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Abstract: Thermal comfort is one of the primary factors influencing occupant health, well-being,
and productivity in buildings. Existing thermal comfort systems require occupants to frequently
communicate their comfort vote via a survey which is impractical as a long-term solution. Here, we
present a novel thermal infrared-fused computer vision sensing method to capture thermoregulation
performance in a non-intrusive and non-invasive manner. In this method, we align thermal and
visible images, detect facial segments (i.e., nose, eyes, face boundary), and accordingly read the
temperatures from the appropriate coordinates in the thermal image. We focus on the human
face since it is often clearly visible to cameras and is not merged into a hot background (unlike
hands). We use a regularized Gaussian Mixture model to track the thermoregulation changes over
time and apply a heuristic algorithm to extract hot and cold indices. We present a personalized
and a generalized comfort modeling method, selected based on the availability of the occupant
historical indices measurements in a neutral environment, and use the time-series of the hot and
cold indices to define corrections to HVAC system operations in the form of setpoint constraints.
To evaluate the efficacy of our proposed approach in responding to thermal stimuli, we designed a
series of controlled experiments to simulate exposure to cold and hot environments. While applying
personalized modeling showed an acceptable average accuracy of 91.3%, the generalized model’s
average accuracy was only 65.2%. This shows the importance of having access to physiological
records in modeling and assessing comfort. We also found that individual differences should be
considered in selecting the cooling and heating rates when some knowledge of the occupant’s overall
thermal preference is available.

Keywords: non-intrusive sensing; personalized environments; controlled climate chamber; infrared
thermography; smart buildings; energy efficiency

1. Introduction

Traditionally, Heating, Ventilation, and Air Conditioning (HVAC) systems, responsible
for providing an acceptable thermal environment in buildings, are operated based on
setpoints derived from thermal comfort standards (e.g., ASHRAE Standard 55 [1]). These
setpoints often remain as fixed values and are changed only when occupants complain.
However, occupant thermal comfort varies from person to person due to individual dif-
ferences (e.g., body mass index and gender [2]) and changes over time due to long-term
and short-term physiological and psychological variations (e.g., acclimation or transient
thermal conditions [3–7]). This results in low comfort ratings in buildings (up to 43% dis-
satisfied) [8] and HVAC system energy waste of 10–32% (varying with the building size,
type, construction materials, and climate) [9,10]. To capture individual differences and
long-term and short-term variations in thermal comfort, several commercial and research
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efforts use occupant surveys to continuously monitor personal comfort. While these efforts
show promising results for a short duration, they fail to sustain over a longer duration due
to survey fatigue [11].

To eliminate the need for frequent surveys, researchers have explored environmental
variables (e.g., air temperature, humidity) and physiological measurements (e.g., skin
temperature, skin wetness, heart rate, and electroencephalograph [12,13]) as a proxy for
personal comfort. However, both approaches still require occupant feedback to train the
comfort model and map comfort votes to the measurements in a supervised learning
fashion for each occupant. While physiological sensing could potentially be used to capture
the body thermoneutral zone without the surveys [14], existing physiological sensing
systems still require the surveys for training, which hinders their large-scale deployment.

In this paper, we present a novel thermal infrared-fused computer vision sensing
system to monitor an individual’s thermoregulation performance and thermal comfort
in a non-intrusive and non-invasive manner. We use a low-cost thermal infrared (TIR)
camera and a low-cost visible light camera to capture images, apply an elastic image
registration to align the thermal and visible images, detect facial segments (i.e., nose, eyes,
face boundary), and accordingly read the temperatures from the appropriate coordinates in
the thermal image. We focus on the human face since it is often clearly visible to cameras in
commercial building settings. Other body parts could be covered by clothing or equipment.
In the thermal infrared domain, hands could be merged into a hot background, making it
challenging to capture reliable temperature measurements with commercially available low-
resolution cameras. It utilizes a heuristic algorithm to extract hot and cold indices that feed
into comfort prediction algorithms. We then use the time-series of the indices to capture
the thermoregulation system, estimate the thermal comfort state, and define corrections
to HVAC system operations in the form of setpoint constraints. Since humans potentially
perceive comfort when they are in a thermoneutral zone, we present a personalized method
and a generalized method, selected based on the availability of the occupant's historical
measurement in a neutral environment to capture personal comfort states. To evaluate the
efficacy of our proposed approach in responding to the thermal stimuli, we designed a
series of controlled experiments to simulate exposure to cold and hot environments and to
adjust the temperature setpoint in a single-zone HVAC system.

