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Optimized, omnidirectional surface acoustic wave
source: 152 degree Y-rotated cut of lithium niobate

for acoustofluidics
Naiqing Zhang, Jiyang Mei, Member, IEEE, Tilvawala Gopesh, and James Friend, Fellow, IEEE

Abstract—Here we propose an optimized Y-rotated cut of LN
for multi-directional surface acoustic wave propagation, simul-
taneously minimizing the anisotropic effects while maximizing
the electromechanical properties of this cut of LN. The goal
is to offer a piezoelectric material suitable for acoustofluidics
applications that require greater flexibility in wave generation
and propagation than the currently ubiquitous 128-degree Y-
rotated X-propagating cut. The 128YX LN cut is known to
most effectively generate Rayleigh SAW along the X direction
alone. Any SAW veering from this propagation direction is
affected by beam steering and changes in resonance frequency
and electromechanical coupling coefficients, consequently limiting
the use of LN in various acoustofluidics applications where more
diverse configurations would be beneficial.

The L2-norm of these properties was evaluated under rota-
tional transformation to produce a physical model with closed
governing equations for 40 MHz surface wave propagation on
the surface of a piezoelectric material. This was then utilized
to obtain the surface wave velocity and coupling coefficient
of the specific Y-cut LN with respect to the propagating di-
rection. Next, the averaged coupling coefficients of various Y-
cuts of LN in all propagating directions were calculated and
integrated to simultaneously minimize anisotropy and maximize
the electromechanical properties of the LN substrate. A 152-
deg. Y-rotated cut was found to be the optimal choice under
these constraints, enabling multi-directional surface acoustic
wave propagation with greater coupling and lower variation in
wave performance for SAW generated across the surface in any
direction. Compared to the 128YX LN cut, this cut provides
a 66.5% improvement in the in-plane isotropy and a 37.0%
improvement in the average electromechanical coupling for in-
plane SAW propagation. Experimental devices operating at the
frequency of 40 MHz were designed, fabricated, and tested on
the surface of this 500 µm-thick specific cut of LN and served
to verify the supporting analysis and the superior isotropic
properties of the 152-deg. Y-rotated cut in generating SAW.

Index Terms—isotropic, coupling coefficient, optimized cut,
lithium niobate, surface acoustic wave propagation.

I. INTRODUCTION

COMPARED to traditional forms of ultrasound used over
the years in manipulating solids and fluids as physical

acoustics phenomena, surface acoustic waves are relatively
high-frequency (10 MHz to 1 GHz) acoustic waves that
offer accelerations in excess of 108 m/s2 at wavelengths
commensurate with the dimensions of micro to nano-scale
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fluidic structures, as comprehensively described by Friend
and Yeo [1]. Termed acoustofluidics, the combination of
physical acoustics and the use of surface acoustic waves and
other, related high frequency waves is producing a diverse
range of solutions to long-standing problems in fluid and
particle manipulation in lab, organ, and organism-on-a-chip
technologies for medicine and biology as described in recent
review contributions [2, 3]. Despite the many limitations
in generating, controlling, and propagating surface acoustic
waves (SAW) within lithium niobate (LN) substrates, there is
now consistent evidence of the remarkable promise of SAW in
controlling fluid and particle behavior [4, 5]. Lithium niobate
is ubiquitous in SAW generation and propagation due to its
large coupling coefficient relative to other single crystalline
materials for SAW (and other waveforms [6]), absence of
hysteresis and heating common in polycrystalline piezoelectric
materials [7], and outright convenience in comparison to ZnO,
AlN, and other thin-film piezoelectric materials.

In 1976, Shibayama et al. [8] found the 127.86◦ Y -rotated
cut to be optimal for generating Rayleigh SAW along a single
axis, even though the 131◦ Y -rotated cut had previously
demonstrated [9] the highest electromechanical coupling co-
efficient and lowest insertion loss. The 127.86◦ cut reduced
the generation of parasitic bulk waves compared to the 131◦

cut, and the 127.86◦ Y -rotated, X-propagating cut of LN
(128YX LN) has since become the most popular and widely
accepted orientation for applications requiring Rayleigh SAW
waves. However, the 128YX cut efficiently generates SAW
only along the X direction, ideal for telecommunications but
a problem in acoustofluidics where the ability to change the
wave propagation direction to go around obstacles, deflect
into features, and produce two-dimensional acoustic wave
structures in a piezoelectric substrate would be beneficial. Any
SAW generated at an angle to the X-axis propagation direction
encounters beam steering and a reduction in electromechanical
coupling, an issue known for many years in microrobotic
[10] and acoustofluidic applications. Worse, since the SAW
propagation velocity also changes, either the frequency must
change to deliver a SAW of the same wavelength or the
generating electrodes’ dimensions must be carefully tailored to
deliver SAW at a constant frequency. With similarly sized elec-
trodes and driving conditions upon 128YX LN, the vibration
displacement and particle velocity of a SAW along the X-axis
are double these values for SAW along the Y -axis [11] due to
the significant difference in electromechanical coupling along
these propagation directions.
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Determining how acoustic waves propagate on the surface
of anisotropic, piezoelectric materials is a classic topic. Rep-
resenting the acoustic waves as a linear, small amplitude—
1% strain or less—phenomenon produces a complicated set
of partial differential equations that, with work [12, 13],
produces transcendental equations that are rarely solvable in
closed form [14]. In some crystal symmetries, such as the
x3 plane of a monoclinic crystal, on a half space of an
incompressible monoclinic material, or along a material axis
of a rhombohedral material, explicit secular equations can
be produced and solved to produce predictions for surface
acoustic wave velocities [15]. But in anisotropic materials in a
more general sense, the classic partial waves-based approach
first defined by Farnell [16] is an effective numerically-based
route to determining a surface acoustic wave’s propagation
velocities, modes, and other characteristics. We adopt this
approach, further investigating the surface impedance matrices
to verify both the existence and velocities of SAW upon
anisotropic media [13, 14, 17, 18]. Recently, rather complex
arrangements for wave propagation have been considered,
including multilayer structures [19, 20], strip waveguides
[21, 22], air-gapped devices [23], interface-guiding structures
[24], and fluid coupling [25], and these could be considered
to be extensions of the classic methods to very specific wave
propagation applications.

Here we consider a simpler route, exploring rotated cuts
of single crystal LN that may better suit acoustofluidics
applications. Our aim is to obtain an optimized piezoelectric
material orientation by utilizing well-established theoretical
models that would not only be compatible with all previous
numerical analyses to obtain specific wave characteristics, but
would also be better suited for acoustofluidics and lab-on-a-
chip applications where SAW propagation along other axes
beside the X axis would be beneficial.

An alternative might be to employ thin-film, deposited
piezoelectric polycrystalline ceramic materials such as ZnO
or AlN, on a silicon or similar solid substrate [26, 27] to offer
isotropic in-plane behavior. These thin films offer flexibility
in electrode designs, wave generation and propagation, and
other features [28] potentially useful in acoustofluidics. For
example, isotropic SAW has been generated on ZnO thin films
to produce a needle-shape liquid column on a free liquid
surface [29, 30, 31, 32]. However, these materials possess
low electro-mechanical coupling coefficients in comparison
to LN, and are unable to generate large power transmission
from electrical to mechanical domains commensurate with
typical acoustofluidics applications due to their clamped, thin-
film configuration, and require additional steps in ultraviolet
lithography. Therefore, a cut of a single crystal bulk material
that has, simultaneously, a reduced in-plane anisotropy and
increased electromechanical coupling coefficient would be
superior.

