
UC Irvine
ICS Technical Reports

Title
Efficient recursion termination for function-free horn logic

Permalink
https://escholarship.org/uc/item/71q4m119

Authors
Wong, Wang-chan
Bic, Lubomir

Publication Date
1986-12-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/71q4m119
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Efficient Recursion Termination

for Function-Free Horn Logic_!_

Wang-chan Wong - -- -
Lubomir Bic

Dept. of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

Technical Report #86-26

December 18, 1986

z
to9CJ
CB
7)(). g6-J~

C..2

t This work was supported by the NSF Grant DCR-8503589: The UCI Dataflow Database Project

I
_j

Contents

Introduction.
Page

2
Preliminaries 3

Basic Definitions. 3
SL-Resolution 6

Incompleteness of Preorder SL-resolution. 8
The Goal Termination Strategy 10
Behavior of Preorder SL-resolution with Goal Termination Strategy. 11

Preprocessing of Input Clauses 13
Elimination of Tautology Loops 13
Elimination of Non-linear Recursive Loops 17
A Final Transformation 21

An Efficient Scheme to Implement the Goal Termination Strategy 22
A Distributed Goal Recording Scheme 23
Example for Mutual Recursion with Cyclic Assertions 26

Concluding Remarks 31
References . 33

i

I

I

_]

Abstract

We present an efficient scheme to terminate infinite recursion in function-free
Horn logic. In [BW84], Brough and Walker show that a preorder linear resolution
with a goal termination strategy is incomplete, i.e. it must miss some answers.
Their theory is true if left-recursion is allowed. The crucial assumption underlying
Brough and Walker's theory is that the order of literals in a clause should not
be altered. This assumption, however, is not necessary in programs that do not
contain any extra-logical features such as the 'cut' symbol of Prolog. This is because
the order of literals does not affect the correctness of such programs, only their
efficiency. In this paper, we show that left-recursion can always be eliminated. The
idea is to transform loops of the input set into safe loops, that are left-recursion
free. Consequently, the goal termination strategy guarantees to always terminate
properly with all possible answers; thus, it is complete in the domain of safe loops.
We further show that all rules in a safe loop can be transformed into rules that begin
with a base literal. This permits the -implementation of a simple scheme to carry
out the goal termination strategy more efficiently. The basic idea of this scheme is
to distribute the history containing all executed goals over assertions, rather than
maintaining it as a centralized data structure. This reduces the amount of work
performed during execution.

1

1. Introduction

Function-free logic programming is a powerful tool that can be used to im­

plement first-order deductive databases. One important issue in such programs is

to prevent queries involving recursive clauses from entering an infinite loop. The

traditional way to handle this problem is to order clauses such that infinite loops are

explicitly avoided. However, this approach is undesirable for two reasons. First, it

still does not solve the problem when assertions are cyclic. Second, imposing order

on clauses destroys the completeness of logic programs.

In [BW84], Brough and Walker study the problem for programs with preorder

search strategy i.e., top-down left-to-right, as, for example, in Prolog. For such

programs, there are two distinct approaches to solve the termination problem: a

goal termination strategy and a rule termination strategy. With goal termination,

a branch of a derivation tree is terminated if a goal is repeated in its own branch

of the derivation tree. With rule termination, a branch of the derivation tree is

terminated if a rule (clause) with the same instances is repeated in the existing

derivation tree. Brough and Walker show that any preorder search strategy where

termination is based on examining the current partial derivation tree, is incomplete,

i.e. it must miss some answers.

The crucial assumption underlying Brough and Walker's theory is that the

order of literals in a clause should not be altered. This assumption, however, is

not necessary in programs that do not contain any extra-logical features such as

the 'cut' symbol of Prolog. This is because the order of literals does not affect the

correctness of such programs, only their efficiency.

In this paper, we present an approach that prevents infinite recursion yet

always produces all possible answers derivable from the given program, i.e., is

complete. This approach is to transform all loops into safe loops which are left­

recursion free. After the transformation, the goal termination strategy can be

applied safely and it does not require any particular ordering of clauses. Clauses

2

of a safe loop can further be transformed into clauses that always begin with a

base literal. This serves as the basis for a simple scheme that implements the goal

termination strategy efficiently.

The organization of this paper is as follows: m Section 2, we introduce the

notation of Horn programs that we use in subsequent discussion. In Section 3, we

show the problems of preorder search strategy, define the goal termination strategy

precisely and show why the goal termination strategy is incomplete. In Section 4,

we present the methods to transform a set of clauses into a set of clauses that are

safe and always begin with a base literal. In Section 5, we show the simple scheme

to implement the goal termination strategy and demonstrate it with a complete

example.

2. Preliminaries

In this section, we introduce the basic concepts of logic programming and

specifically of SL-Resolution as in [KOW79B, KoKu71, CHLE73, WOSLB84].

2.1. Basic Definitions

Definition: A Horn program is a collection of clauses of the form

•po V •p1 V ... V 'Pn-1 V Pn

Each Pi is called a literal and has the form p(ti, ... , tm), where pis a predicate

symbol and ti, ... , tm are terms. In a function-free Horn program, terms can only

be constants or variables. The literal Pn, which is the only positive literal, is called

the head of the clause; the remaining literals form its body. A clause with an empty

body is called an assertion and is used to represent explicit facts. Clauses with a

non-empty body are called rules. Any predicate occurring in a Horn program may

be interpreted as a relation among the terms of that predicate.

3

1) P1(a, b).

2) P1(b,c).

3) •P1(X, A) V •q(A, Y) v q(X, Y).

4) •P1(X, Y) V q(X, Y).

5) •P2(X, A) V •l(A, Y) v d(X, Y).

