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Representation and Generalisation in Associative Systems

M.E. Le Pelley (mel22@hermes.cam.ac.uk)
I.P.L. McLaren (iplm2@cus.cam.ac.uk)

Department of Experimental Psychology; Downing Site
Cambridge CB2 3EB, England

Abstract

This paper examines the nature of stimulus representation
in associative learning systems. Specifically, it addresses
the issue of whether representation is elemental or con-
figural in nature. We use a human causal learning paradigm,
employing contingencies more commonly associated with
studies of retrospective revaluation. Whereas most models
of retrospective revaluation view it as an entirely elemen-
tal process, our results show that it has a configural com-
ponent. However, the results also prove troublesome for
simple configural theories employing fixed generalisation
coefficients. It is possible to explain the data using an
elemental theory employing configural representation. Our
favoured explanation, however, involves a configural the-
ory employing adaptive generalisation. We present such a
theory, APECS, and show through simulation that it is
well-equipped to deal with our findings.

Introduction
Recent years have seen a great deal of debate concerning the
nature of stimulus representation in associative learning
systems – more specifically, over how stimulus compounds
should be represented, and how generalisation between simi-
lar compounds should be dealt with. Consider, for example,
rewarding the compound AB. Elemental theories (e.g. Res-
corla & Wagner, 1972; Mackintosh, 1975; Wagner, 1981)
propose that such compounds are represented as being com-
prised of separable A and B elements that gain individual
associative strengths. The conditioned responding shown to
a particular stimulus compound is then found by simply
adding together the individual associative strengths of each
of the elements of that compound.

We sought to test this fundamental assumption of ele-
mental theories, using a causal judgment procedure with
human subjects. Our experimental design is shown in Table
1. We used an allergy prediction paradigm – participants
play a food allergist trying to judge the likelihood that vari-
ous foods will cause an allergic reaction in a fictional pa-
tient. The foods, then, constitute the cues; the allergic reac-
tion is the outcome. Following training, subjects rate how
strongly certain individual foods, and compounds of two
foods, predict the occurrence of an allergic reaction. These
ratings are taken as our measure of associative strength.

We train two stimulus compounds, AB and CD, to be
predictors of the outcome, and then in Stage 2 one of the
elements of each compound is extinguished. Cues A and C
have an identical training history, as do B and D. The ques-
tion is, what effect does this treatment have on the origi-
nally experienced compounds (AB and CD) as opposed to
“elementally equivalent” compounds made up of identically

trained cues that have never been seen in compound before
(AD and BC)?

An elemental theory predicts no difference between the
two types of compound. If the associative strength of a
compound is given by adding together the strengths of all
the separate elements contained in that compound, then
whether or not those elements have been seen in compound
before should have no effect. The Rescorla-Wagner (1972)
model (R-W), for example, states that:

∆VA = αA βUS λ − V∑( ) (1)

where ∆VA is the change in associative strength of cue A,
αA represents the salience of cue A, βUS represents the sali-
ence of the US, λ relates to whether the US is actually pre-
sent on a trial (taking a positive value if the US is present,
0 if it is not), and ΣV is the summed associative strength of
all cues present on a trial. According to R-W, following
Stage 1 all of cues A to F will have associative strengths of
0.5λ (ignoring the effect of α and β, which will be equiva-
lent for all the different cues as a result of counterbalancing).
In Stage 2, extinction trials will reduce VA and VC to 0. Ac-
cording to an elemental rule, the associative strength of a
compound is found by summing the associative strengths of
all of the elements of that compound. The associative
strength of AB will be given by the total of the associative
strength of A (0) plus the strength of B (0.5λ), i.e. 0.5λ. Of
course, the compounds BC and AD are also both made up of
one element with a strength of 0, and the other with a
strength of 0.5λ, and so all of the compounds AB, CD, BC
and AD should give rise to the same level of conditioned
responding, as they are all elementally equivalent.