Here, we propose a Y -rotated cut of LN optimized for multi-
directional SAW propagation, simultaneously minimizing in-
plane anisotropy and maximizing in-plane electromechanical
coupling for acoustofluidic applications. Rotational transfor-
mation of the material properties of LN is performed to
produce an L2-norm-based comparison to isotropic material

properties to find the LN cut with the least anisotropic in-plane
properties, that is, the closest to isotropic properties possible
along the surface plane of the substrate. A physical model with
closed governing equations for surface wave propagation on
the LN is then used to determine the open and short-circuit
surface wave velocity and, consequently, the electromechanical
coupling coefficient along any direction on the substrate.
The coupling coefficients of a given Y -cut of LN for SAW
propagating in all planar directions are then calculated. These
results are combined with the results of the in-plane anisotropy
analysis to collectively identify a Y -rotated cut of LN that
offers the best ability to generate and propagate SAW in an
arbitrary direction upon the LN substrate, minimizing planar
anisotropy and maximizing planar SAW electromechanical
properties. This process produced the 152◦ Y -axis rotated cut
of LN, upon which SAW devices were designed, fabricated,
and tested to verify the outcomes of the analysis. In particular,
we were able to verify the ability to generate and propagate
SAW in directions beyond the standard X-axis of 128YX
LN. We offer a consistent method for tailoring the selection
of the cut to fit desired design goals. This is essential for
the development of acoustofluidic devices based on SAW and
would be relevant in numerous other acoustic devices that rely
on IDTs or arrays of multiple transducers [33, 34, 35, 36].

II. DETERMINATION OF THE “LEAST” IN-PLANE
ANISOTROPIC Y -ROTATED CUT OF LN

Since the stiffness tensor underpins the mechanical elastic
properties of a material and determines its wave propagation
and generation modes and its electro-mechanical properties,
we consider how rotational transformation of the LN stiffness
tensor affects its apparent anisotropy in comparison with
isotropic materials. For those unaware, isotropic materials are
inherently unable to offer piezoelectricity, and our aim here is
instead to minimize the anisotropy in the surface plane of the
LN upon which the SAW will be generated and propagated.
While X-axis or X and Y rotated cuts could be considered
in a more general exploration using the methods we propose,
obtaining such cuts is a practical problem: LN producers do
not offer such flexibility in the material orientation nor are set
up to do so for research-relevant quantities of wafers.

A. Rotational transformation of the stiffness tensor

We consider a variety of Y -rotated LN cuts with a focus
on offering the least anisotropic response along the 360◦ of
the plane as opposed to solely the greatest coupling for a
particular Rayleigh-SAW propagation direction. The latter has
previously been studied and initially resulted in the 131◦ Y -
rotated cut and soon after the 127.86◦ Y -rotated cut. We later
consider the electromechanical coupling, but first describe the
rotational transformation that produces the so-called Y-rotated
cut of LN, as shown in Fig. 1(a). The coordinate system Oxyz
is composed of the original principal axes of the single crystal
LN. The coordinate system Ox′y′z′ defines the LN substrate
surface plane due to a rotation θ about the x axis as shown
in Fig. 1(a): the x and x′ axes are coincident, the x and y′

axes are in the plane of the substrate, and z′ is perpendicular
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to the substrate. The standard name of such a cut of LN is the
θ+ 90◦ Y-rotated cut, illustrated at right in Fig. 1(a). In other
words, the standard 127.86◦ Y -rotated cut would produce a
rotation angle of θ = 37.86◦ here.
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Fig. 1: The rotation from the LN material’s principal axes in
coordinate system Oxyz to the desired substrate orientation
defined by coordinate system Ox′y′z′ may either be viewed
from the perspective of the (a) substrate in plane x′Oy′ or
(b) the LN material’s principal axes in coordinate system
Oxyz. The “cut angle” is traditionally defined as θ + 90◦,
here the total angle between the y and z′ axes. The SAW is
presumed to (a) propagate along axis x′′ upon the substrate
surface plane x′Oy′ at an angle γ from the positive x′

axis. The coordinate system Ox′′y′′z′′ is dedicated to SAW
propagation. A standard illustration of the symmetry present
in a (c) trigonal 3m media such as LN is provided alongside
a similar representation for an (d) isotropic media, indicating
the material-defined elastic, piezoelectric, and dielectric tensor
properties in shortened Voigt form, enabling the representation
of the associated tensors by matrices with details in the
Appendix. (e) The minimum L2-norm plotted with respect to
the cut angle θ+90◦ for LN indicates three minima: the well-
known Z cut, a purely isotropic response at θ = 0◦, alongside
the θ = 62◦ and θ = 118◦ values. The latter two represent
the 152◦ and 28◦ Y -rotated cuts, respectively. Dashed lines
indicate these two cuts alongside a solid line indicating the
standard 128◦ cut, illustrating the ability to improve overall
isotropy in the Ox′y′z′ by choosing other cuts beside the 128◦

Y -rotated cut.

We first note the relationship between the original and the
rotated coordinate systems’ unit vectors as



e1

e2

e3


 =

(
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)

e′1

e′2

e′3


 = [A]



e′1

e′2

e′3


 , (1)

with the Euler transformation matrix [A] defined as shown. In
component notation (m,n ∈ {1, 2, 3}) , the equation may be
written as

em = Amne
′
n. (2)

Expressing the stiffness tensor cEijkl in component notation
(i, j, k, l ∈ {1, 2, 3}) and enforcing the Einsteinian summation
convention [12] with superscript E referring to a constant
electric field, we may write the following for these two
different coordinate systems by using eqn. (2):

cE′pqrse
′
pe
′
qe
′
re
′
s = cEijkleiejekel

= cEijklAipAjqAkrAlse
′
pe
′
qe
′
re
′
s.

(3)

Details of the notation are provided for the reader’s conve-
nience in the Appendix. A rotational transformation from the
original stiffness tensor dependent solely on θ to produce the
transformed stiffness tensor cE′pqrs may then be written as

cE′pqrs = cEijklAipAjqAkrAls. (4)

B. Identifying the Least Anisotropic In-plane Y -cut of LN by
Norm Comparison with Isotropic In-plane Materials

To investigate the extent of planar anisotropy in the plane
x′Oy′ of θ-rotated LN, a double inner product between the
unit vector e′3 normal to the substrate surface and the stiffness
tensor in the rotated coordinate system shown in eqn. (3) may
be taken:

e′3 · (cE′pqrse′pe′qe′re′s) · e′3 = cE′3qr3e
′
qe
′
r. (5)

To determine which orientation of LN produces the most
isotropic in-plane properties, we then consider the stiffness
tensor for an isotropic material. It is well-known that isotropic
materials cannot be piezoelectric as at least asymmetry through
a reflection (for example, Hermann-Mauguin group ∞mm) is
necessary, but this aspect is treated later via the electromechan-
ical coupling. Noting the symmetry of the trigonal (3m) LN’s
intrinsic mechanical, piezoelectric, and electrical properties
(see Appendix A for the definition and representations of the
corresponding tensors) in Fig. 1(c) versus isotropic media in
Fig. 1(d), it becomes apparent what quantities that describe
the LN’s stiffness must be changed to become more isotropic.
Subsequently, the same operations were performed on the
stiffness tensor for the isotropic material as the trigonal LN.
We begin with the double inner product to determine the
expression for the stiffness along the plane x′Oy′,

e′3 · (ciso
pqrse

′
pe
′
qe
′
re
′
s) · e′3 = ciso

3qr3e
′
qe
′
r, (6)

where ciso
3qr3 =

(
x2 0 0
0 x2 0
0 0 x1

)
and x1 and x2 are any arbitrary

positive real numbers.
As expected, LN does not have a cut with an entirely

isotropic plane x′Oy′ after a simple rotation θ. Instead, the
point of this effort is to explore how to minimize the anisotropy
of the x′Oy′ plane. To this end, we seek the minimum of
the Euclidean norm of the difference between the anisotropic
stiffness tensor in the plane and its isotropic counterpart
[37, 38], written as minθ L2 ≡ ||cE′3qr3 − ciso