6) •p3(X, A) V •f(A, Y) V l(X, Y).

7) •d(A, Y) V •p3(X, A) V f(X, Y).

8) •p4(X, Y) v d(X, Y).

9) negated query •q(a, ?).

Figure 1

An Example of Horn Program

Definition: Relations defined by assertions are called base relations while

relations defined as the head of a rule will be referred to as virtual relations. For

example, Pl in Figure 1 is a base relation and q, d, l and f are virtual relations.

Definition: A loop is a set of clauses which can be ordered such that the ith

clause contains a predicate that matches the head of the i + 1st clause, modulo the

number of clauses forming the loop. For example, rules (5), (6) and (7) in Figure 1

form a loop because the predicate l of clause (5) matches the head of clause (6);

the predicate f of clause (6) matches the head of clause (7); and the predicated of

clause (7) matches the head of clause (5).

Definition: A rule (and, consequently, the relation it defines) is recursive if

it is part of a loop. For example, rules (5), (6) and (7) in Figure 1 are all recursive.

A rule (relation) is directly recursive if it is part of a loop of size one; in other words,

a predicate in J:>oth a negative and a positive form must exist in the same clause.

For example, clause (3) in Figure 1 is directly recursive due to the predicate q.

Definition: A rule is non-recursive if it is not part of any loop; its body

comprises only base and/or other non-recursive relations. For example, clauses (4)

and (8) in Figure 1 are non-recursive.

4

(1) -.p(X, A) v -.q(A, Y) v q(X, Y)

(2) -.a(Z, X, Y) V a(X, Y, Z)

p is a base relation and a and q are recursive relations.

Figure 2

Examples of Linear Recursive Rules

Definition: A recursive rule can be either linear or non-linear. In a linear

recursive rule, the body has one and only one literal that is mutually recursive with

its own head. For example, the two recursive rules

•p(X, A) V •q(A, Y) V q(X, Y)

•a(Z,X, Y) v a(X, Y, Z)

are both linear. The body of a non-linear rule, on the other hand, contains more

than one literal that is mutually recursive with its head, as for example in

•q(X, A) V •q(A, Y) v q(X, Y)

Consequently, a loop formed by linear recursive rules is called a linear recursive

loop while a loop containing a non-linear recursive rule is called a non-linear loop.

Definition: A literal which causes a loop to be entered is called the start

literal of that loop. Hence, the head of any recursive rule is the start literal of

the loop in which the rule participates. For instance, literals d(X, Y), l(X, Y) and

f(X, Y) in rules (5), (6) and (7) of Figure 1 are possible start literals.

Definition: Any negative literal inside a loop that calls upon a start literal

of that loop is called an end literal. Start and end literals are complementary in

that they have the same predicate name but opposite sign. Start literals are always

positive while end literals are always negative. For example, in Figure 1, •d(A, Y)

in clause (7) is the end literal corresponding to the start literal d(X, Y) of clause

(5).

5

Definition: An exit clause of a loop is a non-recursive rule whose head has

the same predicate name and arity as (i.e., is unifiable with) the head of some rule

inside that loop. For example, clause (8) in Figure 1 is the exit clause for the loop

comprising the clauses (5), (6) and (7). It is assumed that each loop always has at

least one exit clause; otherwise, the loop cannot terminate.

2.2. SL-Resolution

Linear input re.wlution [CHLE73, WOLB84] is a special case of binary reso­

lution. At each resolution step, a literal from the current resolvent is selected as

the next goal. The clause with which this goal is to be unified must come from the

original input set. The linear input resolution method does not, however, prescribe

which of the literals comprising the resolvent should be selected as the next goal. -

SL-resolution [KoKu71] stands for Linear resolution with a Selection function.

It is a refinement of linear input resolution, in which the rule for selecting the next

goal from a resolvent is explicitly specified. Each selection rule will result in a

different derivation tree. One of the most common selection rules is one that always

selects the leftmost literal of the resolvent as the next goal. For example, consider

the clauses in Figure 1. The query • q(a,?) will generate the derivation tree shown

in Figure 3. The root of the derivation tree is the negated query and each node

thereafter is the result of resolving the leftmost literal of its parent with some input

clause; the number of the selected clause (according to Figure 1) is recorded on the

tree edge. For example, the initial query can be resolved with clause (3), which

yields the resolvent • Pl (a, Ai) V • q(Ai,?).

In a given derivation tree, each path corresponds to a different search for

a possible solution. The order in which the paths are traversed is determined

by the search strategy. The most common search strategy is depth-first. In the

remainder of this paper, we consider only the SL-resolution with the left-to-right

selection rule and a depth-first search strategy; this will be referred to as preorder

6

--, P1(c, A3) V--, q(A3, ?)
I
I
I
I
I
I
I

I

fail

--, q(a, ?)

3
[X= a,Y =?]

1

--, q(b, ?)

4
[X = b][Y =?]

--, P1 (b, ?)

1 2
[? = c]

--, P1(c, ?)
I

I

fail

Figure 3

Example of SL-Resolution

Selecting the Leftmost Literal

4
[X =a, Y =?]

--, P1(a, ?)

1
[? = b]

SL-resolution. Algorithm A specifies this method formally. (Note that this version ·

7

always generates all possible answers to a given query, rather than just the first

one.) The delimiters "(*" and "*)" denote comments.

