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Relational thinking, or the ability to represent the relations between items, is widespread in the animal
kingdom. However, humans are unparalleled in their ability to engage in the higher-order relational thinking
required for reasoning and other forms of abstract thought. Here we propose that the versatile reasoning
skills observed in humans can be traced back to developmental and evolutionary changes in the lateral
frontoparietal network (LFPN). We first identify the regions within the LFPN that are most strongly linked to
relational thinking, and show that stronger communication between these regions over the course of devel-
opment supports improvements in relational reasoning. We then explore differences in the LFPN between
humans and other primate species that could explain species differences in the capacity for relational
reasoning. We conclude that fairly small neuroanatomical changes in specific regions of the LFPN and their
connections have led to big ontogenetic and phylogenetic changes in cognition.
Introduction
Theories of evolution spawned a vigorous debate in the mid 19th

century over whether humans could possibly have descended

from apes. This debate, in turn, provided the impetus for

research in comparative neuroanatomy aimed at discovering

how humans’ brains differ from those of other primates. Without

the benefit of our current understanding of the functions of

different brain regions, mid-19th century anatomists honed in

on species differences that are not considered functionally sig-

nificant today. In reviewing this line of research, eminent primate

neurophysiologist Charlie Gross (Gross, 1993) concluded,

tongue in cheek, that ‘‘one basic human characteristic seems

to be the need to establish differences between ourselves and

our closest relatives.’’

In part because the conclusions of this earlier line of research

were flawed, the search for brain differences between humans

and other primate species fell out of favor. However, recent find-

ings have provided insight into some of the evolutionary changes

that may have rendered humans capable of abstract thought.

Here we propose that a set of small changes in the lateral

frontoparietal network (LFPN) enabled humans to process

higher-order relations between mental representations, a form

of relational thinking that is central to higher cognitive functions

in humans. In this Perspective we focus primarily on relational

reasoning, but we acknowledge that this is one ofmany cognitive

abilities that rely on the LFPN.

First, we define relational thinking and discuss its centrality to

human cognition. Second, we provide evidence that relational

thinking relies on the LFPN. Third, we review studies identifying

the role of regions within the LFPN in human reasoning, and

argue that strengthening and refinement of this network over

childhood and adolescence is central to the development of
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reasoning ability. Fourth, we review differences in the LFPN be-

tween humans and other primates that may underlie differences

in the capacity for higher-order relational thinking.

Relational Thinking: A Cornerstone of Human Cognition
Relational thinking spans the gamut from basic relational binding

necessary to learn associations among stimuli in our environ-

ment to higher-order relational comparisons in which we

generate connections among abstract, semantic structures

and categories (Gentner, 2010). First-order relations come in

many forms: visuospatial (e.g., the apple is to the left of the

cup), semantic (e.g., a hammer is used to hit a nail), numerical

(e.g., 4 is greater than 2), temporal (e.g., water is poured into a

coffee filter after the coffee grounds), etc. By contrast, a sec-

ond-order relation is defined by its hierarchical nature; it is a rela-

tion between relations, i.e., one in which it is necessary to jointly

consider several first-order relations (e.g., a mountain is larger

than a molehill, just as a cat is larger than a mouse; Halford

et al., 1998). Identifying higher-order relations requires abstract-

ing over perceptual information, and instead focusing on roles

and relations shared between the lower-order relational pairs.

Relational thinking supports various kinds of reasoning, such

as analogical mapping and other forms of deductive reasoning.

Examples of laboratory tasks used to measure relational

reasoning are shown in Figure 1. Problems of this sort rely on

the ability to jointly consider multiple relations. Indeed, others

have argued that our most abstract thought hinges on the ability

to integrate multiple first-order relations into a more general

higher-order relational category (Koechlin and Hyafil, 2007;

Penn et al., 2008; Badre and D’Esposito, 2009).

We have argued that relational thinking is important not only

for reasoning, but also for multiple other cognitive functions in
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Figure 1. Relational Reasoning Tasks
Examples of tasks used to investigate relational reasoning (top), and schematics illustrating first- and second-order relations used within each task (bottom).
(A) In order to solve the example analogy (blizzard: snowflake:: army: soldier) the reasoner must first recall the relationship between blizzard and snowflake (e.g.,
comprised of), and then compare this relation to one extracted from army and soldier. One’s ultimate decision is a higher-order comparison of two semantic
relations abstracted from the perceptual objects.
(B) A transitive inference problem in which the participant has to integrate the weight relationships among pairs of balls. In this example, orange balls are
lighter than green ones, and green balls are lighter than purple ones, so by combining these two relations one can make the conclusion that purple is heavier than
orange.
(C) A geometric relational reasoning task in which one may jointly consider relations across rows (i.e., increase number of objects) and columns (i.e., change
object shape) to come to the correct solution. Although this task does not require explicit representation of a second-order relation, the two first-order relations
must be integrated to complete the missing piece of the array, highlighted in blue.
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humans, including decision-making, for which it is necessary to

be able to compare the expected value of different choices, and

episodic memory retrieval, during which amemorymust be eval-

uated according to specific criteria (Bunge and Wendelken,

2009). Seeking to test the hypothesis that a common set of brain

regions is involved in relational thinking across cognitive tasks,

we performed a meta-analysis using the software ‘‘Neurosynth’’

(http://neurosynth.org; Yarkoni et al., 2011).