3qr3||2 by varying
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x1 and x2 for each specific given angle θ, which describes the
specific differences between the in-plane stiffness for θ+ 90◦

degree Y -cut LN and an analogous isotropic material. In the
analysis, the dielectric components are simply assumed to
be ε11 = ε22 = ε33 = 1 for the isotropic material and
are in any case irrelevant to the computations needed in this
study. A custom MATLAB (MathWorks, Natick, MA, USA)
code was used to calculate and plot the norm L2 versus
(θ + 90◦) as shown in Fig. 1(e) with increments in θ of
0.1◦. For our calculations, LN is presumed to have the fol-
lowing values for the stiffness: cE11, c

E
12, c

E
13, c

E
14, c

E
33, c

E
44, c

E
66 =

2.030, 0.53, 0.75, 0.09, 2.45, 0.60, 0.75× 1011 N/m2 [39].
Notably, when θ → 0 or 180◦—known as Z-cut LN—a

popular view is that minθ{L2} should go to zero and the cut
is “isotropic in the plane” x′Oy′. This is true for the stiffness
tensor, as made clear from Fig. 1(d). However, as shown in
Fig. 5 in Appendix B, Z-cut LN in fact remains anisotropic
in the plane. Instead of using the stiffness tensor, the evidence
is provided there by computing the norm of the piezoelectric
stress tensor e for LN versus the zero tensor value for an
isotropic material, all upon the plane x′Oy′. If the material
were truly isotropic in the plane, this value would also go
to zero, because the piezoelectricity would be absent in the
plane. While the norm of the piezoelectric stress tensor does
not go to zero as θ → 0 or 180◦, it does go to a minimum
value. This suggests both the piezoelectric coupling and this
particular cut’s ability to generate SAW will be poor. In fact,
Z-cut LN is known to be poor for surface wave generation and
propagation [40]. Despite its in-plane stiffness isotropy, the Z-
cut is therefore deemed to be unsuitable and is excluded from
further consideration.

Fig. 1(e) indicates two other possibilities for minimization
of the anisotropy of LN on the x′Oy′ plane: a Y -rotated cut
angle of 118◦ (= (θ = 28◦)+90◦) and a cut angle of 152◦. The
152◦ Y -rotated cut, in particular, is around the ubiquitous 128◦

YX cut [8] used for SAW, and so Y -rotated cuts around 152◦

may be interesting from the perspective of electromechanical
coupling. The 28◦ cut as the other minimum is also a possible
choice for SAW generation and propagation while minimizing
the effect of anisotropy.

III. CALCULATION OF COUPLING COEFFICIENT FOR
ELECTROMECHANICAL PROPERTIES

There is a universal relationship between the coupling coef-
ficient, K2, and the open and short-circuited SAW velocities
vo and vm, respectively [41]:

K2 =
2(vo − vm)

vo
(7)

One approach to determine the effectiveness of any particular
Y -rotated cut defined by θ in comparison to the 128YX cut of
LN is to determine the surface wave velocities vo and vm and
then use eqn. (7) to compare the coupling coefficients between
θ + 90◦ Y -cut LN and 128◦ Y -cut LN.

A. Determining the velocity of open and short-circuited SAW

The set of linear equations describing acoustic wave propa-
gation in an arbitrary, anisotropic piezoelectric medium is, in
standard component notation, as follows [12]:

∂Tij
∂xi

= ρ
∂2uj
∂t2

,

Skl =
1

2
(
∂uk
∂xl

+
∂ul
∂xk

),

∂Di

∂xi
= 0,

Ei = − ∂ϕ
∂xi

,

Tij = c′ijklSkl − e′nijEn,
Dm = e′mklSkl + ε′mnEn,

(8)

where Tij is the stress tensor component, ρ is the mass density,
uj is the mechanical displacement, Sij is the strain tensor
component, Di is the electric displacement, Ei is the electric
field, xi is a spatial coordinate, and ϕ is the electric potential.
The primed quantities refer to a rotated coordinate system in
which the stiffness tensor (c′ijkl), the piezoelectric stress tensor
(e′ijk), and the permittivity tensor (ε′ij) are given in terms of
Aij and the unrotated quantities as follows:

c′ijkl = AirAjsAktAlncrstn,

e′ijk = AirAjsAkterst,

ε′ij = AirAjsεrs.

(9)

By simplifying eqns. (8) through substitution of the strain-
displacement and electric field strength-electric potential equa-
tions into the stress-strain-electric field strength and electric
field displacement-strain-field strength equations, then substi-
tution of the result into the momentum equation while ensuring
∂Di/∂xi = 0 is enforced, eqns. (8) may be reduced to the
following equations:

c′ijkluk,li + e′kijϕ,ki = ρüj ,

e′ikluk,li − ε′ikϕ,ki = 0.
(10)

The dot notation refers to differentiation with respect to time,
while an index preceded by a comma denotes differentiation
with respect to a space coordinate. The coordinates are set
such that the LN material substrate surface is at z′ = 0, or
plane x′Oy′ in Fig. 1(a). The material is located only along
z′ < 0, and so eqns. (8–10) are only valid for z′ < 0. The
region 0 6 z′ 6 h is set to be a thin, perfect electric conductor
where Laplace’s equation describes the electric potential ϕ,

∇2ϕ = 0, (11)

where h = 0 and h → ∞ refer to electrically shorted and
open surfaces, respectively.

Equations (10) and (11) together with appropriate bound-
ary conditions form a complete set of governing equa-
tions for acoustic wave propagation upon or within an ar-
bitrary, anisotropic piezoelectric medium. Taupin et al. [42]
recently used a semi-analytical finite element method to
study guided wave propagation in viscoelastic multilayered
anisotropic plates by computing displacement, dispersion,
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Fig. 2: The calculated electromechanical coupling coefficient,
K2, of Y -cut LN with respect to the propagation direction
of the SAW along the x′Oy′ plane for 152◦ Y -cut LN in
comparison to 128YX LN. The coupling coefficient is superior
in 152◦ Y -cut LN for propagation angles roughly between 30◦

and 150◦ and inferior outside this range.

slowness curves, and energy propagation. Although it cannot
be used directly to study surface wave propagation upon a
non-viscous piezoelectric material plane as in this case, it is
still a useful wave propagation calculation method. Here, we
pursued a method detailed in the Appendix and closely related
to the classic method defined by Tiersten [12] and Farnell’s
partial waves method [16] for free and layered infinite half-
space problems to determine the SAW propagation velocities
in a given direction along a plane.

B. Numerical Calculations and Results of Surface Wave Ve-
locities and Coupling Coefficients

Referring to Appendix C, a transcendental matrix equation
may be obtained that, upon solution, produces the SAW ve-
locities for waves upon the x′Oy′ plane. Briefly, this equation
is obtained from assumption of the form of the propagating
SAW, substitution of this form into eqns. (10) and (11) to
produce a matrix equation (eqn. (26)). Finding the eigenvalues
of that equation produces the SAW velocities, though because
the resulting transcendental equation can not be analytically
solved, a numerical method is utilized to determine the open
and short-circuit SAW velocities.

