr (6)

where C is the set of single-valued conditional factor demand functions that are
consistent with the properties of cost minimization listed above.7 This prob-

lem is a generalization of the parametric estimators econometricians typically
employ. It can be motivated by assuming normally distributed error terms as-
sociated with the demand or by specifying that the conditional factor demand

function is the conditional expectation of the observable factor levels. We will
refer to g as the "nonparametric" fit, though we will actually work with a high-
dimensional parameterization below.

Firs~ of all, consider the constraints that cost minimization imposes on this
minimization problem. We will not impose differentiability of z. Clearly, only
the points {Zn - z(p,~, qn); n -- 1,..., N} are relevant to the least squares prob-

lem. Therefore, we can restrict our parameterization, without loss of generality,
to

CN = {[z.m] e xg X :¢M I z. = z(p,,,q,~), ~ c}.
Similarly. the continuity of the cost function is not a binding restriction in this
problem.

Imposing linear homogeneity as a restriction on z is straight-forward: One
simply chooses one input as num4raire and normalizes all prices by the price
of the num4raire. Monotonicity and convexity restrictions result in a nontrivial
computational problem. The monotonicity constraints on cost functions require
simpl.v that every z,~m be nonnegative:

z,,~ > 0. (7)

As Varian (1984) points out, the concavity constraints imply thats

tp~z._< p.z,- Vn~ i : q. < q;. (8)
SThese well-known properties of cost functions and conditional factor demand correspon-

dences are explained in Varian (textbook) and Mas-Colell et al (textbook). We use V:D to
denote the vector of partial derivatives with respect to the elements of p.

7It wi[i be convenient to think of the norm II’ll as the simple Euclidean norm, but one can
generalize to generalized least squares problems straightforwardly.

oVarian (1984) calls these constraints the ’Weak Axiom of Cost Minimization’ (WACM).
He restricts his analysis to a scalar output, but this is not necessary for our analysis.



In words, the cost function ~p,~,~ is less than the cost at prices pT~ of the con-
ditional factor demands for producing at least the same output qi at any other
prices pi.

Goldman ~ Ruud (1993b) observe that these constraints together describe 
closed convex polyhedral cone. It is an immediate consequence of the convexity
of CN (and the strict concavity of the objective function} that ?~ is unique. This
uniqueness is. of course, a highly desirable property for computation because it
rules out the need to seek out multiple potential local optima.

It is also interesting to consider the estimation of the cost function without
the factor input level data. Occasionally, input data are not available. In
addition, comparisons of cost function estimates with and without input data
may serve as a natural specification test. Given a data set of N observations
{(p,, q,~, c,) ; ~ = l,..., N} on the price vector, output vector, and total costs,
the cost function estimation program solves

rain lie- zll2
zEC,,,-

where c _--- [c,~] is the vector of observed costs and CN is a subset of ]1:~ N where
zECN if

:, <_ z~ Vn, i:p,_<pi, q,_<qi~ (9)

’ ’ (20)3:,,, E ~ :z,~=p,~, zi<piT~ Vn, i:qi<q~,.

We normalize prices and costs so that homogeneity is imposed. The restrictions
in (9) describe monotonicity and the restrictions in (10) describe concavity. 
latter is a convenient alternative in higher dimensions to explicit expressions like
(2), which require extensive computation and work space to apply. Also, (10) 
the natural analogue to (8): The 7~ correspond to possible factor demands and
the constraint states that the cost of the factor demands at (Pn, qn) valued at

prices Pi must not undercut minimized costs at Pi and any output less than qn.
Again, the parameter space CN is a closed convex cone so that there is a

unique fitted & Note, however, that the implicit conditional factor demands will
be a correspondence, not a function. In general, the values of 7, that satisfy
(I0) will not be unique. Instead, the conditional factor demands will be a closed
set.

Although the parameterization of the cost or conditional factor demands
can be restricted to a finite number of points, the points where prices and
outputs are observed in the sample, there are implicit restrictions on the cost
function and demands at other prices and outputs as well. These restrictions
yield estimators for prices and quantities that are correspondences, in much the
same way as for conditional factor demands above.9 Thus, for conditional factor
demands, 9(p. q) is the set that satisfies

z(p, q) > 
9Generally, we restrict attention within the convex hu[| of observed values of prices and

quantities.



p’z(p, q) < rain P’Yi
-- i:q(q,

l^
PiYi <_ p}z(p,q) Vi: qi <_ q.

