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Abstract  
 

Development of CRISPR/Cas9 in vivo bladder cancer models 

by 

 Ofir Stefanson 

Bladder cancer prevalence is high, and patients diagnosed with this malignancy 

incur a high economic burden and a poor-quality lifestyle. The majority of 

bladder cancers are urothelial carcinomas, with two subtypes: papillary non-

invasive and muscle-invasive bladder cancer. The muscle-invasive subtype is 

associated with a poor prognosis and a high mutation frequency. Nevertheless, 

there are no efficient in vivo bladder cancer models in the field to study disease 

initiation and progression. Thus far, most in vivo bladder cancer models rely on 

the Cre-LoxP system. However, this technique is expensive and time-consuming. 

Furthermore, it depends on available mice with floxed alleles for target genes. 

Recently, CRISPR/Cas9 has been used to study cancer and overcomes the hurdles 

of Cre-LoxP models. The objective of this work is to determine if CRISPR/Cas9 

can be coopted for bladder cancer research in vivo. As-proof-of concept 

CRISPR/Cas9 was used to recapitulate a Cre-LoxP muscle-invasive bladder 

mouse model produced by knockout of tumor suppressors PTEN and TP53. 

Single guide RNAs targeting TP53 and PTEN were delivered into the bladder 

urothelium of Cas9 expressing mice by a novel electroporation approach. 

Histological and pathological characterization of bladders indicated tumor 



 viii 

development in 2 mice, with a tumor penetrance of 33%. Tumors phenotypically 

resembled hyperplasia and papillary carcinoma, with an increase of CK5 positive 

basal layer. Papillary tumors exhibited an increase in cell proliferation compared 

to controls. Overall, optimizations are required in order to use the CRISPR/Cas9 

technique for in vivo bladder cancer models. 
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Chapter 1: Introduction 

1.1 Bladder cancer prevalence  

Urinary bladder cancer (BCa) is the 4th most common cancer in men and 

the 15th most common cancer in women. In 2019, there were 80,470 new 

diageneses and 17,670 death caused by bladder cancer in the United States alone. 

Bladder cancer incidence increases in geriatrics. 9 of 10 cases occur in people 

over the age of 55, and are three times more frequent in men than women (Siegel 

et al., 2019). The most common risk factor for BCa is carcinogen exposure due to 

cigarette smoking. BCa Patients typically incurred a lifelong economic burden 

due to its high recurrence rate and the need for surveillance throughout the 

patient’s lifetime, and high cost of treatment (Yeung et al., 2014) (Sanli et al., 

2017).  

 

1.2 Bladder Biology 

The bladder is a hollow organ and its primary function is urine storage and 

to maintain the physiological composition of urine developed in the kidneys. The 

bladder is composed of a stratified epithelium layer, termed the urothelium, 

surrounds by the bladder lumen. The urothelium is encapsulated by the lamina 

propria, detrusor muscle, and perivesical fat layer. The urothelium is subdivided 
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into a single layer of umbrella cells, several intermediate cell layers, and a single 

basal cell layer (Fig 1.1) (Hicks, 1975) (Jost et al., 1989).  

The umbrella cells are highly differentiated, and function to accommodate 

changes in volume and the high impermeability of the bladder, through a 

specialized apical membrane, and tight junctions between neighboring umbrella 

cells. The apical membrane is composed of plaque regions surrounded by hinge 

regions. The plaque region makes up about 90% of the membrane and are 

composed of umbrella cell-specific transmembrane proteins, Uroplakin (UP Ia, Ib, 

II, IIIa, and IIIb), which arrange as a hexagonal ring, termed the asymmetric 

membrane units. These units form an asymmetric membrane within the plaque, 

causing the lumen facing membrane to be twice as thick as the cytoplasmic 

membrane (Khandelwal et al., 2009). Physiologically these plaques are essential 

for the permeability of the urothelium, as ablation of UPII or IIIa resulted in 

increased permeability (Kong et al., 2004)(Hu et al., 2000). Umbrella cells 

contain a high density of cytoplasmic vesicles (termed discoidal/fusiform-shaped 

vesicles or DFV) that incorporate into the apical membrane by endocytosis and 

exostosis as a response to changing bladder volumes. The DFVs deliver UPs to 

the apical membrane (Khandelwal et al., 2009) (Wu et al., 2009). Umbrella cells 

express high levels of cytokeratin (CK) 18 and 20 (Kobayashi et al., 2015). 

Intermediate cells form several layers beneath the umbrella cells. The 

number of layers is species dependent. In humans the intermediate cells make up 

5 layers, while one to two layers are observed in rodents (Jost et al., 1989) 
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(Khandelwal et al., 2009). Intermediate cells are partially differentiated and 

undergo differentiation into umbrella cells in response to loss or damage (Lavelle 

et al., 2002) (Veranič et al., 2009). Basal cells are thought to be progenitors of the 

urothelium and can regenerate all urothelial cell types (Shin et al., 2011) 

(Papafotiou et al., 2016). However, there is disagreement in the field, as some 

suggest that the urothelial cell types arise from different progenitors (Colopy et 

al., 2014) (Sun et al., 2014). Basal cells express high levels of CK5, CK14, p63. 

Intermediate cells express the same markers but at lower levels compared to basal 

cells (Kobayashi et al., 2015).  

The adult urothelium is quiescent and undergoes a slow turnover rate 

(Stewart et al., 1980) (Jost and Potten, 1986). The mouse bladder serves as a good 

model for bladder cancer since it is morphologically similar to the human bladder, 

although it rarely develops cancer naturally (Clayson et al., 1995). 
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Figure 1.1: Cell types of mouse urothelium.  
The mouse bladder lumen is enclosed by a stratified epithelium, the urothelium, 
consisting of the apical facing umbrella cells (UPs and CK18 positive), one to two 
layers of intermediate (low levels of CK5, CK18 and UPs) cells, and basal cells 
(CK5 positive). The lamina propria and the detrusor muscle encapsulate the 
urothelium. 
 

 

1.3 Bladder Cancer Biology 

Urothelial carcinoma is the most common form of BCa, with two main 

histopathological subtypes, papillary non-muscle invasive BCa (NMIBC) and 

solid muscle-invasive BCa (MIBC). Non-urothelial neoplasms are rare, only 

accounting for about 5% of bladder cancer cases (Dahm and Gschwend, 2003). 

