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Agriculture, Merced Resource Conservation District, Madera/Chowchilla Resource 
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Conservation District, Environmental Defense Fund, The Nature Conservancy, Sustainable 

Conservation 

CaliWaterAg YouTube Channel                                 Present 

• Created a trilingual (English, Spanish, Hmong) YouTube channel for underrepresented 

communities and small-scale farmers to foster understanding of the Sustainable Groundwater 

Management Act (SGMA), its impacts on agriculture, and how communities can become 

involved 

• The aim is to inform, empower, and involve underrepresented communities and small-scale 

farmers in SGMA groundwater sustainability planning and also include their voices in my 

doctoral community-informed land use repurposing model  

• Currently on the CaliWaterAg channel: SGMA and land use series, drinking water issues in 

San Joaquin Valley's underserved communities, and tutorials (e.g., how to find your GSA, 

how to use Zoom on your phone or computer) 

Latinx Community and Small-Scale Farmer Information Dissemination                            Present 

• Disseminate farmer and community workshops, conferences, and other local opportunities 

in Spanish and English through social media platforms (i.e., Facebook, Instagram, 

LinkedIn, and Twitter), phone calls, and SMS texts 

• Called and emailed more than 50 agricultural organizations and about five bilingual 

California newsletter/radio stations to help disseminate information on the trilingual 

CaliWaterAg YouTube channel created to inform and empower through knowledge 

California underserved communities and farmers 

Water Solutions Network Cohort 4                 April to November 2021 

• Collaborate and co-develop water solutions in the Tule Lake Basin with key California water 

stakeholders 

• Engage stakeholders across various sectors (e.g., Native American Tribal Groups, 

Environmental Justice Groups, farmers, local and state water agencies, environmental 

agencies) through phone interviews and web surveys to identify overlapping water goals and 

identify differences that could be bridged to facilitate equitable and representative water 

management 

Community Land Use Preferences Survey                        March to June 2021  

• Surveyed 32 disadvantaged, agricultural communities in the San Joaquin Valley via SMS 

distributed bilingual (Spanish and English) survey that resulted in 197 survey responses that 

provided community land-use preferences with insight on participant value on land use 

contributions to economic and community well-being  

• The survey was conducted as a component of my doctoral dissertation and Strategic 

Alternative Land Use Transformation and Optimization (SALUTO) model partially funded 

by DOE US-China Clean Energy Research Center for Water-Energy Technologies (DE-

IA0000018) and 2021-2022 President's Dissertation Fellowship, and a gift from the 

Environmental Defense Fund (EDF) 

• The University of California Merced Review Board approved this project with all survey 

participants remaining anonymous (protocol # UCM2019-118) 

Bilingual SGMA & Agricultural Land Repurposing Workshop                                   January 2021 

• Organized and presented at bilingual (Spanish and English) virtual workshops related to 

doctoral research on agricultural land repurposing and SGMA with Environmental Defense 

Fund 

Community Engagement for Land Use Repurposing Model                   January to July 2021 
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• With a UC Global Food Initiative Grow Grant, I engaged 26 underserved communities 

(~100- 250 people) throughout the San Joaquin Valley to provide information to community 

members on how the Sustainable Groundwater Management Act (SGMA) could impact 

agriculture and rural communities  

• Disseminated the trilingual CaliWaterAg YouTube channel community resource to address 

the information access inequity present in the San Joaquin Valley by placing ~260 flyers 

throughout markets, feed stores, postal offices, bus stops, community centers, and schools in 

26 underserved, agricultural communities  

INFEWS-ER Challenge Cohort                           October 2020 to May 2021 

• In a group of 7 graduate students from around the nation and world, we analyzed how new 

permitting processes for the swine industry could lead to timely, effective, equitable 

management of swine production in North Carolina 

• Interviewed about ten stakeholders in the North Carolina swine production industry (e.g., 

farmers, community members, biowaste technology developers, North Carolina 

policymakers) to understand the current swine permitting challenges and how changes in 

permitting could impact farmers and community members 

Madera Small-Scale Farmer Advisory Group                        2020-2021 

• Invited to collaborate with a group of small-scale farmer stakeholder groups (California 

Alliance of Family Farms, UC ANR, and Leadership Counsel) to identify issues marginalized 

small-scale farmers in Madera County, California, face in the Sustainable Groundwater 

Management Act (SGMA) process 

San Joaquin Valley Grower SGMA Workshop                                                                  2019-2020 

• Created and organized workshops that inform marginalized small-scale farmers throughout 

the San Joaquin Valley about the potential impacts of the Sustainable Groundwater 

Management Act (SGMA) on agriculture and how they can participate in their local 

groundwater sustainability agencies 

• The objective of the workshops is to inform, empower, and involve growers in SGMA-related 

decisions  

• Two workshops presented to Spanish-speaking farmers in Merced/Stanislaus counties before 

COVID-19 restrictions; attendance of about ten people total   

Merced County Cortez Grower’s Association                         2019-2020 

• Attend grower meetings to learn about issues Merced/Stanislaus County growers are facing, 

learn about seasonal practices, and build trust with growers 

• Attend grower meetings every other week to talk to growers about SGMA and its potential 

impacts on agriculture, and give resources for how growers can become involved 
U.S. Department of Agriculture Science Outreach Program                    January-March 2020 

• Engage two 4th grade classes on hydroponics science once a week (~30 kids per class) 

• Create 1-hour lesson plans that cover the definition of hydroponics, lab safety, how plants 

grow, comparing plant hydroponics vs. soil growth, developing a hypothesis, measuring 

plant growth, and reporting results 

• Students in groups of five grew plants in hydroponic systems and soil to compare the 

difference in growth  

Second Annual "Growing Together" Black Farmer Conference                                February 2020 

• Attended the USDA organized conference held in Fresno, California, and engaged with black 

urban small-scale farmers to learn more about their water and agricultural challenges  
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• Disseminated information on the trilingual CaliWaterAg Youtube channel available for them 

to learn more about the implications of the Sustainable Groundwater Management Act at 

their convenience 

Alpaugh and Allensworth Climate and Water Project             June 2019 

• Facilitated two days of a three-week program in which 8th and 9th-grade students from 

underserved communities develop interests in water, climate change, and scientific research 

by interviewing scientists at UC Merced 

• Provided an overview of climate change and agriculture for students, answered interview 

questions, and guided student-led digital storytelling project  

Community Water Center Community Engagement                                                          2017-2019 

• Work in disadvantaged communities in the San Joaquin Valley on informing community 

members about the Sustainable Groundwater Management Act and its implications on the 

future of the San Joaquin Valley through workshops; 3 workshops of about 30 people each 

Community and Small-Scale Farmer Invited Talks 

• Invited speaker at Latinx Farmer Marketing and Organizing Event organized by Community 

Alliance with Family Farmers (CAFF), November 2021; provided an overview of the 

Sustainable Groundwater Management Act and answered questions related to the potential 

implications on agriculture and future water use 

• Invited presentation for Central Valley Community Foundation and Joe Del Bosque 

organized by UC Merced presenting my community-informed doctoral research "Strategic 

Alternative Land Use Transformation & Optimization (SALUTO) Model," October 2021  

• Invited presentation for UC Regents members organized by UC Merced presenting my 

doctoral research "Strategic Alternative Land Use Transformation & Optimization 

(SALUTO) Model," October 2021  

• Invited presentation for American River Partners organized by Dr. Viers at UC Merced to 

present doctoral work on "Community-Informed Strategic Alternative Land Use 

Transformation & Optimization (SALUTO) Model," May 2021 

• Invited Moderator for UC Merced's World Water Day "The Fight For Water": A Panel 

Discussion with Juan Carlos Oseguera, Joe Del Bosque, and Patrick Cavanaugh, March 2021 

• Invited speaker at the 6th Annual Virtual Latino Farmer Conference organized by the USDA 

Natural Resources Conservation Service (NRCS) and the National Center for Appropriate 

Technology (NCAT), January 2021; presented in Spanish, "Los Impactos del Sobregiro de 

Agua Subterránea en la Agricultura" 

• Invited Speaker at Virtual EcoFarm Conference, January 2021; presented in Spanish “Los 

Impactos del Sobregiro de Agua Subterránea: Un Ejemplo de California”  

• Invited Panelist at Women for the Land Learning Circle- Planning for Resilience in 

California's San Joaquin Valley Virtual Workshop in English organized by American 

Farmland Trust, September 2020 

• Invited speaker alongside Christina Babbitt (Environmental Defense Fund) at the USDA 

funded Water for Ag Engagement Webinar series, April 2020 and presented "Engaging 

Farmers and Communities in Response to California's Sustainable Groundwater 

Management Act" 

• Invited speaker at the 5th Annual Latino Farmer Conference organized by USDA NRCS and 

NCAT in Tulare, January 2019; presented “Las Implicaciones de la Ley de Gestión 

Sostenible de las Aguas Subterráneas (SGMA) en Los Agricultores”  

Local, State, and Federal Policymaker Engagement  

San Joaquin Valley Farmland Transitions Project                  Present 
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• Invited member of the stakeholder advisory group for the project-by-project partners: Ellen 

Hanak (PPIC Water Policy Center), Sarah Moffat (Central Valley Community Foundation), 

and Laura Ramos (California Water Institute, Fresno State University) 

• The stakeholder advisory group will meet four times over the next two years with the project 

team to provide suggestions and feedback, in meetings generally lasting 2–3 hours 

Reedley College AgTech x Education Conference                       August 2021 

• Engaged with AgTech entrepreneurs and learned about the challenges and opportunities at 

the intersection of AgTech and Education  

• Engaged with Secretary Karen Ross (California Department of Food and Agriculture) and 

talked about my doctoral research, community engagement, and challenges that marginalized 

small-scale farmers face 

Engage Local Irrigation and Conservation Districts                   2019- Present 

• Engage with San Joaquin Valley irrigation districts, like Turlock Irrigation District/GSA and 

McMullin Area GSA, to inform them of the trilingual (Spanish, Hmong, and English) 

CaliWaterAg YouTube channel I created that includes a series on the Sustainable 

Groundwater Management Act that could be of use to their constituents 

• Attend Merced and Madera/Chowchilla Resource Conservation District meetings and 

present to members on doctoral work on "Community-Informed Strategic Land Repurposing 

Model" and SGMA 

California Agricultural Laborers Immigration Reform Workshop               September 2019 

• Engaged with Costa, Pannetta, Cox, and Lofgren on my doctoral work on "Community-

Informed Strategic Land Repurposing Model" and learned from agricultural laborers about 

the challenges they face without immigration protection 

University of California 10th Annual Graduate Research Advocacy Day                       March 2019 

• Accompanied Vice Provost and Graduate Dean Marjorie Zatz to meet state leaders and talk 

about community informed doctoral research—Frank Bigelow (R-Madera) and Rudy Salas 

Jr. (D-Bakersfield) and Senator Andreas Borgeas (R-Fresno), as well as representatives from 

the offices of assembly members Heath Flora (R-Ripon), Joaquin Arambula (D-Delano) and 

Adam Gray (D-Merced) and senators Anna Caballero (D-Merced) and Melissa Hurtado (D-

Sanger) 

Policymaker Invited Talks  

• Invited speaker request by Pablo Garza (Chief Consultant at the Assembly Water, Parks and 

Wildlife Committee) to speak on behalf of my doctoral work with small-scale farmers in the 

San Joaquin Valley at the State of California joint informational meeting with the Committee 

of Agriculture and the Water, Parks and Wildlife Committee, 2021 

• Invited Panelist alongside Felicia Marcus (William C. Landreth Visiting Fellow, Stanford 

University Water in the West Program), Clifford Lee (Deputy Attorney General (Retired), 

California Department of Justice), and Valerie Kincaid (Partner, O'Laughlin & Paris LLP) 

moderated by Nell Green Nylen (UC Berkeley School of Law) on "Learning From Our Dry 

History: Lessons for a Drought-Prone California" at the Environmental Law Conference at 

Yosemite (virtual), 2021 

• Invited Panelist along with Anna Schiller (Environmental Defense Fund), Amanda Monaco 

(Leadership Counsel for Justice and Accountability), and Emily Finnegan (Local 

Government Commission) moderated by Danielle Dolan (Local Government Commission) 

on "Session 16: Community-Driven Solutions to Coordinate Land Use Planning and 

Groundwater Management" at the American Water Resources Association Virtual 

Conference, 2021 
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• Invited speaker alongside Camille Pannu (UC Irvine Law) and Cristal Gonzalez (Clean 

Water Action) on "The Human Right to Water and Environmental Justice Panel" hosted by 

the Latinx Law Student Association and The Water Law Society, Univ. of the Pacific 

McGeorge School of Law, 2021  

• Invited Panelist alongside Amanda Monaco (Leadership Counsel for Justice and 

Accountability), Kristin Dobbin (UCLA), Max Gomberg (State Water Resources Control 

Board) moderated by Nell Green Nylen (UC Berkeley School of Law) on "Achieving Water 

Justice in a Changing Climate" at the California Water Law Symposium, 2021  

• Invited speaker to present doctoral research "Strategic Alternative Land Use Planning for 

Climate Smart Communities and Groundwater Sustainability," to the State Water Resources 

Control Board, 2020 

• Clinton Global Institute University Fellow doctoral work feature "Strategic Alternative Land 

Use Planning for Climate Smart Communities and Groundwater Sustainability," Washington 

D.C. Virtual Presentation, 2020 

• Invited speaker to present to Maria Herrera (California Water Commission) on doctoral 

work, "Strategic Alternative Land Use Planning for Climate Smart Communities and 

Groundwater Sustainability," 2020 

• Invited Panelist at the 2019 Congressional Hispanic Caucus Institute Leadership Conference 

on "Climate Smart Approaches to Resilient Food-Energy-Water Systems in California," 

Washington D.C., 2019 

• Next Generation Delegate featured speech, "Imagine: A story of San Joaquin Valley 

Disparity at the Chicago Council on Global Affairs, 2019 

TEACHING EXPERIENCE  

University of California Merced                        Merced, CA 

ENGR 180 Spatial Analysis and Modeling- Lecturer                                                   Summer 2021 

• An asynchronous 8-week course with 27 undergraduate level students 

• Developed material for remote live lectures three times per week that incorporated 

interactive tools (e.g., Mentimeter polls and pop quizzes), created short, pre-recorded 

material to accompany remote live lectures, developed homework assignments, quizzes, 

midterm exams, and organized course reading material   

• Held office hours and organized laboratory assignments and final project with the teaching 

assistant 

Environmental Engineering- Teaching Assistant                                        2017 - 2018 

• Water Resources Planning and Management (~30 undergraduate level students under Dr. 

Viers)  

Guest Lectures at UC Merced                                                                                      2017- Present 

• ENGR 180 Spatial Analysis and Modeling (Dr. Fernandez-Bou)                        Spring 2021 

o Lecture on remote sensing applications in Google Earth Engine (~30 undergraduate 

students) 

• ENVE 140 Water Resources Planning and Management (WRPM) (Dr. Viers)   Winter 2019  

o Lecture on groundwater trading (~20 undergraduate students)                        

• ENVE 140 Water Resources Planning and Management (Dr. Viers)                   Winter 2019 

o Groundwater lecture (~20 undergraduate students)  

• ENVE 140 Water Resources Planning and Management (Dr. Medellin-Azuara)    Fall 2018 

o California Water Management (~20 undergraduate students) 

University of Southern California                      Los Angeles, CA 

Environmental Engineering- Teaching Assistant                                August 2015 to May 2017   
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• Energy and the Environment (90 students, mix of Ph.D. and Master’s level students)   

• Introduction to Environmental Engineering (22 students, undergraduate level students)   

MENTORSHIP EXPERIENCE 

UCLA Ecology & Evolutionary Biology (EEB 183; Dr. Lipman)                January to March 2021 

• Oversaw a team of five undergraduate students that were conducting a geospatial analysis to 

analyze the demographics of unrepresented "white areas" in the San Joaquin Valley as part 

of their EEB 183-course project 

• Prepared weekly meeting materials and tutorials on ArcGIS software for geospatial analysis 

Undergraduate Google Earth Engine Fallowing Project                         2018-2020 

• Oversaw a team of four undergraduate researchers that conducted a geospatial analysis to 

identify fallowed lands by parsing and analyzing satellite imagery via the Google Earth 

Engine API 

• Developed project timeline and implementation plan that resulted in time-series of satellite 

imagery and fallowed land identification through machine-learning methods in Google Earth 

Engine API 

University of Southern California's Science Outreach Program                 August 2015- May 2017  

• Taught grade school students in disadvantaged elementary schools near USC a wide range of 

science topics through visual and engaging experiments  

University of Southern California's Joint Program (Math Tutor)                     January - May 2016 

• Tutor mathematics at disadvantaged K-12 schools surrounding USC  

Argonne National Laboratory's Women in Science and Technology             June 2014- June 2015  

• Planned STEM outreach events for high school girls from Chicago's low-income communities  

• Helped the largest event bringing together underserved high school girls interested in STEM, 

Girls Do Hack  

JOURNAL PUBLICATIONS  

In-Prep 

• Espinoza, V. and Viers, J.H. (In-Prep) The paradox of production: surface water supply 

drives agricultural productivity but not prosperity in California’s San Joaquin Valley.  

• Espinoza, V., Bernacchi, L., Eriksson, M., Schiller, A., Hayden, A., Viers, J.H. (In-Prep) 

From fallow ground to common ground: Reconciling future land use perspectives in the San 

Joaquin Valley. Journal of Environmental Management. 

• Espinoza, V., Booth. L., Viers, J.H. (In-Prep) Land Use Misclassification Results in Water 

Use, Economic Value, and GHG Emission Discrepancies for California's High Intensity 

Agriculture.  

Published 

• Fernandez-Bou, A.S., Ortiz-Partida, J.P., Pells, C., Classen-Rodriguez, L.M., Espinoza, V., 

Rodríguez-Flores, J.M., Booth, L., Burmistrova, J., Cai, A., Cairo, A., Capitman, J.A., Cole, 

S., Flores-Landeros, H., Guzman, A.,  Maskey, M.L, Martínez-Escobar, D., Sanchez-Perez, 

P.A., Valero-Fandiño, J., Viers, J.H., Westerling, L., and Medellín-Azuara, J. 2021. Regional 

Report for the San Joaquin Valley Region on Impacts of Climate Change. California Natural 

Resources Agency. Publication number: SUM-CCCA4-2021-003. In Review. 

• Rallings, A.M., Clifton, B., Espinoza, V., Hao, Z., Chen, W., Duan, W., Peng, Q., Luo, P., 

and Viers, J.H.. 2021. Regional Hydrologic Classification for Sustainable Dam Operations 

in China: Exploratory Applications in the Yangtze River Basin. Journal of the American 

Water Resources Association 1– 14. doi.org/10.1111/1752-1688.12966. 
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• Hao, Z., Rallings, A.M., Espinoza, V., Luo, P., Duan, W., Peng, Q., Gao, Y., Viers, J.H., 

Flowing from East to West: A bibliometric analysis of recent advances in environmental flow 

science in China, Ecological Indicators, Vol.125,2021,107358, 

doi.org/10.1016/j.ecolind.2021.107358. 

• Fernandez-Bou A.S., Ortiz-Partida J.P., Classen-Rodriguez L.M., Pells C., Dobbin K.B., 

Espinoza V., Rodríguez-Flores J.M., Thao C., Hammond Wagner C.R., Fencl A., Flores-

Landeros H., Maskey M.L., Cole S.A., Azamian S., Gamiño E., Guzman A., Alvarado 

A.G.F., Campos-Martínez M.S., Weintraub C., Sandoval E., Dahlquist-Willard R.M., 

Bernacchi L.A., Naughton C.C., DeLugan R.M., and Medellín-Azuara J. (2021) 3 

Challenges, 3 Errors, and 3 Solutions to Integrate Frontline Communities in Climate Change 

Policy and Research: Lessons From California. Front. Clim. 3:717554. doi: 

10.3389/fclim.2021.717554.  

• Massoud, E.; Massoud, T.; Guan, B.; Sengupta, A.; Espinoza, V.; De Luna, M.; Raymond, 

C.; Waliser, D. Atmospheric Rivers and Precipitation in the Middle East and North Africa 

(MENA). Water 2020, 12, 2863. doi.org/10.3390/w12102863 

• Massoud, E.C., Espinoza, V., Guan, B., Waliser, D.E. (2019). Global Climate Model 

Ensemble Approaches for Future Projections of Atmospheric Rivers. Earth's Future, Vol. 7, 

Issue 10, 1136-1151. doi.org/10.1029/2019EF001249 

• Medellín-Azuara, J., Sumner, D.A., Pan, Q.Y., Lee,H., Espinoza, V., Cole, S.A,  Bell, A., 

Davila Olivera, S.,  Viers, J.H., Herman, J., Lund, J.R.. (University of California, Davis and 

University of California, Merced). 2018. Economic and Environmental Implications of 

California Crop and Livestock, Adaptation to Climate Change. California Natural Resources 

Agency. Publication number: CCCA4-CNRA-2018-018. 

• Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., & Ralph, F. M. (2018). Global analysis 

of climate change projection effects on atmospheric rivers. Geophysical Research Letters, 

45, 4299–4308. doi.org/10.1029/ 2017GL076968 

SUBMITTED CONFERENCE ABSTRACTS 

• Espinoza, V. and Viers, J.H., Water Access and Sovereignty Inequities in San Joaquin 

Valley, California's Local Water Governance, American Water Resources Association 

Spring Conference, 2022 

• Espinoza, V. and Viers J.H., San Joaquin Valley Irrigation District Vulnerability to 

Groundwater Overdraft Based on Surface Water Allocation and Consumptive Water Use, 

AGU Fall Meeting Abstracts, 2020 

• Waliser, D.E, Guan, B., Goodman, A., DeFlorio, M., Gibson, P., Espinoza, V., Atmospheric 

Rivers (ARs): Weather & Water Extremes that Shape Our Global Climate, JPL Executive 

Committee Presentation, 2019 

• Espinoza, V. and Viers J.H., San Joaquin Valley Irrigation District Vulnerability to 

Groundwater Overdraft Based on Surface Water Allocation and Consumptive Water Use, 

AGU Fall Meeting Abstracts, 2019 

• Massoud, E., Guan, B., Espinoza, V., Waliser, D.E., Constraining Future Projections of 

Atmospheric Rivers Using a Multiobjective Model Evaluation Framework, 99th American 

Meteorological Society Meeting, 2019 

• Espinoza, V. and Viers, J.H., Spatially and Temporally Based Sensitivity Analysis of Land 

Fallowing and Alternative Land Use Near Disadvantaged Communities in Kern County, 

California, USA, AGU Fall Meeting Abstracts, 2018 
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• Nover, D., Espinoza, V., Luo, P., Viers, J.H., Rallings, A., The potential for environmental 

flows to support the sustainable management of hydropower modified river systems in China, 

AGU Fall Meeting Abstracts, 2018 

• Rallings, A., Nover, D., Espinoza, V., Luo, P., Viers, J.H., The potential for environmental 

flows to support the sustainable management of hydropower modified river systems in China, 

AGU Fall Meeting Abstracts, 2018 

• Waliser, D.E., Espinoza, V., Guan, B., Lavers, D., Ralph, M., Global Analysis of Climate 

Change Projection Effects on Atmospheric Rivers, EGU General Assembly Conference 

Abstracts, 2018 

• Waliser, D.E., Guan, B., DeFlorio, M., Espinoza, V., Ralph, M., Jones, J., Entin, J., 

Atmospheric Rivers (ARs): A Global Approach for our Regional Interest, Meeting with 

Metropolitan Water District, 2018 

• Waliser, D.E., DeFlorio M., Guan, B., Espinoza, V., Ralph, M., Jones, J., Entin, J., AR 

Prediction for the Western US in the Context of Global Weather/Climate Models, Western 

States Water Council, 2017 

• Espinoza, V., Waliser, D.E., Guan, B., Lavers, D.A., Projections of Climate Change Effects 

on Global Atmospheric River Landfalls, AGU Fall Meeting Abstracts, 2016 

• Yan, E., Tidwell, V.C., Bizjack, M., Espinoza, V., Jared, A., Modeling the vulnerability of 

hydroelectricity generation under drought scenarios, AGU Fall Meeting Abstracts, 2015 

RESEARCH PRESENTATIONS 

• Espinoza, V., "Community- Informed Strategic Alternative Land Use Transformation and 

Optimization (SALUTO) Model for Climate Smart Communities And Groundwater 

Sustainability," UC Merced's Research Week Virtual Reception for Community-Engaged 

Research, March 2021 

• Espinoza, V., Viers, J.H., "San Joaquin Valley Irrigation District Vulnerability to 

Groundwater Overdraft Based on Surface Water Allocation and Consumptive Water Use," 

Poster session at American Geophysical Union 2020, Virtual   

• Espinoza, V., Viers, J.H., "Spatially and Temporally Based Sensitivity Analysis of Land 

Fallowing and Alternative Land Use Near Disadvantaged Communities in Kern County, 

California, USA," Poster session at American Geophysical Union 2018, Washington, D.C.  

• Espinoza, V., "California Drought Impacts on Agricultural Regions," Speaker for UC 

Merced Blum Center Summer Institute 2018, Merced, CA 

• Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., "Projections of Climate Change 

Effects on Global Atmospheric River Landfalls," Poster session at American Geophysical 

Union 2016, San Francisco, CA 

• Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., "Projections of Climate Change 

Effects on Global Atmospheric River Landfalls," Speaker at International Atmospheric 

Rivers Conference 2016, San Diego, CA 

• Espinoza, V. and Sanders, K.T. "A Geospatial Energy Analysis of Groundwater Pumping 

During the Recent California Drought," Speaker at ASCE Environmental Water Resources 

Institute 2016, Palm Beach, FL 

• Yan, E., Tidwell, V.C., Bizjack, M., Espinoza, V., Jared, A., "Modeling the Vulnerability of 

Hydroelectricity Generation Under Drought Scenarios," Poster session at American 

Geophysical Union 2015, San Francisco, CA 
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OTHER PRESENTATIONS 

• Espinoza, V., "Expanding Knowledge Reach Beyond Academic Audiences- Science of 

Storytelling," UC Merced HSRI Social Media Workshop, November 2019 

AWARDS/HONORS  

• UC Merced Grad Slam 3rd Place Winner            2022 

• UC President’s Dissertation Fellow             2021-2022 

• UC Merced Grad Slam Top 10 Finalist                        2021 

• UC Merced Global Food Initiate Grow Grant Award Recipient                                           2021 

• Partnership with Environmental Defense Fund          2020 

• UC Merced Environmental Systems Summer Fellowship          2020 

• Clinton Global Institute University Fellow                                          2020 

• Switzer Foundation Fellowship Finalist                                              2019 & 2020  

• USDA-CAMINOS Graduate Fellow                                                 2019 

• Next Generation Delegate at the Chicago Council on Global Affairs                   2019 

• Graduate Student Representative for Graduate Research Advocacy Day                           2019 

• Clean Energy Research Center for Water-Energy Technologies (CERC WET) Graduate 

Fellowship                 2017-2019 

• Imagine H2O Water Innovation Policy Program Fellow                                             2018 

• Graduate Group Recruitment Fellowship                                                                  2017-2018 

• NSF Research Experiences for Undergraduates (REU)                                                     2012 

• University of Chicago Dean’s List                                    2009 

MEDIA COVERAGE                                                2017-Present 

• NGO Groundwater Collaboration and Clean Water Action Blog: 

http://cagroundwater.org/?p=961 

• Environmental Defense Fund feature of Espinoza’s San Joaquin Valley community 

engagement work: http://blogs.edf.org/growingreturns/2021/01/07/california-land-and-

water-decisions-equity/  

• Espinoza’s CaliWaterAg incorporated into Groundwater Exchange, educational SGMA 

websites: English https://groundwaterexchange.org/sgma-videos-in-english/ & Spanish 

https://groundwaterexchange.org/videos-de-sgma-en-espanol/ 

• Espinoza's CaliWaterAg featured in Brown and Caldwell's Water News (Dec. 2020), 

Maven's Notebook, 2020; California Ag Today Radio (2020); AgNet West (2020) Water 

Wrights (2020): https://agnetwest.com/bilingual-sgma-video-series-foster-better-

understanding/; https://agnetwest.com/new-addition-made-to-bilingual-sgma-video-series/; 

https://waterwrights.net/2020/08/28/caliwaterag-youtube-channel/ 

• UC Merced News; Espinoza at Chicago Council on Global Affairs Next Generation 

Delegate, 2019: https://news.ucmerced.edu/news/2019/grad-student-represents-valley-

global-food-security-symposium 

• UC Merced News Graduate Research Advocacy Day with Dean Zatz 

(Sacramento): https://news.ucmerced.edu/news/2019/graduate-students-make-case-

research-capitol 

• 2019 USDA Fellows: https://www.appliedarts.txstate.edu/Announcement/2019-USDA-

Fellows.html 
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• Imagine H2O fellowship & Global Climate Action Summit 

2018: https://news.ucmerced.edu/news/2018/uc-climate-change-research-one-focus-global-

summit-new-reports 

• NASA JPL News on Atmospheric Rivers 2018: 

https://www.jpl.nasa.gov/news/news.php?feature=7141 

• NASA JPL News Intern Highlight 2018: 

https://www.jpl.nasa.gov/edu/news/2018/10/4/rolling-on-the-science-of-an-atmospheric-

river 

SKILLS 

• Critical Thinking, Problem Solving, Effective Communication, Public Speaking, Scientific 

Publication Reviews, Scientific Journal Publication Writing, Data Management, Teamwork, 

Self-management, Organizational, Project Management, Grant Writing, Science Education 

Multilingual Tool Development (e.g., informational flyers, YouTube videos, and workshops) 
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ABSTRACT 

Global food security is a rapidly emerging concern with climate change and increasing 

population growth. This dissertation research assessed components critical to inform the 

strategic transition of irrigated agricultural lands to meet policy targets and sustain food-

energy-water systems worldwide by focusing on the San Joaquin Valley, California. This 

region is not only a global leader in the agricultural sector but is an exemplary 

representation of regions facing water stress, population growth, and environmental 

injustice. It is also amidst its trials and tribulations regarding sustainable water policy and 

management. The newly implemented Sustainable Groundwater Management Act 

(SGMA) establishes targets for groundwater utilization to address reduced surface water 

supply and groundwater overdraft. In the San Joaquin Valley, more than 10-15% of 

irrigated agricultural land is projected to go out of production within the next 10 to 20 years 

to sustain California’s water supplies (Hanak et al., 2017). However, a significant question 

addressed in this project is how we transition agricultural land to address groundwater 

overdraft and minimize socioeconomic and environmental impacts on disenfranchised and 

underserved communities and farmers. While this reduction in irrigated acreage will help 

lessen groundwater overdraft as per SGMA, the reduction will also result in socioeconomic 

and environmental impacts on disadvantaged communities and marginalized farmers that 

rely on agriculture for their livelihood. The dynamics between land use and the direct and 

indirect implications of agricultural land use transitions remain unknown. The components 

of this dissertation aim to minimize the impacts of agricultural land use transitions under 

SGMA to those most impacted and often left out of the water and land use decisions—

underserved communities and farmers. This doctoral dissertation has the following 

objectives:  

1) Identify San Joaquin Valley community land use preferences.  

2) Assess irrigation district overdependence on groundwater to identify where to focus 

agricultural land use transition efforts. 

3) Identify which land use classification datasets are best to use to assess how and 

where to transition agricultural land and quantify the crop revenue, crop water 

requirement, and GHG emission discrepancies due to misclassifications. 
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CHAPTER 1. INTRODUCTION  

1. Global Water Crisis  
Water is the center of economic, social, and ecosystem functions worldwide. Maintaining 

human livelihood, food production, energy security, and economic development is 

imperative. Global water issues are often highlighted as an issue of water availability, but 

water access inequality stemming from poor water governance and management is often 

overlooked (United Nations Development Programme, 2006; Calow and Mason, 2014). 

Despite water being a crucial resource, millions of people worldwide still do not have 

access to safe, clean water supplies due to uneven and variable distributions of global water 

supplies and climate change. About half a billion people face severe water scarcity year-

round (Mekonnen & Hoekstra, 2016), a number projected to increase to three billion by 

2025 (Hanjra & Qureshi, 2010). Global population totals could reach 9 billion by 2050 

(Alexandratos & Bruinsma, 2012), increasing water demand by 30-50% (Damania et al., 

2017). Naturally, the conversation of sustaining global food security follows water scarcity. 

In addition to increasing food production by 60% to feed more than 9 billion people by 

2050 (Alexandratos & Bruinsma, 2012; Wise, 2013), increasing per capita income around 

the world is adding stress on the agricultural sector to meet diverse and nutritious diets 

(Rosegrant, 2019).  

Freshwater being central to the function of many other critical societal sectors, like 

food, energy, and the environment, make it more critical to rebalance water distribution 

and address water access inequity. Globally, agriculture has an opportunity to play a role 

in helping address global water issues and climate change. Agriculture makes up 38% of 

the global land surface (FAO, 2020), uses about 70% of freshwater resources (FAO, 

2017b), and makes up the majority of the 23% of the greenhouse gas (GHG) emissions 

from agriculture, forestry, and other land use sector (IPCC, 2019). The interrelation 

between water and agricultural production has fed the cycle of stresses of one on the other, 

especially in groundwater supplies. Groundwater is a critical resource to meet the drinking 

water needs of millions of people and irrigate about one-third of the 301 million hectares 

of irrigated land worldwide (Siebert et al., 2010). Globally, there is an opportunity to 

address water scarcity and climate change conditions through climate-smart agricultural 

practices. The high reliance on groundwater for irrigation in many agricultural regions 

around the world has led to groundwater overdraft at rates higher than is being recharged. 

The United States, for example, relies on 71% of total groundwater use (Rosegrant, 2019) 

to irrigate about 17 million hectares of land  (Siebert et al., 2010). Globally, there is a need 

to address water availability and water access inequities to prevent detrimental impacts on 

natural resources that underserved populations rely on to survive.   

2. California: A Mesocosm of Global Water Issues and Poverty Paradox 
As a mesocosm of global water issues, California is an exemplary case study for solving 

global water issues and associated overdemands from water-dependent sectors (e.g., food 

and energy). Agriculture in California generates more than $50 million in farmgate revenue 

annually (California Department of Food and Agriculture, 2019) and provides 405,800 

agricultural jobs (California Employment Development Department, 2022). The state’s 
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central agricultural regions, the San Joaquin Valley, generates more than 400 different 

commodities and produces one-third of the nation’s vegetables and two-thirds of its fruit 

and nuts (Pathak et al., 2018). A thriving agricultural region—but at what cost? The 

largesse of California’s agriculture is under strain due to water scarcity, increasing drought, 

and population growth. The San Joaquin Valley is a drought-prone, water-scarce, and 

water-stressed region. On average, 40% of all freshwater is used for irrigated agriculture, 

representing 80% of all beneficial water use in the state (Hanak et al., 2017). Surface water 

supplies are variable, and groundwater is over-pumped, especially during drought. As is 

the case in many places around the world, groundwater in California plays an important 

role in supplying ~30-60% of water in a given year. Agricultural water use exceeds 

sustainable supplies by ~2 million acre-feet per year (Hanak et al., 2017). Although 

groundwater has been used conjunctively with surface water in the Central Valley to meet 

water demands (Faunt et al., 2016), the most recent drought (2012-2015) led to an 

additional overdraft of about 5 million acre-feet of groundwater (Howitt et al., 2015). 

Exacerbating groundwater has a plethora of consequences like land subsidence and damage 

to infrastructure (Faunt et al., 2016), drying of domestic wells, lowering of water tables, 

increased energy from pumping at greater depth (House et al., 2018), reduced water quality 

(Smith et al., 2018), reduction or elimination of baseflow to streams and rivers, and loss of 

groundwater dependent ecosystems. The stress on water resources to produce food to feed 

the state, the nation, and many parts of the world will increase with increasing population 

growth. Population in the Central Valley is expected to grow faster than the statewide 

average, contributing to an increase in the state’s population by one to two percentage 

points (Palmer, 2017). 

The largesse of California’s agriculture is under strain due to water scarcity, 

increasing drought frequency, and population growth. California’s agricultural regions are 

a poverty paradox. Nestled among the state’s multi-billion agricultural landscape, 

marginalized populations live in poverty and are exposed to poor air and water quality. 

Socioeconomic, health, and environmental disparities are most acute in the San Joaquin 

Valley.  The San Joaquin Valley is one of the most persistently poor and polluted regions 

in the United States (California Office of Environmental Health Hazard Assessment 2021). 

About 31% of children living in the region live in poverty compared to the 19% nationally 

(U.S. Census Bureau, 2019a). About 165% of San Joaquin Valley residents are exposed to 

polluted drinking water sources (American Lung Association, 2021). There are more than 

500 disadvantaged communities (DACs) in California, predominantly of Latino/Hispanic 

populations, are disproportionately impacted by unrelenting environmental and 

socioeconomic conditions and are primarily underrepresented in political settings that 

affect their well-being (Balazs et al., 2012; Bernacchi et al., 2020; Fernandez-Bou et al., 

2021; Flegal et al., 2013; London et al., 2018; Mayzelle et al., 2015; E. Moore et al., 2011). 

About 87% of DACs in the San Joaquin Valley rely on a community water system that is 

groundwater-dependent (London et al., 2018), drinking water sources that are 

contaminated by arsenic, nitrates, and other chemicals (Balazs et al., 2012; Balazs, 

Morello-Frosch, and Ray 2011; Blake 2014; Harter et al. 2017). 

3. The Challenges and Opportunities Under SGMA  
California’s 2014 Sustainable Groundwater Management Act, commonly referred to as 

SGMA, aims to stabilize groundwater conditions in critically overdrafted basins, most 
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located in the San Joaquin Valley and Tulare Lake Basin, by 2040. Under SGMA, local 

control is promoted by enabling self-organized local water agencies known as Groundwater 

Sustainability Agencies (GSAs) to facilitate the planning and implementation of 

groundwater sustainability plans. The GSAs consist of irrigation districts, water districts, 

and county and city agencies. Under SGMA, GSAs must engage with DACs within their 

basin to ensure sustainability plans that simultaneously address community needs. To date, 

there has been minimal formal input from DACs to groundwater sustainability plans 

(Dobbin & Lubell, 2021), and news representation of SGMA has been dominated by 

agriculture (Bernacchi et al., 2020; Fernandez-Bou et al., 2021). Although the implications 

of SGMA remain unknown, studies have projected that more than 10-15% (more than 

202,342 hectares) of agricultural land in the San Joaquin Valley may have to go out of 

production to meet groundwater targets under SGMA by 2040 (Hanak et al., 2019). 

Anticipated land use transitions under SGMA are another incentive for California to 

rethink water and land use management strategies that rebalance freshwater resources 

while simultaneously addressing socioeconomic and environmental inequity among 

DACs. Leaving land out of production or fallow (e.g., without use or not irrigated) could 

have environmental (e.g., increased dust generation), human health (e.g., asthma and 

exposure to Valley Fever), and socioeconomic consequences (e.g., local economy, 

agricultural jobs), especially for agriculturally dependent DACs in the San Joaquin Valley.  

Although there are challenges associated with addressing groundwater overdraft 

under SGMA, there are opportunities to address socioeconomic and environmental 

inequities that disproportionately impact rural agricultural communities and DACs. In 

2021, California created the Multibenefit Land Repurposing Program (MLRP), which 

provides regional block grants (e.g., GSA, Resource Conservation District, Tribes, public 

agencies, and local NGOs) that support multibenefit land repurposing projects to reduce 

groundwater reliance and climate change conditions, while also benefitting communities, 

ecosystems, and the local economy (Department of Conservation: Multibenefit Land 

Repurposing Program, 2021). Recent legislation to sustain groundwater supplies will likely 

reduce the agricultural footprint, but future land use transitions could help address the water 

access and environmental inequities among DACs in the San Joaquin Valley. Some multi-

benefit land repurposing options considered for implementation to address SGMA include 

1) habitat restoration (Bourque et al., 2019; Butterfield et al., 2017; Cypher et al., 2013; 

Lortie et al., 2018; Stewart et al., 2019; Tennant et al., 2013), 2) renewable energy (e.g., 

solar) (Butterfield et al., 2013; Pearce et al., 2016), 3) carbon sequestration, 4) groundwater 

recharge (Ghasemizade et al., 2019; Mayzelle et al., 2015; O’Geen et al., 2015), and 5) 

parks and green space (Jennings et al., 2012). These multi-benefit land repurposing options 

have the potential to address groundwater overdraft under SGMA while simultaneously 

addressing the social disparities among San Joaquin Valley DACs. For example, parks, 

green spaces, and wildlife habitat areas near DACs could provide spaces that are currently 

lacking in DACs that facilitate healthier activities, like walking, and alleviate mental health 

issues that are persistent among low-income Latino communities (Galea et al., 2020; Grassi 

et al., 1999; Lama et al., 2018; Lee, 2020). Implementing groundwater recharge in and 

around DACs could help replenish the groundwater resources these communities depend 

on to meet basic human needs. 
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4. Dissertation Objectives and Broader Impacts 
When SGMA was passed, a key question was—how will agricultural land be transitioned 

to address groundwater overdraft (PPIC, 2019)? Given the severe socioeconomic and 

environmental implications of taking agricultural land out of production or transitioning to 

alternative uses, especially for DACs, three key questions must be understood before 

deciding how and where land should be transitioned to address SGMA. The three critical 

questions that this dissertation answers to better inform strategic, equitable, and locally 

representative land use transitions to address groundwater overdraft under SGMA are:  

Chapter 2. What alternative land uses meet disadvantaged community needs? 

Chapter 3. Where should land transition efforts be focused?  

Chapter 4. Are land use classification datasets used to inform water and land use 

decisions accurately representing what is currently on the ground?  

This doctoral work is founded on the principle that water and land use decisions are best 

made when co-developed with the people most underrepresented in and impacted by these 

decisions—underserved communities and small-scale farmers. The qualitative and 

quantitative approaches to answering the key critical questions to strategic and equitable 

agricultural land transitions under SGMA are multidisciplinary and interdisciplinary, using 

diverse datasets, statistical and geospatial analysis, and community engagement. To answer 

what alternative land uses meet disadvantaged community needs (Chapter 2), I, along with 

a diverse team of social scientists, ecohydrologist, and engineers, developed a short 

message service (SMS) distributed web-based survey to understand the land use 

preferences of 32 DACs in the San Joaquin Valley. Chapter 1 is a preliminary attempt at 

addressing the decision-making gap that has been documented among DACs by GSAs 

(Bernacchi et al., 2020; Dobbin & Lubell, 2021; Fernandez-Bou et al., 2021), and the 

dominant focus on agriculture in GSA sustainability plan developments. To identify where 

land transition efforts should be focused (Chapter 3), I consolidated disaggregate irrigation 

district variables (e.g., date of formation, surface water allocation, surface water delivery) 

and derived variables (e.g., crop water requirement, groundwater dependence to conduct a 

cluster analysis and develop and irrigation district sociohydrologic vulnerability index.  

This chapter also compared DACs within irrigation districts and groundwater-dependent 

communities (also known as white areas) to understand how the historical contexts in 

which irrigation districts were formed shape local water governance structures and impact 

local communities within their jurisdiction. Finally, to understand whether commonly used 

land use classification datasets in California accurately represent the state’s complex 

agricultural landscape (Chapter 4), I conducted a geospatial analysis focused on Kern 

County and compared the Kern County dataset (locally funded), Land IQ (state-funded), 

and USDA CropScape (nationally funded). I quantified the revenue, crop water demand, 

and GHG emission discrepancies from land use misclassifications.  

Throughout my doctoral journey, I also addressed an information equity gap that 

persists among marginalized communities and farmers in California. I had the opportunity 

to engage with underserved community members and farmers, which led me to identify the 

need for multilingual and multimedia resources on SGMA and other water and land use 

managements and policies that impact their livelihood. I held bilingual workshops for 

Latino communities and farmers on SGMA and created CaliWaterAg, a trilingual (Spanish, 

Hmong, and English) YouTube channel to make the science and policy behind California 
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water and land use management accessible to Californians (Appendix C). Insights from my 

extension efforts and community land use survey (Chapter 2) resulted in collaboration with 

the Environmental Defense Fund to develop a guide for effective community and farmer 

engagement to help guide applicants of California’s Multibenefit Land Repurposing 

Program, including NGOs, academic institutions, tribal groups, and GSAs (Appendix B). 

I have also had the opportunity to bring forward the importance of involving underserved 

communities and small-scale farmers in future water and land use decisions through 

conversations with policymakers at the local, state, and federal levels. This research 

embraces understanding the relationships between food-energy-water systems (Appendix 

G) with policy, people, and climate change. This dissertation aims to ameliorate water 

injustice through qualitative, quantitative, and extension approaches with 

multistakeholders. 
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CHAPTER 2. WHAT ALTERNATIVE LAND USES? 
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1. Introduction 
The San Joaquin Valley of California is paradoxical. It is one of the most productive 

agricultural landscapes on Earth, yet it remains one of the most persistently poor and 

polluted places in the United States. And the representation of its denizens and community 

needs in water management and land use planning may be limited, but a 2014 groundwater 

law provides the impetus for inclusive engagement and planning. In five of the San Joaquin 

Valley counties of Fresno, Kings, Madera, Merced, and Tulare, 31.1% of children live in 

poverty compared to 18.5% nationally, and the unemployment rate is 9.2% compared to 

4.5% nationally (U.S. Census Bureau, 2019a). The San Joaquin Valley metropolitan areas 

of Fresno-Madera-Hanford, Bakersfield, and Visalia are three of the nation’s most polluted 

cities for ozone and year-round particle pollution (American Lung Association, 2021). 

Residents of San Joaquin Valley counties are 165% more likely than in the rest of 

California to be exposed to the state’s most polluted drinking water (California Office of 

Environmental Health Hazard Assessment 2021). Nitrates, arsenci, and hexavalent 

chromium (Cr[VI]) have been dectected in higher concentrations in areas of domestic well 

use (Pace et al., 2022).  

The low-income, predominantly Latino population in the San Joaquin Valley’s 225 

designated disadvantaged communities (DACs), take the brunt of the socioeconomic and 

environmental impacts. Historical land use, zoning practices, and racial discrimination 

have led to the concentration of poverty in these communities (Flegal et al., 2013). 

California defines DACs as communities with a median household income of less than 

80% of the statewide annual median household income (California Department of Water 

Resources, 2018) USD 60,188 in 2019; U.S. Census Bureau, 2019). While many of these 

communities are highly dependent on agriculture for the well-being of their local economy 

and livelihood; proximity to agricultural production results in high rates of exposure to 

pesticides, air pollution, water contamination, and dangerous chemicals (California Office 

of Environmental Health Hazard Assessment, 2021; Balazs et al., 2011, 2012; Nunez 

Flores, 2013).   

Furthermore, the largesse of its agriculture – over 5 million acres of diverse 

agriculture producing 400 commodities annually worth USD 25 billion, including 60% of 

the nation’s fruits and nuts and 30% of its vegetables (California Department of Food and 

Agriculture, 2019)  – is under strain as it confronts widespread drought and groundwater 

overdraft. The increasing magnitude and intensification of extreme precipitation events 

(Espinoza et al., 2018), like droughts, will exacerbate already critically overdrafted 

groundwater basins in the region (Hanak et al., 2019). For the San Joaquin Valley, 

groundwater is the reserve necessary to keep agriculture booming during drought years 

(Howitt et al., 2015) and meet the drinking water needs of 87% of local community water 

systems (London et al., 2018). As such, there is a need for water governance agencies to 

develop climate change adaptation strategies that simultaneously reduce and balance 

freshwater demands while also addressing the water access inequities (Espinoza & Viers, 

n.d.). California’s sociohydrologic dynamics driven by complex historical water and land 

use management have led it to become a bellwether of the global climate crisis—competing 
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freshwater demands, agriculturally driven economy, groundwater overdependence, and 

socioeconomic and environmental disparities. 

California instituted the Sustainable Groundwater Management Act (or SGMA) to 

mitigate groundwater overdraft in 2014. The SGMA legislation aimed to stabilize 

groundwater conditions in critically overdrafted basins by 2040 by enabling self-organized 

local water agencies to facilitate the planning and implementation of groundwater 

sustainability plans. Although the implications of SGMA remain unknown, studies have 

projected that more than 10% or 1 million acres of agricultural land may not continue as 

irrigated agriculture to meet groundwater targets by 2040 (Hanak et al., 2019). Anticipated 

land use transitions under SGMA are another incentive for California to rethink water and 

land use management that rebalance freshwater resources while simultaneously addressing 

socioeconomic and environmental inequity among DACs. Legislature passed AB-252, the 

Multibenefit Land Repurposing Program (MLRP), to transition agricultural land to other 

uses that reduce groundwater use while also providing community health, especially 

DACs, economic well-being, habitat, water supply, and climate benefits (Department of 

Conservation, 2021). Recent legislation to sustain groundwater supplies will likely reduce 

the agricultural footprint, but future land use transitions could help address the water access 

and environmental inequities among DACs in the San Joaquin Valley. Some multi-benefit 

land repurposing options considered for implementation to address SGMA include 1) 

habitat restoration (Bourque et al., 2019; Butterfield et al., 2017; Cypher et al., 2013; Lortie 

et al., 2018; Stewart et al., 2019; Tennant et al., 2013), 2) renewable energy (e.g., solar) 

Figure 1. The 32 disadvantaged in the San Joaquin Valley, California surveyed in this study. 
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(Butterfield et al., 2013; Pearce et al., 2016), 3) carbon sequestration, 4) groundwater 

recharge (Ghasemizade et al., 2019; Mayzelle et al., 2015; O’Geen et al., 2015), and 5) 

parks and green space (Jennings et al., 2012).  

These multi-benefit land repurposing options have the potential to address 

groundwater overdraft under SGMA while simultaneously addressing the social disparities 

among San Joaquin Valley DACs. For example, parks, green spaces, and wildlife habitat 

areas near DACs could provide spaces that are currently lacking in DACs that facilitate 

healthier activities, like walking, and alleviate mental health issues that are persistent 

among low-income Latino communities (Galea et al., 2020; Grassi et al., 1999; Lama et 

al., 2018; Lee, 2020). Implementing groundwater recharge in and around DACs could help 

replenish the groundwater resources these communities depend on to meet basic human 

needs (Mayzelle et al., 2015). Although under SGMA, local water agencies are required to 

engage community members so that groundwater sustainability plans address DAC water 

issues, formal input from DACs has been minimal (Dobbin & Lubell, 2021), and news 

representation of SGMA has been dominated by agricultural needs (Bernacchi et al., 2020; 

Fernandez-Bou et al., 2021).  

Due to the complex interplay between water, land use, and societal well-being 

under climate change in the San Joaquin Valley, people need to understand how they relate 

to, value, and depend on the land in their community. This survey asked participants about 

five land use repurposing options with the community and economic value factors to 

understand complex water-land-social dynamics. Participants were also asked to identify 

their most and least important land use priorities to understand community members’ 

relationship to and value for nearby lands and alternative land use options. Questions on 

agriculture helped identify the value and importance of agriculture to participants’ 

livelihood. Climate change statements to analyze correlations between their land use 

preferences and their perspectives on climate change. This study addresses the current lack 

of understanding of how local communities, specifically socially, politically, and 

economically vulnerable communities in the San Joaquin Valley, value alternative land 

uses. Further, this study examines perceptions and preferences around climate change 

resilience and socioeconomic and environmental inequities across rural agricultural 

communities where future agricultural land use transitions are likely. Understanding 

individuals' reported values for nearby land use may help identify preferences and values 

around likely land use transitions and provide insights into our public perception of 

emergent land uses, including green technologies and sustainable infrastructure. Overall, 

this study is the first to assess community land use preferences and land use values to 

inform equitable future land use transitions in the San Joaquin Valley under SGMA and 

MLRP implementations. 

2. Methods 
2.1 Sampling and Data Collection 

Our multi-disciplinary research team developed an online survey focused on alternative 

land uses that could address groundwater overdraft by 2040 under SGMA and distributed 

via short message service (SMS text) from March to June 2021. 
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Sampling was focused on 32 DACs in the San Joaquin Valley (Figure 1). The 

sampling frame was based on cell phone numbers purchased from Marketing Systems 

Group (MSG), which provides samples linked to geographic and demographic information 

(Marketing Systems Group, 2021), allowing us to capture potential spatial gradients of 

community land use perspectives across the study region. The number of samples was 

initially determined by DAC population size and sent to MSG to estimate sample 

availability within DAC boundaries. Given the limitation of MSG’s cell samples within 

DAC boundaries, the following sampling rules were provided to MSG to increase the 

number of cell samples per DAC: 5,000 > MSG Record Count > 1,000 = initial MSG DAC 

count, 1000> MSG Record Count <100 = 100% increase in initial MSG DAC count, and 

100> MSG Record Count = 200% increase in initial MSG DAC count. Three thresholds 

were used until the sample size was met (ordered from highest to lowest sampling priority): 

within the DAC boundary, 3-mile radius, and 5-mile radius. Small populations were 

oversampled. (See Appendix A, SI Table 2 for the number of samples per DAC and the 

geographic limit used to obtain the sample size). 

The sampled DACs were selected for variation in terms of population size, 

environmental risk exposure, and geographic location across the San Joaquin Valley. To 

be included, a DAC also needed to fulfill the following criteria: 1) not embedded within a 

major city, 2) diverse levels of  CalEnviroScreen 4.0 Scores (i.e., pollution burden and 

population characteristics variables; SI Table 8) ranging from 40-100th percentile), and 3) 

having populations less than 5,000 based on the 2018 population (California Office of 

Environmental Health Hazard Assessment, 2018).  

The survey was administered using Qualtrics (Qualtrics, 2021) and distributed via 

SMS text services by a Qualtrics third-party partner, Twilio (San Francisco, CA). Surveys 

were distributed across weekdays and non-holiday weekends. Time of survey distribution 

varied (morning and noon) to avoid structural bias in the resulting data. The survey was 

offered in English and Spanish to promote inclusion, relying on metadata from MSG to 

indicate the preferred language.  

2.2 Survey Instrument Measurement 

The survey consisted of three sections focused on questions related to land use, agriculture, 

and climate change (See the survey instrument in Appendix A). 

The first section of the survey contained questions related to employment (e.g., current job 

and residential postal code) and familiarity with SGMA. The second section contained 

questions related to community vision, in which respondents were asked to what extent 

they agreed or disagreed with how the following five agricultural land repurposing options 

benefitted their community and local economy: 1) renewable energy (e.g., solar and wind), 

2) habitat restoration (e.g., places to see wildlife), 3) groundwater recharge, 4) carbon 

sequestration (e.g., storing carbon on farmland, getting carbon credits), and 5) parks and 

green space (e.g., parks, trails, bike paths, and playgrounds). Additionally, respondents 

were asked to identify their most and least important land use repurposing option out of 

seven options: 1) wildlife, 2) recreation, 3) clean energy, 4) secure water supplies, 5) reduce 

GHG and climate change, 6) schools, grocery stores, and housing, and 7) less water-



12 

 

intensive agriculture. Participants were asked statements related to agriculture: 1) they live 

in the valley because of agriculture, 2) their job depends on agriculture, 3) agriculture is 

the core of the economy in their community, 4) there needs to be space between agriculture 

and where people live for health reasons, and 5) agricultural practices contribute to air and 

water pollution in their community. The third section of the survey was related to 

demographics: Participants were asked questions related to ethnic background, preferred 

gender pronouns, total household income, as well as three statements on climate change in 

their region: 1) climate change is happening, 2) climate change impacts water quantity, and 

3) climate change impacts water quality. Participants were also allowed to share anything 

else they would like at the end of the survey.  

Statements were measured on a four-degree Likert scale with levels of agreement 

from Strongly Agree, Somewhat Agree, Somewhat Disagree, and Strongly Disagree. 

Respondents answered statements in random order to avoid priming effects, and some 

statements were reverse coded.  

2.3 Survey SMS Dissemination Approach  

Before disseminating the survey via SMS-text, the survey instrument was reviewed by 

bilingual colleagues to assess the clarity of terminology and questions, the accuracy of 

translation between English and Spanish, and the amount of time needed to complete the 

survey. Preliminary test runs resulted in a survey completion time of less than 10 minutes. 

Four SMS distributions were planned for data collection, including the first survey 

distribution and three reminders spaced by four days from the last reminder. The SMS text 

messages used to disseminate the web survey for the English and Spanish subsets, along 

with the planned schedule, are shown in Table 1. The survey was distributed in two phases 

between March and June of 2021: 1) March 29th – April 9th and 2) May 15th – May 25th. 

The first phase of the survey was not completed successfully due to internal errors on behalf 

of Qualtrics’ third-party SMS distributor, Twilio, in which the first SMS survey reminder 

was not delivered successfully. To proceed with this distribution and use the remaining 

SMS distribution credits, the sample that did not receive a reminder, had not yet completed 

the survey, and had not opted out of receiving survey messages, were extracted to create 

an English and Spanish subset consisting of 2,500 cell samples. Due to limited SMS credits, 

additional credits were purchased to be used in the second phase of the survey, which 

utilized the extracted phone samples from the first distribution that had not completed the 

survey, not opted out, and had deliverable cell numbers from the Spanish subset of phase 

1.  
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Audience English and non-available Spanish 

R
O

U
N

D
 1

 

Date March 29, 2021 March 29, 2021 

Time 2 PM 2 PM 

Survey 

Version 
English Spanish 

Text 

message 

UC Merced research: what 

do you want to see in your 

community? 10-minute 

survey. Text STOP to opt-

out. (Standard messaging 

rates apply.) 

UC Merced investigación: 

Que quisiera ver en su 

communidad? Encuesta de 

10-minutos. Text STOP to 

opt-out. (Standard 

messaging rates apply.) 

R
O

U
N

D
 2

 

Date April 1, 2021 April 1, 2021 

Time 7 AM 7 AM 

Qualtrics 

Used 
English Spanish 

Text 

message 

What’s the future for your 

community? 10-minute 

survey by UC Merced. En 

Español. Text STOP to 

opt-out. (Standard 

messaging rates apply.) 

What’s the future for your 

community? 10-minute 

survey by UC Merced. En 

Español. Text STOP to opt-

out. (Standard messaging 

rates apply.) 

R
O

U
N

D
 3

 

Date April 5, 2021 April 5, 2021 

Time 4 PM 4 PM 

Qualtrics 

used 
English Spanish 

Text 

message 

Elevate your community’s 

voice! Eleve la voz de su 

comunidad! 10-minute 

survey. STOP to opt-out. 

(Standard messaging rates 

apply.) 

Elevate your community’s 

voice! Eleve la voz de su 

comunidad! 10-minute 

survey. STOP to opt-out. 

(Standard messaging rates 

apply.) 

R
O

U
N

D
 4

 

Date April 11, 2022 April 11, 2022 

time 2 PM  2 PM 

Qualtrics 

used 
English Spanish 

Text 

message 

Last chance: Have your 

voice heard! 

English/Español. 10-

minute survey. 

Text STOP to opt-out. 

(Standard messaging rates 

apply.) 

Última oportunidad: Que se 

escuche su voz! Encuesta de 

10-minutos. Text STOP to 

opt-out. (Standard 

messaging rates apply.) 

Table 1. Schedule and associated text messages for the dissemination of the English and Spanish 

subsets of the survey. 



14 

 

2.4 Challenges of Working with DACs  

The challenges of reaching a socio-economically disadvantaged population likely lowered 

the response rate of this survey due to factors such as limited access to data and the internet 

(Bonevski et al., 2014); the participant fatigue and distrust of surveys; and the general 

disposition of the population living during the COVID-19 pandemic. Our sample included 

agricultural workers (Pennings et al., 2002) and Latinos (Bonevski et al., 2014; Evans et 

al., 2008), who are less likely to respond to surveys because of the timing of the survey, 

difficulty in dealing with survey materials, mistrust in the government, research topic, form 

or amount of compensation or benefit to be received, length of the survey, and the tendency 

for a low level of self-disclosure. Socially disadvantaged rural communities in the San 

Joaquin Valley have limited access to the internet (Balabanis et al., 2007; Reddick et al., 

2020). There is also low ownership of smartphones and computers among older, Spanish-

speaking dominant and Latinos with no high school diploma (Pew Research Center, 2013). 