(1) Negate query to become the current goal G;
(2) Scan input clauses;

if an unused input clause C is unifiable with goal G
then mark C as used; (* goto step (3) *)
else if G is the root of the derivation tree

then terminate the process
else fail G and backtrack to parent clause P of G

set the current resolvent to P;
goto step (4);

(3) Resolve G with O;
if an empty clause is derived
then succeed and return bindings

fail C; (* in order to collect the remaining answers *)
goto step (2); (* the backtracking step *)

else the residual literals of C are placed at the leftmost
position of the resolvent;

(4) Set G to the leftmost literal of the current resolvent;
Re-initialize all input clauses that have been marked in step (2);
goto step (2);

Preorder SL-resolution
Algorithm A

3. Incompleteness of Preorder SL-resolution

A resolution method is complete if, for any unsatisfiable program, the resulting

derivation tree contains at least one empty clause (represented by a small square

at the leaf level). In that respect, SL-resolution is complete [KoKu71, LL084).

However, it depends on the particular search strategy, whether the empty clause

can be found. Under certain search strategies the SL-resolution may enter an

infinite loop and thus become incomplete. In particular, the preorder SL-resolution

introduced in Section 2.2, is incomplete because of the occurrence of the following

8

Strategy Complete
Domains in which Strategy

is incomplete/complete

1. Left Recursion

Preorder No
a). linear recursive
b). non-linear recursive

2. Cyclic Assertions

Preorder+
1. Left Recursion

Goal Termination
No a). linear recursive

b). non-linear recursive

Preorder+
Goal Termination+ Yes Safe Loops

Transformation

Table 1

Completeness of SL-resolution

with Different Refinement Strategies

two special cases: (1) left recursive rules, and (2) cyclic assertions, that, in the

presence of recursion, keep generating the same results indefinitely. Row 1 of Table 1

represents this situation. As indicated in the table, left recursion can further be

subdivided into two cases: (a) linear recursive rules, and (b) non-linear recursive

rules.

In (BW84], Brough and Walker show that a goal termination strategy canter­

.minate properly for recursions with cyclic assertions provided that the rules are left

recursion free.* The goal termination strategy is described in detail in Section 3.1.

Unfortunately, preorder SL-resolution with a goal termination strategy still remains

incomplete, because of the left recursion problem. Row 2 of Table 1 summaries this

situation that will be discussed in detail in Section 3.2. The objective of this

* There is one special case of left recursion, called permuted tautology loop, for which the goal
termination strategy does terminate properly; this will be discussed in Section 4.1

9

Ra

Figure 4

Derivation Tree of the Goal Termination Theorem

paper is to present a method that will transform all loops into safe loops which

are left-recursion free. For this case, preorder SL-resolution combined with a goal

termination strategy will always terminate with all possible answers; thus, it is

complete. Row 3 of Table 1 represents this claim, which will be substantiated in

Section 4.

3.1. The Goal Termination Strategy

In [BW84], the goal termination strategy was introduced informally. In this

section, we first give a precise definition of this concept. The following theorem

serves as the basis for the definition:

Theorem Goal Termination Strategy. If a goal G occurs as its own subgoal

(i.e. within its own branch of a derivation tree) with identical bindings, the goal G

can be failed.

10

Proof The proof is by contradiction. Consider the derivation tree in Figure 4

and assume the following:

(1) Go and Gi are the same goals with identical bindings;

(2) Gi cannot be failed (false assumption).

According to preorder SL-resolution, assumption (1) implies that the subtrees

for the two goals Go and Gi are identical. Assumption (2) implies that there exists

a proof for Gi that is different from any proof for Go. Consequently, the subtrees for

Go and Gi must be different. This results in a contradiction and hence assumption

(2) must be false. (Q.E.D)

The goal termination strategy is shown in Algorithm B - an extension of

Algorithm A. A global history list His used to hold the sequence of executed goals

(with their bindings). The main distinction between these two algorithms is in

step 4 which detects a repeated goal by searching the history H for the occurrence

of the current goal.

3.2. Behavior of Preorder SL-resolution with Goal Termination Strategy

In this section, we show that a preorder SL-resolution combined with a goal

termination strategy is still incomplete because of the left recursion problem.

First, consider the following clauses, containing cyclic assertions:

(1) at(pencil,lamp).

(2) at(lamp, radil).

(3) at(radio,pencil).

(4) --, at(X, Z) V--, locate(Z, Y) V locate(X, Y).

(5) --, at(X, Y) V locate(X, Y).

When the query --, locate(pencil, W) is asked, Algorithm A will enter an

infinite branch, since the assertions (1) to (3) are cyclic. This occurs when rule (4)

is applied. The algorithm will loop indefinitely without even trying rule (5), which

would yield some answers. Algorithm B, on the other hand, will terminate properly,

11

(1) Negate query to become the current goal G;
if G is recursive then history list H = [G.nil] else H =nil

(2) Scan input clauses;
if an unused input clause C is unifiable with goal G
then mark C as used; (* goto step (3) *)
else if G is the root of the derivation tree

then terminate the process
else fail G and backtrack to parent clause P of G

set current resolvent to P
goto step (4);

(3) Resolve G with C;
if an empty clause is derived
then succeed and return bindings

fail C (* in order to collect the remaining answers *)
goto step (2) (* the backtracking step *)

else the residual literals of C are placed at the leftmost
position of the resolvent;

(4) Set G to the leftmost literal of the current resolvent;
if G is recursive
then if G is in H (* repeated goal detected *)

then fail G and backtrack to parent clause P of G
set G to the leftmost literal of P
goto step (2)

else append G to H
Re-initialize all input clauses that have been marked in step (2);
goto step (2);

Preorder SL-resolution with Goal Termination Strategy
Algorithm B

since the same goal repeats in the same branch of the derivation tree. That is, goal

termination is sufficient in the case of cyclic assertions.

Second, consider the following clauses containing a left recursion:

(1) -, q(A, Y) v-, p(X, A) V q(X, Y).

(2) -, p(X, Y) v q(X, Y).

(3) p(a, b).

