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Abstract
Reservoir computing (RC) offers distinct advantages in ex-
tracting spatiotemporal information with low training costs by
separating recurrent neural networks into a fixed network with
recurrent connections. The quality of the fixed network, known
as the reservoir, plays a pivotal role in the performance of the
RC system. Our work aims to provide a unified synaptic de-
velopment framework for RC, constructing a more biologi-
cally plausible reservoir to model and understand the neural
networks development within the human brain. In this paper,
we propose an Autonomous Synaptic Development Reservoir
Computing model (ASD-RC) based on an adaptive network of
phase oscillators. The reservoir autonomously adjusts the dis-
tribution of connection weights in response to external stim-
uli, forming a task-specific structure. Through experiments
and theoretical analyses, we demonstrate that ASD-RC can
emulate various synaptic development rules of biological neu-
ral networks in vivo, including the Hebbian rule and STDP.
Furthermore, experiments reveal that combining different de-
velopment rules can enhance performance on prediction tasks
compared to using a single development rule, showcasing the
emergence and effects of synergistic development that improve
information processing capacity.
Keywords: reservoir computing; autonomous synaptic devel-
opment; intelligent emergence; synergistic effects

Introduction
In recent decades, researchers have strived to understand
the mechanisms behind intelligence emergence in the human
brain, contributing to artificial intelligence (AI) development
(Feulner et al., 2021; Fusi, Miller, & Rigotti, 2016). Since
the introduction of the Hopfield network in 1982, the artifi-
cial neural networks (ANN) community has made significant
progress in emulating human brain functionalities (Hopfield,
1982). Recurrent neural networks (RNNs), mimicking the
feedback signals between neurons, have become a popular
architecture for processing temporal data like time-series pre-
diction and speech recognition (Mandic & Chambers, 2001).
However, recurrent connections in RNNs present challenges
such as high computational cost, vanishing gradient, or ex-
ploding grading (Morales, Mirasso, & Soriano, 2021).

Reservoir computing (RC), a novel RNN approach, offers
fast and computational efficiency by training only at the lin-
ear output layer (Jaeger & Haas, 2004; Lukoeviius & Jaeger,
2009). The recurrent networks in RC, called ”reservoirs,”
are randomly initialized and fixed during the training pro-
cess. The reservoirs provides advantages in extracting spa-
tiotemporal information across various applications (Kong,
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Weng, Glaz, Haile, & Lai, 2023; Chen et al., 2023). Conven-
tional reservoirs typically employ fixed random connections,
a key advantage of RC (Schrauwen, Verstraeten, & Campen-
hout, 2007a). However, recent evidence suggests reservoirs
operate best ”at the edge of chaos” (Lukoeviius, Jaeger, &
Schrauwen, 2012; Ferreira, Ludermir, & de Aquino, 2013).
Randomly achieving optimal performance in the RC error
landscape is practically zero, making the specification of a
reservoir a challenging task requiring numerous trials and
even luck (Schäfer & Zimmermann, 2006; Moon, Wu, & Lu,
2021).

While machine learning (ML) algorithms enhance reser-
voir performance for specific applications, they introduce
inherent drawbacks of ML algorithm, such as being black
box models, high computation costs and slow convergence
(Lukoeviius et al., 2012). Biologically inspired methods, like
the Hebbian rule and Intrinsic Plasticity, have been proposed
for RC (Chatzidimitriou & Mitkas, 2013; Triesch, 2005).
Nevertheless, the application of Hebbian rules to RC does
not lead to a significant improvement in performance (Yao &
Wang, 2019). In practice, integrating these biological meth-
ods into RC is laborious due to differences in network struc-
ture and neuron models.

How to construct a more biologically plausible RC for
modeling and understanding neural networks development
within human brain remains an open question. The human
brain, housing approximately 86 billion neurons, exhibits a
specific structure crucial for information processing (Song,
Miller, & Abbott, 2000). At the microscopic level, brain
synapses possess activity-dependent plasticity, leading to sig-
nificant changes in neuronal connectivity patterns (Choi &
Kim, 2019). On a macroscopic scale, structural changes in
the brain follow nonlinear trajectories as neurons develop
throughout life (Bethlehem et al., 2021). The evolution of
network topology is heavily influenced by the states of ele-
ments in many biological networks, and vice versa. Adaptive
networks, incorporating synaptic plasticity, play a fundamen-
tal role in learning, memory, and neural network development
(Seoane, 2018). In these co-evolving dynamic systems, cou-
pling weights between nodes and the states of active elements
interact and evolve together (Aoki & Aoyagi, 2009).