Other factors contributing to the low survey response rate could have been high participant 

fatigue amongst socially disadvantaged communities as efforts to increase diversity, 

equity, and inclusion in developing water management strategies under SGMA during a 

pandemic and fatigue in adapting to new technologies (e.g., video conference software) 

(Sevelius et al., 2020). Survey reminder texts in this study were interrupted due to technical 

errors on behalf of the SMS survey distributor, which could have negatively affected a 

well-documented method of multiple requests to participate in surveys regardless of format 

(Dillman, 2000). To overcome traditional barriers and the pandemic, the best alternative at 

a reasonable cost was to conduct an SMS text-distributed link to a web-based survey.  

2.4 Survey Data Processing and Analysis 

This study's total number of cell phone samples was 27,572 mobile phone numbers, of 

which 25% (n=6,794) were undeliverable devices resulting in 20,778 deliverable phone 

samples. Out of the deliverable phone samples, about 7% (n=1,360) of participants opted 

out of receiving SMS messages, and about 12% (n=2,510) of participants started the survey 

but did not complete it. A workflow of the analysis is outlined below and shown in Figure 

2.  

 
Figure 2. Workflow of survey response data analysis.  

(1) The English and Spanish subsets of the surveys were downloaded from the 

Qualtrics online interface and combined into a single spreadsheet in Excel, resulting 

in 324 submitted surveys. Qualtrics survey output includes a variable that indicates 

the completion percentage of the survey. The surveys that were 0-5% complete 

(1) Survey 
Response 

Data Cleaning

(2) 
Descriptive 
Statistics

(3) 
Exploratory 

Factor 
Analysis 

(EFA)

(4) CrossTabs 
Informed by 

EFA
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(60% of surveys, n=127) were filtered out, resulting in 60% of surveys (n=197) that 

were more than 5% complete and used for analysis. 

(2) Descriptive statistics on survey responses to questions and statements on 

demographics, familiarity with SGMA, ten land use statements, most and least 

prioritized land uses, relationship to agriculture, and climate change perception was 

conducted using R software (version 2.1).  

(3) After an initial exploratory 

analysis, exploratory factor 

analysis (EFA) was used to 

identify underlying 

structures in the data, 

clarifying the relationships 

between land use values and 

identity factors (i.e., climate 

change and relationship 

with agriculture). An EFA is 

a statistical method used to 

reduce the dimensionality of 

data and explore underlying 

theoretical structures within 

the reduced dataset. All 

analysis was conducted 

using R-statistics (version 

2.1), and the factor analysis was done using the ‘fa’ function in the ‘psych’ package 

(Revelle, 2015). Three EFAs were conducted for three subsets of the survey data 

(Figure 3) to identify and compare underlying differences in land use preferences, 

relationship to agriculture, and climate change perception between all survey 

respondents (excludes income NAs), DACs (total household income ≤ $60K and 

non-declared white), and non-DACs (all respondents excluding DACs). This study 

uses the state’s definition of DACs: communities with a median household annual 

income (MHI) that is less than 80% the statewide MHI (2021 DAC MHI is $62,937) 

and predominantly Latino/Hispanic populations. Given that various studies have 

identified the underrepresentation of DACs in SGMA and other water and land use 

decisions in the state that impact their livelihood (Bernacchi et al., 2020; Dobbin & 

Lubell, 2021; Fernandez-Bou et al., 2021), it is important to identify how land use 

preferences and values may differ among DAC and non-DAC populations in 

California. 

(4) Underlying relationships highlighted from the EFA on all three subsets of the data 

were used to inform cross-tabulation analysis conducted in R to help further 

identify compelling insights on participant priorities of land use in their community, 

familiarity with SGMA, relationship to agriculture, and climate change perceptions 

based on THI and ethnic background. 

The San Joaquin Valley comparative statistics—population, median household income 

(estimated July 2019), persons in poverty (%), and population ethnicities and race (%)—

were obtained from the U.S. Census Bureau for each of the eight San Joaquin Valley 

Figure 3. Subset data consisting of all (excluding 

income NAs), DAC (total household income ≤ $60K 

and non-declared white), and non-DAC (total 

household income > $60K) respondents for the EFA 

analysis. 
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counties—Stanislaus, San Joaquin, Merced, Tulare, Fresno, Madera, Kings, and Kern. The 

population per county was summed to obtain the San Joaquin Valley population estimate, 

median household income, poverty percentage, and percent of race per county were 

averaged to obtain an average for the San Joaquin Valley.  

3. Results and Discussion 
3.1 Demographics and Baseline Groundwater Knowledge 

Of the 324 surveys submitted, 60% of surveys (n=197) were more than 5% complete. 

About 93% (n=183) of the surveys were completed in English, while 7% (n=14) were 

completed in Spanish. This survey resulted in a response rate of about 1.5%. The 

demographic information of the sample was compared with the population of the San 

Joaquin Valley (Table 2). Participant total household incomes were distributed as follows: 

42% (n=59) low-income (as defined for disadvantaged communities by California) and 

58% (n=83) as high-income. Participants ethnically identified as 25% (n=49) 

Latino/Spanish Origin, 26% (n= 52) White, and 49% (n= 96) were multi-ethnic or preferred 

not to answer. The preferred gender pronouns of survey participants were 35% (n=68) 

she/her/hers, 22% (n=43) he/him/his, and 2% (n=3) they/them/theirs, and 42% (n=83) 

preferred not to answer. Participants stated their work as retired (21%, n=41), in agriculture 

(13%, n=25), and as unemployed (9%, n=18). Respondents had higher incomes than the 

region’s general population, were less likely to be Latino, and were more likely not to be 

part of the workforce.  

Participants were asked about their familiarity with SGMA with levels of 

familiarity, not at all familiar, somewhat familiar, and very familiar. The highest 

percentage of respondents 54% (n= 105) were not at all familiar, 33% (n=64) were 

somewhat familiar, and 13% (n= 26) were very familiar (Table 2). Most respondents are 

not familiar with SGMA, which indicates representation, translation, and education and 

outreach issues to agricultural communities in the Valley. Understanding SGMA is 

important given that 87% of community water systems within disadvantaged communities 

in the San Joaquin Valley are sourced from groundwater (London et al., 2018). Although 

the implications of SGMA remain unknown, studies have projected that agricultural land 

may need to go out of production or transition to alternative multibenefit land uses to 

address groundwater overdraft (Hanak et al., 2019), which could have socioeconomic and 

environmental impacts on DACs. Given that water strategies under SGMA have 

implications on agriculture, farmers and agricultural professionals need to understand 

SGMA to implement effective water management strategies for the next 20 years. 

Respondents that self-identified as farmers (n=10) were the most familiar (26%, n=6) or 

somewhat familiar (13%, n=3) with SGMA compared to other agricultural professionals 

who were primarily not familiar with SGMA (30%, n=7).  

3.2 Relationship to Ag  

Given that agriculture is the current most extensive land use in California, about 26 million 

acres classified as farming and ranching out of 101.5 million acres of land (Novan, 2018), 

we sought to understand participant relationships with agriculture in terms of economics, 

aesthetics, and exposure to agricultural externalities. The relationship between the status 

quo and existing land uses may impact what Central Valley residents are interested in 

converting land under SGMA. We asked five agreement statements about agriculture to 

develop an index on agricultural relationships and understand the relationship of 
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agriculture to other land use lenses (Table 2). Respondents largely agreed (cumulative 

agreement of 94% (n=143) that agriculture is the core of the economy in their community, 

while 6% (n=8) cumulatively disagreed. This response distribution is interesting given that 

the largest land use in the region is agriculture, but the economic contribution to the region 

(San Joaquin and Tulare Basin) is 29% (University of California Issues Center, 2009; based 

on 2002 dataset) and to the state is 2% gross domestic product. Most respondents live in 

the San Joaquin Valley because of agriculture (38% strongly agreed, n=57). In contrast, 

even distribution with a third of respondents stated strongly agree, somewhat agree, and 

summative disagreed to living the Valley because of agriculture. Despite living here for 

agriculture, the same proportion of respondents strongly disagree that their job depends on 

ag. The adage adorns bumper stickers, and half of the respondents’ jobs depend on 

agriculture. The nuance of the strongly agree (29%) and somewhat agree (21%) is helpful, 

illustrating the difference between direct agricultural employment and indirect 

agriculturally related employment or work.  

Low-income agricultural communities are often the most impacted by agricultural 

practices that contribute to poor air quality and groundwater contamination from fertilizers 

and pesticide runoff. Buffers or spaces dedicated to non-agricultural practices could 

provide multibenefit land uses (e.g., groundwater recharge or recreation). Responses on 

whether there should be space between farmland and where people live for health reasons 

were mixed between summative agreement (55%) and summative disagreement (45%). 

Analyzing the relationship between my job depends on ag with the need for an agricultural 

buffer in communities shows that people who work in agriculture are more likely to 

disagree with agricultural buffers (52%, n=39 out of 75) than people who do not work in 

agriculture (37%, n=28 out of 75). There was an even distribution between strongly agree 

(20%), somewhat disagree (24%), and strongly disagree (21%). The largest response was 

35% for somewhat agree.  

By definition, DACs are lower-income and, based on CalEnviroScreen, have higher 

pollution rates. We asked about the level of agreement for farming contributes to air and 

water pollution in my community (Table 2). There was a nearly even distribution between 

strongly agree (19%), somewhat agree (23%), and somewhat disagree (23%), and a higher 

rate of respondents strongly disagree (36%), perhaps due to the implication that agriculture 

is at fault. Given that 46% of respondents selected somewhat agree or somewhat disagree 

may indicate respondent unawareness of the impacts of agricultural communities on 

environmental and human health.  

3.3 Stance on Climate Change 

Based on prior research, Californians tended to have higher percentages of people believing 

that climate change was happening (70%), believe that global warming is human-caused 

(~3%), are worried about climate change (61%), think climate change will moderately or 

a greatly harm people in the United States; support the regulation of carbon dioxide (CO2) 

as a pollutant (71%), and support for a utility renewable energy standard (60%) (Howe et 

al., 2015). By comparison, averages are lower for the San Joaquin Valley, where 66% of 

people believe that climate change is happening, 50% believe that global warming is 

human-caused, 58% are worried about climate change, 58% believe that climate change 

will moderately or greatly harm people in the United States, 68% strongly support the 
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regulation of CO2, and 56% somewhat or strongly support for a utility of renewable energy 

standard (Howe et al., 2015).  

Respondents represented the regional bias for climate change impacts on water and 

quality: 70% agreed that climate change is happening in their region. Regarding climate 

change impacts local water quantity and quality, 63% of participants agreed that climate 

change threatens water quantity locally, and 60% agreed that climate change threatens local 

water quality. A study by Niles, Lubell, and Haden (2013) conducted a study on California 

farmers' perception of climate change and found that farmers that expressed that water 

availability had decreased over time were more likely to believe in climate change, which 

was similar to the case for people who work in agriculture surveyed in this study. People 

who work in agriculture in this study were more likely to disagree that climate change is 

happening (30%, n=6 out of 10), that climate change impacts local water quantity (35%, 

n=7 out of 10), and quality (30%, n=6 out of 10). Generally, public understanding of 

climate change is not a problem of deficit of knowledge but rather a different understanding 

of the concept (Weber & Stern, 2011). There is a need to find ways to increase 

understanding of climate and science, in general, by increasing scientific literacy and two-

way communication, and community engagement to address the epistemic trust in science 

that is especially problematic among marginalized communities (Grasswick, 2010; Sinatra 

& Hofer, 2016; Weber & Stern, 2011).  

 

Median Household Incomes (National, State, and DAC) 

National MHI (2021 USD)  $67,521 

California MHI (2021 USD) $78,672 

DAC MHI (2021 USD) $62,937 

San Joaquin Valley Demographics (US Census Bureau, 2021) 

Population (2021)— 4,350,031 

Median Household Income (in 2020 

dollars) 
$59,476 

Persons in poverty (%) 13.52% 

Ethnicity (%) White alone—81% 

White alone, not Hispanic or Latino—

31.38% 

Hispanic or Latino— 55% 

Black or African American alone—5% 

American Indian and Alaska Native 

alone (%)—3% 

Asian alone—7% 

Native Hawaiian and Other Pacific 

Islander alone— 0.45% 

Two or more races—4%  

Survey Respondent Demographics 

Total household Income (N=143) Low (≤ $60K)—42% (N=59) 
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High (> $60K) —58% (N= 83) 

 

Ethnicity (n=197) Latino/Spanish Origin—25% (n=49) 

 White—26% (n=52) 

 
Multi-ethnic/Prefer not to answer—49% 

(n=96) 

Gender (n=197) She/her/hers—35% (n=68) 

 He/him/his—22% (n=43) 

 They/them/theirs—2% (n=3) 

 Prefer not to respond—42% (n=83) 

Occupation  Administration—3% (n=5) 

 Agriculture—13% (n=25) 

 
Construction/Heavy Equipment 

Operator/Mechanic—8% (n=15) 

 Delivery/Transportation—2% (n=4) 

 Education—8% (n=15) 

 Engineering/IT—2% (n=4) 

 Homemaker/Personal Care—7% (n=13) 

 Medical/Dental Health—6% (n=11) 

 Public Service—5% (n=10) 

 Retired—21% (n=41) 

 Self-employed—3% (n=6) 

 Unemployed—9% (n=18) 

 Other—11% (n=22) 

 No Response—4% (n=7) 

Familiarity with SGMA  

How familiar are you with SGMA? 

(n=195) 
Not At All Familiar—54% (n=106) 

 Somewhat Familiar—33% (n=64) 

 Very Familiar—13% (n=25) 

Relationship to agriculture  

Agriculture is the core of the 

economy in my community 
Strongly Agree—81% (n=123) 

(n=151) Somewhat Agree—13% (n=20) 

 Somewhat Disagree—3% (n=4) 

 Strongly Disagree—3% (n=4) 

I live here because of agriculture 

(n=151) 
Strongly Agree—38% (n=57) 

 Somewhat Agree—30% (n=45) 

 Somewhat Disagree—12% (n=18) 

 Strongly Disagree—21% (n=31) 

My job depends on agriculture 

(n=150) 
Strongly Agree—29% (n=44) 

 Somewhat Agree—21% (n=31) 

 Somewhat Disagree—11% (n=17) 
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 Strongly Disagree—39% (n=58) 

Farming contributes to air and water 

pollution in my community 
Strongly Agree—19% (n=28) 

(n=151) Somewhat Agree—23% (n=34) 

 Somewhat Disagree—23% (n=35) 

 Strongly Agree—36% (n=54) 

There should be space between 

farmland and where people  
Strongly Agree—20% (n=30) 

live for health reasons (n=151) Somewhat Agree—35% (n=53) 

 Somewhat Disagree—24% (n=36) 

 Strongly Disagree—21% (n=32) 

Stance on climate change  

In my region, climate change is 

happening (n=147) 
Strongly Agree—38% (n=56) 

 Somewhat Agree—31% (n=46) 

 Somewhat Disagree—14% (n=21) 

 Strongly Agree—16% (n=24) 

Climate change threatens water 

quantity locally (n=148) 
Strongly Agree—45% (n=66) 

 Somewhat Agree—18% (n=27) 

 Somewhat Disagree—18% (n=27) 

 Strongly Disagree—19% (n=28) 

Climate change threatens local water 

quality (n=148) 
Strongly Agree—39% (n=58) 

 Somewhat Agree—21% (n=31) 

 Somewhat Disagree—18% (n=27) 

 Strongly Disagree—22% (n=32) 
Table 2. Survey respondent demographic statistics. National, state, and DAC median household 

incomes (MHI; 2021 USD). San Joaquin Valley demographic statistics from US Census Bureau 

(2021) are included for reference to survey respondent demographic statistics. 

3.4 Community Land Use Values  

Understanding community member relationship to and values for nearby lands and 

alternative land use options could better inform land use transitions that help address 

groundwater overdraft and community needs. Participants were asked to state their level 

of agreement to gain insight into the value that parks and green space, habitat restoration, 

groundwater recharge, renewable energy, and carbon sequestration could have economic 

and overall well-being of their community (Table 3, Figure 4). There is a large consensus 

(93%) of respondents that think groundwater recharge is essential for promoting healthy 

communities, and 95% summative agreed that it could improve the economy in their 

community. Many respondents value having more parks and green space in their 

community (79%) and believe it is not a waste of financial investment for their community 

(80%). Three-quarters of respondents value wildlife and would like more nearby places to 

watch wildlife, and 66% of respondents do not think that more wildlife contributes to 

damage to crops or reduced land values for their community. The nuance in habitat 
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restoration between strongly agree (39%) and somewhat agree (36%) may indicate that 

some factors may contribute to respondents valuing wildlife or having nearby places to 

watch wildlife. Most respondents do not think that land used for renewable energy is a 

waste of space in their community but could see it helping the economy. Close responses 

among levels of agreement for carbon sequestration statements could indicate that storing 

carbon on land and receiving carbon credits is not a well-understood topic among 

respondents and that these topics are difficult to communicate succinctly and gather 

perspectives.  

 

 Strongly 

Agree 

Somewhat 

Agree 

Somewhat 

Disagree 

Strongly 

Disagree 

Community 52% 

(n=86) 

27% 

(n=45) 

15% 

(n=24) 
5% (n=9) 

community value 

economic value (negative)  
6% (n=10) 

14% 

(n=23) 

30% 

(n=49) 

50% 

(n=83) 

Habitat Restoration 39% 

(n=64) 

36% 

(n=59) 

18% 

(n=30) 

7% 

(n=12) community value 

economic value 12% 

(n=19) 

25% 

(n=42) 

33% 

(n=54) 

30% 

(n=50) 

Groundwater Recharge 59% 

(n=97) 

34% 

(n=55) 
5% (n=9) 2% (n=3) 

community value 

economic value 61% 

(n=100) 

34% 

(n=55) 

5% (8) 1% (n=1) 

Renewable Energy 16% 

(n=26) 

16% 

(n=27) 

24% 

(n=40) 

44% 

(n=72) community value (negative) 

Figure 4. Community land use values in terms of community (comm) and economic (econ) 

well-being. Values with an asterisk were originally a negative statement in the survey 

questionnaire, but was flipped to a positive statement for comparison feasibility. 
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economic value 43% 

(n=71) 

34% 

(n=55) 

13% (21) 10% 

(n=17) 

Carbon Sequestration 15% 

(n=24) 

25% 

(n=40) 

37% 

(n=59) 

24% 

(n=40) community value (negative) 

economic value 25% 

(n=40) 

29% 

(n=48) 

19% 

(n=31) 

27% 

(n=44) 

Top and Lowest Land Use Priorities 

Top Land Use 

Priorities (n=144) 
Secure Water 

Supplies 

35% (n=50) 

Less Water-

Intensive 

Agriculture 

27% (n=39 

Reduce GHG and 

Climate Change 

11% (n=16) 
 

Low Land Use 

Priorities (n=147) 

Schools, 

Grocery Stores, 

& Housing 

33% (n=48) 

Reduce GHG and 

Climate Change  

26% (n=38) 

Less Water-

Intensive 

Agriculture 

13% (n=19) 

 

 
Table 3. Survey participant responses to alternative land use statements in the context of land use 

benefits for the community (community value) and community economy (economic value) and their 

top and lowest priority alternative land uses to address groundwater overdraft through land 

transitions under SGMA and the MLRP.  

3.5 Land Use Priorities for Land Use Transitions  

To gain insights into what community members envision for a healthy, economically 

stable, and just environment, we asked respondents to identify their highest and lowest land 

use priority should agricultural land be transitioned in and around their community to 

address groundwater overdraft as per SGMA (Figure 5). Most (35%) respondents identified 

secure water supplies (e.g., groundwater recharge) as the first top land use priority and the 

second-highest less water-intensive ag selected by 27%. The lowest land use priority (33%) 

was schools, grocery stores, and housing, and respondents' second lowest land use priority 

was reduced GHG and climate change at 26% of respondents' selection (Table 3). 

Participants who value renewable energy for community economic and overall well-being 

prioritize secure water supplies (35%, 32%) and less water-intensive agriculture (23%, 

24%) (SI Figure 9, 10). Respondents who value renewable energy for community well-

being do not prioritize schools (41%), reduce GHG and climate change (17%), recreation 

(17%), and less water-intensive agriculture (17%) (SI Figure 11). In comparison, 

respondents that support renewable energy for the economic well-being of their community 

do not prioritize schools (30%), reduce GHG and climate change (20%), and less water-

intensive agriculture (15%) (SI Figure 12).   

Participants that agreed with the implementation of agricultural buffers around 

communities (39%, n=32 out of 82), do not live in the Valley because of agriculture (45%, 

n=22 out of 49), and agreed that agriculture contributes to pollution in their community 

(36%, n=22 out of 61) ranked schools, grocery stores, and housing as their lowest land use 

priority. Less water-intensive agriculture is among the lowest land use priorities for people 

that do not live in the Valley because of agriculture (14%, n=7 out of 49) and agree that 

agriculture contributes to air and water pollution in their community (20%, n=12 out of 

61). Participants whose job depends on agriculture had a low priority for land that reduces 

GHG and climate change (37%, n=26 out of 71) and schools, grocery stores, and housing 
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(23%, n=16 out of 71), which could be due to the permanence of urban infrastructure and 

high propensity of people who work in agriculture not to believe that climate change is 

happening. Those who agreed on implementing agricultural buffers near communities 

(16%, n=13 out of 82) and do not live in the Valley because agriculture had a low priority 

for recreation (14%, n=7 out of 49). Participants that disagreed that groundwater recharge 

is suitable for promoting healthy communities had low land use priorities for secure water 

supplies (2-%, n=2 out of 10), recreation (20%, n=2 out of 10), and less water-intensive 

agriculture (20%, n=2 out of 10). 

 

 
Figure 5. Survey participants' top and lowest land use priorities to address groundwater 

overdraft in their community.   

3.6 Underlying Dimensions  

The EFA allowed us to identify underlying dimensions between respondents and their land 

use preferences, relationship to agriculture, and climate change perceptions and compare 

perceptions among all, DAC, and non-DAC respondents. Table 4 lists each of the variables 

with factor loadings greater than 0.4 that explain the key perceptions of each group. The 

statement associated with each variable is also included in Table 4 to facilitate the 

interpretation of variables and factor loadings. 

3.6.1 Perceptions Across All Survey Respondents 

The five main perceptions of all survey respondents (n=143) on land use, agriculture, and 

climate change are: Agricultural Practice Risk Awareness and Climate Change 

Consciousness, Ag-centric, More Recreational Spaces, and Cautious Against Habitat and 

Support Carbon Sequestration, and Support Renewable, Recharge, and Carbon 

Sequestration. The Agricultural Practice Risk Awareness and Climate Change 

Consciousness perception is strongly defined by the support for space between agricultural 

practices and where people live for health reasons, and farming contributes to air and water 

pollution. This perception also consists of the stance that climate change is happening and 

impacts water quantity and quality. The Ag-centric perception is defined by the importance 

of living the San Joaquin Valley because of agriculture, having a job that depends on ag, 

and believing that agriculture is the core of the community economy. The More 

Recreational Spaces perception is defined by interest and financial investment in parks and 

green spaces. Note that the negative factor loading associated with “Q10COMMecon_O” 



24 

 

is due to the negative response to the statement that is “My community should NOT spend 

money on open spaces, like parks, trails, bike paths, and playgrounds,” and is interpreted as 

participants do want to see money spent on open spaces in their community. The Cautious Against 

Habitat and Carbon Sequestration perception is defined by the belief that wildlife could 

damage crops and affect land values and that using farmland to store carbon is a waste of 

space. The Support Renewable, Recharge, and Carbon Sequestration perception is strongly 

defined by support for groundwater recharge for economic and community benefits, 

renewable energy for the community and economic well-being, and carbon sequestration 

to benefit the community economy through carbon credits.  

3.6.2 Perception Among DAC Survey Respondents  

The four key perceptions resulting for DAC respondents (n=44) are Address Agricultural 

and Climate Change Risks, Ag Status Quo, More Recreation and Wildlife Habitat, and Ag 

Against Land for Habitat and Renewable Energy. The Address Agriculture and Climate 

Change Risk perception among DAC respondents acknowledge that there should be space 

between farmland and where people live for health reasons (factor loading of 0.8) and that 

climate change is happening and impacting regional water quality and quantity. This 

perception also consists of an understanding of the local community's economic benefits 

from implementing renewable energy and carbon sequestration practices. The Ag Status 

Quo perception consists of the disagreement that farming contributes to air and water 

pollution in San Joaquin Valley communities and support for groundwater recharge for 

community and local economic benefits. The More Recreation and Wildlife perception 

consists of an interest in the implementation and investment of parks and green spaces and 

places to watch wildlife. The Ag Against Land for Habitat and Renewable Energy consists 

of an ag-centric lifestyle, living in the Valley because of agriculture or having a job that 

depends on ag, and the belief that land uses for renewable energy is a waste of space in the 

community, and more nearby wildlife could damage crops and reduce land values.   

3.6.3 Perception Among non-DAC Survey Respondents  

The three key perceptions of the non-DAC respondents are: Support for Alternative Land 

Uses to Address Climate Change and Agricultural Risks, Non-Ag Relationship, and 

Opposed to Recreational Spaces. The Support of Alternative Land Uses to Address Climate 

Change and Agricultural Risks perception consists of the support for renewable energy, 

groundwater recharge, and carbon sequestration for community and economic benefits. 

This perception also includes an awareness that climate change is happening and impacting 

local water quality and quantity and that agricultural practices contribute to air and water 

pollution. Under this perception, there is a need to implement agricultural buffers around 

residential communities for health reasons. Among the non-DAC respondents, there is a 

Non-Ag Relationship perception, which consists of the stance that agriculture is not the 

core of the local economy, do not live in the Valley because of agriculture, and do not have 

a job that depends on ag. The Non-Ag Relationship perception also supports places to 

watch wildlife. The Opposed to Recreational Spaces perception consists of the opposition 

to more parks, trails, bike paths, and playgrounds and that there should not be more 

investment in recreational spaces. This perception takes on a “not in my backyard” or 

NIMBY stance on the implementation of parks and green spaces, which may be attributed 

to the higher social access to parks (e.g., safety, traffic, and walkability) in higher-income 

communities and the lack of green spaces in low income, disenfranchised communities 
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(Wen et al., 2013). The breakdown of respondents between DAC and non-DAC highlights 

that respondents from DACs are more likely to support the implementation of parks and 

green spaces than non-DAC because of the lack of spaces that facilitate healthier activities, 

like walking, and alleviate mental health issues that are persistent among low-income 

Latino communities (Galea et al., 2020; Grassi et al., 1999; Lama et al., 2018; Lee, 2020). 

The climate change and agricultural risk consciousness perception persist across all three 

groups regardless of race and income. The finding that the climate change and agricultural 

risk perception exist across all three groups highlights an opportunity to focus land 

transition and climate-smart management strategies on this group (Carvalho & Peterson, 

2009). Different strategies need to be developed to engage people with perceptions outside 

this group, and topics for building common ground need to be further explored for these 

potentially later adopters of climate change.  

  

Survey Question Variable 
All 

(Percep.) 

All 

Loading 

DAC 

(Percep.) 

DAC 

Loading 

non-

DAC 

(Percep.) 

non-

DAC 

Loading 

Q5COMMcomm_O PA3 1.2 PA3 0.9 PA3 -0.7 

Q6HABTecon_O PA4 0.6 PA4 0.6   

Q7RECHcomm_O PA5 0.8 PA2 0.8 PA1 0.7 

Q8CARBcomm_O PA4 0.5     

Q9RENEecon_O PA5 0.6 PA1 0.4 PA1 0.7 

Q10COMMecon_O PA3 -0.7 PA3 -0.8 PA3 0.9 

Q11CARBecon_O PA5 0.4 PA1 0.6 PA1 0.6 

Q12RENEcomm_O PA5 -0.5 PA4 0.5 PA1 -0.7 

Q13HABTcomm_O   PA3 0.5 PA2 0.3 

Q14RECHecon_O PA5 0.6 PA2 0.5 PA1 0.7 

Q17AgEcon_O PA2 0.5   PA2 -0.6 

Q18AgLive_O PA2 1 PA4 0.8 PA2 -0.9 

Q19AgJob_O PA2 0.7 PA4 0.6 PA2 -0.7 

Q20AgSpace_O PA1 0.9 PA1 0.8 PA1 0.4 

Q21AgPollution_O PA1 0.8 PA2 -0.7 PA1 0.5 

Q26CC_Happening_O PA1 0.5 PA1 0.9 PA1 0.6 

Q27CC_WaterQuantity_O PA1 0.7 PA1 0.9 PA1 0.5 

Q28CC_WaterQuality_O PA1 0.6 PA1 0.9 PA1 0.6 

Survey Questions: 

Q5COMMcomm_O. My community should have more parks, trails, bike paths, and 

playgrounds. 

Q6HABTecon_O. More wildlife habitat means more wildlife will damage crops and reduce 

land values.  

Q7RECHcomm_O. Using wetlands, recharge ponds, and wells to help store water 

underground is important for healthy communities. 

Q8CARBcomm_O. Using farmland to store carbon in soil is a waste of space in my 

community. 
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Q9RENEecon_O. Land that generates electricity from the sun and wind could help the 

economy in my community. 

Q10COMMecon_O. My community should NOT spend money on open spaces, like parks, 

trails, bike paths, and playgrounds. 

Q11CARBecon_O. I think our community should use land to reduce climate change impacts 

and get paid with carbon credits. 

Q12RENEcomm_O. Land used to create clean energy, from the sun and wind, is a waste of 

space in my community. 

Q13HABTcomm_O. I value wildlife and would like more nearby places to watch wildlife. 

Q14RECHecon_O. Replenishing groundwater in natural underground storage and wells 

could improve the economy in my community. 

Q17AgEcon_O. Agriculture is the core of the economy in my community. 

Q18AgLive_O. I live here because of agriculture.  

Q19AgJob_O. My job depends on ag. 

Q20AgSpace_O. There should be space between farmland and where people live for health 

reasons. 

Q21AgPollution_O. Farming contributes to air and water pollution in my community. 

Q26CC_Happening_O. In my region, climate change is happening. 

Q27CC_WaterQuantity_O. Climate change threatens water quantity locally. 

Q28CC_WaterQuality_O. Climate change threatens local water quality. 

Table 4. The survey questions and the perception group and factor loading value resulting from 

the factor analysis of all (5 factors), DAC (4 factors), and non-DAC (3 factors) survey respondents. 

See Appendix A for a more detailed factor analysis output. The survey questions are included in 

this table for reference and to facilitate interpretation of the factor loadings.  

4. Study Limitations and Future Work   
Although this study had 197 survey respondents, it reached a novel group of residents in 

the San Joaquin Valley about a novel issue related to agricultural land use transitions in a 

region that is defined by a predominantly agricultural culture. This exploratory research 

will drive future questions and multimodal outreach in rural agricultural regions of 

California’s San Joaquin Valley. To overcome traditional barriers to working with 

marginalized, underserved populations and the pandemic, this study implemented the best 

survey alternative at a reasonable cost: to conduct an SMS text-distributed link to a web-

based survey. Given that 42% of survey participants were considered DAC members and 

the 1.5% response rate to the SMS text-distributed web survey, future work is needed to 

ensure that the needs of community members are represented in future water and land use 

decisions in and around SGMA and the MLRP in the San Joaquin Valley. Financial 

investment is critical to effectively implement survey methods to engage hard-to-reach 

marginalized and disenfranchised populations. Given non-pandemic circumstances and 

unrestricted funding, the following approach would be the alternative approach to 

conducting this survey study on San Joaquin Valley community land use preferences: 

1) Introductory workshop and Preliminary Survey. Introduce the research team, 

provide a brief overview of SGMA and MLRP objectives, and state project 

objectives. Gauge community interest in engagement and informing strategic 

agricultural transitions. Conduct a preliminary survey to gauge information and 

knowledge gap on SGMA, MLRP, and the benefit of implementing alternative land 
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uses to potentially retired agricultural land under SGMA. The preliminary survey 

will inform which topics to focus detail on for the second interactive workshop  

2) Informational workshop and collect most and least preferred alternative land 

uses.  Provide information on the costs and benefits of alternative land uses that 

have been considered in place of potentially retired agricultural land to address 

groundwater overdraft under SGMA (e.g., parks and green space, habitat 

restoration, renewable energy, carbon sequestration, groundwater recharge).  

3) Participatory GIS. Provide individual maps to each workshop participant 

depicting the location where each land use is optimal for implementation. Some 

land parcels will have more than one alternative land use suitable for 

implementation. Participants can identify where they want to see specific suitable 

land uses implemented and rank their land use preference for specific parcels or 

regions of interest. This Participatory GIS method allows community members to 

identify land uses they would like to see in their community and where and 

reconcile any conflicting land uses that may not work well together. It is also 

suggested to allow participants to identify alternative land use options that have not 

been provided to them. Community members have community knowledge and 

lived experiences to inform alternative land uses that may not have been considered 

more representative of their community needs, values, and culture.    

The following recommendations can be made given non-pandemic circumstances to 

increase the reach and decision-making involvement of over-looked communities in the 

state:  

(1) Use a combination of different platforms to conduct surveys that encompass diverse 

community needs and circumstances (e.g., access to technology, language barriers, 

broadband limitations). Ensure that survey questions across the different platforms 

contain the same questions and wording to facilitate consolidation and analysis of 

survey responses. Different platforms include mail, text message, email, web, and 

in-person.  

(2) Provide clear and concise definitions of new or complicated concepts and 

terminology. Findings from this survey suggest that concepts such as carbon credits 

and carbon sequestration were difficult to grasp within a limited survey context. 

There is a need for state and local water and land use agencies in California to 

develop standard terminology to prevent confusion of concepts related to SGMA 

and the MLRP.  

(3) There is a need for multilingual and multi-modal information dissemination (e.g., 

mail, in-person, workshops, videos, web, flyers, email) that provide insights on the 

costs and benefits of different land repurposing projects in and around their 

communities. There is a need to provide examples, including visuals, of what land 

repurposing options could look like to help stakeholders better envision what they 

would like to see in their community. 

More recommendations on effective community engagement on land repurposing can be 

found in Appendix B.  
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5. Conclusions 
California’s San Joaquin Valley is paradoxical. Nestled among the multi-billion-dollar 

agricultural landscape, more than 200 DACs are faced with the highest poverty and 

pollution rates in the United States. Increasing drought conditions and groundwater 

overdraft is straining agriculture, leading to 10-15% of agricultural land going out of 

production to address groundwater overdraft under SGMA. A combination of SGMA and 

MLRP could lead to transitions in agricultural land that address groundwater overdraft and 

address the needs of communities, especially DACs and ecosystems. Incorporation of San 

Joaquin Valley community needs into water management and land use planning has been 

limited to date, but SGMA and MLRP provide the impetus for inclusive engagement and 

planning. This survey study addressed the current lack of understanding of how local 

communities, specifically DACs in the San Joaquin Valley, value alternative land uses by 

focusing on surveying 32 disadvantaged communities in the region through a novel text 

message delivery of a web survey.  

 This study found that most respondents were largely unfamiliar with the 2014 

California SGMA, highlighting the need for increased outreach efforts to explain SGMA 

and groundwater overdraft implications on agriculture among rural agricultural 

communities. Given that formal input from DACs on groundwater sustainability plans 

under SGMA has been minimal and the news representation of SGMA has been dominated 

by agriculture, there is a need to dedicate outreach efforts to overcome barriers to 

representation, translation, and education to develop land use transition strategies that are 

equitable, inclusive, and representative of community needs. Results of this survey also 

highlight the need for clear, concise definitions of new terminology or complicated 

concepts (e.g., carbon sequestration and carbon credits). Insights on complicated 

terminology and the need for increased outreach efforts helped develop a guide for MLRP 

applicants on community and grower engagement in multibenefit land repurposing1.  

Supporting current status quo land uses was preferred among survey participants to 

alternative future land uses. In other words, respondents were likely to select secure water 

supplies (e.g., groundwater recharge) and less water-intensive agriculture as the most 

preferred land uses. Strong agricultural identity and lack of interest in community or global 

benefits, such as schools and climate change mitigation, point to high values for agriculture 

to remain a primary land use among survey participants. Regarding non-agricultural land 

use transitions to address groundwater overdraft under SGMA, participants supported 

parks, green space, and renewable energy. Three-quarters of respondents value wildlife and 

would like more nearby places to watch wildlife, and 66% of respondents do not think that 

more wildlife contributes to damage to crops or reduced land values for their community. 

While this study provides a broad snapshot of San Joaquin Valley community land use 

preferences, targeted surveys should be conducted to understand better the unique 

preferences and priorities of local and regional land repurposing, particularly when 

developing regional land repurposing plans with MLRP funding. Further exploration of 

key perceptions among various dataset subsets (i.e., all, DAC, and non-DAC respondents) 

highlighted that non-DAC participants oppose recreational spaces. An opposition to parks 

 
1 Environmental Defense Fund and UC Merced Land Repurposing Engagement Guide (2022): 

https://www.edf.org/sites/default/files/documents/CA%20Land%20Repurposing%20Engagement%20

Guide.pdf 
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and green spaces among non-DAC (i.e., income ≥ $60K, regardless of race) brings forward 

a “not in my backyard” or NIMBY stance on the implementation of parks and green spaces, 

which may be attributed to the higher social access of parks (e.g., safety, traffic, and 

walkability) in higher-income communities and the lack of green spaces in low income, 

disenfranchised communities (Wen et al., 2013). The support for parks, green spaces, and 

places to see wildlife among DAC respondents may be attributed to the current lack of 

spaces that facilitate healthier activities, like walking, and alleviate mental health issues 

that are persistent among low-income Latino communities (Galea et al., 2020; Grassi et al., 

1999; Lama et al., 2018; Lee, 2020). An awareness of climate change and agricultural risks 

is present across all three participant groups regardless of race and income. Finding that 

climate change and agricultural risk perception exists across all three participant groups 

highlights an opportunity to focus land transition and climate-smart management strategies 

on people that already acknowledge climate change and agricultural risks in the San 

Joaquin Valley (Carvalho & Peterson, 2009). Different strategies need to be developed to 

engage people with perceptions that do not acknowledge climate change and agricultural 

risks, and topics for building common ground need to be further explored for certain 

stakeholders that will potentially adopt climate change later.  
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CHAPTER 3. WHERE TO FOCUS LAND TRANSITION 

EFFORTS? 

1. Introduction 
The global water crisis is often highlighted as an issue of water availability (Gleick & 

Cooley, 2021). However, water access inequality stemming from poor governance and 

mismanagement is often overlooked (United Nations Development Programme, 2006; 

Calow & Mason, 2014). Surging human population and climate-change-induced, extreme 

hydrological events (Bates et al., 2008; Vörösmarty et al., 2000), like meteorological 

droughts, have increased the use of and reliance on groundwater for irrigated agriculture 

(Siebert et al., 2010; Wada et al., 2012). Wada Further, groundwater exploitation is 

projected to increase to counteract the impacts of climate change on surface water supplies 

(e.g., increased precipitation variability and reduced snowpack) and increasing human 

population (Green et al., 2011). Water management and water governance agencies 

worldwide are already dealing with the repercussions of suboptimal water resource 

management practices and non-existent or decaying infrastructure (Ehrlich & Landy, 2005) 

and are not well-equipped to deal with additional stresses of non-stationary hydroclimate 

and projected population growth (Overseas Development Institute et al., 2012; Milly et al., 

2008).  

Recent approaches to water governance in coupled human-natural systems point to 

sociohydrology as a means to address the twin challenges of climate change adaptation and 

equitable water management (Sivapalan et al., 2014; Sivapalan et al., 2012). Researchers 

on common property resource management identified the need to distinguish between the 

characteristics of the natural resource and the managing governance system given the 

complexity in human motivation to control resources, governance structures that do not 

always facilitate free and equal access to all, and the changing dynamics of the resource 

itself (National Research Council, 2002). Sociohydrology aims to evaluate the impacts of 

human values and norms on water structures and dynamics and the impacts of water 

systems on societal well-being at various spatio-temporal scales to develop water 

management solutions that account for human behavior impacts on water systems. 

Embedded within sociohydrological systems are differing forms of governance, at times 

contradictory but bound to historical precedent, most evident in the idea of water as 

property (Roth et al., 2015). Jurist Franz von Benda-Beckmann explored water as property, 

established relationships between water, legal systems, and human behavior, and 

concluded that regional historical and cultural contexts are embedded in water rights and 

the role of human agency in reinterpreting and translating water laws and management 

(von Benda-Beckmann, 2006). By integrating multi-stakeholder perspectives, von Benda-

Beckmann linked system management to water rights and water, which has led to 

understanding water rights, irrigation infrastructure, and human decision-making as 

constructs of sociohydrological governance systems (Roth et al., 2015). By extension, 

humans establish, arrange, and enact the rules, responsibilities, and rights to control water 
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to facilitate financial and human capital investments in water for human benefit via 

irrigation and conveyance (Coward, 1980). Thus, the control of water is the control of 

society, much as it has been since the dawn of human civilization (Berking & Schütt, 2021; 

Hundley, 2002). Thus, a more fundamental understanding of water governance and 

management concepts specific to a given geography – and that account for the inherent 

dynamics between water, people, and governance – could provide insight into developing 

resilient climate change management in drought-prone agricultural regions, like California 

(Figure 6). This work analyzes the complex sociohydrologic dynamics and history in 

California water to inform the development of climate change adaptation strategies that 

account for the human and governance structures that have influenced water in the region.  

California is a bellwether of attributes encompassing the global water crisis and 

sociohydrology (sensu Sivapalan et al., 2014)—competing demands for surface water, 

groundwater overdraft, complex surface water rights, water access inequity, poverty, food 

insecurity, increasing population, and climate change. One might think that California is a 

water-rich region, given that it reaps 50.1 billion USD in cash receipts from agricultural 

and livestock production (California Department of Food and Agriculture, 2019) and is the 

most populous state in the United States. However, the agricultural productivity and high-

density populations in water-scarce regions exist because of the alteration of California’s 

natural water systems. California’s water conveyance system as it is known today—1,500 

reservoirs, 1,135 km of the State Water Project, and 644 km of the Central Valley Project 

(Hanak et al., 2011)—nourishes the state’s agricultural economy and redistributes water to 

the water-scarce south, but is facilitated by an arcane and contradictory patchwork of water 

rights and regulatory jurisdictions (Grantham & Viers, 2014; Owen et al., 2019). Despite 

Figure 6. The sociohydrology framework adapted from Sivapalan et al. (2014) applied to the San 

Joaquin Valley’s local water governance, specifically irrigation districts.    
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the urban and agricultural prosperity that flourished from redistributing water through 

expansive water conveyance networks, water access inequity persists. Under current 

management practices, the western United States is at its water capacity limit for sustaining 

cities, agriculture, and ecosystems (Sabo et al., 2010) with missed opportunities to reduce 

water waste and make use of new water supplies (e.g., recycled water, desalinated brackish 

water, stormwater). While agriculture in California uses 40% of available water compared 

to 10% used by cities (Hanak et al., 2019), about one million people in California live in 

underserved, unincorporated communities without access to safe, clean drinking water 

(London et al., 2018). Disadvantaged communities (DACs)2 in the San Joaquin Valley 

represent the region’s poverty paradox—communities surrounded by the productive 

agricultural fields that drive local economies, and yet are disproportionately burdened with 

poor air and water quality, poverty, food insecurity, and political underrepresentation 

(Balazs et al., 2011; Dobbin & Lubell, 2021; Fernandez-Bou et al., 2021; London et al., 

2018; Pannu, 2012). California’s conflicting water demands between agriculture and 

booming cities stem from the poor management practices based on optimistic estimates of 

available surface water (Sabo et al., 2010). Much of California’s surface water has been 

claimed several times more than the amount available since the 1890’s through surface 

water rights allocations (Grantham & Viers, 2014; Hundley, 2002). California’s tortuous 

water management, tortuous infrastructure, and the role of water in shaping California’s 

history have been recounted by many, including both popular (Arax, 2019; Arax & 

Wartzman, 2003; Reisner, 1993) and scientific (Pinter et al., 2019; Sabo et al., 2010) 

accounts.  

For California, a step toward building climate change resilience and addressing 

water access inequity starts with local water governance in the San Joaquin Valley, 

specifically irrigation districts, which are at the forefront of redeveloping water 

management strategies under the 2014 Sustainable Groundwater Management Act 

(SGMA). Before SGMA, groundwater in California was rarely monitored and regulated 

(Sax, 2002), which led to 1.7 billion cubic meters (m3) per year of overdraft and about 6.2 

billion m3 of overdraft during the 2012-2016 drought (Howitt et al., 2015). The SGMA 

aims to balance the surface water and groundwater portfolio to bring the state’s overdrafted 

groundwater basins to sustainable levels by 2040. California’s most critically overdrafted 

groundwater basins are in the San Joaquin Valley (Hanak et al., 2019). SGMA places 

authority and responsibility on local water agencies (e.g., irrigation districts, water districts, 

and city and county water agencies), which have formed Groundwater Sustainability 

Agencies (GSAs) (Green, 2014). GSAs are tasked with developing and implementing 

strategies to address groundwater overdraft in the next two decades. California irrigation 

districts exemplify the sociohydrological construct that historical and cultural context 

underpin surface water rights. Thus, financial and human capital investments needed for 

irrigation infrastructure are used to support self-maintaining water governance structures. 

 
2 Disadvantaged Communities are defined by the State of California as a community with an annual median 

household income of less than 80% of the statewide annual median household income. 
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There remains a need to evaluate the impact of the human values and norms on governance 

structures and dynamics, and in turn, societal well-being in the San Joaquin Valley if 

California is to develop successful water management plans that address the imbalance of 

surface water and groundwater in a changing climate.  

Water development in California initiated to power gold mining operations in the 

mid-1800s, which later catalyzed urban and agricultural prosperity. The late 1800s was a 

formative period for this economic growth as water rights were formalized, and the land 

was converted to agriculture. Water utilization during this period favored wealthy 

landowners, and riparian surface water rights3 were prioritized over appropriative water 

rights4 (Lux v Haggin, 1886). The Wright Act of 1887 was passed to break the 

monopolization of the land and water spell by forming irrigation districts. Under this act, 

residents and farmers formed irrigation districts to represent the best interests of family 

farms and keep water rights in the irrigation district instead of private corporations or 

individuals (Hundley, 2002). The early formation of irrigation districts in 1887 also 

catalyzed the creation and transformation of agricultural communities throughout 

California, especially the San Joaquin Valley, by governing water resources in the interest 

of local water users (Henley, 1968; Teilmann, 1963).  

In California, water rights allocations with the most water by volume are allocated 

to public entities (78%), and agriculture has the highest count of designated water rights 

(70%) (Grantham & Viers, 2014). For irrigation districts, the date of formation is critical 

in determining the type of surface water right (pre-1914 or post-1914 appropriative rights), 

which dictates whether an entity’s rights are regulated by the State Water Resources 

Control Board (SWRCB) or not. The lack of a surface water rights permitting system 

before 1914 allowed water users to claim a surface water right to be used for beneficial and 

reasonable use without the approval of a governing agency. When the Water Commission 

Act of 1914 was established to regulate the surface water rights permitting system, claims 

before 1914 were grandfathered into the water rights system as existing and senior. These 

senior pre-1914 water rights remain unmanaged by the SWRCB (State Water Resources 

Control Board, 2020), and their allocations are prioritized over post-1914 water rights, 

considered junior appropriations. Irrigation districts and water users that do not receive 

surface water allocations, either due to junior or non-existent rights, turn to groundwater to 

meet irrigation demands (Medellín-Azuara et al., 2016). 

Given that surface water rights have been claimed several times more than the 

available supply since the 1890s (Hundley, 2002), contemporary water rights exceed the 

state’s actual water supply by five times the average annual runoff and eight times the 

actual surface water supply in some river basins (Grantham & Viers, 2014). While all rights 

holders, riparian and appropriated, may get their share of surface water supplies during wet 

years, California’s frequent droughts create access disparities and generate conflicts among 

 
3 Water rights for landowners adjacent to a natural body of water (Attwater & Markle, 1988) 
4 Right to water for “beneficial use” regardless of relationship between land and water (Attwater & Markle, 

1988) 
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water users. In September of 2021, climate change-induced drought conditions halted water 

rights diversions for all pre-1914 and post-1914 water rights holders in the Sacramento-

San Joaquin watersheds (State Water Resources Control Board, 2021a).  

In this paper, we use geospatial analysis to identify and assess the sociohydrologic 

vulnerabilities of irrigation districts in California’s San Joaquin Valley, the state’s 

agricultural core (Figure 7). By assessing how various interconnected factors, like location, 

formation date, and surface water rights (see Appendix D, SI Table 10 for a complete list 

of variables), a sociohydrologic vulnerability index was developed and applied to 102 

irrigation districts to better understand freshwater and DAC stress within irrigation district 

boundaries. This approach to sociohydrology facilitates the assessment of socioeconomic 

equity and freshwater reliability, important considerations for climate change adaptation. 

Further, this assessment uses cluster analysis to distinguish similarities and differences 

among irrigation districts to determine how decreasing groundwater availability due to 

physical constraints and policy restrictions on new or deeper groundwater wells may affect 

DACs. This paper is the first to identify DACs within irrigation district boundaries and 

highlight the poverty paradox and environmental inequities that persist among DACs 

within irrigation districts compared to areas without dedicated surface water supplies 

despite being within the jurisdiction of local groundwater sustainability agencies.  

Figure 7. Map of the study region for this analysis is the San Joaquin Valley floor (shaded grey) 

in California, located in the western United States.  
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2. Materials and Methods  
2.1 Data Availability & Software 

This study reconciles various disaggregated irrigation district information from various 

local and state resources and databases. This work derives the variables necessary to 

understand how irrigation districts’ historical, political, environmental, and cultural 

characteristics could drive surface water scarcity and groundwater reliance in the state’s 

agricultural region. SI Table 9 in Appendix D lists the datasets and the source from which 

they were obtained. SI Table 10 documents the variables derived from the primary datasets 

highlighted in SI Table 9 used in this analysis, their units, and a description of how they 

were derived. The major variables used in this analysis encompass an irrigation district’s 

history (i.e., age, dedicated water), surface water allocation and delivery, and crop 

composition within the district’s boundaries (e.g., total, perennial, annual crop fractions, 

and revenue). Data on the variable values per irrigation district (freshwater variable 

normalized values reported),  the surface water allocation amounts for irrigation districts 

in this study, and the source of information,  Land IQ crop types that make up the annual, 

perennial, and irrigated forage categories, and lists of the crop revenue values and the 

associated crop type used in the analysis for irrigation districts within the eight San Joaquin 

Valley counties can be found in Appendix D. County Crop Report 2016 for each county 

was used to derive crop revenue values (County of Fresno Department of Agriculture, 

2016; County of Stanislaus Agricultural Commissioner, 2016; Kern County Department of 

Agriculture and Measurement Standards, 2016; Kings County Department of Agriculture, 

2016; Madera County Department of Agriculture, 2016; Merced County Department of 

Agriculture, 2016; San Joaquin County Agricultural Commissioner’s Office, 2016; Tulare 

County Economic Development Office, 2016). The primary software used to facilitate this 

analysis was ESRI ArcPro GIS (ESRI, 2011) and R software  (R Core Team, 2021).  

2.2 Irrigation District Boundaries  

The most up-to-date irrigation district boundaries were obtained directly from the Local 

Agency Formation Commission (LAFCO) for seven counties in the San Joaquin Valley—

San Joaquin, Stanislaus, Merced, Fresno, Madera, Tulare, and Kern. Kings County LAFCO 

could not provide updated boundaries, and the Department of Water Resources 2015 water 

agency boundaries were used for irrigation districts in this county. This study focuses 

solely on water agencies in the San Joaquin Valley floor that distribute water for irrigation 

and exclude water conservation, domestic, and municipal water agencies. The irrigation 

district boundaries from these various sources were digitally reconciled to create a single 

geospatial data file for irrigation districts on the San Joaquin Valley floor.  

2.3 Era Analysis 

Statistical analysis of the variables outlined in SI Table 10 in Appendix D was conducted 

for irrigation districts within four major eras to shed light on how key water management 

events may have shaped irrigation districts during their formation. Irrigation district 

formation dates were categorized into major water management periods for infrastructure 

investments and economic development as outlined by Hanak et al. (2011). The four major 

eras considered in this study are the Era of Local Organization (1887-1913), Hydraulic Era 
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(1914-1968), Era of Conflict (1969-2000), and Era of Reconciliation (2001-2020), mainly 

following Hanak et al. (2011) (Hanak et al., 2011). The statistical analysis was conducted 

in R 4.0.5.  

2.4 Groundwater Reliance Calculation 

Actual groundwater use in the San Joaquin Valley is largely unknown, and estimates have 

relied on coarse data such as Gravity Recovery and Climate Experiment satellites 

(GRACE) (36). Hence, resolving such data unknowns is a focus of SGMA legislation. Key 

datasets used to quantify the estimates of groundwater reliance per irrigation district in this 

study were Land IQ 2016 for California (Land IQ & California Department of Water 

Resources, 2016), electronic Water Rights Information Management System (eWRIMS) 

(State Water Resources Control Board, 2020), U.S. Bureau of Reclamation agricultural 

contractors list, and a water footprint model, Water Footprint Analysis in R (WAFR) 

(Booth, 2018). The Land IQ 2016 dataset represents primary agricultural land use, 

wetlands, and urban boundaries for 58 counties in California that are derived from the 2016 

National Agriculture Imagery Program imagery and commissioned by the California 

Department of Water Resources. This study uses only agricultural land use classifications 

from the Land IQ 2016 dataset to calculate crop composition within irrigation district 

boundaries. Crop composition within irrigation districts also served as an input to the 

WAFR model to calculate crop water requirements for each district. Surface water 

allocation amounts are obtained from various sources—eWRIMS, USBR agricultural 

contract amount lists, reports, Groundwater Sustainability Plans (GSP), Agricultural Water 

Management Plans (AWMP), and irrigation district web pages. Surface water delivery 

averages from 2001 to 2015 were obtained from (Jezdimirovic et al., 2020a) except for 

Banta Carbona Irrigation Districts, Byron-Bethany Irrigation District, and South San 

Joaquin Irrigation District. Average 2008-2019 surface water deliveries 2008-2019 for 

Banta-Carbona and Byron-Bethany irrigation districts were obtained from Tracy Subbasin 

GSP and South San Joaquin Irrigation District 2005-2019 average surface water deliveries 

were obtained from their 2020 AWMP.  

The water budget equation (Eqn. 1) is used to derive estimates of groundwater 

reliance per irrigation district, meaning the amount of groundwater needed to make up for 

irrigation demand unmet by surface water. The water budget describes water flow in and 

out of a system and can quantify water uses within a region. The water budget equation is 

defined as: 

∆𝑆 +  𝑃 + 𝑄𝐺𝑊 + 𝑄𝑆𝑊 − 𝐸𝑇 = 0 (𝐸𝑞𝑛. 1) 

Where ΔS is the change in storage, P is precipitation, QGW is groundwater runoff, QSW is 

surface water runoff, and ET is evapotranspiration. For this project, a series of assumptions 

were made to quantify the reliance on groundwater for each irrigation district in the San 

Joaquin Valley using the water budget equation. These are: 

• Precipitation, P, varies by irrigation district. Precipitation observations from the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) were 

used in the WAFR model to obtain the proportion of crop water requirements for 

irrigation districts. For more information on the data processing and WAFR 

model, refer to Booth (2018) and Appendix E for WAFR CWR calculations.  
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• QSW varies across irrigation districts, and values are based on the amount of 

surface water allocations determined by each irrigation district’s surface water. 

This study assumes that irrigation districts have 100% allocation to meet 

irrigation demands (i.e., crop water requirements). Refer to SI Tables 9 and 10 in 

Appendix D for more details on surface water allocation sources. 

• Within WAFR, crop water requirements (CWR) are calculated by accumulating 

daily crop evapotranspiration in the growing period for 2016 within irrigation 

districts. In this study, Evapotranspiration, ET, represents the irrigated, 

freshwater component of crop evapotranspiration, ETc, blue, and is used in the 

WAFR model to derive CWR. For more information on the data processing and 

WAFR model, refer to Booth (2018). The WAFR model compared well with 

DWR’s Cal-SIMETAW and OpenET model ET estimates (refer to model 

comparisons in Appendix E).  

Being cognizant of the inaccuracy in solely calculating irrigation district groundwater 

dependence based on surface water allocations, which for this study are assumed to be 

100% allocation available to meet irrigation demands, this analysis quantifies irrigation 

district groundwater runoff, QGW, based on surface water allocation amounts (Eqn. 2) 

and average surface water delivery for irrigation districts (Eqn. 3).  

𝑆𝑊𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑊𝑅 =  ± 𝑆𝑊 (Eqn. 2) and 

𝑆𝑊𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 − 𝐶𝑊𝑅 =  ± 𝑆𝑊 (Eqn. 3), 

SWallocation is an irrigation district’s surface water allocation, SWdelivery is an irrigation 

district’s surface water delivery, and CWR is an irrigation district’s crop water 

requirement. If Equation 2 or 3 results in surface water surplus, +SW, it is assumed that an 

irrigation district does not rely on groundwater to meet irrigation demands or CWR. 

Whereas, if Equation 2 or 3 results in surface water deficit, -SW, it is assumed that an 

irrigation district does not have enough surface water allocations or average surface water 

deliveries to meet irrigation demands and relies on groundwater to meet CWR amounts. 

Irrigation districts with surface water delivery of “no record” are assumed to receive no 

surface water delivery to facilitate calculating the surface water delivery surplus/deficit. 

2.5 Cluster Analysis 

Irrigation district attributes with an asterisk in SI Table 10 (Appendix D) were used for the 

cluster analysis. A two-step clustering analysis was conducted. First, a Principal 

Components Analysis (PCA) was run on the variables and the rotated components were 

used as input for the cluster analysis. The ‘ConsensusClusterPlus’ package in R was used 

to conduct an unsupervised, k-means cluster analysis (Monti et al., 2003). The silhouette 

method function was applied to the cluster dataset using ‘fviz_nbclust’ from the 

‘factoextra’ package in R (Kassambara & Mundt, 2020), which resulted in five optimal 

clusters. The Silhouette Method finds the optimal number of clusters by measuring how 

close observations in its assigned cluster are relative to neighboring cluster. Measurement 

known as the silhouette coefficients ranging from [-1, +1] determine valid clusters, where 

values of +1 indicate samples that are far from neighboring clusters, values of zero samples 

are on or close to neighboring cluster boundaries, and negative values indicate samples that 

may have been assigned to the wrong cluster.  
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2.6 Irrigation District Sociohydrologic Vulnerability 

A sociohydrologic vulnerability index was derived by calculating each irrigation district's 

freshwater and DAC status. Figure 8 provides an overview of the derivation process 

adopted from Huggins et al. (2022) and (See SI Figure 44, Appendix D for results for 

individual results of the DAC status, freshwater status, and sociohydrologic vulnerability).   

Given the importance of GSAs engaging over-looked, underserved communities 

under California’s SGMA to ensure that groundwater sustainability plans address 

community water needs, the sociohydrologic vulnerability index incorporates the 

socioeconomic and environmental status of DACs within irrigation districts. The 

freshwater status of irrigation districts to identify which irrigation districts have a high 

tendency for groundwater overdependence and DACs disproportionately impacted by 

environmental impacts and rely on groundwater to meet drinking water and other basic 

human needs. 