(4) query •q(a, Y).

12

In this situation, even Algorithm B will enter an infinite branch when it tries to

resolve the left most literal of clause (1). The remedy, however, is simple, provided

the program does not contain any extra-logical features such as the 'cut' symbol of

Prolog. In this case, we may simply rearrange the literals of rule (1) to avoid left

recursion. This is because the order of literals in a clause does not affect the logical

consequences of the resolution; only, perhaps, the efficiency of execution. Rule (1)

may be rearranged as follows:

-, p(X, A) v-, q(A, Y) v q(X, Y)

Finally, consider a non-linear recursive rule that contains no base or non­

recursive literals at all; for example, clause (1) in Figure 8. In this case, the left

recursion problem cannot be avoided by simply rearranging literals. Hence, preorder

SL-resolution with goal termination is incomplete (Row 2 of Table 1).

4. Preprocessing of Input Clauses

In this section, we show how to transform loops of the input set into safe loops,

for which the strategy is complete. The first transformation is to eliminate tautology

loops while the second eliminates left recursion in non-linear rules. We then show

how the resulting safe loops may further be transformed such that all rules begin

with a base literal. This is necessary to permit the efficient implementation of goal

termination which will be described in Section 5.

4.1. Elimination of Tautology Loops

A basic tautology loop is defined in (SIC76] as a loop in which the start literal

and the end literal are the same predicates with identical bindings. Rules (1) to

(3) in the following program form a tautology loop with the start literal q(X, Y) in

rule (1) and the end literal-, q(A,B) in rule (3):

(1) -, p(X, Y) v q(X, Y).

13

(2) • d(X, Y) v p(X, Y).

(3) • q(A, B) v d(A, B).

(4) • e(X, Y) v q(X, Y). exit clause

To detect whether a given loop is a basic tautology loop, we rewrite it as

follows. For each clause i in the loop, we rename all terms such that the head of

clause i matches the corresponding unifiable literal of clause i -1. (Recall that, for

any loop, there exists an ordering of clauses, as specified in Section 2.) If, after the

renaming, the terms of the start and end literals are identical, the loop is a basic

tautology loop.

For example, the following three clauses are the result of rewriting clauses (1)

through (3) of the above program.

(1) • p(X, Y) v q(X, Y).

(2) • d(X, Y) v p(X, Y).

(3) • q(X, Y) v d(X, Y).

Clause (2) did not have to be rewritten, since its head (p(X, Y)) already matched

the corresponding literal of clause (1). Clause (3) was rewritten by replacing A and

B with X and Y, respectively. The terms of the resulting start literal (q(X, Y))

and end literal (•q(X, Y)) are identical; hence a tautology loop is present.

Sickel has shown that basic tautology loops never need to be traversed in the

search for a proof and thus can be eliminated from the program. The elimination is

accomplished by replacing each clause'of the loop by the set of exit clauses unifiable

with that clause.

The reasoning underlying this transformation can be illustrated using the

previous example. (For a detailed proof, refer to (SIC76].) Suppose we resolve

clauses (1) through (3); the resolvent will contain the pairs q(X, Y) V • q(X, Y)

which is a tautology. The loop together with its exit clause is shown in Figure 5.

The only way to get out of the loop and thus to obtain any solutions is to resolve

the exit clause. Since the loop by itself does not produce any solutions, it can be

14

--, p(X, Y) V q(X, Y) e~it clause
--, e(X, Y) V q(X, Y)

--, d(X, Y) v p(X, Y)

--, q(X, Y) V d(X, Y)

Figure 5

Example of a Basic Tautology Loop

broken by replacing clause (1) with the exit clause (4). The re~mlting program is as

follows:

(1) •e(X, Y) v q(X, Y)

(2) 0 d(X, Y) v p(X, Y)

(3) •q(X, Y) v d(X, Y)

Remark: The goal termination strategy is sufficient to prevent infinite recur­

sion in the case of basic tautology loops, even if the loop contains left recursion

[BW84]. Hence the elimination of basic tautology loops is not really necessary

to guarantee completeness of the strategy; rather, it is performed only to avoid

unnecessary computation.

The concept of the basic tautology loop can be extended further as follows:

Definition: A permuted tautology loop is a linear loop, in which the terms of

the end literal are a permutation of the terms of the start literal (after renaming).

Consider, for example, the following two clauses:

(1) •q(Z,X, Y) v q(X, Y, Z)

(2) •e(X, Y, Z) v q(X, Y, Z) (exit clause)

15

--, q(Z, X, Y) v q{X, Y, Z)
exit clause

--, e{X, Y, Z) v q(X, Y, Z)

--, q(Y, Z, X) v q(Z, X, Y) exit clause
--, e(Z, X, Y) v q(X, Y, Z)

--, q(X, Y, Z) V q(Y, Z, X) exit clause
--, e(Y, Z, X) v q(X, Y, Z)

Figure 6

Example of a Permuted Tautology Loop

Clause (1) forms a permuted tautology loop since the terms of the end literal

(•q(Z,X, Y)) are a permutation of the terms of the start literal (q(X, Y, Z)).

Theorem A permuted tautology loop is never required in a refutation and

hence may be eliminated.

Proof The proof is based on the idea of transforming the original loop into

a basic tautology loop, which may be eliminated according to the theorem given by

Sickel. Assume that the terms of the end literal are a permutation of the terms of

the start literal; the permutation order is r. (Interested readers are referred to the

Appendix, describing how to determine the order of a permutation.)