The search term ‘‘relational’’ yielded 46 studies in the Neuro-

synth database focused on memory, reasoning, decision-mak-

ing, or higher-level perception. These studies involve a wide

range of cognitive tasks and hail from multiple laboratories

(see Neurosynth website for a complete list of studies). The for-

ward inference map revealed voxels that are consistently re-

ported in studies involving the term ‘‘relational’’ (dark blue voxels

in Figure 2). This analysis yielded multiple regions, including

lateral prefrontal and parietal regions as well as the hippocam-

pus, which have been implicated in relational binding (Cohen
et al., 1999). A more stringent analysis based on a reverse infer-

ence map revealed voxels that were specifically reported more

often with the term ‘‘relational’’ than any of the other 524 search

terms in the database (light blue voxels in Figure 2). In particular,

this meta-analysis implicates rostrolateral prefrontal cortex

(RLPFC), dorsolateral prefrontal cortex (DLPFC), and inferior

parietal lobule/sulcus (IPL/IPS) in relational thinking.

Contributions of Lateral Prefrontal and Parietal Cortices
to Relational Reasoning
It has long been known that damage to the prefrontal cortex

leads to dysfunction of higher cognitive abilities (e.g., Luria,

1966; Stuss and Knight, 2013). Much neuropsychological

research has emphasized the importance of both prefrontal

and parietal cortices for high-level cognition in humans (Roca

et al., 2010; Woolgar et al., 2010, 2013). Neuropsychological

studies focusing specifically on relational reasoning have

shown that patients with damage to prefrontal or parietal cortex
Neuron 84, December 3, 2014 ª2014 Elsevier Inc. 907
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Figure 2. Meta-Analysis of fMRI Activations Associated with the
Term ‘‘Relational’’
Results from Neurosynth.org (Yarkoni et al., 2011) using the search term
‘‘relational.’’ Items in light blue represent regions that are reported more
selectively with the term relational relative to 525 other keywords (reverse
inference, ZR 1.96). Items in dark blue represent regions that are consistently
activated with the term relational (forward inference). LH, left hemisphere; RH,
right hemisphere; RLPFC, rostrolateral prefrontal cortex; DLPFC, dorsolateral
prefrontal cortex; IPL, inferior parietal lobule. Additional regions identified by
the forward inference search, but not shown here, include hippocampus, in-
sula, and posterior cingulate cortex. See Yarkoni et al. (2011) and Neurosynth.
org for further information.
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have difficulty integrating multiple relations during geometric

reasoning, analogical reasoning, and transitive inference tasks

(Jung and Haier, 2007; Krawczyk et al., 2010b).
908 Neuron 84, December 3, 2014 ª2014 Elsevier Inc.
Beginning with Prabhakaran et al. (1997) and Christoff et al.

(2001), a series of fMRI studies has implicated the LFPN in rela-

tional reasoning (see Krawczyk, 2012 for review). Over the last

decade, numerous carefully controlled fMRI studies have

allowed us to differentiate the contributions to relational

reasoning of the three regions in the LFPN highlighted in Figure 2:

the IPL, RLPFC, and DLPFC. We briefly review the hypothesized

functions of each of these regions, and then delve into a few of

the studies that provide support for their involvement in relational

reasoning more specifically.

The IPL has been implicated in a variety of cognitive functions,

including working memory, focused attention, episodic memory

retrieval, etc. (see Ciaramelli et al., 2008 for a review). This region

has been proposed to play a central role in the representation of

relations between stimuli (Feng et al., 2014; Van Opstal and Ver-

guts, 2013). Consistent with this hypothesis, IPL activation

scales with the number of relations to be considered (Crone

et al., 2009; Hampshire et al., 2011; Watson and Chatterjee,

2012), and is more active while processing specific, rather than

general, relations (e.g., Figure 1B: ‘‘the green ball is heavier

than the orange ball,’’ as compared with ‘‘the green and orange

balls are associated with one another’’; Wendelken and Bunge,

2010).

RLPFC has been linked to various high-level cognitive func-

tions (see Ramnani and Owen, 2004), including prospective

memory (Benoit et al., 2012), abstract thinking (Christoff et al.,

2009; Badre and D’Esposito, 2009), counterfactual thinking

(Donoso et al., 2014), tracking alternative outcomes during deci-

sion-making (Boorman et al., 2011), and planning (Gerlach et al.,

2014). Several research groups have sought a parsimonious ac-

count of RLFPC’s function, although a consensus has not yet

been reached. As discussed further below, we have proposed

that RLPFC plays a fundamental role in the comparison and/or

integration of several sets of mental representations (e.g., Bunge

and Wendelken, 2009; Wendelken et al., 2008b).

