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Abstract: To interpret fiber-based and camera-based measurements of 
remitted light from biological tissues, researchers typically use analytical 
models, such as the diffusion approximation to light transport theory, or 
stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally 
real-time) measurement of tissue optical properties, especially in clinical 
situations, there is a critical need to accelerate Monte Carlo simulation runs. 
In this manuscript, we report on our approach using the Graphics 
Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to 
calculate rapidly diffuse reflectance values for different sets of tissue 
optical properties. We selected MATLAB to enable non-specialists in C and 
CUDA-based programming to use the generated open-source code. We 
developed a software package with four abstraction layers. To calculate a 
set of diffuse reflectance values from a simulated tissue with homogeneous 
optical properties, our rescaling GPU-based approach achieves a reduction 
in computation time of several orders of magnitude as compared to other 
GPU-based approaches. Specifically, our GPU-based approach generated a 
diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU 
memory currently is a limiting factor with GPU-based calculations. 
However, for calculation of multiple diffuse reflectance values, our GPU-
based approach still can lead to processing that is ~3400 times faster than 
other GPU-based approaches. 

©2013 Optical Society of America 

OCIS codes: (170.5280) Photon migration; (170.3660) Light propagation in tissues; (200.4960) 
Parallel processing; (110.7050) Turbid media 
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1. Introduction 

Light transport through tissue is affected by the optical properties of the underlying sample. 
To interpret fiber-based and camera-based measurements of remitted light from biological 
tissues, researchers typically use models of light transport. Applications of this approach 
include diffuse reflectance spectroscopy [1, 2], fluorescence spectroscopy [3, 4], Cerenkov 
light transport [5], Raman spectroscopy [6], and optical microscopy [7]. 

Researchers typically use analytical models, such as the diffusion approximation to light 
transport theory [8], or stochastic models, such as Monte Carlo modeling [9]. While the 
diffusion approximation enables fast calculation of optical fluence distributions and light 
reflectance and transmittance, it does not provide accurate solutions for simulated scenarios in 
which light absorption is appreciable, such as visible-light spectroscopy of skin cancer and 
port-wine stains [10, 11]. The Monte Carlo approach enables accurate, flexible modeling of 
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light transport in biological tissues. However, it suffers from relatively long computation 
times required to achieve a meaningful simulation run. To solve inverse problems in which 
fiber- or camera-based measurements of light remittance are combined with light-propagation 
modeling to estimate the internal tissue optical properties, the situation is exacerbated due to 
the need to perform multiple Monte Carlo simulation runs [12]. 

To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in 
clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. We 
specifically are interested in integration of rapid Monte Carlo calculations with Spatial 
Frequency Domain Imaging (SFDI) [13, 14], which is a wide-field, camera-based method that 
involves analysis of multispectral reflectance images collected during structured illumination 
of the tissue under interest. With camera-based imaging, the computational demands are 
magnified due to the need for optical-property determination at each pixel. 

Several peer-reviewed papers describe use of the Graphics Processing Unit (GPU) to 
achieve faster Monte Carlo simulation runs than those achievable on the Central Processing 
Unit (CPU) of the host computer. Alerstam et al. [15] published the first demonstration of 
GPU-based acceleration of Monte Carlo simulations. Alerstam et al. [16] then published on 
development of open-source GPU software designed to accelerate the popular Monte Carlo 
Multi-Layered (MCML) package [9]. Other groups proposed use of GPUs to perform 
specialized Monte Carlo simulation runs, for ionizing radiation transport [17], ultrasound-
modulated light [18], fluorescence generation and detection [19], and fiber-based diffuse 
reflectance spectroscopy [1]. Doronin and Meglinski [20] reported on online, GPU-
accelerated MC simulations. 

Along with Liu et al. [21], we recently published on use of GPUs to accelerate processing 
of raw speckle images into maps of blood flow [22]. With complete integration of the GPU 
into a camera-based, laser speckle imaging system, we reported on a seven-fold reduction in 
the time required to convert raw speckle images to Speckle Flow Index images [22]. 

In this manuscript, we report on our approach using the GPU to accelerate rescaling of 
single Monte Carlo (sMC) runs to calculate rapidly diffuse reflectance values for different 
sets of tissue optical properties. The sMC method, also referred to as White Monte Carlo [15, 
23, 24], involves use of a photon-pathlength rescaling approach to enable rapid calculation of 
diffuse reflectance, for a set of absorption (μa) and reduced scattering coefficients (μs’). With 
sMC, conventional Monte Carlo simulation run is performed with the medium μa set to zero 
and a specific value of μs

’. For each simulation photon “i”, the exit position (ri) and the total 
time of flight (ti) are recorded. Similar to Martinelli et al. [25], we implemented a binning 
approach in which each remitted photon weight wi at radial and time positions ri and ti was 
added to a reflectance matrix R(rk,tl), where k is the index of radial ring containing ri and l is 
the index for the time interval containing ti. To rescale the sMC simulation output for a 
different set of values for μa and μs

’, we used an approach similar to that described by 
Alerstam et al. [15] but applied to the binned data instead of individual simulated photons. 
This approach enabled efficient calculation of diffuse reflectance for multiple sets of optical 
properties as well as multiple source-detector separations (ρ). 