The transformation comprises the following steps:

(1) replicate the original loop r-times;

(2) rewrite the resulting sequence of clauses as in the case of detecting a basic
tautology loop; i.e., for each clause i in the loop, rename all terms such that
the head of clause i matches the corresponding unifiable literal of clause i-1;

If a permutation's order is r and it is applied to a sequence of elements r­

times, the resulting sequence is guaranteed to be identical to the original sequence

[FRA82]. Since the sequence derived through the above transformation permutes

the terms of the start literal r-times, the end literal of the last replication of the

16

loop is complementary to the start literal of the first replication of the loop. Hence

this new sequence forms a basic tautology loop and can be eliminated using the

approach given by Sickel. (Q.E.D)

To illustrate the application of this theorem, consider again the above example

of a permuted tautology loop. The permutation of the terms in rule (1) has an order

of 3. By replicating clause (1) three times and renaming all terms accordingly, a

basic tautology loop is derived; this is shown, together with the corresponding

exit clauses, in Figure 6. By eliminating the basic tautology loop, we obtain the

following loop-free set of clauses:

(1) e(X, Y, Z) V q(X, Y, Z)

(2) e(Z,X,Y)Vq(X,Y,Z)

(3) e(Y, Z, X) v q(X, Y, Z)

4.2. Elimination of Non-linear Recursive Loops

Non-linear recursive loops can always be transformed into linear recursive

loops as follows. If we interpret Horn clauses by means of "procedural semantics",

any clause

•po V 'Pl V ... V 'Pn-1 V Pn

is analogous to a call to the procedure Pn which, in turn, calls the procedures po

through Pn-1, in sequence. Hence the procedural semantics allows us to interpret

any clause analogous to a production rule in a context free grammar.

It has been proven [HAR78) that for any left-recursive context free grammar G,

there exists another context free grammar, G, that is equivalent to G but contains

no left recursion. G is derived by the following transformation:

A left-recursive context free grammar G has the form

(1) A--+ Aa1 V ... V Aar

(2) A --+ /31 v ... V /3s

17

(a) (b)

Figure 7

Elimination of Left Recursion

where o:1s may be terminal or non-terminal strings, and f3's are always terminal

strings. Figure 7(a) shows the generic derivation tree of this grammar. Each level

of the tree corresponds to the execution of one of the production rules. The right

subtree, O:i;, always represents a finite string. The left subtree may continue to

expand recursively as long as rule (1) is applied; application of rule (2) terminates

the recursion.

The above left recursive grammar may be transformed into the following

equivalent left recursion free grammar (any text book on compiler or automata

theory, e.g. [HAR78], describes the appropriate procedures):

(1) A -+ f31A' V ... V /38 A1

(2) A -+ /31 V ... V f3s

(3) A' -+ 0:1A' V ... V arA'

(4) A' -+ 0:1 V ... v o:r

where o:'s and f31s have the same meanings as before and A' is a new non-terminal

symbol. The corresponding derivation tree is shown in Figure 7(b). Note that the

leaves of the trees in both cases (a) and (b) are visited in the same order when a

preoder traversal is used; hence the same strings are produced.

18

(1) .., a(X, W) v--, a(W, Y) v a(X, Y)

(2) .., b(X, Y) V a(X, Y)

a is a recursive relation and b is a base relation.

Figure 8

Example of a Non-linear Recursive Rule

An analogous transformation can be applied to eliminate left-recursion in

Horn-clause logic by viewing each symbol as a literal. Terminal symbols represent

base or nor-recursive predicates while non-terminal symbols are recursive predicates.

The necessary extension is to accommodate the generation of terms for each literal.

The procedure to transform a given left-recursive loop into one without left

recursion is as follows. First, create a derivation tree, A, of the form shown in

Figure 7(a). This is accomplished by replicating the clause with left-recursion n­

times, where n is the arity of the recursive literal. This assures that all possible

permutations of the terms will be included in the tree. The terms in the resulting

sequence of clauses are then renamed (subscripted) such that the head of clause i

matches the corresponding unifiable literal of clause i-1, as in the case of detecting

tautology loops (Section 4.1).

As a next step, we ignore the terms of all clauses in the original loop and gen­

erate the corresponding left-recursion free loop according to the rule for eliminating

1eft recursion in context-free grammars, given above. From this loop, we create a

derivation tree, B, of the form shown in Figure 7(b).

Next, we transfer the renamed terms of the leaf nodes of tree A into the

corresponding leaf nodes of tree B. We then proceed towards the root by creating

consistent terms for each intermediate node. As a last step, we transform the

modified tree B into clausal forms.

19

(a) (b)

Figure 9

Elimination of Left Recursion for Predicate Logic

The above procedure is illustrated by showing the transformation of the left-

recursive program of Figure 8 into a corresponding left-recursion free program.

Let a and f3 correspond to the predicates a and b, respectively. A derivation

tree obtained from the program by following the above procedure is shown in

Figure 9 (a). This tree resembles the tree of Figure 7 (a) with n = 2 but, in

addition to the predicate names, it also shows the renamed terms for each node.

For instance, the root a has the terms (X, Y).

As a next step, we create the left-recursion free tree and proceed by filling

in the terms as follows. The bindings of the leaves a1, a2, and f3 are transferred

from the tree in Figure 9(a) into the tree just created; these are the terms (W1, Y),

(W2, W1) and (X, W2), respectively. By proceeding towards the root, we assign

consistent terms to the remaining nodes of the tree. The final tree, shown in

Figure 9 (b), is then translated into the following left-recursion free clauses:

(1) ·b(X, W2) V •a'(W2, Y) v a(X, Y)

(2) •a(W2, W1) v •a'(W1, Y) V a'(W2, Y)

(3) •a(W1, Y) v a'(W1, Y)

20

The subscripts can be eliminated to conform with the notation of Figure 8

by rewriting each clause with a new set of variables. One possible result of such

rewriting is the following set of clauses (note that the exit clause is included):

(1) ·b(X, W) v •a'(W, Y) v a(X, Y)

(2) •a(X, D) V •a'(D, Y) V a'(X, Y)

(3) •a(X, Y) V a'(X, Y)

(4) •b(X, Y) V a(X, Y) (exit clause)

The above program is left-recursion free and is equivalent to the program in

Figure 8.