The freshwater status is representative of the groundwater dependence as a function 

of surface water delivery. Raw data inputs for calculation of the freshwater status include 

CWR and SWdelivery, to derive the groundwater dependence per irrigation district. The 

CWR was derived using WAFR, a crop evapotranspiration estimate model, on Land IQ 

land use classification data for 2016. The CWR was normalized by irrigation district crop 

area (units of ML/Ha). The SWdelivery data were obtained from Jezdimirovic et al. (2020), 

which calculated SWdelivery averages per irrigation district from 2001 to 2015. SWdelivery 

values were normalized by irrigation district crop area (units of ML/Ha). The groundwater 

dependence (GDsw delivery) amount was calculated by taking the difference between SWdelivery 

and CWR. Irrigation districts with surface water surplus were given zeros for groundwater 

dependence due to sufficient surface water to meet crop water requirements and irrigation 

districts with surface water deficit were given the deficit amount reported as positive 

values. The freshwater status was normalized using minimum-maximum scaling. The 

freshwater status, used in the final calculation of the sociohydrologic vulnerability index 

per irrigation district, was calculated as: 

Freshwater Status= 
𝐺𝐷𝑆𝑊 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦−min(𝐺𝐷𝑆𝑊 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦)

max(𝐺𝐷𝑆𝑊 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦)−min (𝐺𝐷𝑆𝑊 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦)
 (Eqn. 4) 

The raw data inputs used to calculate each irrigation district’s DAC status consists 

of the overall CalEnviroScreen 4.0 score percentile value (DAC CES Score), calculated 

from the scores for two indicators—pollution burden and population characteristics 

(California Office of Environmental Health Hazard Assessment, 2021). The 

CalEnviroScreen 4.0 pollution burden indicator consists of pollution exposures and 

environmental effects (See SI Table 8 for a list of pollution exposures and environmental 

effects). CalEnviroScreen 4.0 dataset is derived for larger Census Tracts than the smaller 

Census Places that define DACs. The DAC CES Score per DAC within irrigation districts 

was obtained using geospatial procedures of spatially joining the centroid of the DAC to 

the CalEnviroScreen 4.0 polygon feature dataset (California Office of Environmental 

Health Hazard Assessment, 2018) (Figure 9). The DAC CES Score were converted from 

percentiles into fractions by dividing by 100 and all the DACs within each irrigation district 

were averaged. Irrigation districts without DACs within their boundaries were given a 

DAC status value of zero. The DAC status has the following equation: 
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𝐷𝐴𝐶 𝑆𝑡𝑎𝑡𝑢𝑠 =  ∑
𝐷𝐴𝐶 𝐶𝐸𝑆 𝑆𝑐𝑜𝑟𝑒 

100

𝑛 𝐷𝐴𝐶𝑠
  (Eqn. 5) 

The sociohydrologic vulnerability index is calculated as follows: 

𝑆𝑜𝑐𝑖𝑜ℎ𝑦𝑑𝑟𝑜𝑙𝑜𝑔𝑖𝑐 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 
(𝐹𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟 𝑆𝑡𝑎𝑡𝑢𝑠) ∗ (𝐷𝐴𝐶 𝑆𝑡𝑎𝑡𝑢𝑠) (Eqn. 6) 

The mode of the sociohydrologic vulnerability index was used to represent the final 

irrigation district vulnerability index and were classified into three categories (i.e., low, 

moderate, and high vulnerability) based on quantiles. The ‘classIntervals’ function from 

the ‘classInt’ package in R (Bivand et al., 2022). The ‘classIntervals’ function provides 

finds class intervals for continuous numerical variables by specifying from a variety of 

styles (e.g., quantiles, head/tails, k-means). This analysis used the quantiles style with 

specification of three classes.  

2.7 Irrigation District and GDC Disadvantaged Community Comparison 

The CalEnviroScreen 4.0 dataset was obtained for the most recent environmental health 

hazard assessment (2018) from the California Office of Environmental Health Hazard 

Assessment (OEHHA) (California Office of Environmental Health Hazard Assessment, 

2018). The most up-to-date (2018) disadvantaged community (DAC) census places 

boundaries were obtained from the Department of Water Resources (DWR) DAC Mapping 

Tool (California Department of Water Resources, 2018). The CalEnviroScreen 4.0 dataset 

provides several indicators that reflect environmental conditions or poverty vulnerability 

for populations at the census tract level. The DAC census place boundaries provide the 

area, name, and location of DACs in California, reduced to the San Joaquin Valley floor 

for this analysis. The following workflow was used to preprocess the data and conduct the 

comparison analysis using ArcGIS Pro and R (Figure 9): 

(1) To obtain environmental and poverty conditions for DACs within San Joaquin 

Valley floor irrigation districts and GDCs, the CalEnviroScreen 4.0 spatial vector 

dataset was spatially joined with the centroids of DAC census places within ESRI 

ArcGIS software.  

(2) Irrigation district boundaries were used to derive a dataset that includes county 

valley floor GDCs, the regions within the San Joaquin Valley floor void of an 

Figure 8. Overview of the sociohydrologic vulnerability derivation process (method adapted from 

Huggins et al., 2022).  
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irrigation district service area. The DACs within irrigation districts and 

groundwater-dependent communities were derived by spatially joining DAC 

census place centroids with irrigation district and white area names.  

(3) Descriptive statistics (e.g., mean, median) were used to compare the traits between 

DACS with GDCs and irrigation districts, and an unpaired two-sample Wilcoxon 

test comparing the mean of the variables between the two groups was used to derive 

the p-value (α=0.05). 

 

Figure 9. Workflow of the comparison between DACs in white areas and GDCs. 
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3. Results and Discussion  
3.1 Era Analysis: Age Driven Water and Land Ownership Wealth  

California irrigation district’s physical and water governance culture reflects the historical 

water development contexts and the sociohydrological and land-use dynamics in which 

they were formed (Figure 10 a, b). This study categorized districts into four primary eras 

of change to determine how age drives surface water allocation and priority, therefore, 

groundwater reliance for most districts. California’s transformative water management eras 

of change, adopted from Hanak et al. (Hanak et al., 2011), are the Era of Local Organization 

(1887-1913), Hydraulic Era (1914-1968), Era of Conflict (1969-2000), and Era of 

Reconciliation (2001-2020). This study reveals that age influences irrigation districts’ 

surface water allocations, deliveries, and service areas. Older irrigation districts, formed in 

the Era of Local Organization, have the most annual surface water allocation and deliveries 

(Figure 10 b) and larger service areas than younger districts. The trend in older irrigation 

districts having higher surface water allocation and deliveries is due to the surface water 

rights claimed during the Era of Local Organization before the formation of the surface 

water right permitting system (Figure 10 a). Irrigation districts with pre-1914 water rights 

remain unmanaged by the SWRCB.  

Figure 10. a) Timeline of major California water development events from 1885 to 2020 per 

era (intervals in blue) to compare with b) irrigation district surface water allocation (purple) 

and average surface delivered from 2001-2015 (light blue) per era.  
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Some surface water allocations within the SWRCB’s Electronic Water Rights 

Information Management System (eWRIMS) database are pending approval for allocation, 

primarily for irrigation districts formed during the Hydraulic Era (1914-1968) and an 

irrigation district recently formed during the Era of Reconciliation (2001-2020) with none 

for pre-1914 irrigation districts nor districts formed during the Era of Conflict (1969-2000). 

Most of the pending water rights are recently submitted (2014-2017), reflecting irrigation 

districts’ anticipation of the need for additional surface water supplies to comply with 

SGMA through groundwater recharge methods or reducing reliance on groundwater 

pumping to meet irrigation demands. Another potential outcome of SGMA is the recent 

formation of a few irrigation districts that fall under the Era of Reconciliation (2001-2020). 

Under SGMA, water governance uncertainty may have led agricultural landowners to form 

districts after SGMA was passed to maintain greater control of water and land use 

management planning and implementation to address groundwater overdraft.  

The decrease in irrigation district service areas with decreasing age reflects how 

California’s land taxation laws transformed agricultural land ownership in the San Joaquin 

Valley and led to smaller farms. Land taxation amendments in 1909 exempted all 

improvements within an irrigation district from district tax, meaning that the levy for large 

landholders with unimproved or underutilized land would go up (Henley, 1968; Teilmann, 

1963). These tax changes were an incentive for landholders with large, underutilized land 

tracts to sell to avoid paying high taxes and resulted in the dissolution of many large ranches 

into smaller land tracts bringing more crop diversity and prosperity to the region. Although 

older districts have larger service areas and more surface water availability on average, 

they are less agriculturally productive, based on their crop area fraction, than younger 

irrigation districts. Districts formed in the Era of Local Organization have larger service 

areas but have, on average, 69% crop area, while districts formed in the Hydraulic Era have 

67% crop area compared to smaller, younger districts formed in the Era of Conflict and 

Era of Reconciliation with crop areas 81% and 71%, respectively.  

Older districts formed in the Era of Local Organization and Hydraulic Era have less 

crop area fraction dedicated to perennial crops (53% and 59%, respectively). Older 

irrigation districts’ focus on water-thirsty and lucrative crops reflects the higher ability of 

landowners contracted within these districts to obtain water supplies for irrigation than 

districts formed in other eras. Less agriculturally productive older irrigation districts may 

result from higher surface water rights allocations and access to water conveyance 

infrastructure (i.e., local canals and aqueducts, SWP, and CVP). Some older irrigation 

districts may be opting to sell surplus surface water allocations to other irrigation districts 

or allocate it to other beneficial uses. An example of the flexibility and control over water 

mobility that pre-1914 surface water rights holders have that allows them to control their 

surface water to meet irrigation demands and comply with new laws, especially during 

drought, is the Modesto Irrigation District. Modesto Irrigation District, located in 

Stanislaus County and formed in 1887 under the Wright Act, opted to deliver surplus water 

supplies, when available, to actively farmed agricultural lands outside the district’s service 

area but within their sphere of influence to help comply with SGMA (Modesto Irrigation 
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District, 2020). However, in the early implementation of SGMA and during the 2012-2016 

California drought, Modesto Irrigation District shifted to securing surplus surface water 

contracts with the county to ensure that surplus water supplies stayed within the county 

(Modesto Irrigation District, 2015). Younger irrigation districts formed in the Era of 

Conflict and the Era of Reconciliation have the highest crop area fraction dedicated to 

perennial crops (69% and 92%, respectively). Although perennial crops are often water-

intensive, most growers may default to them due to their high crop revenue to help relieve 

higher surface water prices for irrigation districts without senior pre-1914 surface water 

rights. Generally, irrigation districts across water management eras have high crop area 

fractions dedicated to perennial crops. Overall, there is a strong trend between age and 

surface water and land use affluence among the irrigation districts in the San Joaquin 

Valley that reflect the transformation of water and land use developments in the state.  

3.2 Groundwater Reliance Calculation: Addressing Groundwater Overdependence 

Through SGMA and Water and Land Use Management  
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This analysis shows that irrigation districts 

have been and will most likely become 

more groundwater-dependent as climate 

change, drought conditions, and water 

access inequity persists due to high crop 

water requirements and low surface water 

security (Figure 11 a-c). About 60% of 

irrigation districts with pre-1914 water 

rights have two times the crop water 

demand in surface water allocations. In 

contrast, 86% of San Joaquin Valley 

irrigation districts depend on groundwater 

to meet agricultural irrigation demands, of 

which 12% rely exclusively on 

groundwater. When assessing irrigation 

districts’ groundwater overdependence 

based on surface water allocations, 

irrigation districts with high surface water 

rights do not classify as groundwater reliant 

(Figure 12a). Identifying irrigation 

districts’ groundwater overdependence 

based on average surface water deliveries 

(2001-20155) leads to a 32% increase in the 

number of irrigation districts classified as 

over-dependent on groundwater to meet 

crop water demands (Figure 12b). Generally, irrigation districts with higher crop water 

requirements are located on the eastern side of the San Joaquin Valley, where citrus 

production is highest. Irrigation districts with pre-1914 water rights do not identify as 

groundwater overdependent on surface water allocations and have up to three times more 

in surface water amounts claimed than needed to meet crop water demand. The irrigation 

districts lacking or having minimal surface water allocations become severely vulnerable 

to groundwater dependence during drought. During drought, irrigation districts with 

minimal surface water allocations receive their surface water deliveries after their senior 

counterparts. Regardless of their age or formation era, irrigation districts throughout the 

San Joaquin Valley are at risk of groundwater dependence in a changing climate. However, 

the water access inequity present across local water management better positions irrigation 

districts with higher surface-water allocations to be equipped to deal with surface water 

scarcity than irrigation districts that do not have surface water allocations and are 

dependent on groundwater to meet irrigation demands, especially under SGMA.  

 
5 Most irrigation districts have an average surface water delivery based on 2001-2015 deliveries, but there 

are a few exceptions due to data availability refer to Appendix D SI Table 9 for more details.  

Figure 11. Irrigation district a) surface water 

allocation, b) surface water delivery (average 

2001-2015), and c) crop water requirement 

values used to calculate irrigation district 

surface water surplus and deficit (refer to 

Figure 12).   
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For irrigation districts to achieve SGMA targets by 2040, GSAs need to have a 

realistic approach to water management, which has not been the case based on SGMA 

implementation plans submitted in 2017 in many critically overdrafted basins 

(Jezdimirovic et al., 2020b). Most plans for addressing groundwater overdraft under 

SGMA focus on supply expansion (e.g., recharge, conveyance, and recycled water), which 

relies on the hope that sufficient surface water supplies will be distributed among 

competing supply expansion methods, including groundwater recharge. Some GSAs have 

relied on the surface water allocation defined by their water rights to address groundwater 

overdraft under SGMA in the next 20 years, which is unreasonable given increased water 

scarcity and severe drought conditions. Surface water scarcity is becoming more 

frequent—take the 2014-2016 drought and the severe introduction to the 2021 drought. 

California water rights account for 861% of natural surface water supplies and about five 

times the state’s mean annual runoff (Grantham & Viers, 2014). As observed in the 2012-

2016 drought, lucrative and water-intensive crops grown in the Central Valley did not 

experience a loss in production or revenue due to groundwater's critical role in meeting 

crop water demands during the drought (Howitt et al., 2015). Studies have projected that 

to address groundwater overdraft as per SGMA and under a more water-scarce future, more 

than 10% of agricultural land may have to go out of production (Hanak et al., 2019). To 

emphasize, 10% of agricultural land in addition to already idle land (e.g., previously 

irrigated land currently not in use) in the San Joaquin Valley. The loss of agricultural land 

could affect vulnerable DACs within highly groundwater-dependent, agriculturally 

productive irrigation districts.  

 

 

Figure 12. Groundwater dependence calculated by taking the difference between a) surface 

water allocation (SWalloc) and crop water requirement and b) surface water delivery (SWdel) 

and crop water requirement.  
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3.3 DAC Comparison: Poverty Paradox Among Disadvantaged Communities in 

Irrigation Districts and Groundwater-Dependent Communities  

Water access inequity is prevalent across irrigation districts and groundwater-dependent 

communities (GDCs), which rely solely on groundwater supplies to meet water demands. 

It was hypothesized that DACs within irrigation district jurisdictional boundaries would 

have better socioeconomic and environmental conditions than DACs in GDCs due to the 

controlled governance of surface water distribution within the district. To understand the 

dynamics of irrigation districts, their constituents, and the complexities of water 

accessibility, DACs within irrigation district boundaries (n=97), hereafter ID DACs, and 

DACs in GDCs (n=56), hereafter GDC-DACs were compared. See Table 5 for a summary 

of comparison statistics. The median household income is slightly lower for ID DACs (on 

average USD 34,276) than GDC-DACs (on average USD 36,450) and has similar poverty 

burden percentiles of about 83%. ID DACs face higher pollution burden exposure (average 

81%) than GDC-DACs (average 74%). Both ID DACs and GDC-DACs have high 

particulate matter 2.5 microns in size (PM2.5) burden exposures that average 92% and high 

exposure to asthma on average, about 60%. Pesticide burden exposures are higher in ID 

DACs (average of 83%) than GDC-DACs (average of 77%), which may contribute to a 

similar proportion of drinking water issues in ID DACS (average of 83%) and GDC-DACs 

(average of 79%). Groundwater threat exposure percentiles do not differ between ID DACs 

and GDC-DACs (averaging 55%). 

The comparison highlights that ID DACs, on average, face higher poor air quality 

burdens and pesticide exposures than GDC-DACs.  Both ID DACs and GDC-DACs face 

high poverty, poor drinking water issues, and high socioeconomic and environmental 

burdens. Overall, this comparison found that DACs under local government jurisdiction do 

not have better socioeconomic and environmental conditions than those in GDCs, 

underscoring how historical and cultural irrigation district contexts define agricultural 

regions’ sociohydrological dynamics. Irrigation districts were initially designed to protect 

and ensure water for agriculture in the San Joaquin Valley and not necessarily govern water 

and agricultural practices to ensure safe drinking water or good air quality. The findings in 

this study highlight how farmers historically and culturally developed irrigation districts in 

the late 1880s to facilitate rights and regulations that promoted irrigation and water 

conveyance infrastructure that would catalyze the region as the world’s multi-billion-dollar 

fruit basket. The socioeconomic comparison highlights that local water agencies in the San 

Joaquin Valley are not well-equipped to address the water access inequities among DACs 

within their boundaries. Before SGMA, irrigation districts were not required to engage 

DACs to understand and incorporate community members' concerns on water. For SGMA 

to result in effective, locally representative, and equitable climate change adaptation 

strategies, future policies need to work with current policies to facilitate meaningful 

engagement in current governance structures. Agriculture and agricultural communities in 



47 

 

the San Joaquin Valley most threatened by increasing drought conditions could be 

determined by an irrigation district’s sociohydrologic vulnerability index.  

3.4 Irrigation District Sociohydrologic Vulnerability  

Determining the DAC and freshwater status (herein sociohydrologic vulnerability) of the 

San Joaquin Valley irrigation districts is critical for identifying which local governance 

structures are the least well-equipped to deal with the increasing population, climate 

change, and limitations on freshwater resources under laws like SGMA. Freshwater and 

DAC status comprise the sociohydrologic vulnerability index developed in this study 

(methods adopted from Huggins et al., 2022). The freshwater status per irrigation district 

is representative of the groundwater dependence as a function of suface water delivery 

(Figure 8). The CalEnviroScreen 4.0 percentile score consisting of pollution burden and 

population characteristics (SI Table 8) (California Office of Environmental Health Hazard 

Assessment, 2018) for DACs within irrigation districts determines its DAC status. About 

15% (n=15) of irrigation districts have high sociohydrologic vulnerability, 14% (n=14) 

moderate vulnerability, and 84% (n=73) low vulnerability (based on classes defined by 

dataset quantiles) (Figure 13).  

The irrigation districts with high sociohydrologic vulnerability are characterized by 

lower suface water delivery (average 3.8 ML/Ha) compared to irrigation districts that fall 

in the moderate (average 7.9 ML/Ha) and low (average 7 ML/Ha) vulnerability classes. 

The high vulnerability irrigation districts also have the highest CWR (~ 12.1 ML/Ha) 

compared to those in the moderate and low vulnerability classes (~10.7 ML/Ha). Although 

the low vulnerability class has more DACs (n=87) than moderate (n=35) and high (n=41) 

vulnerability classes, the DACs within irrigation districts that classify as low vulnerability 

have lower, on average, DAC status score (~0.20) compared to DACs in the moderate 

(~0.79) and high (~0.84) vulnerability classes. The average freshwater score for each 

sociohydrologic vulnerability class is as follows: high with 0.89, moderate with 0.58, and 

Socioeconomic Variable (mean) 
Irrigation District 

(n=97) 
White Area 

(n=56) 
P-Value 
(α=0.05) 

Population (2018) 9,899 20,515 0.003456 

Pollution Exposure (%) 81 74 0.005413 

Pesticide Exposure (%) 83 77 0.00965 

PM2.5 Exposure (%) 92 92 0.03291 

Poverty (%) 83 84 0.1166 

Poor Drinking Water Exposure (%) 83 79 0.1363 

Overall DAC Vulnerability (%) 83 81 0.3147 

Asthma Exposure (%) 63 64 0.7006 

Median Household Income (2018) $34,276 $36,450 0.7893 

Threats to Groundwater (%) 56 55 0.829 

 1 Table 5. Irrigation District and White Area disadvantaged communities (DACs) 

socioeconomic and environmental burden variable means comparison ordered from most to 

least significant p-value (α=0.05) (OEHHA, 2018). The p-value is derived using the 

unpaired two-sample Wilcoxon test. 
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low with 1. The average sociohydrologic vulnerability index score for irrigation districts 

in each class are 0.46 for high, 0.13 for moderate, and 0 for low vulnerability. Irrigation 

districts with high sociohydrologic vulnerabilty are likely to be more groundwater 

dependendent and have DACs with higher CES 4.0 scores than those in the moderate and 

low sociohydrologic vulnerability classes.  

Figure 13. Irrigation district sociohydrologic vulnerability (methods adapted from 

Huggins et al.,2022) is defined by irrigation district freshwater status and DAC statusThe 

graph depicts the quantiles used to classify the index into low (beige), moderate (orange), 

and high (red) vulnerability classes.  
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3.5 Cluster Analysis: Differing Water Governance Features and Their Role in Driving 

Sociohydrologic Vulnerability 

Water scarcity and droughts do not discriminate by the seniority of the irrigation district. 

However, water governance structures reflect the sociohydrological and historical contexts 

in which irrigation districts were established—to protect surface water dedicated to 

irrigated agriculture. Irrigation district history, location, water right seniority, and irrigation 

demands define differences in districts that struggle most or least during drought events. 

Irrigation district features were clustered to identify how historical and cultural contexts 

shape differing water governance structures and practices and drive sociohydrologic 

vulnerability. This analysis resulted in five irrigation district group types (Figure 14) 

ordered from most to least groundwater-dependent: 1) Groundwater Dependent Vineyards 

(GDV), 2) California Citrus Belt (CCB), 3) Sizeable Crop Generalists (SCG), 4) Forage 

and Cotton Corridor (FCC), and 5) Senior, Secure Nut Growers (SSN). Overall, the 

differences in irrigation district water governance and sociohydrologic vulnerabilities are 

driven by surface water delivery amounts influenced by formation era and crop water 

requirements influenced by crop type. These groups also have many irrigation districts with 

high CalEnviroScreen vulnerability score percentiles. See Appendix D SI Table 11 for a 

summary of irrigation district group features.  

The irrigation districts within the GDV group are the most groundwater-dependent 

out of all the other groups and are mainly located in the eastern San Joaquin Valley (Figure 

14, brown). The GDV group comprises irrigation districts formed in all formation eras 

except the era of Local Organization (pre-1914), the oldest irrigation districts. All districts 

in this group are groundwater-dependent based on surface water deliveries (surface water 

deficit ranges from -5 to -15 ML/Ha). The GDV has the lowest surface water delivery and 

allocations compared to the other groups, with 43% of districts receiving zero surface water 

delivery on average from 2001 to 2015 and 48% having zero surface water allocation. In 

anticipation of reduced groundwater use under SGMA and lack of claims to surface water, 

irrigation districts in this group have the most pending requests for surface water rights 

allocations (n=5) in the SWRCB eWRIMS database ranging from 0.6 to 27 ML/Ha. The 

need for more surface water and high dependence on groundwater is reflected in the high 

crop water demands and primary focus of crop area on grape production (average 23%) 

among irrigations districts in this group.  

The CCB consists of irrigation districts mainly in the Central Eastern and Southern 

San Joaquin Valley (Figure 14, dark orange) and contains irrigation districts formed mainly 

in the Hydraulic Era (1914-1968) (82%, n=19 out of 23), a few from the Era of Conflict 

(1969-2000) (13%, n=3 out of 23), one from the Era of Reconciliation (2001-2020), and 

none formed pre-1914. These smaller service area districts, ranging from 300 to 52,000 

Ha, have the highest perennial fraction (average 92% of crop area) and make the highest 

perennial average revenue (USD2,300 to 3,570). Citrus is the most prominent perennial 

crop within irrigation districts in this group, making up 44% of the crop area on average. 

About 91% of districts in the CCB have surface water allocations, and 96% receive surface 
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water deliveries, yet 96% of the CCB districts are groundwater dependent. The surface 

water deficit/surplus for irrigation districts in this group range from -11 to 4 ML/Ha.  

The SCG group consists of 13 irrigation districts formed during the Hydraulic Era 

(1914-1968) and one formed pre-1914 (Figure 14, light orange). This group’s surface water 

availability is moderate compared to irrigation districts in other groups. In other words, all 

SCG districts have, on average moderate amounts of surface water allocations (average 7 

ML/Ha) and deliveries (average 6 ML/Ha). However, all have surface water allocations, 

with some districts pending additional surface water allocations from the SWRCB ranging 

from 0.02 to 59 ML/Ha. Compared to other groups, SCG districts have moderate crop water 

requirements, ranging from 9 to 13 ML/Ha. The irrigation districts in this group have the 

most extensive service areas, ranging from 6,440 to 247,000 Ha. This group comprises 

crop generalists meaning that there are crop fractions dedicated to irrigated forage, 

perennials, and annuals, with no specific crop being the standout crop for the group as with 

other groups. These irrigation districts may seem to be doing well, given the moderate 

levels of crop water requirement, surface water supplies, and crop diversity compared to 

other groups. However, on the contrary, 93% of SCG districts are groundwater dependent. 

The groundwater dependence brings to light the mismanagement of surface water supplies 

by exceeding surface water supply to meet irrigation demands.  

The FCC group comprises 27 irrigation districts located down the western side of 

the San Joaquin Valley from north to south (Figure 14, yellow). Irrigation districts formed 

in this group mainly formed during the Hydraulic Era (1914-1968) (n=23), with two 

formed pre-1914 and two others formed in the Era of Conflict (1969-2000). These 

irrigation districts are generally moderately older (average age 70) and have the smallest 

service areas compared to other groups, ranging from 347 to 41,250 Ha. About 17% of 

FCC districts do not have surface water allocations, and one district received zero surface 

water deliveries on average from 2001 to 2015. The most prominent crops within FCC 

districts are cotton (11% of the crop area on average) and irrigated forage (27% of the crop 

area on average) compared to other districts. This group’s low crop water requirement may 

reflect more crop area dedicated to annual crops, which are more drought flexible than 

perennial crops. Although this group has the lowest crop water requirement averaging 9 

ML/Ha, about 81% of FCC irrigation districts are dependent on groundwater to meet 

irrigation demands.  

The SSN group comprises seven older and water-secure irrigation districts in the 

northern San Joaquin Valley (Figure 14, beige). Irrigation districts in this group have large 

service areas, ranging from 6,700 to 77,300 Ha, compared to other groups but not as large 

as districts in the SCG group. The SSN districts have the highest surface water allocation, 

ranging from 31 to 50 ML/Ha, and surface water delivery, ranging from 0.09 to 10 ML/Ha, 

compared to districts in other groups. The service areas are large, but the crop water 

requirements are relatively moderate due to a low crop area fraction. Although there is a 

high fraction of crop area dedicated to almonds (41% of the crop area on average) and 

walnuts (8% of the crop area on average), the perennial crop revenue is low (on average 

USD2,200) compared to other groups. This trend could indicate these districts’ lessened 
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pressure to sell water-intensive and lucrative crops at top dollar to make up for the 

additional purchase of surface water, cover high groundwater pumping costs, or make a 

higher profit from selling surplus irrigation water to other districts. The SSN districts are 

the least groundwater-dependent of the groups, with 30% of this group dependent on 

groundwater to meet irrigation demand but not as severely overdependent as districts in 

other groups.  

 

Figure 14. Irrigation District trait groupings based on a cluster analysis on irrigation 

district age, surface water allocation, water conveyance, and crop variables. For a list 

of variables used for this analysis, refer to SI Table 10 (Appendix D). 
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4. Study Limitations and Future Work  
The disaggregated information of California irrigation districts may result in dated and 

missing information. To ensure the accuracy of the data used for this study, data were 

obtained and cross-validated across various web-based sources (e.g., irrigation district 

websites, Agricultural Water Management Plans, Groundwater Sustainability Plans, 

eWRIMS), multi-agency sources (e.g., U.S. Bureau of Reclamation, State Water Resources 

Control Board, Department of Water Resources, county, and districts), and verification of 

information by speaking with irrigation district general managers. It is also important to 

consider how the misclassification of land cover data plays a role in crop water requirement 

inaccuracies. To address this concern, this study used the best thematic dataset available to 

represent the San Joaquin Valley’s complex agricultural landscape, Land IQ (See Chapter 

4 for land cover dataset comparisons for California). Future would include incorporating 

the price of surface water and estimated costs of groundwater pumping within irrigation 

districts to analyze how an irrigation district's historical context plays a role in determining 

surface water pricing and how water price defines water access inequities across San 

Joaquin Valley irrigation districts, especially under the SGMA. A comparison between 

surface water pricing and groundwater pumping between irrigation districts and GDC 

would be interesting and could provide insight into how water is valued across different 

water governance structures. Another future application of this work is to develop a 

statewide, standardized sociohydrologic vulnerability index that GSAs and other statewide 

entities could use to inform where to focus water and land use management.  

5. Conclusions  
This geospatial study provides a fundamental understanding of local water governance and 

management, specifically of irrigation districts in the San Joaquin Valley, California. 

Analyzing the historical and cultural contexts embedded in irrigation district features and 

water management practices provides insights into the inherent dynamics between water, 

people, and the legal system that must be accounted for in climate change resilient water 

management plans. Very early in California’s water development, water is the property, 

and the control of water is the control of society mantras played a role in shaping California 

water as it is known today. Irrigation districts and surface water rights in the state represent 

historical and cultural contexts embedded within their governance structures. These surface 

water laws and governance entities represent the role of human agency in shaping water 

control for irrigation and the mobilization of surface water supplies as it is known across 

California’s agricultural regions, as theorized by Jurist Franz von Benda-Beckmann.  

The irrigation district formation period has defined the laws that better position 

some irrigation districts to deal with climate change and shifts in water laws, like SGMA. 

For instance, older irrigation districts formed pre-1914 are less groundwater-dependent 

than irrigation districts formed in other eras. Large claims to surface water supplies allow 

older irrigation districts to control water in the state and inherently grant them the capacity 

and flexibility to cope with climate change than younger districts. This work found that 

86% of San Joaquin Valley irrigation districts depend on groundwater to meet agricultural 

irrigation demands, of which 12% rely exclusively on groundwater. Regardless of their 
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water age or formation era, irrigation districts throughout the San Joaquin Valley are at risk 

of groundwater dependence in a changing climate and surging population growth. 

However, the water access inequity in water governance puts older districts with higher 

claims to surface water at an advantage, given their higher surface water capacity and 

ability to control water without SWRCB interference.  

For SGMA and climate change adaptation strategies to result in effective, locally 

representative, and equitable climate change adaptation strategies, policies need to work 

with current policies to facilitate meaningful engagement to close the water access inequity 

gap in current governance structures. This study found that DACs within local government 

jurisdiction are not socioeconomically nor environmentally better off than DACs in GDCs, 

which is attributed to the historical and cultural context for which irrigation districts were 

formed—to secure water for irrigated agriculture. To develop water management that 

balances competing freshwater demands and addresses water access inequities across 

marginalized communities, it will be necessary to guide water governance entities in 

conducting inclusive and meaningful engagement. 

To ensure a food and water-secure future for the state and the world, California 

needs to implement local, regional, and state climate change adaptation strategies that 

address the water access inequity faced by marginalized groups. SGMA is an opportunity 

to rethink surface water and groundwater management to develop climate change and 

drought resilience. For the state to address many of its water woes, it will need to prevent 

excessive water allocation, primarily through the surface water rights system, which 

represents 861% of the San Joaquin River’s natural surface water supplies (Grantham & 

Viers, 2014). The beginning of California’s 2021 drought has demonstrated that current 

surface water allocations through the current water rights system are unsustainable for 

drought-prone regions. In August 2021, the SWRCB curtailed water claims for all principal 

water rights (i.e., pre-and post-1914 and riparian rights) for the Sacramento River, San 

Joaquin River, and the legal Delta (the waterwheel of California water supplies) ([SWRCB] 

State Water Resources Control Board, 2021b). As has been the case in managing water in 

Australia’s Murray-Darling Basin, California also needs to overcome the legacy of its 

sociohydrological past, particularly its deeply rooted cultural and management customs 

such as excessive allocation of surface water and conflicting water management targets 

(Pittock & Connell, 2010). The Mediterranean biome reflects challenges in sustaining 

water for humans and the environment (Underwood et al., 2009). 

Thus, it is not unreasonable to think that California may follow its counterparts in 

Australia and South Africa, which reformed their water rights to promote natural resource 

sustainability, management efficiency, and social justice because their regulatory 

frameworks failed to effectively and equitably manage water allocation and distribution 

(Godden, 2005). In many ways, Australia’s Murray-Darling Basin and South Africa’s 

water woes parallel those in California, especially those of the San Joaquin Valley, because 

of the prolonged mismanagement of natural water resources that stems from market-driven 

decision-making and governance that bends toward vested interests. Moving forward, 

California needs to develop climate change adaptation for water management by 
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understanding why Australia’s 2012 Murray-Darling Basin Plan is falling short of 

expectations (H. E. Moore et al., 2020; The Wentworth Group of Concerned Scientists, 

2017) if California is to avoid a similar fate under SGMA and its climate adaptation 

strategies. For California to maintain a thriving agricultural economy and climate-smart 

water management, it needs to develop policy and governance structures that reduce 

favoring and bending toward vested interests, balance freshwater demands, and ensure that 

water access inequity is addressed in the future water and land use management decisions.  
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CHAPTER 4. WHICH DATA TO USE? 

1. Introduction  
Regions worldwide face the repercussions of the decadal accumulation of anthropogenic 

contributions to climate change as more intensified precipitation events, like droughts and 

floods (Espinoza et al., 2018). Climate change challenges are beyond mitigation, and 

countries worldwide need to develop resilient adaptation strategies that balance surface 

water and groundwater supplies among competing demands to prevent further 

overexploitation of freshwater resources (Taylor et al., 2013) and address water access 

inequities. Globally, the agricultural sector is currently positioned to better climate change 

conditions given that irrigated agricultural land use makes up 300 million hectares globally, 

uses ~70% of freshwater withdrawals, and accounts for a majority of the 23% of GHG 

emissions from agriculture, forestry and other land use (FAO, 2017b, 2020; IPCC, 2020). 

The interrelationship between water and land use leads to management decisions with 

tradeoffs for each sector, especially in agricultural landscapes. The expansive presence of 

agriculture worldwide and its high dependence on freshwater resources allow the 

development of climate-smart agricultural practices that help address global water scarcity 

and water access inequities and reduce greenhouse gas (GHG) emissions.  

Land use classification datasets have provided insights into global, national, and 

regional inventories of agricultural water footprints, virtual water trading, food production, 

and many environmental applications (Han et al., 2012; Konar et al., 2011, 2013; Konar & 

Marston, 2020; Ruddell et al., 2017). Given the regional need to address water scarcity 

while maintaining food production to feed an increasing population (Vörösmarty et al., 

2000), there is a need for high thematic data. Accurately quantifying the current state of 

climate change is critically dependent on reliable land use classification data representing 

complex agricultural landscapes. Although there is a common belief that higher resolution 

data leads to better quality data, the thematic resolution of the land cover classes is the 

more important feature for determining land use classification data quality (Verburg et al., 

2011). A commonly used dataset across the United States is the U.S. Department of 

Agriculture's (USDA) Crop Data Layer (CropScape) (Han et al., 2012). It is one of the 

most highly reported datasets used in California, Illinois, Minnesota, Virginia, and Iowa 

(Mueller & Harris, 2013). The CropScape dataset has been known to have higher accuracy 

in regions with a single dominant crop (Reitsma et al., 2016), limiting agricultural policy 

development in highly agriculturally diversified landscapes like California. Although there 

are increasing investments in acquiring and classifying remotely sensed data to produce 

land use datasets, there is a need for improved regional crop representation in satellite-

based remote sensing data so that it continues to provide unbiased information for effective 

agricultural policy and management (Atzberger, 2013).  

California's San Joaquin Valley is an excellent example of a complex agricultural 

region needing highly representative crop classification datasets. This drought-prone state 

is currently faced with developing climate change adaptation strategies that address 

groundwater overdraft, surface water access inequities, and changes in agricultural land 

use. Land use in many parts of the Valley leads to competing water demands, especially 

between agricultural and municipal land uses, and strongly governs annual surface water 

diversions (Goodrich et al., 2020) and groundwater overdependence. California's 2014 
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Sustainable Groundwater Management Act (SGMA) (University of California, 2016) aims 

to address groundwater overdraft by 2040. Some studies have projected that more than 

202,350 hectares of agricultural land may go out of production to address groundwater 

overdraft (Hanak et al., 2019), which could have detrimental socioeconomic and 

environmental impacts on rural agricultural communities (Howitt et al., 2015). The 

extensive impact of land use transitions makes it more critical to utilize regionally 

representative land use classification datasets. For California, this means using land-use 

classification datasets designed to capture its agricultural complexity— 400 diverse 

commodities generating more than 25 billion USD annually (California Department of 

Food and Agriculture, 2019).  

To date, no paper has quantified the revenue, crop water requirement, and GHG 

emission discrepancies of land use misclassifications in a highly diversified agricultural 

landscape like the San Joaquin Valley. This study focuses on Kern County due to the 

limited availability of county-level geospatial crop classification datasets in California, 

except for Kern County, one of the eight counties in the San Joaquin Valley (Figure 15). 

Land use classification datasets were compared for 2014 and 2016, the beginning and end 

of California's 2014-2016 drought, to facilitate insights into misclassification discrepancies 

during the worst-case scenario in California— drought and water scarcity— and in part 

due to LIQ data limitations during the time of this analysis. This study focuses on 

identifying common crop misclassifications and their implications on revenue, crop water 

Figure 15. Kern County's predominantly agricultural region (Kern Valley floor) faces 

declining groundwater levels (dark orange to yellow), which has detrimental impacts to 

groundwater dependent agricultural disadvantaged communities (white triangles and circles). 
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requirement, and GHG emission estimates for three commonly used datasets in 

California—1) Kern County Department of Agriculture's geospatial dataset (herein, Kern 

Ag), 2) Land IQ (LIQ), and 3) USDA's CropScape (CropScape). Quantifying land use 

misclassifications in these datasets is critical if they inform future water and land-use 

decisions that have implications on marginalized rural agricultural communities. This 

paper will highlight common misclassifications to help inform future improvements in land 

use classification datasets, especially in diversified crop landscapes, and provide 

misclassification estimates that can help improve land use, crop water requirement, and 

GHG emission inventories.  

2. Methodology  
2.1 Datasets 

The three datasets used in this analysis encompass a gradient of sponsor government 

agencies from countywide (i.e., Kern Ag), statewide (i.e., LIQ), and nationwide (i.e., 

CropScape). Table 6 provides a summary of dataset details. 

The Kern County Department of Agriculture had the longest record of geospatial 

data integrated with tabular permit information publicly available with records from 1997 

to 2021. Although recent guidelines have led to data availability in 2016 only available to 

the public, it is still the only crop classification dataset available at the county level in the 

San Joaquin Valley. The dataset comprises geospatial permitted county crop boundaries 

and pesticide use and permit reports (Kern County Department of Agriculture, 2020). Local 

growers and inspectors collaborate to digitize permitted sites. The vector format dataset 

contains 115 crop classes. For comparison purposes in this analysis, the Kern Ag 

classification dataset is assumed to be ground truth. 

Land IQ, LLC is a private remote sensing analytics and consulting organization 

based in California that provides a full suite of data, analytics, image, and mapping services 

for diverse clients. Specific to California's land use datasets, LIQ land use classification 

datasets are derived from remote sensing (i.e., LandSat 8 OLI/TIRS, DEIMOS-1 DMC2, 

and UK2 DMC-2). Agricultural training and validation data are derived from the Farm 

Service Agency (FSA) Common Land Unit (CLU) data, US Bureau of Reclamation Lower 

Colorado River Accounting System crop classifications, and vineyard locations as 

identified by E & J Gallo Winery (2013 data). Generally, LIQ datasets are available for 

purchase based on the size of the area of interest. Although Land IQ, LLC recently 

partnered with DWR to classify more than 14 million acres of statewide land use with 

97.6% accuracy (Land IQ & California Department of Water Resources, 2016), open-

access data through this partnership is currently limited for 2014, 2016, and 2018 via the 

California Department of Water Resources Land Use Viewer (DWR, 2014). The vector 

format dataset contains 38 crop classes.   

The United States Department of Agriculture (USDA) CropScape is an interactive 

digital resource that allows users to query, visualize, download, and develop statistics from 

Cropland Data Layer  (CDL) throughout the United States (Han et al., 2012). CDL is a 

crop and land cover classification dataset in georeferenced raster format obtained from 

medium resolution satellite imagery (e.g., MODIS, NASA Terra, and Disaster Monitoring 

Constellation satellites, Landsat 8, ESA SENTINEL-2 sensors). The data are classified 

using supervised classification methods (e.g., maximum likelihood and decision tree 

analysis) and validated with ground truth verification (i.e., Farm Service Agency Common 
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Land Unit). The advantage of using the Farm Service Agency Common Land Unit is that 

it contains field-level information in GIS format, while disadvantages include that it may 

be biased toward subsidized program crops and is not truly a probability sample of land 

cover (USDA NASS, 2020). Another limitation of using land use classification datasets 

tailored to capture national agricultural crop trends is that it does not capture the diversity 

in crops that define highly diversified and complex agricultural landscapes (Reitsma et al., 

2016). The raster format dataset contains 54 crop classes. 

Table 6. Kern County Ag. Commission, Land IQ, and Cropscape (USDA NASS CDL) specification 

table.  
1 Due to recent changes in guidelines, the Kern County Agricultural Commission will no longer 

make data past 2016 publicly available.  
2 Some datasets have non-agricultural land uses, but only crop classes are considered unless crops 

are misclassified for non-agricultural land cover.  

2.2 Data Processing  

All geospatial land classification datasets were processed in ArcGIS Pro 2.7.0 (ESRI, 

Redlands, CA) with a common coordinate projection (NAD 1983 California Teale Albers), 

origin, and extent. Data were cropped to restrict the analysis to the agricultural lands within 

Dataset Specifications 

Specifics 
Kern County  

(Kern Ag) 

Land IQ  

(LIQ) 

USDA NASS CDL 

(CropScape) 

Data Funder/ 

Sponsor 

Kern County 

Department of 

Agriculture 

(County) 

DWR (State) USDA (Federal) 

Spatial Extent 
County State National 

Temporal 

Extent 
1997-20181 2014, 2016, 2018 2007-present 

Num. of Crop 

Classes2 
115 38 54 

Data Source & 

Methodology 

• Permitted 

county crop 

boundaries 

• Pesticide use 

and permit 

reports 

• Inspectors 

and local 

growers 

collaborate to 

digitize 

permitted 

sites 

 

• Initial crop 

classification with 

multiple LandSat8 

images 

• Fields delineated 

from the USDA 

NAIP 

• Central Valley 

ground truth data 

points are 

distributed among 

crop types 

• Classification datasets: 

Landsat8 OLI/TIRS, 

DEIMOS-1 DMC2, 

and 

UK2 DMC-2 

• Agricultural training 

and validation data are 

derived from the FSA 

CLU, USBR Lower 

Colorado River 

Accounting System 

crop classifications, 

and E & J Gallo 

Winery (2013 data) 
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Kern County (Figure 15). The LIQ and Kern Ag vector data were converted to 30-meter 

by 30-meter rasters to match the resolution of CropScape. Conversion from vector to raster 

was appropriate given the large agricultural polygons (mean area), facilitation of raster 

comparison tools, and reduced production of slivers and gaps in spatial coverage if 

converting from raster to vector format. This analysis focused on non-rangeland crops. 

Thus, non-agricultural land uses were only considered when a crop was misclassified as 

non-agricultural land use (e.g., cotton labeled as grasses). Since the three datasets have 

different crop classes and levels of specificity, this study reconciled crop categories to 

facilitate comparisons (see SI Table 21 in Appendix F for general crop categories and 

specific crop components). For example, sweet potato within LIQ and Kern Ag was made 

potatoes. Using combinatorial tools, unique class combinations across datasets were 

identified and coded—Kern Ag and Cropscape, Kern Ag and LIQ, and LIQ and 

Cropscape—which provided the count of matched and mismatched classes between 

datasets. Land use comparison results were used to create confusion matrices and perform 

statistical tests (i.e., overall, producer’s, and user’s accuracy and Cohen's Kappa 

Coefficient of Accuracy). 

Equation 1. 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠
 

Equation 2. Producer’s Accuracy= 100% - Omission Error  

Equation 3. Users Accuracy= 100% - Commission Error 

   

Equation 4. 𝐾𝑎𝑝𝑝𝑎 =
𝑁 ∑ 𝑚𝑖,𝑖  𝑛

𝑖=1 −∑ (𝑇𝑖𝑃𝑖
𝑛
𝑖=1 )

𝑁2− ∑ (𝑇𝑖𝑃𝑛
𝑖=1 )

′ 

In equation 4, 𝑖 is the class number, N is the total number of classified values compared to 

truth values, 𝑚𝑖,𝑖 is the number of values belonging to the truth class 𝑖 that have also been 

classified as class 𝑖 (i.e., along the diagonal), 𝑃𝑖= is the total number of predicted values 

belonging to class 𝑖, and 𝑇𝑖= is the total number of truth values belonging to class 𝑖. 
2. 3 Land Use Misclassification Discrepancies on the User’s End  

 Given the focus of this study on understanding the discrepancies that result from 

land use classification inaccuracies on the user’s end, the discrepancy calculations and 

results will reflect only the discrepancies from the user’s error in the sections below for 

revenue (Section 3.3.1), crop water requirements (Section 3.3.2), and GHG emissions 

(Section 3.3.3).  

2.3.1 Deriving Revenue Discrepancies  

The crop revenues were obtained individually for 2014 and 2016 from Kern County Crop 

Reports. The USDA California National Agricultural Statistics Survey (NASS) provided 

crop revenues not available in the Kern County Crop Reports mainly due to crops 

aggregated into broader crop categories. For some crops, the crop reports have more 

specific crop categories (e.g., Navel orange and Valencia orange), and the crop with the 

highest harvested acreage was selected to represent the reconciled crop categories 

developed for this study. The crop revenue table was joined with the actual and 

misclassified crop from the per-pixel comparison disagreement output. The crop revenue 

table was joined with the actual and misclassified crop from the per-pixel comparison 

disagreement output. The revenue was calculated for the misclassified crop (equation 5) 
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and actual crop (equation 6) and then used to calculate the net and gross revenue 

discrepancies (equation 7 and 8, respectively).  

Equation 5. 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 = 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑟𝑒𝑎 ∗

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 ℎ𝑒𝑐𝑡𝑎𝑟𝑒𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 ∗

𝑢𝑛𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑈𝑆𝐷𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 

Equation 6. 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 = 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑟𝑒𝑎 ∗

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 ℎ𝑒𝑐𝑡𝑎𝑟𝑒𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 ∗ 𝑢𝑛𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑈𝑆𝐷𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 

Equation 7. N𝑒𝑡 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 −

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 

Equation 8. 𝐺𝑟𝑜𝑠𝑠 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 =   

|∑ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 −  ∑ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝|   

SI Tables 22 and 23 (Appendix F) provide the crop revenue values used for this analysis 

with specifics on the report crop type used, production per acres, product units, price per 

unit, data source, and notes for 2014 and 2016, respectively, and the USD for total acres 

were converted to USD for total hectares. 

2.3.2 Deriving Crop Water Requirement Discrepancies  

The crop water requirement (CWR) values were calculated by accumulating the daily 

crop evapotranspiration in the growing period for each crop class in each dataset for 

2014 and 2016. The evapotranspiration is represented by the irrigated, freshwater 

component of crop evapotranspiration, ETc, blue, and is used in the WAFR model to 

derive crop water requirement. For more information on the data processing and WAFR 

model, refer to (Booth, 2018).  

The CWR for each crop misclassification in all datasets for 2014 and 2016 was 

derived by taking the sum of the crop area and dividing it by the CWR for the 

misclassified crop (equation 9) and the actual crop (equation 10), and the net and gross 

crop water requirement discrepancy were calculated by using equations 10 and 11, 

respectively. 

Equation 9. 𝐶𝑊𝑅𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 =  
∑ 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 

∑ 𝑐𝑟𝑜𝑝 𝑎𝑟𝑒𝑎𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
 

Equation 10. 𝐶𝑊𝑅𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 =  
∑ 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 

∑ 𝑐𝑟𝑜𝑝 𝑎𝑟𝑒𝑎𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
 

Equation 11. 𝑁𝑒𝑡 𝐶𝑊𝑅 𝑑𝑖𝑠𝑐𝑝𝑟𝑒𝑝𝑎𝑛𝑐𝑦 = 𝐶𝑊𝑅𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 −

𝐶𝑊𝑅𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 

Equation 12. 𝐺𝑟𝑜𝑠𝑠 𝐶𝑊𝑅 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 =

|∑ 𝐶𝑊𝑅𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 −  ∑ 𝐶𝑊𝑅𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝  |  
The crop water requirement for broader crop categories (e.g., other crops, other fruits, 

and other vegetables) was derived by taking the averages of the crop water 

requirements for crop types that comprise the broad categories for the 2014 and 2016 

datasets. (See SI Tables 25 and 27, Appendix F). A list of crop water requirement values 

per crop type per dataset for 2014 and 2016 is outlined in SI Tables 24 and 26 

(Appendix F).  

 

2.3.3 Deriving GHG emission Discrepancies  
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The GHG emissions per crop type were the same across all datasets for 2014 and 2016 

and were obtained from (Carlson et al., 2017). A reconciled table of GHG emission 

values from Carlson et al. (2017) was created to join with the actual and misclassified 

crops (SI Table 28, Appendix F). Equations 13 and 14 were used to calculate the GHG 

emission value for the misclassified crop and the actual crop, respectively, which are 

used to calculate the net and gross GHG emission discrepancies in Equations 15 and 

16.  

Equation 13. 𝐺𝐻𝐺𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 = 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑟𝑒𝑎 ∗

𝐺𝐻𝐺𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 

Equation 14. 𝐺𝐻𝐺𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 = 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑟𝑒𝑎 ∗ 𝐺𝐻𝐺𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 

Equation 15. 𝑁𝑒𝑡 𝐺𝐻𝐺 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 = 𝐺𝐻𝐺 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 −

𝐺𝐻𝐺 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 

Equation 16. 𝐺𝑟𝑜𝑠𝑠 𝐺𝐻𝐺 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 =   

|∑ 𝐺𝐻𝐺 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑜𝑝 −  ∑ 𝐺𝐻𝐺 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑜𝑝| 

3. Results and Discussion  

3.1 Crop Misclassification Trends by Area 

Technological advancements and increased investment in satellite and remote sensing have 

led to increased accessibility of land use and increasingly accurate maps specifying crops 

planted. Nevertheless, there is still a need to address the inaccuracies in land use 

classification algorithms for complex agricultural landscapes. Crop misclassification 

trends based on misclassified hectares show that from 2014 to 2016, CropScape users’ 

accuracy improved by about 9%. In contrast, LIQ users’ inaccuracy compared to Kern Ag 

seems to have worsened by 458% (Tables 7-9 includes a breakdown of misclassified 

hectares per crop). It is important to highlight that although there seems to be an 

improvement in the user’s accuracy in the CropScape dataset between 2014 and 2016 than 

LIQ, the number of misclassified hectares in CropScape range between 100,000 – 114,000 

hectares compared to the misclassified hectares in the LIQ datasets of 7,200 – 40,000 

hectares. In other words, LIQ is still the highest thematic dataset that best represents the 

diversity and complexity of California’s agricultural landscape. Crop misclassification 

comparison by area, in hectares, highlights that the top misclassified crops in CropScape 

from 2014 and 2016 were pistachios, grapes, citrus, and almonds (Figure 16-17, yellow 

and blue; Table 7-9), while LIQ had lower misclassifications for these lucrative and water-

intensive crops (Figure 16-17, green; Table 7-9). LIQ demonstrated higher 

misclassifications in 2016 than in 2014. The most misclassified water-intensive, lucrative 

crop across all datasets was pistachios and was misclassified for fallowed land (~6,500 

hectares) and almonds (~6,000 hectares) (Figure 16, 17). The importance of accurately 

classifying fallowed land is magnified in California, given the detrimental social, 

economic, and environmental impacts of potentially transitioning more than 202,342 

hectares of agricultural land to address groundwater overdraft under SGMA. Fallowed land 

was mainly misclassified for almonds by the LIQ 2016 dataset (~5,000 hectares), followed 

by grains (~1,500 hectares) and cotton (~1,000 hectares), which results in unaccounted 



62 

 

hectares of fallowed land and an overestimation of crop revenue, crop water requirement, 

and GHG emissions (Figure 17).  

 

 
Kern Ag and CropScape 

2014 Misclassified 2016 Misclassified 2016-2014 

Total 113,831 Ha 103,903 Ha -9% 

Crop Category Hectares Percent Hectares Percent Percent +/- 

Alfalfa 2,957 30 3,812 26 29 

Almonds 12,276 19 12,105 23 -1 

Apples 221 71 168 28 -24 

Bushberries 260 98 264 61 1 

Carrots 6,248 38 6,015 31 -4 

Cherries 1,695 80 2,094 84 24 

Citrus 14,305 31 13,853 22 -3 

Corn 3,405 46 3,458 32 2 

Cotton 2,875 22 2,404 25 -16 

Fallow 8,340 69 7,762 68 -7 

Garlic Onion 1,629 38 1,583 26 -3 

Grains 6,460 43 8,188 38 27 

Grapes 17,476 20 13,926 17 -20 

Lettuce Greens 197 46 544 93 176 

Other Crops 1,506 90 1,513 93 0 

Other Fruit 1,483 72 1,053 80 -29 

Other Vegetables 1,809 63 1,851 70 2 

Peppers 623 61 523 78 -16 

Pistachios 20,684 22 17,361 21 -16 

Plums 1 100 1 100 -7 

Pomegranate 5,040 46 1,507 22 -70 

Potato 2,999 55 2,502 61 -17 

Safflower 333 97 321 72 -3 

Strawberries 5 100 1 100 -80 

Tomatoes 722 50 717 59 -1 

Walnuts 281 94 374 81 33 

Table 7. The percent increase or decrease in crop misclassifications between 2014 and 2016 for 

Cropscape compared with Kern Ag.  
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Kern Ag and LIQ  

2014 Misclassified 2016 Misclassified 2016-2014 

Total 7,182 Ha 40,075 Ha 458% 

Crop Category Hectares Percent Hectares Percent Percent +/- 

Alfalfa 153 1 521 3 239 

Almonds 106 0 264 0 149 

Apples 0 0 5 2 1,600 

Bushberries 9 4 4 2 -59 

Carrots 100 1 1,170 19 1,069 

Cherries 34 1 24 1 -30 

Citrus 25 0 36 0 42 

Corn 3,256 36 12,586 74 287 

Cotton 31 0 587 7 1,818 

Fallow 676 4 13,775 50 1,938 

Garlic Onion 136 4 403 16 197 

Grains 185 1 1,780 16 861 

Grapes 37 0 169 1 350 

Lettuce Greens 1,131 85 1,497 81 32 

Other Crops 993 43 1,101 59 11 

Other Fruit 111 6 261 19 135 

Other Vegetables 4 1 220 48 5,866 

Peppers 14 2 133 20 872 

Pistachios 37 0 1,154 2 3,020 

Plums 50 98 53 99 6 

Pomegranate 5 0 3 0 -50 

Potato 58 1 1,361 40 2,248 

Safflower 2 0 1,260 65 82,271 

Strawberries 0 2 - 0 -100 

Tomatoes 28 1 1,710 35 6,028 

Walnuts 1 0 1 0 0 

Table 8. Compared with Kern Ag, the percent increase or decrease in crop misclassifications 

between 2014 and 2016 for Land IQ. 
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LIQ and CropScape 

2014 Misclassified 2016 Misclassified 2016-2014 

Total 117,321 Ha 107,059 Ha -9% 

Crop Category Hectares Percent Hectares Percent Percent +/- 

Alfalfa 2,977 30 2,558 27 -14 

Almonds 12,291 19 11,357 28 -8 

Apples 221 71 173 28 -22 

Bushberries 247 98 214 61 -13 

Carrots 6,266 38 4,398 31 -30 

Cherries 1,684 81 1,875 84 11 

Citrus 14,302 31 13,458 22 -6 

Corn 6,523 45 14,146 8 117 

Cotton 2,835 22 956 24 -66 

Fallow 8,572 69 12,672 55 48 

Garlic Onion 1,710 38 1,044 21 -39 

Grains 6,268 44 4,461 66 -29 

Grapes 17,256 20 13,103 18 -24 

Lettuce Greens 1,328 46 1,815 75 37 

Other Crops 2,290 90 1,750 83 -24 

Other Fruit 1,526 72 1,093 76 -28 

Other 

Vegetables 
419 69 168 49 -60 

Peppers 593 62 526 75 -11 

Pistachios 20,618 22 17,249 18 -16 

Plums 51 100 54 100 5 

Pomegranate 5,026 46 723 22 -86 

Potato 2,979 55 1,806 60 -39 

Safflower 334 97 440 7 32 

Strawberries 5 100 1 100 -82 

Tomatoes 717 50 671 36 -6 

Walnuts 281 94 348 81 24 

Table 9. The percent increase or decrease in crop misclassifications between 2014 and 2016 for 

CropScape compared with LIQ. 
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Figure 17. The total area misclassified (hectares) per crop for 2014 data comparisons. 

Figure 16. The total area misclassified (hectares) per crop for 2016 data comparisons. 



66 

 

3.2 Crop Classification StatisticsI 

The authors assumed Kern Ag to be the ground truth dataset for this study. Comparison 

across these most-used datasets in California shows better land use classification 

agreements between LIQ and Kern Ag for 2014 with 98% overall accuracy and 2016 with 

87% overall accuracy than with either dataset compared with CropScape (Table 10). The 

high agreement between Kern Ag and LIQ is no surprise since the Kern Ag data is based 

on local information (i.e., county permit data and grower land use reports) for local 

decision-making and land use classifications deduced from high-resolution satellite 

imagery with in-situ ground-truthing. Land use classification agreements between LIQ and 

CropScape are not as high, with values for 2014 land use classifications of 61% overall 

accuracy and 2016 overall accuracy of 64% (Table 10). A similar high disagreement exists 

between the Kern Ag dataset and CropScape with land use classification for 2014 with 

61% overall accuracy and 2016 classifications with 65% overall accuracy.  
 

2014 Datasets Compared Overall Accuracy (%) 
Kappa Coefficient of 

Agreement 

Kern Ag and CropScape 61 0.55 (moderate) 

LIQ and CropScape 61 0.55 (moderate) 

Kern Ag and LIQ 98 0.97 (very good) 

2016 Datasets Compared Overall Accuracy (%) 
Kappa Coefficient of 

Agreement 

Kern Ag and CropScape 65 0.59 (moderate) 

LIQ and CropScape 64 0.59 (moderate) 

Kern Ag and LIQ 87 0.84 (very good) 

Table 10. Overall accuracy and kappa coefficients between datasets were compared (i.e., Kern 

and CropScape, Kern and Land IQ, and Land IQ and CropScape) for the years 2014 and 2016.  

Cohen's kappa coefficient of accuracy, κ, is a statistic that measures inter-rater 

reliability, though caution should be used in its interpretation (Delgado & Tibau, 2019). 

The κ accuracy was also calculated for the dataset comparisons since it is thought to be 

more robust than the percent agreement calculations because it accounts for the possibility 

of agreement occurring by chance (Table 10). The κ for Kern Ag and LIQ 2014 and 2016 

is 0.97 (very good) and 0.84 (very good). The κ values CropScape compared with LIQ and 

Kern Ag 2014 and 2016 are 0.55 (moderate) and 0.59 (moderate). Overall, the κ with the 

percent agreements between the land use classification datasets illustrate that the LIQ and 

Kern Ag datasets are in better agreement with each other than either of these datasets with 

CropScape. The percent decrease in overall accuracy and κ for datasets compared with 

CropScape may be attributed to the CropScape dataset having a national spatial focus than 

the state and locally tailored focus of Kern Ag and LIQ datasets, respectively. Overall 

results highlight the need for increased datasets across other natural resources, like water, 

to be tailored at the regional and local spatial scales to represent geographic differences 

across various study regions (Rallings et al., 2021). Although the investment in global or 

national datasets increases the ability to understand natural resources systems, these 

datasets may not fully represent the geographic characteristics and differences across 

regions, even adjacently located, to infer well-informed and robust climate change 

adaptation and management plans.  
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Crop-specific producer’s and user’s accuracy (Tables 11-13) provide insight into 

the crops contributing to misclassification errors on the producer’s and user’s end. This 

study calculated producer’s accuracy to inform future improvement in land use 

classification datasets, especially for regions that have complex landscapes like the San 

Joaquin Valley. The producer’s accuracy for CropScape 2014 compared to both Kern Ag 

and LIQ 2014 resulted in low inaccuracy for the following crops (less than 20% accuracy) 

(Tables 11-12): Grasses, Plums, Pomegranates, Other Crops, Bushberries, Lettuce Greens, 

Other Fruit, Other Vegetables, Peppers, Safflower, Strawberries, and Walnuts. The 

producer’s accuracy for CropScape 2016 compared to both Kern Ag and LIQ result in low 

accuracy for the following crops: Apples, Bushberries, Cherries, Grasses, Lettuce Greens, 

Other Crops, Other Fruit, Other Vegetables, Plums, Strawberries, Corn, and Walnuts. The 

low accuracy in classification could be attributed to the difficulty in correctly representing 

what is one the ground for crops that could be misclassified as fallowed ground, grains, 

corn, or other crops by classification algorithms. The reduced greenness of crops during 

dry periods may be causing the algorithm to result in incorrect crop signatures. 