For the cost function, f(p, q) is the set that satisfies

~(P,q) < di Vi:p<pi.q<q,,

ci <_ ~(P.q) Vi:pi <_p, q, <q,

3~ERM:~(p,q) = p’% di<_pi~’ gi:qi<_q,

3")’i E M :ci -- P~,i. d(p,q) < p’~/i Vi : q < qi.

For any (p, q), these sets can be computed easily with linear programming soft-
ware.

The computational problem that we face is that number and dimension of
constraints in a data set is often so enormous that general programs for solving
quadratic programs cannot accommodate them. Varian (1985) has computed
the solution to a problem similar to (6) for a relatively small data set (18 obser-
vations. 3 factors, 1 output) using the MINOS package by Murtagh & Saunders
(1967). In one of the examples below, there are over 200.000 restrictions on
more than 2,500 parameters for a data set with 630 observations.

Goldman & Ruud (1993a) fit factor demands for a somewhat larger problem
using Hildreth’s method. In their work, each Gauss-Seidel iteration corresponds
to updating the fitted factor demands with

_ pnwi,wi if
pn wn <

[" z, , wn qn < qi

I J [11)
Zn Wi Pn if Pn Wn > Pn Wi ’

Wn -- Olni " --Pn qn ~_ qi

O~nz

2plnpn

where the other components of z are set equal to the corresponding components
of w. The projections for the inequalities (7) are even simpler:

z,~m = max{0, w,~,,,} .

These calculations can be done very rapidly, rendering large problems into many,
workable subproblems. Goldman & Ruud (1993a) found that the convergence
of such sequences was extremely slow in the problem they considered. This
slowness is a well-studied characteristic of a general class of calculations called
alternating projections.10

3 Generalizing Hildreth’s Procedure

The components of Hildreth’s computational method have been generalized by
Goldman ~ Ruud (1993a).~1 Their basic, and simple, insight is that one need

l°See ,..
11 See Goldman & Ruud (1993b) for a description of related research.



Hildreth Search Path

Figure 2: Alternating Projections

not restrict the iterations of Gauss-Seidel to one element of ,~ at a time. More
generally, one can optimize over subsets of the elements of A simultaneously
or alter the order in which the elements are taken. These two possibilities
make the range of possible algorithms much bigger and their exploitation can
substantially improve the speed of convergence. Goldman & Ruud (1993b)
prove that the contraction property of such generalizations rests solely on the
requirement that every constraint appears in at least one subproblem of an
iteration.

For calculations like (11), one can understand the slow speed of convergence
as a symptom of near multicollinearity among the restrictions. Each iteration
of Gauss-Seidel corresponds to a projection onto a half-space.12 See Figure 2
for an illustration. The solid line depicts the path of two iterations, through
all constraints, of the HiIdreth algorithm. In the second iteration, the circles
depict the location of the fitted vector when A, = 0 and the dashed line repre-
sents a projection onto a half-space as Ar is set to its optimal, positive value.
Alternating projections between several highly collinear subspaces is illustrated
in Figure 3. Because the intermediate projections are so close to one another,
the algorithm makes small incremental steps toward the ultimate solution.

Goldman & Ruud (1993a) combine the elements of A in two instances. First
of all, for the estimation of cost functions without factor demand data, they
constructed a sequence of least squares regressions that optimize with respect
to the intersection of the concavity constraints (10) for fixed n. Secondly, when

12This interpretation is emphasized by Dykstra (1983).
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Figure 3: Nearly Collinear Subspaces

the iterations of Hildreth’s procedure cycled over the same active constraints,
they check whether the active constraints comprise a basis for the final solution.
If so, they calculate the optimum (by direct linear calculation) and end the
iterations. In this paper, we extend the principle of optimizing over several
elements in A in two additional ways. Firstly, we replace the individual factor
demand projections in (11) with a single projection onto the intersection of 
set of concavity restrictions. This is analogous to the projection for costs used
by Goldman gc Ruud (1993a). Secondly, we reduce the active constraint set 
removing as many constraints as possible through periodic optimization over
all positive elements of A. This procedure is a generalization of the attempt to
solve for a final solution.