Subjects also received EF+ trials in Stage 1, with no fur-
ther training of either cue in Stage 2. Given that neither E
nor F is experienced in Stage 2, the associative strength of
EF should remain at λ_(as VE=VF=0.5λ). Hence R-W pre-
dicts that EF should receive a higher rating than the other

Stage 1 Stage 2
AB+ A-
CD+ C-
EF+

G+ H+ I+ GL+ Q-
J+ K+ L+ IO- V+

KM- KN- LO- HJ? W+
LP- Q- R- JP? X+
S- T- U-

Table 1. Experimental design. Important trials in bold.
+: outcome;  -: no outcome; ?: exposure trial.



compounds, which should all receive similar ratings.
However, it is important to note that the AB+, A- design

we are using is more commonly associated with studies of
retrospective revaluation (see Le Pelley & McLaren, in
press, for a review). This term is used to describe changes in
the associative status of previously trained cues in the ab-
sence of those cues. For example, it is typically found that
A- trials following AB+ training lead to an increase in the
causal efficacy of B, even though B itself is absent on these
trials. This is the phenomenon of unovershadowing, and
would be revealed in our experiment by higher ratings given
to B and D than to E and F, which receive no such revalua-
tion in Stage 2.

Findings of retrospective revaluation are problematic for
many theories of associative learning. R-W, for example,
states that α, the salience of a cue, is positive for a cue that
is actually presented on a trial, and zero for all absent cues.
Hence the theory incorrectly predicts that there will be no
learning about absent cues. So VB remains unchanged at
0.5λ during Stage 2, with R-W thus constrained to predict
that B, D, E and F will all receive similar ratings on test.

It is possible, however, to adapt R-W to allow it to pre-
dict unovershadowing. Van Hamme & Wasserman (1994)
proposed that absent cues, rather than having α=0, should
take on a negative value of α, thus engaging the learning
process with a negative sign. So on Stage 2 A- trials, while
A’s association to the outcome becomes weaker, the associa-
tion from the absent cue B to the outcome will become cor-
respondingly stronger. Markman (1989) proposed that only
absent but expected cues should take on negative α. Dickin-
son & Burke (1996) suggested that this expectancy arises as
a result of within-compound associations formed during
Stage 1 compound training. During AB+ trials, subjects
learn not only that A and B predict the US, but also that A
predicts the presence of B, and vice versa. Presentation of A
on A- trials now creates an expectancy of the absent cue B,
and it is this expectancy that imbues it with negative α.

Modified R-W now predicts that B will be rated higher
than E and F (which are not revalued) following Stage 2. It
also predicts that AB will receive a similar rating to EF.
According to unmodified R-W, the rating of AB falls during
Stage 2 as A is extinguished and B remains unaffected.
Modified R-W, on the other hand, states that as VA falls
(asymptoting at 0), VB will increase (asymptoting at λ).
Given these opposing changes in associative strength, the
overall associative strength of the AB compound (given by
VA+VB) should remain roughly constant.

Note, however, that modified R-W is still an elemental
theory. As such it is still constrained to predict that com-
pounds AB and CD will receive the same rating as the ele-
mentally equivalent compounds BC and AD.

The other trial types listed in the experimental design are
relevant to a different issue in associative learning theory:
they are not discussed here. We were careful to ensure equal
numbers of positive and negative trial types in each stage.
Following Dickinson & Burke (1996), we also made sure
that each subject encountered a large number of different trial
types (16 in Stage 1, 8 in Stage 2). This creates a large
memory load, hopefully preventing subjects from basing
their ratings on inferences made from explicit episodic

memories of the various trial types. Instead subjects should
have to rely on associative processes to provide an “auto-
matic” measure of causal efficacy for each cue. Using a large
number of trial types makes us more confident that it is
indeed associative, rather than cognitive, processes being
tapped in our study.

Method

Participants Sixteen members of Cambridge University (9
female, 7 male; age 19-49) took part in the experiment.

Procedure At the start of the experiment each subject was
given a sheet of instructions presenting the “allergy prediction”
cover story for the experiment. They were told that in the first
block they would be arrange for Mr. X to eat different meals on
each day, and would monitor whether he had an allergic reaction
or not as a result. In relation to the exposure trials (that do not
bear on the issue at hand in this paper), subjects were told that
occasionally the results of eating the foods had been lost. On
these trials they would know the foods eaten in the meal, but not
the result of eating those foods. They were also told that at the
end of the experiment they would be asked to rate each of the
foods according to how strongly it predicted allergic reactions.
The 24 foods used were randomly assigned to the letters A to X
in the experimental design for each subject.