We first define a particular SAW propagation direction on
the x′Oy′ surface of the LN, the surface of the LN wafer
after performing the θ+ 90◦ rotation. The direction the SAW
propagates on this surface is defined by the angle γ from the
material’s X axis. Knowing that the velocity of this SAW,
vS , will be in the range of 3000 m/s to 5000 m/s [17, 14], we
then determine α(l) from eqn. (22), and obtain the determinant
from eqn. (26). Since h = 0 and h =∞ correspond to short-
circuited and open-circuited surfaces, respectively, finding the
minimum of this determinant for each of these two conditions
produces the velocities vm and vo of the propagating SAW. In
order to accurately identify the minima of the determinant, and
therefore the velocities vm and vo of the propagating SAW,
increments of only 1 m/s in the SAW open and short-circuit
phase velocities were used for discrete values of γ subtended
by ∆γ = 1◦.

Substituting the calculated velocities vm and vo into eqn. (7)
produces the associated coupling coefficient K2 for each value
of γ, as shown in Fig. 2. The coupling coefficient for SAW
propagating upon the 152◦ Y -rotated cut is notably larger than

upon the 128◦ Y -rotated cut over a majority of the propagation
directions, between γ ≈ 30◦ and γ ≈ 150◦. Outside this range
and, as expected, near the X-propagating direction (γ = 0◦)
the traditional 128YX cut of LN is superior.

The 152◦ Y -cut LN is quantifiably more isotropic in the
x′Oy′ plane. For example, the standard deviation of the
electromechanical coupling coefficient, K2, over the range
γ = 0◦ to 180◦ using 152◦ Y -cut LN is 66.5% lower than
when using 128◦ Y -cut LN, indicating an electromechanical
coupling coefficient that is more uniform in 152◦ Y -cut
LN. Furthermore, and somewhat surprisingly, the average
electromechanical coupling coefficient, K2, over γ = 0◦ to
180◦ in 152◦ Y -rotated cut LN is 37.0% greater than 128◦

Y -cut LN, indicating a greater overall ability to produce SAW.
Therefore, for omnidirectional surface wave actuation on LN,
a 152◦ Y -rotated cut LN is significantly both less anisotropic
and more electromechanically efficient than the 128◦ Y -cut,
and is superior to other Y -rotated choices. The reader should
remember that for unidirectional SAW, the 128YX cut remains
superior.

IV. CHOOSING A CUT VIA THE RATIO OF THE
ELECTROMECHANICAL COUPLING COEFFICIENT USING THE

EUCLIDEAN NORM

The Euclidean norm may been used on the in-plane portion
of the stiffness tensor to quantifiably compare anisotropic LN
and an arbitrary isotropic material to produce candidate cuts
that are more isotropic in the substrate surface plane upon
which the SAW propagates. Two cuts were shown to offer
greater isotropy than the 128YX cut and therefore may prove
to be more useful in acoustofluidic applications. The well-
known Z-cut of LN that has already been excluded is a good
example of why the electromechanical coupling coefficient is
as important to consider as the anisotropy: the Z-cut is ideally
isotropic in the plane but offers very weak electromechanical
coupling, making it an unsuitable choice. A somewhat tedious
computational method has been provided to determine the
electromechanical coupling coefficient for SAW propagating in
a given direction defined by γ upon the surface of a (θ+90◦)-
rotated cut of LN.

A combination of these two aspects are needed to iden-
tify a cut of LN that would best serve both purposes—
simultaneously improve its in-plane isotropy and electrome-
chanical coupling to generate SAW—that are, to some extent,
at odds with each other. In what follows, a remarkably simple
method is proposed to identify an optimum θ angle of Y -
rotated cut LN which both minimizes the in-plane anisotropy
and maximizes the overall planar electromechanical effect
among all propagating directions.

We define Φ ≡ K2
a/L2 as a figure of merit and the

ratio of the averaged coupling coefficient, K2
a , to the L2

norm as a single parameter that includes the effects of both
the planar anisotropy and electromechanical coupling. The
averaged coupling coefficient is defined as

K2
a ≡

180◦∑

γ=0◦,1◦,···
K2/(

180◦

∆γ
+ 1) (12)
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Fig. 3: The ratio, Φ, of the in-plane averaged coupling co-
efficient over all possible SAW propagation directions, γ ∈
{0◦, 180◦} to the Euclidean norm of the in-plane stiffness
tensor between the Y -cut LN and an isotropic material, given
by Φ ≡ K2

a/L2, is shown with respect to θ + 90◦, the Y -
rotated cut angle of LN. The maximum value for Φ is at
θ + 90◦ = 152◦, indicating maximal improvements in the
isotropy or electromechanical coupling. Another candidate, at
θ + 90◦ = 28◦ + 180◦, exhibits a local minimum in Fig. 1,
but shows relatively poor electromechanical coupling, and
consequently is omitted from further consideration.

for each specific cut angle, θ, of Y -rotated LN, where ∆γ =
1◦ is the angular step size used in determining the coupling
coefficient values as a function of the SAW propagation
direction, and later in calculating a discrete average of the
coupling coefficient for all propagation directions upon the
Y -rotated cut, θ + 90◦ (i.e., the x′Oy′ plane). The larger the
value of Φ, the overall in-plane electromechanical effect will
be greater or the material’s anisotropy will be reduced—or
both. Maximizing Φ with respect to the Y -rotated cut, θ+90◦,
will then correspond to the optimal choice that collectively
minimizes anisotropy and maximizes the electromechanical
coupling for use in multi-directional SAW propagation.

Considering the computational cost of these calculations and
the fact that the relevant material properties are at least smooth
to second order (class C2 as required by eqns. (8)), a low-
resolution-calculation of the cumulative coupling coefficient
for θ = 0◦ to 180◦ in 5◦ steps and 5 m/s increments in the
SAW open and short-circuit phase velocities was first used.
According to Yamanouchi et al. [43], the velocity of traveling
SAW is slower than leaky SAW on Y -cut LN. Thus, we
identified the slower traveling SAW velocity by finding the
local minimum of the determinant from eqn. (26). Figure 3
shows the result, where the highest value of Φ occurs between
θ + 90◦ = 145◦ and 155◦. To more accurately determine
the specific optimum, a higher-resolution calculation of Φ =
K2
a/L2 was conducted from θ + 90◦ = 145◦ to 155◦ in 1◦

steps and 1 m/s increments for the SAW open and short-circuit
phase velocities. As shown in Fig. 3, the θ + 90◦ = 152◦ Y -
rotated cut produces the maximum K2

a/L2 of any value of θ

for LN, representing the optimum choice to minimize planar
anisotropy and maximize planar electromechanical coupling
in multi-directional SAW propagation applications. More ac-
curate calculations to further refine θ + 90◦ between 151.5◦

and 152.5◦ could be conducted, though most suppliers of LN
are unable to economically produce small batches of LN with
a custom orientation at an accuracy better than 0.5◦.

V. EXPERIMENTAL METHODS AND RESULTS

To compare with our computational results, we designed
and fabricated a series of SAW interdigital transducer devices
on double-side polished 152◦ Y -rotated cut LN (Jiaozuo
Commercial FineWin Co., Ltd, Jiaozuo, Henan, China) for
surface acoustic wave generation and propagation.