3.1 Projection onto Concavity Constraints

Our experience shows that the greater speed of such simple projections as (11)
can be overcome by the greater improvements achieved by more complex pro-
jections onto higher dimensional cones. In our case, we make projections onto
the sequence of cones

K~ - {p’~z,_< p, zi’ Vi : q~ < qi} , r = 1,...,R,

the intersections of subsets of the half spaces Goldman ~ Ruud (1993 a) consider.
The projection onto this cone is nonlinear, but it can be accomplished efficiently
using a conventional quadratic programming algorithm (see Gill, Murray, Saun-



ders& Wright (1982)).la This is possible because the special structure of these
cones allows us to compute the search direction without numerical inversion of
a large Hessian term. The constraints in Kr have a convenient tensor form by
virtue of the common price vector p,. The constraints can always be written in
the form

®v’.)z = 
by stacking the fitted factor demand vectors into a single vector. For notational
convenience, suppose all the elements of z are actively constrained elements and
suppose z~ is the last element of z. Then

a,=(-s , ).
where I is an identity" matrix and t is a vector of ones. The search direction for
an iteration of the quadratic programming algorithm is similar to (1I):

1z = w - -- (u,; 
P~P~

where g, is the simple average of the elements of w and w~- is the i th element
of w. Clearly. this direction can be computed easily for large numbers of active
constraints. One simply computes an average of conditional demand vectors.
One must iterate through a sequence of such search directions, but the cost of
these iterations is overcome by the improvement in search efficiency.

The monotonicity constraints can also be conveniently combined. The pro-
jection joint simply replaces every negative entry with zero. The simplicity of
this intersection arises from the mutual orthogonality of the constraints. This
orthogonality also implies what is obvious here: that there is no gain in the
efficiency of the algorithm derived from forming this "monotonicity" cone.

3.2 Optimal Constraint Elimination

There is a general pattern in the paths of the Gauss-Seidel iterations in the
dual: The number of active constraints usually declines, especially over the
initial iterations. The approach to the optimal solution is monotone in the
length of the fitted vector. As one approaches the optimal solution, constraints
that are satisfied at the solution are eliminated. Therefore, a general strategy
to accelerate Hildreth’s procedure seeks ways to eliminate constraints from the
current basis.

Vv’~e have found a rapid and convenient method for such elimination. When
the set of active constraints remains unchanged for two successive iterations, we

13Here is a brief description. Given a feasible starting point for aa iteration, the quadratic
programming algorithm computes the solution to the restricted lea.~t squares (RLS) problem
constructed from imposing the active constraints as equalities. If it satisfies all constraints,
then this solution also solves the projection problem. If not, one computes the point on the
line segment between the initial value and the RLS solution closest to the initial value where
a constraint changes status. The fit at this point becomes the starting value for the next
iteration.

I0



attempt to jump to a final solution by computing the constrained optimum that
imposes all active constraints as equalities. Denoting the active constraints by
Rz = 0, this point is

= (I- R-R) 
-- (I- R’ (R-)’)
-(,-

where R- is a generalized inverse of R. The corresponding value for the La-
grange multiplier vector A is, therefore, A" = R’-y. If the active constraints
do not comprise the set of constraints binding at the optimum, but instead
include extra constraints, then elements of A* wilI be negative. Tile optimal,
constrained, point on the line segment between the current value of ,k and A*
will set one element of A to zero, effectively eliminating one active constraint and
improving the objective function. We repeat this process with the remaining
constraints, until A* contains strictly positive values.

This procedure does not produce a projection onto the intersection of the
active constraints. That would require the entry of inactive constraints into the
active constraint set. We have not yet explored whether the computational effort
would be worthwhile. Our current procedure is rapid and speeds convergence
significantly.

3.3 Additional Considerations

Finally, we remark that numerical round-off errors can play a significant role
in preventing successful iteration. To summarize our experience, we find it
critical to parameterize the computational problem in terms of the Lagrange
multiplier vector A. Dykstra (1983), for example, uses a theoretically equivalent
parameterization in the primal parameter space that often failed us. Numerical
round-off errors may accumulate so that the fitted value does not satisfy the
constraints of the dual problem. Therefore, we retain the parameterization of
the problem in terms of the dual, ensuring that these constraints are respected
at every step of the calculations.

We have written our programs in Matlab. Although Gauss is generally very
similar, Matlab has an ability to handle sparse matrices that is particularly
convenient for our algorithm. The constraint matrix R contains many zeros,
because the constraints are pair-wise in the observations. Sparse matrix routines
save a great deal of work space and computational time.

4 Examples

We give two examples as applications of the computation of restricted least
squares. The first is based on the classic paper by Christensen & Greene (1976),
one of the earliest applications of the translog cost function to cost function

1i



estimation. Goldman ~: Ruud (1993a) also used this example, but made some
computational errors which are corrected here. The second example examines
U.S. trucking costs, one of the areas in which cost function estimation has been
applied extensively.

