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ABSTRACT OF THE DISSERTATION

Electrodeposition of Electroluminescent CdSe Nanowire Devices

By

Shaopeng Qiao

Doctor of Philosophy in Physics

University of California, Irvine, 2018

Professor Reginald M. Penner , Chair

Electrodeposited nano-materials have huge potential to reduce the cost of nano and micro

fabrications dramatically especially in light emitting diodes field. It is difficult to fabricate

high performance devices and understand the working mechanisms due to the polycrystalline

nature of most electrodeposited materials. In this dissertation, electrodeposited cadmium

selenide was used to fabricated two different structures of light emitting devices. In the

second chapter, the preparation by electrodeposition of transverse nanowire electrolumines-

cent junctions (tn-ELJs) is described and the electroluminescence (EL) properties of these

devices are characterized.The resulting linear array of nickel-CdSe-gold junctions produce

electroluminescence (EL) with an external quantum efficiency, EQE, and threshold voltage,

Vth, that depends sensitively on wCdSe. EQE increases with increasing electric field and also

with increasing wCdSe, and Vth also increases with wCdSe, and therefore the electrical resis-

tance, of the tn-ELJs. Vth down to 1.8(±0.2)V (for wCdSe ≈100 nm) and ηEL of 5.5(±0.5)

× 10−5 (for wCdSe ≈450 nm) are obtained. tn-ELJs produce a broad EL emission envelope,

spanning the wavelength range from 600 - 960 nm. In the third chapter, A wet chemical

process involving two electrodeposition steps followed by a solution casting step, the EESC

process, is described for the fabrication of electroluminescent, radial junction wires. EESC

is demonstrated by assembling three well-studied nanocrystalline (or amorphous) materi-

als: Au,CdSe, and PEDOT:PSS. The tri-layered device architecture produced by EESC

xv



minimizes the influence of an electrically resistive CdSe emitter layer by using a highly con-

ductive gold nanowire that serves both as a current collector and a negative electrode. Hole

injection, at a high barrier CdSe-PEDOT:PSS interface (φh ≈ 1.1 V), is facilitated by a con-

tact area that is 1.9 - 4.7 fold larger than the complimentary gold-CdSe electron-injecting

contact (φe ≈ 0.6 V) contributing to low voltage thresholds (1.4 - 1.7 V) for EL emission.

Au@CdSe@PEDOT:PSS wire EL emitters are 25 µm in length, but the EESC process is

scalable to nanowires of any length, limited only by the length of the central gold nanowire

that serves as a template for the fabrication process. Radial carrier transport within these

multishell wires conforms to the back-to-back diode model.
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Chapter 1

Introduction

1.1 Electroluminescence from Electrodeposited Semi-

conductor Nanostructures

Adapted with permission from (S. Qiao et al. ACS Nano 2016, 10, 8233 8242.) Copyright

(2016) American Chemical Society.

Methods for patterning nanometer-scale electroluminescent (EL) structures on surfaces will

be required for a variety of anticipated device applications ranging from chemical sensors,

to information transfer and processing, and interfaces to biological systems.[104, 57, 105]

Single semiconductor nanostructures were first electrically stimulated to emit light in 2001

when Lieber and coworkers reported light emission at the forward-biased junctions between

crossed n-doped and p-doped InP nanowire junctions.[27] Many creative device architec-

tures for nanostructure EL devices have subsequently been demonstrated based upon sin-

gle nanowires,[6, 116, 117, 24, 33] nanowire arrays interfaced to films,[107, 34, 12] crossed

nanowire p-n junctions,[38, 42, 115] and core-shell hetrostructures,[77, 94, 37, 54, 8] In the

1



specific case of devices based upon cadmium selenide (CdSe) - the semiconductor of interest

here - external quantum efficiencies (EQEs) are generally in the 10−7 to 10−5 range (Table

1.1).

Work on films of thousands or millions of semiconductor nanocrystals preceded experiments

on single nanostructures. These films are macroscopic in two dimensions, and nanoscopic

in the third, or thickness dimension. Bulovic and coworkers first demonstrated that lay-

ers of CdSe nanocrystals could produce EL in 1992.[17] Although EQE for these devices

were initially as low as those seen for emissive devices based upon single semiconductor

nanostructures,[19, 18] it was soon discovered that the insertion of hole-transporting layers

(e.g. PEDOT) and electron-injecting layers (e.g. ZnO) sandwiching the emitting layer el-

evated the EQE to 1% or higher,[51, 114, 41, 71, 106] (for recent reviews, see: [84, 90]).

Multi-layer, multi-junction wires that are optimized for efficient EL can be obtained using

epitaxial growth processes, starting with vapor-liquid-solid (VLS) growth of III-V vertical

nanowire forests.[80, 23, 94, 77, 48, 39, 43, 9, 40] These processes yield very low defect mate-

rials, with excellent control of layer thicknesses, composition and lattice match, resulting in

efficient, bright EL light emitters. But these exquisite architectures are obtained at the high

cost of the required vacuum and thermal processing and the requirement for significant and

nontrivial post-synthesis processing to position wire emitters within circuits, attach electri-

cal contacts, etc. A second issue is the fact that long wires, beyond 5 µm in length, are not

generally accessible using this approach.[80, 23, 94, 77, 48, 39, 43, 9, 40]

At the other end of the spectrum are solution processing methods that facilitate the high-

throughput assembly of materials that can be nanocrystalline or even amorphous into devices

consisting of layers that are stacked along the direction of charge transport. A layer of semi-

conductor nanocrystals is usually the EL emissive element in these devices.[109, 50, 97, 111,

1, 20, 56, 44, 65] Again, a diversity of efficient and bright EL light emitting systems have been

demonstrated for a range of semiconductor emitters. The catch is that solution processing
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Table 1.1: Performance of CdSe Nanostructure-Based Electroluminescent Junctions.

Junction Electrode Spectral
Descriptiona Spacing Vth

b Range EQEmax
c Ref

(nm) (V) (nm)
nc films
CdSe QD 1000 4 480-650 1-10×10−5 [18]
CdSe QD-PVK 70-120 5-7 615-650 5×10−6 [19]
CdSe QD-TPD 40 3 540-590 5.2×10−3 [17]
CdSe-CdS
core-shell QD - - 4 600-630 4-8×10−3 [114]
CdSe-CdS
core-shell QD - - 1.5 600-635 0.12-0.18 [55]
CdSe QD TPD - - 15.5 400-750 1.4×10−6 [82]
CdSe-CdS
nanoplates 122-144 2.25 530-600 0.05 [110]
CdSe-CdS
dot-in-rod QD 175 3 600-700 0.061 [11]
CdSe-CdZnS QDs
core-shell QD 150 1.7 580-670 0.182 [113]
CdSe-CdZnS QDs
core-shell QD 130-135 2.5 470-550 0.06 [52]

single
nanostructures
CdSe NR 30 1.7(±0.1) 650-820 10−5 [33]
CdSe NW 2000-6000 4 620-850 (1-5)×10−6 [24]

nc-CdSe
in a nanogap 200 1.5(±0.2) 650-890 1.8(±0.7)×10−6 [100]

nc-CdSe
NW arrays 600 6.2(±0.5) 610-890 4(±1)×10−6 [3]

CdSe tn-ELJ 448 6.9(±0.3) 560-960+ 4.9(±0.2)×10−5 [78]

EESC
Au@CdSe@PEDOT:PSS 302 1.44(±0.02) 650-800 3.8(±0.6)×10−4 this work

595 1.50(±0.00) 650-800 9(±2)×10−5 “
788 1.53(±0.03) 650-800 1.9(±0.6)×10−4 “
953 1.60(±0.04) 650-800 1.5(±0.6)×10−4 “
1164 1.70(±0.04) 650-800 7.1(±0.2)×10−5 “

aAbbreviations: NR = nanorod, NW = nanowire, nc = nanocrystals or nanocrystalline, PVK =

poly(vinylcarbazole), TPD = N,N’ - diphenyl-N,N’ - bis(3-methylphenyl) - (1,1’-biphenyl) -

4,4’-diamine. bVth = Eapp at the EL emission threshold. cEQEmax = The maximum EQE.
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methods have been limited to the preparation of two-dimensional films with millimeter-scale,

or larger, lateral dimensions.[109, 50, 97, 111, 1, 20, 56, 44, 65] Adapting these methods to

nonplanar geometries such as cylinders or wires is not easily accomplished and radial junc-

tion EL-emitting devices, analogous to those obtained by epitaxial deposition, have not be

achieved using solution processing to our knowledge.

Here, we describe two different electroluminescent metal-semiconductor-metal (M-S-M) nanos-

tructures fabricated using solution processing methods. The first type of device is structured

by locating nickel and gold contact on the opposite sides of nc-CdSe nanowires along the

transverse direction. Light is emitted from the CdSe nanowire to air directly. The second

type of device is structured by stacking each layer coaxially and the gold nanowire works as

the core and CdSe, PEDOT:PSS works as the shell subsequently. Light is emitted from the

CdSe nanowire and then travel through the transparent PEDOT:PSS layer into air.

1.2 Carrier Generation and Transport in M-S-M Struc-

tures

Electroluminescence is generated through the radiative recombination of free electrons and

holes either within the material or at the interface between the material and the contact. So

the density and distribution of these free electrons and holes would be the key factors for

electroluminescence.

For a M-S-M structure, there are three important parts : a) the first metal-semiconductor

(M-S) contact; b) the bulk part of the semiconductor material; c) the second M-S contact.

These two M-S contacts would form two Schottky barriers on two sides. Upon a potential

applied on the two metal contacts, electrons and holes will start to flow within the structure

due to the electric force. The band energy diagram for a n-type M-S-M structure is showed
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Figure 1.1: Band energy diagram for a M-S-M structure under an applied potential. Eapp is
the applied potential, ΦBn is the Schottky barrier height for electrons, ΦBp is the Schottky
barrier height for holes, Φin is barrier height caused by the build in potential for electrons
which is equal to Vbi−V1 where Vbi is the build in potential and V1 is the potential distributed
on this M-S interface

in Figure 1.1. [92, 91, 15] (We are only interested in n-type semiconductor here since the

material CdSe we study is a n-type semiconductor.)