Motivated by these biological and physical findings, we
propose a unified synaptic development mechanism for RC
called Autonomous Synaptic Development Reservoir Com-
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Figure 1: Configuration of ASD-RC: The dotted lines within
the reservoir signify plastic connections, with red and blue
colors denoting excitatory (positive) and inhibitory (negative)
synapses, respectively.

puting (ASD-RC) to incorporate structural and connectivity
plasticity. During the development stage, the dynamics of
neurons and synapses in the reservoir continuously evolve
in response to external inputs. ASD mechanism enables the
reservoir to adapt its internal dynamics to specific tasks, re-
sulting in the development of a customized structure that
combines physics and information processing (Sung, Kim,
Shin, Im, & Lee, 2022). To the best of our knowledge,
most current studies focus on the evolution of networks from
generation to generation, while the development of reservoir
structures with external stimuli has not received sufficient at-
tention.

In this paper, we detail ASD-RC construction and the al-
gorithm in the Methods section. Then, we test ASD-RC per-
formance in chaotic time series forecasting, demonstrating
compatibility with biological neural networks. Furthermore,
we explore the combination of different development rules,
revealing the emergence and effects of multi-rule synergis-
tic development. We shift focus from the finest-performance
parameter, concentrating instead on understanding how ASD
fosters the reservoir to reshape more biologically plausible
synaptic connections and boost its overall performance.

Methods
We investigate an adaptive network comprising N oscillators
influenced by external inputs, where the coupling weights
among nodes and the active states of the elements at the
nodes coevolve as Fig. 1 shows. When data is introduced
into the reservoir, the reservoir nodes extract and transform
information from a low-dimensional input space to a high-
dimensional feature space. Concurrently, the connections
autonomously adjust their coupling strength through the au-
tonomous development mechanism. The core concept of the
ASD-RC lies in the assumption that, given sufficient informa-
tion for accurate computation, the reservoir state trajectories
should converge under the impact of input data. Moreover,
the internal connection structure of the reservoir can evolve
into a task-specific network guided by the ASD mechanism.

Overall Architecture
We begin by considering a network of N Kuramoto-like phase
oscillators. The dynamics of each oscillator can be described
by a phase θi(t) ∈ [0,2π) given by the equation:

dθi

dt
= ωi +λ

N

∑
j=1

ki j sin(θ j−θi + y(t)), (1)

here, ωi represents the natural frequency of oscillator i, λ > 0
is the global coupling strength, ki j is the entry of the adja-
cency matrix K of the network, and y(t) is the input data. We
employ this extended Kuramoto model to simulate neuronal
behavior in the reservoir.

Next, we propose a dynamical adaptive model for the cou-
pling weights ki j. Since the dynamics of the weights only
depend on the relative timing of the oscillators, we introduce
the following reasonable development function:

dki j

dt
=−εsin(θ j−θi +β),

∣∣ki j
∣∣≤ 1. (2)

The parameter ε represents the time scale of this dynamics,
which is much longer than that of the oscillator dynamics
(i.e.,ε≪ 1). The constraint condition |ki j| ≤ 1 ensures that
if ki j exceeds the interval [−1,1], it is immediately set to the
appropriate limiting value (-1 or 1). This limitation is rea-
sonable as coupling weights cannot grow indefinitely.The de-
velopment of coupling weights is governed by the function
dictating how changes in weights correlate with phase dif-
ferences among oscillators. We designate β as the character
parameter, as it regulates the attributes of the development
function—a topic we delve into with further scrutiny later.