On each conditioning trial, the words “Meal [meal number]
contains the following foods:” followed by the two foods ap-
peared on the screen. Subjects were then asked to predict
whether or not eating the foods would cause Mr. X to have an
allergic reaction, using the “x” and “.” keys (counterbalanced).
The screen then cleared, and immediate feedback was provided.
On positive trials the message “ALLERGIC REACTION!” ap-
peared on the screen; on negative trials the message “No Reac-
tion” appeared. If an incorrect prediction was made, the com-
puter beeped. On the exposure trials of Stage 2, the same mes-
sage appeared, but now subjects were cued to enter the initial
two letters of each of the foods. This was to ensure that they
paid attention to the pairings of foods when no allergy predic-
tion was required.

There were 16 trial types in Stage 1, and 8 in Stage 2. The or-
der of trials was randomised over each set of 16 or 8. Partici-
pants saw each meal 8 times in Stage 1 and Stage 2. The order of
presentation on the screen (first/second) within each compound
pair was also randomised.

In the final rating stage subjects were asked to rate their opin-
ions of the effect of eating a number of meals containing either
one food or two on a scale from -10 to +10 (in fact, subjects
were also given a short rating test at the end of Stage 1 – again
the results of that test do not bear on the work presented here
and so will be ignored.). They were to use +10 if the meal was
very likely to cause an allergic reaction in Mr. X, -10 if eating
the meal was very likely to prevent the occurrence of allergic
reactions which other foods were capable of causing, and 0 if
eating the meal had no effect on Mr. X (i.e. it neither caused nor
prevented allergic reactions). For clarification, participants
also had access to a card on which the instructions on how to use
the rating scale were printed. Once a meal had been rated it dis-
appeared from the screen and the next appeared, so that partici-
pants could not revise their opinions upon seeing later meals.

Results and Discussion
Figure 1 shows the mean rating of the casual efficacy of
each of the meals of interest as judged on test. In this figure,
and in the following analysis, the ratings of equivalent cues



(i.e. cues or compounds that have received an identical train-
ing history) have been averaged for each subject. Thus we
averaged the ratings of AB and CD, BC and AD, A and C, B
and D, and E and F. No significant differences existed be-
tween equivalent cues [Fmax(1,15)=1.97, p>0.1].

A one-way, repeated measures ANOVA was carried out on
these ratings as a preliminary to assessing the effects of in-
terest by means of planned comparisons. There was a sig-
nificant main effect of meal [F(10,150)=13.98, p<0.001].

In common with earlier studies of retrospective revalua-
tion, we see that B and D are rated higher than E and F on
test [F(1,15)=8.72, p<0.01]. Given that B, D, E and F all
received exactly the same number of pairings with the out-
come in Stage 1, this finding implies that the ratings of B
and D have changed as a result of Stage 2 A- and C- trials.
This demonstration of learning about absent cues violates
the assumption of the original R-W model that learning can
only proceed to cues presented on a trial. However, it is con-
sistent with modified R-W, in which absent-but-expected
cues engage the learning process with a negative sign.

The ratings for AB/CD are actually very similar to those
received by EF: the difference between them is not signifi-
cant [F<1]. This again disagrees with original R-W, which
states that extinction of A should reduce the causal efficacy
of the AB compound relative to EF. And again it is consis-
tent with modified R-W, which proposes that as VA falls on
A- trials, VB rises, such that the rating for AB will remain
roughly constant. In further support of this idea we see that
the ratings given to B/D do not differ significantly from
those given to compounds AB/CD [F<1]. From the stand-
point of an elemental theory, this finding implies that the
associative strength of compound AB is almost entirely due
to the strength of cue B, which is the prediction made by
modified R-W.

Of most interest, though, is the finding that the ratings
for AB/CD (the compounds actually experienced during
training) are higher than those for AD/BC, even though all
of these compounds are elementally equivalent. This is con-
firmed statistically [F(1,15)=10.72, p<0.005]. This finding
is troublesome for any theory that proposes that stimuli in
an associative network are represented in a wholly elemental
manner, as such theories are constrained to predict that AB,
CD, BC and AD will receive equal ratings on test.