4.3. A Final Transformation

The transformations presented in the preceding sections 4.1 and 4.2 eliminated

tautology loops and left recursion, respectively. In order to permit an efficient im­

plementation of goal termination, it is necessary to further transform the resulting

safe clauses such that each begins with a base literal. This step is analogous to

converting a context free grammar into Greibach normal form [HAR. 78]. This is

accomplished by rewriting all clauses that do not begin with a base literal as follows:

for each clause C that begins with a non-base literal lnb do

- find all clauses 0 1 whose head has the same predicate as lnb

for each clause 0 1 do

- rewrite 0 1 with the terms of lnb

- make a copy of C and replace lnb with the body of 0 1

To illustrate this procedure, consider the final set of left-recursion clauses

derived in Section 4.2. Clauses (2) and (3) begin with a non-base literal. In

both cases, the clauses unifiable with the respective non-base literals •a(X, D)

and •a(X, Y) are the clauses (1) and (4). After renaming and substitution, the

resulting set of clauses is as shown below. The original clause (2) was transformed

into two new clauses (2') and (3'); similarly, clause (3) resulted in the new clauses

(3') and (41
). (Note that clause (31

) is the same for both cases.)

(1') •b(X, W) v •a'(W, Y) V a(X, Y)

21

I

--, q(a, ?) Pi(X, A) V--, q(A, Y) V q(X, Y

--, P1(a, A) v--, q(A, ?) P1(a, b)

--, q(b, ?) --, Pi(X, Y) V q(X, Y)

--, Pi (b, ?) P1(b,c)

Figure 10

An Example of a Refutation Tree

(2') ·b(X, W) v •a'(W, D) v •a'(D, Y) v a'(X, Y)

(3') ·b(X, W) v •a'(~, Y) v a'(X, Y)

(4') ·b(X, Y) v a'(X, Y)

(51
) •b(X, Y) V a(X, Y) (exit clause)

5. An Efficient Scheme to Implement the Goal Termination Strategy

In this section, we present a simple scheme that is used to implement the goal

termination strategy efficiently. We further demonstrate how the scheme works

using a complete example. To simplify the presentation in this section, we need to

introduce the concept of a refutation tree. This may be used to show a particular

sequence of resolution steps, instead of showing the whole derivation tree.

22

I

I

I

I
Figure 10 gives the refutation tree corresponding to a possible path through

the derivation tree of Figure 3; the clausal form of the program is shown in Figure 1.

At each step, the clause to be resolved, called the center clause, is shown in the left

column, and the clause resolving the center clause, termed the side clause, is shown

in the right column. Along with the resolution, we also show the substitutions used

to unify the clauses.

5.1. A Distributed Goal Recording Scheme

As shown in [BW84], one way to implement the goal termination strategy is

to keep a complete execution history of the given query (i.e. a list or stack of all

executed goals.) By checking this history, it can be determined whether a goal has

been repeated. Unfortunately, checking and maintaining the list of executed goals

can be very costly in a deep recursion.

Our approach is to distribute the history list throughout the entire database

such that the amount of work to check the occurrence of any particular goal is

reduced. To understand the basic idea of this approach, consider the refutation

tree in Figure 11. Assume that the current goal to be solved is Gi. The objective is

to determine whether the same goal (with identical bindings) occurred earlier, i.e.,

anywhere higher in the tree. There are four possible ways to maintain the history

information:

(1) The original proposal [BW84] implies that a global list is maintained, which

records the occurrence of all recursive goals. Each time a recursive goal Gi

is encountered, this global history list must be searched to determine if Gi

occurred earlier. This corresponds to Step 4 of Algorithm B.

(2) To reduce the search, the history list can be distributed over individual

clauses of the program. The first possible level of distribution is over clauses

that are unifiable with Gi. Assume that C is such a clause (in Figure 11).

A list recording the history relevant to the use of C is maintained with each

23

c

C'

........

........

c

C' .

Figure 11

such clause. This list is used in the same way as the global list in case 1

above. That is, each time C is used to resolve a goal Gi, the list is searched

for the occurrence of the same goal. If a match is found, the current goal Gi

is failed; otherwise, Gi is included in the list and resolution continues.

The above distribution is justified by the following observation. If a goal Gj,

identical to Gi, occurs in the tree, the same clause C will be used to resolve

it; this is due to the preorder search strategy. Since Gi preceded Gj in the

tree, it was recorded in the list associated with C at the time when Gj is

encountered. Hence Gj will be failed.

This approach distributes the original history list of case 1 over the set

of recursive clauses constituting the program; i.e., the encountered goals

are segregated into sublists according to their predicate name and current

24

bindings. Hence, the average number of goals that must be examined in each

case is reduced in proportion to the number of recursive clauses.

(3) An even higher degree of distribution is possible by recording the goals not

with the clause C itself but with next side clause C', immediately following

C in the resolution (Figure 11). That is, when a recursive goal Gj is

encountered, we first find a clause C to solve Gj and perform the unification;

this yields a resolvent Rj. Next we find a clause C' that can be resolved with

Rj; G3· is then recorded in the list associated with the clause C'.

This approach is based on the following fundamental observation. Assume

that Gi is a goal identical to Gj, and Gj occurs earlier in the tree. This

implies that the same clause C will be used to solve both Gi and Gj.