CropScape has been known to be best at classifying single, expansive crop 

landscapes (Reitsma et al., 2016). The decreased producer’s accuracy may result from 

crops that blend in with surrounding bare ground. Producers' accuracy for water-intensive, 

lucrative crops (e.g., almonds and pistachios) and fallowed land remain above 50% of 

producer’s accuracy. The error for the common, lucrative crops and fallowed land slightly 

decreased from 2014 to 2016, which could be due to the increase in the land cover area of 

these crops during the drought period. The producer’s accuracy for LIQ 2014 and 2016 is 

lowest for Grasses and, in the case of the 2016 dataset, Other Vegetables. The user’s 

accuracy for CropScape 2014 and 2016 are lowest for the following crops: Bushberries, 

Cherries, Grasses, Other Crops, Other Fruit, Plums, Safflower, Strawberries, and Walnuts. 

Like the producer’s accuracy, the user’s accuracy is high for the water-intensive, expansive 

crops in the San Joaquin Valley (e.g., almonds, grapes, pistachios). LIQ 2014 and 2016 

have the lowest user accuracy among lettuce greens and plums. Given that the reviewed 

misclassifications are lower for LIQ than CropScape, this study finds LIQ to be the most 

suitable dataset to represent agriculture in California.  

Kern Ag and CropScape Producer’s and User’s Accuracy  

 

2014 2016 

Producer’s 

Accuracy 

User’s  

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Alfalfa 89% 70% 83% 74% 

Almonds 84% 81% 86% 77% 

Apples 56% 29% 10% 72% 

Bushberries 4% 2% 0% 39% 

Carrots 22% 62% 21% 69% 

Cherries 31% 20% 4% 16% 

Citrus 40% 69% 43% 78% 

Corn 41% 54% 39% 68% 

Cotton 80% 78% 77% 75% 

Fallow 53% 31% 58% 32% 
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Garlic Onion 47% 62% 47% 74% 

Grains 67% 57% 61% 62% 

Grapes 50% 80% 59% 83% 

Grasses 0% 3% 2% 3% 

Lettuce Greens 5% 54% 2% 7% 

Non-Ag 1% 0% 50% 0% 

Other Crops 2% 10% 3% 7% 

Other Fruit 18% 28% 18% 20% 

Other 

Vegetables 13% 37% 9% 30% 

Peppers 14% 39% 20% 22% 

Pistachios 48% 78% 62% 79% 

Plums 0% 0% 0% 0% 

Pomegranate 0% 54% 63% 78% 

Potato 31% 45% 38% 39% 

Safflower 0% 3% 59% 28% 

Strawberries 0% 0% 0% - 

Tomatoes 74% 50% 79% 41% 

Walnuts 15% 6% 0% 0% 
Table 11. Results of producer’s and user’s accuracy of CropScape compared with Kern Ag 

for the 2014 and 2016 datasets.  

LIQ and CropScape Producer’s and User’s Accuracy 

 2014 2016 

 

Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

Alfalfa 89% 70% 87% 73% 

Almonds 84% 81% 85% 72% 

Apples 56% 29% 10% 72% 

Bushberries 4% 2% 0% 39% 

Carrots 22% 62% 27% 69% 

Cherries 29% 19% 4% 16% 

Citrus 39% 69% 43% 78% 

Corn 27% 55% 17% 92% 

Cotton 81% 78% 89% 76% 

Fallow 53% 31% 54% 45% 

Garlic Onion 46% 62% 59% 79% 

Grains 68% 56% 61% 34% 

Grapes 50% 80% 61% 82% 

Grasses - 0% - 0% 

Lettuce Greens 1% 54% 2% 25% 

Non-Ag - 0% - 0% 
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Other Crops 1% 10% 7% 17% 

Other Fruit 18% 28% 21% 24% 

Other Vegetables 36% 31% 64% 51% 

Peppers 14% 38% 22% 25% 

Pistachios 48% 78% 63% 82% 

Plums 0% 0% 0% 0% 

Pomegranate 0% 54% 78% 78% 

Potato 32% 45% 47% 40% 

Safflower 0% 3% 77% 93% 

Strawberries 0% 0% 0% - 

Tomatoes 74% 50% 86% 64% 

Walnuts 15% 6% 36% 19% 
Table 12. Results of producer’s and user’s accuracy of CropScape compared with LIQ for 

the 2014 and 2016 datasets 
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Kern Ag and LIQ Producer’s and User’s Accuracy 

 2014 2016 

 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Alfalfa 100% 99% 91% 97% 

Almonds 100% 100% 93% 100% 

Apples 100% 100% 100% 98% 

Bushberries 92% 96% 80% 98% 

Carrots 99% 99% 64% 81% 

Cherries 96% 99% 89% 99% 

Citrus 100% 100% 98% 100% 

Corn 99% 64% 80% 26% 

Cotton 99% 100% 81% 93% 

Fallow 99% 96% 75% 50% 

Garlic Onion 98% 96% 71% 84% 

Grains 97% 99% 46% 84% 

Grapes 99% 100% 97% 99% 

Grasses 0% - 0% - 

Lettuce Greens 100% 15% 63% 19% 

Non-Ag 0% - 0% - 

Other Crops 86% 57% 50% 41% 

Other Fruit 96% 94% 87% 81% 

Other Vegetables 31% 99% 12% 52% 

Peppers 93% 98% 83% 80% 

Pistachios 100% 100% 99% 98% 

Plums 100% 2% 54% 1% 

Pomegranate 100% 100% 81% 100% 

Potato 98% 99% 50% 60% 

Safflower 100% 100% 89% 35% 

Strawberries 98% 98% 91% 100% 

Tomatoes 99% 99% 93% 65% 

Walnuts 100% 100% 95% 100% 
Table 13. Results of producer’s and user’s accuracy of LIQ compared with Kern Ag for the 

2014 and 2016 datasets. 
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3.3 Overall Revenue, Crop Water Requirement, and GHG Emission Discrepancies  

The normalization of revenue, CWR, and GHG emission discrepancies by Kern Ag 

datasets totals provided a sense of the magnitude of the impacts of user’s inaccuracy of the 

land use classification datasets in this study and are outlined in sections 3.3.1-3.3.3. 

Quantifying the misclassifications in land use datasets is essential since a comparison of 

cumulative total revenue, crop water requirement, and GHG emission across all 2014 and 

2016 datasets result in values like each other (Table 15). Therefore, overlooking the 

misclassifications within each dataset and which crop misclassifications result in 

considerable inaccuracies. Overall, the CropScape misclassifications resulted in 

underestimates of user’s accuracy revenue and crop water requirement discrepancies, while 

LIQ misclassifications led to overestimates of user’s accuracy discrepancies for revenue 

and crop water requirement (Table 16). The sections below provide an overview of the 

overall dataset misclassification of crop revenue, crop water requirement, and GHG 

emission discrepancies (Tables 17-22). Crop-specific contributions to considerable 

implications are also covered since identifying crop-specific misclassification implications 

could help target improvements in crop-specific land use classification methods and 

quantify the crop-specific crop revenue, crop water requirement, and GHG emission 

discrepancies. 

 

Revenue, CWR, and GHG Emission Discrepancies Proportion by the Kern Ag Total  

Discrepancy 

(Units) 
Year Dataset 

Proportion of User’s 

Accuracy Discrepancy 

(%)  

Proportion of 

Gross Discrepancy 

(%) 

Revenue 

(Million USD)1 

2014 

Kern Ag and 

CropScape 25% 40% 

LIQ and CropScape 25% 40% 

Kern Ag and LIQ 1% 1% 

2016 

Kern Ag and 

CropScape 22% 35% 

LIQ and CropScape 19% 34% 

Kern Ag and LIQ 4% 8% 

Crop water 

requirement 

(ML)2 

2014 

Kern Ag and 

CropScape 15% 26% 

LIQ and CropScape 14% 25% 

Kern Ag and LIQ 1% 1% 

2016 

Kern Ag and 

CropScape 12% 20% 

LIQ and CropScape 7% 20% 

Kern Ag and LIQ 5% 8% 

GHG Emissions 

(Mg CO2e)3 

2014 

Kern Ag and 

CropScape 18% 43% 

LIQ and CropScape 20% 44% 

Kern Ag and LIQ 2% 3% 

2016 
Kern Ag and 

CropScape 20% 10% 



72 

 

LIQ and CropScape 22% 41% 

Kern Ag and LIQ 3% 14% 

Table 14. The proportion of revenue, CWR, and GHG emission discrepancy (untis %). Calculated 

by normalizing the user’s discrepancy and gross discprepancy by the Kern Ag dataset (assumed 

ground truth) totals for 2014 and 2016.  

 

Total Area, Revenue, Crop Water Requirement, and GHG Emissions 

Year Dataset Multiplier Total  

2014 

LIQ   

Hectares 298,266 

Revenue (Million USD) 5,578 

Crop Water Requirement (ML) 3,199,671 

GHG emissions (Mg CO2e) 237,437 

Kern Ag   

Hectares 298,266 

Revenue (Million USD) 5,608 

Crop Water Requirement (ML) 3,242,377 

GHG emissions (Mg CO2e) 233,994 

CropScape  

Hectares 298,266 

Revenue (Million USD) 4,180 

Crop Water Requirement (ML) 2,749,087 

GHG emissions (Mg CO2e) 194,504 

2016 

LIQ   

Hectares 298,266 

Revenue (Million USD) 5,506 

Crop Water Requirement (ML) 3,057,483 

GHG emissions (Mg CO2e) 237,795 

Kern Ag   

Hectares 298,266 

Revenue (Million USD) 5,735 

Crop Water Requirement (ML) 3,456,895 

GHG emissions (Mg CO2e) 231,252 

CropScape  

Hectares 298,266 

Revenue (Million USD) 4,445 

Crop Water Requirement (ML) 3,100,156 

GHG emissions (Mg CO2e) 186,102 

Table 15. Total for each multiplier (i.e., revenue, crop water requirement, and GHG emissions) for 

each dataset for 2014 and 2016. 
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Discrepancy 

(Units) 
Year Dataset 

Misclassified 

Hectares 

Difference 

Discrepancy 

Gross 

Discrepancy 

Revenue 

(Million 

USD)1 
 

2014 

Kern Ag and 

CropScape 
117,153 (1,428) 2,238 

LIQ and CropScape 117,321 (1,398) 2,230 

LIQ and Kern Ag 7,181 29 62 

2016  

Kern Ag and 

CropScape 
105,357 (1,290) 2,006 

LIQ and CropScape 107,058 (1,061) 1,933 

LIQ and Kern Ag 40,070 229 436 

Crop water 

requirement 

(ML)2 

2014  

Kern Ag and 

CropScape 
117,153 (482,322) 834,141 

LIQ and CropScape 117,074 (446,254.82) 823,670 

LIQ and Kern Ag 7,172 26,078 37,440 

2016  

Kern Ag and 

CropScape 
105,357 (416,891) 694,561 

LIQ and CropScape 107,058 (247,601) 676,846 

LIQ and Kern Ag 40,070 179,011 285,268 

GHG 

Emissions 

(Mg CO2e)3 
 

2014  

Kern Ag and 

CropScape 
110,354 (41,844) 100,769 

LIQ and CropScape 109,751 (45,905.03) 102,727 

LIQ and Kern Ag 5,956 (3,859) 6,606 

2016  

Kern Ag and 

CropScape 
100,892 (45,190) 23,287 

LIQ and CropScape 103,219.53 (51,858) 95,127 

LIQ and Kern Ag 37,394 (7,370) 33,514 

Note: The misclassified hectares for the GHG emission multiplier differ from other multipliers due to 

the limited availability of GHG emission data for some crops. The misclassified hectares for LIQ 2014 

crop water requirement multiplier do not include bush berries due to no WAFR output for that crop. 
1 Revenue perspective: One million USD is equivalent to the annual income for 42 people in Kern 

County (per capita income in the past 12 months, in 2020 dollars in Kern County is USD 23,855; U.S. 

Census Bureau, 2019) 
2 Crop water requirement perspective: A standard Olympic-sized swimming pool measuring 50m x 25m 

holds 2.5 ML of water  
3 GHG emission perspective: 1,000  Mg of CO2e is equivalent to the GHG emission of 215 gasoline-

power passenger vehicles driven for one year (U.S. Environmental Protection Agency, 2019) 

Table 16. The user’s net and gross discrepancies of study multipliers (i.e., revenue, crop water 

requirement, and GHG emissions) resulted from crop misclassifications between datasets—

CropScape, LIQ and Cropscape, and LIQ and Kern Ag for 2014 and 2016. Value in parenthesis 

represents an underestimation of discrepancy.  
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3.3.1 Revenue User’s Accuracy Discrepancies  

Quantifying revenue discrepancies on the user’s end can help understand the magnitude of 

the impact of crop misclassification, especially for a state that generates 50.1 billion USD 

in annual agricultural revenue. The gross revenue discrepancy of CropScape is about 2 

billion USD (Table 16), which is equivalent to the annual income for 84,000 Kern County 

residents (per capita income in the past 12 months, in 2020 dollars in Kern County is 23,855 

USD; U.S. Census Bureau, 2019). The gross revenue discrepancy in high thematic datasets, 

like LIQ, is less than that of using CropScape with 446 million USD, which is equivalent 

to the annual income for 18,277 Kern County residents. The crop revenue discrepancies of 

crops by area (in hectares) for the 2014 CropScape dataset resulted in revenue 

discrepancies on the user’s end, underestimating 1.3 to 1.4 billion USD, and LIQ datasets 

overestimating by 29 million USD (Table 16). Increased misclassifications on the user’s 

end in the LIQ 2016 datasets were reflected in higher revenue overestimations of 229 

million USD. Whereas, decreased misclassification of CropScape in 2016 led to decreased 

revenue discrepancies compared to 2014, ranging in underestimations from 1 to 1.2 billion 

USD. Over and underestimating crop revenue results in inaccuracies in the user’s 

calculations of agricultural revenue contributions to the local, state, and national economy, 

which could be improved, but a comparison with the total Kern County revenue total shows 

that LIQ is better suited to represent California’s agricultural regions than CropScape. 

More specifically, if a user derives revenue for Kern County using CropScape land use 

classification datasets, there is a 20-25% user error and a 35-40% gross user error. Using 

the LIQ dataset results in a 1-4% user revenue discrepancy and a 1-8% gross revenue 

discrepancy (Table 14).  

Crop-specific user discrepancies across datasets could help highlight which specific 

crop misclassifications result in higher crop revenue user discrepancies, both over and 

underestimations of revenue. In the CropScape datasets, the high revenue implications 

result from the misclassification of water-intensive, lucrative orchard and vineyard crops 

(e.g., pistachios, almonds, citrus, and grapes) for other orchard and vineyard crops. 

Fallowed land contributed to the highest overestimation of revenue discrepancy for the 

CropScape 2014 and 2016 datasets on the user’s end, resulting in an underestimation 

(Tables 17, 18, 21, 22). Grasses contributed to the highest overestimation of revenue 

discrepancy on the user’s end in the LIQ 2014 dataset and fallowed land in the 2016 dataset, 

while grapes contributed to the highest underestimation in revenue discrepancy on the 

user’s end for the 2014 dataset and almonds for the 2016 dataset (Tables 19-20). For 

specifics on crop-specific misclassifications, refer to each dataset's SI Tables 29-84. 

3.3.2 Crop Water Requirement User’s Accuracy Discrepancies 

Given the worsening drought and water scarcity conditions under climate change, 

quantifying water use discrepancies on the user’s end due to crop misclassifications could 

help improve water budgeting and future water management. For California, accurate crop 

water requirements within each basin are needed to effectively develop groundwater 

sustainability plans informed by accurate water budgets, especially given the 

socioeconomic and environmental implications of water management strategies being 

considered to address SGMA (e.g., agricultural land use transitions and water markets). 

The gross water requirement discrepancy of ~700,000 ML (567,500 AF) in CropScape is 

equivalent to the amount needed to water ~10% of almond acres in the state for a year. 
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While the gross crop water requirement discrepancy of ~285,000 ML (231,054 AF) in LIQ 

is equivalent to the amount of water needed to water ~4% of almond acres in California for 

a year. Overall, the net crop water requirement discrepancies in CropScape are 

underestimated by 446,255 to 482,322 ML of water in 2014 and 247,601 to 416,891 ML 

in 2016 (Table 16). The LIQ datasets overestimate crop water requirement by 26,078 ML 

and 179,011 ML of water for 2014 and 2016, respectively (Table 16).  

Crop-specific contributions of crop water requirement user end discrepancies for 

CropScape are generally due to the misclassification of orchards, vineyards, grains, and 

fallowed land. The highest overestimation of crop water requirement for the CropScape 

2014 and 2016 dataset compared with Kern Ag and LIQ is due to the misclassification of 

fallowed land, while pistachios contribute to underestimating CWR estimates on the user 

end (Tables 17, 18, 21, 22). The overestimation in CWR discrepancy for users that use LIQ 

2014 and 2016 is attributed most by fallowed land, while grasses and grains contribute to 

the underestimation of CWR for the 2014 and 2016 LIQ datasets, respectively (Tables 19-

20). Although the land use classification dataset could be improved to better water budget 

estimates, this study shows that the CWR user and gross discrepancy are below 30% for 

CropScape and below 10% for LIQ (Table 14). The CWR user’s accuracy discrepancy 

using CropScape ranges from 12-15% and 20-26% for the gross discrepancy, while the 

user’s accuracy CWR discrepancy ranges from 1-5% with a gross discrepancy of 1-8% for 

LIQ.  It is recommended that users utilize LIQ datasets for higher accuracy in water budgets 

informing future water management strategies in the state. For specifics on crop-specific 

misclassifications, refer to each dataset's SI Tables 29-84. 

3.3.3 GHG Emission User’s Accuracy Discrepancies 

Quantifying discrepancies in GHG emissions can help better understand where California 

stands in achieving its carbon-neutral goals by 2045. Overall, all datasets underestimate 

net GHG emissions. The gross GHG emission discrepancies of 23,300 – 95,000 MgCO2e 

for CropScape 2016 (Table 16) are equivalent to 5,020 to 20,500 gasoline-powered 

vehicles driven for a year (U.S. Environmental Protection Agency, 2019). CropScape 

underestimates GHG emissions by 41,844 to 45,905 MG CO2e and 45,190 to 51,858 MG 

CO2e of GHG emissions for 2014 and 2016 respectively (Table 16). The gross GHG 

emission discrepancy of ~33,600 Mg CO2e for LIQ in 2016 is equivalent to the emission 

from 7,240 gasoline-powered vehicles driven for a year (U.S. Environmental Protection 

Agency, 2019). The LIQ 2014 and 2016 datasets underestimate GHG emissions by 3,859 

Mg CO2e and 7,370 Mg CO2e (Table 16).  

 Crop-specific misclassification contributing to the most considerable GHG 

emission discrepancies for CropScape were nuts, grapes, fallow land, and alfalfa. Fallowed 

land contributes most to the overestimation of GHG emissions, and citrus to the 

underestimation of GHG emissions in the CropScape 2014 and 2016 datasets compared 

with Kern Ag and LIQ (Tables 17, 18, 21, 22). For LIQ 2016, considerable GHG emission 

discrepancies were mainly attributed to the misclassification of fallowed land and grains 

as nuts, alfalfa, annual crops (e.g., carrots, lettuce greens), and corn. Grasses and fallowed 

land contributed to the overestimation of GHG emissions for LIQ 2014 and 2016, 

respectively, while grains and corn contributed to the highest underestimation of GHG 

emissions on the user end for 2014 and 2016, respectively (Tables 19-20). Observing that 

all three datasets are underestimating GHG emissions brings to light the importance of 
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improving crop classification datasets and the quantification of misclassification 

discrepancies so that future GHG emission plans effectively push California toward 

climate-smart agricultural practices to help achieve carbon neutrality. Given that the GHG 

emission user’s discrepancy using CropScape is ~18-22% and gross discrepancy of ~40% 

compared to the user’s GHG emission discrepancy for LIQ of ~2-3% and gross discrepancy 

of 3-14% (Table 14), it is recommended that LIQ land use classification datasets be used 

for best estimates of GHG emissions for California. For specifics on crop-specific 

misclassifications, refer to each dataset's SI Tables 29-84. 

  

Discrepancy of User’s Accuracy of CropScape 2014 Against Kern Ag 2014  

Crop Revenue (USD) CWR (AF) 
GHG Emission 

(MgCO2e) 

Total 

Hectares 

Alfalfa 115,257 (26,400) 641 2,957 

Almonds (135,533,718) (55,764) 2,490 12,276 

Apples (3,803,173) (1,933) (194) 221 

Bushberries (21,582,538) 573 (640) 260 

Carrots (107,089,680) 1,166 (4,300) 6,248 

Cherries 7,552,487 (2,121) (348) 1,695 

Citrus (152,922,077) (122,754) (24,655) 14,305 

Corn (657,295) (8,990) (4,965) 3,405 

Cotton (5,218,297) (6,188) 216 2,875 

Fallow 67,803,242 43,045 7,899 8,340 

Garlic 

Onion 
(7,036,033) (1,295) 77 1,629 

Grains 13,684,391 2,047 (9,343) 6,460 

Grapes (939,492,485) (44,992) 5,918 17,476 

Grasses 12,685,579 (14,892) (90) 3,211 

Lettuce 

Greens 
(4,694,010) (782) (125) 197 

Non-Ag 256,883 354 75 110 

Other Crops 19,601,423 (1,052)  1,506 

Other Fruit (11,410,430) (9,913) (128) 1,483 

Other 

Vegetables 
(41,305,360) (4,949) (417) 1,809 

Peppers (40,347,617) (650) (1,537) 623 

Pistachios (55,126,109) (141,962) (10,535) 20,684 

Plums (19,586) (5) 0 1 

Pomegranate 6,253,520 12,934  5,040 

Potato (28,549,074) (5,890) (1,730) 2,999 

Safflower 1,172,951 321 396 333 

Strawberries (770,240) (16) (7) 5 
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Tomatoes (2,415,001) (752) (519) 722 

Walnuts 1,186,022 (313) (24) 281 

Total (1,427,660,970) (391,170) (41,843) 117,152 

Table 17. The revenue (USD), crop water requirement (CWR; acre-feet), and GHG emissions 

(MgCO2e) discrepancies per crop reflecting the user’s accuracy of CropScape 2014 compared 

with Kern Ag 2014.  

Discrepancy of User’s Accuracy of CropScape 2016 Against Kern Ag 2016 

Crop Revenue (USD) CWR (AF) 
GHG Emission 

(MgCO2e) 

Total 

Hectares 

Alfalfa 9,625,510 (32,230) 376 3,812 

Almonds (59,839,681) (50,095) 2,972 12,105 

Apples 1,241,422 (495) (103) 168 

Bushberries (20,203,447) 565 (646) 264 

Carrots (117,278,909) 4,648 (2,179) 6,015 

Cherries (66,113,648) (158) (219) 2,094 

Citrus (121,490,078) (97,887) (24,422) 13,853 

Corn 2,675,494 (12,990) (6,145) 3,458 

Cotton 4,865,112 (4,925) 42 2,404 

Fallow 91,356,450 56,616 6,265 7,762 

Garlic 

Onion 
(29,372,613) (1,900) 18 1,583 

Grains 19,083,303 (39,855) (12,309) 8,188 

Grapes (750,086,465) (34,080) 2,795 13,926 

Grasses 2,393,122 (9,171) (210) 1,454 

Lettuce 

Greens 
(7,665,625) 189 (101) 544 

Non-Ag 123 0 0 0 

Other Crops 15,613,721 2,916  1,513 

Other Vruit (13,808,897) (3,711) 223 1,053 

Other 

Vegetables 
(40,323,689) (2,640) (261) 1,851 

Peppers (18,537,118) (930) (1,149) 523 

Pistachios (158,606,692) (105,228) (8,449) 17,361 

Plums (3,525) (5) 0 1 

Pomegranate (22,659,294) (1,403)  1,507 

Potato (12,225,176) (2,355) (1,005) 2,502 

Safflower 1,632,124 (188) 58 321 

Strawberries (172,719) (3) (1) 1 

Tomatoes (2,194,816) (2,156) (738) 717 

Walnuts 2,419,375 (641) (2) 374 
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Total (1,289,676,637) (338,111) (45,190) 105,357 

Table 18. The revenue (USD), crop water requirement (CWR; acre-feet), and GHG emissions 

(MgCO2e) discrepancies per crop reflecting the user’s accuracy of CropScape 2016 compared 

with Kern Ag 2016. 

 

Discrepancy of User’s Accuracy of LIQ 2014 Against Kern Ag 2014 

Crop 
Revenue 

(USD) 
CWR (AF) 

GHG Emission 

(MgCO2e) 

Total 

Hectares 

Alfalfa 505,513 (729) 49 108 

Almonds (2,928,584) (607) 60 224 

Apples 679 (0) (0) 0 

Bushberries (1,678,524) 99 (48) 22 

Carrots (698,901) 353 (35) 78 

Cherries 103,593 (86) (0) 90 

Citrus (194,353) (296) (60) 45 

Corn 329,836 (33) (73) 55 

Cotton (300,152) (356) (28) 86 

Fallow 2,132,193 1,696 167 206 

Garlic 

Onion 
(42,525) (19) 27 57 

Grains 10,780 (1,044) (838) 558 

Grapes (20,894,847) (764) 46 345 

Grasses 5,052,029 (17,681) 4,463 3,214 

Lettuce 

Greens 
(311) (0) 0 0 

Non-Ag - - - 111 

Other Crops 3,603,287 197  209 

Other Fruit (41,092) (211) 4 66 

Other 

Vegetables 
(10,442,097) (1,331) 239 1,440 

Peppers (3,187,836) (151) (95) 49 

Pistachios (313,616) (320) (7) 104 

Pomegranate (37,066) (16)  19 

Potato (622,213) 77 (0) 77 

Strawberries (5,709)  0 0 

Tomatoes 130,874 72 (11) 20 

Walnuts 28,844 (0) 0 1 

Total (29,490,198) (21,150) 3,859 7,182 
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Table 19. The revenue (USD), crop water requirement (CWR; acre-feet), and GHG emissions 

(MgCO2e) discrepancies per crop reflecting the user’s accuracy of LIQ 2014 compared with 

Kern Ag 2014. 

 

Discrepancy of User’s Accuracy of LIQ 2016 Against Kern Ag 2016 

Crop 
Revenue 

(USD) 
CWR (AF) 

GHG 

Emission 

(MgCO2e) 

Total 

Hectares 

Alfalfa 4,694,522 (18,259) 2,008 2,077 

Almonds (75,909,339) (49,968) (1,012) 5,602 

Apples 2,497 (0) (0) 0 

Bushberries (4,020,237) (5) (140) 53 

Carrots (50,062,285) 978 (550) 2,771 

Cherries (12,802,632) (2,065) (174) 243 

Citrus (10,375,588) (3,929) (414) 476 

Corn 1,148,671 (6,900) (2,558) 1,113 

Cotton (4,465,861) (7,206) 992 1,928 

Fallow 46,106,198 32,579 4,302 4,619 

Garlic Onion (12,242,032) (509) 211 860 

Grains 16,744,368 (55,688) 4,007 11,162 

Grapes (74,235,309) (9,887) (243) 1,176 

Grasses 544,413 (10,290) 2,016 1,483 

Lettuce Greens (1,850,800) 308 6 203 

Non-Ag - - - 0 

Other Crops 8,345,170 656  788 

Other Fruit (2,860,147) (692) (13) 171 

Other 

Vegetables 
(21,217,002) (1,925) 421 1,783 

Peppers (5,070,480) (348) (157) 114 

Pistachios (3,916,686) (1,683) (99) 285 

Plums (15,768) (1)  1 

Pomegranate (15,374,078) (2,674)  786 

Potato (10,431,505) (5,873) (935) 2,033 

Safflower (61,607) (310) 19 84 

Strawberries (7,530) (0) 0 0 

Tomatoes (1,410,712) (1,313) (307) 236 

Walnuts (88,181) (207) (6) 26 

Total (228,831,939) (145,212) 7,373 40,075 
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Table 20. The revenue (USD), crop water requirement (CWR; acre-feet), and GHG emissions 

(MgCO2e) discrepancies per crop reflecting the user’s accuracy of LIQ 2016 compared with 

Kern Ag 2016. 

 

Discrepancy of User’s Accuracy of CropScape 2014 Against LIQ 2014 

Crop Revenue (USD) CWR (AF) 
GHG Emission 

(MgCO2e) 

Total 

Hectares 

Alfalfa 335,524 (27,359) 674 2,977 

Almonds (135,533,779) (55,665) 2,546 12,291 

Apples (3,808,462) (1,944) (194) 221 

Bushberries (20,500,936)  (611) 247 

Carrots (106,719,994) 7,287 (4,273) 6,266 

Cherries 7,347,342 (2,121) (342) 1,684 

Citrus (152,263,993) (122,186) (24,655) 14,302 

Corn 7,646,044 4,834 (9,521) 6,523 

Cotton (4,998,287) (6,153) 222 2,835 

Fallow 68,738,205 44,270 8,264 8,572 

Garlic 

Onion 
(7,466,879) (10,102) 48 1,710 

Grains 13,475,894 6,919 (8,974) 6,268 

Grapes (927,535,199) (43,860) 5,819 17,256 

Lettuce 

Greens 
(29,103,795) (2,114) (777) 1,328 

Other Crops 29,405,082 (3,076)  2,290 

Other Fruit (12,431,193) (11,346) (158) 1,526 

Other 

Vegetables 
(9,697,946) (825) (127) 419 

Peppers (37,899,670) (745) (1,471) 593 

Pistachios (54,294,169) (141,315) (10,493) 20,618 

Plums (643,456) (120) 10 51 

Pomegranate 6,395,211 12,969  5,026 

Potato (27,832,215) (8,619) (1,742) 2,979 

Safflower 1,174,607 322 398 334 

Strawberries (768,619) (16) (7) 5 

Tomatoes (2,371,407) (647) (517) 717 

Walnuts 1,181,318 (315) (24) 281 

Total (1,398,170,772) (361,926) (45,905) 117,321 

Table 21. The revenue (USD), crop water requirement (CWR; acre-feet), and GHG emissions 

(MgCO2e) discrepancies per crop reflecting the user’s accuracy of CropScape 2014 compared 

with LIQ 2014. 
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Discrepancy of User’s Accuracy of CropScape 2016 Against LIQ 2016 

Crop Revenue (USD) CWR (AF) 
GHG Emission 

(MgCO2e) 

Total 

Hectares 

Alfalfa 6,987,213 (22,818) (183) 2,558 

Almonds (56,122,739) (46,015) 2,914 11,357 

Apples 1,309,946 (497) (106) 173 

Bushberries (16,190,690) 1,286 (528) 214 

Carrots (86,161,263) 9,889 (1,909) 4,398 

Cherries (56,934,743) (395) (107) 1,875 

Citrus (113,144,068) (92,257) (23,676) 13,458 

Corn 5,508,976 10,047 (19,988) 14,146 

Cotton 2,381,874 (1,464) 31 956 

Fallow 186,149,046 100,402 7,717 12,672 

Garlic 

Onion 
(23,715,481) (6,149) (189) 1,044 

Grains 13,865,115 (2,178) (7,710) 4,461 

Grapes (701,334,011) (28,514) 2,843 13,103 

Lettuce 

Greens 
(31,216,594) (734) (549) 1,815 

Other Crops 17,065,481 (4,585)  1,750 

Other Fruit (14,834,484) (4,915) 352 1,093 

Other 

Vegetables 
(3,519,470) (61) (43) 168 

Peppers (19,053,130) (894) (1,148) 526 

Pistachios (158,162,465) (105,261) (8,397) 17,249 

Plums (440,748) (80) (0) 54 

Pomegranate (7,410,838) 1,232  723 

Potato (8,959,133) (4,577) (635) 1,806 

Safflower 1,829,049 (199) 73 440 

Strawberries (156,769) (2) (1) 1 

Tomatoes (850,629) (1,446) (619) 671 

Walnuts 2,265,859 (625) 0 348 

Total (1,060,844,697) (200,812) (51,858) 107,059 

Table 22. The revenue (USD), crop water requirement (CWR; acre-feet), and GHG emissions 

(MgCO2e) discrepancies per crop reflecting the user’s accuracy of CropScape 2016compared 

with LIQ 2016. 

4. Study Limitations and Future Work  
A limitation to comparing datasets from diverse funding sources and sponsors, in the case 

of this study, county, state, and federal, is that the granularity and number of crop categories 
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differ, as well as the land use classification algorithm thresholds used to classify different 

crop types. For example, the federally sponsored and funded USDA CDL (CropScape) 

land cover dataset tends to be biased toward subsidized program crops and is not truly a 

probability sample of land cover stemming from the use of the Farm Service Agency 

Common Land Unit as ground truth verification (USDA NASS, 2020). For this study, 

crops that were not common across all three datasets were combined into general categories 

(e.g., other vegetables and other fruits), leading to differences in the crop components for 

the general crop categories and resulting in inaccuracy for crop water requirement, revenue, 

and GHG emissions estimates. To ensure reproducibility in terms of crop type and the crop 

revenue, crop water requirement, and GHG emission values from the specified sources 

used in this study, tables were provided in the Appendix with details on the data source, 

data source crop type, and value for each crop category across all datasets for the 2014 and 

2016 study years. Future work could include running a similar analysis at the statewide 

level to quantify the revenue, crop water requirement, and GHG emission discrepancies 

resulting from user and producer errors.  

5. Conclusions  
In many drought-prone and water-scarce regions worldwide, agriculture is a major source 

of freshwater use and contributes to the local and national economy, like California's San 

Joaquin Valley. If water-scarce agriculturally dependent regions effectively develop 

climate change adaptation strategies while maintaining agriculture, reliable land use 

classification data with a high thematic resolution of land cover classes will be critical. 

Without land use classification datasets with a high thematic resolution, irrigation, GHG 

emission, and revenue inventories are not providing an accurate baseline to inform future 

strategies for meeting goals to adapt to climate change and reduce drivers of climate change 

conditions. A comparison of both producer’s and user’s accuracy between CropScape and 

LIQ show that increased investments in high thematic and spatial resolution datasets, like 

LIQ, represent highly diverse and complex landscapes in California.  

This study quantified the revenue, crop water requirement, and GHG emission 

discrepancies on the user’s end resulting from land use misclassification in the United 

States' most complex agricultural region, California's San Joaquin Valley. By comparing 

three commonly used land use datasets, Kern Ag, LIQ, and CropScape, this study found 

that the CropScape datasets did not capture the agricultural diversity (61 - 65% overall 

accuracy) as well as the statewide focused dataset, LIQ (87 - 98% overall accuracy). A 

further look at the most misclassified crop trends by area in hectares across all 2014 and 

2016 datasets showed that CropScape had higher misclassifications of pistachios, grapes, 

citrus, and almonds, while LIQ had lower misclassifications for these popular, lucrative, 

and water-intensive crops. Misclassification of California's most popular, water-intensive, 

and lucrative crops is a limitation when managing water and land use because of the 

magnitude of their presence, contribution to the economy, and intense water demand, 

especially in drought, magnify the repercussion of misclassification. Reliable and high 

thematic resolution data are necessary for drought-prone and water-scarce regions because 

of the need to represent the current state to address climate change accurately, and LIQ is 

best suited to meet these needs for California.  

This study also highlights the need for classification algorithms encompassing 

dynamic landscape changes and capturing seasonal shifts in climate conditions. The crop-
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specific producer’s and user’s error provides insight into which crop types could be 

improved in classifying both on the producer’s and user’s end. By quantifying crop 

misclassification's revenue, crop water requirement, and GHG emission discrepancies on 

the user end, it was found that the CropScape dataset misclassifications underestimated 

user revenue and crop water requirement discrepancies. In contrast, LIQ misclassifications 

resulted in overestimating user discrepancies. Crop misclassification across all datasets 

resulted in the underestimation of GHG emissions impacts. Understanding crop-specific 

misclassifications and quantifying crop revenue, water requirement, and GHG emission 

discrepancies are vital in accounting for the tradeoffs in budgeting reports that inform 

effective climate change adaptation strategies. Overall, the lower producer and user errors 

resulting from LIQ compared to CropScape provide insight that LIQ is better suited to 

inform California’s water and land use management strategies to address climate change.  
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CHAPTER 5. SUMMARY AND OUTLOOK 

This dissertation, titled “A Framework for Strategic and Equitable Multibenefit Land 

Repurposing to Sustain Food-Energy-Water Systems and Address Water Injustice in the 

San Joaquin Valley, California,” discussed the findings of three key questions explored to 

inform strategic and equitable agricultural land use transitions in California’s San Joaquin 

Valley under the Sustainable Groundwater Management Act (SGMA) and the Multibenefit 

Land Repurposing Program (MLRP): 

1) What alternative land uses meet disadvantaged community needs? 

2)  Where should land transition efforts be focused?  

3)  Are land use classification datasets used to inform water and land use 

decisions accurately representing what is currently on the ground?  

The first question of this dissertation, “what alternative land uses meet disadvantaged 

community needs,” was motivated by several studies highlighting the lack of engagement 

and involvement of disadvantaged communities in strategies to address SGMA targets 

(Bernacchi et al., 2020; Dobbin, 2020; Dobbin & Lubell, 2021; Fernandez-Bou et al., 

2021). Given the potential for agricultural land use transitions to reduce water demand 

under SGMA and associated socioeconomic and environmental implications of taking land 

out of production in and around predominantly agriculturally dependent communities, I 

found the need to learn from San Joaquin Valley community members what their preferred 

land use alternative is to reduce water demand. The timing of this work has been optimal 

in not only informing agricultural land use transitions to meet SGMA goals but also 

informing agricultural land transitions under the Department of Conservation’s 

Multibenefit Land Repurposing Program (MLRP). This work also leveraged potential 

alternative land use solutions explored for implementation in previous studies and used 

these land use types to gauge community preference in the survey: 1) habitat restoration 

(Bourque et al., 2019; Butterfield et al., 2017; Cypher et al., 2013; Lortie et al., 2018; 

Stewart et al., 2019; Tennant et al., 2013), 2) renewable energy (e.g., solar) (Butterfield et 

al., 2013; Pearce et al., 2016), 3) carbon sequestration, 4) groundwater recharge 

(Ghasemizade et al., 2019; Mayzelle et al., 2015; O’Geen et al., 2015), and 5) parks and 

green space (Jennings et al., 2012): Through an SMS distributed web survey this 

dissertation obtained insights on community land use preferences with a focus to sample 

in 32 underserved communities in the region despite the challenges of engaging 

communities during a pandemic and implementing best practices among marginalized 

populations given restrictions to in-person engagement. The findings of this work led to 

the development of a guide for community and farmer engagement of multibenefit land 

repurposing efforts to ensure inclusive engagement approaches are implemented in the 

newest land management program, MLRP. Major insights of this work include: 

• Learning that most survey participants were not at all or only somewhat familiar 

with SGMA highlighted the need to conduct effective outreach efforts on SGMA 

and MLRP that implement the use of multilingual and multimodal educational 

resources and tools  



85 

 

• Based on some survey questions, specifically those related to carbon sequestration 

and carbon credits, I learned that there is a need to develop standardized 

terminology and definitions for complicated land repurposing concepts across all 

languages to ensure that farmers and community members understand what the 

implementation of each land use entails for their community.  

• Based on survey participants, I found that maintaining agriculture in the region is 

important, and land uses alternative that helps maintain that agricultural status quo 

are prioritized, like groundwater recharge.  

• This survey study also helped identify key perceptions of alternative land uses, 

climate change, and agriculture. By conducting a factor analysis on three data 

subsets – all, DAC, and non-DAC participants—this work found that climate 

change and agricultural risk awareness is a perception that exists across all three 

groups. This finding helps inform that targeted outreach efforts are dedicated to 

early climate change adopters and that different approaches and topics for building 

common ground with potentially late climate change adapters are needed. The 

development of educational resources tailored to perceptions across California’s 

agricultural regions could help address climate change, agriculture, and land use 

transition misconceptions.  

The second question, “where should land transition efforts be focused,” incorporates a 

body of work related to sociohydrology—analysis and quantification of the dynamics 

between people and water at multiple scales to facilitate effective approaches to water 

scarcity (Kumar et al., 2020; Sivapalan et al., 2014; Sivapalan et al., 2012; Wens et al., 

2019). This dissertation applies the concept of sociohydrology by analyzing how the 

historical context in which irrigation districts in the San Joaquin Valley were formed and 

how irrigation district traits influenced the agricultural norms and water dynamics in the 

region. By consolidating disaggregated irrigation district attributes (e.g., formation date, 

surface water allocation/delivery, crop composition, service area, number of DACs within 

the boundary), this work was able to quantify groundwater dependence, identify five key 

irrigation district governance groups, and determine sociohydrologic vulnerability based 

on DAC status and freshwater status for 102 irrigation districts. Overall, this dissertation 

chapter provides insight into which irrigation districts and their associated GSA under 

SGMA are more likely to be most vulnerable to water scarcity and groundwater limitations 

under SGMA based on their groundwater overdependence.  

 The final question of this dissertation, “are land use classification datasets used to 

inform water and land use decisions accurately representing what is currently on the 

ground,” was motivated by an understanding that high user errors in land use classification 

datasets used to make critical water and land use management strategies in California could 

have further implications on already disproportionately impacted populations if 

discrepancies are not accounted for in decision making. Previous studies have shown that 

datasets like the USDA CDL (CropScape), a commonly used dataset across the United 

States, including California (Mueller & Harris, 2013), have higher accuracy in regions with 

a single dominant crop (Reitsma et al., 2016). This dissertation quantified the crop revenue, 
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crop water requirement, and GHG emission discrepancies to understand the implications 

of user error when land use classification datasets are used to provide baselines and budget 

estimates to inform future water, land use, and climate change management strategies. By 

comparing the three most used and available land cover datasets for California—

CropScape, Land IQ (assumed most accurate California dataset), and Kern County 

geospatial dataset (assumed ground truth)—I found that the dataset that is most suitable to 

represent California’s agriculturally complex landscape is Land IQ. Compared to 

CropScape, Land IQ has higher producer and user accuracies. Although the discrepancies 

for this study focused on discrepancies due to user’s error, calculation of the producer’s 

error provided insights into which specific crops could benefit from improvement in 

representing what is actually grown. This dissertation also provided detailed crop 

misclassifications to inform users of the potential discrepancies they may encounter when 

using CropScape and Land IQ to make water, land use, economic, and GHG emission 

estimates and management decisions.  

 The outcomes and findings from this dissertation have resulted in a framework for 

community and farmer engagement, approaches, and lessons learned to obtain community 

land use preferences and inform strategic and equitable agricultural land use transitions to 

reduce water demand in California. Potential next steps regarding the community and 

farmer engagement and survey approach developed from this doctoral work could be to 

implement a similar engagement and community input framework to guide GSAs and other 

statewide entities on how to implement strategic and equitable land use transition plans 

under SGMA and the MLRP. The analysis of irrigation district groundwater 

overdependence could motivate other studies to develop a standardized sociohydrologic 

vulnerability index that could inform stakeholders (e.g., water agencies, conservation 

groups, environmental justice groups, policymakers, and land use planners) on where to 

focus land and water management efforts to ensure timely adaptation to climate change 

and a water-scarce future. Another potential next step, could be to conduct a GSA-level 

analysis of groundwater dependence which could provide insight on the regions that are 

highly prone to groundwater dependence. The irrigation districts analysis of this 

dissertation would complement the GSA-level analysis by providing insights of individual 

irrigation district groundwater dependence that comprise the GSAs under SGMA. The 

findings of the comparison of the land cover dataset could inform users on accounting for 

discrepancies resulting from using a specified dataset and ensuring that estimated budgets 

and baseline values are accounting for discrepancies on the user end. The land use cover 

dataset comparison could inform approaches to conducting a statewide approach to 

quantifying the revenue, crop water requirement, and GHG emission discrepancies that 

results from user and producer errors. Overall, this doctoral work and associated 

community and farmer could contribute to elevating the importance of developing future 

strategies for California that are inclusive, equitable, and locally representative to build a 

climate-change resilient state—together.  
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APPENDIX A. CHAPTER 1 SUPPLEMENTARY INFO  
 Survey Instrument 

Welcome to the Land Use Community Survey!  

 To complete the survey in English please continue. 

¡Bienvenido a la encuesta comunitaria sobre el uso del la tierra! 

 Para completar la encuesta en Español, seleccione el botón en la esquina superior derecha de la 

pantalla que actualmente dice "English". Haga clic en él y seleccione Español para continuar en 

Español. 

The Viers Lab at University of California, Merced is conducting a community survey of the 

Central Valley of California. This research is part of CaliWaterAg and Vicky Espinoza’s doctoral 

research. The results will be shared in a report that will be published on our lab website in June 

2021. The results will contribute to land use planning in the Central Valley. Your responses are 

very helpful! 

You are being asked to participate in a research study. If you decide to volunteer, it will take 

approximately 10 minutes to complete the web survey. If you are unable to access the webform or 

you’d like to conduct the survey via phone call Vicky Espinoza at (323) 547-5506. Habla 

Español. 

Thank you for taking the time to participate. 

There are no risks to you for your participation in this study. It is possible that you will not 

benefit directly by participating in this study. The survey is confidential. Absolute confidentiality 

cannot be guaranteed, since research documents are not protected from subpoena. There is no cost 

to you beyond the time and effort required to complete the online survey described above. 

 Contact the research team via this survey or email water@ucmerced.edu about this study with 

any questions. More information about the study can be found on 

http://vicelab.ucmerced.edu/communitysurvey/.     

By continuing with the survey, you are consenting to participation in the study. You can 

discontinue this study at any time. You can skip any question.   

Thank you for your time! 

 I. About You 

1. What is your current job? [open text box] 

2. Where do you work most of the time? Provide 5-digit ZIP code. [open text box] 

3. Where do you live currently? Provide 5-digit ZIP code [open text box] 

4. How familiar are you with the Sustainable Groundwater Management Act? It is also known 

as SGMA and pronounced as sigma.  

• Select from the following: (1) Not at all familiar, (2) Somewhat familiar, (3) Very familiar  

 II. Community Vision 

This survey is about land in your community. Different land uses consume different amounts of 

water.  

We are interested in your values and vision for your community. Please answer each question to 

the best of your ability. 

Please the level of agreement with the following statements regarding your community:  

Strongly Agree, Somewhat Agree, Somewhat Disagree, Strongly Disagree.  

5. My community should have more parks, trails, bike paths, and playgrounds. 

6. More wildlife habitat means more wildlife will damage crops and reduce land values. 

mailto:water@ucmerced.edu
http://vicelab.ucmerced.edu/communitysurvey/
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7. Using wetlands, recharge ponds, and wells to help store water underground is important for 

healthy communities. 

8. Using farmland to store carbon in soil is a waste of space in my community. 

9. Land that generates electricity from the sun and wind could help the economy in my 

community.  

10. My community should NOT spend money on open spaces, like parks, trails, bike paths, and 

playgrounds. 

11. I think our community should use land to reduce climate change impacts and get paid with 

carbon credits. 

12. Land used to create clean energy, from the sun and wind, is a waste of space in my 

community. 

13. I value wildlife and would like more nearby places to watch wildlife. 

14. Replenishing groundwater in natural underground storage and wells could improve the 

economy in my community. 

15. In order to reduce groundwater overdraft, agricultural land could be used for another purpose. 

 What land use is your TOP priority?  

• Select from the following: (1) Wildlife, (2) Recreation, (3) Clean energy, (4) Secure water 

supplies, (5) Reduce greenhouse gases and climate change, (6) Schools, grocery stores, and 

housing, (7) Less-water intensive agriculture, like different crops or fallowing 

16. In order to reduce groundwater overdraft, agricultural land could be used for another purpose.  

What land use is your LOWEST priority?  

• Select from the following: (1) Wildlife, (2) Recreation, (3) Clean energy, (4) Secure water 

supplies, (5) Reduce greenhouse gases and climate change, (6) Schools, grocery stores, and 

housing, (7) Less-water intensive agriculture, like different crops or fallowing 

Please state the level of agreement with the following statements regarding agriculture: Strongly 

Agree, Somewhat Agree, Somewhat Disagree, Strongly Disagree.  

17. Agriculture is the core of the economy in my community.  

18. I live here because of agriculture  

19. My job depends on ag.  

20. There should be space between farmland and where people live for health reasons.  

21. Farming contributes to air and water pollution in my community.  

Demographics 

The following questions are used only for demographics purposes.  

22. Which categories describe you? Please check all that apply. 

• Select from the following: (1) American Indian or Alaska Native, (2) Asian, (3) Black or 

African American, (4) Latino or Hispanic or Spanish Origin, (5) Native Hawaiian or Other 

Pacific Islander, (6) White, (7) Prefer not to answer 

23. In your own words, how would you describe your racial and ethnic identity? [open text box] 

24. What are your preferred gender pronouns?  

• Select from the following: (1) She/her/hers, (2) He/him/his, (3) They/them/theirs, (4) Prefer 

not to respond 

25. What is your total household income?  

• Select from the following: (1) Under $20,000, (2) $20,001 - $40,000, (3) $40,001 - 

$60,000, (4) $60,001 - $80,000, (5) $80,001 - $100,000, (6) $100,000 or over  

Please state the degree to which you agree or disagree with the following statements on climate 

change:  Strongly Agree, Somewhat Agree, Somewhat Disagree, Strongly Disagree  

26. In my region, climate change is happening. 

27. Climate change threatens water quantity locally.  

28. Climate change threatens local water quality.  
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29. How did you find out about this survey? Select from the following: (1) Text, (2) Web, (3) 

Friend, (4) Other [Open text] 

30. Is there anything else you would like to share with us? [Open text box] 

2. Cumulative Distribution Function to Data Subsets for EFA 

A cumulative distribution function (CDF) was conducted on the total household income of survey 

respondent data (NAs were excluded) to determine the subsets based on income and 

ethnicity for the EFA. The total responses per income bracket (Under $20,000, $20,001 

- $40,000, $40,001 - $60,000, $60,001 - $80,000, $80,001 - $100,000, and $100,000 or over) were 

tallied in R. The income categories were then ranked from least to most and the CDF was calcualted 

by adding each new category count and dividing by the total count to get percentage responses 

(results in SI Table 1). The threshold for the low-income bracket was determined to be less than 

equal to $60K USD given that 42% of the resulting responses were below this income bracket (SI 

Figure 1).  

 

SI Table 1. Results of the CDF on income.  
 Income n pct CDF (n) CDF (n/total n) 

1 Under 20,000 11 8% 11 0.08 

2 20,001 - 40,000 22 15% 33 0.23 

3 40,001 - 60,000 26 18% 59 0.42 

4 60,001 - 80,000 19 13% 78 0.55 

5 80,001 - 100,000 20 14% 98 0.69 

6 Over 100,000 44 31% 142 1.00 

 

 

SI Figure 1. Resulting distribution of the CDF on income. 
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3. Supplementary Figures and Tables 

SI Table 2 The population (2018), MSG Record Count, News Sample Size (based on the rule applied), the 

Sample Fraction of Total used to determine how many samples to remove from each DAC to meet the 

reduction of 405 samples to stay within funding limits, and the Final Sample Size for each DAC. Note: the 

DACs with an asterisk did not have any sample removed to meet the 405 reduction.      

DAC Name 
Population 

(2018) 

MSG  

Record 

Count 

New Sample 

Size  

(rule applied) 

Geographic 

Limit 

Sample 

Fraction 

Sample 

Reduction 

Final 

Sample 

Size 

Dos Palos Y  242 4,156 4156 Within  0.16 67 4089 

Collierville  2642 2,069 2069 Within 0.08 33 2036 

Weedpatch  2238 991 1982 3-Mile 0.08 32 1950 

Pixley  3796 855 1710 3-Mile 0.07 27 1683 

Fairmead  1876 805 1610 5-Mile 0.06 26 1584 

Planada  4418 1,361 1361 Within 0.05 22 1339 

Del Rey  1498 654 1308 3-Mile 0.05 21 1287 

London  1854 554 1108 3-Mile 0.04 18 1090 

Grayson  1224 544 1088 5-Mile 0.04 17 1071 

Caruthers  2773 1,018 1018 Within 0.04 16 1002 

French Camp  3857 1,007 1007 Within 0.04 16 991 

Woodville  1852 499 998 5-Mile 0.04 16 982 

Terra Bella  3304 475 950 3-Mile 0.04 15 935 

Tranquillity  839 356 712 5-Mile 0.03 11 701 

Hickman  566 352 704 3-Mile 0.03 11 693 

La Vina 239 297 594 3-Mile 0.02 10 584 

Lindcove 438 247 494 3-Mile 0.02 8 486 

Cowan  570 192 384 3-Mile 0.02 6 378 

East Orosi  955 183 366 3-Mile 0.01 6 360 

Seville  691 163 326 3-Mile 0.01 5 321 

Farmington 89 83 249 3-Mile 0.01 4 245 

Mexican 

Colony 

363 118 236 3-Mile 0.01 

4 

232 

Cressey  356 76 228 3-Mile 0.01 4 224 

Crows 

Landing 

278 62 186 3-Mile 0.01 

3 

183 

El Nido  328 58 174 3-Mile 0.01 3 171 

Stratford 878 50 150 3-Mile 0.01 2 148 

Raisin City  389 40 120 3-Mile 0.00 2 118 

Cantua 

Creek* 

273 286  286 5-Mile     286 

Buttonwillow 

* 

1591 685 1370 5-Mile     941 

Kettleman 

City* 

1395 19 57 5-Mile     57 

Le Grand* 1726 661 1322 5-Mile     1258 
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Allensworth* 527 196 196 5-Mile     196 

 

 

SI Figure 2. The geographic limit used to obtain cell samples for each DAC. 
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Factor Analysis (5 Factors) All Survey Respondents  

Survey Questions PA1 PA5 PA2 PA3 PA4 h2 u2 com 

Q5COMMcomm_O 0.22 -0.27 0.13 1.16 0.19 1.09 -0.09 1.3 

Q6HABTecon_O -0.1 0.05 0.03 0.1 0.63 0.37 0.63 1.1 

Q7RECHcomm_O -0.19 0.79 0.21 -0.02 0.14 0.39 0.61 1.3 

Q8CARBcomm_O 0.04 0.15 -0.11 -0.03 0.51 0.24 0.76 1.3 

Q9RENEecon_O 0.11 0.6 -0.2 0 0.08 0.59 0.41 1.3 

Q10COMMecon_O 0.15 -0.18 0.06 -0.72 0.07 0.66 0.34 1.2 

Q11CARBecon_O 0.31 0.41 -0.17 -0.07 0.04 0.66 0.34 2.3 

Q12RENEcomm_O -0.06 -0.48 0.27 0.11 0.19 0.53 0.47 2.1 

Q13HABTcomm_O 0 0.18 -0.22 -0.27 0.12 0.36 0.64 3.2 

Q14RECHecon_O 0.09 0.62 0.3 -0.02 0.07 0.32 0.68 1.5 

Q17AgEcon_O -0.05 0.14 0.45 0.04 -0.22 0.21 0.79 1.7 

Q18AgLive_O 0.07 0.25 1 0.03 0 0.75 0.25 1.1 

Q19AgJob_O 0.11 0.09 0.74 -0.04 0.05 0.46 0.54 1.1 

Q20AgSpace_O 0.91 -0.07 0.27 -0.01 0.02 0.51 0.49 1.2 

Q21AgPollution_O 0.82 -0.25 0 -0.03 0.02 0.51 0.49 1.2 

Q26CC_Happening_O 0.55 0.32 -0.13 0.01 0.02 0.76 0.24 1.8 

Q27CC_WaterQuantity_O 0.66 0.2 -0.15 -0.01 0 0.81 0.19 1.3 

Q28CC_WaterQuality_O 0.59 0.24 -0.15 0.02 0 0.76 0.24 1.5 
 

 PA1 PA5 PA2 PA3 PA4 

SS loadings 3.03 2.22 2.12 1.85 0.74 

Proportion Var 0.17 0.12 0.12 0.1 0.04 

Cumulative Var 0.17 0.29 0.41 0.51 0.55 

Proportion Explained 0.3 0.22 0.21 0.19 0.07 

Cumulative Proportion 0.3 0.53 0.74 0.93 1 
 

With factor correlations of: 

 PA1  PA5 PA2 PA3 PA4 

PA1 
1 0.59 

-

0.69 0.44 

-

0.22 

PA5 
0.59 1 

-

0.45 0.48 

-

0.38 

PA2 -0.69 -0.45 1 -0.44 0.25 

PA3 
0.44 0.48 

-

0.44 1 

-

0.39 

PA4 -0.22 -0.38 0.25 -0.39 1 

Mean item complexity =  1.5       
Test of the hypothesis that 5 factors are sufficient.    
The degrees of freedom for the model are 73  and the objective function was  1.39  

The root mean square of the residuals (RMSR) is  0.04  

The df corrected root mean square of the residuals is  0.06  
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Tucker Lewis Index of factoring reliability = 0.795 

RMSEA index = 0.103  and the 90 % confidence intervals are  0.085 0.122 

BIC = -178.55 

Fit based upon off diagonal values = 0.99 

SI Table 3. Exploratory Factor Analysis (EFA) for all survey respondents (excluding participants 

with NA for the income variable) with five factors. Note: this 5 factor anlysis was compared with 

EFAs on all survey respondents for 3 and 4 factors to understand factor analysis structure, and 

was chosen given that there was no stark difference among the compared models and the model 

with five factors provided more nuance between clusters. 

 

SI Figure 3. Resulting Exploratory Factor Analysis (EFA) of five underlying perceptions between 

land use, relationship to agriculture, and climate change statements for all survey respondents 

(n=143). The numbers indicate factor loadings and the dashed red lines represent a negative 

loading.  