NMIBC accounts for about 75% of bladder cancer diagnoses (Kamat et al., 2016). 



 5 

NMIBC low-grade papillary tumors confined by the lamina propria (Ta), and 

high-grade papillary tumors invading the lamina propria (T1) (Fig 1.2). 

Carcinoma in situ (Tis) is a non-muscle invasive tumor considered to be a 

precursor of MIBC (Spruck et al., 1994). Surgical resections and immunotherapy 

or chemotherapy treatments are used for NMIBC, and patients generally exhibit a 

favorable prognosis. NMIBC tumors are likely to recur, and a small fraction 

progresses to muscle-invasive disease (Sanli et al., 2017).  

The muscle-invasive subtype is described as non-papillary solid tumors 

and categorized by tumor invasion of the detrusor muscle (T2). Tumor 

progression to perivesical fat invasion is categorized as T3. MIBC tumors can 

potentially metastasize to the prostate, uterus, vagina, bowel (T4a), or the 

abdominal wall (T4b) (Fig 1.2). Patients diagnosed with MIBC have a poor 

prognosis, with a 5-year survival rate of about 50%. However, for metastatic 

cancer, the survival rate is about 15% (Kamat et al., 2016).  
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Figure 1.2: Urothelial carcinoma stage classification. 
Bladder cancer (BCa) is classified as Non-muscle invasive BCa (NMIBC) and 
muscle-invasive BCa (MIBC). NMIBC tumors consists of papillary tumors, 
which are confined (Ta) or invade (T1) the lamina propria, and include carcinoma 
in situ (Tis). MIBC tumors invade the detrusor muscle (T2), the perivesical fat 
(T3), or metastasize to other tissue (T4). Stages classified using the Tumor, Node, 
metastasis system. 
 

 

1.4 Molecular landscape of bladder cancer 

Papillary NMIBC and solid MIBC arise from molecularly distinct pathogenic 

mechanisms. Loss of heterozygosity in chromosome 9 is an early event in bladder 

carcinogenesis common to both pathological subtypes. This deletion occurs in 

50% of BCa cases and implicates tumor suppressors TSC1 (9q34) and CDKN2A 

(9p21). TSC1 is a negative regulator of mammalian target of rapamycin (mTOR) 

signaling pathway. The CDKN2A locus codes for p14arf and p16, which function 

as negative regulators of the cell cycle pathway (Lindgren et al., 2006)(van Oers 

et al., 2006). 

Papillary tumors are typically genetically stable with diploid karyotypes 

(Hurst et al., 2012). A hallmark of low-grade papillary NMIBC tumors is the 

activating mutation in the gene FGFR3, with some studies reporting a mutation 
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frequency of about 60% (Tomlinson et al., 2007) (Pietzak et al., 2017). In cell 

culture, activation of FGFR3 leads to activation of the RAS-MAPK pathway, 

leading to increased cell proliferation and survival (di Martino et al., 2009). 

PIK3CA frequently incurs activating mutation in NMIBC, implicating the PI3K 

pathway (Pietzak et al., 2017). PIK3CA mutations commonly associate with 

FGFR3 mutations (López-Knowles et al., 2006) (Platt et al., 2009) (Pietzak et al., 

2017). Mutations to STAG2, a member of the cohesion complex, are associated 

with low-grade NMIBCA (Taylor et al., 2014) (Solomon et al., 2013) (Pietzak et 

al., 2017). 

 MIBC is characterized by genomic instability and a high frequency of 

mutations, averaging about 300 mutations per tumor sample. The most common 

genetic alterations in MIBC patients are mutations to the cell-cycle regulation 

pathway, altered in about 90% of MIBC cases. Frequently altered genes in the cell 

cycle pathway are: TP53 (48% of cases), RB1 (17%), and the CDKN2A locus 

(22%).  (Robertson et al., 2017). TP53 mutations are found in carcinoma in situ 

lesions and considered to be a precursor to MIBC development (Spruck et al., 

1994) (Hartmann et al., 2002)(Hopman et al., 2002). FGFR3 mutations are also 

present in MIBC samples; however, at a lower frequency than NMIBC. FGFR3 

mutations are associated with lower-stages of MIBC. Alteration to members of 

the PI3K are also observed in MIBC. PIK3CA frequently incurs activating 

mutations. PTEN  a Negative regulator of the PI3K pathway is frequently mutated 

in MIBC (Robertson et al., 2017) (Platt et al., 2009). 
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Both MIBC and NMIBC have a high mutation rate in the promoter region 

of the TERT (telomerase reverse transcriptase) gene. Frequent mutations to 

chromatin remodeling genes KMT2D, KDM6A, ARID1A, and KMT2C are 

observed in both BCa subtypes (Allory et al., 2014) (Robertson et al., 2017) 

(Pietzak et al., 2017).  

Major research efforts have focused on characterizing the molecular 

subtypes of MIBC to assess the phenotypic heterogeneity within the disease and 

to correlate clinical outcomes and possible treatments (Robertson et al., 

2017)(Sjödahl et al., 2017)(Seiler et al., 2017)(Hedegaard et al., 

2016)(Rebouissou et al., 2014) (Choi et al., 2014)(Iyer et al., 2013). Subtype 

classifications among the studies vary, but distinct molecular subtypes have been 

identified: basal/squamous and luminal. The luminal subtype is molecularly 

heterogeneous presents papillary histology, and expresses Urothelial 

differentiation markers (CK20, Foxa1, and UPs). The Basal/squamous subtype 

expresses basal markers (CK5, CK14, CD44), and contains high mutation rates in 

the gene TP53. Additionally, the Robertson and Sjödahl studies also reported a 

neuronal subtype. Basal/squamous and neuronal subtypes are associated with 

worse prognosis and survival rates, compared to the luminal subtypes. A recent 

consensus study on 16 publicly available MIBC datasets indicated  6 molecular 

subtypes: luminal papillary, luminal non-specified, luminal unstable, stroma, 

basal/squamous, and neuroendocrine (Kamoun et al., 2019).  
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Overall, sequencing studies have improved the understanding of BCa, but 

more research is required to relate molecular subtypes to potential clinical 

therapeutics and characterize how genetic mutations impact carcinogenesis in the 

bladder. 