Schottky Emission. For these two M-S contacts, free electrons are injected from the right

contact which forms a reverse biased Schottky barrier with the middle semiconductor and

holes are injected from left contact which forms a forward biased Schottky barrier with

the middle semiconductor. As Figure 1.1 shows, there are two barriers for electron flow

at these two contacts: φBn and φin. φin is much smaller than φBn and would become 0

when Eapp is big enough. So the limiting factor for electron flow is φBn at the right Schottky

barrier. For a n-type semiconductor, the carrier concentration of holes is much lower than the

carrier concentration of electrons, so the contribution of holes to the current can be ignored.

However, hole injection still plays an very important role here. When holes are injected from

the left contact into the middle semiconductor, hole concentration would increase. This
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increase could amplify the probability of radiative recombination of free electrons and holes

within a n-type semiconductor where hole concentration is very small compared to electron

concentration. In summary, the limiting factor for total current or carrier injection at the

two M-S contacts is the barrier height at the reverse biased Schottky barrier.

For a Schottky barrier, current transport is explained by thermionic emission theory, which

can be expressed as[70, 68, 92]

J = J0

[
exp

(
qV

kT

)
− 1

]
(1.1)

and

J0 = A∗∗T 2exp

(
− φb

kT

)
(1.2)

where J0 is saturation current density, q is the unit electronic charge, k is the Boltzmann

constant, T is the absolute temperature, A∗∗ is the effective Richardson constant, and phib

is the Schottky barrier height in eV. With real experimental data, I-V curves usually deviate

from this ideal situation due to the interface states or the image forces. Ideality factor n was

introduced to compensate this difference with n = 1 corresponding to the ideal thermionic

emission. And a bigger n value usually means the electric contact at the interface is not so

ideal and could have a lot of defects. With n, the expression becomes

J = J0

[
exp

(
qV

nkT

)
− 1

]
(1.3)
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If we consider two sides of an identical M-S-M structure: one is reverse bias (diode 1) and

one is forward bias (diode 2), we have

J = J01

[
1− exp

(
− qV1
nkT

)]
(1.4)

J = J02

[
exp

(
qV2
nkT

)
− 1

]
(1.5)

voltage drops on two contacts would be

V1 = −nkt
q
ln

(
1− J

J01

)
(1.6)

V2 =
nkt

q
ln

(
1 +

J

J02

)
(1.7)

Assume there is no voltage drop across the middle materials part, then we V = V1 + V2 and

solve for J

J =
2J01J02sinh( qV

2nkT
)

J01exp(− qV
2nkT

) + J2exp(
qV

2nkT
)

(1.8)

For an asymmetric M-S-M structure, n1 and n2 might be different but there is no analytical
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solution for J anymore. Sinha et al.[88, 87] introduced an approximated equation for J

J =
J01J02sinh( qV

2kT
)

J01exp(− qV
2n1kT

) + J2exp(
qV

2n2kT
)

(1.9)

Poole Frenkel Emission. For the bulk part, free electrons could be generated from traps.

Since the energy level of traps is lower than the conduction band, extra energy would need

to be provided for electrons to jump from this barrier. Similar as Schottky emission, this

process can be realized through thermal activation. Under electric field, the barrier height

could be lowered and this thermal activation process could be enhanced. This is called

Poole-Frenkel (P-F) emission, and it can be expressed as [85, 15]

J = J0 exp

(
βpfE1/2

kT

)
(1.10)

and

J0 = qµNCEexp
(
−φT

kT

)
(1.11)

where βpf is the P-F field-lowering coefficient, E is the magnitude of the electric field (Eapp/d),

µ is the electronic drift mobility, NC is the density of states in conduction band, φT is the

trap energy level in eV.[86, 91] P-F emission could increase the carrier concentration within

the material, and thus enhance the electron and hole recombination. Although the majority

of the recombination would be non-radiatively, but the total radiatively recombination could
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be increased overall. P-F emission usually occurs at relatively high electric field.

Besides electron emission, electron transport also happens within the bulk part and there

could be several different situations.

Hopping Conduction. With outside potential or electric field, electrons could hop from

one trap site to another trap site due to the tunneling effect. It depends on the trap depth

or the distance between the trap states and the bottom of conduction band, the distance

between two traps, and also the field strength. This hopping process can be expressed

as[62, 15]

J = qanνexp

(
qaE − φT

kt

)
(1.12)

where a is the mean hopping distance, n is the electron concentration in the conduction band

of the material, ν is the frequency of thermal vibration of electrons at trap sites, and φT

is the trap energy level in eV. Unlike P-F emission which is a thermionic process, hopping

conduction is a tunneling process. This means this process could only happen when the

average distance between the trap states is relatively small.

Space Charge Limited Conduction. When free electrons are injected into intrinsic and

low doped semiconductor, the electron flow could be affected a lot by space charges which

make the electric field ununiform in the material. Space charge limited conduction (SCLC) is

characterized by Child’s law[13] or Mott-Gurney’s law[63] which has the following expression

J =
9εsµV

2

8d3
(1.13)
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where µ is the carrier mobility, εs is the dielectric constant, and d is the distance between

two electrodes. While keep increasing the voltage applied, all the traps will be filled at

a ”threshold” voltage and the current would increase dramatically. A good approximated

equation was found by Murgatroyd to express this situation[7]

J =
9εsµV

2

8d3
exp

[
0.891

kT

(
e3V

πεsd

)]
(1.14)

Since there is this steep increasing in the current at higher electric field, this process might

get mixed with P-F emission due to similar mathematical relationship. In summary, I − V

curve for a M-S-M structure with SCLC usually has three regions: 1) Ohmic like conduction

region where I − V curve is linear or I ∝ V ; 2) Child’s law region which has I ∝ V 2; 3)

traps-filled-limit (TFL) region which has a enormously steep current rise. With lnI − lnV

curve, the slope would correspond to 1, 2, > 2 regions. [32, 47, 79, 66, 15]

Grain-Boundary-Limited Conduction. For a polycrystalline material, there are a lot

of grain boundaries. When electrons flow to a grain boundary, it would experience a much

higher resistivity than that in the grain. In terms of energy, the grain boundary function

like an energy barrier and it would limit the electron flow. [76, 89] Under extra electric field,

the barrier height could also be lowered like Poole Frenkel emission. So experimentally this

process might not be able to be indentified out separately.

In summary, carrier injection and transportation in a n-type M-S-M structure is dominated

by the electron injection and transportantion. This process could be limited by the contact

and Schottky emission would be the main contributing mechanism. It could also be limited

by the bulk part where multiple mechanisms including P-F emission, SCLC, etc. could

be responsible depending on the material properties and also applied voltage. It would be
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important to understand the working mechanism for the system studied since it would be

related to the electron and hole recombination directly. Through the shape of I − V curve,

we could tell the limiting factors for the system studied and might also see the transitions

between each mechanism.
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Chapter 2

Electrodeposited, Transverse

Nanowire Electroluminescent

Junctions

Reprinted with permission from (S. Qiao et al. ACS Nano 2016, 10, 8233 8242.) Copyright

(2016) American Chemical Society.

2.1 Introduction

In this chapter, we describe a discovery platform that provides a means for electrodeposit-

ing and characterizing the EL properties of linear arrays of many nearly identical metal-

semiconductor-metal (M-S-M) junctions. We use this platform to characterize arrays of

nickel-(nc-CdSe)-gold M-S-M junctions. These junctions are prepared by first electrode-

positing an ensemble of 60 nearly identical nc-CdSe nanowires, and then locating nickel and
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gold contacts on opposite sides of each nanowire along their axes also using electrodeposition.

These devices are termed ”transverse nanowire electroluminescent junctions” or tn-ELJs.

2.2 Process Flow

tn-ELJs are prepared using a process (Figure 2.1) that provides for precise control of the

width (± 5 nm) of the CdSe nanowire - which coincides with the electrical axis of the device

- and the height (± 2 nm) the CdSe nanowire - which corresponds to the optical axis of the

device. A second attribute of tn-ELJs is that the two metal-semiconductor junctions are

both prepared by electrodeposition, thereby insuring electrically intimate contact between

nickel and CdSe (Figure 2.1, step 2), and subsequently, CdSe and gold (Figure 2.1, step 3).

Finally, in contrast to stacks of 2D films where the electrical and optical axes are coincident,

the optical axis of the tn-ELJ is orthogonal to the electrical axis, allowing independent op-

timization of these dimensions for these two functions. The precision of tn-ELJ fabrication

exposes the dominant influence of the nc-CdSe nanowire width, wCdSe, on the two major

metrics characterizing EL performance - the threshold for light emission, Vth, and the EQE.