A. Device Design and Fabrication

As depicted in Fig. 4(a), twenty-four finger pairs were used
in each of fifteen interdigital transducers (IDT) arranged in
a circular pattern about a central point with 24◦ of angular
separation between them. A wavelength of λ = 100 µm
was selected for an operating frequency of ∼ 40 MHz (from
f = v/λ) to define each IDT, comprised of twenty simple
finger pairs with finger and gap widths of λ/4 and an aperture
of 2 mm. For lithium niobate wafers of 500 µm thickness,
40 MHz is approximately the minimum frequency that may
be used to generate useful Rayleigh SAW. Lower frequencies
typically reported in much of the acoustofluidics literature
are actually generating Lamb waves instead [2]. Standard UV
photolithography (using AZ 1512 photoresist and AZ 300MIF
developer, MicroChem, Westborough, MA) was used along-
side sputter deposition and lift-off processes to fabricate the
10 nm Cr / 1 µm Al IDT upon the 500 µm thick LN substrate
[2]. Absorbers (Dragon Skin™, Smooth-On, Inc., Macungie,
PA) were used at the center and periphery of the device to
prevent edge reflections and spurious bulk waves. SAW was
generated by applying a sinusoidal electric field to the IDT
at resonance using a signal generator (WF1967 multifunction
generator, NF Corporation, Yokohama, Japan) and amplifier
(ZHL–1–2W–S+, Mini-Circuits, Brooklyn, NY, USA). The
actual voltage, current, and power across the device were
measured using an oscilloscope (InfiniiVision 2000 X-Series,
Keysight Technologies, Santa Rosa, CA). The spatiotemporal
variations in the wave displacement and velocity amplitudes
along the underlying substrate were measured using a laser
Doppler vibrometer (LDV, UHF–120, Polytec, Waldbronn,
Germany).

B. Experimental Data and Analysis

Instantaneous displacement and phase measurements were
made using the LDV along the propagation directions de-
termined by the placement of the IDTs in Fig. 4(a). For
example, Fig. 4(b) illustrates the SAW amplitude and phase
propagating along the γ = 108◦ direction, with 807 mW at
33.956 MHz AC input applied on the device, demonstrating
the generation of traveling surface acoustic waves. With a
standing wave ratio (SWR) of 1.47, the results indicate a good
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traveling SAW propagating across the 152◦ Y -rotated cut LN
x′Oy′ surface. The SWR is the ratio of the maximum and
minimum amplitude of the wave, measured over at least one
wavelength, indicating a pure traveling wave when SWR = 1
and a pure standing wave when SWR → ∞. To compare
the experimental and computational results, the relative energy
E ∝ A2 was used and scaled to fit the computational results,
correlating the amplitude of the SAW on LN surface with
the electromechanical coupling energy [8]. The amplitudes, A,
in each propagation direction are averaged among the LDV
scanning region to reduce the effects of aliasing from the
pointwise measurement of the scanning LDV. As shown in
Fig. 4(c), the experimental and computational results produce
a high correlation coefficient of 0.93, a good fit, verifying the
results of the calculations and the underlying method to arrive
at a useful cut.

VI. CONCLUSIONS

A technique to consistently optimize the Y -axis rotation
angle for a competing set of design characteristics has been
provided. It has been used to minimize the in-plane anisotropy
and maximize the electromechanical coupling to enable multi-
directional generation and propagation of SAW upon LN. Pro-
ducing three candidates—Z-cut, 28◦ Y -rotated cut, and 152◦

Y -rotated cut LN—the method ultimately indicates the 152◦

Y -rotated cut as the superior choice. Compared to the 128YX
cut of LN used for virtually all of today’s acoustofluidic
devices, this cut provides a 66.5% improvement in the in-plane
isotropy for SAW propagating in any direction upon the LN
substrate, and a 37.0% improvement in the average electrome-
chanical coupling when attempting to propagate SAW in any
direction. While the 128YX cut remains the best choice for
unidirectional SAW along the X axis, the 152◦ Y -rotated cut
offers significant advantages in those applications for which
SAW propagation in other directions is desirable.

The technique combines classic analysis approaches with an
L2-norm comparison of the stiffness and piezoelectric stress
tensor to an isotropic analogue while varying the Y -rotated cut
angle θ+ 90◦. To determine the effect of these rotations upon
the equally important electromechanical coupling of SAW
propagating along any direction on the plane of the Y -rotated
substrate for each value of θ, a physical model with closed-
form governing equations for SAW propagation on the surface
of a piezoelectric material was used to obtain open and short-
circuit SAW phase velocities. These velocities were then used
to compute the averaged coupling coefficient over all possible
SAW propagation directions upon the LN substrate, defined
by γ with respect to the X axis. Next, a figure of merit
composed of a ratio of the averaged coupling coefficient to
the Euclidean norm of the planar anisotropy, Φ = K2

a/L2, was
defined and used to determine the value of θ that minimizes
the in-plane anisotropy and maximizes the electromechanical
coupling. This procedure produced the 152◦ Y -rotated cut of
LN as the clearly optimal choice.

Finally, an experimental device was designed, fabricated,
and tested using the 152◦ Y -cut LN substrate, serving not only
to verify the analysis and calculations, but also demonstrating

Fig. 4: Our (a) experimental IDT configuration for testing the
ability to generate and propagate SAW across the surface of the
rotated LN cut. As an example, the (b) spatial distribution of
the instantaneous displacement and phase of the LN substrate
transverse to plane x′Oy′ along γ = 108◦ shows a good
quality traveling SAW with SWR= 1.47. A measure of the
energy of the SAW with respect to its propagation direction is
(c) provided for the fifteen directions defined by the IDTs in
our (a) experiment upon 152◦ Y -rotated cut LN. This closely
corresponds to the numerically determined coupling coefficient
provided in the same figure: since the data is not normally
distributed, a Wilcoxon signed rank pairwise test for unequal
data sets produces a p-value of 4.98 × 10−10, well within
the typical p < 0.01, indicating the veracity of the analysis
in representing the experimental outcome. The lines provided
are solely shown as a guide to the eye.

the ability to effectively form SAW in directions other than
along the X axis as a practical demonstration of the continued
utility of lithium niobate for the demanding requirements
of acoustofluidics. This technique can be adapted to serve
other materials, other orientations, and other design goals as
required, providing a new perspective in materials selection
in acoustics and ultrasound as built upon the comprehensive
analysis framework provided in the past.

APPENDIX A
CUSTOMARY DEFINITION AND REPRESENTATIONS OF THE
STIFFNESS, PIEZOELECTRIC, AND DIELECTRIC TENSORS

The stiffness tensor cijkl is a fourth-order tensor where the
number of coefficients is 34 = 81. But due to the symmetry
of the tensor, we have cijkl = cjilk = cijlk = cjikl and
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the number of independent coefficients is reduced to 36. It is
customary to reduce the fourth-order tensors to a second-order
(Voigt) representation cijkl = cαβ where i, j, k, l ∈ 1, 2, 3 and
α, β ∈ 1, 2, 3, 4, 5, 6: (11) ↔ 1, (22) ↔ 2, (33) ↔ 3, (23) =
(32) ↔ 4, (31) = (13) ↔ 5, (12) = (21) ↔ 6. In the same
way, the third-order piezoelectric tensor can be represented as
a 3×6 matrix. Thus, the stiffness, piezoelectric, and dielectric
tensors’ matrix representations are combined together into one
(see Fig. 1(a–c)): [

cE
˜
e

e
˜
εS

]
, (13)

where cE is a reduced 6 × 6 stiffness matrix; e is reduced
3 × 6 piezoelectric stress matrix;

˜
e is the transpose of the

reduced 3× 6 piezoelectric stress matrix;
˜
εS is the transpose

of the 3×3 dielectric matrix, such that each · represents a zero
value, the • and ◦ represent non-zero values, the connecting
lines between non-zero values indicate equality, and a line
connecting a • and ◦ indicate these values have opposing signs.
The × symbol represents (c11 − c12)/2. Figure 1(b) shows
the tensors’ matrix representations of the 3m crystal material
according to a coordinate system formed from the crystal’s
principal axes.