 

1.5 Bladder cancer modeling in vivo 

Research on the effect of genetic mutations on BCa development and 

progression is hindered by the lack of available in vivo models. There are two 

main models used for in vivo BCa research: chemical carcinogen exposure and 

genetically engineered mice (GEM). The majority of carcinogen-induced BCa 

models utilize n-butyl-n-(4-hydroxybutyl)nitrosamine (BBN), a chemical found in 

tobacco. It is usually delivered in drinking water to the mice. The BBN model is 

advantageous since it recapitulates human BCa progression and its phenotypes, 

including MIBC and metastatic BCa. BBN treatment results in tumors that are 

molecularly similar to human basal/squamous subtype, and incur frequent 

mutations to TP53 (Saito et al., 2018). The disadvantages to the BBN 

carcinogenesis model are that cancer development and progression are 

inconsistent, and heterogenous BCa phenotypes develop. Furthermore, it is 

challenging to control genetic alterations using BBN. 

The effects of specific genetic mutations on tumorigenesis have been 

studied using GEM models. The most common models utilize the Cre 

recombinase-mediated knockout, in which Cre excises DNA sequences between 



 10 

two loxP sites via recombination. This system is used to generate mice in which a 

cell-type-specific promoter drives Cre expression to knockout genes flanked by 

loxP sites (floxed genes).  

UP2 driven Cre expression (UP2-Cre) is a common bladder specific 

promoter used in BCa research. This promoter primarily functions in umbrella 

cells. Models utilized UP2-Cre to study the effect of common tumor suppress and 

oncogenes on bladder carcinogenesis. Co-knockout TP53 and RB1 results in rare 

instances of papillary NMIBC, however treatment with a low concentration of 

BBN induces MIBC in by 10 weeks in 50% of mice. In comparison, single 

inactivation of either TP53 or RB1 is not tumorigenic (He et al., 2009). TP53 

deficiency, in combination with oncogenic HRAS expression results in MIBC (He 

et al., 2015). Activation of oncogenic form FGFR3 alone is insufficient in 

inducing urothelial carcinogenesis (Ahmad et al., 2011). However, FGFR3 

activation with PTEN deficiency results in hyperplasia (Foth et al., 2014). 

Recently, the UP3a-CreERT2 driver was used to knockout TP53 and PTEN 

resulting mostly resulted in papillary tumors, but with some insistences of muscle-

invasion.  (Saito et al., 2018). 

Models using non-urothelium specific Cre drivers have been utilized in 

BCa models. Adenovirus delivery of Cre to knockout TP53 and PTEN resulted in 

a MIBC phenotype (Puzio-Kuter et al., 2009) . Adenovirus inactivation of TP53 

and activation oncogenic of KRAS results in urothelial hyperplasia (Yang et al., 

2017). Basal cell driver, CK5-CreERT2, was used to knockout PTEN and TP53. 
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However, mice died due to carcinogenesis in other epithelial tissues (Saito et al., 

2018).  

In summary, the Cre-LoxP system enabled the investigation of specific 

gene mutations on BCa tumorigenesis but is inefficient, as typically, knockout of 

multiple alleles is required to observe a phenotype. This presents a challenge 

since the mutation load is high in BCa and generating mice with floxed alleles for 

multiple genes is expensive, time-consuming, and depends on the availability of 

genes with floxed alleles. 

 

1.6 CRISPR/Cas9 and cancer modeling 

CRISPR (or clustered regularly interspaced short palindromic repeats) is a 

sequence-specific genome editing system that was discovered in prokaryotes but 

was co-opted for use in mammalian systems. This system requires two 

components, Cas9 (CRISPR associated protein 9) endonuclease and single-guide 

RNA (sgRNA), which directs Cas9 to the target site. The sgRNA is composed of 

17-20 nucleotide sequence complementary to the target locus (crRNA), and an 

RNA binding scaffold for Cas9 (tracrRNA) containing a PAM sequence (NGG). 

Cas9 cleaves the target sequence 3 nucleotides past the PAM. The cell repairs 

DNA cleavage by nonhomologous end-joining (NHEJ) or homology-directed 

repair (HDR) mechanisms. NHEJ results in insertion or deletions (indels) to the 

cleaved target sequence, and HDR utilizes the recombination machinery to repair 

the cleaved sequence using a template. In cancer research, the NHEJ is used to 



 12 

mutate tumor suppressor genes by designing sgRNA to target specific candidate 

genes of interest. HDR was used to introduce oncogenic mutations by providing a 

template DNA of an oncogenic version of a gene (Wang et al., 2016).  
The CRISPR/Cas9 system has been utilized for in vivo cancer modeling. 

Liver tumors were induced by hydrodynamic tail injection of plasmids containing 

Cas9 and sgRNAs targeting TP53 and PTEN, recapitulating the Cre-LoxP TP53 

and PTEN knockout model (Xue et al., 2014). GEMMs expressing Cas9 were 

developed and utilized to model lung cancer by Adeno-associated virus delivery 

of sgRNAs targeting TP53, LKB1, and Kras in combination with an oncogenic 

Kras template, demonstrating CRISPR mediated HDR can be utilized for cancer 

modeling (Platt et al., 2014). Medulloblastoma and glioblastoma were generated 

by in utero electroporation of sgRNA targeting PTCH1, or a combination of 

TP53, PTEN, and NF1, respectively (Zuckermann et al., 2015). Furthermore, the 

CRISPR/Cas9 system can be used for mutagenesis of large gene sets by delivery 

of multiple sgRNA, as demonstrated in the liver and pancreas (Weber et al., 2015) 

(Maresch et al., 2016).  

 

1.7 Project objective  

The mutational burden in BCa is high, especially in the MIBC phenotype. 

The effects of many of the top mutated genes on BCa initiation and progression 

have yet to be characterized. The commonly used Cre-LoxP system is 

disadvantageous for this BCa research as multiple mutations are required for 
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carcinogenesis. Consequently, this technique is expensive and time-consuming 

due to the extensive breeding process. Additionally, the Cre-LoxP technique 

depends on available floxed alleles. The CRISPR/Cas9 cancer modeling approach 

overcomes the limitation of the Cre-LoxP system. 