2.3 Results and Discussion

2.3.1 Electrodeposition

tn-ELJs were prepared using a version of the lithographically patterned nanowire electrode-

position (LPNE) process (Figure 2.1) that we have previously described.[99, 58] The litho-

graphically patterned nickel electrode that is employed for CdSe electrodeposition serves as

one electrical contact to a CdSe nanowire, and the second gold electrode is electroplated at
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Figure 2.1: Simplified process flow for the fabrication of a single transverse nanowire elec-
troluminescent junction (tn-ELJ - for a complete process flow, see Figure S1). In Step 1,
an evaporated nickel film on glass is patterned using photolithography. After spincoat of
a photoresist (PR) layer and some additional processing, a horizontal trench is produced
adjacent to the edge of the nickel film. This trench has dimensions of 60 nm (height), 20
µm (length) and 300 nm ∼ 1µm (depth). In Step 2, this patterned nickel edge is immersed
in a plating solution and CdSe nanowires are electrodeposited within the trench using the
nickel edges as working electrodes. The width of the CdSe nanowires is controlled by the
electrodeposition conditions, which are identical for every nanowire. A gold electrical contact
is then electrodeposited onto each CdSe nanowire. After the trench is filled with gold, the
excess gold emerges from the trench forming a bump, as depicted in Step 3. In Step 4, a gold
film is evaporated onto the entire surface of the device and then, in Step 5, the gold-coated
photoresist layer is removed by lift-off. tn-ELJ devices produce EL light emission upon the
application of a voltage bias to the nickel and gold contacts.
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Figure 2.2: tn-ELJ device pictures. a) Photograph of 6 individual Ni-CdSe-Au tn-ELJ array
devices on glass. The CdSe nanowires are vertically oriented along the left edge of the gold
film. b) Photomicrograph of one of the six devices. Each device has ten individual nickel
contacts to CdSe nanowires, and each is 20 µm in width.

the CdSe surface (Figure 2.1). This process, carried out in parallel, provides a means for

preparing a total of sixty pairs of nickel-gold electrodes in groups of ten, coupled with sixty

nearly identical CdSe nanowires (Figure 2.2).

Uniformity of the CdSe nanowire width is achieved by electrodepositing the CdSe nanowire

according to the reaction: Cd2+ + H2SeO3 + 4H+ + 6e−→ CdSe(s) + 3H2O under conditions

of activation control. Here, this was accomplished using potentiostatic deposition at -0.60

V vs. SCE (Figure 2.3a). Electrodeposition current versus time transients (Figure 2.3b)

show increasing current indicative of an increase in the wetted surface area of the nascent

nanowire during electrodeposition. This increase in wetted surface area is likely the result of

the deposition of a porous CdSe deposit, since voids are visible in some of the SEM images

presented below (Figure 2.4).

In each tn-ELJ, the lithographically patterned nickel electrode used to grow the CdSe

nanowires serves as one electrical contact. The second contact, composed of gold, is prepared

by electrodeposition directly onto the edge of the freshly-deposited CdSe nanowire. Again,

this process is accomplished by the slow, activation-controlled deposition of gold (potentio-

static deposition at -0.90 V vs. SCE (Figure 2.3c)). A quasi-constant deposition current is
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Figure 2.3: Electrodeposition of CdSe nanowires (a,b) and a gold contact (c,d). a) Cyclic
voltammetry (50 mV/s) in the plating solution used for CdSe electrodeposition, containing
0.30 M CdSO4, 0.70 mM SeO2, and 0.25 M H2SO4 at pH 1-2. b) Current versus time
transient for the potentiostatic growth at -0.60V of CdSe nanowires. CdSe nanowires with
widths, wCdSe, ranging from 102 nm to 448 nm were prepared by increasing the electrode-
position time from 20s to 100s. c) Cyclic voltammogram (50 mV/s) for a commercial gold
plating solution acquired using the edges of CdSe nanowires. d) Current versus time tran-
sient for the potentiostatic growth at -0.90V of gold contacts at the CdSe nanowires. A rapid
increase in current, starting at 650s, signals the filling of the photoresist trench.
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Figure 2.4: Scanning electron micrographs of tn-ELJ Ni-CdSe-Au junctions, all 60 nm in
thickness. a) Low magnification image showing the horizontal CdSe nanowire, with top gold
and bottom nickel electrodes. INSET: Higher magnification SEM image of the indicated
region. b-e) EDX elemental maps of the junction region shown in the inset of (a) showing
regions of Au (b), Cd (c), Ni (d), and Se (e). f-j) SEM images of five Ni-CdSe-Au tn-ELJ
having wCdSe varying from 102 nm (f) to 448 nm (j).

observed during this process (Figure 2.3d) until the trench fills with gold (Figure 2.3d, 650s).

At longer times, a rapid increase in the gold deposition current is observed resulting in the

formation of a linear gold bump at the mouth of the trench, parallel to the CdSe nanowire

(Figure 2.4a.) tn-ELJ device fabrication is completed by vapor depositing additional gold

to facilitate the attachment of electrical leads.
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Table 2.1: Fitting Parameters For Calculations of I-V Curves According to the Back-to-Back
Schottky Barrier Model (Eq. 2.1)

wCdSe A∗∗a φB1
b φB2

c n1
d n2

e

(nm) (A cm−2 K−1) (eV) (eV)

102 15.6 0.52 0.57 1.295 1.196
195 15.6 0.52 0.55 1.185 1.127
313 15.6 0.55 0.56 1.125 1.130
399 15.6 0.58 0.59 1.147 1.086
448 15.6 0.62 0.64 1.239 1.209

aA∗∗ = effective Richardson constant.[75]
bφB1 = Schottky barrier height for Ni-CdSe contact.
cφB2 = Schottky barrier height for Au-CdSe contact.
dn1 = ideality factor for Ni-CdSe contact
en2 = ideality factor for Au-CdSe contact

2.3.2 SEM Characterization

SEM images of tn-ELJ Ni-CdSe-Au junctions (Figure 2.4) show that the width of the CdSe

nanowire is conformal with respect to the nickel electrode (Figure 2.4a and inset) and directly

proportional to the electrodeposition time. EDX elemental analysis (Figure 2.4c,e) shows the

CdSe layer to be stoichiometric (Cd:Se=1.02±0.01) within the precision of this measurement.

Five tn-ELJ with different wCdSe values, shown in Figure 2.4f-j, were investigated in this

study. In recent prior work,[4, 100, 3, 46, 45] the properties of the nc-CdSe produced by an

identical procedure have also been characterized by x-ray diffraction, Raman spectroscopy,

and transmission electron microscopy. Electrodeposited nc-CdSe is crystalline, possesses a

cubic crystal structure, and has a mean grain diameter of ≈5 nm.[4, 100, 3, 46, 45]
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Figure 2.5: Electrical characterization of Ni-CdSe-Au tn-ELJs. a,b) Current versus voltage
plots showing: a) low voltage (Eapp < 1.0 V) and, b) high voltage region (Eapp > 1 V in
positive polarity only. c) Plot of Ln(I) versus Ln(Eapp) showing the slopes of linear regions
of the I − V data. The dashed red line and dashed black lines are the predictions of Eq.
2.1 for back-to-back Schottky barriers, using the parameters of Table 2.1 for wCdSe = 102
nm and 448 nm, respectively. d) Plot of Ln(I/E) versus E1/2 highlighting linear regions,
consistent with possible Poole-Frenkel emission at high E . e) Plot of Poole-Frenkel field
lowering coefficient, βpf , as a function of wCdSe for both high E (>3 × 107 V/m) and low E
regions.
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2.3.3 Current Transport

Transport in metal-semiconductor-metal (M-S-M) junctions where both junctions are Schot-

tky barriers was studied by Sze et al. in 1971[92] and subsequently by others.[70, 68, 14] With

the application of a potential, Eapp, the M-S-M has one forward biased Schottky barrier (with

(+) polarity) and one reverse biased Schottky barrier ((−) polarity) and transport, predom-

inantly by majority electrons, is controlled by the reverse-biased junction. Current versus

Eapp (or I-V ) curves are characterized by exponentially increasing current and, for identical

metal contacts, are symmetrical about Eapp = 0, conforming to the equation:[88, 14, 87]

J(V ) =
J1J2sinh( qV

2kT
)

J1exp(
qV

2n1kT
) + J2exp(− qV

2n2kT
)

(2.1)

Where J1, for example, is given by:[91]

J1 = A∗∗T 2exp(−φB1

kT
) (2.2)

and the equation for J2 is analogous. Here A∗∗ is the effective Richardson constant. For

CdSe, A∗∗ = 15.6 A cm−2 K−1).[75] φB1 and φB2 are the Schottky barrier heights of the

Au-CdSe and Ni-CdSe contacts, respectively, and n1 and n2 are the two ideality factors for

these junctions. Eq. 2.1 does an excellent job of fitting our experimental I-V curves for all

five tn-ELJs and wCdSe values (Figure 5a). The fitting parameters required to produce these

curves (Table 2.1) are also physically reasonable, involving the known Richardson constant

and barrier heights in the range from 0.52 - 0.64 eV - close to those reported for macroscopic

CdSe-Au Schottky barriers.[95] We conclude that for |Eapp| < 1.0 V, I-V curves for tn-ELJs
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are well described by the back-to-back Schottky barrier model.[70, 68, 14]

For |Eapp| > 1.0 V, however, the currents predicted by Eq. 2.1 are significantly higher than

those observed experimentally for tn-ELJs. For example, using the parameters of Table 2.1,

dashed lines in Figure 2.5c show the predicted I-V behavior for the 102 nm (red dashed

line) and the 448 nm (black dashed line) tn-ELJ s. A comparison of the dashed curves

with the experimental data points of the same color shows that the disparity between them

increases with increasing Eapp. This disparity is explained by the presence of a highly resistive

CdSe layer in the tn-ELJs, sandwiched between the two Schottky barriers. Based upon the

analysis of these currents described below, we conclude that transport through a tn-ELJ is

not limited by transport at one or both of the Schottky barriers, but by processes occurring

in the bulk of the CdSe, even though this ”bulk” is nanoscopic in both length (≈100-450

nm) and thickness (60 nm).

Information on the transport mechanisms operating within the CdSe can be obtained by

analyzing the Eapp dependance of the current. Space charge limited conduction (SCLC) has

previously been proposed to model the I-V behavior of Au-CdSe-Au junctions.[69] SCLC

conforms to the Mott-Gurney Eq.:[63]

J =
9εsµ(Eapp)

2

8d3
(2.3)

where J is the current density (A/m2), µ is the carrier mobility (m2/(V·s)), εs = = 7.82 x

10−11 F/m for CdSe, and d = wCdSe[63] Eq. 2.3 predicts that Ln(I) versus Ln(Eapp) will

have a slope of 2.0, and this behavior is observed for four of the five of the CdSe thicknesses

(Figure 2.5c); wCdSe = 399 nm instead shows a slope of 2.6. In this potential regime, SCLC is

likely the dominant mechanism of charge transport. At lower Eapp, a slope of 1.0, indicative
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of ohmic conduction, is seen for several wCdSe (wCdSe = 195 and 313 nm) . Slopes larger than

2.0 are observed for all devices at Eapp > 10 V. As previously described,[66, 7, 83] slopes

exceeding 2.0 signal that the SCLC current is augmented by other transport mechanisms

such as P-F emission or Schottky emission.