The DLPFC has been implicated in themanipulation of items in

working memory, performance monitoring, interference sup-

pression, and response selection. DLPFC activation scales

with task difficulty across a variety of paradigms, including rela-

tional reasoning tasks (Kroger et al., 2002; Wendelken et al.,

2008a (see Figure 4A); Cho et al., 2010; Krawczyk et al.,

2010a; Hampshire et al., 2011). Thus, DLPFC is thought to play

a supporting role in the performance of many cognitively

demanding tasks.

Although RLPFC, IPL, and DLPFC have been implicated in

numerous cognitive functions, we focus here on their contribu-

tions to relational reasoning. Figure 3 illustrates a study in which

we constructed two comparable relational matching tasks to be

performed by the same set of individuals. These tasks required

participants to consider semantic relations (e.g., swans and

boats both belong in the water) or visuospatial relations (e.g.,

both of these stimuli are comprised of straight lines). Across

both the semantic and visuospatial tasks, RLPFC and IPL were

engagedmore strongly when participants were asked to perform

one second-order relational comparison than two first-order

relational comparisons, even though the stimuli were identical

for both first- and second-order relational trials (Wendelken

et al., 2012).

http://Neurosynth.org
http://Neurosynth.org
http://Neurosynth.org


Figure 3. Overlapping Activation in RLPFC
for Visuospatial and Semantic Relational
Reasoning
(A) Time series analysis from Wendelken et al.
(2012). Event-related time courses were extracted
from selected regions by averaging across trial-
specific time series for each condition. For the vi-
suospatial condition, participants had to decide
whether two objects had straight or curvy lines, or
had to decide whether dots placed on the objects
were both on the left or right side. For the semantic
condition, participants had to answer whether the
picture was an animal or vehicle, or whether the
picture was of something that resides in water or
on land. Comparison trialsmeant deciding whether
a higher-order relationship existed between both
pairs. Despite the visual display being exactly the
same for first- and second-order relational de-
cisions, and the fact that participants needed to
make decisions on both pairs for all trials, BOLD
signal in the RLPFC increased only for those con-
ditions where multiple relations must be compared
in order to successfully make a judgment.
(B) Examples of stimuli used for nonverbal shapes
(left) or semantic objects (right). See main text
for description of the judgments made.
Figure adapted with permission from Wendelken
et al. (2012).
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RLPFC Is Not Sensitive to Task Difficulty, Per Se, but
Rather to Relational Demands
In general, tasks that require second-order relational thinking are

more difficult than those that require only first-order relational

thinking. Thus, it is reasonable to wonder whether RLPFC activa-

tion simply scales with task difficulty. We have conducted two

studies that provide evidence to the contrary. Figure 4A features

a working memory study in which participants were asked to

maintain in workingmemory either 4 items, 7 items, or 4 items + 3

relations, indicated by unidirectional arrows between individual

items (e.g., Q comes before Z). Whereas DLPFC activation

scaled with task difficulty, RLPFC was more active on trials

involving 4 items + 3 relations than 7 items, but did not distin-

guish between a working memory load of 7 and 4 (Wendelken

et al., 2008a). Figure 4B features a propositional analogy study

(Wendelken et al., 2008b) with four different conditions, in which

the easiest problems (e.g., evaluating whether the term ‘‘uses’’

describes the relationship between a writer and a pen, i.e., prob-

lem type 1) engaged RLPFCmore strongly than the most difficult

problems (e.g., completing an analogy, such as ‘‘painter is to

brush aswriter is to.?’’, i.e., problem type 4). Comparison prob-

lems, such as those exemplified in Figure 4B problem types 1

and 3, lend themselves more naturally to evaluation of a relation

between relations than do completion problems (i.e., problem

types 2 and 4). In Figure 4B, we show the hypothesized relational

structures that people could create for these comparison prob-

lems. For completion problems, by contrast, participants could

represent higher-order relations, but need not do so. Indeed,

these problems could instead be solved by controlled semantic

retrieval, wherein the initial relational term places constraints on

the retrieval of an associate of item C. The results featured in

Figure 4B illustrate the point that, although higher-order rela-

tional thinking is certainly cognitively demanding, task difficulty

in and of itself cannot account for the engagement of RLPFC

on relational reasoning tasks.
The LFPN and Reasoning Ability
In the prior section, we focused on the functions of specific re-

gions within the LFPN. However, neuroscientific research in

animals demonstrates that prefrontal and parietal cortices are

tightly connected anatomically, and work closely together in

the service of cognition (Fuster, 2008; Passingham and Wise,

2012). In humans, we can measure the structural integrity of

white matter tracts that connect regions within the LFPN through

the use of diffusion-weighted imaging techniques like diffusion

tensor imaging (DTI). Additionally, we can measure functional

connectivity within the LFPN by calculating temporal correla-

tions in BOLD signal fluctuations between regions during periods

when participants are either at rest or engaged in a task.