The objective of this project is to develop a new approach for BCa mouse 

models using CRISPR/Cas9. Described here is a novel technique for the delivery 

of plasmid into the urothelium mice by electroporation. This technique was 

utilized to study the effect of mutating tumor suppressors TP53 and PTEN, as 

knockout using Cre-LoxP induced MIBC in mice. Mutations to TP53 and PTEN 

were produced by electroporation of a plasmid containing sgRNAs targeting set 

gene into the bladders of mice ubiquitously expressing Cas9. The effects of 

CRISPR/Cas9 mutations to TP53 and PTEN on the bladder were histologically 

and pathologically characterized at different time points to determine the utility of 

this technique.   
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Chapter 2: Methods 

2.1 Mouse strain and procedures  

Animal experiments were performed with approval from the UC Santa 

Cruz Institutional Animal Care and Use Committee. Homozygous R26-Cas9 mice 

(termed Cas9) (JAX stock #026179) (Platt et al., 2014) and wildtype mice were 

maintained in C57BL/6N background. Genotyping was performed on tail 

extracted genomic DNA by PCR using primer sequences: 5’-

CTGGCTTCTGAGGACCG-3’ (wildtype forward), 5’- 

AGCCTGCCCAGAAGACTCC-3’ (wildtype reverse), 5’-

GCTAACCATGTTCATGCCTTC-3’ (mutant forward), and 5’-

CTCCGTCGTGGTCCTTATAGT-3’ (mutant reverse).  

 

2.2 Plasmid construction  

  The plasmid containing sgRNAs targeting PTEN and TP53 in mCherry 

vector (sgPTEN-TP53) was constructed by GeneScript. Sequence containing 

mouse U6 promoter (Das et al., 1988), sgRNA targeting PTEN (5’- 

AGATCGTTAGCAGAAACAAA-3’) (Xue et al., 2014), sgRNA scaffold, spacer 

sequence (5’-

TTTTTTTAGCCGAACTGTTTCACACTCACGCGTCCAAGGTCGGGCAGG

AA-3’), human U6 promoter (Kunkel et al., 1986), and sgRNA 

targeting TP53 (5’- CCTCGAGCTCCCTCTGAGCC-3’ described) (Xue et al., 
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2014) (full insert sequence in Supplementary Information 1) was cloned into AseI 

restriction site in mCherry-C2 (Addgene # 54563).  

 

2.3 sgRNA validation 

  sgRNAs targeting PTEN or TP53 were cloned pX330 vector (Addgene 

#42230) (termed sgPTEN and sgTP53, respectively) and validated in vitro in 

NIH/3T3 cells (ATCC CRL-1658). Cells were plated in DMEM supplemented 

with FBS (10%) at 20% confluency 16 hours prior to transfection. Cells were 

transfected with 1ug of sgPTEN or sgTP53 and 0.5ug CAG-GFP (Addgene # 

16664) (Zhao, 2006) using Lipofectamine LTX with PLUS Reagent 

(ThermoFisher Scientific #A12621) according to manufactures instructions. 24 

hours post-transfection media was changed to fresh DMEM (10% FBS). Cells 

were sorted for positive GFP signal using FACS 72 hours-post transfections. 

Genomic DNA was used to amplify sgRNA target site using: 5’- 

TGCGAGGATTATCCGTCTTC-3’ (PTEN forward), 5’- 

AACGTGGGAGTAGACGGATG -3’ (PTEN reverse), 5’-

TCTGTCCTCCATGTTCCTGG-3’ (TP53 forward), 5’-

TTTCTCTCAGGCAAGGGGAG-3’ (TP53 reverse).  

PCR parameters: 95°C 3:00 minutes, 35 cycles of 95°C for 30 seconds, 62°C for 

seconds, and 72°C for 1 minute, with a final extension at 72°C for 5 minutes.  

PCR amplicons were purified by adding 1 volume of isopropanol and 1/10 

volume of sodium acetate, subsequentially washed with 70% ethanol and air 
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dried. Surveyor Assay (IDT #706020) was conducted on PCR amplicons 

according to manufactures instructions and analyzed on a 1% agarose gel.  

 

2.4 sgPTEN-TP53 plasmid validation 

NIH/3T3 cells were transfected as described in Section 2.3 with 1ug of 

sgPTEN-TP53 and 0.5ug pX330. Cells were sorted for positive mCherry signal 

using FACS 72 hours-post transfections. Genomic DNA used to generated 

amplicons as described in section 2.3. Amplicons were sent to Sequtech for single 

primer extension sequencing using PTEN forward and TP53 forward primers. 

 

2.5 Electroporation  

Bladder electroporation performed as described by a technique developed 

by the Wang lab  (Yu et al., 2018). Female mice were anesthetized using 

isoflurane vaporizer (VetEqiup #901806) set for 3% for induction and 2% for 

maintenance. Bladders were catheterized using a 24G catheter (Fisher scientific # 

1484121). Veterinary lubricant was applied to the catheter and the urethral orifice 

prior to catherization. The bladder was depleted of urine and rinsed with PBS 

(80ul) 3 times by injection through the catheter. Then bladders were injected with 

plasmid solution consisting of 20ul of 1ug/ul plasmid and 1ul of Trypan blue 

stain. Subsequently, the urethral orifice was tied, the mouse skin and abdomen 

were cut to expose the bladder. Electroporation was conducted by grabbing the 

bladder using a 7mm platinum tweezertorde with ECM830 Electroporation 
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Generator (BTX #450052) set to the following parameters: 33V, 50ms working 

time, and 950ms interval time. Following electroporation, the abdomen and skin 

were sutured and clipped. See Supplementary Figure 1 for visual representation of 

electroporation technique. Plasmids electroporated: CAG-GFP (Addgene # 

16664) (Zhao, 2006), pQC membrane CFP IX plasmid (Addgene # 37336; 

hereafter termed CFP plasmid) , mCherry-C2 (used as empty vector control), or 

sgPTEN-TP53. 

 

2.6 Tissue collection and processing 

Bladders were dissected and fixed using 4% paraformaldehyde (PFA) or 

with 10% formalin. PFA treated bladders were fixed for 5 hours. Subsequently 

slides were treated in 30% sucrose for 48 hours, and in 1:1 sucrose: OCT 

compound (Sakura) for 6 hours. Tissue were cryo-embedded in OCT at -80°C. 