2. Literature Review
2.1. Physiological Sensing of Thermal Comfort

To reduce the need for building occupants to provide feedback on their thermal com-
fort continuously, researchers have explored several approaches, including environmental
measurement-based and physiological measurement-based techniques [15]. Environmental
measurement-based techniques aim to capture occupant thermal comfort using statistical
learning methods based on environmental factors (predominantly air temperature) and
estimate thermal comfort in the absence of occupant feedback [16]. However, environ-
mental measurement-based techniques cannot capture short-term comfort variations (e.g.,
those induced by a hot outdoor commute). It is also challenging to apply environmen-
tal measurement-based techniques at a large scale because the sensing devices are often
located at an arbitrary location, and occupants move to different locations in an indoor
environment that is typically thermally non-homogenous. Therefore, the sensing device
could not capture the temperature in close proximity to the occupant, and it would make
the learning process difficult for the environmental measurement-based techniques [14].

Physiological measurement-based techniques could address the short-term comfort
requirements, as they infer occupant thermal comfort by monitoring biological processes—
specifically, thermoregulation system performance (e.g., vasodilation, vasoconstriction,
shivering, and sweating), relevant physiological responses (e.g., heart rate, and electroen-
cephalograph), and relevant physical responses (e.g., changes in posture) [13,17,18]. The
thermoregulation system regulates body temperature by vasodilation (widening blood ves-
sels) when faced with hot stresses and vasoconstriction (constricting blood vessels) when
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faced with cold stresses [19]. When too warm, the body can cool by evaporating sweat from
the skin. When too cool, the body will shiver, and blood vessels will constrict. Shivering
produces heat, and vasoconstriction reduces blood flow under the skin to retain heat [20].
In addition, heart rate variability is impacted by several thermoregulatory processes, such
as vasodilation and sweating, and could be used as a measure of the thermoregulation
system performance [21]. Since the main controlling mechanism of thermoregulation is
located in the hypothalamus, thermal comfort has been correlated with brain activities;
these activities can be measured via electroencephalogram (EEG) [22]. In addition, the
changes in body postures and gestures can also indicate thermal comfort [23].

While researchers have explored various sensing methods to capture the thermoregu-
lation system performance and relevant physiological and physical responses to estimate
thermal comfort, limitations and shortcomings associated with each measurement type
have prevented the scalability of these methods. For example, heart rate variability is
affected by multiple factors, such as exercise, stress, and food intake [21], that may not
relate to changes in the surrounding thermal environment. Similarly, sweating can be
influenced by circadian rhythm, physical fitness, menstrual cycle, and gender [24,25]. In
addition, sweating and shivering usually involve extreme indoor environmental changes.
Mild changes in thermal conditions may not be reflected in the sweat rate variation. Even
though the frequency domain transformation of electroencephalograph waves is different
under various temperatures [26], it is difficult to measure electroencephalograph signals,
and the measurement of brain activity tends to be intrusive. Cultural factors and state of
mind can influence body postures and gestures [27].

Since skin temperature is more sensitive to the thermal environment than shivering
and sweating and is affected less by other biological processes compared to heart rate
variability and electroencephalograph, it appears to be a more suitable proxy to predict
thermal comfort [28]. Any influencing factors such as air temperature, humidity, air velocity,
clothing, and activity rate will impact the thermoregulation system performance and result
in a change in skin temperature. However, traditionally, skin temperature sensing devices
had to be attached to the human body, making them invasive. They may also create a
microenvironment on the skin that behaves differently than the skin where no devices
are attached. Moreover, they are usually on the hands or feet, where body vasodilatation
responses cannot be detected well [29].

Over the past few years, the rapid decrease in costs and increase in resolution of
thermal infrared imaging have allowed researchers to explore image-based, non-intrusive,
and low-cost methods to capture skin temperature and predict thermal comfort [29–31].
Pavlin et al. [32] investigated a low-cost and non-invasive approach based on infrared
imaging for monitoring occupant thermal sensation and comfort in real-time. Their pre-
liminary results showed a good correlation between thermal sensation and forehead skin
temperature. However, their approach does not provide a scalable solution for estimating
personal comfort. Li et al. [28] presented a novel non-intrusive infrared thermography
framework to estimate occupant thermal comfort in an indoor environment by measur-
ing skin temperature collected from different facial regions. Their results demonstrated
that ears, nose, and cheek temperatures are most indicative of thermal comfort and that
non-intrusive infrared thermography can be used to assess occupants’ thermal comfort
with an average accuracy of 85%. While their results could be used for short-term com-
fort estimation, their solutions could not be scaled since their thermal comfort prediction
models require occupant feedback for continuous training. Wu et al. [33] further evaluated
the accuracy of the prediction of thermal sensation using a low-cost infrared array sensors
monitoring system. They argued that images captured by a low-cost infrared camera
could predict individual thermal sensations with satisfactory performance. While their
accuracy results were impressive (with an accuracy of ±0.15 ◦C), they required occupants
to provide continuous feedback for training their algorithms. In summary, the thermal
comfort prediction models in prior studies required the building occupants to train the
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system to learn their personal thermal comfort. Hence, a non-intrusive sensing technique
that does not require training the occupant feedback data for the algorithm is needed.