Consequently, the first subgoals in Ri and Rj, immediately following Gi

and Gj respectively, must also be identical. Hence, both subgoals will be

resolved with the same clause C'. This clause is the one with which the goal

Gj was previously recorded. Hence, when Gi is to be solved, this list will be

examined and Gi will fail.

The advantage of this approach over the one in case 2 above is a greater

distribution of the history information. In case 2, the history list was

distributed over all recursive clauses C. In case 3, it is distributed over

clauses C'. Since, for each recursive clause C, there is at least one clause C'

that can be used as the next side clause, the history list will, on the. average,

be distributed over a larger number of clauses.

(4) A final improvement can be achieved by influencing the number of clauses

C' over which the history list will be distributed. That can be attained by

transforming all clauses of the input set such that each begins with a base

literal. Section 4.3 described a procedure to accomplish this transformation.

The reason why such a transformation yields a better distribution can be

explained by the following reasoning. Consider again Figure 11. Clause C

25

(after the final transformation) begins with a base literal. When it is resolved

with Gj, the resolvent Rj also begins with a base literal (due to preorder

search). This implies that the clause, 0 1
, that will be used to resolve Rj

will always be an assertion. Since, in general, there are more assertions than

rules in a given program, there will be a greater distribution of the history

list than in case 3.

Algorithm C gives the details of the final preorder resolution with goal termi­

nation implemented as suggested in case 4 above. In comparing this algorithm with

Algorithm B of Section 3.2, we note the following main differences. In Algorithm B,

the recording and checking of repeated goals is done in step 4, using the global his­

tory list H; this occurs each time a recursive goal G is encountered. In Algorithm

C, these tasks have been moved from step 4 to ~ new step 2a. Note that they

are performed whenever an assertion is used as the side clause C, when solving a

recursive goal G. A temporary variable G LR is used to hold the current recursive

goal. A related change is found in step 1; in Algorithm B, a global history list H

was initialized; in Algorithm C, on the other hand, a separate history (sub)list He

is created and initialized for each assertion.

5.2. Example for Mutual Recursion with Cyclic Assertions

In this section, we illustrate Algorithm C by presenting a complete example.

Consider the mutually recursive loop consisting of the clauses (5) through (8) in

Figure 12.

Given the query q(a, W), Algorithm C produces the refutation tree shown

in Figure 13. The first column records the resolution steps numbered la through

6a. The second column indicates when goals are recorded onto assertions; each

entry shows the assertion and; as a subscript, the goal being recorded during that

step. The n~xt two columns show the sequences of the center and the side clauses,

respectively. The last column shows the current recursive goal GLR·

26

(1) Negate query to become the current goal G;
for each assertion C, initialize He +-- nil;

(2) if G is recursive then GLR +-- [G] else GLR +--nil;
Scan input clauses;
if an unused input clause C is unifiable with goal G
then mark C as used; (* goto step (2a) *)
else if G is the root of the derivation tree

then terminate the process
else fail G and backtrack to the parent clause P of G

(undo the goals recorded along the path)
set current resolvent to P; goto step (4);

(2a) if GLR is not nil and C is an assertion (with He)
then if G LR is not in He

then append GLR to He
else fail the C and G; (*According to the goal termination strategy*)

backtrack to the parent clause P of G;
(undo the goals recorded along the path;)
set current resolvent equal to ·P; goto step (5);

(3) Resolve G with C; ·
if an empty clause is derived
then succeed and return bindings

fail C; (* in order to collect all answers*)
goto step (2);

else the residual literals of C are placed at the leftmost position;
(4) Set goal G to the leftmost literal of the current resolvent;

Re-initialize all input clauses that are marked in step (2);
goto step (2);

A Preorder Resolution with Distributed Goal Recording Scheme
Algorithm C

At resolution step la, a recursive goal -, q(a, W) is encountered and hence

GLR is set to q(a, W). By scanning the input clauses, we find the unused clause (5)

(Figure 12), that is unifiable with the current goal. The unification step is carried

out with the appropriate substitution list [X/a Y/W].

At step 2a, the side clause is the assertion p(a, b). According to step 2a of

Algorithm C, we record the current recursive goal q(a, W) onto p(a,b). The same.

27

(1) p(a, b).
(2) p(b, a).
(3) d(b, a).
(4) d(a,e).
(5) --, p(X, A) v--, l(A, B) V--, q(B, Y) v q(X, Y).
(6)--, d(X, Y) v q(X, Y).
(7) --, d(X, Y) V l(X, Y).
(8) --, p(X, A) V--, q(A, B) v--, l(B, Y) v l(X, Y).
where predicates q and l are mutually recursive

Figure 12

An Example of Mutual Recursion

process is repeated for the resolution steps 2a through 6a. In step 6a, the history

list of the side clause p(a,b) contains the goal [q(a, W)]. Since this matches the

current goal, the goal is failed and the resolution backtracks to step 4a.

At this point, there is no other unused clause unifiable with •d(b, B1) and

so the resolution backtracks to step 3a, removing the last goal recorded with each

assertion history along the backtracking path. This removes the goal q(a, W) from

the assertion d(b, c), that was recorded during resolution step 4a.

The resolution process continues and generates the sequence of steps shown

in Figure 14. At step 6b, the goal •p(a, A4) is failed again, since it is already

recorded in the history list of the assertion p(a, b). (Note that A4 and W are both

free variables and hence they match.) Execution then backtracks to step 4b. Since

there is no other unifiable clause, the process backtracks to step 3a and further

to 2a and la (Figure 13). The goals that were recorded during previous forward

execution steps are removed while backtracking.