Functional connectivity analyses based on our fMRI studies of

relational reasoning reveal that RLPFC, DLPFC, and IPL are

more strongly coupled when participants integrate higher-order

versus lower-order relational information (Wendelken et al.,

2012; task shown in Figure 3), and that the strength of coupling

between RLPFC and brain regions involved in either visuospatial

or semantic processing depends on the type of relations partic-

ipants are considering (Wendelken et al., 2012; task shown in

Figure 3). Thus, a change in the type of relational thinking

required leads to a change in the network properties of the LFPN.

Another way to demonstrate the link between the LFPN and

relational thinking is to show a relationship between strength of

network connectivity and cognitive task performance. Below

we review evidence that strength of the LFPN contributes to

developmental changes and individual differences in high-level

cognition.

Developmental Changes and Individual Differences in
the LFPN
Reasoning ability improves throughout childhood and well

into adolescence in humans (Fry and Hale, 2000; McArdle

et al., 2002), albeit with large individual differences. Figure 5A
Neuron 84, December 3, 2014 ª2014 Elsevier Inc. 909



Figure 4. Functional Dissociation between RLPFC and More Posterior Lateral PFC
(A) Both DLPFC and VLPFC follow increased working memory load. Rather than tracking task difficulty, RLPFC activates more preferentially for trials in which
relational information is present (i.e., the arrows). Figure adapted with permission from Wendelken et al. (2008a).
(B) Participants were presented with four conditions in which they were given a relational term or had to extract a relation from a pair of related words, and in which
they had to compare or complete the analogical expression. Relational structures are shown for the two conditions that are hypothesized to necessitate them.
White boxes represent objects (e.g., painter), whereas boxes with an R inside represent relational terms (e.g., uses). RLPFC activation is greater when participants
are asked to make comparisons (i.e., problem types 1 and 3), rather than complete an analogy (i.e., problem types 2 and 4), even though task difficulty is greater
for trials in which participants have to extract a relation. Data from Wendelken et al. (2008b).
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illustrates both the large age-related changes and high degree of

interindividual variability, showing within- and between-subject

changeswith age in performance on a standardmatrix reasoning

test similar to the one featured in Figure 1C (Wechsler Abbrevi-

ated Scale of Intelligence; Wechsler, 1999).

Structural Brain Development
Structural MRI and diffusion-weighted imaging techniques have

been used to measure gray and white matter maturation in the

developing human brain (see Dennis and Thompson, 2013 for re-

view). A reduction in cortical thickness with age was observed,

such that thinning proceeded more quickly in sensory and motor

cortex than in association cortex (Giedd and Rapoport, 2010).

Longitudinal MRI research reveals that parietal cortex undergoes

cortical thinning throughout childhood and early adolescence,

whereas PFC undergoes these changes throughout adoles-

cence and into early adulthood (Gogtay et al., 2004). At a cellular

level, this cortical thinning is thought to reflect high levels of

synaptic pruning—and also possibly a shift in the observed

boundary between gray and white matter due to the myelination
910 Neuron 84, December 3, 2014 ª2014 Elsevier Inc.
of fibers entering the cortical mantle (Zielinski et al., 2014). White

matter maturation has been measured more specifically with

DTI. Increased directionality of water diffusion in the brain

measured over childhood and adolescence is thought to reflect

myelination of long-range fibers (Lebel and Beaulieu, 2011). Lon-

gitudinal DTI research reveals structural changes well into adult-

hood in many white matter tracts (Lebel et al., 2008), and we

have observed strong age-related changes throughout the entire

white matter skeleton from ages 6–18 (Ferrer et al., 2013).

Developmental cognitive neuroscientists have begun to link

specific anatomical changes to specific aspects of cognitive

development, including reasoning, although this endeavor is

complicated by the many anatomical and cognitive changes

that take place at once in the developing child. Indeed, we

have found that reasoning ability is strongly related to cortical

thinning in prefrontal and parietal cortices, among other regions,

but after controlling for the strong influence of age on both

reasoning ability and cortical thinning across ages 6–18, we

find no residual relationship between these variables (Wen-

delken et al., 2011). We set out to test whether the development



Figure 5. Development of Reasoning Ability
(A) Developmental pattern of reasoning ability in 165 typically developing children and adolescents. Red, green, and blue dots indicate performance on the
participant’s first, second, or third behavioral testing session, respectively. Red lines show changes in performance from the first to the second visit, and green
lines show changes from the second to the third visit. The average delay between assessments was approximately 1.5 years.
(B) Increases in white matter integrity of a left frontoparietal tract connecting L RLPFC and L IPL increases nonlinearly across age. The dashed bar represents the
mean, and each gray bar represents 0.5 SDs.
(C) Partial correlations plot demonstrating that participants’ changes in reasoning ability across sessions 1.5 years apart are positively correlated with a change in
fractional anisotropy in this left frontoparietal tract. Figures reprinted with permission from Whitaker (2012).
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of reasoning can be linked to strengthened communication be-

tween RLPFC and IPL. To this end, we used probabilistic trac-

tography to identify white matter tracts extending between these

regions in the left and right hemispheres (Whitaker, 2012).