In this paper, we aim to develop methods that could eliminate the need for occupant
feedback to monitor personal thermal comfort. In the following sections, we describe the
fundamentals of infrared thermography that enabled us to eliminate the need for occupant
feedback in our sensing system.

2.2. Fundamentals of Infrared Thermography for Thermal Comfort

Based on the blood supply to the cutaneous vessels and the underlying deep tissues, a
human body can be segregated into three-dimensional vascular territories. The anatomic
territories are supplied by a source (segmental or distributing) artery and accompanying
veins that span between skin and bone.

The distribution of the cutaneous vessels is not uniform across the human body. In
facial areas, the density of the vessels is considerably higher, enabling higher blood circula-
tion and yielding larger variations in skin temperature [34]. Therefore, this study mainly
focused on the human face since the face is often visible for thermal imaging. The method
is based on the principle that the human thermoregulation system adjusts heat exchange
with the environment to achieve thermal homeostasis (i.e., heat equilibrium) by modifying
the blood flow to the skin through cutaneous veins [34]. Our previous research [17] using
wearable infrared sensors mounted on eyeglasses demonstrated how captured temperature
using infrared thermography is related to thermal comfort. As the temperatures of the nose
and ear (i.e., colder facial regions under vasoconstriction) fall below those of the cheekbone
and the forehead (i.e., hotter facial regions under vasoconstriction), the probability of
thermally uncomfortably cold conditions increases. This explains the familiar sensation
of a cold nose or ears in a cold environment. We also found that as the temperature of
the ear approaches the temperature of the cheekbone, forehead, and nose, the probability
of uncomfortably warm conditions increases. However, the ears might not be visible to
cameras if the subject has long hair. While inferring uncomfortably cold conditions could
still happen solely based on the difference in temperatures of hotter facial regions (i.e.,
visible areas on forehead and cheek) and colder facial regions (i.e., nose area), inferring the
uncomfortably hot conditions requires the absolute temperature values of hotter regions. It
should also be noted that in case of excessive heat exposure, sweating causes radiometric
temperature measurements to drop and results in temperature measurements lower than in
the neutral state. Such cases could be confused with extremely cold conditions (significant
temperature drops across all facial regions). Prior studies have also reported similar sweat
(skin wetness) related behaviors and discrepancies between contact measurements and
infrared thermography [35–37]. To address this challenge and infer the correct thermal
state, the temperature difference between hotter and colder facial regions could be used. In
cold environments, the difference between hotter and colder facial regions is larger than
that observed in neutral and hot environments.

3. Infrared-Fused Computer Vision for Capturing Thermoregulation Performance

Based on the requirements defined in Section 2.2, we designed a novel, non-intrusive
thermal/visual camera system that uses a thermal infrared camera and a visible light
camera to capture images (Figure 1) to (1) align the thermal infrared and visible images
via applying an elastic image registration, (2) identify facial components (e.g., eyes and
nose), and (3) read the temperatures from the appropriate coordinates in the thermal image.
Next, we utilize a heuristic algorithm that employs predefined rules to obtain reliable facial
temperature measurements. The information is used to extract heuristic-based hot and cold
indices that feed into comfort prediction algorithms.
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Figure 1. System architecture of the visible light and infrared image fusion.

3.1. Design of the Infrared-Fused Computer Vision System

In this system (Figure 1), a visible camera and a thermal infrared camera are used
to take simultaneous color and thermal images. Once the image and temperature have
been packaged (by zeromq, a messaging library in Python programming language), they
are wirelessly sent from the client and received by the server through TCP/IP. Only when
facial landmarks are identified (see Figure 2) in the image will the server initiate image
registration. This will prevent unnecessary computations from being performed in the
absence of a human occupant in the visible camera’s field of vision.
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In our study, we used a regularized Gaussian mixture model (RGMM) to capture the 
neutral states (𝐻𝐼N, 𝐶𝐼N) for each individual. RGMM helps to extract the clusters of distri-
bution in the indices time-series measurements (𝐻𝐼௧, 𝐶𝐼௧) for each individual. An RGMM 
is a probabilistic model for representing and capturing the presence of subpopulations 
within a dataset (e.g., a time-series) without requiring an observed data set with the labels 
of the sub-population to which an individual observation belongs. 