 

Factor Analysis (4 Factors) for DAC Survey Respondents  

Survey Questions PA1 PA4 PA3 PA2 h2 u2 com 

Q5COMMcomm_O -0.01 0.12 0.94 -0.46 0.967 0.033 1.5 

Q6HABTecon_O -0.12 0.57 0.04 0.06 0.365 0.635 1.1 

Q7RECHcomm_O 0.1 0.2 0 0.75 0.629 0.371 1.2 

Q8CARBcomm_O 0.16 0.23 0 0.02 0.068 0.932 1.8 
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Q9RENEecon_O 
0.45 

-

0.23 0.11 0.22 0.413 0.587 2.2 

Q10COMMecon_O 
0.1 0.21 

-

0.75 0.11 0.591 0.409 1.2 

Q11CARBecon_O 
0.62 

-

0.01 0.24 0.13 0.592 0.408 1.4 

Q12RENEcomm_O 
-0.24 0.5 

-

0.07 -0.16 0.407 0.593 1.7 

Q13HABTcomm_O -0.09 0.02 0.47 0.12 0.221 0.779 1.2 

Q14RECHecon_O 0.17 0.19 0.19 0.49 0.381 0.619 1.9 

Q17AgEcon_O 
-0.03 

-

0.02 

-

0.09 0.21 0.051 0.949 1.4 

Q18AgLive_O -0.05 0.79 -0.1 0.2 0.709 0.291 1.2 

Q19AgJob_O -0.13 0.6 0 -0.01 0.402 0.598 1.1 

Q20AgSpace_O 
0.83 0.08 

-

0.16 -0.24 0.637 0.363 1.3 

Q21AgPollution_O 0.43 0.14 0.01 -0.67 0.583 0.417 1.8 

Q26CC_Happening_O 
0.89 

-

0.01 

-

0.11 -0.05 0.738 0.262 1 

Q27CC_WaterQuantity_O 
0.94 

-

0.14 

-

0.13 -0.01 0.858 0.142 1.1 

Q28CC_WaterQuality_O 
0.86 

-

0.14 

-

0.07 -0.08 0.754 0.246 1.1 
 

 PA1 PA4 PA3 PA2 

SS loadings          4.00 1.96 1.72 1.69 

Proportion Var         0.22 0.11 0.10 0.09 

Cumulative Var       0.22 0.33 0.43 0.52 

Proportion Explained   0.43 0.21 0.18 0.18 

Cumulative Proportion  0.43 0.64 0.82 1.00 
 

With factor correlations of 

 PA1 PA4 PA3 PA2 

PA1 1.00 -0.17 0.38 0.09 

PA4 -0.17 1.00 -0.12 0.03 

PA3 0.38 -0.12 1.00 0.11 

PA2 0.09 0.03 0.11 1.00 

Mean item complexity = 1.4 

Test of the hypothesis that 4 factors are sufficient. 

The degrees of freedom for the null model are 153 and the objective function was 

10.46 with Chi Square of 378.4 

The degrees of freedom for the model are 87 and the objective function was 2.81  
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The root mean square of the residuals (RMSR) is 0.06  

The df corrected root mean square of the residuals is 0.08  

The harmonic number of observations is 44 with the empirical chi square 52.06 

with prob < 1  

The total number of observations was 44 with Likelihood Chi Square = 94.22 

with prob < 0.28  

Tucker Lewis Index of factoring reliability = 0.936 

RMSEA index = 0.037 and the 90 % confidence intervals are 0 0.097 

BIC = -235.01 

Fit based upon off diagonal values = 0.95 

Measures of factor score adequacy              
PA1 PA4 PA3 PA2 

Correlation of (regression) scores with factors    
0.97 0.91 0.99 0.90 

Multiple R square of scores with factors           0.94 0.83 0.98 0.81 

Minimum correlation of possible factor scores      0.88 0.67 0.96 0.62 
SI Table 4. Exploratory Factor Analysis (EFA) for DAC survey respondents (income ≤ $60K and 

non-declared white) with four factors. 
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SI Figure 4. Resulting Exploratory Factor Analysis (EFA)of four underlying perceptions between 

land use, relationship to agriculture, and climate change statements among DAC survey 

respondents (n=44). The numbers indicate factor loadings and the dashed red lines represent a 

negative loading. Acronyms: PA1= Address Agricultural and Climate Change Risks, 

PA2=Agricultural is Not the Problem & Focus on Groundwater Recharge, PA3=More Recreation 

and Wildlife Habitat, and PA4=Ag Against Land for Habitat & Renewable Energy.  
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Factor Analysis (3 Factors) for non-DAC Survey Respondents 

Survey Questions PA1 PA2 PA3 h2 u2 com 

Q5COMMcomm_O 0 0.22 -0.72 0.636 0.36 1.2 

Q6HABTecon_O -0.26 0.09 0.11 0.088 0.91 1.6 

Q7RECHcomm_O 0.67 -0.32 0.01 0.341 0.66 1.4 

Q8CARBcomm_O 0.05 0.18 0.28 0.087 0.91 1.8 

Q9RENEecon_O 0.69 0.14 0.02 0.576 0.42 1.1 

Q10COMMecon_O -0.13 0.05 0.88 0.883 0.12 1 

Q11CARBecon_O 0.6 0.27 -0.12 0.692 0.31 1.5 

Q12RENEcomm_O -0.73 -0.06 -0.01 0.575 0.43 1 

Q13HABTcomm_O 0.28 0.3 -0.29 0.46 0.54 3 

Q14RECHecon_O 0.71 -0.33 0.13 0.335 0.66 1.5 

Q17AgEcon_O 0.06 -0.57 -0.19 0.288 0.71 1.2 

Q18AgLive_O 0.15 -0.91 -0.02 0.711 0.29 1.1 

Q19AgJob_O 0.16 -0.73 0.2 0.527 0.47 1.3 

Q20AgSpace_O 0.43 0.16 0.03 0.268 0.73 1.3 

Q21AgPollution_O 0.49 0.4 0.16 0.498 0.5 2.2 

Q26CC_Happening_O 0.64 0.32 -0.12 0.816 0.18 1.6 

Q27CC_WaterQuantity_O 0.55 0.43 -0.07 0.771 0.23 1.9 

Q28CC_WaterQuality_O 0.58 0.35 -0.11 0.748 0.25 1.7 
 

 PA1 PA2 PA3 

SS loadings           4.39 3.09 1.82 

Proportion Var         0.24 0.17 0.10 

Cumulative Var         0.24 0.42 0.52 

Proportion Explained   0.47 0.33 0.20 

Cumulative Proportion  0.47 0.80 1.00 
 

With factor correlations of: 

 PA1 PA2 PA3 

PA1 1.00 0.47 -0.49 

PA2 0.47 1.00 -0.23 

PA3 -0.49 -0.23 1.00 
 

Mean item complexity =  1.5 

Test of the hypothesis that 3 factors are sufficient. 

The degrees of freedom for the null model are 153 and the objective 

function was  12.09 with Chi Square of  1101.81 

The degrees of freedom for the model are 102  and the objective function 

was  2.85  

The root mean square of the residuals (RMSR) is  0.06  

The df corrected root mean square of the residuals is  0.07  
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The harmonic number of observations is  98 with the empirical chi square  

103.06  with prob <  0.45  

The total number of observations was  99  with Likelihood Chi Square =  

253.72  with prob <  6.3e-15  

Tucker Lewis Index of factoring reliability =  0.754 

RMSEA index =  0.122  and the 90 % confidence intervals are  0.104 

0.142 

BIC =  -214.98 

Fit based upon off diagonal values = 0.98 

Measures of factor score adequacy              
 PA1  PA2 PA3 

Correlation of (regression) scores with factors    0.96 0.94 0.96 

Multiple R square of scores with factors    0.91 0.89 0.92 

Minimum correlation of possible factor scores      0.83 0.78 0.83 

SI Table 5. Exploratory Factor Analysis (EFA) for non-DAC survey respondents (excludes DAC 

survey respondents) with three factors. 
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SI Figure 5. Resulting Exploratory Factor Analysis (EFA) of three underlying perceptions between 

land use, relationship to agriculture, and climate change statements among non-DAC survey 

respondents (n=99). The numbers indicate factor loadings and the dashed red lines represent a 

negative loading. Acronyms: PA1= Address Agricultural and Climate Change Risks, PA2=Non-

Ag for Habitat, PA3=Opposed to Recreational Spaces.
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Factor Analysis (3 Factors) for All Survey Respondents 

Survey Questions PA1 PA3 PA2 h2 u2 com 

Q5COMMcomm_O 0.21 -0.6 -0.14 0.525 0.4746 1.3 

Q6HABTecon_O -0.18 0.12 0 0.061 0.9393 1.7 

Q7RECHcomm_O 0.38 0.01 0.52 0.326 0.6745 1.8 

Q8CARBcomm_O 0.11 0.19 -0.04 0.037 0.9628 1.7 

Q9RENEecon_O 0.75 -0.01 0.14 0.539 0.4608 1.1 

Q10COMMecon_O -0.16 0.93 -0.05 0.991 0.0091 1.1 

Q11CARBecon_O 0.79 -0.08 0.04 0.656 0.3436 1 

Q12RENEcomm_O -0.66 0.03 -0.08 0.437 0.5629 1 

Q13HABTcomm_O 0.39 -0.3 -0.05 0.34 0.6598 1.9 

Q14RECHecon_O 0.46 0.03 0.48 0.335 0.665 2 

Q17AgEcon_O -0.13 -0.09 0.36 0.165 0.835 1.4 

Q18AgLive_O -0.29 0.06 0.64 0.595 0.4046 1.4 

Q19AgJob_O -0.28 0.12 0.45 0.379 0.6208 1.9 

Q20AgSpace_O 0.59 0.1 -0.04 0.332 0.6681 1.1 

Q21AgPollution_O 0.52 0.06 -0.25 0.378 0.6216 1.5 

Q26CC_Happening_O 0.88 0.03 -0.02 0.761 0.2387 1 

Q27CC_WaterQuantity_O 0.88 0.06 -0.11 0.803 0.197 1 

Q28CC_WaterQuality_O 0.85 0.02 -0.08 0.756 0.2443 1 
 

      
 PA1 PA3 PA2    
SS loadings 5.47 1.54 1.41    
Proportion Var 0.3 0.09 0.08    
Cumulative Var 0.3 0.39 0.47    
Proportion Explained 0.65 0.18 0.17    
Cumulative Proportion 0.65 0.83 1    
  PA1 PA3 PA2 

With factor correlations of: 

PA1 1 -0.34 -0.23 

PA3 -0.34 1 0.02 

PA2 -0.23 0.02 1 

Mean item complexity =  1.4 

Test of the hypothesis that 3 factors are sufficient. 

The root mean square of the residuals (RMSR) is  0.06  

The df corrected root mean square of the residuals is  0.07  

Tucker Lewis Index of factoring reliability =  0.775 

BIC =  -232.96 

Fit based upon off diagonal values = 0.97 

SI Table 6. Exploratory Factor Analysis (EFA) for all survey respondents (excluding participants 

with NA for the income variable) with three factors. Note: this factor anlysis was used for 

comparative purposes with EFAs for all survey respondents across 3-5 factors. 
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SI Figure 6. Resulting Exploratory Factor Analysis (EFA) of three underlying perceptions between 

land use, relationship to agriculture, and climate change statements for all survey respondents 

(n=143). The numbers indicate factor loadings and the dashed red lines represent a negative 

loading. Note: this factor anlysis was used for comparative purposes with EFAs for all survey 

respondents across 3-5 factors.   

 

Factor Analysis (4 Factors) for All Survey Respondents  

Survey Question  PA1 PA3 PA4 PA2 h2 u2 com 

Q5COMMcomm_O -0.34 1.09 0.23 0.07 0.918 0.082 1.3 

Q6HABTecon_O -0.34 0.01 0.13 0.08 0.102 0.898 1.4 

Q7RECHcomm_O 0.47 -0.07 -0.02 0.41 0.317 0.683 2 

Q8CARBcomm_O -0.08 -0.09 0.23 -0.01 0.052 0.948 1.6 

Q9RENEecon_O 0.71 -0.06 0.16 0.02 0.571 0.429 1.1 

Q10COMMecon_O -0.17 -0.78 0.11 -0.1 0.728 0.272 1.2 

Q11CARBecon_O 0.62 0.07 0.26 -0.03 0.661 0.339 1.4 

Q12RENEcomm_O -0.82 0.15 0.01 0.09 0.561 0.439 1.1 

Q13HABTcomm_O 0.39 0.27 -0.02 -0.1 0.369 0.631 1.9 

Q14RECHecon_O 0.4 -0.03 0.13 0.41 0.313 0.687 2.2 

Q17AgEcon_O 0.01 0.07 -0.17 0.35 0.164 0.836 1.6 
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Q18AgLive_O -0.28 0.06 -0.04 0.77 0.712 0.288 1.3 

Q19AgJob_O -0.34 -0.01 0.04 0.56 0.458 0.542 1.7 

Q20AgSpace_O 0.07 0.12 0.61 0.06 0.446 0.554 1.1 

Q21AgPollution_O -0.01 0.14 0.59 -0.16 0.478 0.522 1.3 

Q26CC_Happening_O 0.52 0.05 0.48 -0.04 0.761 0.239 2 

Q27CC_WaterQuantity_O 0.44 0.05 0.56 -0.11 0.816 0.184 2 

Q28CC_WaterQuality_O 0.46 0.08 0.5 -0.09 0.762 0.238 2.1 

 

                         PA1 PA3 PA4 PA2 

SS loadings           3.52  1.88 2.29 1.50 

Proportion Var         0.20 0.10 0.13 0.08 

Cumulative Var         0.20 0.30 0.43 0.51 

Proportion Explained   0.38 0.20 0.25 0.16 

Cumulative Proportion  0.38 0.59 0.84 1.00 

 With factor correlations of  

 PA1 PA3 PA4 PA2 

PA1 1.00 0.58 0.42 -0.14 

PA3 0.58 1.00 0.19 -0.25 

PA4 0.42 0.19 1.00 -0.23 

Mean item complexity = 1.6 

Test of the hypothesis that 4 factors are sufficient. 

The degrees of freedom for the null model are 153 and the objective function was 

9.73 with Chi Square of 1315.33 

The degrees of freedom for the model are 87 and the objective function was 1.56  

The root mean square of the residuals (RMSR) is 0.05  

The df corrected root mean square of the residuals is 0.06  

The harmonic number of observations is 142 with the empirical chi square 104.02 

with prob <  0.1  

The total number of observations was 143 with Likelihood Chi Square = 206.58 

with prob <  1e-11  

Tucker Lewis Index of factoring reliability = 0.815 

RMSEA index = 0.098 and the 90 % confidence intervals are 0.081 0.116 

BIC = -225.19 

Fit based upon off diagonal values = 0.98  

Measures of factor score adequacy              PA1 PA3 PA4 PA2 

Correlation of (regression) scores with factors    0.94 0.96 0.90 0.88 

Multiple R square of scores with factors           0.88 0.93 0.82 0.78 

Minimum correlation of possible factor scores      0.76 0.85 0.63 0.55 
SI Table 7. Exploratory Factor Analysis (EFA) for all survey respondents (excluding participants 

with NA for the income variable) with four factors. Note: this factor anlysis was used for 

comparative purposes with EFAs for all survey respondents across 3-5 factors. 
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SI Figure 7. Resulting Exploratory Factor Analysis (EFA) of four underlying perceptions between 

land use, relationship to agriculture, and climate change statements for all survey respondents 

(n=143). The numbers indicate factor loadings and the dashed red lines represent a negative 

loading. Note: this factor anlysis was used for comparative purposes with EFAs for all survey 

respondents across 3-5 factors.   

 

SI Figure 8. Cross tabulation of participant responses as cumulative agree and disagree for “my 

job depends on ag” with “there should be space between farmland and where people live for 

health reasons” 
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SI Figure 10. Cross tabulation of participant responses as cumulative agree and disagree for 

renewable energy for community factor (x-axis) with TOP land use priority to address 

groundwater overdraft. 

SI Figure 9. Cross tabulation of participant responses as cumulative agree and disagree for 

renewable energy for the economic factor (x-axis) with TOP land use priority to address 
groundwater overdraft. 
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SI Figure 11. Cross tabulation of participant responses as cumulative agree and disagree for 

renewable energy for community factor (x-axis) with lowest land use priority to address 

groundwater overdraft.  

 

 

 

 

 

 

 

 

 

 

 

 

SI Figure 12. Cross tabulation of participant responses as cumulative agree and disagree for 

renewable energy for economic factor (x-axis) with lowest land use priority to address groundwater 

overdraft. 



133 

 

 

SI Figure 13. Cross tabulation of TOP land use priority to address groundwater overdraft and 

familiarity to SGMA (x-axis). 

 

SI Figure 14. Cross tabulation of LOWEST land use priority to address groundwater overdraft and 

familiarity to SGMA (x-axis). 
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SI Figure 15. Cross tabulation of “my job depends on ag”(x-axis) and TOP land use priority to 

address groundwater overdraft. 

 

SI Figure 16. Cross tabulation of “my job depends on ag”(x-axis) and LOWEST land use priority 

to address groundwater overdraft. 
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SI Figure 17. Cross tabulation of “there should be more space between agriculture and where 

people live for health reasons”(x-axis) and LOWEST land use priority to address groundwater 

overdraft.  

SI Figure 18. Cross tabulation of “there should be more space between agriculture and where people 

live for health reasons”(x-axis) and TOP land use priority to address groundwater overdraft 
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SI Figure 19. Cross tabulation of “farming contributes to air and water pollution in my 

community” (x-axis) and TOP land use priority to address groundwater overdraft.  

 SI Figure 20. Cross tabulation of “farming contributes to air and water pollution in my 

community”(x-axis) and LOWEST land use priority to address groundwater overdraft.  
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SI Figure 21. Cross tabulation of “I live here because of agriculture”(x-axis) and TOP land use 

priority to address groundwater overdraft. 

 

SI Figure 22. Cross tabulation of “I live here because of agriculture” (x-axis) and LOWEST land 

use priority to address groundwater overdraft. 
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SI Figure 23. Cross tabulation of “agriculture is the core of the economy in my community” (x-

axis) and TOP land use priority to address groundwater overdraft. 

 

SI Figure 24. Cross tabulation of “agriculture is the core of the economy in my community” (x-

axis) and LOWEST land use priority to address groundwater overdraft. 
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SI Figure 25. Cross tabulation between the parks and green space community and economic 

statements to understand fidelity in participant value on land use in their community. Generally, 

respondents would like economic investments for more parks and green space in their community.  

 

SI Figure 26. Cross tabulation between habitat restoration community and economic statements to 

understand fidelity in participant value on land use in their community. Some respondents value 

wildlife and don’t think they damage crops nor reduce land values, while others somewhat value 

places to  watch wildlife in their community and somewhat disagree or somewhat agree that this 

would lead to reduction in land values.Generally, respondents would like economic investments for 

more parks and green space in their community. 
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SI Figure 27. Cross tabulation between carbon sequestration community and economic statements 

to understand fidelity in participant value on land use in their community. There's a support and 

interest for carbon credits, but moreso with economic incentives. More outreach on carbon 

sequestration and impacts would be helpful. 

 

 

SI Figure 28. Cross tabulation between groundwater recharge community and economic 

statements to understand fidelity in participant value on land use in their community. Most 

respondents value groundwater recharge for the well-being, both health and economic, of their 

community. 
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SI Figure 29. Cross tabulation between groundwater recharge community and economic 

statements to understand fidelity in participant value on land use in their community. Most 

respondents strongly disagree that clean energy is a waste of space and believe that it could 

improve the economy in their community. 

 

SI Figure 30. Breakdown of farmers and other agricultural professionals pespective on the 

implementation of space between agriculture and communities for health reasons.  Farms are more 

likely to disagree with the implementation of space between farmland and communities, while other 

ag professional agree.  
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SI Figure 31. Breakdown of farmers and other agricultural professionals pespective on agriculture 

contributes to air and water pollution their community. Both farmers and other ag professionals 

disagree that agriculture contributes to air and water pollution in their community. 

 

SI Figure 32. Breakdown of farmers and other agricultural professionals stance on climate 

change is happening. Farmers are more likely to disagree that climate change is happening. 

There is an even split among other ag professionals that strongly disagree and strongly agree 

that climate change is happening. 

 

SI Figure 33. Breakdown of farmers and other agricultural professionals stance on climate 

change is impacting water quantity in the region. Farmers are more likely to disagree that 
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climate change impacts water quantity in their region, while other ag professional are evenly 

split between agree and disagree. 

 

 

SI Figure 34. Breakdown of farmers and other agricultural professionals stance on climate change 

is impacting water quality in the region. Farmers are more likely to disagree that climate change 

impacts water quality in their region, while other ag professional are evenly split between agree 

and disagree. 

 

 

SI Figure 35. Breakdown of top land use priority should agricultural land transition to address 

groundwater overdraft between farmers and other agricultural professionals.  The top land use 

priority is secure water supplies for farmers and other ag professionals, but between the two most 

farmers selected secure water supplies.  The second preferred top land use is less water-intensive 

ag. 
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SI Figure 36. Geographic distribution of farmer and other agricultural professionals that 

responded to the survey by county.  

 

SI Figure 37. Preferred gender pronouns of respondents that have jobs that depend on agriculture.  

 

SI Figure 38. The income distribution of respondents that stated that their job depends on 

agriculture.  

 

SI Figure 39. Ethnicity distribution of respondents that identified as farmers and other agricultural 

professionals. 
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SI Figure 40. Respondents that identify as farmers are somewhat (15%) to very (30%) familiar with 

SGMA, while other agricultural professionals are mostly not at all familiar with SGMA (20%).  

 

 

SI Figure 41. Respondents whose job depends on agriculture and their  responses to agriculture 

statements.  
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SI Figure 42. Respondents who identify as farmers or other agricultural professionals and their 

levels of agreement to statements on agricultural buffers/space between farmland and where people 

live and agriculture’s contribution to pollution.  



147 

 

 

SI Figure 43. Responses of respondents that identify as farmers or other agricultural professionals 

to climate change statements.  
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APPENDIX B. GUIDE TO COMMUNITY ENGAGEMENT 
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APPENDIX C. CALIWATERAG YOUTUBE CHANNEL  
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APPENDIX D. CHAPTER 3 SUPPLEMENTARY INFO 

SI Figure 44. Irrigation district a) DAC status (California Office of Environmental Health 

Hazard Assessment, 2018), b) freshwater status, and c) sociohydrologic vulnerability. 

Freshwater status is defined by groundwater dependence as a function of an irrigation district’s 

surface water delivery. The DAC status is defined by the socioeconomic and environmental 

burden conditions for disadvantaged communities (DACs) within irrigation districts (triangles) 

and within groundwater-dependent communities (GDCs) (circles). Calculation of the high, 

moderate, and low classes are defined by DAC status, freshwater status, and sociohydrologic 

vulnerability quantiles shown below the maps.   
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Pollution Burden Population Characteristics 

Exposures  Exposures  

• Ozone Concentrations  

• PM2.5 Concentrations  

• Children’s Lead Risk from Housing 

• Diesel PM Emissions 

• Drinking Water Contaminants 

• Pesticide Use  

• Toxic Releases from Facilities 

• Traffic Density 

• Asthma 

• Cardiovascular Disease 

• Low Birth Weight Infants 

Environmental Effects  Socioeconomic Factors  

• Solid Waste Sites and Facilities  

• Groundwater Threats 

• Hazardous Waste  

• Impaired Water Bodies  

• Cleanup Sites 

• Educational Attainment 

• Housing Burdened Low 

Income Households 

• Linguistic Isolation 

• Poverty 

• Unemployment 

SI Table 8. Components that make up the pollution burden and population characteristics of the 

overall CalEnviroScreen4.0 score obtained to represent the socioeconomic and environmental 

status of DACs within irrigation districts. The DAC status is one component of the sociohydrologic 

vulnerability index for this study. 

 

Major 

Datasets Source 

Irrigation 

District 

Boundaries 

Most updated irrigation district boundaries were obtained mainly from county 

LAFCOs in 2019. 

• San Joaquin Local Agency Formation Commission (LAFCO)- 

www.sjgov.org/commission/lafco/ 

• Stanislaus LAFCO- www.stanislauslafco.org/ 

• Merced LAFCO- www.lafcomerced.org/ 

• Fresno LAFCO- www.fresnolafco.org/ 

• Madera LAFCO- www.maderacounty.com/government/madera-lafco 

• Tulare LAFCO- lafco.co.tulare.ca.us/lafco/ 

• Kern LAFCO- www.kerncounty.com/government/other-agencies/local-

agency-formation-commission-lafco 

• Kings County and Irrigation Districts not included in the LAFCO boundaries 

from the Department of Water Resources (DWR) Atlas Database 

(decommissioned webpage): Irrigation and Water District Boundaries 

(accessed in September 2019)- data now available via 

gis.data.cnra.ca.gov/datasets/ 
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Surface Water 

Allocations 

• State Water Resources Control Board (SWRCB) eWRIMS – Electronic 

Water Rights Information Management System; accessed November 2020- 

https://www.waterboards.ca.gov/waterrights/water_issues/programs/ewrims/ 

• DWR State Water Project Contractor lists (Averages 1962-2017); Dataset 

obtained from Alvar Escriva-Bou (Public Policy Institute of California); data 

originally accessed from- https://water.ca.gov/-/media/DWR-Website/Web-

Pages/Programs/State-Water-Project/Management/Bulletin-132/Bulletin-

132/Files/B132-18-Appendix_B.pdf 

• U.S. Bureau of Reclamation (USBR) CVP Agricultural Contractors list; 

accessed in 2020- https://www.usbr.gov/mp/cvp-water/water-

contractors.html 

• Other sources obtained from individual irrigation districts – Agricultural 

Water Management Plans; Groundwater Sustainability Plans; USBR reports 

Surface Water 

Delivery 

(Average) 

• Irrigation District surface water delivery 2001-2015 average. Data from J. 

Jezdimirovic, E. Hanak, A. Escriva-Bou. 2020. PPIC San Joaquin Valley 

Surface Water Availability. Public Policy Institute of California. 

• Banta-Carbona Irrigation District and Byron-Bethany Irrigation District 

surface water delivery average 2008-2019. Data from Tracy Subbasin GSP, 

Table 7.3: https://tracysubbasin.org/gsp-chapters/ 

• South San Joaquin Irrigation District (SSJID) surface water delivery average 

2005-2019. Data from SSJID 2020 Agricultural Water Management Plan, 

Table 4-1: https://www.ssjid.com/wp-content/uploads/2020-Ag-Water-

Management-Plan.pdf 

Land Use 

Classification 
• DWR 2016 Statewide Crop Mapping dataset; accessed from CNRA in 

December 2020- https://data.cnra.ca.gov/dataset/statewide-crop-mapping 

2016 Crop 

Revenue 

Values 

• San Joaquin County 2016 Crop Report- 

https://www.sjgov.org/department/agcomm/crop_reports 

• Stanislaus County 2016 Crop Report- http://www.stanag.org/agricultural-

statistics.shtm 

• Merced County 2016 Crop Report- https://www.co.merced.ca.us/151/Crop-

Statistics-Reports 

• Fresno County 2016 Crop Report- 

https://www.co.fresno.ca.us/departments/agricultural-commissioner/fresno-

county-crop-report-dmi 

• Madera County 2016 Crop Report- 

https://www.maderacounty.com/government/agricultural-commissioner-

weights-and-measures/annual-crop-reports 

• Kings County 2016 Crop Report- 

https://www.countyofkings.com/departments/general-services/crop-reports 

• Tulare County 2016 Crop Report- 

https://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-

reports1/crop-reports-2011-2020/ 

• Kern County 2016 Crop Report- http://www.kernag.com/caap/crop-

reports/crop-reports.asp 

Disadvantaged 

Community 

Environmental 

and Poverty 

Percentiles 

• CalEnviroScreen 4.0 (2018) results by census tract; accessed from OEHHA 

in October 2021: 

https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40  

• DWR 2018 census places shapefile (2018): https://gis.water.ca.gov/app/dacs/ 

• DWR census places and CalEnviroScreen Census tract shapefiles were joined 

in ArcPro  
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SI Table 9. List of major datasets and their sources used to derive variables used in this analysis. 

 

Variable  Acronym Unit Description 

Irrigation District Traits  

Irrigation District 

Unique 

Identification 

UID NA 
Unique identification created for each irrigation 

district (ID) 

Irrigation District 

Short Name 
IDShortName NA Shortened version of the ID name 

Formation Formation Year 

ID websites, Agricultural Water Management 

Plans (AWMPs), Groundwater Sustainability 

Plans (GSPs) 

Age* Age 
Years 

(Yrs.) 

Deduced from 'Formation' year (2021 – Year 

Formed) 

Formation Era Era 
Year 

Range 

There are four formation eras reflective of major 

water management events in California: 1887-

1913, 1914-1968, 1969-2000, 2001-2020 based 

on Hanak et al, 2011 

Era Name EraLabel Name 

Era names are as following in chronological 

order based on Formation Era description: Era 

of Local Organization, Hydraulic Era, Era of 

Conflict, Era of Reconciliation based on Hanak 

et al, 2011 

Service Area  ServArea_Ha 
Hectare

s (Ha)  

Based off the LAFCO irrigation district 

boundaries; calculate the area in ArcGIS in 

Acres and Hectares; validated using ID websites 

and other resources 

Latitude LAT 
Decimal 

degrees 

y-coordinate of the centroid of ID boundaries; 

for ID with multiple polygons the polygon with 

the larger area was selected  

Longitude LON 
Decimal 

degrees 

x-coordinate of the centroid of ID boundaries; 

for ID with multiple polygons the polygon with 

the larger areas was selected  

Group Name GroupName NA 
The group named reflects the irrigation district’s 

cluster group  

Surface Water Allocation Variables 

Surface Water 

Allocation 
SWAlloc 

Megalit

er (ML) 

  

The amount of 100% surface water allocation in 

a year (i.e., total surface water rights); Amounts 

obtained from SWRCB eWRIMS database, 

USBR contract lists, Agricultural Water 

Management Plans, and Groundwater 

Sustainability Plans; sum of all surface water 

allocation sources (e.g., CVP, SWP, other) 

Normalized 

Surface Water 

Allocation* 

SWAlloc_MLHa 

Megalit

er per 

Hectare 

(ML/Ha

) 

Derived by dividing the surface water allocation 

by the ID crop area (Ha) 
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Pending Surface 

Water 

Allocations 

PendingSW ML 

The amount of surface water allocation pending 

approval by the State Water Resource Control 

Board (SWRCB); data from SWRCB electronic 

Water Rights Information Management System 

(eWRIMS) 

Normalized 

Pending Surface 

Water 

Allocations* 

PendingSW_ML

Ha 
ML/HA 

Derived by dividing the pending surface water 

allocation amounts by irrigation district crop 

areas (Ha) 

Surface Water 

Delivery 

(Average) 

SWDelivery ML 

Based on average surface water deliveries from 

2001-2015 as reported by (Jezdimirovic et al., 

2020b) for available irrigation districts. Banta-

Carbona ID and Byron-Bethany ID surface 

water delivery average from 2008-2019; data 

from Tracy Subbasin GSP. South San Joaquin 

ID surface water delivery average from 2005-

2019; Data from SSJID 2020 Agricultural Water 

Management Plan 

Normalized 

Surface Water 

Delivery* 

SWDelivery_ML

Ha 
ML/Ha 

Derived from dividing the Surface Water 

Delivery by the ID crop area 

Central Valley 

Project Water 

(CVP) 

Allocation 

TheoCVP ML 

Values obtained from USBR contract water 

allocation reports, Agricultural Water 

Management Plans, and Groundwater 

Sustainability Plans 

Normalized 

Central Valley 

Project Water 

Allocation* 

TheoCVP_MLHa ML/Ha 
Derived from dividing the CVP allocation by the 

ID crop area 

State Water 

Project (SWP) 

Allocation 

TheoSWP ML 

Values obtained from DWR contract water 

allocation reports, Agricultural Water 

Management Plans, and Groundwater 

Sustainability Plans 

Normalized State 

Water Project 

Allocation* 

TheoSWP_MLHa ML/Ha 
Derived from dividing the SWP by the ID crop 

area 

Difference in 

Surface Water 

Allocation vs 

Delivery* 

DiffThRel_MLHa AF/Ha 

The difference between surface water allocation 

and actual average amount of surface water 

delivered  

Crop Water 

Requirement 
CWR ML 

Deduced from WAFR model (Booth et al., 

2018) CWR output on Land IQ 2016 data for 

San JoaquinValley applied to Land IQ 2016 land 

uses; Sum of the CWR of all crops within the 

IDs; CWR is derived by the evapotranspiration 

of blue water (surface water/groundwater) 

divided by the harvested acres within an 

irrigation district, which results in the depth of 

water multiplied by the ID crop area 

Normalized Crop 

Water 

Requirement* 

NCWR16_AFHa ML/Ha 
Derived by dividing the CWR for Land IQ 2016 

by the IDcrop area 
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Surface Water 

Allocation 

Surplus/Deficit  

SWAllocSurDef ML 
Difference between Surface Water Allocation 

and CWR  

Normalized 

Surface Water 

Allocation 

Surplus/Deficit * 

SWAllocSurDef_

MLHa 
ML/Ha 

Derived by dividing the surplus/deficit amounts 

resulting after meeting CWR based on surface 

water allocation by ID crop area 

Surface Water 

Delivery 

Surplus/Deficit  

SWDelSurDef 
 

ML 

Difference between Surface Water Delivery and 

CWR 

Normalized 

Surface Water 

Delivery 

Surplus/Deficit * 

SWDelSurDef_M

LHa 
ML/Ha 

Derived by dividing the surplus/deficit amounts 

resulting after meeting CWR based on surface 

water delivery by ID crop area 

Crop Variables 

Total Irrigated 

Crop Area  
CropFct 

Ha 

  

Obtained from Land IQ 2016 data for crops 

within IDs; includes Mixed Pasture & 

Miscellaneous Grasses 

Fraction of Total 

Irrigated Crop 

Area* 

CropFct Fraction 
Divided the Total Irrigated Crop Area by the ID 

Service Area  

Perennial Crop 

Area 

PerennialCropAre

a 

Ha 

  

Obtained from Land IQ 2016 data for crops 

within IDs; Categorized Land IQ perennial crops 

as perennial to create this variable  

Fraction of 

Perennial Crops 

* 

PerenFct Fraction 
Deduced dividing by ID perennial area by the ID 

total crop area   

Annual Crop 

Area 
AnnCrpArea Ha 

Obtained from Land IQ 2016 data for crops 

within IDs; Categorized Land IQ annual crops 

as annual to create this variable 

Fraction Annual 

Crop Area* 
AnnualFct Fraction 

Deduced by dividing each ID annual crop area 

by ID crop area 

Irrigated Forage 

Crop Area 
IrrigPastCropArea Ha 

Obtained from Land IQ 2016 data for crops 

within IDs; Categorized pasture, Miscellaneous 

Grain and Hay, Miscellaneous Grasses, and 

Alfalfa as irrigated forage  

Fraction Irrigated 

Forage Area* 
IrrigPastFct Fraction 

Deduced by dividing each ID irrigated forage 

area by ID crop area 

Fraction for Top 

Crops in the San 

Joaquin Valley* 

Fct_[Crop Name] Fraction  

Obtained the areas for the top crops in the San 

Joaquin Valley from Land IQ 2016 data for 

crops within IDs; The top crops in the San 

Joaquin Valley are Almond, Walnuts, Grapes, 

Cotton, and Citrus.  

Crop Economic Variables 

Total Crop 

Revenue 
TotCropRev USD 

Land IQ 2016 data was used to calculate the 

sum of acres across all crop types within each 

ID. County Crop Reports 2016 were used to 

assign crop revenues to associated crops (for 

more details on Crop Report values used per 

crop type see Excel Sheet 2). The final total crop 

revenue is the sum of revenue for all crop types 

per ID 
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Normalized 

Total Crop 

Revenue * 

TotCropRev_US

DHA 

USD/H

a 

Derived by dividing the total crop revenue by ID 

crop area 

Annual Crop 

Revenue 
AnnualRev USD 

Land IQ 2016 data was used to calculate the 

sum of acres across all crop types within each 

ID. County Crop Reports 2016 were used to 

assign crop revenues to associated crops (for 

more details on Crop Report values used per 

crop type see Excel Sheet 2). The final annual 

crop revenue is the sum revenue for all annual 

crop types per ID 

Normalized 

Annual Crop 

Revenue * 

AnnualRev_USD

HA 

USD/H

a 

Derived by dividing the annual crop revenue by 

ID annual crop area 

Perennial Crop 

Revenue 
PerennCropRev USD 

Land IQ 2016 data was used to calculate the 

sum of acres across all crop types within each 

ID. County Crop Reports 2016 were used to 

assign crop revenues to associated crops (for 

more details on Crop Report values used per 

crop type see Excel Sheet 2). The final perennial 

crop revenue is the sum revenue for all perennial 

crop types per ID 

Normalized 

Perennial Crop 

Revenue * 

PerennRev_USD

Ha 

USD/H

a 

Derived by dividing the perennial crop revenue 

by ID perennial crop area 

Disadvantaged Community Variables 

DAC Name DACName NA Identifier of disadvantaged communities 

Associated 

Irrigation District 

or White Area 

ID_WA NA 
Derived by joining DAC centroids to irrigation 

district and white area vector shapefile 

DAC Population 

(2018) 
Pop18 NA 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset 

Median 

Household 

Income (2018) 

MHI18 USD 
Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset 

DAC Severity 

Status 
Status NA 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset 

DAC Longitude Longitude 
Decimal 

degrees 

Derived by finding the coordinate of each DAC 

polygon centroid in ESRI ArcPro software 

DAC Latitude Latitude 
Decimal 

degrees 

Derived by finding the coordinate of each DAC 

polygon centroid in ESRI ArcPro software 

CalEnviroScreen

4.0 Score 

Percentile 

CIScoreP 
Percenti

le 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen4.0 states that derived from 

CalEnviroScreen Score which is the Pollution 

Score multiplied by Population Characteristics 

Score; See CalEnviroScreen Data Dictionary for 

more details 

https://oehha.ca.gov/calenviroscreen/report/cale

nviroscreen-40 

PM2.5 Percentile pmP 
Percenti

le 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen4.0 states that derived from 
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PM2.5 Score which is the annual mean PM2.5 

concentrations; See CalEnviroScreen Data 

Dictionary for more details 

https://oehha.ca.gov/calenviroscreen/report/cale

nviroscreen-40 

Drinking Water 

Score Percentile 
drinkP 

Percenti

le 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen 4.0 states that it is the drinking 

water contaminant index for selected 

contaminants; See CalEnviroScreen Data 

Dictionary for more details 

https://oehha.ca.gov/calenviroscreen/report/cale

nviroscreen-40 

Groundwater 

Threats Score 

Percentile 

gwthreatsP 
Percenti

le 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen 4.0 states that it is the 

percentile of the sum of weighted GeoTracker 

leaking underground storage tank sites within 

buffered distances to populated blocks of census 

tracts; See CalEnviroScreen Data Dictionary for 

more details 

https://oehha.ca.gov/calenviroscreen/report/cale

nviroscreen-40 

Pollution Score 

Percentile 
PollutionP 

Percenti

le 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen states that the Pollution 

Burden is the average of percentiles from the 

Pollution Burden indicators (with a half 

weighting for the Environmental Effects 

indicators) and the Pollution Burden Score is the 

Pollution Burden variable scaled with a range of 

0-10. (Used to calculate CES 4.0 score) which is 

used for the pollution burden percentile; See 

CalEnviroScreen Data Dictionary for more 

details 

https://oehha.ca.gov/calenviroscreen/report/cale

nviroscreen-40 

Asthma 

Percentile 
asthmaP 

Percenti

le 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; is the 

percentile of the age-adjusted rate of emergency 

department visits for asthma; See 

CalEnviroScreen Data Dictionary for more 

details 

https://oehha.ca.gov/calenviroscreen/report/cale

nviroscreen-40 

Poverty 

Percentile 
povP 

Percenti

le 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen states that it is the percentile of 

the percent of the population living below two 

times the federal poverty level; See 

CalEnviroScreen Data Dictionary for more 

details 

https://oehha.ca.gov/calenviroscreen/report/cale

nviroscreen-40 
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Hispanic 

Population 

Percentage 

Hispanic_pct Percent 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen 4.0 derives this from 2019 

ACS population estimates of the percent per 

census tract of those who identify as Hispanic or 

Latino 

White Population 

Percentage 
White_pct Percent 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen 4.0 derives this from 2019 

ACS population estimates of the percent per 

census tract of those who identify as non-

Hispanic white 

African 

American 

Population 

Percentage 

African_America

n_pct 
Percent 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen 4.0 derives this from 2019 

ACS population estimates of the percent per 

census tract of those who identify as non-

Hispanic African American or black 

Native American 

Population 

Percentage 

Native_American

_pct 
Percent 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen 4.0 derives this from 2019 

ACS population estimates of the percent per 

census tract of those who identify as non-

Hispanic Native American 

Asian American 

Population 

Percentage 

Asian_American_

pct 
Percent 

Derived by joining DAC census place centroids 

to the CalEnviroScreen vector dataset; 

CalEnviroScreen 4.0 derives this from 2019 

ACS population estimates of the percent per 

census tract of those who identify as non-

Hispanic Asian or Pacific Islander 

SI Table 10. Irrigation district variables and their associated acronyms, units, and descriptions 

categorized by irrigation district traits, surface water variables, crop variables, crop economic 

variables, and DAC variables. Variables with an asterisk were used for the cluster analysis. 

 

 

District/White 

Area 
DACName Pop18 

CI 

(%) 

PM2.5 

(%) 

Poor 

Drinking 

Water 

(%) 

GW 

Threats 

(%) 

Pollution 

(%) 

Asthma 

(%) 

003AID  

Traver  740 91 98 95 66 89 40 

London  1854 91 98 95 66 89 40 

Seville  691 70 95 97 39 64 41 

Yettem  441 77 95 96 61 75 19 

Monson  380 75 97 99 57 96 43 

Delft Colony  653 75 97 99 57 96 43 

Cutler  5774 77 95 96 61 75 19 

Orosi  7441 88 95 74 43 81 57 

Dinuba City 23871 87 97 80 77 84 46 
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Sultana  1030 75 97 99 57 96 43 

Reedley City 25493 91 98 51 91 81 73 

006AEWSD Arvin city 21005 79 94 99 84 91 39 

017CCID  

South Dos 

Palos  
1682 89 93 45 87 60 95 

Volta  216 93 69 89 88 86 84 

019CWD 
Chowchilla 

City 
18533 72 82 32 90 63 65 

020CID  

Caruthers  2773 87 97 94 0 65 89 

Monmouth  103 86 97 93 39 91 83 

Selma City 24598 86 98 42 52 86 93 

Parlier City 15120 99 98 82 32 93 93 

Bowles  194 98 97 98 32 97 85 

Del Rey  1498 94 97 90 50 86 68 

Sanger City 24978 83 97 74 0 69 79 

022DPWD 
Crows 

Landing  
278 82 66 93 83 92 55 

023DEID 
Rodriguez 

Camp  
87 89 98 88 14 78 55 

032EID  

Tooleville CD 309 49 94 97 53 60 32 

Exeter City 10505 57 97 56 34 50 37 

Lindcove  438 49 94 97 53 60 32 

036FID  

Easton  2206 98 97 99 59 98 95 

West Park  1035 93 97 91 14 89 98 

Biola CDP 1451 70 95 97 14 71 36 

047KDWD  
Weedpatch  2238 63 99 98 0 54 28 

Fuller Acres  841 96 99 100 86 90 83 

050LID Laton  2166 77 98 91 9 64 59 

058LID Plainview  863 86 95 95 89 76 71 

059LSID  
El Rancho  65 73 95 96 81 77 48 

Tonyville  881 73 95 96 81 77 48 

060LHWD Lost Hills  1943 87 84 91 98 95 39 

062MID  
La Vina  239 85 95 100 83 98 68 

Parkwood  1853 95 82 92 76 94 90 

066MID  

El Nido  328 81 93 93 93 94 63 

Le Grand  1726 75 84 87 36 71 37 

Planada  4418 87 93 63 50 63 99 

Tuttle  63 87 93 63 50 63 99 

Bear Creek  157 78 93 74 67 82 98 

Merced City 82289 94 93 42 95 73 99 

Franklin  7314 93 93 84 78 91 87 

Atwater City 29197 64 93 52 9 41 77 

Winton  11761 90 93 71 81 83 72 
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Livingston 

City 
13997 82 93 84 0 75 47 

Cressey  356 78 93 71 98 92 52 

068MCWD Stevinson  331 78 93 54 55 66 44 

070MID  

West Modesto  5911 93 93 92 4 80 88 

Rouse  2420 99 93 92 57 90 90 

Airport  1222 100 93 92 47 99 91 

Waterford 

City 
8823 67 93 65 36 66 37 

Empire  3667 94 93 96 0 93 55 

073NKWSD Shafter City 18923  100 97 80 96 78 

076OID Oakdale City 22599 78 93 65 36 94 62 

083PID Pixley  3796 91 99 94 62 84 58 

086RCWD Raisin City  389 84 97 95 71 78 91 

087RID  

Riverdale 

CDP 
3625 82 97 87 0 64 72 

Lanare  234 82 97 87 0 64 72 

093SLWD Santa Nella  2508 93 69 89 88 86 84 

095SWSD Buttonwillow  1591 84 99 87 46 91 25 

096SWID  

Mexican 

Colony  
363 85 100 94 51 88 44 

Cherokee 

Strip  
191 85 100 94 51 88 44 

Wasco City 26708 87 100 88 72 86 38 

102SEWD  

French Camp  3857 94 82 100 98 100 32 

Taft 

Mosswood  
951 98 82 29 75 90 97 

Kennedy  3665 93 93 54 58 81 83 

Garden Acres  10701 88 94 87 41 79 61 

Country Club  9846 79 94 54 84 79 77 

Stockton City 306283 53 94 29 92 67 60 

August  8774 94 94 29 66 78 91 

104SID Stratford  878 89 95 74 69 81 73 

107TID Tranquillity  839 87 95 81 74 79 54 

110TID  
Waukena  215 86 99 94 47 85 79 

Matheny  1134 86 99 94 47 85 79 

111TID  

Turlock City 72335 81 93 85 64 71 59 

Monterey 

Park Tract  
291 95 93 100 85 97 70 

Cowan  570 82 93 100 58 84 46 

Keyes  6185 82 93 100 58 84 46 

Ceres City 47975 90 93 95 22 94 50 

Bret Harte  5319 99 93 92 0 89 87 

Riverdale 

Park  
1301 95 93 100 85 97 70 

Parklawn  1082 97 93 100 61 98 59 
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Bystrom  4099 100 93 91 42 97 91 

Hickman  566 63 93 96 65 86 26 

116WSID Westley  838 86 66 95 92 95 47 

118WWD  

Lemoore 

Station  
7063 82 98 42 71 77 84 

Westside  182 81 95 64 77 61 70 

Cantua Creek  273 87 95 81 74 79 54 

Three Rocks  210 95 84 61 76 73 88 

122CSJWCD Farmington  89 44 66 79 69 71 23 

124NSJWCD  
Victor  444 42 55 99 54 68 22 

Collierville  2642 57 54 96 89 90 16 

125SLCC Dos Palos Y  242 92 93 65 14 73 95 

123WA02Kern  

Mettler  138 78 93 49 99 97 15 

Lamont  15222 59 100 99 0 52 32 

Greenfield  3534 87 100 100 14 73 89 

Oildale  34723 86 100 52 96 96 86 

McFarland 

City 
14456 78 100 52 0 56 67 

Delano City 52713 96 99 90 58 92 60 

129WA07Tula 

129WA07Tula  

Richgrove  2611 89 98 88 14 78 55 

Allensworth  527 89 98 88 14 78 55 

Earlimart  8790 72 99 79 14 48 60 

Alpaugh  1074 89 98 88 14 78 55 

Ducor  651 81 95 88 94 76 53 

Teviston  1027 91 99 94 62 84 58 

Terra Bella  3304 81 95 88 94 76 53 

122WA01King 
Kettleman 

City  
1395 89 95 74 69 81 73 

129WA07Tula  

Poplar-Cotton 

Center  
2436 95 95 98 99 95 64 

Tipton  3218 83 98 91 27 81 53 

East 

Porterville  
6679 81 93 99 51 58 59 

Porterville 

City 
59797 82 99 70 9 57 67 

122WA01King Corcoran city 22301 67 99 44 4 32 86 

129WA07Tula  

Woodville  1852 83 98 91 27 81 53 

Strathmore  2915 86 95 95 89 76 71 

Tulare City 62838 95 99 56 78 85 84 

124WA03Fres Huron City 7019 70 95 58 37 68 70 

129WA07Tula Lindsay City 13232 73 95 91 73 57 63 

122WA01King  
Lemoore City 25791 63 99 53 59 62 84 

Home Garden  1643 97 99 57 98 88 98 

129WA07Tula  

Farmersville 

City 
10742 81 98 92 24 77 47 

Linnell Camp  686 81 98 92 24 77 47 
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122WA01King Armona  3795 77 98 61 74 61 95 

129WA07Tula  

West Goshen  567 90 97 100 93 96 44 

Goshen  3316 90 97 100 93 96 44 

Patterson 

Tract  
2351 90 97 100 93 96 44 

Ivanhoe  4198 70 95 97 39 64 41 

Woodlake 

City 
7636 73 82 55 52 52 60 

East Orosi  955 85 93 91 14 72 55 

124WA03Fres  

San Joaquin 

City 
4021 87 95 81 74 79 54 

Orange Cove 

City 
9564 90 95 79 59 69 80 

Malaga  1337 100 97 99 92 100 90 

Calwa  1974 100 97 81 95 99 89 

Kerman City 14649 75 95 36 41 73 64 

Mendota City 11393 95 84 61 76 73 88 

Mayfair  5091 85 97 81 0 60 97 

Fresno City 522277 72 97 81 0 56 83 

Firebaugh 

City 
8295 84 69 41 91 82 66 

125WA04Made  
Parksdale  2493 75 93 94 6 60 87 

Madera city 64362 67 82 56 58 64 90 

124WA03Fres Friant  548 32 97 99 70 91 32 

127WA06Merc  

Dos Palos 

City 
5272 89 93 45 87 60 95 

Los Banos 

City 
38119 96 93 57 95 76 96 

125WA04Made Fairmead  1876 90 84 91 23 78 64 

127WA06Merc  
Gustine city 5774 91 94 85 81 85 72 

UC Merced  0 87 93 63 50 63 99 

130WA08Stani Grayson  1224 86 66 95 92 95 47 

126WA05SJoa  

Terminous  411 65 43 96 76 76 12 

Lodi City 65006 24 55 65 16 27 21 

Thornton  1038 65 43 96 76 76 12 

SI Table 11. Irrigation District and White Area DAC list and statistics
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 High 

[0.19, 0.75] 

Moderate 

[0, 0.19) 

Low 

[0, 0) 

Number Of Irrigation Districts 15 14 73 

Number Of Disadvantaged 

Communities 
41 35 87 

Freshwater Status (Groundwater 

Dependence) 
   

 
Maximum 0.89 0.58 1.00 

Average 0.55 0.19 0.35 

Minimum 0.40 0.00 0.00 

DAC Status    

 
Maximum 0.99 0.98 1.00 

Average 0.84 0.79 0.20 

Minimum 0.42 0.44 0.00 

Sociohydrologic Vulnerability 

Index 
   

 

Maximum 0.75 0.30 0 

Average 0.46 0.13 0 

Minimum 0.31 0.00 0 

 

SI Table 12. Summary of total number of irrigation districts and disadvantaged community counts, 

irrigation district age, freshwater status, DAC Status, and Sociohydrologic Vulnerability Index 

values for High, Moderate, and Low classes defined by quantiles.  
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 High Moderate Low 

Era of Conflict 

 

 

  

DAC Count  1 12 

Freshwater Status  0.07 0.55 

DAC Status  0.78 0 

Sociohydrologic 

Vulnerability Index 
 0.05 0 

Era of Local Organization 

 

 

  

DAC Count 11 2 18 

Freshwater Status 0.5 0.2 0 

DAC Status 0.8 0.9 0.8 

Sociohydrologic 

Vulnerability Index 
0.4 0.2 0 

Era of Reconciliation 

 

 

  

DAC Count   3 

Freshwater Status   0.8 

DAC Status   0 

Sociohydrologic 

Vulnerability Index 
  0 

Hydraulic Era 

 

 

  

DAC Count 30 32 54 

Freshwater Status 0.6 0.2 0.4 

DAC Status 0.8 0.8 0.05 

Sociohydrologic 

Vulnerability Index 
0.5 0.1 0 

 

SI Table 13. Summary of sociohydrologic vulernability, freshwater status, DAC status, and DAC count for 

irrigation districts in their respective formation periods or eras..
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IDShortName UID Cluster GroupName Era EraLabel 

AlisoAWD 001AWD 1 

Groundwater 

Dependent 

Vineyards 

1969-

2000 

Era of 

Conflict 

AlpaughAID 002AID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

AltaAID 003AID 3 

Sizeable 

Crop 

Generalists 

1887-

1913 

Era of Local 

Organization 

AmsterdamAWD 004AWD 1 

Groundwater 

Dependent 

Vineyards 

2001-

2020 

Era of 

Reconciliation 

AngiolaAWD 005AWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

ArvinAEWSD 006AEWSD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

BallicoBCWD 008BCWD 1 

Groundwater 

Dependent 

Vineyards 

1969-

2000 

Era of 

Conflict 

BantaBCID 009BCID 5 

Senior, 

Secure Nut 

Growers 

1914-

1968 
Hydraulic Era 

BelridgeBWSD 010BWSD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

BerrendaBMWD 011BMWD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

BuenaBVWSD 012BVWSD 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

ByronBBID 013BBID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

CaweloCWD 015CWD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

CentralCalCCID 017CCID 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

ChowchillaCWD 019CWD 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

ConsolidatedCID 020CID 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 
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CorcoranCID 021CID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

DelPuertoDPWD 022DPWD 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

DelanoDEID 023DEID 5 

Senior, 

Secure Nut 

Growers 

1914-

1968 
Hydraulic Era 

DudleyDRWD 026DRWD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

EaglefieldEWD 027EWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

EastinEWD 028EWD 1 

Groundwater 

Dependent 

Vineyards 

1969-

2000 

Era of 

Conflict 

EastsideEWD 029EWD 1 

Groundwater 

Dependent 

Vineyards 

1969-

2000 

Era of 

Conflict 

ElSolyoESWD 030ESWD 
Not 

Included 
Not Included 

1914-

1968 
Hydraulic Era 

EmpireEWSID 031EWSID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

ExeterEID 032EID 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

FarmersFWD 033FWD 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

FirebaughCWD 034FCC 2 

Forage and 

Corron 

Corridor 

1969-

2000 

Era of 

Conflict 

FreeFWC 035FWC 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

FresnoFID 036FID 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

FresnoSloFSWD 037FSWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

GarfieldGWD 038GWD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

GravellyGFWD 040GFWD 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

HillsHVID 042HVID 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 
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InternationalIWD 044IWD 4 
California 

Citrus Belt 

1969-

2000 

Era of 

Conflict 

IvanhoeIID 045IID 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

JamesJID 046JID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

KernDeltaKDWD 047KDWD 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

KernTulKTWD 048KTWD 4 
California 

Citrus Belt 

1969-

2000 

Era of 

Conflict 

KingsKRWD 049KRWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

LagunaLID 050LID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

LagunaLWD 051LWD 
Not 

Included 
Not Included 

1969-

2000 

Era of 

Conflict 

LakesideLID 052LID 
Not 

Included 
Not Included 

1914-

1968 
Hydraulic Era 

LeGrandLGAWD 055LGAWD 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

LibertyLWD 057LWD 1 

Groundwater 

Dependent 

Vineyards 

1969-

2000 

Era of 

Conflict 

LindmoreLID 058LID 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

LindsayLSID 059LSID 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

LostLHWD 060LHWD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

LowerTulLTID 061LTID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

MaderaMID 062MID 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

MaderaMWD 063MWD 4 
California 

Citrus Belt 

1969-

2000 

Era of 

Conflict 

MelgaMWD 065MWD 
Not 

Included 
Not Included 

1914-

1968 
Hydraulic Era 

MercedMID 066MID 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 
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MercyMSWD 067MSWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

MerquinMCWD 068MCWD 2 

Forage and 

Corron 

Corridor 

1969-

2000 

Era of 

Conflict 

MidvalleyMWD 069MWD 1 

Groundwater 

Dependent 

Vineyards 

1969-

2000 

Era of 

Conflict 

ModestoMID 070MID 5 

Senior, 

Secure Nut 

Growers 

1887-

1913 

Era of Local 

Organization 

NagleeBurkNBID 071NBID 
Not 

Included 
Not Included 

1914-

1968 
Hydraulic Era 

NewStoneNSWD 072NSWD 1 

Groundwater 

Dependent 

Vineyards 

1969-

2000 

Era of 

Conflict 

NKernNKWSD 073NKWSD 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

OakOFWD 075OFWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

OakdaleOID 076OID 5 

Senior, 

Secure Nut 

Growers 

1887-

1913 

Era of Local 

Organization 

OraOLWD 078OLWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

OrangeOCID 079OCID 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

PachecoPWD 080PWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

PanochePWD 081PWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

PattersonPID 082PID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

PixleyPID 083PID 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

PortervillePID 085PID 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

RaisinRCWD 086RCWD 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 
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RiverdaleRID 087RID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

RootRCWD 089RCWD 4 
California 

Citrus Belt 

2001-

2020 

Era of 

Reconciliation 

RosedaleRRBWSD 090RRBWSD 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

SalyerSWD 091SWD 
Not 

Included 
Not Included 

1914-

1968 
Hydraulic Era 

ColumbiaCCC 092CCC 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

SanLuisSLWD 093SLWD 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

SaucilitoSID 094SID 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

SemitropicSWSD 095SWSD 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

ShafterSWID 096SWID 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

SSanJoaqSSJID 098SSJID 5 

Senior, 

Secure Nut 

Growers 

1887-

1913 

Era of Local 

Organization 

StevinsonSWD 099SWD 
Not 

Included 
Not Included 

1914-

1968 
Hydraulic Era 

StocktonSEWD 102SEWD 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

StoneSCID 103SCID 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

StratfordSID 104SID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

TeapotTDWD 105TDWD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

TerrabellaTID 106TID 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

TranquillityTID 107TID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

TriangleTTTWD 108TTWD 1 

Groundwater 

Dependent 

Vineyards 

2001-

2020 

Era of 

Reconciliation 
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TrivalleyTWD 109TWD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

TulareTID 110TID 2 

Forage and 

Corron 

Corridor 

1887-

1913 

Era of Local 

Organization 

TurlockTID 111TID 5 

Senior, 

Secure Nut 

Growers 

1887-

1913 

Era of Local 

Organization 

TurnerTIWD 112TIWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

WestSideWSID 115WSID 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

WestStanWSID 116WSID 5 

Senior, 

Secure Nut 

Growers 

1914-

1968 
Hydraulic Era 

WestlandsWWD 118WWD 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

WheelerWRMWSD 119WRMWSD 4 
California 

Citrus Belt 

1914-

1968 
Hydraulic Era 

WidrenWWD 120WWD 2 

Forage and 

Corron 

Corridor 

1914-

1968 
Hydraulic Era 

WoodbridgeWID 121WID 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

CSJWCD 122CSJWCD 1 

Groundwater 

Dependent 

Vineyards 

1914-

1968 
Hydraulic Era 

Rock Creek WD 123RCWD 
Not 

Included 
Not Included 

1914-

1968 
Hydraulic Era 

NSJWCD 124NSJWCD 3 

Sizeable 

Crop 

Generalists 

1914-

1968 
Hydraulic Era 

San Luis Canal Co 125SLCC 2 

Forage and 

Corron 

Corridor 

1887-

1913 

Era of Local 

Organization 

SI Table 14. Table of irrigation districts and their associated variables. Note: Table broken up 

into five parts. This is Part 1/5  



174 

 