4.1 Electric Power Generation

Christensen &: Greene (1976) estimated a translog cost function for electricity
generation as a function of three factor prices: prices for capital, labor and
fuel. Their primary interest was economies of scale. Using seemingly unrelated
regressions, they tested the cost function for homogeneity and found convinc-
ing evidence against these restrictions. We use the 99 observations from the
original Christensen/Greene data set that Berndt (1991) provides. The imposi-
tion of homogeneity makes no appreciable difference in the calculations of scale
economies. If one checks for concavity at the data points. 12 observations are
at points where the translog cost function is not concave. All monotonicity
restrictions are satisfied. All in all, this is an application where the translog
specification appears to be successful.

We fit the cost function with least squares applied to conditional factor de-
mands. To account for differences in scale, the factor levels were scaled by their
empirical standard deviations. We made no attempt to exploit cross-equation
covariance in estimation. The quadratic programming problem has 4852 con-
straints. Our algorithm converged in 1I iterations, which take less than five
minutes on a 486-33 PC microcomputer. No monotonicit.v constraints are bind-
ing. Only 54 of the concavity constraints were binding. Out of the 99 observa-
tions, 22 have perfect fits. The sample standard deviations for the residuals in
the translog share equations are 0.042, 0.051, and 0.064 for labor, capital, and
fuel respectively. For the nonparametric fit, these standard deviations are 0.008,
0.010, and 0.108. As one might expect, the fit of the nonparametric model is
much tighter. If we make a ball park adjustment for degrees of freedom, by
treating the number of observations minus the active constraints (54) as the
number of parameters, the nonparametric fit remains ~ubstantially tighter.

In Figures 4 and 5, we graph the fitted average cost functions for the two
specifications, computed at the sample average of the prices. The nonpara-
metric fit has two lines, which are the upper and lower bounds of the fitted
correspondence. The bulk of the output levels actually observed in the data set
are below 20 billion KWH (see Figure 6) so that the second figure, graphing
the logarithm of output, gives an expanded view of that region of the average
cost function. Without statistical distribution theory, we cannot make a for-
mal statement about the similarity of these functions but we think that there
is substantial similarity. The estimated translog function does not appear to
be misleading. This occurs in a data set where the usual diagnostics suggest
confidence in the translog parameterization is justifiable.

12
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4.2 Transportation by Truck

Our second illustration is somewhat more ambitious in scale. We re-examine
the estimation of cost functions for U. S. trucking firms. This industry has
received repeated attention because it has been heavily regulated in the past,
so that data describing its costs, outputs, and factor inputs are relatively easy
to obtain. Also, recent deregulation gives economists an opportunity to assess
its effects on costs. Our reference point is work by Ying (1990), who references
many of the earlier studies.

Our data set is a cross-section of trucking firms observed in 1976. This
is the first year of a panel that we have been constructing for joint research
with Goldman and Keeler on the effects of deregulation on this industry. There
are 630 observations and we have followed Ying’s methods to construct the
data set and to estimate a transtog cost function. The data contains Class I
and II common carriers of general freight specializing in relatively small "less-
than-truckload" shipments. The data are taken from Trmc as Blue Book of the
Trucking Industry. The factor inputs are fuel, purchased transportation, labor,
and capital. Output is measured by revenue ton-miles, although the translog
specification includes average length of haul, average shipment size, and average
load as additional explanatory variables.

Translog estimates of the cost function suggest that this parametric speci-
fication is inappropriate. Although no monotonicity restrictions in output are
violated in the sample, 67% of the observations are at points where the estimated
cost function is not concave and 9% are fail monotonicity in factor prices. The
likelihood ratio test for cross-equation constraints on parameters rejects these
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restrictions at all conventional levels of significance.
One of the reasons for the failures in monotonicity is that one factor, pur-

chased transportation, is often not used: 226 observations (36%) in the sample
do not use purchased transportation. As a result, the translog is fitting a sub-
stantial portion of the sample in the vicinity of a factor share equal to zero. It
is inevitable that some of these observations will predict negative shares, and
thereby violate monotonicity in a factor price. The nonparametric fit has no
such difficulty. Factor levels of zero can be a natural outcome of cost minimiza-
tion and correspond to directions in which the cost function is flat.

Another cause of the failures to meet cost function restrictions may be the
simplification that output is the scalar ton-miles. Researchers have routinely
added such variables as "average length of haul" to the translog specification
to account for differences in shipping environment. These attribute variables
also appear to measure such other characteristics of output as the number of
trips. Therefore, we consider treating them as additional components of a multi-
dimensional output vector.