Parameters α, β, and γ (shown in Figure 2) should be tuned in any environment as 
HVAC systems and thermal characteristics may vary. The tuning procedure is similar to 
tuning a PID controller regulating a zone temperature. These parameters are aimed to 
create a time and energy-efficient HVAC system response to an individual’s thermal 
needs—i.e., effective cooling and heating. For example, these parameters should be large 
in environments with slow temperature changes (i.e., the HVAC system PID controller 
responds slowly). The setpoint absolute value should not be confused with the individ-
ual’s preferred temperature as the setpoint only guides the HVAC system to provide 
short-term cooling or heating to help the human body comfortably pass through the 

if HIt – CIt > HIN – CIN  :
# Human body is feeling cold
# Setpoint should increase 
SPt = SPo + α  (HIt – CIt – HIN + CIN)  

else:
if HIt > HIN  :

# Human body is feeling hot
# Setpoint should decrease
SPt = SPo – β  (HIt - HIN)

elseif HIt < HIN  :
# Human body is feeling hot and sweating
# Setpoint should decrease
if (HIt – CIt) < (HIN – CIN) :

SPt = SPo – γ (HIN – HIt)
else :

# Human body is feeling neutral
# Setpoint remain as neutral
SPt = SPo

Figure 2. Algorithm pseudocode to infer human body comfort and provide setpoint (SP) adjustments.
t refers to any given time. N refers to neutral-condition measurements of the human body. Coefficients
α, β, and γ are weights that help the HVAC system respond effectively to individual comfort
requirements. SP0 is the steady-state optimal zone setpoint.
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Due to the view angle differences in the thermal camera versus the visible camera,
image registration is required to query temperature at the correct points of the thermal
image temperature array. To minimize the effects of the angle differences and maximize the
common view area, the thermal camera is mounted close to the visible camera. The images
from the visible camera are scaled, and then we use the Canny edge detection algorithm to
extract edges from simultaneous visible and thermal images. Canny edge detection is one of
the most prominently used algorithms for edge detection in 2D images. It applies a double
threshold to detect potential edges and tracks edges by hysteresis (remove weak edges). To
register the two images, we apply phase correlation to the detected edges and identify the
pixel shift between the edges of the thermal image to the edges of the visible image. The
calculated pixel shift is then used to register the thermal image onto the visible image.

To illustrate, we have overlaid the visible image’s edge on the registered thermal
image in the rightmost element of Figure 1. While there are several publicly available
computer vision algorithms to identify facial regions (i.e., face alignment algorithms), we
considered three factors in choosing the proper algorithm for our application. First, it must
find and identify facial features at different facial orientations. It would be unrealistic to
assume that occupants will remain in the same location with their heads facing directly
toward the visible camera for an extended period. Second, it must also label facial features
with enough landmarks to infer the locations of the nose, cheeks, and forehead. Third,
computation should be fast enough to let the system respond to sudden changes in the
occupant’s pose with little to no delay. Based on these considerations and a comprehensive
review of the literature, we narrowed it down to three candidates for facial component
detection. Algorithm Candidate 1 was developed by Bulat et al. [38], capable of generating
68 unique facial landmark coordinates for the eyes, eyebrows, nose, mouth, and jawline.
This is achieved through a convolutional neural network based on a stacked hourglass
network and hierarchical, parallel, and multi-scale (HPM) residual blocks for landmark
localization. A stacked hourglass network enables inferencing by first processing features
down to low resolutions before the network begins upsampling and combining features
across scales to produce a set of predictions [15]. Algorithm Candidate 2 was developed by
InsightFace [18,39]. They employ a stacked hourglass network and can produce 68 unique
coordinates through channel aggregation residual blocks rather than HPM residual blocks.
Although they share similar structures, the difference lies in the number of weight layers
used for computing the output [18]. Algorithm Candidate 3 was an implementation of
face alignment developed by Iván de Paz Centeno (i.e., FaceNet) using multitask cascaded
convolutional neural network first explored by K. Zhang et al. [40]. Rather than generating
68 unique coordinates, it only indicates 5 unique facial landmarks with a single point.