P-F emission conforms to Eq. 2.4 while, as already indicated, Schottky emission is modeled

by Eq. 2.1:[85, 86, 91]

J = J0 exp

(
βpfE1/2

kT

)
(2.4)

where βpf is the P-F field-lowering coefficient and E is the magnitude of the electric field

(Eapp/d).[86, 91] These two mechanisms both predict linear Ln(I/E) versus E1/2, which we

observe at high values of E > 3 × 107 V/m for all five devices (Figure 2.5d).

From the slope of these plots, an experimental value of βPF can be calculated and compared

with the theoretically expected value for CdSe of 2.55 × 10−5 eV m−1/2 V 1/2, indicated by

the horizontal blue dashed line in Figure 2.5d. In the high E region > 3 × 107 V/m, we

measure βpf values in the range from 1.5 - 2.9 × 10−5 eV m1/2 V−1/2 - close to that expected

for Poole-Frenkel emission in CdSe (Figure 2.5e). The best agreement is seen for the thinnest

tn-ELJs (wCdSe = 102 and 195 nm) where βpf values are in the range from 2.6-2.9 × 10−5

eV m1/2 V−1/2. Much larger values of βpf are seen in the low E region < 2 × 107 V/m where

we believe that SCLC, not Poole-Frenkel or Schottky emission, is the dominant mechanism

of charge transport. We interpret a high level of agreement of the experimental βpf value

with the theoretical value to suggest the likely prevalence of P-F emission, as opposed to

Schottky emission, in tn-ELJs at high E .

To summarize these observations, our analysis of tn-ELJs reveals the operation of up to three
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Table 2.2: Discrete Slopes of Ln(I) versus Ln(Eapp) Plots Observed at Progressively Higher
Eapp

wCdSe Slope 1 Slope 2 Slope 3 Slope 4
(nm)

102 – 2.03 (±0.05) 5.2 (±0.2) 10 (±1)
195 1.1 (±0.1) 2.00(±0.05) 5.7 (±0.1) –
313 1.03 (±0.06) 1.9 (±0.1) 3.77 (±0.07) 4.8 (±0.2)
399 – 2.63 (±0.05) 5.5 (±0.1) –
448 – 2.0 (±0.2) 4.33 (±0.07) –

discrete charge transport mechanisms in parallel - ohmic conduction, SCLC, and (likely) P-

F emission - with increasing importance of SCLC and P-F emission as Eapp increases. The

values of these discrete slopes (see in the plot of Figure 2.5c), which delineate voltage intervals

in which particular mechanisms are operating, are tabulated in Table 2.2.

2.3.4 Electroluminescence Intensity and External Quantum Effi-

ciency

EL emission from ten-element arrays of Ni-CdSe-Au tn-ELJs (Figure 2.6) was imaged as a

function of Eapp using an inverted optical microscope (Figure 2.9). For the wCdSe = 102 nm

device, all ten channels produce EL at Eapp = 3-4 V, but EL emission intensity increases with

Eapp and is non-uniformly distributed within each channel and between different channels

(Figure 2.6) - a characteristic feature of EL in these systems that we discuss below. The

properties this EL emission depended sensitively on the width of the CdSe emitter layer,

wCdSe (for a constant 60 nm height of this emitter layer, Figure 2.7a). For example, the

voltage threshold for EL emission, Vth, increases from 2 V to 7 V in direct proportion to

wCdSe (Figure 2.7a,b). This trend is also evident in prior work involving CdSe EL emitting
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Figure 2.6: Optical micrograph of EL emission as a function of Eapp for a ten-element tn-
ELJs with wCdSe = 102 nm. At left is shown an optical micrograph of the ten electrode
array, showing the vertical orientation of the CdSe nanowire and the position of the nickel
contacts.

device structures where the spacing of electrodes has been varied (Table 1.1), and it derives

in part from the ohmic resistance imposed by the emitter layer. The lowest values for Vth are

those where the narrowest electrode spacings were used. For example, Gudiksen et al.[33]

reported a Vth of 1.7 V for EL emission from transistors with electrode spacings of 30 nm. EL

from gold nanogaps that are 100-200 nm in width and filled with electrodeposited CdSe[100]

are characterized by Vth = 1.5 - 1.9 V. It should be noted that even lower values of Vth have

been demonstrated in cases where hole and electron transporting layers have been added on

either side of the CdSe emitted layer, irrespective of the electrode spacing.[55, 51, 90, 112, 82]

tn-ELJs with narrow CdSe emitters are also capable of brighter EL emission. For example,

the maximum EL intensity produced at wCdSe = 102 nm using 3 V is twice as high as the

maximum EL intensity measured for the 448 nm tn-ELJs at 26 V (Figure 2.7a). But the

quantum efficiency of EL emission is actually inversely correlated with wCdSe. In the plot

of external quantum yield (EQE) versus the electric field, E (Figure 2.7c), devices with all

five values of wCdSe show similar EQE values at low E of ≈2 × 107 V/m. But for higher
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Figure 2.7: Optical characterization of Ni-CdSe-Au tn-ELJs. a) EL intensity versus Eapp

for five widths of devices described in Figure 2.5. Error bars represent ±1σ for n devices
as follows: n = 3 (wCdSe = 102 nm), n = 3 (195 nm), n = 4 (313 nm), n = 4 (399 nm),
and n = 3 (448 nm). b) Threshold voltage, Vth, versus wCdSe. Here, Vth is estimated as the
lowest voltage at which EL emission is observed above background. c) External quantum
efficiency (EQE) versus electric field, E for the five devices described in Figure 2.5. d) EQE
versus average device current. e) EQE for the five devices described in Figure 2.5, each
corresponding to five discrete E values: 2.85, 3.90, 4.15, 5.15, 5.50 (× 107 V/m).
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fields of up to 6 × 107 V/m, EQE is preferentially increased for the widest emitter layers

(wCdSe = 313, 399, and 448 nm). At high fields, for example, the 448 nm tn-ELJs produces

an EQE (≈5 × 10−5) that is five times as high as the maximum EQE measured for the 102

nm tn-ELJs. This EQE is amongst the largest measured for CdSe EL devices that do not

have dedicated hole and/or electron injection layers (Table 1.1).

A plot of EQE versus current (Figure 2.7d) shows that, in general, EQE increases mono-

tonically with increasing current. The slope of this increase is correlated with wCdSe. The

exception to this rule involves the narrowest emitter layer, wCdSe = 102 nm, where the EQE

first increases, and then reaches a plateau at a maximum EQE of ≈1.2 × 10−5. Wider

CdSe layers show more steeply sloping EQE versus current behavior, and larger EQEmax

as current is increased, but the maximum attainable current and therefore EQE in wide

CdSe emitter layers are both limited (Figure 2.7d).

In Figure 2.7e, the EQE is plotted for tn-ELJs as a function of wCdSe for five discrete E

values. This plot highlights the fact that wide CdSe emitter layers produce elevated EQE

only at high fields, E > 5 × 107 V/m. At lower E values, EQE for tn-ELJs with five wCdSe

are within a factor of two of each other (Figure 2.7e).

2.3.5 Electroluminescence Spectra and Mechanisms

A typical EL spectrum for a tn-ELJs (Figure 2.8a) shows a broad emission envelope spanning

the wavelength range from 500 nm to 1000 nm. A photoluminescence (PL, λex = 532

nm) spectrum for electrodeposited nc-CdSe is much narrower, and centered at the 725 nm

bandgap, Ebg, of CdSe (Figure 2.8). This dramatic broadening of the spectral output in

EL as compared with PL has been observed in many previous studies involving a range of

materials.[6, 25, 53, 24, 33, 82] A second characteristic feature of EL emission in tn-ELJs,

already seen in Figure 2.6, is that the EL produced within a 20 µm wide element consists of
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Figure 2.8: Spectra and proposed mechanism for EL emission. a) EL spectra as a function of
Eapp for a ten-element tn-ELJs with wCdSe = 102 nm. PL spectrum acquired with excitation
at λex = 532 nm. b) Micrographs and intensity plots for a wCdSe = 195 nm tn-ELJs at
four Eapp = 4.5 V - 13.5 V. EL emission consists of a series of sub-micron point emitters
that coalesce at high Eapp. c) Schematic energy level diagram for a wide (wCdSe = 400 nm)
nc-CdSe emitter layer illustrating the presence of deep trap states for electrons and holes,
and the presence of a dead layer in which e−/h+ recombination is nonradiative. d) Same
diagram as in (c) except illustrating a narrow (wCdSe = 150 nm) nc-CdSe emitter layer, e)
Processes contributing to broad-band EL emission including hot electron-hole recombination
(hν > Ebg, green), band-edge emission (hν ≈ Ebg, orange), and free hole-trapped electron
recombination (hν < Ebg, red).
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a series of sub-micron point emitters - even at high Eapp. This is apparent in the images and

plots of Figure 2.8b that show emission from a wCdSe = 195 nm tn-ELJ at Eapp from 4.5 V

to 13.5 V. One possible reason for localized light emission is modulation of the electric field

along the axis of each CdSe nanowire, caused by its width nonuniformity. In this case, local

constrictions in width would correlate with a locally higher E and enhanced EL emission.