Indeed, white matter integrity in these frontoparietal tracts is

strongly correlated with reasoning ability, although in cross-

sectional analyses these relationships are no stronger than for

a global measure of whitematter integrity across the brain (Ferrer

et al., 2013). The nonspecificity of this result is consistent with

other work showing a relationship between fluid intelligence

and white matter integrity of all major white matter tracts (Chiang

et al., 2009; Tamnes et al., 2010; Haász et al., 2013). Longitudinal

analyses, on the other hand, hint at the possibility that the devel-

opment of the left RLPFC-IPL tract is a particularly strong predic-

tor of changes in reasoning ability (Figure 5B; Whitaker, 2012).

As shown in Figure 5C, the relationship between change in

reasoning over the course of approximately 1.5 years and

concomitant change in white matter integrity in the left RLPFC-

IPL tract—but not the right RLPFC-IPL tract or global white

matter—survived when partialling out initial values and effects
of age. Consistent with the inference that these DTI data reflect

individual differences in myelination, which should translate into

differences in the speed of communication between brain re-

gions, the relationship between white matter integrity and

reasoning was mediated by processing speed (Ferrer et al.,

2013).

LFPN Activation in Reasoning Tasks
fMRI studies of reasoning involving several age groups have

demonstrated reliable age differences in PFC and parietal acti-

vation over development (Eslinger et al., 2009; Dumontheil

et al., 2010). Specifically, using a first-order reasoning task,

Eslinger et al. observed decreasing engagement of lateral PFC

with increasing age (Eslinger et al., 2009). Dumontheil et al.

observed an increase in RLPFC activation for second-order

versus first-order reasoning problems from younger adolescents

to older adolescents (Dumontheil et al., 2010). Results from our

research complement and extend these results. We have found

that even 7- to 10-year-olds strongly engaged LFPN regions

while performing a relational matching task (Figure 6A), but
Neuron 84, December 3, 2014 ª2014 Elsevier Inc. 911



Figure 6. Age-Related Changes in the Brain
that Support Reasoning Development
(A) Task illustration from Wendelken et al. (2011).
Each trial consisted of a yes/no judgment based on
a stimulus array that contained four patterned
shapes. On Shape and Pattern trials participants
determined whether there was a shape or pattern
match in either pair, respectively. On Match trials,
participants decided whether the bottom pair of
stimuli matched along the same dimension (i.e.,
Shape or Pattern) as the top pair of stimuli. Shape
or Pattern trials require first-order relational pro-
cessing, whereas Match trials require second-
order relational integration.
(B) Whole-brain activation for the second-order >
first-order contrast for 7- to 10-year-olds (red), 11-
to 14-year-olds (green), and 15- to 18-year-olds
(blue). Note: the lack of RLPFC and IPL for the
younger-aged groups is due to the fact that these
regions were equivalently engaged for first- and
second-order relational trials.
(C) Across childhood and adolescence, left RLPFC
became less engaged for first-order relational
trials.
(D) Cortical thickness diminishes across age in the
IPL. Functional specificity displayed in L RLPFC
across age was negatively related to cortical
thickness in IPL, such that the thinner the IPL cortex
was, the more functional specificity observed in L
RLPFC (data not shown). Figures adapted with
permission from Wendelken et al. (2011).
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that they activated these regions similarly for second- and first-

order relations, such that only a small region within left DLPFC

met significance for the direct contrast between these conditions

(Figure 6B; Wendelken et al., 2011). By contrast, 11- to 14-year-

olds engaged left and right DLPFC as well as dorsomedial PFC

more strongly for second-order than first-order relations, and

15- to 18-year-olds engaged left RLPFC and bilateral IPL for

this contrast. Indeed, only the older adolescents exhibited a

pattern similar to that observed previously for adults with this

paradigm (Bunge et al., 2009).

Plotting left RLPFC activation as a function of age, we found

no change in activation for second-order trials, but a

decrease in activation on first-order trials (Figure 6C). Through

structural equation modeling, we were able to show that

this age-related decrease in RLPFC activation for first-order

relations can be accounted for in part by cortical thinning

in IPL (Figure 6D; Wendelken et al., 2011). We have hypothe-

sized that cortical reorganization within the IPL leads to

greater efficiency in processing first-order relations, thereby

reducing relational processing demands within RLPFC. We

hypothesize that increased communication between these

brain regions over development supports their functional

specialization.