3.2. Evaluation of Face Alignment Algorithms

We designed an experiment to compare the candidates in terms of (a) accuracy for
various facial orientations, (b) accuracy under different lighting levels, and (c) computation
time. We defined 11 unique facial orientations and 2 different lighting settings to capture
various scenarios occurring in a typical office space. We recruited 10 individuals (4 females,
6 males) with certain physical characteristics that could affect the accurate recognition of
facial features. Each subject was asked to sit on a stool with the visible camera positioned
approximately a meter above and away from the stool at an angle of 30 degrees. Subjects
were also asked to only move their heads and not their bodies when prompted to look
in a particular direction. This was done under two lighting settings—room lights on
(approximately 450 lux) or off (approximately 70 lux). We calculated precision and recall to
compare the accuracy of the algorithms. Recall is defined as the fraction of all images where
detection has occurred, regardless of whether or not the detections are correct. Precision is
defined as the fraction of detected images that have correctly identified the subject’s facial
features. Lastly, computation time is the average time required by the central processing
unit to process each image containing a certain facial orientation.
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Table 1 shows the precision and recall for each subject using each candidate. Algorithm
Candidate 3 performed the worst overall for all individuals and was rejected. Candidate
1 yielded higher precision than Candidate 2 for all but one subject. Candidates 1 and 2
showed comparable precision and recall for upward and lateral head orientations. Results
were more mixed for downward head orientations, with Candidate 1 yielding better
precision and Candidate 2 providing better recall. Each showed better performance with
the room lights on than off (Table 2). In the end, we selected Candidate1 because it was
about twice as fast as Candidate 2 (Table 3).

Table 1. Precision and recall for upward, lateral head orientations, and downward head orientations
in all lighting settings.
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Table 3. Average computation time to process an image for the three candidates in all lighting settings.

Alg. Computation Time (s)

C1. Bulat et al. [38] 2.32
C2. InsightFace [39] 4.29
C3. FaceNet [40] 0.22

4. Comfort Estimation and Setpoint Selection

Figure 2 shows the algorithm to detect thermal comfort states and calculate the new
HVAC setpoint developed based on Section 2.2. The inputs to our algorithm are the hot
index (HI) and cold index (CI) values at time t (HIt and CIt) and those under neutral
conditions (HIN and CIN). HI is the median temperature of the 10 hottest points on the
subject’s face, and CI is the median temperature of the 5 coldest points on the subject’s face.
If (HIt − CIt) > (HIN − CIN), the subject is too cool. If HIt > HIN, or if HIt < HIN but
(HIt − CIt) ≈ (HIN − CIN), the subject is too warm (Figure 2). For a generalized model,
HIN and CIN are fixed, but for personalized models (i.e., one model per subject), they are
measured for each person. To prevent instability of the control system based on the derived
setpoints in practice, all the conditional statements (i.e., if statements) need acceptable error
margins (i.e., a deadband).

In our study, we used a regularized Gaussian mixture model (RGMM) to capture the
neutral states (HIN, CIN) for each individual. RGMM helps to extract the clusters of distri-
bution in the indices time-series measurements (HIt, CIt) for each individual. An RGMM is
a probabilistic model for representing and capturing the presence of subpopulations within
a dataset (e.g., a time-series) without requiring an observed data set with the labels of the
sub-population to which an individual observation belongs.

Parameters α, β, and γ (shown in Figure 2) should be tuned in any environment as
HVAC systems and thermal characteristics may vary. The tuning procedure is similar
to tuning a PID controller regulating a zone temperature. These parameters are aimed
to create a time and energy-efficient HVAC system response to an individual’s thermal
needs—i.e., effective cooling and heating. For example, these parameters should be large
in environments with slow temperature changes (i.e., the HVAC system PID controller
responds slowly). The setpoint absolute value should not be confused with the individual’s
preferred temperature as the setpoint only guides the HVAC system to provide short-term
cooling or heating to help the human body comfortably pass through the body’s transient
conditions. These parameters can be learned in real-time by operating the HVAC system
based on the values suggested by search algorithms [41]. SP0 is the steady-state zone
setpoint temperature selected at the occupied zone. It can be initialized based on the zone’s
historical data (long-term preferred setpoint) and tuned over time based on steady-state
occupant preferences. It could be selected to optimize energy usage with considerations of
long-term comfort requirements.