APPENDIX B
ANALYSIS OF PIEZOELECTRIC STRESS TENSOR OF LN TO

QUANTIFY THE IN-PLANE ISOTROPY

Similar to the analysis of the stiffness tensor in Section II,
here we investigate the in-plane anisotropy present in a given
cut of LN via the piezoelectric stress tensor. Closely following
the method described in Section II, we have

e′pqr = eijkAipAjqAkr, (14)

for the piezoelectric stress tensor where

[A] =

(
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
.

To investigate the planar anisotropy of the surface plane
x′Oy′ of (θ+90◦)-rotated LN, a double inner product between
the unit vector e′3 normal to the substrate surface and the
piezoelectric tensor in the rotated coordinate system shown
in eqn. (14) may be taken;

e′3 · (e′pqre′pe′qe′r) · e′3 = e′3q3e
′
q. (15)

As isotropic materials do not have piezoelectricity, all
components of the piezoelectric stress tensor for an isotropic
material must be zero:

eiso
ijk ≡ 0 for all i, j, k ∈ {1, 2, 3} . (16)

Taking into account the 3m crystal class of LN, the L2 norm
of the in-plane components of the piezoelectric stress tensor
of LN in comparison to an isotropic material may be written
as

enorm =
√
e′ 2313 + e′ 2323 + e′ 2333; (17)

enorm represents not only the electromechanical coupling of
LN, but also the magnitude of the in-plane anisotropy of the

piezoelectric stress tensor. This quantity strongly depends upon
the LN Y -rotated cut angle θ + 90◦.

Fig. 5: A plot of the norm of the change in the piezoelectric
tensor between the as-rotated cut of LN and an isotropic-in-
the-plane material—with zero piezoelectric response. The Y -
rotated cut angle is θ + 90◦. The positive, non-zero value
of enorm for all values of θ + 90◦ indicates LN always
has piezoelectric properties in the plane, and therefore must
likewise always be anisotropic in the plane.

A custom code (MATLAB, MathWorks, Natick, MA, USA)
was used to calculate and plot enorm versus θ+ 90◦ as shown
in Fig. 5 with increments in θ of 0.1◦. The positive value of
enorm indicates the extent of the substrate’s anisotropy in the
plane: a larger value indicates a greater anisotropy. Seeking
the minimum value of the anisotropy is straightforward from
this plot: the minimum of enorm is θ + 90◦ → 90◦ or 270◦,
in other words Z-cut LN. However, the result also indicates
a small coupling coefficient for these values of θ + 90◦,
and consequently a relatively poor ability to generate SAW.
Thus one must also take into account the electromechanical
coupling, and not just the anisotropy.

APPENDIX C
METHOD TO DETERMINE THE OPEN AND SHORT-CIRCUIT

SAW PHASE VELOCITY

To investigate the phase velocity of SAW upon the Y -
rotated LN substrate surface, we first perform a rotational
transformation about the x axis by an angle θ to produce the
substrate surface plane x′Oy′ upon which the SAW will be
made to propagate. To make the SAW propagate in a direction
defined by γ from the positive x axis, we apply a second
rotational transformation about the z′ axis by an angle γ.
Similar in appearance to eqns. (9), the stiffness tensor (c′′wxyz),
the piezoelectric stress tensor (e′′wxy), and the permittivity
tensor (ε′′wx) are the corresponding material property tensors
after these rotational transformations:

c′′wxyz = BwiBxjBykBzlc
′
ijkl,

e′′wxy = BwiBxjByke
′
ijk,

ε′′wx = BwiBxjε
′
ij ,

(18)
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where the rotational transformation matrix may be written as

B =

(
cos γ − sin γ 0
sin γ cos γ 0

0 0 1

)
. (19)

We use the Voigt contracted notation for the tensors cαβ ,
ewα, εwx instead of c′′wxyz , e′′wxy , ε′′wx by exploiting the
material symmetry, noting w, x, y, z ∈ 1, 2, 3 and α, β ∈
1, 2, 3, 4, 5, 6: (11) ↔ 1, (22) ↔ 2, (33) ↔ 3, (23) = (32) ↔
4, (31) = (13) ↔ 5, (12) = (21) ↔ 6. After rotational
transformation of θ about the x axis to produce the coordinate
system Ox′y′z′, we use a second rotational transformation of
γ about the z′ axis to produce the coordinate system Ox′′y′′z′

and seek solutions for the open and short-circuit SAW phase
velocity along the x′′ axis, noting that z′′ and z′ are coincident.

In this section of the Appendix, we denote x′′ as x1, y′′ as
x2, and z′′ as −x3 to produce a general solution for the open

and short-circuited phase velocities of SAW in the Ox1x2x3
coordinate system.

Solutions of eqns. (10) and (11) are assumed to be of the
standard traveling-wave form in which vS is the wave velocity
and α describes the exponential decay of the SAW into the
crystal such that

ui = βie
−αωx3/vSejω(t−x1/vS)

ϕ = β4e
−αωx3/vSejω(t−x1/vS)

i ∈ {1, 2, 3}. (20)

As indicated above, the surface waves under consideration are
assumed to be travelling in the x1 direction. The displacements
and potentials are considered to be independent of the x2
coordinate.

Substituting eqns. (20) into eqns. (10) and (11)
produces a linear homogeneous system of four
equations with four unknowns, β1, β2, β3, and β4:


c55α

2 + 2c15jα− c11 + ρv2S , c45α
2 + (c14 + c56)jα− c16, c35α

2 + (c13 + c55)jα− c15, e35α
2 + (e15 + e31)jα− e11

c45α
2 + (c14 + c56)jα− c16, c44α

2 + 2c46jα− c66 + ρv2S , c34α
2 + (c36 + c45)jα− c56, e34α

2 + (e14 + e36)jα− e16

c35α
2 + (c13 + c55)jα− c15, c34α

2 + (c36 + c45)jα− c56, c33α
2 + 2c35jα− c55 + ρv2S , e33α

2 + (e13 + e35)jα− e15

e35α
2 + (e15 + e31)jα− e11, e34α

2 + (e14 + e36)jα− e16, e33α
2 + (e13 + e35)jα− e15, −ε33α2 − 2ε13jα+ ε11



β1

β2

β3

β4

 =


0

0

0

0

 .

(21)

The determinant of the 4×4 matrix at left must be zero for
a non-trivial solution to exist, producing

A8α
8 + jA7α

7 +A6α
6 + jA5α

5 +A4α
4

+jA3α
3 +A2α

2 + jA1α+A0 = 0, (22)

where the coefficients An with n = 0, 1, ..., 8 are real and a
particular value of vS has been assumed. Since the electrome-
chanical fields must be finite, they must go to zero as x3 →∞,
and so only the roots with non-negative real parts are allowed.
If the unknown in eqn. (22) is considered to be jα instead
of α, then the polynomial in jα has purely real coefficients.
Thus, either the roots jα are real or occur in conjugate pairs.
Therefore, the roots α are either purely imaginary or occur
in pairs with positive and negative real parts. In general, four
roots with positive real parts occur for piezoelectric crystals.
Upon obtaining the admissable values of α from eqn. (22),
the corresponding values of βi can be found for each α from
eqn. (21).