2. Methods 

As a design goal, we wished to enable end users to perform GPU-based rescaling of sMC 
simulation data as easily as possible. To this end, we selected MATLAB (The Mathworks, 
Natick, MA) to enable non-specialists in C and CUDA-based programming to use the 
generated open-source code. We based this decision on our prior experience with providing 
open-source software for Laser Speckle Imaging calculations on the GPU [22, 26]. 

We developed a software package with four abstraction layers (Fig. 1). The first layer 
consisted of custom-written CUDA kernels written in C++ . The second layer consisted of 
CUDA host code, also written in C++ , compiled using the CUDA compiler (nvcc). The third 
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layer consisted of C-based, MATLAB MEX code that called the CUDA binaries. The fourth 
layer consisted of the master MATLAB script. 

 

Fig. 1. Diagram illustrating the method employed to interface MATLAB with the CUDA 
Monte Carlo forward model kernels. CUDA host code containing the CUDA kernels and calls 
to the CUBLAS library were compiled using NVIDIA CUDA Compiler (nvcc). The 
MATLAB MEX C/C++ code, wherein the CUDA binaries are called, were compiled 
subsequently with the MATLAB MEX compiler and utilized by the main MATLAB script. 

In this study, we determined the time required for the CPU or the GPU to perform a single 
rescaling of a sMC simulation run. We performed a single sMC run consisting of 10 million 
simulated photons. We assumed a homogeneous medium of infinite thickness, with μa = 
0mm−1 and μs’ = 1mm−1, and refractive index of 1.33. With conventional Monte Carlo, we 
calculated the binned diffuse reflectance matrix R(rk,tl). 

We performed several applications of the rescaling approach with optical properties 
ranging from 0.1 to 1.0 mm−1 for μa and 0.1 to 5.0 mm−1 for μs’. For each set of optical 
properties, a total of 5000 rescaling attempts were performed on either the CPU or GPU, and 
the mean computation time was calculated. To simulate illumination schemes typically used 
with SFDI, we followed an approach described previously by Cuccia et al. [14] to calculate 
diffuse reflectance. The approach involves use of a zeroth-order Bessel function, to calculate 
the diffuse reflectance for illumination at two spatial frequencies: 0 mm−1 (e.g., planar 
illumination) and 0.667 mm−1. 

We used the NVIDIA GT 650M GPU with 384 shader processing units (cores) running at 
775MHz, and with 1GB of dedicated memory. The GPU ran in a MacBook Pro with an Intel 
Core i7 at 2.6 GHz and with 8GB of DDR3 RAM. We used MATLAB 2011b running in 
Windows 7, to serve as the fourth abstraction layer (Fig. 1), and the CUDA 4.1 driver and 
toolbox. 

3. Results and discussion 

To calculate the diffuse reflectance with a new set of optical properties, the GPU-enabled 
approach was 15 times faster. MATLAB on the CPU required 1.2 ms to rescale the sMC 
output to account for new optical properties. In comparison, the MATLAB/GPU approach 
(Fig. 1) required only 0.08 ms. The shorter computation time with the latter approach, results 
from the massively parallel calculations associated with rescaling the binned sMC output. 

Calculation of diffuse reflectance values with our GPU-based approach is insensitive to 
tissue optical properties. We chose SFDI as an example for studying the effects of tissue 
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optical properties on the time required to calculate diffuse reflectance values. We evaluated 
both CPU- and GPU-based rescaling approaches applied to the initial sMC output, and we 
used a zeroth-order Bessel function [14] to calculate the diffuse reflectance at two spatial 
frequencies. Over a wide range of tissue optical properties, the diffuse reflectance values 
associated with the GPU-based rescaling approach were similar to those of the CPU-based 
approach (Table 1). The total time required to perform GPU-based rescaling and calculate the 
diffuse reflectance values at the two spatial frequencies, was minimally sensitive to the tissue 
optical properties. In contrast, the total time associated with the CPU-based rescaling 
approach showed some variance with tissue optical properties. We found that the time 
associated with the Bessel function calculation on the CPU, showed the greatest dependence 
on tissue optical properties. 

Table 1. Total times required to calculate diffuse reflectance values at two spatial 
frequencies of illumination: 0 mm−1 (e.g., planar illumination) and 0.667 mm−1. We 

performed both CPU- and GPU-based rescaling approaches of a single sMC output. 
Each computation time value represents the average of 5000 repetitions of the rescaling 

approach. 