The process now continues as shown in Figure 15. It succeeds and returns

[W = e] as one possible answer. In order to search for other answers, we fail

the current goal and backtrack to step lf. At this time, there is no other unused

unifiable clause, and thus the process terminates with the binding W = [e] as the

only answer.

28

Step

la.

Goal
Recorded

2a. p(a, b)[q(a,W)]

Sa.

4a. d(b, c)[l(b,W)]

5a.

6a.

Center Clause

--, q(a, W)

--, p(a, Ai) V..., l(Ai, Bi)
V--i q(Bi, W)

--, l(b, Bi) V--, q(Bi, W)

--, d(b, Bi) V--, q(Bi. W)

-, q(a, W)

--, p(a, A2) V--, l(A2, B2)
V--i q(B2, W)

Figure 13

29

Side Clause

-, p(X, A) V-, l(A, B)V
--, q(B, Y) v q(X, Y)

Y/W

p(a, b)

--, d(X, Y) V l(X, Y)

d(b, a)

--, p(X, A) V-, l(A, B)V
-, q(B, Y) v q(X, Y)

p(a, b)[q(a,W)]

Current
Recursive

Goal

GLR = [q(a, W)]

GLR = [l(b, W)]

GLR = (q(a, W)]

3b.

4b. p(b, a)[1(b,W)]

5b.

6b.

lf.

2/. d(a,e)[q(a,W)]

--, l(b, B1) v--, q(Bi, W)

--, p(b, A 3) V q(A3, B3)
V--i l(B3, B1) V q(B1, W)

--iq(a, B3) V --il(B3, Bi)
Vq(B1, W)

Figure 14

--, q(a, W)

--, d(a, W)

Figure 15

30

--, p(X, A) V --iq(A, B)v
--il(B, Y) V l(X, Y)

p(b, a)

--ip(X, A) V --il(A, B)
V--iq(B, Y) V q(X, Y)

p(a, b)[q(a,W)]

--, d(X, Y) v q(X, Y)

d(a,e)

G LR = [l(b, W)]

GLR = [q(a, W)]

LR = [q(a, W)]

I~

I

6. Concluding Remarks

Goal termination was proposed to prevent infinite recursion in function-free

Horn logic. Unfortunately, it fails to terminate the computation in the case of a

left recursive loop; hence, it is not complete. In this paper, we have presented an

approach to eliminate left recursion through transformation of clauses. When goal

termination is applied to the transformed set, the strategy becomes complete, in

that it always terminates and generates all possible answers.

Another problem with the goal termination is to find an efficient implementa­

tion. The original proposal assumed a centralized history list that must be searched

whenever a recursive goal is encountered. We have presented three other possible

ways to improve this approach by distributing the history list throughout the clauses

constituting the program. The largest distribution is achieved when the history list

is distributed over only assertions, which, typically, form the bulk of any given pro­

gram (database). We have shown that this can always be achieved by transforming

the program (after removing any left recursion) such that all resulting clauses begin

with a base literal.

31

Appendix

A permutation can be represented by "cycles". For example, let o-1 be the

following permutation:

0-1 = G·~·D = (1, 2, 3)
I I

The permutation 0-1 can be represented by a cycle (1, 2, 3) which is said to

have a length of 3. We may interpret 0-1 as carrying 1 into 3, 3 into 2 and 2 into

1. When we permute the elements of a set in a cyclic order, we will return to the

original sequence, as for example in:

(1,2,3)-+ (3,1,2)-+ (2,3,1)-+ (1,2,3).

A permutation may contain one or more "disjoine' cycles, as for example in:

0-2 = (!·~·~·:·~·~) = (1, 4, 3, 6)(2, 5)
, ' ' ' '

Theorem: The order of a permutation is the least common multiple of the

lengths of the cycles [FRA82].

Therefore, the order of 0-2 = ~ = 4

This implies that applying the same permutation 4 times will return to the

original sequence. For example,

(1, 2, 3, 4, 5, 6) -+ (4, 5, 6, 3, 2, 1) -+ (3, 2, 1, 6, 5, 4)

-+ (6,5,4,1,2,3)-+ (1,2,3,4,5,6)

32

REFERENCES

[BW84] BROUGH, D.R. AND A. WALKER Some Practical Properties of Logic
Programming Interpreters. In Proceedings of the Int 'l Conj on Fifth
Generation Computer Systems, Institute of New Generation Comput­
ing, Tokyo, Japan, 1984, pp. 149-156.

[CHLE73] CHANG, CHIN-LIANG AND LEE, RICHARD CHAR-TUNG Symbolic Logic
and Mechanical Theorem Proving, Academic Press, New York, 1973.

[FRA82] FRALEIGH, JoHN B. A First Course in Abstract Algebra, Addi­
son-Wesley, Reading, Massachusetts, 1982, pp. 38-56.

[HAR 78] HARRISON, MICHAEL A. Introduction to Formal Language Theory,
Addison-Wesley, Reading, Massachusetts, 1978, pp. 111-115.

[KOW79B] KOWALSKI, R. Logic for Problem Solving, North-Holland, New York,
1979.

[KoKu71] KOWALSKI, R.A. AND KUEHNER, D., Linear Resolution with Selection
Function. In Artificial Intelligence, 2(1911), pp. 227-260.

[LL084] LLOYD, J.W. Foundations of Logic Programming, Springer-Verlag,
New York, 1984.

[SIC76] SICKEL, S. A search technique for clause interconnectivity graphs.
IEEE Trans. Comput. C-25, 8 (Aug 1976), 823-834.

[WOLB84] Wos, LARRY, OVERBEEK, Ross, LUSK, EWING AND BOYLE, JIM Au­
tomated Reasoning, Introduction and Applications, Prentice-Hall, Inc,
Englewood Cliffs, New Jersey, 1984.

33