The number and total area of the light emitting regions increases with Eapp. The spectrum

of Figure 2.8a was acquired for a device consisting of ten tn-ELJs, and therefore contains

many point emitters. Spectra for single point emitters could not be acquired in this study,

but there is evidence that the broad emission seen in Figure 2.8a is produced by each point

emitter and is not the sum of many narrower emission spectrs produced by an ensemble

of point emitters. The evidence takes the form of the potential dependence (Figure 2.8a).

At low Eapp values (≈4 V), just a handful of point emitters are observed and the total EL

intensity is very low, but the spectral width of the EL emission is similar to that seen at

higher Eapp values, although emission is somewhat red-shifted. This observation suggests

that each micron-scale emitter produces a broad spectrum and that the spectral width seen

for many emitters (e.g., Figure 2.8a) is not a function of the number of emitters, with each

producing a much narrower emission envelope.

A schematic band diagram (Figure 2.8c-e) illustrates the salient features of EL emission

in these nickel-(nc-CdSe)-gold tn-ELJs. The observed reduction in EQE with decreasing

wCdSe (Figure 2.7d,e) suggests the presence of ”dead layers” adjacent to the metal contacts

within which EL is quenched. This phenomenon has been described previously in connection

with EL in thin-film M-S-M devices,[21, 64] but the mechanism responsible for dead layers

remains unresolved. One possible mechanism accounting for a dead layer adjacent to metal

contacts is the physical diffusion/migration of electrons and/or holes to these metal contacts

and their subsequent radiationless recombination. In this case, the thickness of the dead

layers should approximate the minority carrier diffusion length, estimated to be 30-50 nm

based upon our prior measurements of carrier mobilities [4] and minority carrier lifetimes[46]
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in electrodeposited nc-CdSe. A second possibility, also suggested by others,[67] is that

radiationless recombination near a contact is a symptom of poorer CdSe quality, in terms of

impurities and crystallinity. Further work will be required to elucidate this mechanism.

Also as depicted in Figure 2.8c-e, the nc-CdSe emitter contains deep traps for both electrons

and holes, associated mainly with disorder and inpurities at grain boundaries. As Eapp

is increased, E exceeds the threshold for P-F emission (> 5 × 107 V/m) which triggers

the release by field-ionization of trapped holes. Field-emitted, mobile holes rapidly and

radiatively recombine with electrons to produce EL. The broad spectral envelope for EL

emission seen in Figure 2.8a is accounted for by the operation of three processes in parallel

(Figure 2.8e): i) hot electron-hole recombination (hν > Ebg, green), ii) band-edge emission

(hν ≈ Ebg, orange), and, iii) free hole-trapped electron recombination (hν < Ebg, red). But

although EL emission that is red-shifted from Ebg is likely caused by trapped carriers, it

remains unclear (also in other studies) why the electron and hole traps leading to red-shifted

emission in EL are preferentially populated in EL relative to PL.

2.3.6 Conclusion

In conclusion, we describe a discovery platform that consists of arrays of transverse nanowire

light emitting nanojunctions or tn-ELJs. These device arrays have the potential to advance

our understanding of EL in electrodeposited materials - in this case, arrays of nickel-(nc-

CdSe)-gold tn-ELJs. These tn-ELJs exhibit highly reproducible, and tunable, properties for

EL light emission that are strongly influenced by the width of the CdSe emitter layer along

the electrical axis, wCdSe. Transport in tn-ELJs involves a progression of three mechanisms

as Eapp is increased - ohmic conduction, space-charge limited conduction, and Poole-Frenkel

(P-F) emission. The voltage threshold for light emission, ranging from 2 V to 7 V, is directly

proportional to wCdSe from 100 nm to 450 nm. The external quantum efficiency (EQE) of
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the observed EL increases for all tn-ELJs with the applied electric field, suggesting that

P-F emission of mobile holes into the valance band is rate-limiting. Finally, the maximum

external quantum efficiency (EQEmax) also increases monotonically with wCdSe, up to 5 ×

10−5 for wCdSe = 450 nm. These observations are consistent with a mechanism of EL light

emission involving the P-F emission of holes in the valence band of the electrodeposited

nc-CdSe nanowire, with subsequent radiative recombination with electrons that are both in-

jected above the conduction band-edge (hot electrons), and others that are trapped, leading

to a broad spectral bandwidth for the emission process. Working in opposition to this pro-

cess is nonradiative electron-hole recombination near (within 30-50 nm) the metal electrical

contacts, leading to higher EQE in wide CdSe emitters.

The maximum EQE obtained here of 5 × 10−5 is low, but comparable or better than in

previous studies where the same M-S-M architecture has been studied (Table 1.1). In future

work, the influence of dedicated hole and electron injecting and transporting layers adjacent

to the CdSe emitter layer will be evaluated as a means for obtaining higher EL quantum

efficiencies.[84, 90]

2.4 Methods

2.4.1 Device Fabrication

CdSe light emitting devices were fabricated using the LPNE method in combination with

several additional photolithography steps (Figure 2.1). First, a 60 nm thick layer of nickel

was thermally evaporated on a precleaned soda lime glass slide (2.5 cm × 2.5 cm × 1 mm).

Then a layer of photoresist (PR, Shipley, S1808) was spin-coated (2500 rpm, 80 s) onto the

nickel surface, followed by a soft-bake at (90◦C) for 30 min. The PR-coated nickel was then
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covered with a contact mask, exposed to UV light, and the exposed PR was developed for

20 s (Microposit, MF-319), rinsed with water (Millipore MilliQ, ρ > 18 MΩ· cm), and air

dried. The freshly exposed nickel layer was then removed using nickel etchant (Alfa Aesar)

for 2 min, resulting in six parallel 10-finger patterns consisting of 20 µm wide Ni-CdSe-Au

tn-ELJs spaced by 5 µm (Figure 2.2). The photoresist layer was then removed with acetone

and a second layer of photoresist (Shipley, S1808) was spin-coated and photolithographically

patterned. Exposed nickel was over-etched in 0.80 M nitric acid for 6 8 min to create a

horizontal trench with a width of 300 nm ∼ 1 µm at the end of each nickel finger.

CdSe nanowires were electrodeposited into these trenches potentiostatically at -0.60 V ver-

sus saturated calomel electrode (SCE) in an unstirred, room temperature, aqueous plating

solution consisting of 0.30M CdSO4, 0.70mM SeO2, and 0.25 M H2SO4 at pH 1-2. (Caution:

both CdSO4 and SeO2 are highly toxic). Gold contacts were then electrodeposited onto the

solution-exposed edge of the CdSe nanowire potentiostatically at -0.90 V versus SCE using a

Clean Earth Inc. gold plating solution. Gold deposition was continued until the gold emerged

from the trench, as signaled by an increase in the electrodeposition current (Figure 2.3d).

All electrodeposition operations were carried out using a Gamry Series G 300 potentiostat

in conjunction with a one compartment three-electrode electrochemical cell with SCE as the

reference electrode and platinum foil as the counter electrode. After gold electrodeposition,

a layer of gold was thermally evaporated to form a connection with the electrodeposited

gold contact, facilitating the attachment of wire contacts. The PVD-deposited gold on the

photoresist coated portion of the device was removed by lift-off.

2.4.2 Structural Characterization

Scanning electron microscopy (SEM) images were acquired using a FEI Magellan 400 XHR

system at an accelerating voltage of 1 or 8 keV without metal or carbon coating. Energy-
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dispersive X-ray spectroscopy (EDS) images were also acquired using this instrument which

is equipped with a 80 mm2 silicon drift X-ray detector (Oxford Instruments, with Aztec

software).

2.4.3 Electroluminescence and Photoluminescence

EL images as a function of bias were acquired using an inverted microscope (Olympus,

IX71) equipped with a 40× objective lens (Olympus, LUCPlanFLN 40× 0.60) and a CMOS

camera (Andor, Neo) as Figure 2.9 shows. Electrical measurements during EL emission were

accomplished using a sourcemeter (Keithley 2400) controlled by LabVIEW software. EQE

was calculated using the number of photons out of tn-ELJs devices devided by the number

of electrons flowing through the material per second. Cmos sensitivity and geomtry loss was

factored into calculation. EL spectra were obtained using a spectrometer (Andor, Shamrock

SR-500i-D2) equiped with a 300 l/mm grating blazed at 760nm and a CCD camera (Andor,

Newton). All the EL measurements were carried out under cooling condition using a Peltier

cooling device (Custom Thermoelectric, 19012-5L31-06CQQ-X) in nitrogen environment(to

avoid water condensation or frost). PL spectra were acquired using a SpectraPro 2300i

spectrometer (Princeton Instruments, Acton) excited by a 532nm laser.
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Figure 2.9: EL measurement set-up. The tn-LEJs was glued on a 1inch×3inches glass slide
then glued on a peltier cooling device using the copper tape. The peltier was used to remove
the heat generated during EL measurement. The tn-LEJs was connected to a Keithley 2400
sourcemeter, and then the whole device was placed on an inverted microscope stage. The
device along with the objective lens were wrapped with regular food wrap to create a sealed
environment. The food wrap was then pierced through by a small glass pipe connected with
a nitrogen tank. A nitrogen environment was created during EL measurenment to avoid
water condensation or frost.
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Chapter 3

It’s EESC : Rapid, Wet Chemical

Fabrication of Radial Junction

Electroluminescent Wires

To be submitted.

3.1 Introduction

Can a wet chemical fabrication route to electroluminescent wires be realized, and what level

of performance can be achieved for EL emitters prepared by such a process? The EESC

process described here is a high throughput, wet-chemical process for assembling a radial

junction EL wire emitter consisting of concentric layers of three well-studied nanocrystalline

(or amorphous) materials: Au, CdSe, and the polystyrene sulfonate (PSS) salt of poly(3,4-

ethylenedioxythiophene (PEDOT:PSS).