The ASD-RC Algorithm
In conventional training methods, the reservoir undergoes
random initialization, and the initial 100 to 200 steps of neu-
ronal states are typically discarded to reach a stable state,
known as the washout phase. However, In many scenar-
ios, data is too expensive to get more, discarding data en-
tails inefficiency. To optimize data utilization, we propose
that the neural network can adapt and modify the distribu-
tion of synaptic weights with external stimulation during the
washout phase, ultimately shaping a task-specific structure.
For conciseness, we denote the lengths of the autonomous
development, training, and test sequences as Ladev, Ltrain, and
Ltest , respectively. In this context, ŷ(t) signifies the output at
time t, and Wout denotes the reservoir-to-output weight ma-
trix.

Algorithm 1 outlines the procedure of the ASD mechanism
employed by the RC. Initially, we initialize the ASD-RC net-
work with a random adjacency matrix. Subsequently, Ltrain
values are input into the reservoir. The first Ladev input data is
provided to the reservoir to aid in the development of a spe-
cific structure. Neuron synapses autonomously adjust their
synaptic weights distribution according to the ASD mecha-
nism. Then, the remaining values are input into the reservoir
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Algorithm 1: The ASD-RC Algorithm
Data: Time series y(t), t = (1,2, . . . ,T ), initial

adjacency matrix K, initial neuronal states Θ,
spectral radius ρ

Result: Prediction time series ŷ(t)
1 while t ≤ Ltrain do
2 Update the neuronal states Θ according to Eq.1:

Θ←Ω+λKsin(∆Θ+ y(t));
3 if t < Ladev then
4 Update adjacency matrix K according to Eq.2:

K← K− εsin(∆Θ+β);
5 else
6 Collect the neuronal states: Σ(t−Ladev)←Θ;
7 end
8 end
9 Compute the output weight Wout by ridge regression:

Wout ← Y \Σ;
10 while t ≤ Ltest do
11 Collect prediction value according to Wout :

ŷ(t)←WoutΘ;
12 Update the neuronal states Θ according to Eq.1:

Θ←Ω+λKsin(∆Θ+ ŷ(t));
13 end

to train the output weights for the prediction task. To assess
the performance of the developed reservoir, we initially feed
the ASD-RC with the last input of the training set y(t) and
then run the network for a number of Ltest steps, using the
predicted output at time t as the next input at time t +1 (i.e.,
y(t +1) = ŷ(t)). This way, the testing phase is carried out in
generative mode with output feedback.

Experiments
In this study, we evaluate the performance of ASD-RC in
chaotic time series forecasting using the Mackey-Glass sys-
tem (MG). Through experiments and theoretical analyses, we
demonstrate the model’s compatibility with biological neu-
ral networks in vivo. Additionally, We explore the influence
of integrating multiple development rules. By analyzing the
information processing capacity of developed RC, we unveil
emergence and effects of multi-rule synergistic development.

Experimental Settings
We commence with a single-layer reservoir comprising a
fixed number of neuronal nodes, denoted as m = 100, and
an initialized spectral radius1 for each model set to ρ =
0.95. Our initial evaluation focuses on assessing ASD-RC
performance in time series prediction tasks under the fol-
lowing configurations. We choose ε ∈= 0.1 and initialize
Θ = [θ1,θ2, . . . ,θm] = [⃗0]. The matrix Ω = [ω1,ω2, · · · ,ωm]
is sampled from a standard normal distribution. The density
s of the adjacency matrix K is set to 0.05, indicating that only

1The maximum absolute eigenvalue of the reservoir matrix.

5% of the entries in K are non-zero, while the rest are set to
zero. In this study, we consider weighted connections, where
ki j ∈ [−1,1], rather than a binary 0− 1 network. The non-
zero entries ki j in K are uniformly initialized from the interval
[−1,1]. Equations 1 and 2 are solved using the Euler method
with a time step of ∆t = 0.1ms.