Formalin fixed bladders were fixed overnight, and subsequently 

dehydrated in 70% ethanol for 30 min, 95% ethanol for 30 min, 3 times in 100% 

ethanol for 30 min, and 3 times in xylene for 10 min. Following dehydration, 

tissue samples were incubated in paraffin overnight, and subsequently embedded 

in paraffin wax. 

 

2.7 Histology  

Histology was performed on 3μm formalin fixed paraffin section slides 

using Hematoxylin and Eosin (H&E) staining. Tissues were deparaffinized and 
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rehydrated by treatment in xylene for 5 min twice, 100% ethanol for 1 min, 95% 

ethanol for 1 min, 70% ethanol for 1 min, and in distilled water for 5 min. Harris 

Modified Method Hematoxylin (Fisher SH26500D) stain was applied for 5 min, 

washed in distilled water for 5 min. Excess background stain was removed by 

dipping the silds 8 times in 70% ethanol (containing 0.38% HCl). Hematoxylin 

stain was chemically converted a blue stain by dipping in 0.1% NH3OH 8 times. 

Slides were subsequentially washed in distilled water for 5 min. Eosin Y Phloxine 

(VWR # 101410-926 ) was applied for 10 seconds, and slides were dehydrated by 

8 dips in 95% ethanol, 8 dips in 100% ethanol, and treated with xylene for 5 min 

twice. Coverslips were mounted using Permount Mounting Media for H&E 

(Fisher #SP15-100). 

 

2.8 Immunofluorescence staining 

Immunofluorescence (IF) was performed as described on 3μm paraffin 

sections or 6μm cryosections. Paraffin slides were deparaffinized and rehydrated 

prior to staining. Slides were washed in PBST 3 times for 5 minutes, and 

subsequently boiled in Antigen Unmasking Solution (Vector Labs) for 15 

minutes, and subsequentially washed with PBST 3 times. Blocking was conducted 

using 10% Normal Goat Serum diluted in PBS (10% NGS) at room temperature 

for 1 hour. Primary antibodies (Table 2.7) were diluted in 10% NGS and 

incubated with samples overnight at 4°C. mCherry antibody was diluted in 

Normal Horse Serum.  Slides were washed with PBST 3 times, incubated with 



 19 

secondary antibodies diluted (1:600) in 10% NGS for 1 hour at room temperature, 

and washed with PBST 3 times. Secondary antibodies used: Alexa Fluor 488, 

555, or 647 (Invitrogen/Molecular Probes). Coverslips were mounted with 

mounting medium containing DAPI (Vector Labs H1200) and sealed. 

 

Table 2.1: Primary antibodies used for immunofluorescence staining  
Antigen Supplier Ig type Dilution 
CK5 Covance #PRB-160P Rat IgG2a 1:1000 
CK18 Abcam #ab668 Rabbit IgG 1:200 
GFP Abcam #13970 Chick IgY 1:4000 
E-Cadherin BD Biosciences #610181 Mouse IgG2a  1:500 
Ki67 DakoCytomation #M7249 Rat IgG2a 1:500 
Foxa1 Abcam #ab23738 Rabbit IgG 1:2000 
mCherry SICGEN #AB8181-200 Goat IgG 1:500 

 

2.9 Imaging 

Whole bladder images and direct GFP visualization were acquired using 

Nikon SMZ-1000 stereomicroscope with fluorescence and charge-coupled device 

digital camera. H&E and IF slides were imaged using a Zeiss AxioImager 

microscope in the UCSC Microscopy Shared Facility. 

 

2.10 Cell dissociation, and deep sequencing  

The urothelium was of 12 Cas9 bladders electroporated with sgPTEN-

TP53 was excised from the bladder two weeks post-electroporation. The 

urothelium was digested in DMEM containing 0.25% Trypsin-EDTA (Stemcell 

Technologies Inc # 07901) and 300U/ml Collagenase B (Sigma #11088807001) 
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for 1.5 hours at 37°C. Digestion media was deactivated with  HBSS (2% FBS) 

and removed by centrifugation at 350*g for 5 min. 1ml of 5mg/ml Dispase 

(Stemcell Technologies Inc # 07913) was added and used to dissocate the sample 

by pipetting for 1 minute. Dispase was deactivated by adding HBSS (2% FBS). 

Cells were strained through a 40 μm cell strainer, and media was removed by 

centrifugation at 350*g for 5 min. Then cells were resuspended in HBSS (2% 

FBS) with EDTA (1.5mM) and sorted for mCherry signal by FACS.  

Genomic DNA was isolated from cells and used to amplify TP53 and 

PTEN sgRNA target loci (using same primers and parameters as section 2.3). 

PCR amplicons were purified using QIAquick Gel Extraction Kit (QIAGEN # 

28506) on a 1% agarose gel.  Amplicons were sequenced at UC Davis Genome 

Center for sequencing using Illumina MiSeq platform (300bp pair-end). Data was 

processed and analysed by the UC Davis Bioinformatics Core. Sequence variants 

were determined using FreeBayes, and sequence alignment was conducted using 

CLUSTAL multiple sequence alignment by MUSCLE (3.8).  
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Chapter 3: Results 

3.1 Development and testing of plasmid delivery by 

electroporation 

To implement the CRISPR/Cas9 system in mice, sgRNA must be 

introduced into the urothelium. One method to deliver sgRNAs into cells is 

through the incorporation of the sgRNA into an expression plasmid. There are no 

established methods for plasmid delivery into the bladder urothelium in vivo. 

Plasmid delivery using adenovirus in the bladder yields low delivery rates and 

requires access to biosafety level 2 laboratories (Puzio-Kuter et al., 2009). 

Experiments using adeno-associated viruses by our lab failed to delivery plasmid 

into the urothelium. Electroporation is a non-viral technique utilized in vivo for 

plasmid delivery, and is commonly used in vivo in muscles, embryonic mouse 

brain, and liver (Aihara and Miyazaki, 1998)(Saito and Nakatsuji, 2001) (Heller et 

al., 1996). The Wang lab developed a novel technique utilizing electroporation to 

deliver plasmids into the mouse bladder urothelium in vivo. Briefly, this 

technique involves injecting plasmid directly into the bladder urothelium and 

electroporating the bladder (Fig 3.1) (Yu et al., 2018).   