ID 

ShortName 

Form

ation 

ServArea

_HA 

LON

G 
LAT 

Age_Diff

2021 

SWDelivery_

MLHa 

SWAlloc

_MLHA 

AlisoAWD 1978 10720 

-

120.2

82 

36.82

289 
43 0.25 0.00 

AlpaughAI

D 
1915 5047 

-

119.4

7 

35.89

505 
106 2.65 0.06 

AltaAID 1888 53562 

-

119.4

01 

36.52

797 
133 4.45 7.47 

Amsterdam

AWD 
2018 2775 

-

120.5

3 

37.42

068 
3 0.00 0.00 

AngiolaAW

D 
1957 14810 

-

119.6

41 

35.92

696 
64 2.84 6.29 

ArvinAEW

SD 
1942 45554 

-

118.8

64 

35.20

697 
79 6.19 13.56 

BallicoBC

WD 
1970 2853 

-

120.7

06 

37.46

506 
51 0.00 0.00 

BantaBCID 1921 6735 

-

121.3

53 

37.68

297 
100 8.22 31.15 

BelridgeBW

SD 
1962 37974 

-

119.7

27 

35.51

648 
59 11.89 12.46 

BerrendaB

MWD 
1963 22401 

-

119.9

5 

35.66

188 
58 9.47 10.90 

BuenaBVW

SD 
1924 20311 

-

119.4

98 

35.43

105 
97 6.71 14.34 

ByronBBID 1919 11453 

-

121.5

56 

37.78

543 
102 1.71 22.49 

CaweloCW

D 
1965 18778 

-

119.1

34 

35.56

817 
56 6.55 6.31 

CentralCalC

CID 
1951 60984 

-

120.7

75 

37.08

014 
70 10.27 13.24 

Chowchilla

CWD 
1949 34900 

-

120.3

16 

37.09

229 
72 5.09 14.54 
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Consolidate

dCID 
1921 64299 

-

119.6

48 

36.58

473 
100 5.39 0.00 

CorcoranCI

D 
1919 18857 

-

119.5

93 

36.07

162 
102 3.11 0.00 

DelPuertoD

PWD 
1947 21521 

-

121.1

64 

37.40

205 
74 6.07 12.95 

DelanoDEI

D 
1938 25900 

-

119.2

14 

35.84

225 
83 5.94 39.97 

DudleyDR

WD 
1963 15382 

-

119.8

6 

35.88

409 
58 6.30 7.79 

EaglefieldE

WD 
1957 573 

-

120.7

09 

36.91

077 
64 5.06 13.01 

EastinEWD 2000 1434 

-

121.0

63 

37.33

639 
21 0.00 0.00 

EastsideEW

D 
1985 28437 

-

120.6

36 

37.54

423 
36 0.00 0.00 

ElSolyoES

WD 
1959 1645 

-

121.2

37 

37.61

489 
62 0.00 22.02 

EmpireEWS

ID 
1930 3127 

-

119.8

59 

36.18

072 
91 4.18 1.30 

ExeterEID 1937 6068 

-

119.1

16 

36.30

416 
84 3.11 8.88 

FarmersFW

D 
1949 896 

-

120.3

17 

36.76

762 
72 0.00 0.00 

FirebaughC

WD 
1988 9510 

-

120.5 

36.83

756 
33 10.27 13.11 

FreeFWC 1955 803 

-

119.4

94 

36.74

414 
66 0.00 0.00 

FresnoFID 1920 98778 

-

119.8

25 

36.75

393 
101 9.90 22.31 

FresnoSloF

SWD 
1955 533 

-

120.2

95 

36.65

858 
66 11.66 26.16 
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GarfieldGW

D 
1956 729 

-

119.7

12 

36.89

698 
65 6.42 11.23 

GravellyGF

WD 
1962 3389 

-

120.2

07 

36.84

283 
59 3.35 5.76 

HillsHVID 1948 1750 

-

119.3

04 

36.67

224 
73 5.84 5.65 

International

IWD 
1970 296 

-

119.6

09 

36.86

068 
51 15.81 16.44 

IvanhoeIID 1948 4451 

-

119.1

89 

36.40

884 
73 5.09 6.47 

JamesJID 1920 10667 

-

120.1

9 

36.60

779 
101 3.81 6.12 

KernDeltaK

DWD 
1965 51537 

-

119.0

46 

35.21

856 
56 4.78 7.18 

KernTulKT

WD 
1974 8682 

-

119.0

91 

35.78

066 
47 5.97 9.83 

KingsKRW

D 
1952 5636 

-

119.4

98 

36.69

389 
69 16.69 0.00 

LagunaLID 1920 14704 

-

119.8

14 

36.40

465 
101 4.29 6.03 

LagunaLW

D 
1997 174 

-

120.6

66 

36.98

245 
24 0.00 6.40 

LakesideLI

D 
1962 13058 

-

119.6

06 

36.25

759 
59 0.00 27.36 

LeGrandLG

AWD 
1964 9902 

-

120.3

15 

37.19

956 
57 0.00 0.00 

LibertyLW

D 
1970 8609 

-

119.8

06 

36.49

078 
51 0.76 0.07 

LindmoreLI

D 
1937 10992 

-

119.1

13 

36.16

312 
84 4.41 7.74 

LindsayLSI

D 
1915 6456 

-

119.0

45 

36.18

655 
106 9.59 8.60 
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LostLHWD 1963 31624 

-

119.7

59 

35.71

977 
58 9.17 14.04 

LowerTulL

TID 
1950 41250 

-

119.3

17 

36.06

621 
71 3.50 15.42 

MaderaMID 1920 54257 

-

120.1

03 

36.94

333 
101 4.35 9.16 

MaderaMW

D 
1987 1511 

-

120.0

37 

37.04

531 
34 2.32 0.00 

MelgaMWD 1953 29069 

-

119.6

89 

36.01

884 
68 0.00 0.00 

MercedMID 1919 66945 

-

120.5

33 

37.31

672 
102 10.48 1.79 

MercyMSW

D 
1950 1458 

-

120.6

35 

36.89

949 
71 1.70 2.90 

MerquinMC

WD 
1973 4550 

-

120.8

69 

37.32

38 
48 6.49 5.94 

MidvalleyM

WD 
1970 5164 

-

120.1

75 

36.68

22 
51 0.21 0.00 

ModestoMI

D 
1887 41084 

-

120.9

76 

37.66

53 
134 17.85 46.33 

NagleeBurk

NBID 
1921 1909 

-

121.4

65 

37.77

866 
100 0.00 0.00 

NewStoneN

SWD 
1983 1692 

-

120.3

57 

36.92

177 
38 0.00 12.02 

NKernNKW

SD 
1935 32146 

-

119.2

34 

35.53

279 
86 6.77 1.41 

OakOFWD 1964 1908 

-

121.1

54 

37.39

885 
57 4.60 4.86 

OakdaleOID 1909 33116 

-

120.8

39 

37.76

47 
112 13.05 41.58 

OraOLWD 1953 467 

-

120.6

72 

36.89

987 
68 2.40 2.04 
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OrangeOCI

D 
1937 11857 

-

119.3

05 

36.61

77 
84 3.75 5.51 

PachecoPW

D 
1953 1922 

-

120.7

64 

36.88

969 
68 4.20 11.15 

PanochePW

D 
1950 16145 

-

120.6

61 

36.83

426 
71 4.81 9.98 

PattersonPI

D 
1955 5193 

-

121.1

05 

37.47

973 
66 12.88 6.76 

PixleyPID 1958 27341 

-

119.3

21 

35.95

611 
63 0.83 1.88 

PortervillePI

D 
1949 6903 

-

119.0

99 

36.07

587 
72 5.97 14.50 

RaisinRCW

D 
1962 20913 

-

119.9

55 

36.58

656 
59 0.00 0.00 

RiverdaleRI

D 
1920 6163 

-

119.9

14 

36.43

633 
101 7.80 6.84 

RootRCWD 2016 3751 

-

119.8

4 

36.89

09 
25 0.79 4.12 

RosedaleRR

BWSD 
1959 17501 

-

119.2

78 

35.38

963 
62 6.03 3.36 

SalyerSWD 1926 1687 

-

119.6

26 

36.17

405 
95 0.00 0.00 

ColumbiaC

CC 
1926 6440 

-

120.4

04 

36.86

093 
95 10.27 13.50 

SanLuisSL

WD 
1951 26824 

-

120.8

38 

36.91

093 
70 7.62 11.56 

SaucilitoSI

D 
1941 7987 

-

119.1

51 

35.98

103 
80 4.60 9.28 

SemitropicS

WSD 
1958 90947 

-

119.4

9 

35.62

571 
63 3.93 1.65 

ShafterSWI

D 
1937 19783 

-

119.3

23 

35.52

185 
84 5.18 7.57 
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SSanJoaqSS

JID 
1909 29262 

-

121.1

25 

37.78

699 
112 14.29 49.55 

StevinsonS

WD 
1928 3040 

-

120.9

33 

37.33

529 
93 8.53 174.69 

StocktonSE

WD 
1948 58822 

-

121.1

7 

37.99

876 
73 2.00 1.35 

StoneSCID 1948 2760 

-

119.1

89 

36.47

945 
73 4.14 5.61 

StratfordSI

D 
1916 4137 

-

119.8

23 

36.19

24 
105 1.64 5.44 

TeapotTDW

D 
1954 1411 

-

119.0

16 

36.01

682 
67 5.57 7.33 

TerrabellaTI

D 
1915 5636 

-

119.0

03 

35.95

247 
106 6.52 10.78 

Tranquillity

TID 
1918 4294 

-

120.2

65 

36.63

414 
103 8.56 11.44 

TriangleTT

TWD 
2016 5828 

-

120.4

49 

36.98

12 
5 0.00 0.00 

TrivalleyT

WD 
1964 804 

-

119.3

61 

36.71

537 
57 4.02 6.12 

TulareTID 1889 27748 

-

119.4

31 

36.20

807 
132 7.00 11.94 

TurlockTID 1887 77254 

-

120.8

85 

37.51

248 
134 13.34 42.68 

TurnerTIW

D 
1966 5820 

-

120.7

12 

37.17

825 
55 4.64 0.00 

WestSideW

SID 
1916 2754 

-

121.4

69 

37.74

627 
105 0.00 23.82 

WestStanW

SID 
1920 8808 

-

121.2

24 

37.56

482 
101 9.57 38.34 

WestlandsW

WD 
1952 246815 

-

120.2

43 

36.42

031 
69 5.51 8.76 
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WheelerWR

MWSD 
1959 51925 

-

119.0

73 

35.05

671 
62 7.37 8.64 

WidrenWW

D 
1955 347 

-

120.5

79 

36.86

547 
66 0.12 0.00 

Woodbridge

WID 
1924 15750 

-

121.3

58 

38.12

794 
97 0.00 7.33 

CSJWCD 1959 29689.51 

-

121.0

69 

37.90

57 
61 2.17 4.35 

Rock Creek 

WD 
1941 746.0907 

-

120.8

39 

37.96

184 
79 0.00 0.00 

NSJWCD 1948 62641.62 

-

121.1

47 

38.17

22 
72 0.10 0.91 

San Luis 

Canal Co 
1913 19134.23 

-

120.6

92 

37.08

923 
107 10.27 13.85 

SI Table 15. Table of irrigation districts and their associated variables. Note: Table broken up 

into five parts. This is Part 2/5.  
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ID 

ShortName 

CWR_

MLHA 

TheoCVP_

MLHA 

TheoSWP

_MLHA 

DiffThRel

_MLHA 

SWAlloc

SurDef_

MLHA 

SWDelSur

Def_MLH

A 

AlisoAWD 13.20 0 0 -0.2466 -13.20 -12.96 

AlpaughAI

D 
7.84 0.06165 0 -2.5893 -7.78 -5.19 

AltaAID 12.08 0 0 3.02085 -4.60 -7.62 

Amsterdam

AWD 
13.45 0 0 0 -13.45 -13.45 

AngiolaAW

D 
9.15 0 3.11949 3.4524 -2.86 -6.31 

ArvinAEW

SD 
11.69 13.563 0 7.37334 1.87 -5.50 

BallicoBC

WD 
11.96 0 0 0 -11.96 -11.96 

BantaBCID 8.96 4.35249 0 22.92147 22.19 -0.74 

BelridgeB

WSD 
12.05 0 12.46563 0.57951 0.42 -0.16 

BerrendaB

MWD 
12.18 0 10.89972 1.43028 -1.28 -2.71 

BuenaBVW

SD 
10.58 0 1.77552 7.63227 3.76 -3.87 

ByronBBID 9.19 5.57316 0 20.77605 13.30 -7.48 

CaweloCW

D 
13.33 0 3.52638 -0.23427 -7.01 -6.78 

CentralCal

CCID 
8.78 13.24242 0 2.97153 4.46 1.49 

Chowchilla

CWD 
11.43 10.78875 0 9.44478 3.11 -6.33 

Consolidate

dCID 
13.85 0 0 -5.38821 -13.85 -8.47 

CorcoranCI

D 
10.21 0 0 -3.10716 -10.21 -7.10 

DelPuertoD

PWD 
9.89 12.95883 0 6.89247 3.07 -3.82 

DelanoDEI

D 
14.49 39.96153 0 34.01847 25.47 -8.55 

DudleyDR

WD 
13.01 0 7.79256 1.49193 -5.21 -6.71 

EaglefieldE

WD 
8.91 13.00815 0 7.95285 4.10 -3.85 

EastinEWD 9.08 0 0 0 -9.08 -9.08 

EastsideEW

D 
12.31 0 0 0 -12.31 -12.31 

ElSolyoES

WD 
11.33 0 0 22.02138 10.70 -11.33 

EmpireEW

SID 
9.30 0 1.30698 -2.87289 -8.00 -5.12 
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ExeterEID 11.54 8.8776 0 5.77044 -2.66 -8.43 

FarmersFW

D 
14.94 0 0 0 -14.94 -14.94 

FirebaughC

WD 
8.84 13.11912 0 2.84823 4.28 1.43 

FreeFWC 11.13 0 0 0 -11.13 -11.13 

FresnoFID 12.71 1.92348 0 12.40398 9.60 -2.80 

FresnoSloF

SWD 
5.70 26.15193 0 14.48775 20.45 5.96 

GarfieldG

WD 
12.35 11.2203 0 4.79637 -1.13 -5.93 

GravellyGF

WD 
13.48 5.75811 0 2.40435 -7.72 -10.13 

HillsHVID 10.78 5.64714 0 -0.19728 -5.13 -4.94 

Internationa

lIWD 
11.42 16.44822 0 0.64116 5.03 4.39 

IvanhoeIID 11.39 5.1786 0 1.38096 -4.92 -6.30 

JamesJID 10.32 6.11568 0 2.30571 -4.20 -6.51 

KernDeltaK

DWD 
10.69 0 0.88776 2.39202 -3.51 -5.91 

KernTulKT

WD 
13.69 9.82701 0 3.85929 -3.87 -7.73 

KingsKRW

D 
10.13 0 0 -16.69482 -10.13 6.56 

LagunaLID 11.11 0 0 1.73853 -5.08 -6.82 

LagunaLW

D 
5.35 6.39927 0 6.39927 1.05 -5.35 

LakesideLI

D 
11.19 0 0 27.36027 16.16 -11.19 

LeGrandLG

AWD 
10.49 0 0 0 -10.49 -10.49 

LibertyLW

D 
13.78 0 0 -0.69048 -13.71 -13.02 

LindmoreLI

D 
11.82 7.74324 0 3.3291 -4.08 -7.41 

LindsayLSI

D 
11.71 8.59401 0 -0.99873 -3.11 -2.11 

LostLHWD 12.33 0 14.04387 4.87035 1.71 -3.16 

LowerTulL

TID 
11.25 11.52855 0 11.92311 4.17 -7.75 

MaderaMI

D 
13.24 9.16119 0 4.8087 -4.08 -8.88 

MaderaMW

D 
0.00 0 0 -2.31804 0.00 2.32 

MelgaMW

D 
10.81 0 0 0 -10.81 -10.81 
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MercedMI

D 
10.53 0 0 -8.69265 -8.74 -0.05 

MercyMS

WD 
14.25 2.89755 0 1.19601 -11.35 -12.55 

MerquinM

CWD 
7.48 0 0 -0.54252 -1.53 -0.99 

Midvalley

MWD 
12.51 0 0 -0.20961 -12.51 -12.30 

ModestoMI

D 
11.16 0 0 28.46997 35.16 6.69 

NagleeBurk

NBID 
7.20 0 0 0 -7.20 -7.20 

NewStoneN

SWD 
13.55 0 0 12.02175 -1.54 -13.55 

NKernNK

WSD 
12.98 0 0 -5.36355 -11.57 -6.21 

OakOFWD 9.10 0 4.85802 0.25893 -4.24 -4.50 

OakdaleOI

D 
9.71 16.22628 0 28.53162 31.87 3.33 

OraOLWD 12.02 2.04678 0 -0.35757 -9.98 -9.62 

OrangeOCI

D 
11.15 5.51151 0 1.76319 -5.65 -7.40 

PachecoPW

D 
8.02 7.6446 0 6.94179 3.13 -3.82 

PanochePW

D 
9.79 9.97497 0 5.16627 0.19 -4.98 

PattersonPI

D 
8.35 6.75684 0 -6.12801 -1.59 4.54 

PixleyPID 11.65 1.87416 0 1.04805 -9.78 -10.83 

PortervilleP

ID 
12.17 14.50008 0 8.53236 2.34 -6.20 

RaisinRCW

D 
13.35 0 0 0 -13.35 -13.35 

RiverdaleRI

D 
9.79 0 0 -0.96174 -2.96 -2.00 

RootRCW

D 
11.60 0 0 3.34143 -7.48 -10.81 

RosedaleR

RBWSD 
10.89 0 3.36609 -2.66328 -7.53 -4.86 

SalyerSWD 9.93 0 0 0 -9.93 -9.93 

ColumbiaC

CC 
12.38 13.50135 0 3.23046 1.12 -2.11 

SanLuisSL

WD 
10.68 11.56554 0 3.9456 0.88 -3.06 

SaucilitoSI

D 
13.70 9.28449 0 4.6854 -4.42 -9.10 

Semitropic

SWSD 
11.26 1.65222 0 -2.28105 -9.60 -7.32 
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ShafterSWI

D 
12.06 7.57062 0 2.39202 -4.50 -6.89 

SSanJoaqS

SJID 
11.76 19.33344 0 35.25147 37.79 2.53 

StevinsonS

WD 
7.64 0 0 166.15908 167.06 0.89 

StocktonSE

WD 
10.34 1.3563 0 -0.65349 -8.99 -8.34 

StoneSCID 10.97 5.61015 0 1.46727 -5.36 -6.83 

StratfordSI

D 
9.44 0 0 3.79764 -4.00 -7.80 

TeapotTD

WD 
11.75 7.34868 0 1.76319 -4.41 -6.17 

TerrabellaT

ID 
11.76 10.77642 0 4.25385 -0.99 -5.24 

Tranquillity

TID 
10.02 11.44224 0 2.88522 1.42 -1.46 

TriangleTT

TWD 
11.85 0 0 0 -11.85 -11.85 

TrivalleyT

WD 
10.82 6.11568 0 2.0961 -4.70 -6.80 

TulareTID 10.69 9.23517 0 4.932 1.25 -3.68 

TurlockTID 10.93 0 0 29.33307 31.74 2.41 

TurnerTIW

D 
7.39 0 0 -4.63608 -7.39 -2.75 

WestSideW

SID 
8.27 3.71133 0 23.82156 15.55 -8.27 

WestStanW

SID 
9.29 8.07615 0 28.76589 29.05 0.28 

Westlands

WWD 
9.81 8.7543 0 3.24279 -1.05 -4.30 

WheelerW

RMWSD 
11.97 0 8.64333 1.26999 -3.32 -4.60 

WidrenWW

D 
5.41 0 0 -0.1233 -5.41 -5.29 

Woodbridg

eWID 
12.44 0 0 7.32402 -5.11 -12.44 

CSJWCD 10.88 4.35249 0 2.17008 -6.53 -8.70 

Rock Creek 

WD 
3.31 0 0 0 -3.31 -3.31 

NSJWCD 12.72 0 0 0.81378 -11.80 -12.62 

San Luis 

Canal Co 
8.34 13.84659 0 3.5757 5.51 1.93 

SI Table 16. Table of irrigation districts and their associated variables. Note: Table broken up 

into five parts. This is Part 3/5 
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ID 

ShortName 

Crop

Fct 

Pere

nFct 

Annu

alFct 

IrrigFor

ageFct 

AnnualRev

_USDHa 

IrrigForageRe

v_USDHa 

PerennRev_

USDHa 

AlisoAWD 0.90 0.96 0.02 0.02 1663.02 462.97 1926.73 

AlpaughAI

D 
0.42 0.39 0.23 0.38 282.99 418.71 406.50 

AltaAID 0.70 0.77 0.15 0.07 490.64 310.04 3677.22 

Amsterdam

AWD 
0.43 0.91 0.00 0.09 0.00 191.36 2238.38 

AngiolaAW

D 
0.14 0.00 0.54 0.46 268.83 126.82 0.00 

ArvinAEW

SD 
0.70 0.58 0.41 0.02 1785.17 342.44 6669.52 

BallicoBC

WD 
0.84 0.83 0.15 0.02 555.10 78.92 2148.98 

BantaBCID 0.84 0.60 0.31 0.09 1077.75 350.59 1804.87 

BelridgeB

WSD 
0.32 0.92 0.06 0.02 0.00 223.80 2799.02 

BerrendaB

MWD 
0.47 0.86 0.04 0.09 185.21 223.80 2665.13 

BuenaBVW

SD 
0.72 0.48 0.37 0.15 746.43 441.93 4061.11 

ByronBBID 0.38 0.43 0.32 0.26 503.71 298.78 1760.05 

CaweloCW

D 
0.71 0.99 0.01 0.01 1454.82 223.80 5190.96 

CentralCal

CCID 
0.81 0.18 0.59 0.23 888.67 428.14 1570.56 

Chowchilla

CWD 
0.78 0.70 0.18 0.12 644.15 445.17 1740.23 

Consolidate

dCID 
0.71 0.96 0.02 0.02 955.73 219.29 3686.08 

CorcoranCI

D 
0.76 0.17 0.70 0.13 616.53 429.99 1600.23 

DelPuertoD

PWD 
0.62 0.71 0.20 0.09 910.90 219.97 1987.20 

DelanoDEI

D 
0.81 0.97 0.02 0.01 1084.55 124.76 4662.41 

DudleyDR

WD 
0.46 1.00 0.00 0.00 0.00 0.00 2296.05 

EaglefieldE

WD 
0.75 0.00 1.00 0.00 1021.42 0.00 0.00 

EastinEWD 0.83 0.50 0.44 0.07 741.62 410.45 1925.44 

EastsideEW

D 
0.85 0.90 0.07 0.04 550.05 78.16 2080.18 

ElSolyoES

WD 
0.78 0.91 0.04 0.06 985.41 424.12 1655.37 

EmpireEW

SID 
0.56 0.16 0.47 0.36 836.46 76.05 2125.45 
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ExeterEID 0.69 0.99 0.01 0.00 218.33 8.84 3811.23 

FarmersFW

D 
0.61 1.00 0.00 0.00 0.00 0.00 2266.38 

FirebaughC

WD 
0.84 0.22 0.71 0.07 1301.09 394.11 1367.47 

FreeFWC 0.74 0.95 0.00 0.05 0.00 6.88 3143.10 

FresnoFID 0.49 0.85 0.08 0.07 693.05 286.40 3054.37 

FresnoSloF

SWD 
0.43 0.00 0.86 0.14 3492.35 511.53 0.00 

GarfieldG

WD 
0.53 0.72 0.14 0.14 101.17 175.23 3136.57 

GravellyGF

WD 
0.88 0.91 0.09 0.00 1797.36 0.00 1608.68 

HillsHVID 0.57 0.97 0.00 0.03 101.17 88.04 3462.55 

Internationa

lIWD 
0.30 1.00 0.00 0.00 0.00 0.00 2367.29 

IvanhoeIID 0.84 1.00 0.00 0.00 0.00 0.00 3893.49 

JamesJID 0.85 0.50 0.31 0.20 1812.21 510.90 1786.30 

KernDeltaK

DWD 
0.68 0.31 0.48 0.21 733.66 412.98 4293.42 

KernTulKT

WD 
0.84 0.99 0.01 0.00 206.81 223.80 4859.49 

KingsKRW

D 
0.63 0.63 0.03 0.33 877.29 93.46 3041.89 

LagunaLID 0.73 0.42 0.38 0.21 417.33 384.81 1892.89 

LagunaLW

D 
0.89 0.00 0.00 1.00 0.00 500.61 0.00 

LakesideLI

D 
0.75 0.21 0.63 0.15 546.17 417.70 1691.19 

LeGrandLG

AWD 
0.71 0.51 0.30 0.19 905.49 435.95 2184.45 

LibertyLW

D 
0.84 0.92 0.05 0.03 1747.98 365.06 3089.39 

LindmoreLI

D 
0.80 0.90 0.06 0.04 440.43 375.84 3281.79 

LindsayLSI

D 
0.61 1.00 0.00 0.00 0.00 8.36 3567.80 

LostLHWD 0.33 0.93 0.02 0.05 191.42 223.80 2397.45 

LowerTulL

TID 
0.78 0.31 0.55 0.15 447.97 463.34 2297.26 

MaderaMI

D 
0.73 0.94 0.04 0.02 1142.39 179.87 1711.16 

MaderaMW

D 
0.94 1.00 0.00 0.00 0.00 0.00 2822.34 

MelgaMW

D 
0.86 0.00 0.99 0.01 718.29 203.56 0.00 
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MercedMI

D 
0.65 0.54 0.34 0.12 533.68 270.38 2081.70 

MercyMS

WD 
0.83 0.23 0.07 0.70 390.53 0.00 1088.22 

MerquinM

CWD 
0.65 0.07 0.57 0.36 398.97 232.23 1678.17 

Midvalley

MWD 
0.91 0.86 0.10 0.04 1189.40 511.53 1901.87 

ModestoMI

D 
0.53 0.71 0.18 0.11 596.84 166.46 1693.42 

NagleeBurk

NBID 
0.63 0.02 0.55 0.43 515.46 328.26 1758.27 

NewStoneN

SWD 
0.95 0.77 0.16 0.08 403.89 462.97 1370.70 

NKernNK

WSD 
0.68 0.90 0.08 0.02 1158.01 320.80 3239.99 

OakOFWD 0.47 0.31 0.31 0.38 912.89 132.95 1860.78 

OakdaleOI

D 
0.69 0.55 0.15 0.31 396.89 29.66 1673.48 

OraOLWD 0.78 0.00 0.08 0.92 1440.71 106.23 0.00 

OrangeOCI

D 
0.74 0.99 0.00 0.01 50.08 132.48 3339.15 

PachecoPW

D 
0.84 0.35 0.61 0.04 1124.68 500.61 1939.24 

PanochePW

D 
0.72 0.54 0.41 0.05 1569.52 298.73 2009.31 

PattersonPI

D 
0.79 0.43 0.32 0.25 1490.22 355.44 1460.97 

PixleyPID 0.75 0.37 0.48 0.14 445.60 404.79 2703.24 

PortervilleP

ID 
0.71 0.75 0.16 0.09 597.92 364.82 2672.21 

RaisinRCW

D 
0.87 0.81 0.12 0.07 692.39 504.76 3215.10 

RiverdaleRI

D 
0.76 0.32 0.47 0.21 457.99 479.66 1217.89 

RootRCWD 0.78 0.99 0.01 0.00 171.59 0.00 2612.95 

RosedaleR

RBWSD 
0.63 0.58 0.23 0.19 607.78 420.39 2893.37 

SalyerSWD 0.91 0.00 0.50 0.50 443.93 298.72 0.00 

ColumbiaC

CC 
0.84 0.94 0.03 0.03 1167.16 276.08 1871.23 

SanLuisSL

WD 
0.49 0.67 0.22 0.11 759.66 236.04 2072.60 

SaucilitoSI

D 
0.90 0.86 0.11 0.02 399.79 180.29 3216.79 

SemitropicS

WSD 
0.54 0.68 0.17 0.15 661.07 407.74 3053.71 
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ShafterSWI

D 
0.74 0.77 0.14 0.09 409.16 414.37 2856.32 

SSanJoaqS

SJID 
0.65 0.83 0.11 0.06 565.57 165.99 1872.21 

StevinsonS

WD 
0.44 0.14 0.29 0.56 625.01 370.92 2260.62 

StocktonSE

WD 
0.45 0.82 0.12 0.06 1532.11 266.80 1515.27 

StoneSCID 0.80 0.87 0.09 0.04 220.78 127.21 4092.97 

StratfordSI

D 
0.60 0.18 0.59 0.23 758.40 362.11 830.67 

TeapotTD

WD 
0.86 0.95 0.04 0.02 222.18 107.27 3878.10 

TerrabellaT

ID 
0.59 0.90 0.03 0.07 217.52 124.22 3250.20 

Tranquillity

TID 
0.85 0.36 0.53 0.11 1738.86 511.53 1751.70 

TriangleTT

TWD 
0.92 0.85 0.08 0.07 393.94 371.04 2258.65 

TrivalleyT

WD 
0.39 0.88 0.03 0.09 101.17 171.43 2915.23 

TulareTID 0.82 0.31 0.50 0.18 489.43 479.25 1805.11 

TurlockTID 0.67 0.50 0.37 0.12 710.61 284.91 1946.68 

TurnerTIW

D 
0.69 0.00 0.77 0.23 730.95 500.61 0.00 

WestSideW

SID 
0.60 0.41 0.15 0.44 446.67 255.36 1887.57 

WestStanW

SID 
0.87 0.66 0.33 0.01 2020.56 419.51 1806.62 

Westlands

WWD 
0.68 0.44 0.49 0.06 1591.37 237.10 1960.76 

WheelerW

RMWSD 
0.54 0.87 0.09 0.04 1753.58 422.61 5642.80 

WidrenWW

D 
0.95 0.58 0.00 0.42 0.00 275.85 1088.22 

Woodbridg

eWID 
0.73 0.75 0.20 0.05 751.37 311.44 1706.95 

CSJWCD 0.76 0.53 0.40 0.07 20.38 7.46 39.56 

Rock Creek 

WD 
0.25 0.00 0.25 0.75 39.94 0.29 0.00 

NSJWCD 0.43 0.82 0.07 0.11 36.07 10.40 85.20 

San Luis 

Canal Co 
0.76 0.02 0.79 0.19 19.27 12.73 36.17 

SI Table 17. Table of irrigation districts and their associated variables. Note: Table broken up 

into five parts. This is Part 4/5 
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ID 

ShortName 

TotCropRev_US

DHa 

Fct_Al

md 

Fct_Citr

us 

Fct_Cott

on 

Fct_Gr

pe 

Fct_Wal

nt 

AlisoAWD 1893.19 0.37 0.00 0.00 0.24 0.01 

AlpaughAID 383.23 0.00 0.00 0.00 0.00 0.00 

AltaAID 2944.62 0.04 0.19 0.01 0.11 0.01 

AmsterdamAW

D 
2055.85 0.23 0.00 0.00 0.47 0.21 

AngiolaAWD 203.64 0.00 0.00 0.00 0.00 0.00 

ArvinAEWSD 4590.54 0.09 0.18 0.00 0.23 0.00 

BallicoBCWD 1866.89 0.66 0.00 0.00 0.00 0.07 

BantaBCID 1446.34 0.35 0.00 0.00 0.02 0.16 

BelridgeBWSD 2577.68 0.40 0.12 0.00 0.00 0.00 

BerrendaBMWD 2330.79 0.28 0.00 0.00 0.00 0.00 

BuenaBVWSD 2306.09 0.00 0.00 0.23 0.09 0.02 

ByronBBID 987.00 0.22 0.00 0.00 0.07 0.03 

CaweloCWD 5129.54 0.18 0.29 0.00 0.25 0.00 

CentralCalCCID 907.34 0.09 0.00 0.23 0.00 0.04 

ChowchillaCWD 1393.49 0.53 0.00 0.00 0.06 0.01 

ConsolidatedCI

D 
3570.28 0.12 0.05 0.00 0.50 0.02 

CorcoranCID 756.94 0.00 0.00 0.37 0.00 0.00 

DelPuertoDPW

D 
1612.73 0.47 0.01 0.00 0.02 0.05 

DelanoDEID 4563.28 0.24 0.03 0.00 0.47 0.01 

DudleyDRWD 2296.05 0.28 0.00 0.00 0.07 0.00 

EaglefieldEWD 1021.42 0.00 0.00 0.52 0.00 0.00 

EastinEWD 1305.64 0.15 0.00 0.00 0.00 0.20 

EastsideEWD 1906.08 0.78 0.00 0.00 0.07 0.01 

ElSolyoESWD 1559.67 0.62 0.00 0.00 0.05 0.17 
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EmpireEWSID 771.11 0.00 0.00 0.36 0.03 0.00 

ExeterEID 3760.67 0.00 0.83 0.00 0.02 0.00 

FarmersFWD 2266.38 0.00 0.00 0.00 0.44 0.00 

FirebaughCWD 1251.75 0.08 0.00 0.28 0.00 0.00 

FreeFWC 2981.32 0.01 0.74 0.00 0.00 0.00 

FresnoFID 2680.27 0.29 0.08 0.00 0.37 0.01 

FresnoSloFSWD 3062.92 0.00 0.00 0.00 0.00 0.00 

GarfieldGWD 2301.97 0.28 0.02 0.00 0.24 0.00 

GravellyGFWD 1625.36 0.29 0.00 0.00 0.38 0.00 

HillsHVID 3347.01 0.02 0.75 0.00 0.00 0.00 

InternationalIW

D 
2367.29 0.24 0.50 0.00 0.00 0.00 

IvanhoeIID 3893.49 0.00 0.89 0.00 0.00 0.00 

JamesJID 1542.28 0.21 0.00 0.14 0.09 0.01 

KernDeltaKDW

D 
1751.61 0.16 0.00 0.08 0.06 0.00 

KernTulKTWD 4801.87 0.06 0.29 0.00 0.31 0.00 

KingsKRWD 1985.41 0.09 0.01 0.00 0.12 0.09 

LagunaLID 1023.66 0.16 0.00 0.04 0.03 0.11 

LagunaLWD 500.61 0.00 0.00 0.00 0.00 0.00 

LakesideLID 770.15 0.05 0.00 0.13 0.00 0.06 

LeGrandLGAW

D 
1468.50 0.42 0.00 0.04 0.05 0.00 

LibertyLWD 2940.14 0.32 0.00 0.00 0.41 0.05 

LindmoreLID 2995.25 0.05 0.48 0.01 0.06 0.06 

LindsayLSID 3560.60 0.00 0.79 0.00 0.00 0.00 

LostLHWD 2254.50 0.17 0.00 0.00 0.01 0.00 

LowerTulLTID 1016.83 0.11 0.00 0.03 0.03 0.04 
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MaderaMID 1652.41 0.42 0.02 0.00 0.33 0.01 

MaderaMWD 2822.34 0.00 0.00 0.00 0.00 0.00 

MelgaMWD 712.47 0.00 0.00 0.44 0.00 0.00 

MercedMID 1336.66 0.40 0.00 0.04 0.02 0.02 

MercyMSWD 277.87 0.00 0.00 0.00 0.00 0.00 

MerquinMCWD 431.60 0.04 0.00 0.00 0.01 0.00 

MidvalleyMWD 1774.35 0.21 0.00 0.00 0.17 0.00 

ModestoMID 1329.02 0.44 0.00 0.00 0.01 0.16 

NagleeBurkNBI

D 
466.04 0.02 0.00 0.00 0.00 0.00 

NewStoneNSW

D 
1148.26 0.00 0.00 0.00 0.77 0.00 

NKernNKWSD 3023.78 0.72 0.00 0.00 0.09 0.00 

OakOFWD 914.17 0.15 0.00 0.00 0.04 0.07 

OakdaleOID 983.62 0.38 0.00 0.00 0.02 0.10 

OraOLWD 218.00 0.00 0.00 0.00 0.00 0.00 

OrangeOCID 3303.46 0.01 0.78 0.00 0.03 0.00 

PachecoPWD 1387.18 0.30 0.00 0.03 0.00 0.00 

PanochePWD 1743.63 0.15 0.00 0.08 0.12 0.00 

PattersonPID 1194.35 0.21 0.00 0.00 0.00 0.08 

PixleyPID 1282.07 0.19 0.00 0.00 0.08 0.00 

PortervillePID 2134.95 0.13 0.09 0.00 0.09 0.26 

RaisinRCWD 2732.27 0.28 0.00 0.00 0.46 0.01 

RiverdaleRID 706.42 0.04 0.00 0.05 0.01 0.00 

RootRCWD 2578.97 0.19 0.39 0.00 0.03 0.00 

RosedaleRRBW

SD 
1893.72 0.47 0.00 0.03 0.03 0.00 

SalyerSWD 370.69 0.00 0.00 0.07 0.00 0.00 
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ColumbiaCCC 1809.32 0.73 0.00 0.01 0.00 0.00 

SanLuisSLWD 1589.99 0.58 0.01 0.03 0.01 0.00 

SaucilitoSID 2822.32 0.21 0.05 0.01 0.23 0.11 

SemitropicSWS

D 
2250.23 0.40 0.00 0.01 0.05 0.00 

ShafterSWID 2293.03 0.66 0.00 0.02 0.04 0.01 

SSanJoaqSSJID 1628.85 0.67 0.00 0.00 0.05 0.05 

StevinsonSWD 716.27 0.14 0.00 0.00 0.00 0.00 

StocktonSEWD 1436.34 0.00 0.00 0.00 0.08 0.47 

StoneSCID 3574.10 0.01 0.70 0.00 0.02 0.00 

StratfordSID 679.79 0.03 0.00 0.26 0.00 0.00 

TeapotTDWD 3683.01 0.01 0.84 0.00 0.00 0.00 

TerrabellaTID 2934.25 0.00 0.57 0.00 0.00 0.00 

TranquillityTID 1608.06 0.22 0.00 0.22 0.02 0.00 

TriangleTTTWD 1978.97 0.48 0.00 0.00 0.00 0.00 

TrivalleyTWD 2574.93 0.00 0.87 0.00 0.00 0.00 

TulareTID 900.01 0.06 0.00 0.09 0.01 0.08 

TurlockTID 1280.85 0.38 0.00 0.00 0.01 0.04 

TurnerTIWD 678.82 0.00 0.00 0.25 0.00 0.00 

WestSideWSID 959.98 0.36 0.00 0.00 0.03 0.01 

WestStanWSID 1859.50 0.42 0.00 0.00 0.04 0.07 

WestlandsWWD 1673.14 0.21 0.01 0.06 0.04 0.00 

WheelerWRMW

SD 
5096.97 0.20 0.30 0.01 0.27 0.00 

WidrenWWD 747.00 0.00 0.00 0.00 0.00 0.00 

WoodbridgeWI

D 
1443.90 0.01 0.00 0.00 0.62 0.05 

CSJWCD 29.68 0.11 0.00 0.00 0.13 0.24 
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Rock Creek WD 10.28 0.00 0.00 0.00 0.00 0.00 

NSJWCD 73.81 0.01 0.00 0.00 0.62 0.10 

San Luis Canal 

Co 
18.42 0.00 0.00 0.36 0.00 0.00 

SI Table 18. Table of irrigation districts and their associated variables. Note: Table broken up 

into five parts. This is Part 5/ 
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UID 
ShortN

ame 
Group Name 

TheoSW

16_AF 

Pending

SW_AF 

Pending

SW_AF

Ac 

Pending

SW_AF

Ha 

TheoSW

16_AFAc 

TheoSW1

6_AFHA 

001A

WD 

AlisoA

WD 

Groundwater 

Dependent 

Vineyards 

0 0 0 0 0 0 

002A

ID 

Alpaug

hAID 

Forage and 

Corron 

Corridor 

100 0 0 0 
0.019161

98 

0.047349

253 

003A

ID 

AltaAI

D 

Thirsty Crop 

Generalists 

226401.

6667 
0 0 0 

2.452155

681 

6.059276

688 

004A

WD 

Amster

damA

WD 

Groundwater 

Dependent 

Vineyards 

  0 0 0 0 

005A

WD 

Angiol

aAWD 

Forage and 

Corron 

Corridor 

10670 10000 
1.93549

5774 

4.782610

058 

2.065173

991 

5.103044

932 

006A

EWS

D 

Arvin

AEWS

D 

California 

Citrus Belt 
351675 0 0 0 

4.450380

12 

10.99688

928 

008B

CW

D 

Ballico

BCWD 

Groundwater 

Dependent 

Vineyards 

  0 0 0 0 

009B

CID 

BantaB

CID 

Senior, 

Secure Nut 

Growers 

143102.

7 
0 0 0 

10.22442

188 

25.26454

646 

010B

WSD 

Belridg

eBWS

D 

California 

Citrus Belt 
121508 0 0 0 

4.090383

605 

10.10733

789 

011B

MW

D 

Berren

daBM

WD 

California 

Citrus Belt 
92600 0 0 0 

3.577475

781 

8.839942

655 

012B

VWS

D 

Buena

BVWS

D 

Thirsty Crop 

Generalists 
171300 700000 

19.2389

3061 

47.53939

754 

4.708041

163 

11.63356

971 

013B

BID 

Byron

BBID 

Forage and 

Corron 

Corridor 

79800 0 0 0 
7.380834

811 

18.23804

282 

015C

WD 

Cawel

oCWD 

California 

Citrus Belt 
68200 0 0 0 

2.072586

311 

5.121360

775 

017C

CID 

Central

CalCC

ID 

Thirsty Crop 

Generalists 
532392 0 0 0 

4.347060

483 

10.74158

645 

019C

WD 

Chowc

hillaC

WD 

Groundwater 

Dependent 

Vineyards 

322508.

5 
0 0 0 

4.770972

013 

11.78907

184 

092C

CC 

Colum

bia 

Canal 

C 

Thirsty Crop 

Generalists 
58968 0 0 0 

4.432396

878 

10.95245

269 

020C

ID 

Consol

idated

CID 

Groundwater 

Dependent 

Vineyards 

0 
100000

0 

8.82203

9487 

21.79925

957 
0 0 
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021C

ID 

Corcor

anCID 

Forage and 

Corron 

Corridor 

  0 0 0 0 

122C

SJW

CD 

CSJW

CD 

Groundwater 

Dependent 

Vineyards 

80000 0 0 0 
1.426979

881 

3.526067

286 

023D

EID 

Delano

DEID 

Senior, 

Secure Nut 

Growers 

683300 0 0 0 
13.11739

933 

32.41309

375 

022D

PWD 

DelPue

rtoDP

WD 

Thirsty Crop 

Generalists 
140181 0 0 0 

4.251329

712 

10.50503

572 

026D

RW

D 

Dudley

DRW

D 

California 

Citrus Belt 
44980 0 0 0 

2.557334

281 

6.319173

008 

027E

WD 

Eaglefi

eldEW

D 

Forage and 

Corron 

Corridor 

4550 0 0 0 
4.271148

345 

10.55400

756 

028E

WD 

Eastin

EWD 

Groundwater 

Dependent 

Vineyards 

  0 0 0 0 

029E

WD 

Eastsid

eEWD 

Groundwater 

Dependent 

Vineyards 

  0 0 0 0 

030E

SWD 

ElSoly

oESW

D 

Not Included 22806.4 0 0 0 
7.228813

927 

17.86239

921 

031E

WSI

D 

Empire

EWSI

D 

Forage and 

Corron 

Corridor 

1845 0 0 0 
0.427408

125 

1.056125

476 

032E

ID 

Exeter

EID 

California 

Citrus Belt 
30100 0 0 0 

2.913612

294 

7.199535

98 

033F

WD 

Farmer

sFWD 

Groundwater 

Dependent 

Vineyards 

  0 0 0 0 

034F

CC 

Fireba

ughFC

C 

Forage and 

Corron 

Corridor 

85008 0 0 0 
4.303967

138 

10.63510

28 

035F

WC 

FreeF

WC 

California 

Citrus Belt 
  0 0 0 0 

036F

ID 

Fresno

FID 

Thirsty Crop 

Generalists 
875000 863 

0.00722

1227 

0.017843

652 

7.321638

146 

18.09176

786 

037F

SWD 

Fresno

SloFS

WD 

Forage and 

Corron 

Corridor 

4866 0 0 0 
8.585351

392 

21.21440

329 

038G

WD 

Garfiel

dGWD 

California 

Citrus Belt 
3500 0 0 0 

3.684308

832 

9.103927

123 

039G

WD 

Grassla

ndGW

D 

Not Included 181536 0 0 0 
174.0517

737 

430.0819

329 

040G

FWD 

Gravell

yGFW

D 

Groundwater 

Dependent 

Vineyards 

14000 0 0 0 
1.890507

6 

4.671444

28 
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042H

VID 

HillsH

VID 

California 

Citrus Belt 
4597 0 0 0 

1.853570

038 

4.580171

563 

044I

WD 

Interna

tionalI

WD 

California 

Citrus Belt 
1200 0 0 0 

5.397341

154 

13.33682

999 

045II

D 

Ivanho

eIID 

California 

Citrus Belt 
19550 0 0 0 

2.124310

653 

5.249171

624 

046JI

D 

JamesJ

ID 

Forage and 

Corron 

Corridor 

45200 0 0 0 
2.007604

447 

4.960790

588 

047K

DW

D 

KernD

eltaKD

WD 

Thirsty Crop 

Generalists 
204883 0 0 0 

2.356395

112 

5.822652

322 

048K

TW

D 

KernT

ulKT

WD 

California 

Citrus Belt 
58300 0 0 0 

3.226097

739 

7.971687

513 

049K

RW

D 

Kings

KRW

D 

Forage and 

Corron 

Corridor 

  0 0 0 0 

050L

ID 

Laguna

LID 

Forage and 

Corron 

Corridor 

52481 0 0 0 
1.979508

824 

4.891366

304 

051L

WD 

Laguna

LWD 
Not Included 800 0 0 0 

2.100318

448 

5.189886

885 

052L

ID 

Lakesi

deLID 
Not Included 217914 0 0 0 

8.978902

448 

22.18686

795 

055L

GA

WD 

LeGra

ndLG

AWD 

Groundwater 

Dependent 

Vineyards 

  0 0 0 0 

057L

WD 

Liberty

LWD 

Groundwater 

Dependent 

Vineyards 

429 0 0 0 
0.024075

309 

0.059490

089 

058L

ID 

Lindm

oreLID 

California 

Citrus Belt 
55000 0 0 0 

2.541306

816 

6.279569

143 

059L

SID 

Lindsa

yLSID 

California 

Citrus Belt 
27500 0 0 0 

2.821566

094 

6.972089

817 

060L

HW

D 

LostL

HWD 

California 

Citrus Belt 
119110 0 0 0 

4.609480

623 

11.39002

662 

061L

TID 

Lower

TulLTI

D 

Forage and 

Corron 

Corridor 

400302 0 0 0 
5.061342

169 

12.50657

65 

062

MID 

Mader

aMID 

Thirsty Crop 

Generalists 
295000 0 0 0 

3.005567

153 

7.426756

434 

063

MW

D 

Mader

aMWD 

California 

Citrus Belt 
  0 0 0 0 

065

MW

D 

Melga

MWD 
Not Included   0 0 0 0 

066

MID 

Merce

dMID 

Thirsty Crop 

Generalists 
63720 0 0 0 

0.588095

114 

1.453183

026 
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067

MS

WD 

Mercy

MSW

D 

Forage and 

Corron 

Corridor 

2842 0 0 0 
0.951317

993 

2.350706

76 

068

MC

WD 

Merqui

nMCW

D 

Forage and 

Corron 

Corridor 

14211 0 0 0 
1.950220

838 

4.818995

691 

069

MW

D 

Midval

leyM

WD 

Groundwater 

Dependent 

Vineyards 

  0 0 0 0 

070

MID 

Modest

oMID 

Senior, 

Secure Nut 

Growers 

823432.

5952 
0 0 0 

15.20548

354 

37.57274

983 

071N

BID 

Naglee

BurkN

BID 

Not Included   0 0 0 0 

072N

SWD 

NewSt

oneNS

WD 

Groundwater 

Dependent 

Vineyards 

15700 0 0 0 
3.944520

756 

9.746910

788 

073N

KWS

D 

NKern

NKWS

D 

Groundwater 

Dependent 

Vineyards 

25000 500000 
9.26257

1893 

22.88781

515 

0.463128

595 

1.144390

757 

124N

SJW

CD 

NSanJ

oaqNS

JWCD 

Thirsty Crop 

Generalists 
20000 0 0 0 

0.300055

576 

0.741437

328 

076O

ID 

Oakdal

eOID 

Senior, 

Secure Nut 

Growers 

768848.

25 
0 0 0 

13.64704

672 

33.72185

245 

075O

FWD 

OakOF

WD 

Forage and 

Corron 

Corridor 

3506 0 0 0 
1.594356

029 

3.939653

747 

079O

CID 

Orange

OCID 

California 

Citrus Belt 
39200 0 0 0 

1.807163

64 

4.465501

355 

078O

LW

D 

OraOL

WD 

Forage and 

Corron 

Corridor 

600 0 0 0 
0.670303

465 

1.656319

862 

080P

WD 

Pachec

oPWD 

Forage and 

Corron 

Corridor 

14665 0 0 0 
3.659196

333 

9.041874

14 

081P

WD 

Panoch

ePWD 

Forage and 

Corron 

Corridor 

93922 0 0 0 
3.275552

443 

8.093890

087 

082P

ID 

Patters

onPID 

Forage and 

Corron 

Corridor 

22500 0 0 0 
2.218712

032 

5.482437

43 

083P

ID 

Pixley

PID 

Groundwater 

Dependent 

Vineyards 

31102 10000 
0.19798

4188 

0.489218

929 

0.615770

422 

1.521568

712 

085P

ID 

Porterv

illePID 

Groundwater 

Dependent 

Vineyards 

57900 0 0 0 
4.760278

496 

11.76264

816 

086R

CW

D 

Raisin

RCWD 

Groundwater 

Dependent 

Vineyards 

  0 0 0 0 
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087R

ID 

Riverd

aleRID 

Forage and 

Corron 

Corridor 

26000 0 0 0 
2.243810

537 

5.544455

838 

123R

CW

D 

Rock 

Creek 

WD 

Not Included 0 0 0 0 0 0 

089R

CW

D 

RootR

CWD 

California 

Citrus Belt 
9840 0 0 0 

1.353777

536 

3.345184

292 

090R

RB

WSD 

Roseda

leRRB

WSD 

Groundwater 

Dependent 

Vineyards 

29900 65750 
2.42744

1512 

5.998207

976 

1.103885

95 

2.727702

182 

091S

WD 

Salyer

SWD 
Not Included   0 0 0 0 

125S

LCC 

SanLui

sCC 

Forage and 

Corron 

Corridor 

163632 0 0 0 
4.544815

84 

11.23023

994 

093S

LW

D 

SanLui

sSLW

D 

Thirsty Crop 

Generalists 
124009 0 0 0 

3.794183

481 

9.375427

381 

094S

ID 

Saucili

toSID 

Groundwater 

Dependent 

Vineyards 

54300 0 0 0 
3.046914

033 

7.528924

576 

095S

WSD 

Semitr

opicS

WSD 

Thirsty Crop 

Generalists 
66000 

160000

0 

13.1610

43 

32.52093

724 

0.542893

024 

1.341488

661 

096S

WID 

Shafter

SWID 

Groundwater 

Dependent 

Vineyards 

89600 0 0 0 
2.484041

38 

6.138066

249 

098S

SJID 

SSanJo

aqSSJI

D 

Senior, 

Secure Nut 

Growers 

768848.

25 
0 0 0 

16.26261

213 

40.18491

457 

099S

WD 

Stevins

onSW

D 

Not Included 190424 0 0 0 
57.33824

402 

141.6828

01 

102S

EW

D 

Stockt

onSE

WD 

Thirsty Crop 

Generalists 
28786 0 0 0 

0.444461

493 

1.098264

35 

103S

CID 

StoneS

CID 

California 

Citrus Belt 
10000 0 0 0 

1.841072

05 

4.549289

035 

104S

ID 

Stratfo

rdSID 

Forage and 

Corron 

Corridor 

11000 0 0 0 
1.785154

906 

4.411117

772 

105T

DW

D 

Teapot

TDWD 

California 

Citrus Belt 
7200 0 0 0 

2.406426

33 

5.946279

463 

106T

ID 

Terrab

ellaTI

D 

California 

Citrus Belt 
29000 0 0 0 

3.536603

59 

8.738947

471 

107T

ID 

Tranqu

illityTI

D 

Forage and 

Corron 

Corridor 

34000 0 0 0 
3.756342

389 

9.281922

044 
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108T

TW

D 

Triangl

eTTT

WD 

Groundwater 

Dependent 

Vineyards 

0 50500 
3.79384

7436 

9.374597

014 
0 0 

109T

WD 

Trivall

eyTW

D 

California 

Citrus Belt 
1542 0 0 0 

2.008478

65 

4.962950

744 

110T

ID 

Tulare

TID 

Forage and 

Corron 

Corridor 

221000 0 0 0 
3.918128

973 

9.681696

693 

111T

ID 

Turloc

kTID 

Senior, 

Secure Nut 

Growers 

1798964

.205 
0 0 0 

14.00701

138 

34.61132

512 

112T

IWD 

Turner

TIWD 

Forage and 

Corron 

Corridor 

0 0 0 0 0 0 

118

WW

D 

Westla

ndsW

WD 

Thirsty Crop 

Generalists 
1193000 0 0 0 

2.874559

469 

7.103036

449 

115

WSI

D 

WestSi

deWSI

D 

Forage and 

Corron 

Corridor 

32000 0 0 0 
7.817051

907 

19.31593

526 

116

WSI

D 

WestSt

anWSI

D 

Senior, 

Secure Nut 

Growers 

237791 0 0 0 
12.58324

602 

31.09320

092 

119

WR

MW

SD 

Wheel

erWR

MWS

D 

California 

Citrus Belt 
197088 0 0 0 

2.837318

874 

7.011014

937 

120

WW

D 

Widren

WWD 

Forage and 

Corron 

Corridor 

  0 0 0 0 

121

WID 

Woodb

ridgeW

ID 

Groundwater 

Dependent 

Vineyards 

68622 0 0 0 
2.404987

306 

5.942723

633 

SI Table 19. Table of surface water allocation amounts for irrigation districts included in this 

analysis and value sources. Note: This is part 1 of 2. 
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UID Sources of Data 

001AWD 
Based on the GSP AWD does not have SW rights 

http://www.alisowdgsa.org/assets/aliso-gsp-final_20200117.pdf 

002AID 

USBR contractor Appendix A 

https://www.usbr.gov/mp/nepa/includes/documentShow.php?Doc_ID=2492

1 

003AID 

Alta ID Entitlement Estimate: http://www.altaid.org/surface-water-

mainmenu-43  ; KRWA Headgate diversion 2017 was 252,506AF, 2011 

was 206,715, and 2010 was 219984 AF so took average of these; no 

documentation on exact entitlement 

004AWD Cannot confirm no surface water rights 

005AWD 

EWRIMS 5,370 AF irrigation licensed for Deer Creek and 10,000 AF 

pending for white river; SWP amount source from 

TriCountyWaterAgencyGSP_ PDF file downloaded states that Mercy 

Springs and Fresno Slough have requested, pursuant to their respective 

CVP contracts, approval from Reclamation to annually transfer up to 1,300 

AFY of Mercy Springs’ CVP water and up to 4,000 AFY of Fresno 

Slough’s CVP water over a nine-year period to Angiola. 

006AEWSD 

AEWD GSP: AEWSD’s only contracted source of surface water supply is 

its Class 1 and Class 2 contracts for CVP (Friant Division) water, at 40,000 

AFY and 311,675 AFY respectively. 

008BCWD Cannot confirm no surface water rights 

009BCID 
USBR 20,000 AF; EWRIMS 107993.8 AF and 15108.9 AF from San 

Joaquin River 

010BWSD KWCA Report Josh sent has SWP water to 121,508 Af 

011BMWD KCWA Report Josh sent has SWP as 92,600 AF 

012BVWSD 

EWRIMS 700,000 AF pending; http://bvh2o.com/; from webpage The 

District controls an average entitlement of approximately 150,000 AF/yr of 

surface water from the Kern River along with an additional entitlement of 

approximately 21,300 AF/yr from the State Water Project 

013BBID 

USBR 20,600AF total, 800 M&I, and 19800 AF for irrigation; 60,000 AF 

of pre-1914 watr rights on Italian Slough https://bbid.org/wp-

content/uploads/2017/09/BBID_AWMP_Draft_09182017_Compiled.pdf 

015CWD 
KCWA Report Josh sent 38,200 AF; EWRIMS 30,000 AF for irrigation 

from Poso Creek 

017CCID 

CVP Contractors List states that SJRECWA share 840,000 AF; email 

exchange with Joann White and she gave the following % breakdown for 

each member district-- Central California Irrigation District:  63.38% 

San Luis Canal Company:  19.48% 

Firebaugh Canal Water District:  10.12% 

Columbia Canal Company:  7.02% 

019CWD 

USBR 55,000 AF and 160,000 AF class1/2 from friant and 24,000 from 

Buchanan; EWRIMS 6195.7 AF from Ash Creek and 77312.8 Af from 

Chowchilla River 

092CCC 

CVP Contractors List states that SJRECWA share 840,000 AF; email 

exchange with Joann White and she gave the following % breakdown for 

each member district-- Central California Irrigation District:  63.38% 

San Luis Canal Company:  19.48% 
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Firebaugh Canal Water District:  10.12% 

Columbia Canal Company:  7.02% 

020CID EWRIMS; pending irrigation water on Kings River 

021CID Cannot confirm no surface water rights 

122CSJWCD USBR 80,000 AF expires in 2022 

023DEID 

USBR Report: 

https://www.usbr.gov/mp/nepa/includes/documentShow.php?Doc_ID=2492

1 

022DPWD USBR 140210 AF total, 29 for M&I and 140,181AF for irrigation 

026DRWD 
SWP water calculated from average of 1962-2017 (document provided by 

Alvar) 

027EWD USBR CVP 4,550 AF from Delta Mendota Canal expires in 2030 

028EWD Cannot confirm no surface water rights 

029EWD Cannot confirm no surface water rights 

030ESWD EWRIMS 

031EWSID 
SWP Amount from document sent by Alvar baed on average from 1988-

2017 

032EID USBR CVP 11,100 AF and 19,000 AF from Friant indefinite 

033FWD Cannot confirm no surface water rights 

034FCC 

CVP Contractors List states that SJRECWA share 840,000 AF; email 

exchange with Joann White and she gave the following % breakdown for 

each member district-- Central California Irrigation District:  63.38% 

San Luis Canal Company:  19.48% 

Firebaugh Canal Water District:  10.12% 

Columbia Canal Company:  7.02% 

035FWC Cannot confirm no surface water rights 

036FID 

CVP water 75,000 AF and Kings River Water; EWRIMS 863 AF irrigation 

water from Pup Creek is pending; document from USBR 800,000 from the 

Kings River 

037FSWD 
USBR CVP 4,000 Af expires in 2030 and 866 AF indefinitee from Mendota 

Pool 

038GWD USBR CVP 3,500 AF indefinite from Friant Kern 

039GWD 

USBR 180,000AF (Grasslands CVP Document in Other Sources Folder); 

EWRIMS 1,536 AF from Banos Creek (% distribution for ag and wetlands) 

ET 6ft/year (4.5 ft/year for Almonds) 

040GFWD 
USBR CVP 14,000 AF indefinite from Friant Div; EWRIMS 5,000 AF for 

Domestic water use 

042HVID 
USBR CVP 3,347 Af expired in 2018 but included in this study conducted 

for 2016; 250 indefinite, 1,000 AF indefinite 

044IWD USBR CVP 1200 AF expires in 2026 from Friant 

045IID 

USBR CVP 6,500 and 500 AF of indefinite from Friant; owns 7.9 shares of 

Watchuma Water stock ~3,950 AF water; USBR 7,700 AF Class 1 and 

7,900 AF of class 2 (going to use the numbers for USBR Report) 

https://www.usbr.gov/mp/nepa/includes/documentShow.php?Doc_ID=2492

1 

046JID USBR 35,500 for ag expires in 2030 and 9,700 AF indefinite 
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047KDWD 

SWP Kern County Water Agency Member Unit doc 25,500 AF; AWMP 

https://www.kerndelta.org/wp-content/uploads/2019/12/KernDelta-WD-

2015-AWMP.pdf Table 7. 168,895AF for irrigation within service 

areas,deliver available water for irriation within district 10,488 AF 

048KTWD 

USBR 40,000 AF and 13,300 AF that expired in 2018, and 5,000 AF from 

Friant that is indefinite; keeping the expired water allocation bc analysis is 

for 2016 crop 

049KRWD Cannot confirm no surface water rights 

050LID 

Report https://www.kingsbasinauthority.org/wp-

content/uploads/2019/01/20181017IRWMP.pdf states that Kings River 

water rights held in trust by Kings River Water Association = 44,000 AF 

from Pine Flat and 8,481 AF from upstream storage pts 

051LWD USBR CVP 800 AF expires in 2030 from Mendota Pool 

052LID 

USBR report states that Lakeside Irrigation WD administers water rights of 

Lakeside Ditch Company stockholders on the Kaweah River; Historical 

webpage states The company appropriated three hundred and one cubic feet 

per second from Cross creek, a branch of Kaweah river. 

http://genealogytrails.com/cal/kings/books/chapt23.html 

055LGAWD Cannot confirm no surface water rights 

057LWD 
Liberty is a Liberty Canal Company sharholder for3.3% Kings river storage 

of 13,000 AF which is 429 AF 

058LID USBR 33,000 AF and 22,000 AF from Friant 

059LSID 

USBR CVP 27,500 AF indefinite; USBR report it has original imported 

water supplies through Wutchumna Water Company Stock and 39 deep 

wells that give range of 5,000 to 14,000 AF of water (I am not going to 

count this) 

060LHWD KWCA Report Josh sent has SWP 119,110 AF 

061LTID 

USBR Report 

https://www.usbr.gov/mp/nepa/includes/documentShow.php?Doc_ID=6086 

Table 3 states the following: Fraint Canal Class 1 61,200 AF, Class 2 

238,000AF, Tule River 70,000AF and 31,102 CVP 

062MID USBR CVP contract 

063MWD Cannot confirm no surface water rights 

065MWD Cannot confirm no surface water rights 

066MID 

EWRIMS 400,000 AF pending for aquaculture; total water rights from 

ERIMS 4,909,115 AF; 356,757 Af for domestic, 63,719 for irrigation, and 

4,488,638 AF for power 

067MSWD USBR CVP 2,842 expires in 2030 from delta mendota canal 

068MCWD 

https://www.calwaterlaw.com/merquin-county-water-district-stevinson-

ca#:~:text=Merquin%20has%20a%20contractual%20water,5%2Dmember

%20Board%20of%20Directora states Merquin has a contractual water right 

to 14,211 acre feet per year serving approximately 6,000 acres of farmland. 