Compatibility with Biological Neural Network
The character parameter β is thoroughly investigated to com-
prehend its impact on the ASD-RC’s performance. The reser-
voir connections are initially randomized and then evolve into
a task-specific structure through the application of the ASD
mechanism. Fig. 2 visually represents the structures of the
developed reservoir networks under different values of the
character parameter β. Notably, the reservoir structures them-
selves exhibit asymmetry concerning β. The initial reservoir
shown in Fig. 2a undergoes continuous development, guided
by different character parameters (−π/2, 0, and π/2), along
with constant external input stimulation. The corresponding
developed networks are depicted in Fig. 2b, c, and d. Sim-
ulations reveal substantial adjustments in synaptic weights
within the first 3-5 time steps. Despite a 100-step develop-
ment process, the distribution of synaptic weights stabilizes
after the initial 10 steps, with subsequent adjustments becom-
ing imperceptible. This observation confirms the robust con-
vergence property of ASD mechanism.

In the proximity of β = −π/2, Equation 2 approximates
cos(∆θ), where ∆θ = θ j− θi. This leads to an increase (de-
crease) in the coupling weight when the phase difference be-
tween two oscillators is small (large). Essentially, the synap-
tic development in the reservoir networks adheres to a like-
and-like (different-and-different) rule, reminiscent of Heb-
bian learning (Mikkelsen, Imparato, & Torcini, 2014). Con-
sequently, synaptic weights converge to a stable two-cluster
state, with positive weights tending to align in the positive
cluster when positive global coupling weights are present,
and negative weights aligning in the negative cluster. Con-
versely, for β = π/2, synaptic weights tend to reside more
in the negative cluster. At β = 0, Equation 2 approximates
−sin(∆θ), leading to opposite changes in the two coupling
weights for ∆θ =±∆θ∗. This behavior reflects similarities to
spike-timing-dependent plasticity (STDP) rule (Zhang, Boc-
caletti, Guan, & Liu, 2015). Due to the sinusoidal nature of
the function in Equation 2, synaptic weights acquire opposite
signs with the same strength, resulting in the convergence of
weights to a stable symmetric two-cluster state.

Comparing Synaptic Weights Distribution to in vivo
Theoretical analysis confirms that the ASD-RC can effec-
tively simulate various development rules observed in bio-
logical neural networks. Furthermore, we conduct a com-
parative analysis of the synaptic weight distributions between
the developed reservoir networks and those observed in vivo.
The histograms illustrating the synaptic weights in reservoir
networks and vivo are presented in Fig. 3. We initialize the
reservoir networks with extreme synaptic weight distributions
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Figure 2: The reservoir structure is influenced by the character parameter. (a) Initial network; Developed network with (b)
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degree. To assess the impact of the autonomous development mechanism, (e) PCA is performed on the neuronal states set Θ,
and (f) the dimensionality of the adjacency matrix K is analyzed with different character parameter settings. Averages were
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(see Fig. 3a(1)-a(6)). The initial synaptic weights are drawn
from a Beta distribution B(a,b) with different combinations
of parameters a and b. Notably, regardless of the initial dis-
tributions, the synaptic weights of reservoir networks consis-
tently converge to a highly similar specific distribution for a
given character parameter as shown in Fig. 3b(1)-b(3), vali-
dating the robust convergence property of the model. More-
over, the distributions in Fig. 3c(1) and c(3) are consistent
with Hebbian rule, and c(2) is consistent with the STDP rule
(Mikkelsen et al., 2014). The distribution of synaptic weights
in the developed reservoir networks exhibits a striking resem-
blance to synaptic weights found in vivo, providing further
evidence that our model effectively simulates the develop-
mental processes of biological neural networks in vivo.

Performance in Prediction Tasks
Both theoretical analysis and experimental simulations
demonstrate that the ASD-RC model is highly biologically
plausible. To assess the information processing capability
of the developed reservoir networks, we applied the model
to time series prediction tasks. We initiated by comparing

the performance of the reservoir with different development
rules, specifically by initializing β with different values while
keeping the other hyperparameters constant. Subsequently,
we analyzed the effects of the ASD mechanism on the prop-
erties of the RC system.