LFPN Functional Connectivity
In childhood, functional connectivity appears to be dominated by

connections among neighboring regions; during adolescence,

there appears to be a shift toward greater long-range functional

connectivity (Fair et al., 2008) that is likely driven by the increased

speed of conduction associated with myelination (Khundrakpam

et al., 2013; Hwang and Luna, 2013). However, it is not the case

that all long-range connection strengths increase with age;

rather, there is some evidence that they become more selective.
912 Neuron 84, December 3, 2014 ª2014 Elsevier Inc.
In particular, we have found that temporal coupling between

RLPFC and IPL increases over childhood and adolescence,

whereas connectivity between RLPFC and the superior parietal

lobule decreases.

Individual differences studies indicate that better reasoning

ability is associated with stronger functional connectivity, in

particular within the LFPN. Of greatest relevance to the present

review, a study focusing on the neurodevelopment of second-

order relational reasoning recently showed that frontoparietal

connections strengthened with age, and were more tightly

coupled than shorter-range frontoinsular connections for sec-

ond- relative to first-order relational problems (Bazargani et al.,

2014). More broadly, various studies have shown that tighter

resting-state functional connectivity among LFPN regions is

associated with better relational reasoning, as measured by

nonverbal IQ scores (Langeslag et al., 2013) or full-scale IQ

scores (Song et al., 2008; Li and Tian, 2014). Taken together,

these studies suggest that tighter coupling within the LFPN is

associated with better cognitive performance on various tasks,

including relational reasoning.

Relational Reasoning in Humans as Compared with
Other Primates
Having identified the key brain network that supports relational

reasoning in humans, and having described how the develop-

ment of this region coincides with our ability to perform relational

reasoning, we next consider the possibility that small changes to

the LFPN over evolution may have supported the emergence of

higher-order relational reasoning in humans. To this end, we will

first review comparative behavioral studies comparing human

and nonhuman primates on relational reasoning tasks, and

then discuss differences in neuroanatomy between humans

and other primates.



Figure 7. Cortical Expansion Differences
between Primate Species
(A) Areas showing greatest (in yellow) amount of
cortical expansion from macaques to humans and
chimpanzees to humans. Again, the area of
greatest cortical expansion between species is
anterior prefrontal cortex (BA 10). Numbers in the
horizontal bars represent the amount of expansion
in humans compared to macaques (left) and
chimpanzees (right). Figure adapted with permis-
sion from Buckner and Krienen (2013).
(B) Cortical regions showing a shared amount of
cortical expansion across evolution (relative to
macaques) and across human development. Note
the lateral prefrontal and posterior parietal regions
are found to be associated with higher cognition in
humans. Figure adapted with permission from Fjell
et al. (2013).

Neuron

Perspective
Comparative Behavioral Differences on Relational
Reasoning Tasks
In their 2008 article ‘‘Darwin’s Mistake,’’ Penn, Holyoak, and

Povinelli argue that humans alone represent higher-order rela-

tional structures. To illustrate this idea, they describe a relational

match-to-sample task that has been used in various species, in

which participants are shown a pair of stimulus displays that are

either identical or different (i.e., AA or AB), followed by two pairs

of stimulus displays (i.e., CC and CD, where each letter stands

for specific, nonoverlapping stimulus object arrays). The partici-

pant must decide which pair matches the first pair. For these

tasks, the problem is to make a matching judgment among

stimuli that—although they differ featurally—share a common

relation (e.g., both pairs exhibit identical stimuli within pairs).

Although great apes (Flemming et al., 2008; Haun and Call,

2009) and Old World monkeys (Flemming et al., 2013) are

capable of solving these types of problems, Penn et al. claim

that humans alone use higher-order abstract categories of

‘‘same’’ and ‘‘different’’ to guide their judgment, whereas other

nonhuman primates may rely on perceptual variability of items

within each pair to guide their decision.

Evidence in favor of the idea that nonhuman primates rely on

perceptual similarity to solve relational-match-to-sample tasks

comes from several studies (Fagot et al., 2001; see also Fagot

and Thompson, 2011; Flemming et al., 2013). In one such study,

baboons and humans performed a task in which the number of

items in the stimulus display varied between 2 and 16 (Fagot

et al., 2001). As the set size increases, identical and nonidentical

stimulus sets become more and more perceptually dissimilar

(i.e., AAAAA versus ABCDE, as compared with AA versus AB,

where each letter represents a different object), thereby

rendering the task of relational matching easier for a participant

relying on a perceptual strategy. Indeed, set size influenced task

accuracy for baboons, but not humans: baboons exhibited

chance performance (50%) when asked to make difference

judgments for set sizes below four, whereas humans never

performed below 86%, regardless of the set size. This finding

suggests that humans and nonhuman primates use different

strategies when performing the relational match task.