069MWD Cannot confirm no surface water rights 

070MID 

EWRIMS; based on a phone call with TID Mr Weimer the allocation of 

68.6% and 31.4% are used to divvy up a lot of resources between TID and 

MID; so ewrims allocation was split 68% for TID and 31% for MID 

071NBID Cannot confirm no surface water rights 
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072NSWD 

New Stone GSP: https://57d30904-37e1-4f05-a28b-

67136050bc86.filesusr.com/ugd/449124_58a618ab4acb479ab24e9fd19397

3813.pdf Although the NSWD GSA does have an appropriative water right 

along the Chowchilla Bypass (referred toas Eastside Bypass/Chowchilla 

Canal in permit) of 15,700 acre-feet/year (permit number 19615), 

surfacewater is not consistently used for irrigation 

073NKWSD 
EWRIMS: 500000 AF pending for irrigation and 25,000 AF permitted for 

Poso Creek 

124NSJWCD 

USBR Report 

https://www.usbr.gov/watersmart/swep/docs/2018/applications/074-SWEP-

North-San-Joaquin-WCD-Project1508.pdf NSJWCD has the right to divert 

20,000 AF from Mokelumne River (junior water right) 

076OID 

USBR 600,000 split in half with SSJID (confirmed via phone call with 

SSJID); EWRIMS total rights 5,142,894.1 AF, 937,696.5 AF irrigation, 

184,997.7 AF domestic, and 4,020,199.9 AF for power 

075OFWD 
SWP Amount from document sent by Alvar baed on average from 1988-

2017 

079OCID 
USBR 39,200 AF indefinite from Friant ;EWRIMS has 23,339.2 AF and 

814,474.7 AF for power (not included just a note) 

078OLWD USBR 600 AF expires in 2030 from Delta Mendota Canal 

080PWD 
USBR CVP 10,080 AF total of which 10,068 Af for ag and 12 AF for M&I; 

Right to 4,597 AF from CCID contract 

081PWD USBR CVP 94,000 AF total, 78 is M&I and 93,922 AF is irrigation 

082PID USBR CVP 22,500 AF from Delta-Mendota Canal 

083PID 
USBR CVP 31,102 AF for irrigation from Cross Valley Canal; EWRIMS 

10,000 AF pending from Deer Creek 

085PID 

USBR 15,000 AF and 30,000 AF from Friant; USBR report 

https://www.usbr.gov/mp/nepa/includes/documentShow.php?Doc_ID=2492

1 avg annual entitlement of 12,900 Af from Tule River 

086RCWD Cannot confirm no surface water rights 

087RID 

Report https://www.kingsbasinauthority.org/wp-

content/uploads/2019/01/20181017IRWMP.pdf states that it has 26,000 AF 

on Kings River of combined storage share 

123RCWD EWRIMS 8,395 AF for power from the rock creek 

089RCWD 

Madera GSP https://www.maderacountywater.com/wp-

content/uploads/2020/02/Madera_GSP_2020_FinalReport.pdf states that 

RCWD holds a historical right to divert water from the San Joaquin River 

on average 9840 AFY; MID states that RCWD may purchase water in 

excess of MID water demands, up to 10,000 AF in any one year (not 

including the amount that they can purchase) 

090RRBWSD 
KCWA Report Josh sent has SWP as 29,900AF; EWRIMS 65,570 AF is 

pending use code is NA 

091SWD Cannot confirm no surface water rights 

125SLCC 

CVP Contractors List states that SJRECWA share 840,000 AF; email 

exchange with Joann White and she gave the following % breakdown for 

each member district-- Central California Irrigation District:  63.38% 

San Luis Canal Company:  19.48% 
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Firebaugh Canal Water District:  10.12% 

Columbia Canal Company:  7.02% 

093SLWD 

USBR 125,080 AF total, 1,071 Af M&I, and 124,009 AF for irrigation 

expired in 2017; keeping the sw allocation value since the analysis was 

conducted for 2016 crops 

094SID USBR 300 AF, 21,200 AF, and 32,800 AF from the Friant 

095SWSD USBR CVP 66,000 AF and 1,600,000 AF pending in EWRIMS 

096SWID USBR CVP 50,000 AF and 39,600 AF maximum 

098SSJID 

USBR 600,000 split in half with SSJOD (confirmed via phone call with 

SSJID); EWRIMS 36,000 AF for incidental power from stanislaus river; 

Based on AWMP the split is also for pre-1914 water rights to the stanislaus 

river https://www.ssjid.com/wp-content/uploads/2020-Ag-Water-

Management-Plan.pdf 

099SWD 
EWRIMS irrigation 16,717 AF from Merced river, 79,534.4 AF and 

35,619.7 AF from Bear Creek, and 58,552.9 AF Arena Spillway 

102SEWD 

EWRIMS total rights 1,868,557.3 AF, 16,027 AF domestic, 925,900 AF 

cancelled irrigation (I think bc irrigation covered by Woodbridge ID), 

822,630AF pending for F&W; USBR total 75,000 AF, 46,214 AF M&I and 

rest is not labelled so assigned to ag expires in 2022 

103SCID USBR CVP 10,000 AF from Friant indefinite 

104SID 

GSP https://southforkkings.org/wp-content/uploads/2021/04/tulare-lake-

subbasin-groundwater-sustainability-plan-january-2020.pdf states that has 

storage share of Kings River of 11,000 AF 

105TDWD USBR CVP 7,200 AF indefinite from Friant 

106TID USBR CVP 29,000 AF indefinite 

107TID 
USBR CVP 13,800 AF expires in 2030 and 20,200 AF indefinite from 

Mendota Pool 

108TTWD EWRIMS 50,500 AF pending from Chowchilla Bypass for irrigation 

109TWD 
USBR CVP 1142 Af expired inss 2018 included since crops used from 

2016 and 400 Af indefinite from Friant Kern 

110TID 

CVP 30,000AF and 141,000 AF from Friant; USBR report 

https://www.usbr.gov/mp/nepa/includes/documentShow.php?Doc_ID=2492

1 Tulare ID has 50,000 AF rights to the Kaweah River 

111TID 

EWRIMS; based on a phone call with TID Mr Weimer the allocation of 

68.6% and 31.4% are used to divvy up a lot of resources between TID and 

MID; so ewrims allocation was split 68% for TID and 31% for MID 

112TIWD 
TIWD relies on surface water from SLCC during non-critical years under 

the Exchange Contract. 

118WWD 
WestlandsWD webpage matches USBR: https://wwd.ca.gov/water-

management/water-supply/annual-water-use-and-supply/ 

115WSID 
EWRIMS 27,000 AF from Old River for irrigation; USBR CVP 5,000 AF 

expires in 2030 

116WSID CVP 50,000 AF; EWRIMS 187791 AF for irrigation 

119WRMWSD KWCA Report Josh sent has SWP water to 197088 AF 

120WWD Cannot confirm no surface water rights 

121WID 
EWRIMS total surface water 219,854.5 AF, 211,232.5 AF Domestic, and 

8,622 AF irrigation water; Water rights for WID are included in EBMUD 
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for Mokelumne River for 60,000AF when Pardee reservoir flow are greater 

than 375 TAF or greater 

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvb

WFpbnx3b29kYnJpZGdlaXJyaWdhdGlvbmRpc3RyaWN0fGd4OmFlYTZkM

2RhZGRlMTdjZg. Do I include the water rights from EBMUD? 

SI Table 20. Table of surface water allocation amounts for irrigation districts included in this 

analysis and value sources. Note: This is part 2 of 
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Crop Type Category Crop Type 

Annual Beans (Dry) 

Carrots 

Cole Crops 

Corn, Sorghum and Sudan 

Cotton 

Lettuce/Leafy Greens 

Melons, Squash and Cucumbers 

Miscellaneous Field Crops 

Miscellaneous Truck Crops 

Onions and Garlic 

Peppers 

Potatoes and Sweet Potatoes 

Safflower 

Strawberries 

Sunflowers 

Tomatoes 

Rice 

Wheat 

Irrigated Forage Alfalfa and Alfalfa Mixtures 

Miscellaneous Grasses 

Mixed Pasture 

Miscellaneous Grain and Hay 

Perennial Almonds 

Apples 

Avocados 

Bush Berries 
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Cherries 

Citrus 

Dates 

Flowers, Nursery and Christmas Tree Farms 

Grapes 

Kiwis 

Miscellaneous Deciduous 

Miscellaneous Subtropical Fruits 

Olives 

Peaches/Nectarines 

Pears 

Pistachios 

Plums, Prunes and Apricots 

Pomegranates 

Walnuts 

Young Perennials 

SI Table 21. Table specifying the Land IQ crop types categorized into annual, perennial, and 

irrigated forage categories. 
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Crop2016 County 
CropName

Report 

Prod_

Unit 

USD_pe

r_Unit 

Tonpe

rAcre 

USDp

erTon 

USDpe

rAcre 

Peren_An

nCrop16 

Alfalfa and 

Alfalfa 

Mixtures 

Kings 
Alfalfa 

Hay 
ton 142 7.69 142 1092 

Irrigated 

Forage 

Alfalfa and 

Alfalfa 

Mixtures 

Kern 
Alfalfa 

Hay 
ton 153 7.14 153 1092 

Irrigated 

Forage 

Alfalfa and 

Alfalfa 

Mixtures 

Fresno 
Alfalfa 

Hay 
ton 167 7.57 167 1264 

Irrigated 

Forage 

Alfalfa and 

Alfalfa 

Mixtures 

Madera 
Alfalfa 

Hay 
ton 158 7.24 158 1144 

Irrigated 

Forage 

Alfalfa and 

Alfalfa 

Mixtures 

San 

Joaquin 

Alfalfa 

hay 
ton 143 6.38 143 912 

Irrigated 

Forage 

Alfalfa and 

Alfalfa 

Mixtures 

Merced 
Alfalfa 

hay 
ton 170.6 7.25 171 1237 

Irrigated 

Forage 

Alfalfa and 

Alfalfa 

Mixtures 

Tulare 
Alfalfa 

hay 
ton 154 7.85 154 1209 

Irrigated 

Forage 

Alfalfa and 

Alfalfa 

Mixtures 

Stanisla

us 

Alfalfa 

hay 
ton 148 7.08 148 1048 

Irrigated 

Forage 

Almonds Kings Almonds ton 4820 1.07 4820 5157 Perennial 

Almonds Kern Almonds ton 4920 1.19 4920 5855 Perennial 

Almonds Fresno Almonds ton 4633 1.17 4633 5421 Perennial 

Almonds Madera Almond ton 4498 1.02 4498 4588 Perennial 

Almonds 
San 

Joaquin 
Almonds ton 4800 1.02 4800 4896 Perennial 

Almonds Merced Almonds ton 4900 1.14 4900 5586 Perennial 

Almonds Tulare Almonds ton 4400 1.09 4400 4796 Perennial 

Almonds 
Stanisla

us 
Almonds ton 4800 1.04 4800 4992 Perennial 

Apples Kings 
Apples 

Kern 
ton 900 1.81 900 1629 Perennial 

Apples Kern Apples ton 900 1.81 900 1629 Perennial 

Apples Fresno 
Apples 

Fresh 
ton 1063 9.22 1063 9801 Perennial 

Apples Madera 

Apples 

Fresh 

Fresno 

ton 1063 9.22 1063 9801 Perennial 

Apples 
San 

Joaquin 
Apples ton 413 17.16 413 7087 Perennial 

Apples Merced 

Apples 

San 

Joaquin 

ton 413 17.16 413 7087 Perennial 
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Apples Tulare 
Apples 

Kern 
ton 900 1.81 900 1629 Perennial 

Apples 
Stanisla

us 

Apples 

San 

Joaquin 

ton 413 17.16 413 7087 Perennial 

Avocados Fresno NA 0 0 0 - - Perennial 

Avocados Tulare NA 0 0 0 - - Perennial 

Beans 

(Dry) 
Kings 

Beans dry- 

Tulare 
ton 888 1.27 888 1128 Annual 

Beans 

(Dry) 
Kern Beans dry ton 800 1.3 800 1040 Annual 

Beans 

(Dry) 
Fresno 

Beans dry 

lima 
ton 1370.82 1.125 1371 1542 Annual 

Beans 

(Dry) 
Madera 

Beans dry 

lima- 

Merced 

ton 1370.82 1.125 1371 1542 Annual 

Beans 

(Dry) 

San 

Joaquin 

Beans Dry 

- Merced 
ton 1060 1.2 1060 1272 Annual 

Beans 

(Dry) 
Merced 

Beans dry 

lima 
ton 1370.82 1.125 1371 1542 Annual 

Beans 

(Dry) 
Tulare Beans dry ton 888 1.27 888 1128 Annual 

Beans 

(Dry) 

Stanisla

us 

Beans 

Lima 
ton 1450 1.15 1450 1668 Annual 

Bush 

Berries 
Kings 

Blueberrie

s- Tulare 
ton 5420 5.93 5420 32141 Perennial 

Bush 

Berries 
Kern 

Blueberrie

s 
ton 7380 5.13 7380 37859 Perennial 

Bush 

Berries 
Fresno 

Blueberrie

s 
ton 3786 1.89 3786 7156 Perennial 

Bush 

Berries 
Madera 

Blueberrie

s- Fresno 
ton 3786 1.89 3786 7156 Perennial 

Bush 

Berries 

San 

Joaquin 

Blueberrie

s 
ton 4250 5 4250 21250 Perennial 

Bush 

Berries 
Merced 

Blueberrie

s- San 

Joaquin 

ton 4250 5 4250 21250 Perennial 

Bush 

Berries 
Tulare 

Blueberrie

s 
ton 5420 5.93 5420 32141 Perennial 

Bush 

Berries 

Stanisla

us 

Blueberrie

s- San 

Joaquin 

ton 4250 5 4250 21250 Perennial 

Carrots Kings NA 0 0 0 - - Annual 

Carrots Kern NA 0 0 0 - - Annual 

Carrots Fresno NA 0 0 0 - - Annual 

Carrots Madera NA 0 0 0 - - Annual 

Carrots 
San 

Joaquin 
NA 0 0 0 - - Annual 

Carrots Merced NA 0 0 0 - - Annual 
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Carrots Tulare NA 0 0 0 - - Annual 

Carrots 
Stanisla

us 
NA 0 0 0 - - Annual 

Cherries Kings Cherries ton 4410 2.88 4410 12701 Perennial 

Cherries Kern Cherries ton 3810 5.93 3810 22593 Perennial 

Cherries Fresno Cherries ton 3678 2.22 3678 8165 Perennial 

Cherries Madera Cherries ton 3873 3.66 3873 14175 Perennial 

Cherries 
San 

Joaquin 
Cherries ton 2480 1.19 2480 2951 Perennial 

Cherries Merced 
Cherries- 

Stanislaus 
ton 3420 1.92 3420 6566 Perennial 

Cherries Tulare Cherries ton 4620 2.25 4620 10395 Perennial 

Cherries 
Stanisla

us 
Cherries ton 3420 1.92 3420 6566 Perennial 

Citrus Kings 

Orange 

navel - 

Tulare 

ton 665 15.5 665 10308 Perennial 

Citrus Kern 
Orange 

Navel 
ton 725 13.76 725 9976 Perennial 

Citrus Fresno 

Orange 

Navel 

Fresh 

ton 430 16.79 430 7220 Perennial 

Citrus Madera Oranges ton 475 15.26 475 7249 Perennial 

Citrus 
San 

Joaquin 

Oranges- 

Madera 
ton 475 15.26 475 7249 Perennial 

Citrus Merced 
Oranges- 

Madera 
ton 475 15.26 475 7249 Perennial 

Citrus Tulare 
Orange 

navel 
ton 665 15.5 665 10308 Perennial 

Citrus 
Stanisla

us 

Oranges- 

Madera 
ton 475 15.26 475 7249 Perennial 

Cole Crops Kings NA 0 0 0 - - Annual 

Cole Crops Kern NA 0 0 0 0 0 Annual 

Cole Crops Fresno NA 0 0 0 0 0 Annual 

Cole Crops 
San 

Joaquin 
NA 0 0 0 - - Annual 

Cole Crops Merced NA 0 0 0 - - Annual 

Cole Crops Tulare NA 0 0 0 - - Annual 

Cole Crops 
Stanisla

us 
NA 0 0 0 - - Annual 

Corn, 

Sorghum 

and Sudan 

Kings 
Corn 

silage 
ton 40.1 25.25 40 1013 Annual 

Corn, 

Sorghum 

and Sudan 

Kern 

Corn 

Silage- 

Tulare 

ton 44 26 44 1144 Annual 
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Corn, 

Sorghum 

and Sudan 

Fresno 
Corn 

Silage 
ton 42 22.97 42 965 Annual 

Corn, 

Sorghum 

and Sudan 

Madera 
Corn 

Silage 
ton 39 25.6 39 998 Annual 

Corn, 

Sorghum 

and Sudan 

San 

Joaquin 
Corn grain ton 156 5.19 156 810 Annual 

Corn, 

Sorghum 

and Sudan 

Merced 
Corn 

Grain 
ton 279.21 5.71 279 1594 Annual 

Corn, 

Sorghum 

and Sudan 

Tulare 
Corn 

Silage 
ton 44 26 44 1144 Annual 

Corn, 

Sorghum 

and Sudan 

Stanisla

us 

Corn 

Silage 
ton 39 26.63 39 1039 Annual 

Cotton Kings Pima 

bale-

495 

lbs 

683 0.79 2760 2186 Annual 

Cotton Kern 
Upland 

and Acala 

lbs 

per 

acre;p

rice 

per 

poun

d 

0.67 0.92 1340 1232.8 Annual 

Cotton Fresno 
Cotton-

Pima 

lbs 

per 

acre 

1.34 0.73 2680 
1947.0

2 
Annual 

Cotton Madera Lint 

lb;pri

ce per 

lb 

0.81 0.82 1620 
1323.5

4 
Annual 

Cotton 
San 

Joaquin 

Acala- 

Merced 

500 

lb 

bale 

428.45 0.825 1714 1414 Annual 

Cotton Merced Acala 

500 

lb 

bale 

428.45 0.825 1714 1414 Annual 

Cotton Tulare Lint 

lbs 

per 

acre; 

$ per 

every 

100 

lbs 

0.981 0.835 1962 1638.3 Annual 

Dates Fresno NA 0 0 0 - - Perennial 

Dates Madera NA 0 0 0 - - Perennial 

Dates Tulare NA 0 0 0 - - Perennial 
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Flowers, 

Nursery 

and 

Christmas 

Tree Farms 

Kings NA 0 0 0 - - Perennial 

Flowers, 

Nursery 

and 

Christmas 

Tree Farms 

Kern NA 0 0 0 - - Perennial 

Flowers, 

Nursery 

and 

Christmas 

Tree Farms 

Fresno NA 0 0 0 - - Perennial 

Flowers, 

Nursery 

and 

Christmas 

Tree Farms 

Madera NA 0 0 0 - - Perennial 

Flowers, 

Nursery 

and 

Christmas 

Tree Farms 

San 

Joaquin 
NA 0 0 0 - - Perennial 

Flowers, 

Nursery 

and 

Christmas 

Tree Farms 

Merced NA 0 0 0 - - Perennial 

Flowers, 

Nursery 

and 

Christmas 

Tree Farms 

Tulare NA 0 0 0 - - Perennial 

Flowers, 

Nursery 

and 

Christmas 

Tree Farms 

Stanisla

us 
NA 0 0 0 - - Perennial 

Grapes Kings Wine ton 286 13.63 286 3898 Perennial 

Grapes Kern 

Table 

Variety 

Fresh 

ton 2230 11.78 2230 26269 Perennial 

Grapes Fresno 
Raisin 

Dried 
ton 1100 9.38 1100 10318 Perennial 

Grapes Madera 
Raisins 

Dried 
ton 1096 3.09 1096 3387 Perennial 

Grapes 
San 

Joaquin 
Grapes all ton 594 7.31 594 4342 Perennial 

Grapes Merced Wine ton 524.99 11.23 525 5896 Perennial 
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Grapes Tulare 
Table 

Fresh 
ton 1340 11.1 1340 14874 Perennial 

Grapes 
Stanisla

us 
grapes red ton 550 10.06 550 5533 Perennial 

Greenhous

e 
Kings NA 0 0 0 - - NA 

Greenhous

e 
Kern NA 0 0 0 - - NA 

Greenhous

e 
Fresno NA 0 0 0 - - NA 

Greenhous

e 
Tulare NA 0 0 0 - - NA 

Idle Kings NA 0 0 0 - - NA 

Idle Kern NA 0 0 0 - - NA 

Idle Fresno NA 0 0 0 - - NA 

Idle Madera NA 0 0 0 - - NA 

Idle 
San 

Joaquin 
NA 0 0 0 - - NA 

Idle Merced NA 0 0 0 - - NA 

Idle Tulare NA 0 0 0 - - NA 

Idle 
Stanisla

us 
NA 0 0 0 - - NA 

Kiwis Kings 
Kiwifruit- 

Tulare 
ton 1780 13.9 1780 24742 Perennial 

Kiwis Fresno Kiwifruit ton 1273 1.77 1273 2253 Perennial 

Kiwis Madera 
Kiwifruit- 

Fresno 
ton 1273 1.77 1273 2253 Perennial 

Kiwis 
San 

Joaquin 

Kiwifruit- 

Fresno 
ton 1273 1.77 1273 2253 Perennial 

Kiwis Merced 
Kiwifruit- 

Fresno 
ton 1273 1.77 1273 2253 Perennial 

Kiwis Tulare Kiwifruit ton 1780 13.9 1780 24742 Perennial 

Kiwis 
Stanisla

us 

Kiwifruit- 

Fresno 
ton 1273 1.77 1273 2253 Perennial 

Lettuce/Le

afy Greens 
Kings 

Lettuce 

Head- 

Kern 

ton 470 19.56 470 9193 Annual 

Lettuce/Le

afy Greens 
Kern 

Lettuce 

Head 
ton 470 19.56 470 9193 Annual 

Lettuce/Le

afy Greens 
Fresno 

Lettuce 

Leaf 
ton 526 15.73 526 8274 Annual 

Lettuce/Le

afy Greens 
Madera 

Lettuce 

Leaf- 

Fresno 

ton 526 15.73 526 8274 Annual 

Lettuce/Le

afy Greens 
Merced 

Lettuce 

Leaf- 

Fresno 

ton 526 15.73 526 8274 Annual 
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Lettuce/Le

afy Greens 
Tulare 

Lettuce 

Head- 

Kern 

ton 470 19.56 470 9193 Annual 

Managed 

Wetland 
Kings NA 0 0 0 - - NA 

Managed 

Wetland 
Kern NA 0 0 0 - - NA 

Managed 

Wetland 
Fresno NA 0 0 0 - - NA 

Managed 

Wetland 
Madera NA 0 0 0 - - NA 

Managed 

Wetland 

San 

Joaquin 
NA 0 0 0 - - NA 

Managed 

Wetland 
Merced NA 0 0 0 - - NA 

Managed 

Wetland 
Tulare NA 0 0 0 - - NA 

Managed 

Wetland 

Stanisla

us 
NA 0 0 0 - - NA 

Melons, 

Squash and 

Cucumbers 

Kings 
Watermel

on_Kern 
ton 327 34.3 327 11216 Annual 

Melons, 

Squash and 

Cucumbers 

Kern 
Watermel

on 
ton 327 34.3 327 11216 Annual 

Melons, 

Squash and 

Cucumbers 

Fresno Honeydew ton 515 19.92 515 10259 Annual 

Melons, 

Squash and 

Cucumbers 

Madera 
Honeydew

- Fresno 
ton 515 19.92 515 10259 Annual 

Melons, 

Squash and 

Cucumbers 

San 

Joaquin 
melons all ton 310 48.28 310 14967 Annual 

Melons, 

Squash and 

Cucumbers 

Merced 
Melons 

Cantelope 

40lb 

ctn 
4.87 13.433 5 65 Annual 

Melons, 

Squash and 

Cucumbers 

Tulare 
Watermel

on_Kern 
ton 327 34.3 327 11216 Annual 

Melons, 

Squash and 

Cucumbers 

Stanisla

us 

melons all 

- Sjoaquin 
ton 310 48.28 310 14967 Annual 

Miscellane

ous 

Deciduous 

Kings NA 0 0 0 - - Perennial 

Miscellane

ous 

Deciduous 

Kern NA 0 0 0 - - Perennial 
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Miscellane

ous 

Deciduous 

Fresno NA 0 0 0 - - Perennial 

Miscellane

ous 

Deciduous 

Madera NA 0 0 0 - - Perennial 

Miscellane

ous 

Deciduous 

San 

Joaquin 
NA 0 0 0 - - Perennial 

Miscellane

ous 

Deciduous 

Merced NA 0 0 0 - - Perennial 

Miscellane

ous 

Deciduous 

Tulare NA 0 0 0 - - Perennial 

Miscellane

ous 

Deciduous 

Stanisla

us 
NA 0 0 0 - - Perennial 

Miscellane

ous Field 

Crops 

Fresno 
Oriental 

Veggies 
ton 1444 12.12 1444 17501 Annual 

Miscellane

ous Grain 

and Hay 

Kings 
Wheat 

silage 
ton 29.6 17 30 503 

Irrigated 

Forage 

Miscellane

ous Grain 

and Hay 

Kern Grain ton 140 3.95 140 553 
Irrigated 

Forage 

Miscellane

ous Grain 

and Hay 

Fresno Hay Other ton 141 3.07 141 433 
Irrigated 

Forage 

Miscellane

ous Grain 

and Hay 

Madera Oat Hay ton 92 3.2 92 294 
Irrigated 

Forage 

Miscellane

ous Grain 

and Hay 

San 

Joaquin 
hay all ton 139 6.03 139 838 

Irrigated 

Forage 

Miscellane

ous Grain 

and Hay 

Merced Hay Grain ton 144.36 3.91 144 564 
Irrigated 

Forage 

Miscellane

ous Grain 

and Hay 

Tulare Hay other ton 93 3.38 93 314.34 
Irrigated 

Forage 

Miscellane

ous Grain 

and Hay 

Stanisla

us 
Hay Oat ton 100 3.18 100 318 

Irrigated 

Forage 

Miscellane

ous 

Grasses 

Kings 
Sorghum 

silage 
ton 27.8 17.97 28 500 

Irrigated 

Forage 

Miscellane

ous 

Grasses 

Kern 
Silage 

Forage 
ton 46.4 19.37 46 899 

Irrigated 

Forage 
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Miscellane

ous 

Grasses 

Fresno NA 0 0 0 - - 
Irrigated 

Forage 

Miscellane

ous 

Grasses 

Madera 
Pasture 

Irrigated 
acre 150 0 150 - 

Irrigated 

Forage 

Miscellane

ous 

Grasses 

San 

Joaquin 

Irrigated 

Pasture 
acre 268 1 268 268 

Irrigated 

Forage 

Miscellane

ous 

Grasses 

Merced 
Pasture 

irrigated 
acre 174 1 174 174 

Irrigated 

Forage 

Miscellane

ous 

Grasses 

Tulare 
Pasture 

other 
acre 40 1 40 40 

Irrigated 

Forage 

Miscellane

ous 

Grasses 

Stanisla

us 
Sudan ton 26 12.76 26 332 

Irrigated 

Forage 

Miscellane

ous 

Subtropical 

Fruits 

Kings NA 0 0 0 - - Perennial 

Miscellane

ous 

Subtropical 

Fruits 

Kern NA 0 0 0 - - Perennial 

Miscellane

ous 

Subtropical 

Fruits 

Fresno NA 0 0 0 - - Perennial 

Miscellane

ous 

Subtropical 

Fruits 

Madera NA 0 0 0 - - Perennial 

Miscellane

ous 

Subtropical 

Fruits 

San 

Joaquin 
NA 0 0 0 - - Perennial 

Miscellane

ous 

Subtropical 

Fruits 

Tulare NA 0 0 0 - - Perennial 

Miscellane

ous 

Subtropical 

Fruits 

Stanisla

us 
NA 0 0 0 - - Perennial 

Miscellane

ous Truck 

Crops 

Kings NA 0 0 0 - - Annual 
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Miscellane

ous Truck 

Crops 

Kern NA 0 0 0 - - Annual 

Miscellane

ous Truck 

Crops 

Fresno NA 0 0 0 - - Annual 

Miscellane

ous Truck 

Crops 

Madera NA 0 0 0 - - Annual 

Miscellane

ous Truck 

Crops 

San 

Joaquin 
NA 0 0 0 - - Annual 

Miscellane

ous Truck 

Crops 

Merced NA 0 0 0 - - Annual 

Miscellane

ous Truck 

Crops 

Tulare NA 0 0 0 - - Annual 

Miscellane

ous Truck 

Crops 

Stanisla

us 
NA 0 0 0 - - Annual 

Mixed 

Pasture 
Kings 

Pasture 

range 
ton 11.25 0 11.25 11.25 

Irrigated 

Forage 

Mixed 

Pasture 
Kern Range acre 15 1 15 15 

Irrigated 

Forage 

Mixed 

Pasture 
Fresno 

Rangeland 

Grazing 
acre 17 1 17 17 

Irrigated 

Forage 

Mixed 

Pasture 
Madera Rangeland acre 22 0 22 22 

Irrigated 

Forage 

Mixed 

Pasture 

San 

Joaquin 

Pasture 

Range 
acre 46.3 1 46 46 

Irrigated 

Forage 

Mixed 

Pasture 
Merced 

Pasture 

other 
acre 23.41 1 23 23 

Irrigated 

Forage 

Mixed 

Pasture 
Tulare native acre 20 1 20 20 

Irrigated 

Forage 

Mixed 

Pasture 

Stanisla

us 
Rangeland acre 21 1 21 21 

Irrigated 

Forage 

Olives Kings 
Olives- 

Tulare 
ton 1150 3.23 1150 3715 Perennial 

Olives Kern 
Olives- 

Tulare 
ton 1150 3.23 1150 3715 Perennial 

Olives Fresno 
Olives- 

Madera 
ton 1500 2.4 1500 3600 Perennial 

Olives Madera Olives ton 1500 2.4 1500 3600 Perennial 

Olives 
San 

Joaquin 
Olives ton 602 6.34 602 3817 Perennial 

Olives Merced 
Olives- 

Madera 
ton 1500 2.4 1500 3600 Perennial 

Olives Tulare Olives ton 1150 3.23 1150 3715 Perennial 
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Olives 
Stanisla

us 

Olives-

Sjoaquin 
ton 602 6.34 602 3817 Perennial 

Onions and 

Garlic 
Kings 

Garlic-

Kern 
ton 1460 7.9 1460 11534 Annual 

Onions and 

Garlic 
Kern Garlic ton 1460 7.9 1460 11534 Annual 

Onions and 

Garlic 
Fresno Garlic ton 1500 6.85 1500 10275 Annual 

Onions and 

Garlic 
Madera 

Garlic-

Fresno 
ton 1500 6.85 1500 10275 Annual 

Onions and 

Garlic 

San 

Joaquin 
Onions ton 240 22.5 240 5400 Annual 

Onions and 

Garlic 
Merced 

Garlic-

Fresno 
ton 1500 6.85 1500 10275 Annual 

Onions and 

Garlic 
Tulare 

Garlic-

Kern 
ton 1460 7.9 1460 11534 Annual 

Onions and 

Garlic 

Stanisla

us 

Onions-

Sjoaquin 
ton 240 22.5 240 5400 Annual 

Peaches/N

ectarines 
Kings 

Peaches 

Freestone 
ton 1200 11.23 1200 13476 Perennial 

Peaches/N

ectarines 
Kern 

Peaches 

Freestone- 

King 

ton 1200 11.23 1200 13476 Perennial 

Peaches/N

ectarines 
Fresno 

Peach 

Freeston 
ton 1238 10.93 1238 13531 Perennial 

Peaches/N

ectarines 
Madera 

Peaches 

Freestone 
ton 469 25.99 469 12189 Perennial 

Peaches/N

ectarines 

San 

Joaquin 

Peaches 

all 
ton 490 17.9 490 8771 Perennial 

Peaches/N

ectarines 
Merced 

Peach 

freestone 
ton 463.01 24.57 463 11376 Perennial 

Peaches/N

ectarines 
Tulare 

peach 

freestone 
ton 1340 8.35 1340 11189 Perennial 

Peaches/N

ectarines 

Stanisla

us 

Peaches 

cling 
ton 491 24.28 491 11921 Perennial 

Pears Kings 

Pears and 

asian pear- 

Tulare 

ton 1510 18.6 1510 28086 Perennial 

Pears Kern 

Pears and 

asian pear- 

Tulare 

ton 1510 18.6 1510 28086 Perennial 

Pears Fresno 
Pears 

Asian 
ton 1263 19.3 1263 24376 Perennial 

Pears Madera 

Pears 

Asian-

Fresno 

ton 1263 19.3 1263 24376 Perennial 

Pears 
San 

Joaquin 
Pears ton 439 16.44 439 7217 Perennial 

Pears Merced 

Pears 

Asian-

Fresno 

ton 1263 19.3 1263 24376 Perennial 
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Pears Tulare 
Pears and 

asian pear 
ton 1510 18.6 1510 28086 Perennial 

Pears 
Stanisla

us 

Pears- S 

Joaquin 
ton 439 16.44 439 7217 Perennial 

Peppers Kings Bell -Kern ton 970 20.68 970 20060 Annual 

Peppers Kern Bell ton 970 20.68 970 20060 Annual 

Peppers Fresno 
Pepper 

Chili 
ton 603 16.61 603 10016 Annual 

Peppers 
San 

Joaquin 
Peppers ton 469 14.55 469 6824 Annual 

Peppers Merced 

Pepper 

Chili-

Fresno 

ton 603 16.61 603 10016 Annual 

Peppers Tulare Bell -Kern ton 970 20.68 970 20060 Annual 

Peppers 
Stanisla

us 

Peppers-

Sjoaquin 
ton 469 14.55 469 6824 Annual 

Pistachios Kings Pistachios ton 4300 1.9 4300 8170 Perennial 

Pistachios Kern Pistachios ton 4320 1.62 4320 6998 Perennial 

Pistachios Fresno Pistachio ton 1746 1.54 1746 2689 Perennial 

Pistachios Madera Pistachio ton 3985 1.75 3985 6974 Perennial 

Pistachios 
San 

Joaquin 

Pistachio-

Merced 
ton 3367.31 1.39 3367 4681 Perennial 

Pistachios Merced Pistachio ton 3367.31 1.39 3367 4681 Perennial 

Pistachios Tulare Pistachio ton 4360 1.28 4360 5581 Perennial 

Pistachios 
Stanisla

us 

Pistachio-

Merced 
ton 3367.31 1.39 3367 4681 Perennial 

Plums, 

Prunes and 

Apricots 

Kings Plums ton 1410 7.75 1410 10928 Perennial 

Plums, 

Prunes and 

Apricots 

Kern apricot ton 1090 9.76 1090 10638 Perennial 

Plums, 

Prunes and 

Apricots 

Fresno Plums ton 1540 9.15 1540 14091 Perennial 

Plums, 

Prunes and 

Apricots 

Madera 
Plums 

dried 
ton 2432 3.17 2432 7709 Perennial 

Plums, 

Prunes and 

Apricots 

San 

Joaquin 
Apricots ton 675 9.36 675 6318 Perennial 

Plums, 

Prunes and 

Apricots 

Merced 
Plums 

Dried 
ton 1051.25 3.91 1051 4110 Perennial 

Plums, 

Prunes and 

Apricots 

Tulare 
Plum and 

pluot 
ton 1260 9.59 1260 12083 Perennial 
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Plums, 

Prunes and 

Apricots 

Stanisla

us 
Apricot ton 658 9.76 658 6422 Perennial 

Pomegrana

tes 
Kings 

Pomegran

ates-Tul 
ton 671 3.79 671 2543 Perennial 

Pomegrana

tes 
Kern 

Pomegran

ates-Tul 
ton 671 3.79 671 2543 Perennial 

Pomegrana

tes 
Fresno 

Pomegran

ates 
ton 362 10.06 362 3642 Perennial 

Pomegrana

tes 
Madera 

Pomegran

ates-

Fresno 

ton 362 10.06 362 3642 Perennial 

Pomegrana

tes 

San 

Joaquin 

Pomegran

ates-

Fresno 

ton 362 10.06 362 3642 Perennial 

Pomegrana

tes 
Merced 

Pomegran

ates-

Fresno 

ton 362 10.06 362 3642 Perennial 

Pomegrana

tes 
Tulare 

Pomegran

ates 
ton 671 3.79 671 2543 Perennial 

Pomegrana

tes 

Stanisla

us 

Pomegran

ates-

Fresno 

ton 362 10.06 362 3642 Perennial 

Potatoes 

and Sweet 

Potatoes 

Kern 
Spring 

Processing 
ton 213 26.27 213 5596 Annual 

Potatoes 

and Sweet 

Potatoes 

Fresno 

Sweet 

potatoes_

merced 

40lb 

cnt 
17.98 

15.067

2 
18 271 Annual 

Potatoes 

and Sweet 

Potatoes 

San 

Joaquin 
Potatoes ton 660 18.65 660 12309 Annual 

Potatoes 

and Sweet 

Potatoes 

Merced 
Sweet 

potatoes 

40lb 

cnt 
17.98 

15.067

2 
18 271 Annual 

Potatoes 

and Sweet 

Potatoes 

Tulare 

Spring 

Processing

-Kern 

ton 213 26.27 213 5596 Annual 

Potatoes 

and Sweet 

Potatoes 

Stanisla

us 

Sweet 

potatoes 
ton 925 18.4 925 17020 Annual 

Rice Fresno 
Rice-

Sjoaquin 
ton 276 3.5 276 966 Annual 

Rice 
San 

Joaquin 
Rice ton 276 3.5 276 966 Annual 

Rice Merced 
Rice-

Sjoaquin 
ton 276 3.5 276 966 Annual 

Rice 
Stanisla

us 

Rice-

Sjoaquin 
ton 276 3.5 276 966 Annual 

Safflower Kings NA 0 0 0 - - Annual 
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Safflower Kern NA 0 0 0 - - Annual 

Safflower Fresno NA 0 0 0 - - Annual 

Safflower 
San 

Joaquin 
Safflower ton 459 1.4 459 643 Annual 

Safflower Merced NA 0 0 0 - - Annual 

Safflower 
Stanisla

us 
NA 0 0 0 - - Annual 

Strawberri

es 
Kings NA 0 0 0 - - Annual 

Strawberri

es 
Kern NA 0 0 0 - - Annual 

Strawberri

es 
Fresno NA 0 0 0 - - Annual 

Strawberri

es 

San 

Joaquin 
NA 0 0 0 - - Annual 

Strawberri

es 
Merced NA 0 0 0 - - Annual 

Strawberri

es 
Tulare NA 0 0 0 - - Annual 

Strawberri

es 

Stanisla

us 
NA 0 0 0 - - Annual 

Sunflowers Fresno NA 0 0 0 - - Annual 

Tomatoes Kings 
Tomato 

processed 
ton 70.7 56.68 71 4007 Annual 

Tomatoes Kern 
Tomato 

Processed 
Acre 72.5 46.4 73 3364 Annual 

Tomatoes Fresno Processed ton 72 49.44 72 3560 Annual 

Tomatoes Madera Processed ton 75 55.31 75 4148 Annual 

Tomatoes 
San 

Joaquin 

Tomatoes 

all 
ton 83.4 47.45 83 3957 Annual 

Tomatoes Merced Processing 
25 lb 

ctn 
71.82 0.6415 5746 3686 Annual 

Tomatoes Tulare 

Tomato 

processed

=King 

ton 70.7 56.68 71 4007 Annual 

Tomatoes 
Stanisla

us 

Tomatoes 

all -

Sjoaquin 

ton 83.4 47.45 83 3957 Annual 

Urban Kings NA 0 0 0 - - NA 

Urban Kern NA 0 0 0 - - NA 

Urban Fresno NA 0 0 0 - - NA 

Urban Madera NA 0 0 0 - - NA 

Urban 
San 

Joaquin 
NA 0 0 0 - - NA 

Urban Merced NA 0 0 0 - - NA 

Urban Tulare NA 0 0 0 - - NA 

Urban 
Stanisla

us 
NA 0 0 0 - - NA 
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Walnuts Kings Walnuts ton 1870 2.01 1870 3759 Perennial 

Walnuts Kern Walnuts ton 2030 1.5 2030 3045 Perennial 

Walnuts Fresno Walnuts  2000 1.82 2000 3640 Perennial 

Walnuts Madera Walnuts ton 1778 1.74 1778 3094 Perennial 

Walnuts 
San 

Joaquin 
Walnuts ton 1970 2.07 1970 4078 Perennial 

Walnuts Merced Walnuts ton 2903.3 1.61 2903 4674 Perennial 

Walnuts Tulare Walnuts ton 1790 1.83 1790 3276 Perennial 

Walnuts 
Stanisla

us 
Walnuts tons 1100 1.91 1100 2101 Perennial 

Wheat Kings 
Wheat 

grain 
ton 223 2.51 223 560 Annual 

Wheat Kern Wheat ton 175 2.7 175 473 Annual 

Wheat Fresno 
Wheat 

Grain 
ton 219 1.14 219 250 Annual 

Wheat Madera Silage ton 31 13.68 31 424 Annual 

Wheat 
San 

Joaquin 
Wheat ton 125 2.93 125 366 Annual 

Wheat Merced Wheat ton 168.1 2.29 168 385 Annual 

Wheat Tulare 
wheat 

grain 
ton 227 2.42 227 549 Annual 

Wheat 
Stanisla

us 

Wheat-

Sjoaquin 
ton 125 2.93 125 366 Annual 

Young 

Perennials 
Kings NA 0 0 0 - - Perennial 

Young 

Perennials 
Kern NA 0 0 0 - - Perennial 

Young 

Perennials 
Fresno NA 0 0 0 - - Perennial 

Young 

Perennials 
Madera NA 0 0 0 - - Perennial 

Young 

Perennials 

San 

Joaquin 
NA 0 0 0 - - Perennial 

Young 

Perennials 
Merced NA 0 0 0 - - Perennial 

Young 

Perennials 
Tulare NA 0 0 0 - - Perennial 

Young 

Perennials 

Stanisla

us 
NA 0 0 0 - - Perennial 

SI Table 22. Table of crop revenue per crop type used for each county; revenue values obtained 

from each county crop report (2016).. 
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APPENDIX E. EVAPOTRANSPIRATION DATASET 

COMPARISONS 

The crop water requirement (CWR) values used in Chapter 3 and 4 of this dissertation were 

derived using the Water Agricultural Water Footprint in R (WAFR) model developed by 

Booth (2018). The WAFR model estimates gridded daily crop water requirement by 

making use of local temperature and precipitation data from the Parameter-

elevationRegressions on Independent Slopes Model (PRISM), irrigation and 

evapotranspiration data from the California Irrigation Management Information System 

(CIMIS), and land cover data (e.g., Land IQ, Kern County Agricultural Commission, and 

USDA Crop Data Layer). The CWR is calculated for the San Joaquin Valley by 

accumulating the daily crop evapotranspiration (ETc), the amount of water transpired by 

an unstressed crop under standard conditions in a day (units in millimeters, mm), for a 

complete growing period. The growing period (unit days) is represented from the first to 

the last day of irrigation application. Booth (2018) uses the following equation for CWR, 

where ETc,blue is the irrigated, freshwater component of ETc and ETc, green is the rainwater 

component of ETc with the condition that if there is more precipitation than crop 

evapotranspiration then ETc,blue is equal to zero and the rainwater component, ETc,green, is 

equal to the ETc (Booth, 2018):  

𝐶𝑊𝑅 = 10 (∑ (𝐸𝑇𝑐,𝑏𝑙𝑢𝑒 +  𝐸𝑇𝑐,   𝑔𝑟𝑒𝑒𝑛)
𝑙𝑔𝑝
𝑡   

𝐸𝑇𝑐,𝑏𝑙𝑢𝑒 = max (0, 𝐸𝑇𝑐, − 𝑃𝑒𝑓𝑓) 

𝐸𝑇𝑐,𝑔𝑟𝑒𝑒𝑛 = min ( 𝐸𝑇𝑐, − 𝑃𝑒𝑓𝑓) 

For more details on the WAFR model see Booth (2018).  

 The San Joaquin Valley CWR values derived from WAFR were compared with 

two alternative crop evapotranspiration datasets: the California Department of Water 

Resources (DWR) detailed analysis unit evapotranspiration (DAU ET) and OpenET, the 

most recently developed evapotranspiration dataset. The methodology and results of the 

comparison between WAFR CWR with DWR Cal-SIMETAW derived ETaw are detailed 

in Section 1 and with OpenET in Section 2.  

1. WAFR and DWR Cal-SIMETAW ET Comparisons 
1.1. About DWR Cal-SIMETAW Model Derived ET 

The downloaded dataset (www.WaterPlan.ca.gov) consists of annual estimates for the 

2011-2015 water year. WAFR output and DWR Cal-SIMETAW derived 

evapotranspiration of applied awater (ETaw) at the detailed analysis unit (DAU) level for 

the water year 2014 were compared in this analysis. This dataset consists of annual 

estimates of irrigated crop area, crop evapotranspiration, effective precipitation, 

evapotranspiration of applied water, and applied water for 20 crop categories. The spatial 

scale of the analysis is derived at the detailed analysis unit (DAU) and County level. The 
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data is derived by using the California Simulation of Evapotranspiration of Applied Water 

(Cal-SIMETAW). Like WAFR, the Cal-SIMETAW makes use of daily weather data 

derived from PRISM climate data and CIMIS near real-time data.  Daily U.S. National 

Climatic Data Center climate station data is used to cover California with a 4x4 kilometer 

grid of observed evapotranspiration. The evapotranspiration of applied water (ETaw), an 

estimate of the seasonal irrigation requirement assuming 100% application efficiency. The 

ETaw is calcualted by generating a hypothetical water balance irrigation schedule using 

soil-characteristic data from Soil Survey Geographic Database (SSURGO), crop 

information, precipitation, and daily crop evapotranspiration (ETc) data. More information 

is available (https://water.ca.gov/Programs/Water-Use-And-Efficiency/Land-And-Water-

Use/Agricultural-Water-Use-Models).  

1.2 Methodology  

WAFR output for the same 20 crops available for the DWR DAU ET data was used for 

comparison in this analysis (SI Table 8). The San Joaquin Valley floor was the region of 

focus for this analysis resulting in a total comparative area within DAUs of 17, 124 acres. 

Overall this analysis makes use of ArcGIS Pro software and Excel. The following steps 

were taken to compare WAFR CWR with DWR Cal-SIMETAW ETaw (SI Figure 45): 

(1)  The WAFR model was run on Land IQ 2014 land use classification data to obtain 

crop specific CWR values for the 2014 water year. WAFR daily raster output from 

October 1, 2013 through September 30, 2014 were summed in ArcGIS Pro software 

to derive monthly and annual CWR values by crop type. The overall CWR of the 

San Joaquin Valley floor is estimated to be about 15 million acre-feet (MAF). 

(2) The CWR for the Land IQ 2014 crop types were consolidated to match the 20 crop 

categories used by DWR for the ETaw estimates outlined in SI Table 9.  

(3) A geospatial analysis was conducted in ArcGIS Pro software to summarize the 

WAFR derived CWR for DAUs in the San Joaquin Valley. DWR DAU shapefiles 

were downloaded from (link), cropped to encompass the San Joaquin Valley, and 

polygons were dissolved by DAU boundary and converted to raster. The ArcGIS 

Pro ‘Zonal Statistics’ function was used to summarize the CWR (in millimeters) 

per DAU boundary resulting in a sum raster file. The raster table was exported to 

compare with DWR’s Cal-SIMETAW ETaw in Excel. The values were converted 

from millimeters to units of acre-feet (AF).  

(4) The sum of CWR derived by WAFR and the ETaw derived by Cal-SIMETAW 

were compared in Excel. The total San Joaquin Valley CWR and ETaw  derived for 

the San Joaquin Valley floor by WAFR and DWR’s Cal-SIMETAW, respectively, 

resulted in about 14 MAF of total CWR.  



225 

 

             SI Figure 45. Workflow for the comparison of WAFR derived CWR and DWR 

CalSIMETAW derived ETaw. 

1.3 Results  

The comparative results show a small total percent differene of 4% between the CWR 

derived by WAFR and the ETaw derived by Cal-SIMETAW at the DAU-level for the San 

Joaquin Valley (SI Table 8). Individual DAU summaries show low difference percentage 

between WAFR CWR and Cal-SIMETAW ETaw (SI Table 10). The few DAU summaries 

that have high difference percentages could bedue to the following: some DAUs being 

partially out of bounds of the San Joaquin Valley floor resulting in unaccounted crop 

estimates by WAFR calculations, the differing spatial resolution between the models, and 

consolidation of crop categories between Land IQ and DWR crop categories. A scatterplot 

between WAFR CWR (SI Figure 41, x-axis) and DWR Cal-SIMETAW (SI Figure 41, y-

axis) and fitting a trendline shows great agreement (R2= 0.97) between the two model ET 

estimates.  

 

SI Figure 46. Linear fit and R2 of DWR Cal-SIMETAW and WAFR CWR (blue) and 1:1 line for 

reference (orange). 

 

Total Area 

(Acre) 

Total 

WAFR 

CWR (AF) 

Total Cal-

SIMETAW 

ETaw (AF) 

Difference 

(AF) 

Difference 

Normalized 

by Area 

(AF/Ac) 

Total 

Percent 

Difference 

4,231,340 14,609,895 15,159,263 (549,368) (0.13) -4% 

SI Table 23. Summary statistics for comparison of CWR derived by WAFR and ETaw derived by 

Cal-SIMETAW per DAU in California’s San Joaquin Valley. 
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DWR DAU Crop Type WAFR Crop Type  

1 Grain (wheat, wheat_winter, wheat_spring, 

barley, oats, misc._grain & hay) 

Wheat; Misc. Grain and Hay 

2 Rice (rice, rice_wild, rice_flooded, rice-

upland) 

Rice; Wild Rice 

3 Cotton Cotton  

4 Sugar beet (sugar-beet, sugar_beet_late, 

sugar_beet_early) 

None  

5 Corn Corn, Sorghum, Sudan 

6 Dry beans Dry Beans 

7 Safflower Safflower 

8 Other field crops (flax, hops, grain_sorghum, 

sudan,castor-beans, misc._field, sunflower, 

sorghum/sudan_hybrid, millet, sugarcane 

None  

9 Alfalfa (alfalfa, alfalfa_mixtures, alfalfa_cut, 

alfalfa_annual) 

Alfalfa a& Mixed Alfalfa 

10 Pasture (pasture, clover, pasture_mixed, 

pasture_native, misc._grasses, turf_farm, 

pasture_bermuda, pasture_rye, klein_grass, 

pasture_fescue) 

Mixed Pasture; Misc 

Grasses 

11 Tomato processing (tomato_processing, 

tomato_processing_drip, 

tomato_processing_sfc) 

Tomatoes 

12 Tomato fresh (tomato_fresh, 

tomato_fresh_drip, tomato_fresh_sfc) 

Tomatoes 

13 Cucurbits (cucurbits, melons, squash, 

cucumbers, cucumbers_fresh_market, 

cucumbers_machine-harvest, watermelon) 

Melons, Squash and 

Cucumbers 

14 Onion & garlic (onion & garlic, onions, 

onions_dry, onions_green, garlic) 

Onion & Garlic 

15 Potatoes (potatoes, potatoes_sweet) Potatoes 

16 Truck_Crops_misc (artichokes, truck_crops, 

asparagus, beans_green, carrots, celery, lettuce, 

peas, spinach, bus h_berries, strawberries, 

peppers, broccoli, cabbage, cauliflower) 

Misc.Truck Crops, carrots, 

lettuce, bush berries, 

strawberies, peppers, cole 

crops 

17 Almond & pistacios Almond; Pistachios 

18 Orchard (deciduous) (apples, apricots, walnuts, 

cherries, peaches, nectarines, pears, plums, 

prunes, figs, kiwis) 

 apples, apricots, walnuts, 

cherries, peaches, nectarines, 

pears, plums, prunes, kiwis 

19 Citrus & subtropical (grapefruit, lemons, 

oranges, dates, avocados, olives, jojoba) 

Citrus; Misc. Subtropical; 

Olives 

20 Vineyards (grape_table, grape_raizin, 

grape_wine) 

Grapes  

SI Table 24. Crop water requirement for the following WAFR and DWR DAU crop types 

were compared in this analysis 
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DAU Count* Area (Ac) CWR (AF) ETaw (AF) Diff. (AF) 
Norm.Diff 

(AF) 
Pct 

18,239 921,256 204,875 689,092 649,303 39,789 48 6% 

18,450 28,973 6,443 21,070 24,441 (3,371) (129) -16% 

18,539 808,754 179,856 522,120 458,470 63,650 87 12% 

19,239 24,913 5,540 17,207 16,204 1,003 45 6% 

20,539 262,399 58,354 188,213 199,831 (11,618) (49) -6% 

20,639 21,746 4,836 14,644 19,295 (4,651) (238) -32% 

20,650 364,309 81,018 257,636 397,346 (139,709) (426) -54% 

20,750 155,087 34,489 120,572 103,241 17,331 124 14% 

20,824 152,078 33,820 90,836 100,704 (9,868) (72) -11% 

20,850 433,387 96,380 289,823 432,918 (143,094) (367) -49% 

20,924 205,730 45,752 152,756 159,910 (7,154) (39) -5% 

20,950 150,335 33,433 115,224 163,741 (48,517) (359) -42% 

21,024 390,963 86,945 272,024 289,498 (17,474) (50) -6% 

21,124 96,265 21,408 70,222 67,572 2,650 31 4% 

21,224 574,627 127,790 412,730 424,172 (11,441) (22) -3% 

21,320 589,167 131,023 473,180 425,225 47,954 90 10% 

21,420 344,294 76,566 294,074 265,525 28,549 92 10% 

21,520 513,027 114,091 407,446 336,321 71,126 154 17% 

21,610 453,218 100,790 339,528 341,306 (1,778) (4) -1% 

21,624 612,159 136,136 412,412 467,165 (54,753) (99) -13% 

21,639 29,423 6,543 19,623 17,669 1,955 74 10% 

21,650 387,189 86,106 270,112 316,379 (46,267) (133) -17% 

22,110 7,988 1,776 8,135 6,468 1,667 232 20% 

22,310 4,834 1,075 5,244 3,640 1,604 369 31% 

22,554 3,041 676 2,875 2,261 614 224 21% 

22,754 2,050 456 2,270 1,578 692 375 30% 

23,015 781 174 725 4,809 (4,084) (5,810) -563% 

23,115 5,263 1,170 3,391 1,774 1,617 341 48% 

23,310 520,660 115,788 448,220 488,904 (40,685) (87) -9% 

23,410 14,784 3,288 12,356 18,016 (5,660) (425) -46% 

23,510 612,814 136,282 511,714 486,922 24,791 45 5% 

23,610 492,618 109,552 429,926 420,195 9,731 22 2% 

23,616 22,725 5,054 18,949 20,821 (1,872) (92) -10% 

23,654 11,935 2,654 10,293 12,151 (1,857) (173) -18% 

23,710 511,384 113,725 407,078 336,391 70,687 154 17% 

23,716 86,028 19,132 64,272 59,252 5,019 65 8% 

23,816 461,738 102,685 334,238 353,121 (18,882) (45) -6% 

23,910 80,418 17,884 73,097 82,604 (9,507) (131) -13% 

23,916 14,285 3,177 11,282 9,205 2,077 162 18% 
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23,954 307,379 68,357 261,147 260,650 498 2 0% 

24,010 64,954 14,445 67,101 66,445 656 11 1% 

24,054 58,472 13,003 62,701 50,072 12,629 240 20% 

24,116 553,111 123,005 313,807 373,670 (59,863) (120) -19% 

24,154 806 179 344 641 (297) (410) -87% 

24,216 182,796 40,651 121,930 111,144 10,786 66 9% 

24,254 1,127,815 250,811 925,898 863,700 62,198 61 7% 

24,354 1,239,455 275,639 969,590 979,001 (9,411) (8) -1% 

24,410 1,308,771 291,054 1,003,549 1,004,247 (698) (1) 0% 

24,416 207,724 46,195 147,946 131,548 16,397 88 11% 

24,515 8,805 1,958 7,911 6,261 1,649 208 21% 

24,516 27,426 6,099 13,030 10,618 2,412 98 19% 

24,616 88,967 19,785 72,366 82,581 (10,214) (128) -14% 

25,415 641,144 142,582 460,350 562,954 (102,604) (178) -22% 

25,515 705,763 156,952 566,864 619,566 (52,702) (83) -9% 

25,615 784,407 174,442 682,630 862,070 (179,440) (254) -26% 

25,715 80,532 17,909 77,397 65,508 11,890 164 15% 

25,754 63,932 14,218 55,647 40,985 14,662 255 26% 

25,815 468,346 104,154 380,343 356,333 24,010 57 6% 

25,915 430,384 95,712 346,284 496,731 (150,447) (388) -43% 

26,015 859 191 956 467 489 633 51% 

26,115 302,433 67,257 277,492 229,725 47,767 175 17% 

SI Table 25. DAU boundary level summary of  WAFR derived CWR and DWR’s Cal-SIMETAW 

ETaw along with value differences, normalized difference, and percent difference. *Count of 30 by 

30 meter pixels within the DAU.  

2. WAFR and OpenET Comparisons 
2.1 About OpenET Derived ET 

OpenET dataset derives satellite-based estimates of actual evapotranspiration over 

specified periods of time. OpenET uses multiple satellite-driven models (i.e., 

ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, SSEBop) and provides the 

ensemble mean of ET from these models. All models use Landsat satellite data (30 x 30 

meter spatial resolution or 0.22 acres per pixel) and gridded weather data (e.g., solar 

radiation, air temperature, humidity, wind speed, and precipitation). For California, 

OpenET uses Spatial CIMIS as is the case with WAFR and DWR’s Cal-SIMETAW 

models. OpenET uses Google Earth Engine to compute, store, and visualize the ET data 

via an Application Programming Interface (API). The OpenET API enables users to request 

data from OpenET data via scripted queries and a graphical use interface. For more 

information on OpenET methodologies visit (https://openetdata.org/methodologies/).  