In the first step of the EESC process, ultra-long (mm scale) gold nanowires are fabricated us-
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Figure 3.1: EESC fabrication of a Au@CdSe@PEDOT:PSS EL-emitting wire. a) Schematic
three-step EESC process flow for fabrication of Au@CdSe@PEDOT:PSS wires. b) Cross-
sectional view of this wire showing gold center electrode, red CdSe emitter layer, and blue
PEDOT:PSS hole injecting layer. Electrons (dark blue), injected at the gold-CdSe interface
radiatively recombine with holes (white) injected at the CdSe-PEDOT:PSS interface to pro-
duce EL emission at the CdSe bandgap. Hole injection is facilitated by a PEDOT:PSS/CdSe
interface that is 2 - 5 fold larger than the complimentary gold-CdSe interface, depending upon
the diameter of the CdSe shell. c) Energy diagram showing the relative energies of band
edges for filled states (Au, PEDOT:PSS and Au) as well as the conduction band edge of
CdSe. d,e) Band diagrams illustrating energetic relationships for the three layers at equilib-
rium (d) and in “forward bias” corresponding to Au (-) with Eapp≈1.6 V (e). φB1 ≈ φB2 =
0.64 eV. EBG = 1.70 eV.
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ing the lithographically patterned nanowire electrodeposition (LPNE) process.[99, 58] Then,

25 µm sections of this gold nanowire are used as electrodes to electrochemically synthesize a

conformal and hemicylindrical CdSe shell with a controlled thickness that can be varied from

300 - 1200 nm. Finally, a PEDOT:PSS over-coating is applied by spin-coating to complete

the device structure (Figure 3.1a). Since the first electrodeposition step that patterns a

gold nanowire is accomplished using LPNE which involves photolithography, EESC is not a

“solution processing” scheme in the strictest sense of that phrase, because photolithography

is intrinsic to LPNE, but no clean room is required by the LPNE process[99, 58] and the

subsequent two steps are wet chemical in nature. In this proof-of-concept demonstration, the

EL wires produced by EESC are 25 µm in length, amongst the longest so far demonstrated

to our knowledge, but the EESC process is scalable to nanowires of any length, limited only

by the length of the central metal nanowire which can readily be 1.0 cm using LPNE.e.g.[? ]

These 25 µm wires provide the opportunity to assess the uniformity of light emission along

the axis of these structures, as well as other metrics.

EL light emission is produced by the recombination of injected electrons and holes within

the CdSe shell (Figure 3.1b), along the entire length of the wire. In spite of the energetic

symmetry of this device (Figure 3.1c), hole injection, at a high barrier CdSe-PEDOT:PSS

interface (φh ≈ 1.1 V), is facilitated by a contact area that is 1.9 - 4.7 fold larger than the

complimentary gold-CdSe electron-injecting contact (φe ≈ 0.6 V) contributing to low voltage

thresholds (1.4 - 1.7 V) for EL emission.

3.2 Fabrication Process

The EESC process. Electroluminescent Au@CdSe@PEDOT:PSS wires were fabricated

using the EESC process flow (Figure 3.2a). In summary, steps 1 - 5 are standard LPNE[99,

58] process flow for the fabrication by electrodeposition of a gold nanowire. Steps 6 and 7
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Figure 3.2: Fabrication of Au@CdSe@PEDOT:PSS wires by EESC. Process flow: Step 1 -
a 60 nm thick layer of nickel is thermally evaporated on a glass slide. Step 2 - photoresist
(PR, Shipley S1808) is spin-coated onto the nickel surface. Step 3 - a horizontal trench 60
nm (h) × 2.5 cm (l) × 1 µm (d) is produced in the PR layer adjacent to the edge of the
nickel film. Step 4 - nickel edge is immersed in a Au plating solution and a Au nanowire
is electrodeposited using the nickel edge as the working electrode. Step 5 - a 2 mm width
trench exposes the gold nanowire. Step 6 - PR layer is removed and a thicker PR layer
(Shipley, S1827) is spin-coated. Step 7 - a window of 25 µm width is created. Step 8 - a
CdSe shell is electrodeposited on exposed gold nanowire; the thickness of the CdSe shell is
controlled by the electrodeposition time. Step 9 - a layer of PEDOT:PSS is applied as a
transparent top positive electrode.
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Figure 3.3: a,b). Gold electrodeposition cyclic voltammograms (CVs) at 50 mV/s in Clean
Earth Inc. gold plating solution, (a) and current vs. time transients (b). c,d). CdSe
electrodeposition CVs at 50 mV/s (c) and current vs. time transients and the inset shows
CdSe shell thickness vs. electrodeposition time(d).

are optional, as they provide for masking of the gold nanowire prior to electrodepositing the

CdSe shell, in step 8. Electrical contacts are attached in step 9 (Figure 3.2a).

The two most critical steps of the EESC process are the two electrodeposition steps: gold

in Step 5 and CdSe in Step 8. Gold electrodeposition occurs under conditions of activation

control at -0.90 V vs. SCE, located at the foot of the gold plating wave (Figure 3.3a), in a

commercial gold plating solution (Clean Earth Inc.).[78, 101] Approximately 40 minutes is

required to produce a gold nanowire that is ≈850 nm in width within a 60 nm horizontal
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trench that defines its height. During this 40 minutes, the gold plating current increases by

a factor of approximately two (Figure 3.3b) as the solution-wetted gold surface roughens, as

clearly seen in the SEM image of Figure 3.4e, for the gold nanowire (left edge).

The CdSe shell, 350 - 1150 nm in radius, is electrodeposited from an aqueous plating solution

according to the reaction: Cd2+ + H2SeO3 + 4H+ + 6e− → CdSe(s) + 3H2O from a solution

containing 0.30 M CdSO4, 0.70 mM SeO2, and 0.25 M H2SO4 at pH 1-2 (caution: both

CdSO4 and SeO2 are highly toxic).[78, 101] As previously demonstrated,[78, 101] a

stoichiometric CdSe layer is obtained by activation-controlled electrodeposition at a constant

potential of -0.60 V vs. SCE (Figure 3.3c). Using an unstirred, room temperature plating

solution, the duration of the CdSe growth is 50 to 250 seconds, depending upon the shell

thickness that is desired.[78, 101] The deposition current increases during this deposition

process in approximate proportion to the increasing area of the hemicylindrical CdSe-surface

(Figure 3.3d). Finally, the PEDOT:PSS layer is deposited by spin-coating (2500 rpm, 80 s)

onto the glass slide twice, with air drying of the layer between these two depositions.

3.3 Results and Discussion

3.3.1 SEM and AFM Characterization

SEM and AFM characterization. If the PEDOT:PSS layer is omitted, the uniformity

of the electrodeposited CdSe layer can be evaluated using SEM. Images for Au@CdSe wires

(Figure 3.4a) shows a smooth CdSe layer with a uniform thickness along the axis of the wire.

This uniformity is a direct consequence of kinetically-controlled CdSe electrodeposition that

produces a constant current density (A/cm2), unaffected by more rapid diffusional transport

of Cd2+ and SeO2−
3 expected at the left and right edges of the CdSe layer. EDX elemental

maps also show spatially uniform Cd and Se concentrations along the wire axis (Figure 3.4b)
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Figure 3.4: Scanning electron microscopy (SEM) and atomic force microscopy (AFM). a)
Low magnification SEM image of a 25 µm length Au@CdSe@PEDOT:PSS wire, b) Electron
dispersive x-ray (EDX) elemental map showing Cd (green), Se (red) and Au (yellow), c).
Cross-sectional SEM image showing (in false color) central gold nanowire (yellow), CdSe
shell (red), and PEDOT:PSS top layer (blue). d) EDX elemental map showing Cd (green),
Se (red), S (blue) and gold (yellow), e) Bare Au and five Au@CdSe@PEDOT:PSS wires
ranging in diameter from 846 nm (left) to 3343 nm (right), f) AFM height traces for the
same six GCP wires shown in (e). The excess apparent width seen in these data, relative to
(e) is the result of convolution of the AFM tip with the wire. The total vertical height is
accurate.
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as well as within the CdSe shell (Figure 3.4d). A Au EDX map (Figure 3.4b) shows low

signal caused by the attenuation of electrons by the intervening CdSe shell, but the EDX

signal for this nanowire is seen in the EDX map of the cross-section (Figure 3.4d). Cross-

sectional SEM images of wires (Figure 3.4c) reveal the gold nanowire at the glass surface,

surrounded by the CdSe shell (≈ 1.0 µm in radius), and the PEDOT:PSS overlayer with

a thickness varying from 150 nm to 300 nm in this case. The CdSe shell can be grown

conformally over a wide range of radii from 300 nm to 1200 nm, as seen in the SEM image

and AFM height-distance traces of Figure 3.4e and 3.4f, respectively.

3.3.2 Current Transport

Transport in Au@CdSe@PEDOT:PSS wires. Au@CdSe@PEDOT:PSS wires are metal-

semiconductor-metal (M-S-M) junctions in which both the gold and PEDOT:PSS layers are

metallic with approximately the same work function, φ: 5.1 eV (Figure 3.1c). When con-

tacted by CdSe, both Au and PEDOT:PSS produce a rectifying Schottky barrier (Figure

3.1d,e).[92, 70, 68, 14] For the Au@CdSe@PEDOT:PSS device, the two Schottky barriers are

oriented back-to-back: one forward biased (with metal-(+) polarity) and one reverse biased

(metal-(−)). For a uniformly n-doped semiconductor (the present case), current is limited

by the reverse biased junction and majority electrons dominate charge transport relative to

holes. This is because of the disparity between the barrier height for electrons, φn ≈ 0.64

eV and holes, φp ≈ 1.06 eV.