5. Experimental Design and Procedure to Simulate Exposure to Warm and
Cool Environments

To evaluate the performance of our approach, we designed an experiment to expose
human subjects to cold and hot thermal environments and to control the HVAC system to
address the transient comfort needs of the individuals. The experiments were conducted in
July and August 2021. While we did not have any clothing requirements, subjects typically
wore a long-sleeve shirt, long pants, and sneakers. The experiment had five phases. In
Phase 1 (acclimation in Figure 3), the subject enters climate Chamber 1 (set at 24 ◦C to
simulate neutral indoor conditions), stays there for 30 min, and completes a comfort survey
at the start and every 5 min thereafter until leaving for Phase 2. In Phase 2 (thermal
stress 1 in Figure 3), the subject moves to either Chamber 2 (set at 18 ◦C to simulate cool
conditions) or Chamber 3 (set at 31 ◦C to simulate warm conditions), stays there for 30 min,
and completes a comfort survey at the start and every 5 min thereafter until leaving for
Phase 3. We randomly assigned the subjects to Chamber 2 (cool) or 3 (warm) to eliminate
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the bias of our experiments to the order of experiencing Chambers 2 and 3. While the
outdoor temperature in winter could reach below 0 ◦C and in summer exceed 35 ◦C in
the majority of the climate zones around the world, we focused on mild conditions since
the physiological responses to them are small, making them more difficult to capture and
sometimes not even perceived by the subjects. Extreme hot or cold conditions have more
obvious physiological signatures.
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Figure 3. Five phases of the experiment to evaluate responses to cool and warm exposures.

In Phase 3 (recovery phase 1 in Figure 3), the subject returns to climate Chamber 1
and stays for 60 min, completing a comfort survey at the start and every 5 min thereafter
until leaving for Phase 4. Phase 3 ends early if the subject reports experiencing comfortable
conditions for at least 30 min. In Phase 4 (thermal stress 2 in Figure 3), the subject moves
to the other chamber (Chamber 2 if previously in Chamber 3 or Chamber 3 if previously
in Chamber 2), stays there for 30 min, and completes a comfort survey at the start and
every 5 min thereafter until leaving for Phase 5. In Phase 5 (recovery 2 in Figure 3), the
subject returns to climate Chamber 1 and stays for 30 min, completing a comfort survey
at the beginning and every 5 min until the end. The survey had just a single question,
“How do you perceive the thermal environment: (1) Too cold, (2) Uncomfortably cool,
(3) Comfortable, (4) Uncomfortably warm, or (5) Too hot”. At the end of the experiment, the
occupant was asked, “Overall thermal preference (perceived when you compare yourself
with others): (1) Prefer warmer, (2) No difference, (3) Prefer cooler”.

Three climate chambers were located at the Center for the Built Environment at the
University of California, Berkeley (UC Berkeley). Chamber 1 is 5.5 mL × 5.5 mW × 2.5 mH,
Chamber 2 is 2 m Long × 2 m Wide × 2.5 m High, and Chamber 2 is 3 m Long × 2 m
Wide × 2.5 m High (Figure 4). The main chamber (Chamber 1) had a dedicated AHU CAV
system to regulate the air temperature via a thermostat with ±0.3 ◦C reported accuracy.
We used a portable air conditioning system in Chamber 2 to provide cooling and a portable
electric heater in Chamber 3 to provide heating. We recruited 12 human subjects (4 females
and 9 males), primarily research staff aged 30–40 years. The average age of the participants
was 34.8 years, with a standard deviation of 9.5. The average height of the participants
was 173 cm, with a standard deviation of 7.5. The average weight of the participants was
70 kg, with a standard deviation of 13.2. The test subjects were healthy and were asked to
perform regular office activities such as working on their laptops, phones, or with people
in the chamber while they sat behind a desk. All data from one subject and the Phase 3 data
from another subject became unusable due to errors in our infrared temperature corrections
(i.e., removing the effects of infrared sensor drift) and were omitted. Accordingly, we
collected complete data for 11 subjects and partial data for 1 subject. The experiments were
performed in July and August 2021.
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Figure 4. Climate chambers at UC Berkeley, including (a) Chamber 1 (Neutral environment at 24 ◦C
with setpoint controller), (b) Chamber 2 (cool environment at 18 ◦C), and (c) Chamber 3 (warm
environment at 31 ◦C).

6. Validation Results for Sensor/Controller Integrated System

As occupants were randomly exposed to hot and cold environments, we tested if the
physiological response monitored in our system accurately captured the thermoregulation
state (i.e., being in an overheated or overcooled state) and accordingly resulted in a correct
setpoint adjustment. We evaluated our system based on the correctness of response (i.e.,
correct cooling or heating) until it was needed. Figure 5 demonstrates two sample subject
physiological measurements and derived setpoints during the fixed setpoint phase (Phase 1)
and the dynamic setpoints phases (Phases 3 and 5). We did not collect physiological
measurements during Phases 2 and 4 since the collected data were not useful to our
analysis. The sampling rate was 2 Hz, and we applied a median filter with a window length
of 60 to eliminate the noise and outliers. In Phase 1, we fixed the setpoint at 24 ◦C as a
neutral temperature. As an example, subject 1 began Phase 1 of the experiment feeling cold
and recovering. When returning from the hot chamber (Phase 3), the hot and cold indices
are both elevated, and our sensor/controller correctly provides cooling until the indices
reach the neutral state. When returning from the cold chamber (Phase 3), a similar behavior
as Phase 1 is observed in the cold index, and our sensor/controller system increases the
setpoint. We applied the same procedure for all 12 subjects.