In addition to the equations for x3 > 0, the differential
eqn. (11) for −h 6 x3 6 0 must be satisfied together with
appropriate boundary conditions at x3 = 0 and x3 = −h.
Assuming that the crystal surface is stress free (T3j = 0 at
x3 = 0), the mechanical boundary conditions at each point of
the surface of the crystal are

T3j |x3=0 = c3jkluk,l + ek3jϕ,k|x3=0 = 0; j ∈ {1, 2, 3}.
(23)

The boundary conditions for the electric potential are con-
tinuity of ϕ at x3 = 0 and, without loss of generality,
ϕ(−h) = 0. Also, the normal component of the electrical

displacement must be continuous across the surface of the
crystal. The combined electromechanical fields (mechanical
displacement and electric potential) may be expressed as a
linear combination of the fields associated with the admissible
values of α for x3 > 0, following the method shown by
Farnell and other many years ago as the concept of partial
waves[44, 16], that is,

ui =

4∑

l=1

B(l)β
(l)
i e−α

(l)ωx3/vSejω(t−x1/vS),

ϕ =

4∑

l=1

B(l)β
(l)
4 e−α

(l)ωx3/vSejω(t−x1/vS),

(24)

with i ∈ {1, 2, 3}. In the region −h 6 x3 6 0, the potential
is a solution of Laplace’s eqn. (11). A solution satisfying the
continuity condition at x3 = −h is

ϕ =

4∑

l=1

B(l)β
(l)
4 csch(

ωh

vS
) sinh(

ω

vS
(x3 + h))ejω(t−x1/vS).

(25)
Finally, the component of D normal to the surface x3 = 0,

D3, must be continuous across the surface. Inside the crystal
the electrical displacement is given by Di = eikluk,l−εikϕ,k,
while in the region −h 6 x3 6 0, D = −ε0∇ϕ. Substituting
the expressions for the waves in eqns. (24) in eqn. (23)
and expressing the continuity of D3 at x3 = 0 in terms
of eqns. (24) produces the following set of homogeneous
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equations for the so-called partial field amplitudes B(l):
4∑

l=1

(β
(l)
1 (jc15 + α(l)c55) + β

(l)
2 (jc56 + α(l)c45)

+ β
(l)
3 (jc55 + α(l)c35) + β

(l)
4 (je15 + α(l)e35))B

(l) = 0
4∑

l=1

(β
(l)
1 (jc14 + α(l)c45) + β

(l)
2 (jc46 + α(l)c44)

+ β
(l)
3 (jc45 + α(l)c34) + β

(l)
4 (je14 + α(l)e34))B

(l) = 0
4∑

l=1

(β
(l)
1 (jc13 + α(l)c35) + β

(l)
2 (jc36 + α(l)c34)

+ β
(l)
3 (jc35 + α(l)c33) + β

(l)
4 (je13 + α(l)e33))B

(l) = 0
4∑

l=1

(β
(l)
1 (je31 + α(l)e35) + β

(l)
2 (je36 + α(l)e34)

+ β
(l)
3 (je35 + α(l)e33)−

β
(l)
4 (jε13 + α(l)ε33 + ε0 coth(

ωh

vS
)))B(l) = 0.

(26)

The transcendental equation obtained by setting the deter-
minant of the matrix of coefficients of this system equal to
zero determines the surface wave velocities for a given set of
α(l) [17, 14]. This set of transcendental equations is known
to lack any explicit solutions [45]. Thus we use numerical
analysis to identify the open and short-circuit SAW phase
velocities vo = vS and vm = vS when ωh = ∞ and ωh = 0
respectively, as detailed in Section III.B.

The open and short-circuit SAW phase velocities vo and
vm determined from this process for propagation upon the
surface of 152◦ and 128◦ Y -rotated cut LN are shown in
Fig. 6(a,b). The phase velocities are plotted with respect to
the angle γ between the SAW propagation direction and the X
axis, indicating that the differences in surface wave velocities
between 152◦ and 128◦ Y -rotated cut LN are minor.

Fig. 6: The open-circuit and short-circuit SAW phase velocity
on the surface of (a) 128◦ Y -cut LN and (b) 152◦ Y -cut LN
plotted with respect to the propagation direction defined by
the angle γ measured from the X axis of the LN substrate.

APPENDIX D
LDV SCAN OF INSTANTANEOUS WAVE DISPLACEMENT AND

PHASE ALONG A SPECIFIC PROPAGATION DIRECTION

Fig. 7: Laser Doppler vibrometer scans of (a) instantaneous
amplitude and (b) phase of SAW generated by the IDTs along
the γ = 108◦ direction; the other IDTs produce similar results.
Note the finger width and gap between the fingers is λ/4 =
25 µm in these plots indicating the scale.

ACKNOWLEDGMENTS

The authors are grateful to the University of California and
the NANO3 facility at UC San Diego for provision of funds



IEEE TRANS. UFFC, VOL. XX, NO. X 11

and facilities in support of this work. This work was performed
in part at the San Diego Nanotechnology Infrastructure (SDNI)
of UCSD, a member of the National Nanotechnology Co-
ordinated Infrastructure, which is supported by the National
Science Foundation (Grant ECCS–1542148). The work pre-
sented here was generously supported by a research grant
from the W.M. Keck Foundation. The authors are also grateful
for the support of this work by the Office of Naval Research
(via Grant 12368098), and substantial technical support by
Polytec’s staff in Irvine, CA and Waldbronn, Germany.

REFERENCES

[1] J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Mi-
crofluidics driven via acoustics and ultrasonics,” Reviews
of Modern Physics, vol. 83, no. 2, p. 647, 2011.

[2] W. Connacher, N. Zhang, A. Huang, J. Mei, S. Zhang,
T. Gopesh, and J. Friend, “Micro/nano acoustofluidics:
materials, phenomena, design, devices, and applications,”
Lab on a Chip, 2018.

[3] X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama,
F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo et al.,
“Surface acoustic wave microfluidics,” Lab on a Chip,
vol. 13, no. 18, pp. 3626–3649, 2013.

[4] M. Miansari and J. R. Friend, “Acoustic nanofluidics via
room-temperature lithium niobate bonding: A platform
for actuation and manipulation of nanoconfined fluids
and particles,” Advanced Functional Materials, vol. 26,
no. 43, pp. 7861–7872, 2016.

[5] S.-C. S. Lin, X. Mao, and T. J. Huang, “Surface acoustic
wave (SAW) acoustophoresis: now and beyond,” Lab on
a Chip, vol. 12, no. 16, pp. 2766–2770, 2012.

[6] S. Collignon, O. Manor, and J. Friend, “Improving and
predicting fluid atomization via hysteresis-free thickness
vibration of lithium niobate,” Advanced Functional Ma-
terials, vol. 28, no. 1704359, 2018.

[7] A. Kawamata, H. Hosaka, and T. Morita, “Non-hysteresis
and perfect linear piezoelectric performance of a multi-
layered lithium niobate actuator,” Sensors and Actuators
A: Physical, vol. 135, no. 2, pp. 782–786, 2007.

[8] K. Shibayama, K. Yamanouchi, H. Sato, and T. Meguro,
“Optimum cut for rotated Y-cut LiNbO3 crystal used as
the substrate of acoustic-surface-wave filters,” Proceed-
ings of the IEEE, vol. 64, no. 5, pp. 595–597, 1976.

[9] A. Slobodnik and E. Conway, “New high-frequency
high-coupling low-beam-steering cut for acoustic surface
waves on LiNbO3,” Electronics Letters, vol. 6, no. 6, pp.
171–173, 1970.

[10] M. Kurosawa, N. Takahashi, and T. Higuchi, “An ultra-
sonic XY stage using 10 MHz surface acoustic waves,” in
Ultrasonics Symposium, 1994. Proceedings., 1994 IEEE,
vol. 1. IEEE, 1994, pp. 535–538.