If the metal-semiconductor junctions are identical, current versus Eapp (or I-V ) curves show

an exponentially increasing current in both directions and are symmetrical about Eapp = 0,
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Figure 3.5: Transport properties of Au@CdSe@PEDOT:PSS wires (In this figure, (+) bias
polarity indicates PEDOT:PSS (+) and Au (-) polarity.) a) Current-voltage (I-V) plots
showing the low voltage region (Eapp < 1.0 V) for five CdSe shell thicknesses as indicated.
b) Ln(I) versus Ln(Eapp) from 0 to + 2.5 V for the same five CdSe shell thicknesses showing
agreement of these data with the back-to-back Schottky diode model of Eq. 3.1. The two
dashed lines are the predictions of Eq. 3.1 for back-to-back Schottky barriers, using the
parameters of Table 3.1 for wCdSe = 302 nm (red) and 1164 nm (black). c) Plot of Ln(I/E)
versus E1/2, and the linear region fitted Poole-Frenkel emission Eq. 3.3. d) Poole-Frenkel
field lowering coefficient, βpf , versus wCdSe showing values an order of magnitude higher
than the theoretically predicted value of βpf ≈ 2.5 x 10−5 eV m1/2 V−1/2.
.
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conforming to the equation:[88, 14, 87, 93, 70, 68]

I(V ) =
2I1I2sinh

(
qV
2KT

)
I1exp

(
− qV

2n1KT

)
+ I2exp

(
qV

2n2KT

) (3.1)

Where I1 is given by:[92, 88, 14, 87]

I1 = A∗∗A1T
2exp

(
−qφB1

KT

)
(3.2)

The equation for I2 is analogous. Here A∗∗ is the effective Richardson constant that is

assumed to be 15.6 A cm−2 K−1 [75] for both Au-CdSe and PEDOT:PSS-CdSe Schottky

barriers (Table 3.1). φB1 is the barrier height for electrons at the Au-CdSe whereas φB2,

used in the analogous expression for I2, applies to the PEDOT:PSS-CdSe contact (Figure

1d). n1 and n2 are the ideality factors for these two junctions while A1 and A2 are their

respective interface areas.[91]

But in spite of the symmetry implied by the energy level diagram (Figure 3.1c), symmetrical

I-V curves are not observed (Figure 3.5a). Instead, significantly more current is seen for

Eapp-(+) bias, corresponding to Au (-); PEDOT:PSS (+) polarity. Henceforth, we refer

to this as “forward bias”. This asymmetry in the I-V curve is attributed to three factors:

First, the interfacial area of the CdSe-PEDOT:PSS junction is larger relative to the Au-CdSe

junction, a factor that should facilitate hole injection from a (+) PEDOT:PSS contact into

CdSe. The ratio of these areas depends upon the radius of the CdSe shell (wCdSe), and

increases from 1.9 (wCdSe = 350 nm) to 4.7 (1140 nm)(Table 3.1). Second, while both Au

and PEDOT:PSS are metallic with similar work functions, they are otherwise very different
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Table 3.1: Fitting Parameters For The Calculation of I-V Curves Using the Back-to-Back
Diode Model (Eq. (3.1))

WCdSe A∗∗a φB1
b φB2

c n1
d n2

e A2/A1

(nm) (A cm−2 K−1) (eV) (eV)

302 15.6 0.628 0.586 1.11 1.48 1.9
595 15.6 0.615 0.638 1.15 1.33 2.8
788 15.6 0.643 0.643 1.14 1.38 3.4
953 15.6 0.653 0.642 1.11 1.38 4.0
1164 15.6 0.649 0.672 1.16 1.29 4.7

aA∗∗ = effective Richardson constant for CdSe.[75]
bφB1 = Schottky barrier height for Au-CdSe contact.
cφB2 = Schottky barrier height for PEDOT:PSS-CdSe contact.
dn1 = ideality factor for Au-CdSe contact
en2 = ideality factor for PEDOT:PSS-CdSe contact

A1 = interface area for Au-CdSe contact

A2 = interface area for PEDOT:PSS-CdSe contact

materials, having radically different electronic structures and densities of states. Just as

PEDOT:PSS is superior in terms of hole injection, Au is expected to provide for more

efficient electron injection than PEDOT:PSS. Third, the Au-CdSe and PEDOT:PSS-CdSe

interfaces are formed using fundamentally different processes - electrodeposition and solution

casting, respectively. It is unclear, however, how the fabrication method influences the device

properties.

Ideality factors at both junctions, n1 and n2, are obtained in the process of fitting exper-

imental I-V curves using Eq. (3.1) (Table 3.1). These provide an indication of the degree

to which these interfaces are operating in accordance with ideal thermionic emission, char-

acterized by n = 1.[91] Deviations - usually in the positive direction - from n = 1.0 can

be caused by image forces acting to reduce the barrier height, to interface states or traps

at the interface, and simply by high dopant concentrations in the semiconductor.[91, 59]

Ideality factor values for the Au-CdSe interface, n1, are close to unity, ranging from 1.11 to
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1.16 (Table 3.1) suggesting EESC produces a low defect density contact between Au and

CdSe, and that the CdSe dopant concentration is not too high to degrade n1.[26, 72] Ideality

factors for PEDOT:PSS (n2) are higher, ranging from 1.29 to 1.48 (Table 3.1); larger than

measured for Au-CdSe but comparable to, or lower than, n values reported for PEDOT:PSS

interfaces with semiconductors, demonstrating that the quality of the PEDOT:PSS-CdSe

interace produced by the EECS process is not atypical.[29, 22]

“Forward bias” (Au (-)) is associated both with higher current (Figure 3.5a) and stronger EL

light emission (vide infra) and within this regime, Eq (3.1) predicts experimental I-V curves

for devices with all five CdSe shell thicknesses and across the entire Eapp range measured

here (Figure 3.5b). The fits to our data using Eq. (3.1) produce parameters summarized

in Table 3.1 that are physically reasonable including barrier heights in the range from 0.59

to 0.67 eV that are in the range of barriers reported for macroscopic CdSe-Au Schottky

barriers[95] and CdSe-PEDOT:PSS Schottky barriers[49]. The tentative conclusion is that

in the Au-CdSe-PEDOT:PSS device, the two Schottky junctions are in full control of carrier

transport.

Control of transport by other processes, operating in the bulk of the CdSe instead of at the

junctions, would be revealed by negative deviations of the current from the predictions of

Eq. (3.1). Two common processes invoked to account for such deviations are space charge

limited conduction (SCLC) and Poole-Frenkel (P-F) emission. The absence of these two

processes is significant because in planar Au-CdSe-Ni EL emitting junctions[78] both SCLC

and PF emission have been detected at intermediate (0.5 < Eapp < 2 V) and high (Eapp ¿ 3

V) bias conditions, respectively, whereas Schottky control of transport was seen only at low

Eapp below 1.0 V.[78]

In particular, we looked carefully for evidence of PF emission at high biases because this

process releases trapped minority carriers in the CdSe, accentuating EL emission in the

bulk of the CdSe, in principle. PF emission is predicted by Eq. 3.3 which predicts a linear
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Ln(I/E) versus E1/2 in the regime of Eapp where PF emission is occurring:[85, 86, 91]

J = J0 exp

(
βpfE1/2

kT

)
(3.3)

where βpf is the PF field-lowering coefficient and E is the magnitude of the electric field

(Eapp/wCdSe).[86, 91] Because linear Ln(I/E) versus E1/2 is also predicted for Schottky

emission (Eq. (3.1)),[91] it is also important to calculate the Poole-Frenkel field lowering

coefficient, βPF from the slope of this plot for comparison with the theoretically expected

βpf value of 2.55 × 10−5eV m1/2V −1/2[69] in order to validate PF emission as a possible

contributor to transport. Plots of Ln(I/E) versus E1/2 (Figure 3.5c) show linearity over

a wide Eapp range consistent with either PF or Schottky emission, but the calculated βPF

(Figure 3.5d) is too high, in the range from 1.5 - 2.8 × 10−4 eV m−1/2 V1/2 which is ap-

proximately an order of magnitude higher than the theoretical βpf value.[69]. Beyond this,

the electric fields generated in the region of linearity (1 × 106 V/m < E < 8 × 106 V/m)

are significantly lower than have been required to generate PF emission in similar systems

(E ≈ 1 - 7 × 107 V/m).[78]. Collectively, the data suggests that the linear Ln(I/E) versus

E1/2 (Figure 3.5c) is a consequence of Schottky emission, rather than PF emission in these

systems. In summary, transport through Au@CdSe@PEDOT:PSS devices, across a wide

range of wCdSe and Eapp, conforms to the predictions of Schottky emission at back-to-back

Schottky junctions.[91, 88, 14, 87]

3.3.3 EL Emission Intensity and EQE

EL emission from Au@CdSe@PEDOT:PSS wires. A false color photomicrograph of

a Au@CdSe@PEDOT:PSS wire (Figure 3.6a) shows the CdSe and PEDOT:PSS-coated gold
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Figure 3.6: EL emission for Au@CdSe@PEDOT:PSS wires: a) False color photomicrograph
of a Au@CdSe@PEDOT:PSS wire showing PR-covered gold nanowire on each side (yellow),
and a 25 µm emitter region covered with CdSe (magenta) and PEDOT:PSS (blue). b)
EL emission maps for a wCdSe = 1064 nm as a function of Eapp from 1.8 V to 2.8 V. The
uniformity of the EL emission intensity along the wire is notable.

nanowire as a 25 µm wide dark band against the light blue PEDOT-PSS layer, with uncoated

gold nanowire on both sides, protected by photoresist. A copper electrode (not shown), is

used to make contact to the PEDOT-PSS layer. The device shown here has the thickest

CdSe shell, wCdSe = 1064 nm. The application of a forward bias at the PEDOT:PSS - Au

contacts induces EL emission from regions of the wire having all three layers: Au, CdSe,

and PEDOT:PSS. Photomicrographs of the device acquired in the dark (Figure 3.6b) show

a voltage threshold for EL, Eth = +1.8 V and an increase in EL intensity with Eapp up to