In order to validate the electroporation technique, determine the 

efficiency, and characterize the affected cell types, mice bladders were 

electroporated with pCAG-GFP. Bladders were dissected and analyzed for GFP 

fluorescence 48 hours post-electroporation. Whole bladders electroplated with 
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pCAG-GFP exhibited positive GFP signal, compared to the negative control (Fig 

3.2a). Immunofluorescence staining for GFP, CK5 (basal and intermediate cell 

marker), and CK18 (intermediate and umbrella cell marker) indicate GFP signal 

in all three cell types. No GFP signal is present in the muscle layer (Fig 3.2b). 

Approximately 15% of the urothelial cells exhibited positive GFP signal. Positive 

GFP signal was present 7- and 14-days post-electroporation (Fig 3.2c and d).  

Delivery of multiple plasmids was investigated by co-electroporation of CFP and 

mCherry plasmids. CFP is expressed in 72% of mCherry postive cells (Fig 3.3). 

 

 

 
Figure 3.1: Bladder urothelium electroporation technique. 
Images from Yu et al. video demonstrating bladder electroporation depicting 
major steps: bladder catheterization (a), plasmid injection into the bladder lumen 
(b), tying of the urethral orifice to prevent plasmid backflow (c), and 
electroporation of the bladder (d). 
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Figure 3.2: Electroporation successfully delivers plasmids into mouse 
bladder urothelium 
a) Whole mouse bladders unelectroporated control (left) and electroporated with 
GFP plasmid (right) shown in brightfield and direct GFP  visualization. b) 
Sections of GFP electroporated bladder IF stained for GFP, CK5, CK18, and 
DAPI. Sections of bladder electroporated with GFP plasmid analyzed 7- (c) or 14-
days (d) post-electroporation using direct GFP visualization and DAPI. Scale bar 
corresponds to 1 mm in (a) and 50 μm in (b, c, and d). (a, and b) are from Yu et 
al. 2018 
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Figure 3.3: Co-electroporation of plasmids into the bladder urothelium. 
Sections of bladder co-electroporated with mCherry and CFP plasmids. 
Florescence analyzed by direct visualization of mCherry and CFP. Nuclei stained 
with DAPI. Scale bar corresponds to 50 μm. 
 

 

3.2 Design and validation TP53 and PTEN sgRNA plasmid 

Mutations to common tumor suppressor genes TP53 and PTEN, using Cre-LoxP 

were shown to induce MIBC in mice (Puzio-Kuter et al., 2009). In order to 

recapitulate this phenotype using CRISPR/Cas9 by electroporation, sgRNAs 

targeting PTEN and TP53 (hereafter termed sgPTEN and sgTP53, respectively) 

were cloned into a mCherry plasmid and validated. The sgTP53 and sgPTEN 

sequences utilized in this study were previously used in vivo liver cancer models 

(Xue et al., 2014). The sgRNAs were initially validated for mutation at the 

targeted loci. NIH/3T3 cells were transfected with Cas9 expression plasmid 

containing sgTP53 or sgPTEN. Genomic DNA was amplified at the targeted loci, 

and the Surveyor Assay was used to analyze for mutations. Cells transfected with 

sgTP53 or sgPTEN incurred indels indicated by the presence of bands compared 

to wildtype cells (Fig 3.4). 
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For plasmid delivery by electroporation sgTP53 and sgPTEN were cloned 

into an mCherry vector, under the expression of a mouse and human U6 

promoters, respectively (plasmid hereafter termed sgPTEN-TP53) (Fig 3.5a). To 

determine if sgPTEN-TP53 properly cuts at PTEN and TP53 loci, NIH3T3 cells 

were co-transfected with sgPTEN-TP53 and Cas9 expression plasmids, sgRNA 

target sites were amplified and analyzed by sequencing. Sequencing results 

indicated the presence of mismatches around the TP53 and PTEN target cut site 

locus, as noted in the presence of different peaks (Fig. 3.5b). 

 

 

 
Figure 3.4: Validation of sgPTEN and sgTP53 in vitro. 
Validation of sgPTEN (a) or sgTP53 (b) using the Surveyor Assay. NIH/3T3 cells 
were transfected (+, experimental) or not transfected (-, control) with plasmid a 
pX330 containing sgPTEN or sgTP53. Surveyor assay was conducted on PCR 
amplicons of the target loci. (a) sgPTEN target amplicon is 413 bp and present in 
both control and experimental samples. sgPTEN Surveyor product is 303 bp in 
experimental sample. (b) sgTP53 target amplicons is 331 bp present in both 
control and experimental samples. sgTP53 product is 229 bp in the experimental 
sample. Samples were run 1% agarose gel. Gel images were cropped due presence 
of unrelated samples.  
 

 



 26 

 
Figure 3.5: Validation of sgPTEN-TP53 plasmid in vitro. 
a) Diagram of the sgPTEN-TP53 plasmid. sgRNAs targeting PTEN and TP53 
were cloned into a mCherry plasmid under the expression of mouse U6 (mU6) 
and human U6 (hU6) promoters, respectively. b) Sanger sequencing results of 
sgRNA target locus amplicons generated by transfection of NIH/3T3 cells with 
sgPTEN-TP53 and Cas9 plasmid. sgRNA sequence is underlined in purple, and a 
dashed line indicts the expected Cas9 cut site. 

 

 

3.3 In vivo validation of sgPTEN-TP53  

To determine if sgPTEN-TP53 induces mutations in vivo, deep 

sequencing was performed on sgRNA target amplicons generated from sgPTEN-

TP53 electroporated Cas9 urothelial cells. Urothelial cells were collected 2 weeks 

post-electroporation with sgPTEN-TP53, and amplicons were generated for the 
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PTEN and TP53 sgRNA target loci. Examples of mutations caused by sgPTEN-

TP53 on TP53 and PTEN target locus are shown in Figures 3.6a and b, 

respectively. Indel mutation analysis reveals that the majority of the mutations at 

the TP53 locus induce frameshifts (deletions of 1,2,4,5,7, or 8 and insertions of 1, 

or 2 nucleotides). Large deletions (>9 nucleotides) were also observed.  