Thus it is clearly insufficient to view a compound AB as
simply being composed of separable A and B elements
which gain associative strength independently. Instead it
seems that the fact that A and B have been seen together
before is important when determining the response to the
AB compound, i.e. there is importance attached to the

unique configuration of A and B cues. This heightened re-
sponding to previously experienced configurations will not
apply to the BC compound, as B and C elements have never
been experienced in configuration during training. Hence if
configurations of cues are taken into account we can explain
the finding that AB/CD are rated higher than BC/AD.

It is possible to modify R-W even further in order to en-
compass this importance of specific configurations of cues.
Wagner & Rescorla (1972) suggested that, in addition to
activating individual cue elements, presenting a compound
stimulus also activates a unique element representing that
configuration of cues (a “configural element”). Thus presen-
tation of AB will activate elements for A and B, and also an
AB element. As regards the learning process, all elements
are treated in exactly the same way. If we assume that all
elements have equal salience, then following AB+ trials,
VA=VB=VAB=1/3λ. Note that this is still very much an ele-
mental theory in nature: the associative strength of a com-
pound is given by summing the individual strengths of all
of its elements, whether those elements represent com-
pounds or single cues.

We can combine this with the idea of negative α. On A-
trials following AB+ training, elements for both B and AB
will have negative α: neither is present, but both are re-
trieved via within-compound associations. As A extin-
guishes (until VA=0), B and AB will become more excita-
tory, such that the overall strength of the AB compound
(given by VA+VB+VAB) remains roughly constant across A-
trials. There is no configural element for the BC compound,
however, as this configuration has never been experienced
during training. Thus the associative strength of the BC
compound will be given by (VB+VC). Given that this com-
pound does not receive the extra excitatory influence of a
configural element, it is bound to receive a lower rating than
AB. This “configural element” adaptation of Van Hamme &
Wasserman’s modified R-W therefore allows us to explain
the finding that AB is rated higher than BC.

However, this “double modification” leads to further in-
correct predictions. Firstly, it predicts that AB will be rated
higher than B. Presentation of AB activates A, AB and B
units. The latter two have excitatory connections to the US,
and their influence will sum. Presentation of B only acti-
vates the B unit, so the excitatory influence will be less. In
fact, the ratings for AB and B do not differ. Secondly, it pre-
dicts that B will receive a similar rating to BC. Given that
VC=0, both will rely on the B–US association for all their
excitatory strength. In fact, B/D is rated significantly higher
than BC/AD [F(1,15)=5.64, p<0.05].

Perhaps a consideration of context will help. Presenting
USs in a context makes the context itself a weak excitor of
the US. In terms of our experiment, subjects come to realise
that the patient is quite prone to allergic reactions regardless
of which particular foods he has eaten. Cues presented on
nonreinforced trials (e.g. A and C) will become weak inhibi-
tors of the US to counter this general excitatory influence. A
and C do in fact receive negative ratings on test (mean –1.6),
adding weight to this argument. If VA and VC are negative
then we can resolve the problems outlined above. The pre-
dicted rating for AB will fall due to A’s inhibitory influence:
B’s rating will not be affected in this way: AB and B will
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Figure 1. Mean ratings given to the cues of interest.



receive similar ratings. Furthermore, BC will now be rated
lower than B due to C’s negative effect.

In summary, it would seem that an elemental rule (a) em-
ploying configural elements, and (b) allowing negative
learning about absent-but-expected elements, might explain
our empirical data, as long as the role of context is also
taken into consideration. Figure 2 (black bars) presents
simulation results for this experiment using just such a
model. Comparison with the empirical data in Figure 1
shows close agreement (r2=0.98). The exact parameters used
are relatively unimportant – we simply note that it is possi-
ble for such a model to explain the patterns present in our
data.

Another approach to explaining our data is to reconsider
the contention of elemental theories that a stimulus com-
pound is composed of separable A and B elements. Recently
this idea has been challenged, notably by Pearce (1987),
whose configural theory proposes that a compound stimulus
is best viewed as a unitary event that is separate from its
elements, but able to generalise to them. In other words, it
would be a single, “AB” configuration that developed an
associative connection to the outcome. Generalised respond-
ing to other stimuli occurs to the extent that these stimuli
are similar to previously experienced configurations.