We fit the nonparametric conditional factor demand functions using the
original output of ton-miles and specifying output to be the vector tons, miles,
and trips. The average cost functions, translog and nonparametric, for the scalar
output measure ton-miles are shown in Figure 7 and a histogram of firm sizes
in Figure 8. In this case there appears to be some disagreement between the
two specifications. For most of the lower output levels, there is evidence that
the translog is under-estimating average costs and under-stating the potential
economies of scale.
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Figure 8: Average Costs for Electric Power Generation

The programming problem had 198135 concavity restrictions and 2520 mono-
tonicity constraints. The computer program took 44 iterations and approxi-
mately 30 hours on a Sun Sparc i0 to converge. We do not give precise timing
because the workstation was not dedicated to this one task. If it were, the
duration would be this order of magnitude.

It is interesting to find that the nonparametric fit does not appear to over-fit
in this case. There are only 13 observations that obtain perfect fits. There are
1138 active constraints in the nonparametric fit, 98 of which are monotonicity
constraints. The translog fit has smaller error sums of squares for the cost and
share equations, while the nonpararnetric fit has smaller error sums of squares
for the factor demand levels. The statistical evidence against the translog cost
specification is consistent with a constrained nonparametric fit that is looser as
we observe here.

The presence of binding monotonicity constraints is worth special note be-
cause Varian (1985) does not consider these constraints in his work° This reflects
a difference in approach. Varian considers testing for cost minimization in the
presence of observation error, where the observed factor demands are always
positive. We are fitting a cost function with concavity constraints that can
push the least squares fit into violations of monotonicity. Thus, the monotonic-
ity constraints may constrain the fit.

We also fit the nonparametric conditional factor demand functions, specify-
ing output to be three-dimensionah tons~ miles, and trips. The scalar ton-mile
specification has obvious appeal as a physical measure of work, but this is by
no means definitive. As we have already noted, previous studies add additional
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explanatory variables that one can interpret as measures of other dhnensions to
output. The program had 127838 concavity constraints and 2520 monotonicity
constraints. The generalization of the output specification reduces the num-
ber of constraints relative to the scalar specification. Convergence required 22
iterations and approximately 10 hours. At convergence, only 359 concavity con-
straints and 92 monotonicity constraints were binding. One third (207 of 630)
of the observations have a perfect fit.

In Figure 9, we examine the possibility that the ton-miles specification may
be too restrictive. We graph the average cost correspondences for two paths in
output space, a "low ton" and a "high ton" path, with corresponding levels of
ton-miles. The two paths are shown in Figure I0, along with a scatter plot of
the actual tons and miles data. Trips are fixed at the level of the sample average,
as are prices. The evidence is much less clear here, relative to the comparison
of the translog and nonparametric fits earlier. There is substantial agreement
between these two average cost fits. Nevertheless, the fits indicate that at low
ton-miles the higher tons is more costly than higher miles. Given the relatively
fixed costs of loading each truck, this is a sensible outcome.
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Figure 9: Average Costs for Electric Power Generation

5 Conclusion

The immediate econometric application of least squares estimation subject only
to monotonicity and concavity constraints is limited by the lack of a statistical
theory. The consistency of such estimators has been established, but a general
approximate distribution theory remains to be found. There are at least two
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directions in which this computational research may link with a distribution
theory.

First of all. it seems fruitful to combine the local smoothing approaches
of nonparametric estimation with restricted estimation. Local smoothing will
surely provide convergence rates comparable to those for unrestricted estima-
tors. There are several ways to combine smoothing with restricted estimation;
all of which use the methods developed here. The simplest may be to apply
the restricted least squares program to the smoothed regression, r~ther than to
the data as we do here. An attractive alternative is to change the least squares
objective function (6) to a smoothed version:

(12)

where Kh(-) is a multivariate kernel density. This is equivalent to a weighted
least squares problem which is easily accommodated by our approach.

Secondly, the computation of Bayesian posterior moments (Geweke (1995))
may" be enhanced by our methods. The |east squares fit may provide a good
approximation to the mode of the posterior of a Bayesian non-parametric anal-
ysis of these estimation problems. In that case, the central tendency of the
posterior can be located with our technique, providing a useful starting point
for such posterior simulators as the Gibbs sampler. The latter is natural for re-
stricted least squares problems where the support of the posterior distribution
is truncated by the restrictions. See Geweke (1995) for an introduction.
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