 

 

 

Figure 3.6: In vivo sgPTEN-TP53 mutation analysis. 
a) and b) Example of mutations determined by sequencing of TP53 and PTEN 
sgRNA target loci amplicons, respectively. Positive mCherry urothelial cells were 
sorted by FACS from 12 Cas9 mouse bladders electroporated with sgPTEN-TP53 
2 weeks post-electroporation. c) Indel size analysis for TP53 sgRNA target locus. 
Alignment by CLUSTAL multiple sequence alignment by MUSCLE (3.8) 
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3.4 CRISPR/Cas9 mutation induces tumors in the bladder 

To determine if CRISPR/Cas9 can be used to induce BCa tumors in vivo, 

Cas9 mice were electroporated with sgPTEN-TP53 and histologically analyzed at 

3, 6, or 12 months post-electroporation. For control, Cas9 mice were 

electroporated with an empty mCherry vector or were not electroporated. The 

Cas9 mouse strain was validated for Cas9 expression in the urothelium by the 

expression of the GFP reporter (Fig. 3.7a)(Platt et al., 2014). Electroporation of 

sgPTEN-TP53 was validated by IF staining for mCherry, 2 weeks post-

electroporation (Fig 3.7b). Both mCherry electroporated and not electroporated 

bladder were histologically identical and displayed a normal urothelium. Non-

pathologically significant lymphocyte infiltration were present in the control mice 

(Fig. 3.8a, b) (Frazier et al., 2012). 

    Experimental sgPTEN-TP53 revealed no phenotypic changes after 3- or 

6- months (n=6 for each time point) post-electroporation (Fig 3.9a, b). 

Lymphocyte infiltration was observed at 6- and 12- month time points. 12 months 

post-electroporation, 2 bladders electroporated with sgPTEN-TP53 (n=6) 

exhibited increased urothelial layer indicating a tumor phenotype (Fig 3.9c, d). 

The tumors were phenotypically different. The tumor in Figure 3.4c exhibited 

growth into the lumen and characteristics of carcinomas: irregularity in cell size, 

loss of cell polarity, and nuclear pleomorphisms. The tumor in Figure 3.4d 

exhibited an increase of the urothelial layer and resembles hyperplasia (Mostofi et 

al., 1973)(Montironi and Lopez-Beltran, 2005) (Humphrey et al., 2016).   
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Figure 3.7: Validation of Cas9 expression and sgPTEN-TP53 electroporation 
in the urothelium. 
a) Bladder urothelium section of Cas9 mice, direct GFP visualization reports 
expression of Cas9. b) Bladder urothelium of Cas9 mouse 2 weeks post-
electroporation with sgPTEN-TP53, IF stained for mCherry, CK5, CK18. Nuclei 
are shown using DAPI. Scale bar corresponds to 50 μm.   
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Figure 3.8: Histology of control Cas9 bladders. 
Representative histological images of  a) Cas9 bladder sections electroporated 
with mCherry control plasmid analyzed 6 months post-electroporation and b) 9-
month-old Cas9 mouse bladder sections not electroporated. Both bladders exhibit 
lymphocytic aggregates. Scale bars corresponds to 50 μm.  
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Figure 3.9: Histology of bladders electroporated with of sgRNAs targeting 
TP53 and PTEN.  
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(Figure 3.9 continued) Histological analysis of Cas9 bladder sections 
electroporated with sgPTEN-TP53 3- (a), 6- (b), and 12- months (c, d) post-
electroporation (n=6 for each time point). (a, b) are representative images from 
the entire cohort. (c, d) Represent 2 different mice bladders. Tumor in (c) 
resembles carcinoma phenotype, and (d) resembles hyperplasia. Scale bar 
corresponds to 50 μm. 
 

 

3.5 Pathology of CRISPR/Cas9 induced bladder tumors  

Immunofluorescent (IF) staining was used to characterize the pathology of 

the electroporated bladders. The histologically identified tumors were analyzed 

for epithelial markers. The mouse bladder is expected to have a single layer of 

Umbrella cells (CK18 positive), a single layer of intermediate cells (CK5 

positive), and two layers of intermediate cells (lower levels of CK5, and CK18), 

as observed in wildtype bladders (3.10). Bladders identified with a tumor 

phenotype exhibited an increased in the CK5 layer, compared to wild type regions 

(Fig. 3.11a and 3.12a). Only a single layer of CK18 is present in the tumor region 

(Fig. 3.11a). E-cadherin is an epithelial cell surface marker and normally 

expressed in the urothelium, and loss of E-cadherin is associated increased tumor 

aggression (Shorning et al., 2011). E-cadherin was expressed in the urothelium of 

both tumors (Fig 3.11a, and 3.12b). Foxa1 is an epithelial transcription regulator 

and expected to be expressed in all urothelial cells. Decreased Foxa1 expression 

associated with basal/squamous MIBC subtype (Osei-Amponsa et al., 2019). 

Foxa1 expression is found in the tumor region (Fig 3.11c). 
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Ki67 marks cells undergoing proliferation and used for cancer diagnoses 

(Scholzen and Gerdes, 2000). Bladders were IF stained for Ki67, and Ki67 index 

was quantified. The wildtype mouse urothelium is quiescent, and low positive 

Ki67 staining is expected (Jaal and Dörr, 2010) (Stewart et al., 1980). Control 

mice exhibited an average of 0.32% Ki67 positive nuclei (Fig 3.10a). The tumor 

histologically resembling carcinoma exhibited 13% Ki67 positive nuclei (Fig 

3.11a). In comparison, the tumor histologically resembling hyperplasia exhibited 

0.55% Ki66 positive nuclei (Fig 12a).   
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Figure 3.10: Pathology of control Cas9 bladders. 
Representative images of 6-month-old Cas9 bladder sections immunofluorescent 
stained for a) CK5, Ki67 b) CK18. Nuclei stained with DAPI. Scale bars 
corresponds to 50 μm. 
 