Specifically, Pearce’s (1987) configural theory states that:

∆VX = βUS (λ − VX ) (2)

where VX (the associative strength of configuration X) is
given by the sum of the conditioned responding to configu-
ration X and the generalised responding to X as a result of
its similarity to other trained configurations. The extent to
which generalisation occurs between two configurations
depends on their similarity:

S X, Y =
nc

X

nt
X

⋅
nc

Y

nt
y

(3)

Thus the similarity (S) between configurations X and Y is
equal to the proportion of the total elements in configuration
X that are common to the two configurations, multiplied by
the proportion of the total elements in configuration Y that
are common to the two configurations. Then:

Consider, for instance, compounds AB and BC in our ex-
perimental design. Each configuration has two elements, one
of which (B) is common. Hence they will have a similarity
of 0.25, so any conditioned responding to AB will generalise
by a factor of 0.25 to BC.

In our Stage 1, a representation of AB will develop an as-
sociative strength of λ (again ignoring β, which will be
equal for all configurations). In Stage 2 A is extinguished. A
has a similarity of 0.5 to AB, and hence receives generalised
strength of 0.5λ from it. In order to counteract this excita-
tory influence A must itself take on a strength of -0.5λ (to
prevent conditioned responding when it is inappropriate).

On test, responding to AB is given by the sum of its own
conditioned strength and its generalised strength from A (to
which it has a similarity of 0.5). Hence:

VAB = λ + 0.5 −0.5λ( ) = 0.75λ

The same holds true for CD. How about responding to AD?
This configuration has never been seen before, and hence
will receive only generalised strength. It has a similarity of
0.25 to AB and to CD, and a similarity of 0.5 to A. Thus:

VAD = 0.25(λ) + 0.25 λ( ) + 0.5 −0.5λ( ) = 0.25λ
Hence this configural theory predicts that responding to AB
will be greater than for AD.

This kind of configural theory thus seems tailor-made to
explain the different ratings given to elementally equivalent
old and new compounds. The problem for a configural the-
ory such as Pearce’s is that it cannot explain the occurrence
of retrospective revaluation. In common with the original
R-W model, Pearce predicts that B’s rating should not
change as a result of A- trials. Following Stage 1 AB+ tri-
als, VB should be 0.5λ (as B has a similarity of 0.5 to con-
figuration AB, which will have developed an associative
strength of λ). However, given that the compound AB is not
seen again, its conditioned associative strength will not
change, and so B’s rating (which depends on generalisation
of excitatory strength from the trained AB compound) will
remain unchanged. Is it possible to modify a configural the-
ory such as Pearce’s to also explain the phenomenon of ret-
rospective revaluation? The answer at present seems to be
no, and we leave it for others to challenge this conclusion.

The problem for such configural rules seems to lie in
their use of fixed, non-adaptive generalisation coefficients.
The generalisation between two similar stimuli takes a set
value that cannot change whether the two stimuli are rein-
forced or not. An alternative possibility is to use adaptive
generalisation coefficients that vary dynamically, such that
the generalisation between two similar stimuli can change
on a trial-by-trial basis according to whether the two stimuli
predict the same or different outcomes. For more on the
value of adaptive generalisation coefficients, see McLaren
(1993, 1994) and Le Pelley & McLaren (in press).

Consider the AB+, A- contingency used in our experi-
ment. On Stage 1 AB+ trials, subjects learn that when A
and B are presented together, the outcome is expected. Fol-
lowing these trials, they have no reason to believe that what
holds for A in the presence of B should not hold true for A
alone. Hence generalisation to other compounds containing
A might be set high as a default. Stage 2 A- trials provide
evidence against this idea, though. As a result generalisation
between A- and AB+ should be reduced, in order to prevent
new learning (that A alone is not reinforced) from interfering
with old (that A and B in compound are reinforced). This
leaves AB as a good predictor of the outcome, while simul-
taneously allowing complete extinction of A. The fact that
the generalisation between the AB compound and its ele-

Generalised strength
from Y to X

= SX,Y × VY (4)
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Figure 2. Simulation results for modified R-W with configural
elements (black bars) and APECS (white bars).



ments is allowed to change as subjects move from Stage 1
AB+ trials to Stage 2 A- trials provides a mechanism for
change in the causal efficacy of B as a result of these A-
trials. As it turns out, a model employing configural repre-
sentation with adaptive generalisation coefficients is indeed
well-equipped to explain our empirical data.