In addition to strategy differences between species, humans

are much faster than nonhuman primates when it comes to per-
forming relational reasoning tasks. Humans can grasp novel

relational tasks very quickly with verbal instructions (Cole et al.,

2011), but even when humans and baboons are both taught a

relational matching task through trial and error, it takes baboons

over ten times as many trials to learn a basic form of the task—

i.e., AAAA matches BBBB, not CDEF (400 versus 35 trials on

average to reach criterion of 80% accuracy; Flemming et al.,

2013). These results do not necessarily prove that nonhuman pri-

mates are unable to reason using higher-order thinking, but if it is

possible to train nonhumans to produce human-like perfor-

mance on tasks associated with higher-order relational thinking,

it is certainly not something that comes naturally to them.

Cortical Expansion Differences Are Found in Regions
Supporting Relational Reasoning
Our neuroanatomy comparison between human and nonhuman

primates will first begin with gross anatomical differences in

LFPN regions across species. Although humans and chimpan-

zees begin their neurodevelopment in a similar fashion, relative

to chimpanzee neural development, the human neocortex de-

velops at a faster rate even by the 16th week in gestation and con-

tinues to grow at a relatively faster rate after birth (Sakai et al.,

2012). The end result is that the average human brain is triple the

sizeof thechimpanzeebrain (Boddyetal., 2012).Suchan increase

is partly due to humans having greater cortical thickness, but this

increase pales in comparison to our relatively much greater

cortical surface area (see Geschwind and Rakic, 2013 for a re-

view). Far from this cortical expansion being equally likely for all

brain regions, humans’ cortical expansion occurs more in associ-

ation areas (i.e., prefrontal, parietal, and temporal cortex). In turn,

we have slightly smaller surface area relative to chimpanzees in

primary motor and sensory areas (Buckner and Krienen, 2013).

Buckner and Krienen suggest that these different patterns in

cortical expansion across evolution may differentially promote

higher-order cognition supported by association cortex, possibly

at the expense of greatermotor and sensory processing. Interest-

ingly, regions showing the greatest expansion in surface area

across development overlapwith those found to have the greatest

increase relative tononhumanprimates (Figure7; Fjell et al., 2013).

Evidence for cortical expansion in regions supporting higher

cognition is corroborated by studies investigating the horizontal
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Figure 8. Cytoarchitectonic Differences in
Anterior PFC between Primate Species
Increased horizontal spacing distance (HSD) be-
tween humans and chimpanzee in the anterior PFC
(BA 10). Greater HSD is a proxy for increased
cortical expansion, and the relatively smaller
number of pyramidal cells in these regions for hu-
mans likely reflects the extensive density of den-
drites and dendritic spines, useful for integrating
information. Slices taken from anterior prefrontal
cortex (i.e., BA 10 in humans). Figures adapted
with permission from Semendeferi et al. (2011).
Note: locations for figure insets are approximate.
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spacing distance (see Rakic, 2009). Investigating prefrontal and

parietal layer III—a locus for pyramidal cell bodies as well as

inter- and intrahemispheric connections—has identified fewer

pyramidal neurons, spaced further apart in humans relative to

chimpanzees and macaques (Semendeferi et al., 2011; Spocter

et al., 2012). A greater horizontal spacing difference suggests

that the expanded surface area contains more dendrites and

axons, suggesting more of an integrative function of these

neurons in humans. Indeed, human pyramidal neurons have

greater dendritic length, density, anddendritic spines inprefrontal

and parietal cortex than other regions (e.g., primary motor cortex

or superior temporal gyrus), thus suggesting a highly integrative

role of neurons in this region (see Figure 8; Bianchi et al., 2013).

Differences in Structural Organization of the LFPN
between Human and Nonhuman Primates
Until the adventof functional andstructural connectivitymeasures

using MRI, most of our understanding of the cytoarchitecture of

prefrontal and parietal cortices has relied on the macaque model

(Petrides and Pandya, 2007; Petrides et al., 2012). The compara-

tive validity of the macaque model has been called into question

(Passingham, 2009). More recently, several studies have used

MRI to investigate how functional and structural connections be-

tween prefrontal and parietal regions compare between species

(Mars et al., 2011; Petrides et al., 2012; Sallet et al., 2013; Goulas

et al., 2014; Neubert et al., 2014). As described below, these

studies have found a high degree of overlap between humans,

macaques, and chimpanzees for certain brain structures,

although structural differences have been reportedboth for lateral

PFC and IPL. Indeed, as reviewed below, it has been suggested

that RLPFC has no homolog in the macaque brain, although its

function may be related more closely to macaque DLPFC than

macaque frontopolar cortex (Neubert et al., 2014).
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In humans, RLPFC has been hypothe-

sized to sit at the apex of a hierarchically

organized PFC (Badre and D’Esposito,

2009; Donoso et al., 2014). Goulas et al.