 

 



 35 

 

Figure 3.11: Increased cell proliferation and basal cell layer due to sgPTEN-
TP53 in tumor resembling carcinoma. 
Cas9 mouse bladder sections electroporated with sgPTEN-TP53 analyzed 
pathologically analyzed 12-months post electroporation by IF staining for a) CK5, 
E-cadherin (E-cad), and Ki67. b) CK18, Ki67. c) Foxa1, Ki67. Sections are 
adjacent to bladder sections from Figure 3.4c. Nuclei stained with DAPI. Scale 
bars corresponds to 50 μm. 
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Figure 3.12: sgPTEN-TP53 induced an increase in the CK5 basal cell layer. 
Pathological analysis of Cas9 bladder electroporated with sgPTEN-TP53 analyzed 
12 months post-electroporation with tumor remembering hyperplasia IF stained 
for a) CK5, Ki67 b) E-cadherin (E-cad). Nuclei stained with DAPI. Sections are 
adjacent to bladder sections from Figure 3.4d. Scale bars corresponds to 50 μm. 
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Chapter 4: Discussion 

Recent sequencing studies identified frequently mutated genes in BCa; 

however, it is unknown how many of these mutations impact BCa pathogenesis 

(Robertson et al., 2017)(Pietzak et al., 2017). Current in vivo Cre-LoxP models 

are inefficient studying BCa disease pathogenesis due to the time and expense 

required to generated floxed mice for mutated genes, and also depend on available 

flox genes (Kobayashi et al., 2015). This project described a novel method 

overcome those hurdles by utilizing CRISPR/Cas9, by which plasmids containing 

sgRNAs are delivered to the mouse urothelium by electroporation.  

This study demonstrated the feasibility of DNA plasmid delivery into the 

mouse urothelium by electroporation. Electroporation of mCherry and GFP 

expression plasmids into the urothelium was shown, and the fluorescence signal 

was observed for at least 2 weeks post-electroporation. Furthermore, this 

technique can be utilized to deliver multiple plasmids into the urothelium. This 

non-viral approach provides the field with a new tool for DNA delivery to the 

urothelium and can be used in lieu of adenovirus for Cre delivery into the 

urothelium.  

As a proof-of-principle experiment on the utilization of CRISPR/Cas9 to 

investigate bladder carcinogenesis, a plasmid containing sgRNAs targeting PTEN 

and TP53 was electroporated into the bladder of Cas9 mice to recapitulate an 

established BCa model. Overall, two tumors were observed (33% efficiency). 



 38 

These tumors are characterized as hyperplasia and low-grade papillary tumors. 

However, these phenotypes need to be validated by a pathologist. Notably, both 

tumors exhibited an increase of the CK5 layer, suggesting a basal or intermediate 

cell of origin, but due to plasmid penetrance into all urothelial cell types, it is 

difficult to infer the cell of origin.  Experiments using lineage tracing are required 

to determine the cell of origin. 

The CRISPR/Cas9 model is not as efficient as the PTEN and TP53 the 

Cre-LoxP models described. Adenovirus delivery of Cre induced tumors at 100% 

penetrance by 6 months post-infection and resulted in invasive and metastatic 

phenotypes (Puzio-Kuter et al., 2009). The UP3a-CreERT2 knockout model 

resulted in 95% efficiency by 77 weeks with similar phenotypes to the adenovirus 

model (Saito et al., 2018).  

Differences between Cre-LoxP and CRISPR/Cas9 are due to the 

underlying biology behind those techniques. Cre-LoxP knockout excises a large 

gene segment by recombination, ensuring complete deactivation of genes. In 

contrast, CRISPR/Cas9 induced mutations depend on the NHEJ mechanism 

leading to heterogenous indel mutations (mosaic mutations), potentially not 

inducing biallelic inactivation of TP53 and PTEN. Importantly, Puzio-Kuter et al. 

observed that biallelic knockout both TP53 and PTEN is required for bladder 

carcinogenesis. Further, mosaicism challenges tumor comparisons and requires 

sequencing to gain biological insight. Overcoming the hurdles of CRISPR/Cas9 is 
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beneficial as this technique would dramatically reduce the cost and time for 

bladder cancer modeling. 

One approach to reduce CRISPR/Cas9 mutational variability is gene 

inactivation at the transcriptional level using CRISPR interference (CRISPRi). 

This technique utilizes an endonuclease inactive or dead Cas9 (dCas9), which 

maintains its genomic targeting function. dCas9 can be used block transcription 

initiation or elongation by design of sgRNAs targeting promoter or the target 

gene, respectively (Qi et al., 2013). CRISPRi was used to induce lymphoma in 

immunocompromised mice by transplantation of lymphocytes silenced for TP53 

using dCas9 (Braun et al., 2016). However, direct in vivo CRISPRi models have 

yet to be established.  

 In conclusion, this work demonstrated the feasibility of using 

CRISPR/Cas9 to model BCa in vivo, accomplished but the delivery of sgRNA 

expression plasmids by electroporation into the bladder of Cas9 expressing mice. 

This technique used to study the effects of other genes on BCa in vivo but requires 

optimization to improve tumor penetrance.  
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Appendix  
 

Full sgPTEN-TP53 insert sequence.  
 
Sequence inserted into AseI restriction site in mCherry-C2 (Addgene # 54563) to 
construct sgPTEN-TP53 for electroporation expreriment. Sequence contains 
mouse U6 promoter, PTEN sgRNA and scaffold, spacer sequence, human U6 
promoter, TP53 sgRNA and scaffold. 
 
5’- GATCCGACGCCGCCATCTCTAGGCCCGCGCCGGCCCCCTCGCACAG 
ACTTGTGGGAGAAGCTCGGCTACTCCCCTGCCCCGGTTAATTTGCATA
TAATATTTCCTAGTAACTATAGAGGCTTAATGTGCGATAAAAGACAGA
TAATCTGTTCTTTTTAATACTAGCTACATTTTACATGATAGGCTTGGAT
TTCTATAAGAGATACAAATACTAAATTATTATTTTAAAAAACAGCACA
AAAGGAAACTCACCCTAACTGTAAAGTAATTGTGTGTTTTGAGACTAT
AAATATCCCTTGGAGAAAAGCCTTGTTGAAACACCGAGATCGTTAGCA
GAAACAAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGT
CCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTAGCC
GAACTGTTTCACACTCACGCGTCCAAGGTCGGGCAGGAAGAGGGCCT
ATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGA
GAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAA
AATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTA
AAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAG
TATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG
CCTCGAGCTCCCTCTGAGCCGTTTTAGAGCTAGAAATAGCAAGTTAAA
ATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGC
TTTTTTTGGATCCAATTCTACC -3’ 
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