A suitable candidate is the APECS model presented by Le
Pelley & McLaren (in press). In this instantiation of
APECS, each different pattern of stimulation is represented
by its own hidden unit, which can equally well be termed
“configural units”. The mechanics of learning in APECS are
similar to those of standard backpropagation (Rumelhart,
Hinton & Williams, 1986), but differ in that APECS em-
ploys adaptive generalisation coefficients: once the weights
appropriate to a mapping have developed, the learning in
those weights can be protected against interference. This is
achieved by reducing the learning rate parameter for the con-
figural unit carrying the mapping. The effect is to “freeze”
the weights to and from a certain configural unit at the value
they hold immediately following experience of that configu-
ration. Crucially, this freezing of weights to and from a cer-
tain configural unit occurs only if that configural unit has a
negative error value, i.e. if it is part of a mapping that pre-
dicts an incorrect outcome for the current input. Specifically,
APECS has different learning rate parameters for in-
put–hidden and bias–hidden connections. The former are fro-
zen to prevent interference; the latter remain high. Hence
extinction (suppression of inappropriate responses) is
achieved by an increase in the negative bias on the hidden
unit carrying the inappropriate mapping, rather than by re-
duction of weights (which would cause the original mapping
to be lost from the network). Given appropriate input cues,
the negative bias on the hidden unit can be overcome and the
original mapping retrieved.

Consider an AB+, A- contingency. During Stage 1, the
network will learn associations from A and B input units to
a hidden unit representing the AB configuration. It also
learns an excitatory association from this hidden unit to the
output: A and B in compound come to predict the outcome.

Now consider the inter-trial interval (ITI) between AB+
trials, when no inputs are presented. According to the logis-
tic activation function employed with APECS, when no
inputs are presented the hidden units will have an activation
of 0.5 (see Rumelhart et al., 1986). This activation will feed
along the AB+ pathway learnt on the preceding trial, and
activate the US unit. This is obviously inappropriate when
no inputs are presented. The US unit will take on a negative
error, which is propagated back to the AB configural unit.
As explained earlier, a negative error means that the weights

to and from the hidden unit are frozen. In order to suppress
the expression of the US during the ITI, the AB configural
unit will therefore take on a negative bias.

In Stage 2 the network experiences A- trials. Given that
this configuration has not been seen before, a new hidden
unit is recruited to carry the mapping. Of course, as a result
of the associations built up during Stage 1, A has an excita-
tory connection to the US (via the AB configural unit).
However, the US is not presented on these trials: the AB
unit carries an inappropriate mapping, and so will take on a
negative error. As a result its weights are frozen, and it will
take on an increased negative bias in order to suppress ex-
pression of the US (i.e. to allow extinction of A). Thus the
learning about the mapping from A and B to the output has
not been lost from the network, it has simply become harder
to retrieve. In addition, an inhibitory mapping will develop
from the new A- hidden unit to the outcome in order to
counter the positive activation flowing via the AB con-
figural unit. The situation for cues A, B, C and D following
Stage 2 training is shown in Figure 3.

Note that the negative bias taken on by the AB configural
unit is a result of presentation of A alone leading to inap-
propriate output activation on A- trials. Now on test both A
and B are presented together. Presentation of both cues (each
with an excitatory connection to the AB configural unit)
will be sufficient to overcome the negative bias built up by
this unit, and so the mapping from the configural unit to the
US will be expressed as before. In other words, the presence
of the extra retrieval cue on test (B, compared to A alone in
Stage 2) allows retrieval of the original AB+ mapping.
Adaptive generalisation protects the AB+ mapping from the
effect of extinction of A. Hence APECS predicts that extinc-
tion of A will have little effect on the rating received by AB,
and thus that AB and EF will receive similar ratings (as is
seen in Figure 1).

What if the compound BC is presented on test? As a re-
sult of the processes previously mentioned, C will be com-
pletely extinguished and so will not cause any activation of
the output. Presentation of B will send some positive activa-
tion to the AB configural unit. However, without the addi-
tional positive influence of A, B alone will be unable to
completely overcome the negative bias on this unit. As a
result less positive activation will flow to the US than if A
were also present. Thus APECS correctly predicts that AB
will receive a higher rating than BC.