Mackey-Glass System The MG time series serves as a
prevalent benchmark in the literature to evaluate models’
performance in dynamical system identification(Schrauwen,
Verstraeten, & Campenhout, 2007b). It originates from a
time-delay differential system represented by the following
equation:

dy(t)
dt

=
ay(t− τ)

1+ yn(t− τ)
+by(t). (3)

In this equation, y(t) denotes the output at time step t, and
τ signifies the time delay. The parameters of the equation
are specified as n = 10 and b = −0.1. Chaotic behavior in
the system emerges when the value of τ surpasses 16.8. For
this study, we generate a training set with τ = 17 (MG-17),
frequently employed as an illustration of chaotic time series.
The fourth-order Runge-Kutta method is applied for solving
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Figure 3: Synaptic weights distribution in reservoir networks.
a(1)-a(6): Initial synaptic distributions for reservoir networks
generated from the Beta distribution. b(1)-b(3): Synaptic
weight distributions in developed reservoir networks con-
trolled by character parameter b(1) β = −π/2, b(2) β = 0,
and b(3) β = π/2, respectively. These distributions are fit-
ted by the Beta distribution (shown in red curve). c(1)-c(3):
Synaptic weights of biological neural networks in vivo.

the equation with random initialization. applied for solving
the equation with random initialization.

The root mean square error (RMSE) is employed to evalu-
ate the performance of the ASD-RC:

RMSE =

√√√√ 1
Ltest

Ltest

∑
i=1
∥y(ti)− ŷ(ti)∥2, (4)

where ŷ(ti) represents the readout output (generation), y(ti)
represents the desired output (target), and ∥•∥ denotes the
Euclidean distance (or norm).

Influence of Development Duration Based on above anal-
ysis, we emulate different developmental rules observed in
biological neural networks in vivo by setting the character
parameter β to −π/2, 0, and π/2 to correspond to Hebbian
rule, STDP, and anti-Hebbian rule, respectively. Addition-
ally, considering that different developmental rules can be
easily applied to the model, unlike setting an identical value
for the character parameter β in the entire reservoir as in the
previous case, we set a unique value for βi of each neuron i
(i= 1,2, . . . ,m) in the reservoir. βi is sampled from a uniform
distribution in the interval [−π,π]. We term the latter as ‘mix-
ing mode’ since various synaptic development rules are ap-
plied simultaneously to the reservoir. In Fig. 5a, it is evident
that the generation signal closely aligns with the target sig-
nal, indicating the ASD-RC’s effectiveness in handling time
series dynamics. Over time, the error between the genera-
tion and target signals gradually increases. This phenomenon
is reasonable, given the absence of real signal input and the
reservoir’s limited memory capacity, causing the time-series
dynamics to be gradually forgotten by the reservoir.

0
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Figure 4: The influence of the character parameter on the
reservoir performance. The polar axis represents (a) the pre-
diction performance RMSE of ASD-RC and (b) the corre-
sponding spectral radius of the reservoir.

We applied the ASD-RC with four character parameter set-
tings to the prediction task to compare performance differ-
ences. In Fig. 5b, we observe that prediction errors initially
decrease, then dramatically increase over the development
duration. All four error curves reach their lowest points in
the vicinity of 10ms, indicating the optimal development du-
ration for various autonomous synaptic development rules to
exhibit the best performance. Correspondingly, as seen in
Fig. 5c, the spectral radius of the reservoir with character
parameters −π/2 and π/2 initially remains stable, then in-
creases sharply. In contrast, the curve of the ‘mixing mode’
constantly grows mildly, and the curve of β = 0 remains rela-
tively stable. The spectral radius less than one has often been
regarded as the source of the ‘echo state property’ in RC.
Nevertheless, subsequent studies have shown that the echo
state property can actually be maintained over a unity spec-
tral radius, which could explain why we find optimal perfor-
mance slightly above ρ = 1 for β =−π/2 and β = π/2 in the
vicinity of a 10ms development duration.

Character Parameter To investigate the impact of the
character parameter, we varied it from 0 to 2π as a polar
angle in polar coordinates, as shown in Fig. 4. We initial-
ized the spectral radius ρ= 1.0, and the development duration
Ladv = 10ms for the ASD-RC. We observe that although the
curves of the prediction error and spectral radius are symmet-
rical about the character parameter in the polar coordinates,
they have different symmetry axes. This indicates that the
spectral radius is not the sole parameter affecting the perfor-
mance of the ASD-RC. This finding coincides with the results
in Fig. 5, where the model with different character parameter
settings shows optimal performance at different spectral radii.