[11] M. Kurosawa, M. Takahashi, and T. Higuchi, “Ultrasonic
linear motor using surface acoustic waves,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 43, no. 5, pp. 901–906, 1996.

[12] H. F. Tiersten, “Wave propagation in an infinite piezo-
electric plate,” The Journal of the Acoustical Society of
America, vol. 35, no. 2, pp. 234–239, 1963.

[13] J. Lothe and D. Barnett, “Integral formalism for surface
waves in piezoelectric crystals. existence considerations,”
Journal of Applied Physics, vol. 47, no. 5, pp. 1799–
1807, 1976.

[14] D. Barnett and J. Lothe, “Free surface (Rayleigh) waves
in anisotropic elastic half-spaces: the surface impedance
method,” Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, vol. 402, no. 1822,
pp. 135–152, 1985.

[15] M. Destrade, “Rayleigh waves in symmetry planes of
crystals: explicit secular equations and some explicit
wave speeds,” Mechanics of Materials, vol. 35, no. 9,
pp. 931–939, 2003.

[16] W. G. Farnell, “Types and properties of surface waves,”
in Acoustic surface waves. Springer, 1978, pp. 13–60.

[17] Y. B. Fu and A. Mielke, “A new identity for the surface–
impedance matrix and its application to the determina-
tion of surface-wave speeds,” Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and
Engineering Sciences, vol. 458, no. 2026, pp. 2523–2543,
2002.

[18] A. Darinskii and A. Shuvalov, “Surface acoustic
waves on one-dimensional phononic crystals of general
anisotropy: Existence considerations,” Physical Review
B, vol. 98, no. 2, p. 024309, 2018.

[19] B. Collet, “Recursive surface impedance matrix methods
for ultrasonic wave propagation in piezoelectric multilay-
ers,” Ultrasonics, vol. 42, no. 1-9, pp. 189–197, 2004.

[20] L. Wang and S. Rokhlin, “Stable reformulation of trans-
fer matrix method for wave propagation in layered
anisotropic media,” Ultrasonics, vol. 39, no. 6, pp. 413–
424, 2001.

[21] A. Darinskii, M. Weihnacht, and H. Schmidt, “Resonant
reflection of a surface acoustic wave from strip waveg-
uides,” Wave Motion, vol. 50, no. 8, pp. 1185–1196,
2013.

[22] A. Shuvalov, E. Le Clezio, and G. Feuillard, “The state-
vector formalism and the peano-series solution for mod-
elling guided waves in functionally graded anisotropic
piezoelectric plates,” International Journal of Engineer-
ing Science, vol. 46, no. 9, pp. 929–947, 2008.

[23] A. N. Darinskii and M. Weihnacht, “Gap acousto-electric
waves in structures of arbitrary anisotropy,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 53, no. 2, pp. 412–419, 2006.

[24] A. Darinskii and M. Weihnacht, “Interface waves on the
sliding contact between identical piezoelectric crystals of
general anisotropy,” Wave Motion, vol. 43, no. 1, pp. 67–
77, 2005.

[25] A. Shuvalov, O. Poncelet, and M. Deschamps, “Analysis
of the dispersion spectrum of fluid-loaded anisotropic
plates: leaky-wave branches,” Journal of Sound and
Vibration, vol. 296, no. 3, pp. 494–517, 2006.

[26] S. Xu and Z. L. Wang, “One-dimensional ZnO nanostruc-
tures: solution growth and functional properties,” Nano
Research, vol. 4, no. 11, pp. 1013–1098, 2011.

[27] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian,
S. Hong, A. Kingon, H. Kohlstedt, N. Park, G. Stephen-



IEEE TRANS. UFFC, VOL. XX, NO. X 12

son et al., “Ferroelectric thin films: Review of materials,
properties, and applications,” Journal of Applied Physics,
vol. 100, no. 5, p. 051606, 2006.

[28] Y. Q. Fu, J. Luo, N.-T. Nguyen, A. Walton, A. J. Flewitt,
X.-T. Zu, Y. Li, G. McHale, A. Matthews, E. Iborra
et al., “Advances in piezoelectric thin films for acoustic
biosensors, acoustofluidics and lab-on-chip applications,”
Progress in Materials Science, vol. 89, pp. 31–91, 2017.

[29] G.-Q. Zhang, K.-y. Hashimoto, and M. Yamaguchi,
“Liquid streaming by high-frequency ultrasonic waves,”
Japanese Journal of Applied Physics, vol. 35, no. 5S, p.
3248, 1996.

[30] J. W. Kwon, H. Yu, Q. Zou, and E. S. Kim, “Directional
droplet ejection by nozzleless acoustic ejectors built on
ZnO and PZT,” Journal of Micromechanics and Micro-
engineering, vol. 16, no. 12, p. 2697, 2006.

[31] C.-Y. Lee, W. Pang, H. Yu, and E. S. Kim, “Subpico-
liter droplet generation based on a nozzle-free acoustic
transducer,” Applied Physics Letters, vol. 93, no. 3, p.
034104, 2008.

[32] H. Yu, Q. Zou, J. W. Kwon, D. Huang, and E. S.
Kim, “Liquid needle,” Journal of microelectromechanical
systems, vol. 16, no. 2, pp. 445–453, 2007.

[33] S. Tran, P. Marmottant, and P. Thibault, “Fast acous-
tic tweezers for the two-dimensional manipulation of
individual particles in microfluidic channels,” Applied
Physics Letters, vol. 101, no. 11, p. 114103, 2012.

[34] X. Ding, S.-C. S. Lin, B. Kiraly, H. Yue, S. Li, I.-K.
Chiang, J. Shi, S. J. Benkovic, and T. J. Huang, “On-
chip manipulation of single microparticles, cells, and
organisms using surface acoustic waves,” Proceedings of
the National Academy of Sciences, vol. 109, no. 28, pp.
11 105–11 109, 2012.

[35] A. Riaud, J.-L. Thomas, E. Charron, A. Bussonnière,
O. B. Matar, and M. Baudoin, “Anisotropic swirling
surface acoustic waves from inverse filtering for on-
chip generation of acoustic vortices,” Physical Review
Applied, vol. 4, no. 3, p. 034004, 2015.

[36] A. Riaud, M. Baudoin, O. B. Matar, L. Becerra, and J.-
L. Thomas, “Selective manipulation of microscopic par-
ticles with precursor swirling rayleigh waves,” Physical
Review Applied, vol. 7, no. 2, p. 024007, 2017.

[37] M. Madadi, A. C. Jones, C. H. Arns, and M. A. Knackst-
edt, “3D imaging and simulation of elastic properties of
porous materials,” Computing in Science & Engineering,
vol. 11, no. 4, p. 65, 2009.

[38] I. Sevostianov and M. Kachanov, “On approximate sym-
metries of the elastic properties and elliptic orthotropy,”
International Journal of Engineering Science, vol. 46,
no. 3, pp. 211–223, 2008.

[39] A. J. Slobodnik Jr, E. D. Conway, and R. T. Delmonico,
Microwave Acoustics Handbook. L. G. Hanscom Air
Force Base, Bedford, MA USA: Air Force Cambridge
Research Laboratories, 1970, vol. 1A, ch. Surface Wave
Velocities.

[40] R. Weis and T. Gaylord, “Lithium niobate: summary
of physical properties and crystal structure,” Applied
Physics A, vol. 37, no. 4, pp. 191–203, 1985.

[41] C. Campbell, Surface acoustic wave devices for mobile
and wireless communications, ser. Applications of Mod-
ern Acoustics. New York, NY USA: Elsevier Science,
1998.

[42] L. Taupin, A. Lhémery, and G. Inquiété, “A detailed
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