We evaluated the performance of our system to help the human body reach its ther-
moneutral state by verifying if it provided the correct mode of service (cooling, no change,
or heating). While we calculated setpoints based on both generalized and personalized
models, we operated the chamber HVAC system based on the personalized models (as they
are more accurate) in Phases 3 and 5. Generalized models were evaluated after running all
the experiments and averaging hot and cold indices. Table 4 summarizes the performance
evaluation. As it can be seen, out of 23 scenarios (11 subjects with 2 scenarios each and
1 subject with 1 scenario), generalized models provided the correct mode of service in
15 cases (65.2%), did not make a change in 4 cases (17.4%), and provided the wrong mode
of service in 4 cases (17.4%). Generalized models performed relatively better in capturing
cold stresses, correctly estimating 9 out of 12 cases (75%). Personalized models (i.e., models
that used hot and cold indices derived for each subject) significantly outperformed the gen-
eralized models by providing the correct model of service in 21 cases (91.3%), did not make
a change in only 1 case (4.3%), and incorrectly picked the service mode in 1 case (4.3%).
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Table 4. Cooling and heating verification results for warm and cool exposure using personalized and
generalized methods.

Subject Gender System Response after Warm Exposure System Response after Cool Exposure

Personalized Model Generalized Model Personalized Model Generalized Model

1 M Cooling Cooling Heating Heating

2 F Cooling None Heating Heating

3 M Cooling None Heating Heating

4 M Cooling Heating Heating Heating

5 F – – Heating Heating

6 F Cooling Heating Heating Heating

7 M Cooling Cooling Heating Heating

8 M Cooling Cooling Heating Heating
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Table 4. Cont.

Subject Gender System Response after Warm Exposure System Response after Cool Exposure

Personalized Model Generalized Model Personalized Model Generalized Model

9 M Cooling Cooling Cooling Cooling

10 M Cooling Cooling Heating Cooling

11 M None Cooling Heating Heating

12 M Cooling None Heating None

Figure 6 shows the temperature response in Chamber 1 based on the setpoints. While
our sensor/controller system immediately noticed the comfort state and adjusted the
setpoints, Chamber 1’s HVAC system had a delay of about 7 min in discharging cold air
once the setpoints were communicated.
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Figure 6. Thermostat measurements of room air temperature in Chamber 1 for test subject 2 show
a decrease in room air temperature as the subject returns from Chamber 3 (31 ◦C) and the sen-
sor/controller cools the space, and an increase in room air temperature as the subject returns from
Chamber 2 (18 ◦C) and the sensor/controller heats the space.

Quantification of Thermal Comfort Efficacy

The comfort survey results are presented in Figure 7. As can be seen, a few subjects
started the experiments uncomfortably warm but acclimated and entered Phase 2 (either
Chamber 2 or Chamber 3) of the experiment comfortably. Upon entering Chamber 2
(18 ◦C), either in Phase 2 or Phase 4, the subject grew increasingly cold over the 30-min
period. A similar trend of increase in discomfort perceptions was observed for subjects in
Chamber 3. These match the physiological response observed when entering Chamber 1,
as shown in the previous section. As occupants returned to Chamber 1 operating based
on our sensor/controller, the comfort states began to improve and reached comfortable
states in approximately 10 min in heating mode and 15 min in cooling mode. The longer
recovery time in cooling mode is partially related to the slower cooling response of the
chamber air conditioning system (lag of about 7 min). The cooling provided to subjects
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coming from Chamber 3 (31 ◦C) created an uncomfortably cold state in some cases, but the
uncomfortable cold state went away as setpoints recovered in response to the cooling of
the subject’s body. This could be further tuned through adjustments to the coefficients α, β,
and γ in a zone-level and personalized manner. As can be seen in Figure 8, subjects who
prefer warmer environments reported being uncomfortably cold in these cases. The strong
coefficient of correlation (R = 0.71) shows that individual differences should be considered
in the cooling and heating rates when some knowledge of occupant preference is available.
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7. Discussion and Limitations