+2.8 V. Light at 1.8 V can not be seen here due to the low light intensity and the contrast

settings. Although it is not visible in this figure, for devices with wCdSe = 1064 nm, an onset

for EL is actually detected at Eth = +1.7 eV, averaged over several devices. Eth is also

inversely correlated with wCdSe (Figure 3.7a, inset) so thinner shells produce even lower Eth

values, down to +1.45 V for wCdSe = 350 nm. Relative to other CdSe-based EL emission

systems (Table 1.1), this Eth value is amongst the lowest.
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Figure 3.7: a,b). EL intensity (a) and external quantum efficiency (EQE) (b) versus Eapp

for devices with wCdSe varying from 302 nm to 1064 nm.versus Eapp for GCPs with wCdSe

varying from 302 nm to 1064 nm. The inset in (a) is a plot of the threshold voltage, Vth,
versus wCdSe. Here, Vth is estimated as the lowest voltage at which EL emission is observed
above background. c,d). EL intensity (c) and EQE (d) versus electrical field strength, ε, for
Au@CdSe@PEDOT:PSS wires with wCdSe varying from 302 nm to 1064 nm.
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For CdSe-based EL emission systems, Eth values below 2.0 V are unusual, and in all prior

cases of which we are aware such low Eth values require channel lengths below 200 nm

(Table 1.1). For example, gold nanogaps that are 100-200 nm in width and filled with

electrodeposited CdSe are characterized by Vth = 1.5 - 1.9 V.[100] Planar M-S-M junctions

containing electrodeposited CdSe show Vth = 2.0 V for a CdSe thickness of just 100 nm, but

larger values up to 7.0 V for thicker CdSe layers of 450 nm.[78] Electrode spacings of just

30 nm were associated with a Vth = 1.7 V.[33] Relative to the other CdSe-based EL device

architectures we have studied,[100, 78, 74, 3] two unique characteristics of the current device

is the use of a conformal PEDOT:PSS hole injecting layer and the expansion of the interface

area of the PEDOT:PSS with the CdSe emitter layer. Either or both of these factors would

be contributing to lower Eth.

As already noted above, transport in Au@CdSe@PEDOT:PSS wires can be accounted for

by majority electrons alone, but EL requires holes. These holes are commonly injected at

the positive contact - PEDOT-PSS in this case - and radiative recombination with electrons

produces EL which is localized within one hole diffusion length, Lp, from this contact. In

polycrystalline II-VI films, typical value for Lp are in the 400-600 nm range.[73, 60] The EL

intensity is typically minority carrier limited, and this provides an explanation for increasing

EL intensity with both Eapp and current (Figures 3.7a and 3.7b).

Although we are not able to resolve the location of light emission within the CdSe layer

in our optical images, the positive correlation with wCdSe (Figure 3.7a) is evidence that it

originates from a layer of thickness Lp from the PEDOT:PSS contact. This is because the

volume of EL-producing CdSe and the emitting area of the device both increase with the

radius of the CdSe shell in this case. If, on the other hand, EL originates in a layer localized

at the Au-CdSe contact, the volume and area of emission will be constant and the opposite

dependance on wCdSe should be observed as a thicker CdSe shell self-absorbs the emitted

EL. However, this case would not be expected based upon the (-) bias applied to the gold
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contact in our experiments.

The maximum external quantum efficiency (EQE) of Au@CdSe@PEDOT:PSS wires in-

creases with Eapp and is in the range from (0.70 - 3.8) × 10−4 (Figure 5d). The correlation

of EQE with Eapp has been frequently observed and is attributed to the filling of trap states

which mediate nonradiative recombination under high injection conditions.[5, 102, 35] Less

obvious is the reason for EQE to be inversely correlated with wCdSe (Figure 5d), on average,

when EL intensity is directly correlated with wCdSe (Figure 5c). Enhanced EL could be

related to E if PF emission were operating (we have already concluded above that it is not)

- and thin CdSe shells would exhibit higher efficiency in this case - but neither EQE nor EL

intensity are well correlated with E across all five wCdSe values (Figure 5e,f). Self-absorption

of emitted EL by the CdSe shell provides one rational higher EQE with decreasing wCdSe.[91]

Time dependent EL emission from Au@CdSe@PEDOT:PSS wires. One interesting

phenomenon we observed is the time dependent behavivor of EL at high Eapp. As Figure

3.8g shows, current increases from an initial value and stabilize over a rather long time in the

range of tens of seconds when a relative high potential is applied. This behavior leads the

EL intensity as well as EQE to increase over time (Figure 3.8a - f), and the EL intensity

increases faster than the current (Figure 3.8g, h). For the current increase, one possible

explanation is the Joule heating. You et al.[108, 28, 36, 61] studied the current-induced joule

heating on nanowires and the temperature shows similar behavior. Heat generated from

Joule heating will increase the temperature of the nanowire, and the heat dissipated though

the substrate and air reaches an equilibrium with the generated heat. Then the temperature

of the nanowire will stabilize. As temperature increases, the current will increase as well, so

as the EL intensity and EQE.[102, 35, 5] This behavior is consistent with the previous voltage

dependent EL: both EL and EQE behaviors could be attributed to the temperature effect.

However, we do see ”efficiency droop” with longer turn-on time or higher temperature here.

One possible reason is the device was operating at relative high voltage and high current
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Figure 3.8: “Turn-on” of a Au@CdSe@PEDOT:PSS wire. a-f) Photomicrographs of EL
emission from a device with wCdSe = 1164 nm at Eapp = 3.1V. g) Plot of EL emission
intensity (red) and current (blue) versus time. The EL intensity increases for 5 - 10 s prior
to stabilizing. h) Plot of EQE versus time for the same data plotted in (g).
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Figure 3.9: EL spectra for a Au@CdSe@PEDOT:PSS wire. a) Raw EL spectra as a function
of Eapp for a Au@CdSe@PEDOT:PSS wire having wCdSe = 788 nm. The PL spectrum was
acquired for this device with excitation at λex = 532 nm. b). Normalized and Gaussian-
fitted EL spectra showing red-shifted emission maxima as well as spectral broadening with
increased Eapp.

region and heat generated from Joule heating could damage the device and also lead to high

leakage current. [16]

3.3.4 EL and PL Spectra

EL spectra. A comparison of photoluminescence (PL) and EL spectra as a function of Eapp

(Figure 3.9a) shows that EL spectra are somewhat broader spectrally for all Eapp, and a slight

increase in spectral width is seen with increasing Eapp, visible most clearly in the Gaussian

fits of Figure 3.9b. These EL spectra are far narrowed than those for planar Au-CdSe-Au

junctions prepared by electrodeposition,[78] where Poole-Frenkel emission was implicated

in the transport process. For those devices, EL spectra showed a FWHM approaching

500 nm at Eapp of 8.5 V and 300 nm at 4.5 V[78] whereas in the Au@CdSe@PEDOT:PSS

device FWHM are in the 58 - 70 nm range for 2.2 V < Eapp < 2.5 V (Figure 3.9b). In

our prior work, these broad emission envelopes were attributed, in part, to recombination of

trapped holes (electrons) with electrons (holes) within the bandgap.[78] With PF emission
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acting as a major contributor to current transportation, higher electric fields will activate

more recombination centers at different energy levels. In the present case, current transport

is dominated instead by back-to-back Schottky emission leading to the expectation that

band edge emission produced by injected holes and at the (+) contact would be the main

radiative recombination mechanism, providing for narrower spectra centered at the CdSe

bandgap.[31, 30]

In addition to broadening, peak EL intensities also red-shift with increasing Eapp (Figure

3.9b). The current also increases with Eapp and can be expected to drive Joule heating of

the device to some extent, thereby decrease in the bandgap in accordance with Varshini’s

law. [96, 2, 5, 81, 102, 98, 35]

Eg(T ) = Eg(0)− αT 2

β + T
(3.4)

where Eg(0) is the band gap at 0K, α is the T →∞ limiting value of the band gap shrinkage

coefficient dEg(T )/dT and β is a material specific parameter. This heating-induced contrac-

tion of the bandgap, caused by a thermally induced increase in the interatomic spacing, has

been previously documented for CdSe.[33, 103, 10]

EL images as a function of applied bias were acquired using an inverted microscope (Olym-

pus, IX71) equipped with a 40× objective lens (Olympus, LUCPlanFLN 40 × 0.60) and

a CMOS camera (Andor, Neo). Electrical measurements during EL emission were accom-

plished using a source-meter (Keithley 2400) controlled by LabVIEW software. EQE was

calculated using the number of photons out of the single nanowire light emitter devided by

the number of electrons flowing through the material per second. CMOS sensitivity and

geometry loss was factored into calculation. EL spectra were obtained using a spectrometer
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(Andor, Shamrock SR-500i-D2) equipped with a 300 l/mm grating blazed at 760nm and

a CCD camera (Andor, Newton). All the EL measurements were carried out under room

temperature. PLspectra were acquired using a SpectraPro 2300i spectrometer (Princeton

Instruments, Acton) with excitation from a 532 nm laser.

3.4 Conclusion

In summary, we have described a new, high throughput process for preparing three-layer - M1-

S-M2 - electroluminescent wires. This process involves two electrodeposition steps and a so-

lution casting step (EECS). A distinguishing feature of EECS is its ability to produce long

EL-emitting wires, limited only by the length of the gold nanowire core which is prepared us-

ing the LPNE process. We demonstrate EECS here by fabricating Au@CdSe@PEDOT:PSS

wires 25 µm in length - a record for wire-based EL-emitting devices. Using the EECS pro-

cess, millimeter-scale EL emitting Au@CdSe@PEDOT:PSS wires should be accessible using

exactly the same processing conditions described here. In Au@CdSe@PEDOT:PSS wires,

the efficiency of EL emission is signnificantly improved, by an order of magnitude in EQE,

relative to planar Au-CdSe-Au emitters described just two years ago.[78] But further im-

provements are needed to bring EQE to 1.0 % enabling brightness that competes with

state-of-the-art quantum dot-based EL devices.
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