(2014) show that this is not the case in

macaques. The authors characterized

structural connectivity among PFC re-

gions in the macaque and tested whether

themacaque PFC reflects a similar hierar-

chical caudoraustral gradient as found in

humans. To test whether the structural

connectivity patterns represented a hier-
archy, Goulas et al. employed a simulated annealing technique

(Kirkpatrick et al., 1983) as a way to approximate the acyclic

graph with the fewest removals of antihierarchical connections.

Although the macaque prefrontal structural organization can

be represented as a hierarchy, there were substantial differences

in the hierarchical structure as compared with humans. In hu-

mans, fMRI studies have placed RLPFC at the top of the hierar-

chy given its efferent connections with DLPFC as compared to

more caudal prefrontal regions (Badre and D’Esposito, 2009).

However, in the macaque, frontopolar cortex ranked below

both DLPFC and VLPFC in the structural hierarchy (Goulas

et al., 2014). These results lend credence to the idea that RLPFC

in macaques does not perform the same functional role as

RLPFC in humans. Thus, differences between species in hierar-

chical structural connections within the PFC may explain differ-

ences in relational reasoning ability.

Differences in Functional Organization of the LFPN
between Human and Nonhuman Primates
The discrepancy in the structural hierarchical organization of the

prefrontal cortex between humans and macaques may explain

cognitive differences; however, another hypothesis is that there

are LFPN connections unique to humans. Differences between

humans and macaques were found when investigating func-

tional and structural connections of RLPFC and inferior parietal

regions using diffusion-weighted MRI (Li et al., 2013; Miranda-

Dominguez et al., 2014). As can be seen in Figure 9A, frontopar-

ietal regions were found to have a larger number of functional

connections to other regions, thus demonstrating greater possi-

bility for integration of information within these regions (Miranda-

Dominguez et al., 2014). Additional support for this claim comes

from several studies comparing functional (Mars et al., 2011;

Neubert et al., 2014) and structural (Li et al., 2013) networks



Figure 9. Functional Connectivity
Differences between Primate Species
(A) Interspecies comparison of node degree,
or the number of functional connections a
particular region has to all other regions. Blue
colors represent regions where macaques have a
higher node degree, and red colors represent
regions where humans have higher node degree
than macaques. Notice that humans have
more highly connected hubs distributed within a
lateral frontoparietal network. Figure adapted
with permission from Miranda-Dominguez et al.
(2014).
(B) Intrinsic functional connectivity maps for
DLPFC and RLPFC seeds in humans and ma-
caques. Using DTI, the authors found ten different
parcellations of parietal cortex, and used these
regions as ‘‘seed’’ regions for resting state fMRI
(rsfMRI). Seed regions are regions used in a
regression analysis to identify other cortical and
subcortical regions sharing a similar time course
during a task-free fMRI scan. Although there was
much similarity for frontoparietal functional con-

nectivity when using the DLPFC as a seed region, there was no macaque analog for the frontoparietal connections observed between RLPFC and
posterior parietal cortex, even when using a much less conservative statistical threshold. Figure adapted with permission from Mars et al. (2011).
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between humans andmacaques. In one study, researchers used

DTI to estimate structural frontoparietal connections, and then

used structural connections to constrain possible functional

connections among regions using resting-state fMRI (Mars

et al., 2011).

Although there was much overlap among patterns of intrinsic

frontoparietal functional connectivity between species, this

study revealed that humans, but not macaques, exhibit tight

resting-state functional connectivity between mid-IPL and

RLPFC (see Figure 9B). These results are consistent with the

possibility that humans have a direct anatomical projection be-

tween IPL and RLPFC that could support higher-order relational

thinking (see Figure 5B for results of probabilistic tractography

tracing whitematter between these regions). These findings sug-

gest that changes in connections between RLPFC and IPL

throughout the course of evolution may have resulted in

observed differences between human and nonhuman primates

(see Rilling, 2014 for a review). Additional research investigating

appropriate parcellation of human and chimpanzee neocortex is

needed to fully understand how the LFPN may or may not map

across species; however, if such findings hold, this would sug-

gest that networks between anterior prefrontal and parietal

cortex are unique to humans, and may be a neuroanatomical

substrate supporting our ability for higher-order thought.

Conclusion
The ability to represent higher-order relations has been pro-

posed as a cornerstone of human cognition (Penn et al., 2008;

Bunge and Preuss, 2010). Here we propose that cortical expan-

sion of RLPFC and IPL and strengthened LFPN connectivity in

humans relative to other primates contribute to species differ-

ences in relational thinking. Likewise, we propose that age-

related strengthening of the LFPN, including RLPFC-IPL

coupling, contributes to the development of relational thinking

over childhood and adolescence. To conclude, we argue that a

little goes a long way: that is, fairly small changes to a core brain

network, both over the course of primate evolution and over the
course of human development, enabled higher-order relational

thinking, which is central to human cognition.
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