Exploring the Emergence and Effects of Multi-rule Syner-
gistic Development in Reservoir While ASD mechanism
can enhance reservoir performance with an appropriate de-
velopment duration, distinct development rules exhibit vary-
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Figure 5: The performance of the ASD-RC in time series prediction is influenced by the development duration. (a) Upper: The
generated signal (red) by ASD-RC closely aligns with target signal (blue); Lower: Error between generated and target signals.
(b) Four ASD-RC models with character parameters −π/2, 0, π/2, and ‘mixing mode’ were set. Averages were computed at
each development duration over 20 independent realizations of each model. (c) Spectral radius corresponding to (b).

ing effects. Notably, the ‘mixing mode’ outperforms others
(see Fig. 5b), based on multi-rule synergistic development.
We aimed to understand the impact of the ASD mechanism
on the reservoir’s information processing capacity. Specif-
ically, we explored how different development rules, based
on changes in connection weights within the reservoir, alter
network activity compared to activity without development.

In Fig. 2f, we illustrate the dimensionality of the con-
nection matrix in the developed network with different char-
acter parameter settings and the non-development condition
(‘Non’). The ‘mixing mode’ exhibits significantly lower
dimensionality compared to the non-development, whereas
character parameter β = −π/2 shows higher dimensionality.
The β= 0 setting shows a smaller variation with an equivalent
median value. Additionally, we estimate the dimensionality
of network activity space using techniques related to Princi-
pal Component Analysis (PCA). In Fig. 2e, the first principal
component shows a similar trend to Fig. 2f. The variance
primarily lies in the first principal component for the non-
development, indicating that network activity mainly resides
in a low-dimensional dynamic space. In contrast, the dynamic
space of the ‘mixing mode’ enjoys higher dimensionality.

High-dimensional neural representations are crucial for the
reservoir, as they relate to richer behavior and better working
memory (Fusi et al., 2016). However, high-dimensional rep-
resentations are not always desirable, as a higher-dimensional
space is more likely to amplify the influence of noise, re-
sulting in unstable performance. For example, the brain
needs to reduce dimensionality to eliminate irrelevant fac-
tors and recast the remaining factors into a high-dimensional
space for processing, generating complex behavior. There-
fore, the emergence and effects of multi-rule synergistic de-
velopment may be partially attributed to the ASD mechanism
placing the network structure in a lower-dimensional space
to filter noise, while network dynamics evolve in a higher-
dimensional space, allowing for more complex behavior.

Conclusion
We introduce an Autonomous Synaptic Development mecha-
nism for Reservoir Computing using an adaptive network of
phase oscillators. At the micro level, synapses autonomously
adjust their weights distribution. At the mesoscopic level, the
neural networks within the reservoir continuously evolve with
external stimuli. Guided by the ASD mechanism, the reser-
voir forms a task-specific neural network. ASD-RC offers
a novel approach to construct a more biologically plausible
reservoir, aiming to model and understand the development
of neural networks in the human brain.

Establishing a Unified Synaptic Development Framework
for RC ASD-RC showcases remarkable compatibility with
biological neural networks in vivo, establishing a unified
synaptic development framework for RC. The reservoir au-
tonomously evolves and adapts the distribution of synaptic
weights under external stimulation. By manipulating the
character parameter, diverse development rules can be effort-
lessly applied to RC.

Shedding Light on Multi-Rule Synergistic Development
Furthermore, experiment results reveal that the reservoir’s
information processing capability is significantly enhanced
through multi-rule synergistic development, as opposed to a
single development rule. Our work unveils the emergence and
effects of synergistic development, showcasing the benefits of
a collaborative application of various development rules.

Bridging the Gap Between Nonlinear Dynamics and Neu-
roscience Communities Built upon the Kuramoto-like os-
cillator system, ASD-RC integrates the strengths of neuro-
morphic computing and nonlinear dynamics, effectively emu-
lating the characteristics and functionalities of the brain. The
ASD mechanism facilitates the easy application of various
development rules from the neuroscience community to RC.
Additionally, it provides an avenue for exploring undiscov-
ered neural network development rules in vivo.
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