μa [mm−1] 0.1 0.1 0.1 0.5 0.5 0.5 1 1 1 
μs' [mm−1] 1 2 5 1 2 5 1 2 5 
Diffuse reflectance,  
0 mm−1 (CPU) 0.259 0.369 0.517 0.074 0.138 0.259 0.033 0.074 0.164 
Diffuse reflectance,  
0 mm−1 (GPU) 0.259 0.369 0.517 0.074 0.138 0.259 0.033 0.074 0.164 
Diffuse reflectance, 
0.667 mm−1 (CPU) 0.208 0.332 0.500 0.069 0.134 0.256 0.032 0.073 0.163 
Diffuse reflectance, 
0.667 mm−1 (GPU) 0.204 0.331 0.500 0.069 0.134 0.256 0.032 0.073 0.163 
Computation time 
(CPU) [ms] 2.62 2.65 1.94 2.62 2.62 2.54 2.63 2.61 2.23 
Computation time 
(GPU) [ms] 0.26 0.28 0.27 0.26 0.26 0.26 0.26 0.25 0.24 

To calculate a set of diffuse reflectance values from a simulated tissue with 
homogeneous optical properties, our rescaling GPU-based approach achieves a reduction 
in computation time of several orders of magnitude as compared to other GPU-based 
approaches. Due to 1) the advances made in GPU technology since the Alerstam et al. [15] 
report, and 2) the differences in complexity associated with the computational models, a 
direct comparison of computation times can be misleading. We propose that the work by 
Hennessy et al. [1], which is associated with the shortest reported run time for a Monte Carlo 
simulation, offers the most relevant comparison. The authors used a GPU-based approach to 
generate a Look-Up Table (LUT) that mapped optical properties to diffuse reflectance values. 
They reported a time of two min to populate a LUT with 400 values, resulting in an average 
of 0.3s per simulation run of one million photons per run. In comparison, our GPU-based 
rescaling approach generates a diffuse reflectance value in 0.00008s, or ~30,000 times faster 
than the Hennessy et al. approach. 

For a single rescaling calculation, the transfer time from the CPU to the GPU, is the 
limiting factor. Our current code required the initial sMC output to be sent to the GPU device 
memory. The associated transfer time was 2.6ms, which is more than two times longer than 
the MATLAB computation time on the CPU. Hence, similar to what we observed in our 
previous work involving Laser Speckle Imaging calculations on the GPU (15), the transfer 
time is prohibitively long for a single calculation of diffuse reflectance for a new set of optical 
properties. However, the transfer time is a one-time penalty. Once the sMC output is 
transferred, the rescaling calculation can be performed on a repeated basis, with a time cost of 
0.08 ms per calculation. Hence, to create a Look-Up Table similar to that created by 
Hennessy et al. [1], our GPU-based rescaling approach requires a total of ~35 ms to transfer 
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the sMC output and generate diffuse reflectance values for 400 pairs of absorption and 
reduced scattering coefficients. Our time still is ~3400 times shorter than the GPU-based 
approach of Hennessy et al. [1]. 

We acknowledge that the computation time can change depending on CPU-related 
overheads, such as interrupts and cache management. Nevertheless, we propose that the GPU 
and CPU computational benchmarks that we report here (e.g., Table 1) provide a realistic 
comparison of the GPU and CPU calculation times and hence a realistic practical estimate of 
the potential reduction in computation time associated with GPU-based calculations. 

It is important to note that our GPU-based rescaling approach provides only a rapid 
method to calculate diffuse reflectance at different spatial frequencies of illumination (Table 
1). To date, we have not explored the use of GPU-based processing to extract other 
parameters of interest, such as fluence rate, energy deposition/absorption profiles, individual 
history of photon propagation, etc. Furthermore, for real-time, functional optical imaging, 
additional work is required to exploit the Look-Up Table features of the GPU, to convert 
maps of diffuse reflectance values efficiently to maps of tissue optical properties. This is 
especially important for technologies such as SFDI, which involve measurements collected at 
multiple spatial frequencies to hone in on estimates of both absorption and reduced scattering 
coefficients [27]. 

4. Conclusions 

In conclusion, we presented a GPU-based approach that uses the rescaling approach of sMC 
to calculate diffuse reflectance associated with a set of optical properties. With this approach, 
we calculated diffuse reflectance for a given set of optical properties in ~0.08ms, which is at 
least ~30,000 times shorter than times reported in the literature. The transfer time from CPU 
to GPU memory currently is a limiting factor with GPU-based calculations. However, for 
calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to 
processing that is ~3400 times faster than other GPU-based approaches. We expect that 
continued evolution of GPU technology will lead to shorter transfer times and lead ultimately 
to real-time optical-property mapping using camera-based imaging methods such as Spatial 
Frequency Domain Imaging (SFDI) [14]. This code and compiled binaries are freely available 
online for download at http://choi.bli.uci.edu/software. 
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