In this study, we demonstrated a non-intrusive method to capture short-term personal
thermal comfort requirements and integrate them into the HVAC system’s control logic to
improve comfort by defining a set of operational constraints. The advantage of defining the
thermal comfort requirements as a set of operational constraints is that it transforms the
multi-objective optimization problem in HVAC systems into solely one objective, which
is energy efficiency. The benefits of the non-intrusive thermal comfort sensing system
are not limited to energy efficiency. The prediction of thermal comfort via our proposed
non-intrusive and contactless technique can be integrated into existing service systems,
such as personal fans, ceiling fans, and any type of HVAC system, to make them responsive
to the occupant needs in an autonomous way. Consequently, it would help improve
occupant work productivity and health in the long term [42,43]. The personalized HVAC
control system could also be applied to various scenarios, such as sleep and driving
modes, to improve thermally comfortable indoor environments in all aspects [44]. The
non-contact sensing technique can be used in construction fields to monitor thermal stress
on construction workers, especially those who work in extreme weather [45]. Another
potential application area is the non-contact health care field, specifically, the detection of
elevated body temperature. Although wearable devices can be used to monitor and detect
the patients [46], such as Covid-19-affected individuals, they are at the cost of potential
exposure to the virus [47]. The non-contact autonomous thermal sensing techniques can
assist healthcare staff in rapidly diagnosing the disease and making decisions on time [48].

Although this study has significant contributions and applications in practice, it has
some limitations. First, the validation results were based on data collected for 12 partic-
ipants; further exploration with a larger sample is required to generalize the observed
behavior. Second, data collection was performed in a relatively cool indoor environment,
and consequently, further adjustments may be needed when the proposed techniques
are applied in tropical indoor fields. Third, we designed the experiments with a fixed
set of conditions to validate the efficacy of our system in capturing the thermoregulation
performance in response to thermal stimuli; the experiments did not represent realistic and
regular activities of the occupants in buildings. We plan to carry out a set of experiments
representing regular occupant daily activities [49] to study the proposed system in a future
study. Finally, we selected the median filter window length of 60 based on simple trial
and error. More sophisticated filters could be explored to conserve valuable information
in the physiological measurements. While this study shows the potential for integration
of infrared and visible light images to capture thermal comfort non-intrusively, we de-
scribe additional limitations which have to be addressed for scaling up the technology
deployment. (1) In a real application, the camera location might not always be capable of
observing the occupant's face. To address this limitation, we foresee that the camera system
is located in the center of the room in the ceiling and able to look around the room via a
robotic arm. (2) Since the system takes images of the occupant, the privacy and security of
the occupant’s data should be considered.

8. Conclusions

Rapid technology advancements have provided the opportunity for non-intrusive and
non-invasive estimation of personal thermal comfort without requiring occupant feedback.
This is a prerequisite for autonomous operations of building HVAC systems. To eliminate
the need for occupant feedback for training machine learning techniques, we described the
fundamentals of thermoregulation system behaviors and thermal infrared thermography
that were leveraged in the development of our sensor/controller system. Specifically,
we designed a novel non-intrusive thermal/visual camera system that uses a thermal
infrared camera and a visible light camera to capture images. Based on the non-intrusive
thermal/visual camera system, we successfully aligned the thermal infrared and visible
images via applying elastic image registration, identified facial components (e.g., eyes and
nose), and read the temperatures from the appropriate coordinates in the thermal image.
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We also utilized a heuristic algorithm that employs predefined rules to obtain reliable facial
temperature measurements.

In addition, we evaluated the performance of the proposed infrared contactless thermal
comfort sensing system by verifying whether the system provides the correct mode of
HVAC service (cooling, heating, off) to help occupants reach their thermoneutral states.
Specifically, we used a five-phase experiment to simulate human exposures to cool and
warm conditions and measured our sensor/controller’s thermal comfort efficacy. The
results demonstrated that our generalized models could provide the correct reaction of
HVAC systems in 15 out of 23 scenarios (65.2%). The generalized models can be used for
occupants with no prior thermal imagery history. Specifically, they performed relatively
better in capturing cold stresses. The personalized models significantly outperformed the
generalized models by providing correct service in 21 out of 23 cases (91.3%). In addition,
the strong coefficient of correlation (R = 0.71) suggests that individual differences should be
considered when the knowledge of the occupant’s overall thermal preference is available.

The proposed personal thermal comfort sensing strategy can effectively address in-
dividual differences and the problem of comfort transient in indoor thermal comfort re-
quirements and possibly achieve thermal satisfaction for every occupant in an autonomous
way. In addition to enhancing the satisfaction and comfort of occupants, the proposed
infrared contactless thermal comfort sensing system has great potential in building energy
savings. With the emergence of IoT in the built environment, the personal models can also
be leveraged to build autonomous personal comfort devices and be integrated into central
HVAC systems at a large scale to improve the human experience, well-being, and building
energy efficiency.
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