How about unovershadowing? Again, APECS explains
the phenomenon as being a result of the attempt to mini-
mise interference between old and new learning through
adaptive generalisation. We saw that the AB configural unit
starts Stage 2 with a reasonable negative bias (built up dur-
ing ITIs following AB+ trials in Stage 1). This unit then
takes on additional negative bias on the initial A- trials of
Stage 2. However, if this negative bias is allowed to grow
too much then the network will lose the information that B
has in the past predicted the US, as presentation of B will be
insufficient to impact on this negative bias. This would be
an undesirable consequence of learning about A. In order to
protect this learning, over the course of Stage 2 A- trials, as
the inhibitory connection via the A-only hidden unit be-
comes stronger, the bias on the AB configural unit lessens.

Figure 3. Associations developed by APECS following AB+,
CD+ then A-, C- training. Excitatory connections are shown by
solid lines, inhibitory associations by dotted lines. Negative
bias on hidden units is indicated by a minus sign.



Thus on initial A- trials, the network achieves extinction
of A by suppressing the original excitatory pathway. This
makes sense: given the limited evidence for the causal effi-
cacy of A, its failure to predict the US may be a freak occur-
rence. It is undesirable to lose the information that A pre-
dicts the US on the basis of this limited evidence. Extinc-
tion by suppression of a pathway allows for rapid
reactivation of that pathway should A now come to predict
the US again. But with increasing evidence that A genuinely
does not predict the outcome, the balance shifts. The origi-
nal suppression is lifted to prevent loss of information about
the other cues that A was trained with, which probably were
the cause of the outcome originally. Extinction of A is now
achieved more permanently by development of an inhibitory
association to the outcome. This is sufficient to balance the
increased excitation flowing from A to the US via the now
less suppressed AB unit. This lesser suppression of the AB
unit, meanwhile, reduces its negative bias to levels below
that developed in Stage 1, meaning that presentation of B
will now cause greater US activation than E or F (as the EF
unit has not undergone this de-suppression). Unovershadow-
ing is the result. For a more detailed discussion of APECS
and unovershadowing, see Le Pelley & McLaren (2001).

There is a problem, however. As things stand APECS in-
correctly predicts that BC should receive a rating similar to
B. We can overcome this problem by considering context, as
described earlier, so that A and C become weakly inhibitory.
Figure 2 (white bars) shows the results of a simulation of
this experiment using APECS. Again, comparing this to
Figure 1 reveals close agreement between empirical and
simulated data (r2=0.98). The simulated results are actually
the average of 16 simulations run with APECS, each repre-
senting a different subject. Each trial involved 1000 learning
cycles. A hidden unit is defined as being “active” when it
receives positive activation from the input layer. Thus if cue
A is presented to the network, any hidden unit representing a
configuration that includes cue A will be active. Activity
extends into the period immediately following each trial,
when no inputs are presented (again for 1000 learning cy-
cles). The learning rate parameters for input–hidden and hid-
den–output units are both 0.8 when a hidden unit is active
and has a positive error, and 0 when it is not. The parameter
for bias–hidden changes is 0.3 when a hidden unit is active,
0 when it is not. Thus we make the reasonable assumption
that changes due to learning take place faster than changes in
memory, i.e. learning represents rapid acquisition, and
memory represents a more gradual decline in retrievability.
We also included an input unit representing context, that
was active on every trial. Context will have a far lower sali-
ence than the foods used on each trial: we use a parameter of
0.028 for changes in weights from the context unit. The
simulation results are robust under quite large variations in
the parameters used.

Conclusion
Retrospective revaluation has typically been assumed to be
best explained in terms of changes in the associative
strengths of separable stimulus elements. Perhaps unsurpris-
ingly, then, the most influential theories attempting to ac-
count for retrospective revaluation (e.g. Van Hamme &

Wasserman’s [1994] modification of R-W; Dickinson &
Burke’s [1996] modification of Wagner’s [1981] SOP
model) have been elemental in nature. The results presented
here, however, suggest that this simple elemental view of
retrospective revaluation is incorrect. Our data conflict with
the fundamental assumption of simple elemental theories
that a compound AB is best represented as being composed
of separable A and B elements that gain strength independ-
ently. Instead there is a configural component involved in
retrospective revaluation that is ignored in these earlier theo-
ries. It is possible to account for the data using an elemental
theory modified to give a role to “configural elements”. Al-
ternatively, a model employing configural representation
with adaptive generalisation also provides a good account of
our results.
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