2.2 Methodology  

Given that OpenET users currently have a data request/sampling quota, 100 samples 

(where available) within Kern County were extracted for a comparison with WAFR CWR. 
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Overall this analysis makes use of ArcGIS Pro, R, and Excel software. The following steps 

were taken to obain OpenET data for comparison with WAFR CWR: 

 

(1) In ArcGIS Pro I extracted the Land IQ 2016 land use classification dataset for 19 

agricultural crops (SI Table 12 for list) in Kern County’s valley floor. Each of the 

fields were encoded with the first two letters of the crop type and automatically 

generated “OID +100000” (e.g., Gr100958 for Grape field number 958). From this 

list of agricultural crops, a random selection of 100 fields per crop were selected to 

extract from OpenET using the following R code:  

croplist<-read.csv("Land2016_ToRandomSelectFrom.csv") 

#randomly select 100 n of each crop type 

library(dplyr) 

new_df <- croplist %>% 

group_by(Crop2016) %>% 

slice_sample(n=100) 

The resulting randomly selected fields were joined with the attiribute table of the 

Land IQ 2016 dataset for Kern County’s valley floor to result in a reduced vector 

file to be used as input within Open ET’s API for data extraction. Given user quota 

limitations on OpenET, fields were given encoded with 1 for sample priority and 2 

second sample priority in the vector file. For this analysis all fields were extracted 

without meeting user quota limits and 100 fields per crop were extracted for the 

CWR comparison.  

(2) The Open ET retrieval code was developed by Nick Santos (UC Merced). The code 

evolved with updates to the OpenET API found here along with the Python Package 

Index. The code used for data extraction for this dissertation can be found here. 

OpenET’s geodatabase API was used to retrieve values for the 100 randomly 

selected fields per crop for Kern County (documentation this part of OpenET’s API 

can be accessed here). The code below loads the 100 random samples per crop in 

vector format into a spatial data frame. The centroid coordinates of each field is 

found and appended to the data frame and sends a request to OpenET’s API to find 

the field IDs that match each set of centroid coordinates, then attaches the field IDs 

their API returns to the dataframe for each sample to facilitate data lookup. The 

API then requests the actual ET data associated with the fields of interest. The API 

uses the timeseries/features/stats/annual endpoint which aggregates data temporally 

with annual values. Given that only a single year was requested annual aggregations 

weren’t triggered, instead subannual ones were. Once the API returned data, the 

https://github.com/water3d/openet
https://pypi.org/project/openet-client/
https://pypi.org/project/openet-client/
https://github.com/water3d/openet/tree/79c5a0c7ff3af8dc975837f4c33bfe20e4775481
https://open-et.github.io/docs/build/html/geo_timeseries.html
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code joins the ET values into a new field. Once data for all fields has been retrieved, 

it exports the data to a new spatial file that can be used in other GIS packages. 

(3) The WAFR CWR was run on Land IQ 2016 data for the San Joaquin Valley floor. 

The same 1,911 randomly selected fields used to obtain OpenET values were 

extracted from WAFR CWR in ArcGIS Pro through selection of WAFR CWR 

values with intersecting OpenET centroids. Of the 1,911 random fields, 1,445 fields 

from WAFR CWR dataset were available for comparison with OpenET (SI Table 

12).  

(4) WAFR CWR and OpenET values were merged in R software using the code below 

and exported as a comma-delimited format file. Comparison calculations and 

related statistics were conducted in Excel.  

OpenET<- read.csv("OpenETvalues.csv") 

WAFR<- read.csv("WAFRCWRdata.csv") 

combined<- merge(OpenEt, WAFR, by.x ="OBJECTID_1") 

write.csv(combined, "combined_openet_wafr.csv") 
2.3 Results  

The comparative results show a total percent differene of 18% between the CWR derived 

by WAFR and the ET derived by OpenET for Kern County (SI Table 11). Individual field 

level summaries show variation of difference percentage between WAFR CWR and 

OpenET (SI Table 13). A scatterplot between WAFR CWR (SI Figure 41, x-axis) and 

OpenET (SI Figure 42, y-axis) and fitting a trendline shows fair agreement (R2= 0.61) 

between the two model ET estimates.  

 

Total 

Area 

(Ac) 

Total 

WAFR 

CWR 

(AF) 

Total 

OpenET 

(AF) 

Total Diff 

(AF) 

Norm. 

Diff 

(AF/Ac) 

Diff 

(%) 

64,864 216,773 177,188 39,585 1 18 

 
SI Table 26. Summary statistics for comparison of CWR derived by WAFR and ET derived by 

OpenET in Kern County. 
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SI Figure 47. Linear fit and R2 of OpenET and WAFR CWR (blue) and 1:1 line for reference 

(orange).  
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Crop 
Field 

Count 

Alfalfa and Alfalfa 

Mixtures 
100 

Almonds 97 

Apples 20 

Bush Berries 57 

Carrots 86 

Cherries 98 

Citrus 97 

Corn, Sorghum and Sudan 100 

Cotton 100 

Grapes 88 

Idle 97 

Peppers 70 

Plums, Prunes and 

Apricots 
10 

Pomegranates 97 

Potatoes and Sweet 

Potatoes 
92 

Strawberries 5 

Tomatoes 92 

Walnuts 39 

Wheat 100 

Grand Total 1,445 

SI Table 27. The number of fields sampled from OpenET and WAFR per crop type. 
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Field 

ID 
Crop 

Area 

(Ac) 

Open

ET 

(AF) 

WAFR CWR 

(AF) 

Difference 

(AF) 

Norm.Diff 

(AF/Ac) 

Diff 

(%) 

48035 Cotton 584 2,081 2,350 270 0.46 11% 

51955 Grapes 313 590 1,638 1,049 3.35 64% 

51488 Grapes 311 817 1,619 801 2.58 50% 

60207 Idle 227 170 1,148 979 4.30 85% 

46363 Idle 222 244 1,132 888 3.99 78% 

46130 

Corn, 

Sorghum 

and Sudan 

209 707 853 147 0.70 17% 

48709 Wheat 308 490 851 361 1.17 42% 

44993 

Corn, 

Sorghum 

and Sudan 

187 649 789 141 0.75 18% 

49795 Grapes 155 547 785 238 1.53 30% 

42888 Idle 153 84 771 687 4.50 89% 

60566 Idle 150 149 770 622 4.14 81% 

46918 Idle 133 111 704 594 4.46 84% 

47122 Almonds 160 730 673 (57) -0.36 -8% 

43945 Walnuts 155 187 660 473 3.06 72% 

42582 

Corn, 

Sorghum 

and Sudan 

156 414 640 226 1.45 35% 

43971 Cotton 156 454 635 181 1.16 28% 

59875 Walnuts 144 201 617 416 2.90 67% 

45155 Carrots 169 273 610 337 1.99 55% 

46975 Cotton 148 497 607 110 0.74 18% 

46966 Cotton 146 484 595 112 0.77 19% 
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43946 Walnuts 139 153 593 440 3.17 74% 

44228 Cotton 142 420 581 161 1.13 28% 

61143 

Corn, 

Sorghum 

and Sudan 

138 517 580 62 0.45 11% 

44733 Cotton 141 471 577 106 0.75 18% 

43129 Cotton 143 396 576 180 1.26 31% 

45183 

Corn, 

Sorghum 

and Sudan 

127 466 537 71 0.56 13% 

59784 Carrots 161 368 529 161 1.00 30% 

44743 

Corn, 

Sorghum 

and Sudan 

124 392 524 132 1.06 25% 

43062 Carrots 157 406 515 109 0.69 21% 

50019 Almonds 122 578 510 (69) -0.56 -13% 

43279 Cotton 124 373 502 130 1.05 26% 

45698 

Corn, 

Sorghum 

and Sudan 

122 407 497 91 0.75 18% 

44132 Cotton 121 375 495 120 0.99 24% 

43000 Idle 98 54 494 440 4.50 89% 

45363 Cotton 116 299 493 194 1.67 39% 

17928

9 
Carrots 150 331 492 161 1.07 33% 

59812 Carrots 149 394 488 93 0.63 19% 

43994 Cotton 120 355 487 133 1.11 27% 

44945 Carrots 139 335 487 152 1.10 31% 

61744 

Corn, 

Sorghum 

and Sudan 

121 413 487 74 0.61 15% 

43039 Cotton 118 358 477 119 1.01 25% 
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58468 Wheat 180 264 474 210 1.16 44% 

46809 
Pomegran

ates 
120 257 466 210 1.75 45% 

42778 

Corn, 

Sorghum 

and Sudan 

113 394 463 69 0.61 15% 

45129 Carrots 141 351 462 112 0.79 24% 

42817 Cotton 112 329 452 123 1.10 27% 

42694 Idle 85 66 452 386 4.53 85% 

42818 Cotton 107 328 435 108 1.00 25% 

45849 Carrots 128 329 432 103 0.81 24% 

56266 Walnuts 96 442 431 (11) -0.12 -3% 

46920 Cotton 103 373 431 57 0.56 13% 

60216 Wheat 163 142 425 284 1.74 67% 

46699 
Pomegran

ates 
106 345 424 78 0.74 18% 

59706 Walnuts 99 131 423 293 2.97 69% 

46697 
Pomegran

ates 
106 346 422 76 0.72 18% 

46698 
Pomegran

ates 
105 333 419 86 0.81 20% 

46700 
Pomegran

ates 
106 324 419 95 0.90 23% 

46701 
Pomegran

ates 
106 325 418 93 0.88 22% 

45325 Idle 80 85 417 332 4.14 80% 

46696 
Pomegran

ates 
104 356 416 60 0.58 15% 

44802 

Corn, 

Sorghum 

and Sudan 

100 405 416 11 0.11 3% 

43711 Idle 78 57 415 358 4.59 86% 
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46138 

Corn, 

Sorghum 

and Sudan 

100 377 413 36 0.36 9% 

46722 
Pomegran

ates 
104 259 413 153 1.47 37% 

43280 Cotton 102 307 412 105 1.04 26% 

44244 Wheat 157 258 412 154 0.98 37% 

45104 Idle 78 173 412 239 3.06 58% 

61343 Carrots 117 391 411 20 0.17 5% 

46703 
Pomegran

ates 
103 369 410 41 0.40 10% 

44843 Carrots 120 372 409 36 0.30 9% 

59577 Idle 79 47 409 362 4.60 88% 

45438 Idle 77 91 408 317 4.10 78% 

60168 Wheat 156 264 407 143 0.92 35% 

46704 
Pomegran

ates 
102 357 406 50 0.49 12% 

46715 
Pomegran

ates 
102 334 406 72 0.71 18% 

43482 Idle 76 47 406 358 4.69 88% 

46707 
Pomegran

ates 
102 256 405 149 1.46 37% 

45485 Cotton 99 280 404 124 1.25 31% 

46710 
Pomegran

ates 
102 235 403 168 1.65 42% 

46716 
Pomegran

ates 
101 311 402 91 0.91 23% 

47884 Almonds 94 435 402 (33) -0.35 -8% 

46706 
Pomegran

ates 
101 333 402 69 0.68 17% 

43917 Wheat 156 317 400 83 0.53 21% 
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47388 Idle 79 69 400 331 4.21 83% 

46709 
Pomegran

ates 
101 205 400 195 1.93 49% 

45799 Idle 77 38 399 361 4.70 90% 

53076 Idle 76 132 398 266 3.51 67% 

43828 Wheat 155 354 397 43 0.28 11% 

60260 Idle 76 60 397 337 4.41 85% 

46708 
Pomegran

ates 
100 214 397 183 1.83 46% 

52182 Almonds 90 420 392 (28) -0.31 -7% 

48073 Idle 72 49 392 343 4.76 88% 

54196 Walnuts 85 184 391 207 2.42 53% 

47508 Idle 78 36 390 354 4.57 91% 

46720 
Pomegran

ates 
98 216 388 172 1.76 44% 

60736 Idle 74 67 387 320 4.32 83% 

46702 
Pomegran

ates 
97 310 387 77 0.79 20% 

49720 Idle 76 77 386 309 4.05 80% 

59110 Citrus 99 363 384 21 0.21 6% 

44878 Cotton 94 314 379 65 0.70 17% 

58497 Wheat 144 269 376 108 0.75 29% 

42636 Carrots 107 265 374 108 1.02 29% 

59787 Idle 74 24 370 346 4.65 93% 

44129 Walnuts 86 127 367 240 2.79 65% 

58386 Idle 70 68 365 296 4.21 81% 

43883 Cotton 88 258 357 98 1.12 27% 

43273 Carrots 100 302 354 52 0.52 15% 

44246 Cotton 88 250 354 103 1.18 29% 
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43260 Cotton 87 270 353 83 0.95 24% 

53496 Almonds 80 318 352 34 0.43 10% 

44212 Wheat 124 286 352 66 0.53 19% 

61179 Idle 65 55 350 295 4.56 84% 

61171 Cotton 85 195 346 151 1.78 44% 

47989 Almonds 81 323 342 18 0.23 5% 

44187 Cotton 80 207 338 131 1.64 39% 

46565 Almonds 77 211 336 125 1.62 37% 

53159 Almonds 78 366 336 (30) -0.38 -9% 

54769 Almonds 78 361 336 (26) -0.33 -8% 

51384 Walnuts 75 328 334 7 0.09 2% 

42479 Almonds 80 149 334 185 2.31 55% 

50650 Almonds 78 349 334 (15) -0.20 -5% 

51310 Almonds 77 347 332 (15) -0.19 -4% 

55006 Almonds 76 305 332 27 0.35 8% 

46735 Almonds 78 223 330 107 1.37 32% 

45089 

Corn, 

Sorghum 

and Sudan 

81 232 330 98 1.21 30% 

52611 Almonds 77 359 330 (29) -0.37 -9% 

43495 

Corn, 

Sorghum 

and Sudan 

79 259 329 71 0.89 21% 

43619 

Corn, 

Sorghum 

and Sudan 

79 282 328 46 0.58 14% 

44210 Cotton 81 228 327 100 1.24 31% 

44871 Cotton 77 283 327 44 0.57 13% 
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60740 

Corn, 

Sorghum 

and Sudan 

78 252 327 74 0.95 23% 

45058 

Corn, 

Sorghum 

and Sudan 

82 284 327 43 0.52 13% 

49885 Almonds 77 293 326 34 0.44 10% 

43709 

Corn, 

Sorghum 

and Sudan 

78 294 325 31 0.40 9% 

48802 Almonds 77 335 324 (12) -0.15 -4% 

45854 

Corn, 

Sorghum 

and Sudan 

79 240 323 83 1.06 26% 

46804 
Pomegran

ates 
83 170 322 152 1.83 47% 

47730 Almonds 78 337 322 (16) -0.20 -5% 

55442 Almonds 76 364 320 (44) -0.58 -14% 

44668 

Corn, 

Sorghum 

and Sudan 

78 268 320 51 0.66 16% 

44606 Cotton 78 105 319 214 2.73 67% 

17931

6 
Almonds 76 364 319 (45) -0.59 -14% 

17929

2 
Almonds 76 352 317 (34) -0.45 -11% 

46803 
Pomegran

ates 
81 182 317 135 1.66 43% 

59901 Carrots 96 278 317 39 0.40 12% 

46915 Cotton 75 269 316 47 0.62 15% 

44687 

Corn, 

Sorghum 

and Sudan 

77 215 315 101 1.31 32% 
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44525 

Corn, 

Sorghum 

and Sudan 

78 264 315 51 0.65 16% 

46214 

Potatoes 

and Sweet 

Potatoes 

154 203 314 110 0.72 35% 

44130 

Corn, 

Sorghum 

and Sudan 

77 221 313 92 1.21 30% 

47032 
Pomegran

ates 
79 220 313 92 1.17 30% 

47712 Almonds 75 341 312 (29) -0.38 -9% 

46916 Cotton 74 260 311 51 0.69 16% 

58396 

Potatoes 

and Sweet 

Potatoes 

152 323 311 (12) -0.08 -4% 

44873 

Corn, 

Sorghum 

and Sudan 

73 251 311 60 0.82 19% 

48766 Idle 62 157 310 153 2.48 49% 

49537 Almonds 73 329 310 (19) -0.26 -6% 

44470 

Corn, 

Sorghum 

and Sudan 

77 257 310 53 0.68 17% 

47044 
Pomegran

ates 
78 176 310 133 1.70 43% 

43691 Cotton 75 280 309 28 0.38 9% 

56138 Citrus 77 318 309 (10) -0.12 -3% 

47512 Almonds 74 292 308 17 0.23 5% 

45227 Wheat 107 248 308 60 0.56 19% 

47161 
Pomegran

ates 
78 210 308 98 1.25 32% 
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44788 

Corn, 

Sorghum 

and Sudan 

75 205 308 102 1.36 33% 

49873 Almonds 72 250 307 57 0.79 19% 

44508 

Corn, 

Sorghum 

and Sudan 

77 123 307 184 2.40 60% 

47874 
Pomegran

ates 
78 190 307 117 1.50 38% 

47510 Almonds 74 213 307 94 1.27 31% 

46330 

Corn, 

Sorghum 

and Sudan 

76 198 306 108 1.42 35% 

45737 

Corn, 

Sorghum 

and Sudan 

74 259 305 46 0.63 15% 

47164 
Pomegran

ates 
78 201 305 105 1.35 34% 

45860 

Corn, 

Sorghum 

and Sudan 

72 160 304 145 2.00 48% 

47142 
Pomegran

ates 
77 205 304 99 1.29 33% 

60141 Wheat 116 191 303 112 0.97 37% 

45066 

Corn, 

Sorghum 

and Sudan 

76 209 303 94 1.24 31% 

45032 

Corn, 

Sorghum 

and Sudan 

74 287 303 16 0.22 5% 

46179 

Corn, 

Sorghum 

and Sudan 

73 232 303 70 0.96 23% 

47170 
Pomegran

ates 
77 154 302 148 1.92 49% 

44117 Cotton 71 201 302 101 1.42 33% 
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47366 
Pomegran

ates 
76 162 301 140 1.83 46% 

60204 Carrots 91 209 301 92 1.00 30% 

44461 

Corn, 

Sorghum 

and Sudan 

74 253 300 48 0.65 16% 

47144 
Pomegran

ates 
76 156 300 144 1.88 48% 

43760 Cotton 74 224 300 75 1.02 25% 

43739 

Corn, 

Sorghum 

and Sudan 

72 256 300 44 0.61 15% 

44270 Cotton 73 195 299 104 1.42 35% 

47143 
Pomegran

ates 
76 211 299 88 1.16 30% 

53732 Citrus 78 357 299 (58) -0.75 -19% 

47067 
Pomegran

ates 
76 193 298 105 1.39 35% 

47048 
Pomegran

ates 
76 172 298 126 1.67 42% 

45627 

Corn, 

Sorghum 

and Sudan 

74 263 298 35 0.48 12% 

47047 
Pomegran

ates 
76 171 298 126 1.67 42% 

45328 

Corn, 

Sorghum 

and Sudan 

75 245 298 52 0.70 18% 

45728 

Potatoes 

and Sweet 

Potatoes 

155 318 297 (20) -0.13 -7% 

50060 
Pomegran

ates 
77 155 297 142 1.85 48% 

47606 
Pomegran

ates 
76 184 297 113 1.49 38% 
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47168 
Pomegran

ates 
76 150 297 147 1.95 50% 

47167 
Pomegran

ates 
75 188 296 108 1.44 36% 

44482 

Corn, 

Sorghum 

and Sudan 

74 258 296 38 0.52 13% 

43194 

Potatoes 

and Sweet 

Potatoes 

146 294 296 2 0.02 1% 

47146 
Pomegran

ates 
75 150 296 146 1.94 49% 

45356 Cotton 70 196 296 99 1.43 34% 

47042 
Pomegran

ates 
75 213 295 82 1.10 28% 

56953 Citrus 73 330 294 (36) -0.49 -12% 

46275 Carrots 81 159 294 135 1.66 46% 

60529 Cotton 70 248 294 45 0.65 15% 

45695 

Corn, 

Sorghum 

and Sudan 

71 245 291 47 0.66 16% 

47480 
Pomegran

ates 
73 220 291 72 0.98 25% 

47145 
Pomegran

ates 
74 161 291 131 1.76 45% 

44037 Cotton 72 209 291 82 1.14 28% 

43642 

Corn, 

Sorghum 

and Sudan 

71 210 290 80 1.13 28% 

47365 
Pomegran

ates 
73 171 289 118 1.62 41% 

48571 Citrus 80 264 289 25 0.31 8% 

47165 
Pomegran

ates 
73 188 288 100 1.37 35% 
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52773 Almonds 67 302 288 (14) -0.21 -5% 

47049 
Pomegran

ates 
73 150 287 137 1.87 48% 

45039 Carrots 77 193 286 94 1.21 33% 

44405 Tomatoes 154 360 286 (74) -0.48 -26% 

45794 Carrots 81 75 285 210 2.59 74% 

44889 

Corn, 

Sorghum 

and Sudan 

69 257 284 27 0.39 10% 

48405 Citrus 78 297 284 (12) -0.16 -4% 

50041 Citrus 78 298 284 (14) -0.18 -5% 

49386 
Pomegran

ates 
73 186 282 96 1.32 34% 

50057 Citrus 77 296 281 (15) -0.19 -5% 

44583 Carrots 80 121 280 159 2.00 57% 

43116 Carrots 78 187 279 92 1.19 33% 

43722 

Alfalfa 

and 

Alfalfa 

Mixtures 

148 659 279 (380) -2.58 

-

136

% 

53948 Citrus 77 238 277 39 0.51 14% 

17933

8 
Citrus 77 253 277 25 0.32 9% 

60220 Almonds 66 161 277 116 1.76 42% 

54490 Carrots 78 208 277 69 0.88 25% 

56105 Carrots 78 161 276 115 1.47 42% 

46444 Carrots 79 180 275 95 1.21 35% 

46018 Carrots 78 126 275 148 1.90 54% 

48722 Idle 54 62 274 213 3.94 78% 

56785 Almonds 63 280 274 (6) -0.10 -2% 
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43982 Walnuts 64 97 273 177 2.76 65% 

51573 Apples 106 219 273 54 0.51 20% 

43799 

Alfalfa 

and 

Alfalfa 

Mixtures 

151 616 273 (343) -2.27 

-

126

% 

45224 Cotton 67 221 272 51 0.76 19% 

55809 Carrots 77 216 271 55 0.71 20% 

55542 Citrus 75 280 270 (10) -0.13 -4% 

46266 Carrots 75 57 270 212 2.85 79% 

47362 
Pomegran

ates 
68 204 269 64 0.95 24% 

44731 

Alfalfa 

and 

Alfalfa 

Mixtures 

149 564 268 (296) -1.99 

-

110

% 

46028 Carrots 77 161 267 106 1.38 40% 

59704 Walnuts 62 89 267 178 2.86 67% 

59623 

Corn, 

Sorghum 

and Sudan 

65 189 265 76 1.17 29% 

46965 Cotton 65 214 265 51 0.78 19% 

46299 Cotton 65 213 265 52 0.80 20% 

43893 Cotton 64 227 265 37 0.58 14% 

43997 Carrots 77 141 264 122 1.59 46% 

47166 
Pomegran

ates 
67 161 264 103 1.53 39% 

48732 Carrots 77 118 263 145 1.90 55% 

44068 

Potatoes 

and Sweet 

Potatoes 

129 208 263 54 0.42 21% 

43872 Carrots 78 208 262 55 0.70 21% 
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61211 Carrots 74 223 262 39 0.52 15% 

43571 Carrots 78 205 262 57 0.74 22% 

46090 

Corn, 

Sorghum 

and Sudan 

63 166 261 96 1.51 37% 

46317 Cotton 63 181 261 80 1.27 31% 

43517 Carrots 77 165 261 95 1.23 37% 

43658 

Corn, 

Sorghum 

and Sudan 

64 194 260 66 1.03 25% 

44198 Cotton 64 190 260 70 1.09 27% 

44295 Cotton 63 194 259 65 1.03 25% 

44972 Idle 48 93 258 165 3.43 64% 

42896 Carrots 76 157 258 101 1.33 39% 

46183 Carrots 74 205 258 53 0.72 21% 

46153 Wheat 98 358 257 (102) -1.03 -40% 

61092 Carrots 73 215 255 40 0.55 16% 

61262 

Corn, 

Sorghum 

and Sudan 

61 195 255 60 0.99 24% 

42672 Carrots 73 169 255 86 1.17 34% 

45347 

Corn, 

Sorghum 

and Sudan 

60 242 255 12 0.21 5% 

51740 Apples 99 227 255 28 0.28 11% 

44378 Cotton 62 158 254 96 1.54 38% 

45781 

Corn, 

Sorghum 

and Sudan 

61 197 252 55 0.91 22% 

47945 Wheat 96 138 252 114 1.18 45% 

46952 
Pomegran

ates 
65 136 251 115 1.79 46% 
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42895 Carrots 74 158 250 91 1.24 37% 

43605 Carrots 75 241 248 7 0.09 3% 

42766 Carrots 74 161 246 84 1.15 34% 

43632 Cotton 59 164 245 81 1.37 33% 

59936 Idle 48 30 245 215 4.47 88% 

44546 

Corn, 

Sorghum 

and Sudan 

60 212 244 33 0.54 13% 

44168 Carrots 71 77 243 166 2.34 68% 

42572 Carrots 70 140 241 101 1.43 42% 

53666 Grapes 47 176 240 64 1.37 27% 

44952 

Alfalfa 

and 

Alfalfa 

Mixtures 

126 508 240 (269) -2.14 

-

112

% 

57901 Cotton 56 205 237 32 0.57 14% 

43654 

Corn, 

Sorghum 

and Sudan 

58 138 237 99 1.69 42% 

43775 Carrots 71 164 236 72 1.01 30% 

44376 Wheat 82 189 234 45 0.55 19% 

50015 
Pomegran

ates 
60 114 233 120 1.98 51% 

48728 Carrots 67 120 231 111 1.65 48% 

44240 

Corn, 

Sorghum 

and Sudan 

56 165 231 66 1.17 29% 

53510 Almonds 53 215 230 15 0.29 7% 

44664 

Alfalfa 

and 

Alfalfa 

Mixtures 

127 501 229 (272) -2.14 

-

119

% 

57214 Almonds 52 236 227 (8) -0.16 -4% 



248 

 

54197 Walnuts 50 123 227 105 2.11 46% 

44258 Cotton 54 185 223 38 0.70 17% 

44673 Cotton 53 128 222 94 1.78 42% 

47598 Idle 44 91 221 130 2.95 59% 

43255 Carrots 66 156 220 64 0.96 29% 

44065 Wheat 78 174 220 46 0.59 21% 

46509 Wheat 83 179 219 41 0.49 19% 

47139 
Pomegran

ates 
57 130 219 89 1.57 41% 

42946 

Potatoes 

and Sweet 

Potatoes 

107 181 219 39 0.36 18% 

46476 

Corn, 

Sorghum 

and Sudan 

54 193 219 26 0.49 12% 

43569 Cotton 53 165 219 54 1.02 25% 

42949 

Potatoes 

and Sweet 

Potatoes 

107 199 219 20 0.18 9% 

52635 Idle 42 40 218 178 4.25 82% 

43907 

Corn, 

Sorghum 

and Sudan 

53 147 217 70 1.31 32% 

43119 Wheat 77 184 216 31 0.41 14% 

43639 Cotton 52 141 215 74 1.43 34% 

43683 Cotton 52 154 214 61 1.17 28% 

46279 

Corn, 

Sorghum 

and Sudan 

50 162 214 52 1.04 24% 

46248 Wheat 81 166 213 47 0.58 22% 

47310 Idle 42 87 212 125 2.95 59% 
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47137 
Pomegran

ates 
54 124 211 88 1.61 42% 

43990 Wheat 74 147 211 65 0.87 31% 

45508 Wheat 77 115 209 94 1.22 45% 

54740 Grapes 39 118 208 91 2.31 44% 

44276 

Potatoes 

and Sweet 

Potatoes 

103 280 208 (71) -0.69 -34% 

42718 Wheat 77 78 208 130 1.69 62% 

56909 Almonds 49 183 208 26 0.53 12% 

45753 Wheat 80 254 208 (46) -0.57 -22% 

43563 Carrots 62 109 208 99 1.61 48% 

45645 

Corn, 

Sorghum 

and Sudan 

50 161 207 46 0.92 22% 

43180 Carrots 61 183 206 23 0.37 11% 

44238 Almonds 48 73 206 133 2.75 64% 

44141 Walnuts 48 54 206 152 3.15 74% 

60139 Wheat 79 75 206 131 1.66 63% 

43026 Idle 37 33 205 172 4.68 84% 

43222 

Potatoes 

and Sweet 

Potatoes 

100 328 205 (122) -1.23 -60% 

54891 Grapes 38 108 205 97 2.53 47% 

46235 Wheat 78 254 203 (51) -0.66 -25% 

43856 Wheat 77 185 203 18 0.24 9% 

42683 Idle 37 58 203 145 3.91 71% 

45477 

Potatoes 

and Sweet 

Potatoes 

100 202 202 (1) -0.01 0% 
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46810 
Pomegran

ates 
52 115 201 87 1.68 43% 

58467 Wheat 77 23 201 179 2.32 89% 

45556 Wheat 77 163 201 38 0.50 19% 

43328 Wheat 73 112 201 89 1.21 44% 

48655 Idle 40 79 201 122 3.06 60% 

48707 Wheat 75 148 201 53 0.70 26% 

46525 Wheat 77 273 201 (72) -0.93 -36% 

43312 Wheat 76 180 201 21 0.27 10% 

53050 Grapes 38 149 201 52 1.35 26% 

46957 
Pomegran

ates 
52 107 201 94 1.82 47% 

48617 Idle 40 74 200 126 3.18 63% 

55493 Grapes 38 139 200 61 1.60 31% 

55410 Grapes 38 165 199 34 0.89 17% 

46243 Wheat 75 185 199 14 0.19 7% 

53043 Grapes 38 152 199 47 1.23 24% 

42922 

Corn, 

Sorghum 

and Sudan 

48 142 198 56 1.17 28% 

42705 Wheat 76 299 198 (102) -1.34 -52% 

49961 
Pomegran

ates 
51 76 197 121 2.38 61% 

43803 Idle 38 27 196 169 4.45 86% 

47309 Idle 39 87 196 109 2.79 56% 

52830 Grapes 38 151 196 45 1.20 23% 

44730 

Alfalfa 

and 

Alfalfa 

Mixtures 

109 400 196 (204) -1.88 

-

104

% 



251 

 

47242 Idle 38 93 196 103 2.68 53% 

47825 Almonds 46 211 195 (16) -0.34 -8% 

47608 Idle 39 88 195 107 2.75 55% 

56728 Idle 38 34 195 162 4.27 83% 

47830 Almonds 47 211 195 (16) -0.34 -8% 

46485 Idle 39 20 195 175 4.49 90% 

47614 Idle 39 88 195 106 2.74 55% 

48087 Idle 38 71 194 123 3.23 63% 

46551 Grapes 38 63 194 132 3.50 68% 

51484 Grapes 37 84 194 110 2.94 57% 

56300 Grapes 35 142 194 52 1.49 27% 

59648 Cotton 48 121 194 73 1.53 38% 

43473 Wheat 75 171 194 22 0.30 12% 

45353 Wheat 72 181 194 13 0.18 7% 

57785 Idle 37 55 194 138 3.72 71% 

58011 Idle 35 40 194 154 4.42 80% 

61109 Cotton 46 168 193 25 0.55 13% 

54460 Wheat 70 193 192 (1) -0.01 0% 

47267 Idle 38 90 192 101 2.64 53% 

46571 Wheat 73 262 191 (71) -0.97 -37% 

45088 

Potatoes 

and Sweet 

Potatoes 

96 184 191 7 0.07 4% 

43311 Idle 38 55 190 136 3.61 71% 

48547 Idle 38 84 190 107 2.82 56% 

45263 Wheat 70 158 189 31 0.44 16% 

49263 Wheat 72 92 187 95 1.31 51% 

45030 Carrots 54 125 187 62 1.15 33% 
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51112 Grapes 36 136 186 50 1.36 27% 

43046 Almonds 43 135 185 50 1.17 27% 

43478 

Corn, 

Sorghum 

and Sudan 

45 134 185 51 1.12 27% 

48394 Almonds 43 156 184 28 0.65 15% 

46006 

Corn, 

Sorghum 

and Sudan 

45 131 183 52 1.16 28% 

44397 

Potatoes 

and Sweet 

Potatoes 

91 206 183 (22) -0.25 -12% 

44289 Tomatoes 97 195 183 (12) -0.12 -6% 

46238 Carrots 52 112 183 71 1.36 39% 

44111 Cotton 43 110 182 72 1.68 40% 

42810 Carrots 54 117 182 65 1.20 36% 

43735 Wheat 71 152 181 29 0.41 16% 

56185 Citrus 47 158 181 23 0.48 12% 

48613 Idle 36 66 181 114 3.20 63% 

43442 Wheat 71 140 181 41 0.57 23% 

58766 Citrus 47 184 181 (4) -0.08 -2% 

60452 Wheat 67 156 181 25 0.37 14% 

48088 Idle 36 66 180 114 3.22 63% 

42701 Carrots 52 126 179 54 1.04 30% 

45547 

Corn, 

Sorghum 

and Sudan 

45 133 179 46 1.02 26% 

45060 

Corn, 

Sorghum 

and Sudan 

45 156 178 22 0.49 12% 

43445 Wheat 69 194 178 (16) -0.23 -9% 
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45132 

Corn, 

Sorghum 

and Sudan 

43 141 178 37 0.85 21% 

52523 Grapes 34 116 177 60 1.78 34% 

50726 Almonds 41 200 176 (24) -0.59 -14% 

55002 Almonds 40 185 175 (11) -0.27 -6% 

45288 Walnuts 40 59 174 114 2.85 66% 

50873 Almonds 40 168 173 5 0.12 3% 

45454 

Corn, 

Sorghum 

and Sudan 

41 102 173 71 1.72 41% 

45350 Wheat 64 153 173 20 0.31 11% 

58368 Walnuts 40 55 173 118 2.96 68% 

50167 Walnuts 40 166 172 6 0.15 3% 

52627 Walnuts 38 139 172 33 0.85 19% 

46770 Cotton 41 139 171 33 0.80 19% 

55612 Grapes 30 108 171 64 2.09 37% 

42633 Almonds 41 64 171 107 2.62 63% 

46967 Cotton 41 139 170 31 0.75 18% 

60451 Wheat 63 147 169 22 0.35 13% 

49834 Almonds 40 172 169 (3) -0.08 -2% 

43562 Carrots 50 95 168 73 1.47 43% 

48708 

Corn, 

Sorghum 

and Sudan 

41 134 168 34 0.83 20% 

60941 Tomatoes 91 221 168 (54) -0.59 -32% 

48278 Idle 33 67 167 100 3.00 60% 

50217 Walnuts 38 148 167 18 0.48 11% 

57866 Wheat 65 68 167 99 1.52 59% 
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50810 Almonds 38 189 166 (22) -0.58 -13% 

43332 Wheat 63 135 166 31 0.50 19% 

58611 Almonds 38 146 166 20 0.52 12% 

50374 Almonds 39 167 166 (1) -0.03 -1% 

45538 Wheat 62 220 165 (54) -0.87 -33% 

56134 Cherries 79 313 165 (148) -1.87 -90% 

57362 Almonds 37 177 165 (12) -0.31 -7% 

46360 Almonds 39 85 165 80 2.06 48% 

47975 Almonds 40 192 165 (27) -0.67 -16% 

53575 Almonds 38 182 165 (17) -0.45 -10% 

47262 Almonds 40 184 165 (19) -0.49 -12% 

49631 Almonds 39 150 164 14 0.37 9% 

53862 Grapes 31 112 164 52 1.69 32% 

43425 

Alfalfa 

and 

Alfalfa 

Mixtures 

91 333 164 (168) -1.85 

-

102

% 

49339 Walnuts 38 135 164 29 0.76 17% 

48554 Almonds 39 174 164 (11) -0.27 -6% 

57922 Cotton 39 140 164 24 0.61 15% 

55706 Cherries 81 374 164 (211) -2.62 

-

129

% 

47635 Almonds 39 171 163 (8) -0.21 -5% 

52396 Almonds 38 159 163 4 0.10 2% 

52158 Almonds 37 183 162 (20) -0.54 -12% 

45215 

Corn, 

Sorghum 

and Sudan 

41 99 162 63 1.54 39% 

47682 Almonds 39 169 162 (6) -0.16 -4% 
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46310 

Corn, 

Sorghum 

and Sudan 

38 137 162 25 0.67 16% 

48493 Almonds 38 172 162 (10) -0.27 -6% 

44723 Carrots 47 58 162 104 2.22 64% 

45200 Cotton 38 119 162 42 1.11 26% 

48418 Almonds 39 191 162 (29) -0.75 -18% 

61714 Idle 31 23 161 138 4.53 86% 

53847 Cherries 79 280 161 (119) -1.50 -74% 

44640 Cotton 38 141 161 20 0.52 12% 

43638 

Potatoes 

and Sweet 

Potatoes 

81 192 161 (31) -0.38 -19% 

47633 Almonds 38 162 161 (1) -0.03 -1% 

43686 

Corn, 

Sorghum 

and Sudan 

39 132 160 28 0.72 17% 

50010 Almonds 39 181 160 (21) -0.55 -13% 

56104 Cherries 81 246 160 (86) -1.06 -54% 

49338 Walnuts 37 92 160 68 1.85 43% 

43785 

Corn, 

Sorghum 

and Sudan 

39 113 159 47 1.20 29% 

60928 

Potatoes 

and Sweet 

Potatoes 

81 202 159 (43) -0.52 -27% 

56704 Cherries 77 210 159 (50) -0.65 -32% 

43496 Cotton 39 96 159 64 1.65 40% 

52221 Almonds 37 153 159 6 0.17 4% 

47443 Almonds 38 64 159 95 2.51 60% 
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43207 

Potatoes 

and Sweet 

Potatoes 

78 183 159 (24) -0.31 -15% 

50962 Almonds 37 167 159 (9) -0.24 -6% 

44066 

Potatoes 

and Sweet 

Potatoes 

77 201 158 (43) -0.55 -27% 

54703 Cherries 76 311 158 (153) -2.02 -97% 

49328 Almonds 37 150 158 8 0.22 5% 

43991 

Potatoes 

and Sweet 

Potatoes 

77 216 157 (59) -0.76 -37% 

43513 

Alfalfa 

and 

Alfalfa 

Mixtures 

88 271 157 (114) -1.31 -73% 

50053 
Pomegran

ates 
41 56 157 101 2.49 64% 

43225 

Potatoes 

and Sweet 

Potatoes 

78 207 157 (51) -0.65 -32% 

49287 Walnuts 36 155 157 2 0.04 1% 

57066 Cherries 77 255 157 (98) -1.27 -63% 

47838 
Pomegran

ates 
40 91 157 65 1.62 42% 

50673 Almonds 36 118 156 39 1.08 25% 

61552 Idle 29 78 156 78 2.72 50% 

51023 Almonds 36 48 156 109 2.99 69% 

45108 

Corn, 

Sorghum 

and Sudan 

37 114 156 41 1.13 27% 

60907 Almonds 37 88 156 68 1.85 43% 

43492 Cotton 38 117 156 39 1.03 25% 
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56051 Cherries 79 339 156 (183) -2.34 

-

118

% 

47686 Almonds 38 158 156 (2) -0.06 -1% 

50090 Almonds 37 134 155 21 0.59 14% 

49332 Walnuts 36 122 155 33 0.92 21% 

47865 
Pomegran

ates 
39 91 155 64 1.62 41% 

61594 Tomatoes 77 198 155 (43) -0.56 -28% 

49997 
Pomegran

ates 
40 63 155 92 2.30 59% 

58260 Idle 30 32 155 123 4.11 79% 

43877 Cotton 38 117 154 38 0.99 24% 

58551 
Pomegran

ates 
37 121 154 34 0.90 22% 

46800 
Pomegran

ates 
39 88 154 65 1.66 43% 

60896 

Corn, 

Sorghum 

and Sudan 

37 123 154 31 0.84 20% 

43880 Cotton 37 108 153 46 1.24 30% 

50539 Walnuts 35 86 153 67 1.92 44% 

49978 
Pomegran

ates 
40 84 153 69 1.74 45% 

50544 Almonds 36 171 153 (18) -0.49 -11% 

43362 Carrots 45 75 153 78 1.72 51% 

43931 Citrus 39 44 153 109 2.79 72% 

43987 

Alfalfa 

and 

Alfalfa 

Mixtures 

84 287 152 (135) -1.59 -88% 

46480 Tomatoes 82 191 152 (39) -0.48 -26% 
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60490 Almonds 36 98 152 54 1.51 36% 

59705 Walnuts 35 50 152 102 2.87 67% 

46503 Cotton 37 119 152 33 0.90 22% 

46502 Cotton 37 117 152 35 0.93 23% 

49980 
Pomegran

ates 
39 83 152 68 1.73 45% 

43282 Carrots 44 118 151 34 0.75 22% 

43705 

Potatoes 

and Sweet 

Potatoes 

76 210 151 (59) -0.77 -39% 

42856 

Potatoes 

and Sweet 

Potatoes 

74 107 151 44 0.60 29% 

46841 Tomatoes 82 188 151 (37) -0.45 -25% 

43375 Cotton 36 104 151 47 1.32 31% 

61134 Idle 29 20 151 130 4.44 87% 

61624 Tomatoes 74 178 150 (28) -0.38 -19% 

43275 

Potatoes 

and Sweet 

Potatoes 

74 231 150 (81) -1.09 -54% 

60955 Tomatoes 81 160 150 (10) -0.13 -7% 

43529 

Potatoes 

and Sweet 

Potatoes 

79 239 149 (89) -1.13 -60% 

48684 Citrus 40 55 149 94 2.38 63% 

46070 Tomatoes 75 174 149 (25) -0.33 -17% 

52628 Walnuts 33 123 149 26 0.77 17% 

48897 Almonds 35 44 148 105 3.00 70% 

56608 Citrus 37 92 148 56 1.50 38% 

43055 

Potatoes 

and Sweet 

Potatoes 

72 94 148 54 0.74 36% 
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45713 Tomatoes 79 174 148 (26) -0.34 -18% 

52983 Citrus 39 156 148 (8) -0.20 -5% 

44887 

Potatoes 

and Sweet 

Potatoes 

76 196 148 (48) -0.63 -32% 

45786 

Potatoes 

and Sweet 

Potatoes 

76 209 148 (62) -0.82 -42% 

42731 Cotton 36 110 148 38 1.04 26% 

58590 
Pomegran

ates 
35 107 148 40 1.14 27% 

45712 Tomatoes 78 177 147 (30) -0.38 -20% 

42544 Tomatoes 78 155 147 (8) -0.10 -5% 

58501 Tomatoes 79 184 147 (37) -0.47 -25% 

60532 

Alfalfa 

and 

Alfalfa 

Mixtures 

80 274 147 (127) -1.59 -86% 

42585 Tomatoes 76 200 147 (53) -0.69 -36% 

45184 

Alfalfa 

and 

Alfalfa 

Mixtures 

78 337 147 (190) -2.44 

-

130

% 

17941

2 
Citrus 38 152 146 (6) -0.15 -4% 

59128 Citrus 38 141 146 6 0.15 4% 

49970 
Pomegran

ates 
38 72 146 74 1.95 51% 

58823 Citrus 38 165 146 (18) -0.48 -13% 

44275 

Potatoes 

and Sweet 

Potatoes 

73 229 146 (83) -1.14 -56% 

57065 Citrus 39 107 146 40 1.02 27% 
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44007 

Potatoes 

and Sweet 

Potatoes 

75 123 146 23 0.30 16% 

48687 Citrus 38 49 146 97 2.52 66% 

58013 Tomatoes 77 173 146 (27) -0.35 -19% 

45329 

Alfalfa 

and 

Alfalfa 

Mixtures 

81 312 146 (166) -2.06 

-

114

% 

55625 Cherries 72 266 146 (120) -1.67 -82% 

54242 Cherries 78 354 146 (209) -2.69 

-

144

% 

45018 

Potatoes 

and Sweet 

Potatoes 

75 258 145 (113) -1.51 -77% 

43776 Tomatoes 78 183 145 (38) -0.48 -26% 

42531 Carrots 44 73 145 73 1.66 50% 

50465 Almonds 34 48 145 97 2.88 67% 

45120 

Corn, 

Sorghum 

and Sudan 

36 102 145 43 1.20 29% 

42657 Tomatoes 75 170 145 (25) -0.34 -18% 

43493 

Potatoes 

and Sweet 

Potatoes 

74 195 145 (50) -0.67 -34% 

46782 Tomatoes 77 199 145 (54) -0.71 -37% 

17942

5 
Citrus 38 160 145 (15) -0.41 -11% 

58204 Citrus 36 142 145 2 0.07 2% 

44219 Cotton 34 103 145 41 1.20 28% 

45777 Alfalfa 

and 
80 292 144 (147) -1.85 

-

102

% 
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Alfalfa 

Mixtures 

44063 

Alfalfa 

and 

Alfalfa 

Mixtures 

76 320 144 (175) -2.31 

-

122

% 

45787 

Potatoes 

and Sweet 

Potatoes 

74 127 144 17 0.24 12% 

45964 

Potatoes 

and Sweet 

Potatoes 

75 94 144 50 0.67 35% 

45779 
Bush 

Berries 
40 55 144 89 2.24 62% 

60506 Citrus 40 46 144 98 2.42 68% 

43923 

Corn, 

Sorghum 

and Sudan 

35 82 144 62 1.76 43% 

51935 Grapes 27 116 143 28 1.01 19% 

43790 

Alfalfa 

and 

Alfalfa 

Mixtures 

79 305 143 (162) -2.05 

-

113

% 

50721 Almonds 33 150 143 (7) -0.21 -5% 

51710 Citrus 39 149 143 (6) -0.15 -4% 

43465 

Potatoes 

and Sweet 

Potatoes 

73 192 143 (49) -0.68 -34% 

46300 

Potatoes 

and Sweet 

Potatoes 

72 165 143 (22) -0.30 -15% 

56740 Citrus 37 136 143 6 0.17 4% 

46334 

Alfalfa 

and 

Alfalfa 

Mixtures 

78 321 142 (179) -2.30 

-

126

% 
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50349 Carrots 42 85 142 57 1.37 40% 

43463 

Alfalfa 

and 

Alfalfa 

Mixtures 

78 186 142 (44) -0.57 -31% 

43181 Carrots 42 122 142 20 0.48 14% 

42575 Tomatoes 74 164 142 (21) -0.29 -15% 

52013 Citrus 39 145 142 (3) -0.08 -2% 

42753 

Potatoes 

and Sweet 

Potatoes 

70 128 142 14 0.20 10% 

54522 Cherries 76 352 142 (210) -2.76 

-

148

% 

44428 

Alfalfa 

and 

Alfalfa 

Mixtures 

77 315 142 (173) -2.25 

-

122

% 

58109 Wheat 55 149 142 (8) -0.14 -5% 

46244 

Alfalfa 

and 

Alfalfa 

Mixtures 

76 295 142 (154) -2.01 

-

109

% 

60162 

Corn, 

Sorghum 

and Sudan 

35 113 141 28 0.82 20% 

49996 
Pomegran

ates 
37 71 141 71 1.93 50% 

55727 Cherries 77 168 141 (27) -0.35 -19% 

47038 
Pomegran

ates 
36 95 141 46 1.28 32% 

44335 

Potatoes 

and Sweet 

Potatoes 

70 118 141 23 0.32 16% 

44959 Carrots 40 81 141 60 1.50 43% 
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44373 Wheat 52 106 141 35 0.66 25% 

43809 Cotton 34 97 141 44 1.29 31% 

45775 

Alfalfa 

and 

Alfalfa 

Mixtures 

78 307 141 (166) -2.14 

-

118

% 

45045 

Alfalfa 

and 

Alfalfa 

Mixtures 

77 311 141 (171) -2.22 

-

122

% 

43557 

Corn, 

Sorghum 

and Sudan 

34 75 141 66 1.96 47% 

45075 

Corn, 

Sorghum 

and Sudan 

34 104 140 37 1.07 26% 

47842 
Pomegran

ates 
36 76 140 64 1.79 46% 

44736 

Alfalfa 

and 

Alfalfa 

Mixtures 

77 294 140 (154) -1.99 

-

110

% 

60954 Tomatoes 76 158 140 (18) -0.24 -13% 

59043 Citrus 37 139 140 1 0.02 1% 

43394 Tomatoes 75 105 140 35 0.47 25% 

45311 Wheat 52 122 139 17 0.34 12% 

55533 Citrus 38 143 139 (3) -0.09 -2% 

51338 Walnuts 31 118 139 22 0.69 15% 

53232 Citrus 37 133 139 6 0.16 4% 

42658 Tomatoes 72 163 139 (24) -0.34 -18% 

45047 

Alfalfa 

and 

Alfalfa 

Mixtures 

76 313 139 (174) -2.29 

-

126

% 
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51991 Citrus 38 130 139 9 0.23 6% 

45286 

Alfalfa 

and 

Alfalfa 

Mixtures 

75 324 138 (186) -2.46 

-

134

% 

58044 Tomatoes 74 157 138 (18) -0.25 -13% 

45770 

Alfalfa 

and 

Alfalfa 

Mixtures 

76 307 138 (169) -2.21 

-

122

% 

44500 

Alfalfa 

and 

Alfalfa 

Mixtures 

75 280 138 (142) -1.89 

-

103

% 

43798 

Alfalfa 

and 

Alfalfa 

Mixtures 

77 306 138 (168) -2.19 

-

122

% 

46536 

Potatoes 

and Sweet 

Potatoes 

69 155 138 (17) -0.25 -13% 

59622 
Bush 

Berries 
38 57 138 80 2.11 58% 

43383 Tomatoes 74 149 137 (11) -0.15 -8% 

61243 Carrots 39 118 137 20 0.51 14% 

60953 Tomatoes 74 162 137 (25) -0.33 -18% 

49100 Citrus 39 130 137 8 0.20 6% 

45048 

Alfalfa 

and 

Alfalfa 

Mixtures 

75 293 137 (156) -2.09 

-

114

% 

43925 

Alfalfa 

and 

Alfalfa 

Mixtures 

76 275 137 (138) -1.81 

-

101

% 

60576 Grapes 26 61 137 76 2.95 56% 
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56041 Citrus 37 136 137 0 0.01 0% 

51804 Citrus 38 136 136 1 0.02 1% 

43773 Tomatoes 73 155 136 (19) -0.26 -14% 

42594 Carrots 38 100 136 36 0.95 27% 

44400 Cotton 33 75 135 60 1.81 45% 

43936 Cotton 33 94 135 41 1.26 30% 

42809 Idle 26 26 135 109 4.25 81% 

44256 

Alfalfa 

and 

Alfalfa 

Mixtures 

74 287 135 (152) -2.06 

-

113

% 

51827 Citrus 37 107 135 27 0.74 20% 

44706 

Potatoes 

and Sweet 

Potatoes 

70 178 134 (44) -0.63 -33% 

44015 Cotton 33 97 134 37 1.12 27% 

61249 Tomatoes 72 136 133 (3) -0.04 -2% 

50536 Almonds 31 118 133 15 0.48 11% 

44547 

Alfalfa 

and 

Alfalfa 

Mixtures 

74 258 133 (125) -1.69 -93% 

43396 

Alfalfa 

and 

Alfalfa 

Mixtures 

74 307 133 (174) -2.36 

-

130

% 

60649 Carrots 38 109 133 24 0.64 18% 

43741 

Alfalfa 

and 

Alfalfa 

Mixtures 

74 301 133 (168) -2.28 

-

127

% 

45584 Alfalfa 

and 
74 249 133 (116) -1.58 -87% 
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Alfalfa 

Mixtures 

57920 Cotton 31 111 132 21 0.68 16% 

45219 

Corn, 

Sorghum 

and Sudan 

31 111 132 21 0.67 16% 

46236 Carrots 38 31 132 101 2.67 77% 

55704 Citrus 34 139 132 (8) -0.23 -6% 

43052 

Alfalfa 

and 

Alfalfa 

Mixtures 

73 232 131 (101) -1.38 -77% 

42619 Tomatoes 69 162 131 (31) -0.45 -24% 

49223 Almonds 31 137 131 (6) -0.20 -5% 

46783 
Pomegran

ates 
34 35 130 95 2.84 73% 

45280 

Alfalfa 

and 

Alfalfa 

Mixtures 

69 195 130 (65) -0.94 -50% 

45294 

Alfalfa 

and 

Alfalfa 

Mixtures 

71 298 129 (169) -2.37 

-

131

% 

58713 Citrus 34 63 129 66 1.96 51% 

58099 Tomatoes 68 167 129 (38) -0.56 -30% 

44294 Carrots 38 75 129 54 1.43 42% 

43744 

Alfalfa 

and 

Alfalfa 

Mixtures 

71 291 128 (162) -2.28 

-

127

% 

52010 Citrus 35 131 128 (3) -0.08 -2% 

46891 Tomatoes 69 157 128 (29) -0.42 -22% 
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58272 

Potatoes 

and Sweet 

Potatoes 

63 96 128 32 0.51 25% 

51341 Walnuts 29 100 128 28 0.97 22% 

45726 

Potatoes 

and Sweet 

Potatoes 

66 142 127 (15) -0.22 -11% 

60292 Almonds 30 44 127 83 2.81 65% 

44286 Carrots 38 81 126 45 1.21 36% 

43469 

Potatoes 

and Sweet 

Potatoes 

66 226 126 (100) -1.50 -79% 

60925 Tomatoes 68 140 126 (14) -0.21 -11% 

61254 Carrots 35 68 125 57 1.61 46% 

46833 Tomatoes 67 146 125 (21) -0.31 -17% 

49088 Almonds 30 100 124 24 0.81 19% 

45001 Carrots 37 45 124 79 2.15 64% 

44080 Cotton 31 93 124 31 1.01 25% 

55554 Cherries 60 221 123 (98) -1.62 -80% 

47660 
Pomegran

ates 
31 80 121 41 1.31 34% 

58360 Citrus 30 114 121 7 0.23 6% 

58034 

Potatoes 

and Sweet 

Potatoes 

62 211 121 (90) -1.43 -74% 

59950 Idle 24 21 120 100 4.14 83% 

58390 Tomatoes 64 156 120 (36) -0.57 -30% 

42643 Peppers 74 158 120 (38) -0.51 -32% 

44589 Almonds 27 62 120 58 2.12 49% 

50984 Grapes 23 92 119 27 1.17 23% 

54039 Citrus 32 107 119 13 0.39 10% 
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46007 

Corn, 

Sorghum 

and Sudan 

29 98 119 21 0.71 17% 

61530 Carrots 33 81 119 37 1.14 32% 

51625 Apples 46 95 118 23 0.50 19% 

47066 
Pomegran

ates 
30 75 118 43 1.44 37% 

44305 

Alfalfa 

and 

Alfalfa 

Mixtures 

66 172 118 (54) -0.82 -46% 

61093 

Potatoes 

and Sweet 

Potatoes 

60 143 118 (25) -0.42 -22% 

45536 Grapes 22 97 117 20 0.88 17% 

49465 Cherries 63 142 117 (26) -0.40 -22% 

46358 Cotton 28 66 116 50 1.78 43% 

61384 Idle 21 72 116 44 2.07 38% 

43059 Cotton 29 77 116 39 1.37 34% 

17930

2 

Pomegran

ates 
30 75 116 40 1.35 35% 

47296 Almonds 27 130 115 (15) -0.55 -13% 

42588 Peppers 71 161 115 (47) -0.66 -41% 

46528 

Potatoes 

and Sweet 

Potatoes 

58 118 115 (4) -0.07 -3% 

58872 Citrus 30 74 114 40 1.32 35% 

58554 Wheat 42 72 114 42 1.01 37% 

61780 

Corn, 

Sorghum 

and Sudan 

28 89 114 25 0.89 22% 

43263 Cotton 28 74 113 39 1.42 35% 

46125 Tomatoes 59 123 113 (10) -0.16 -9% 
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43692 

Alfalfa 

and 

Alfalfa 

Mixtures 

62 267 113 (154) -2.48 

-

136

% 

61728 

Corn, 

Sorghum 

and Sudan 

28 76 113 37 1.32 33% 

43898 

Alfalfa 

and 

Alfalfa 

Mixtures 

63 228 113 (116) -1.85 

-

103

% 

46382 Idle 22 17 112 95 4.34 85% 

51599 Apples 44 97 112 16 0.36 14% 

42798 

Potatoes 

and Sweet 

Potatoes 

56 194 112 (82) -1.46 -73% 

46789 
Pomegran

ates 
29 67 112 45 1.56 40% 

54847 Grapes 20 74 111 37 1.87 33% 

47198 Almonds 27 104 111 7 0.27 7% 

55579 Grapes 20 85 111 26 1.32 24% 

45992 

Alfalfa 

and 

Alfalfa 

Mixtures 

61 220 111 (109) -1.81 -99% 

48670 Almonds 27 116 111 (5) -0.19 -4% 

55769 Grapes 21 63 110 47 2.29 43% 

61024 Tomatoes 58 109 110 1 0.02 1% 

61431 Carrots 30 44 110 66 2.18 60% 

46799 
Pomegran

ates 
28 64 109 45 1.62 41% 

59496 Idle 22 14 109 96 4.41 88% 

44138 Alfalfa 

and 
60 66 109 43 0.71 39% 
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Alfalfa 

Mixtures 

43976 

Potatoes 

and Sweet 

Potatoes 

57 143 109 (35) -0.60 -32% 

45639 

Corn, 

Sorghum 

and Sudan 

26 74 109 35 1.34 32% 

45738 

Corn, 

Sorghum 

and Sudan 

26 63 109 46 1.77 42% 

45509 Wheat 39 52 109 57 1.45 53% 

44923 Wheat 39 89 108 19 0.48 17% 

45203 Wheat 40 97 107 10 0.26 9% 

53385 Wheat 39 119 107 (12) -0.31 -11% 

60232 

Corn, 

Sorghum 

and Sudan 

26 73 107 34 1.30 32% 

44957 Wheat 39 108 107 (1) -0.02 -1% 

55551 Citrus 29 122 107 (15) -0.53 -14% 

42533 Peppers 67 123 107 (16) -0.24 -15% 

51657 Grapes 20 85 107 21 1.08 20% 

46917 Cotton 25 84 106 22 0.88 21% 

46546 Wheat 41 99 106 7 0.16 6% 

51598 Apples 41 98 106 8 0.18 7% 

60582 Grapes 19 81 106 24 1.27 23% 

44439 

Alfalfa 

and 

Alfalfa 

Mixtures 

59 231 106 (126) -2.14 

-

119

% 

46564 Wheat 38 63 105 42 1.10 40% 
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45859 

Corn, 

Sorghum 

and Sudan 

25 57 105 48 1.92 46% 

58519 Cotton 25 69 105 36 1.42 34% 

61424 

Potatoes 

and Sweet 

Potatoes 

51 69 105 36 0.70 35% 

43284 

Potatoes 

and Sweet 

Potatoes 

52 141 105 (37) -0.71 -35% 

42803 Tomatoes 56 114 105 (10) -0.17 -9% 

44677 Wheat 39 90 104 14 0.36 14% 

43539 Wheat 39 81 104 23 0.59 22% 

55097 Grapes 19 49 104 55 2.83 53% 

58045 

Corn, 

Sorghum 

and Sudan 

25 65 104 39 1.60 38% 

54383 Grapes 19 82 104 21 1.11 21% 

58950 Grapes 20 77 104 27 1.35 26% 

59389 Grapes 20 66 102 36 1.82 35% 

53267 Grapes 20 66 102 37 1.88 36% 

56135 

Plums, 

Prunes and 

Apricots 

30 99 102 4 0.12 4% 

53382 Wheat 37 105 102 (3) -0.07 -2% 

58532 Wheat 38 46 102 56 1.47 55% 

51461 Apples 40 106 102 (4) -0.09 -4% 

42655 Carrots 30 54 102 48 1.62 47% 

58127 Wheat 39 74 102 27 0.71 27% 

49499 Walnuts 23 59 102 42 1.80 42% 
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56131 

Plums, 

Prunes and 

Apricots 

30 126 102 (25) -0.83 -25% 

54674 Grapes 18 57 101 44 2.39 43% 

43951 Cotton 25 72 101 29 1.17 29% 

44874 

Corn, 

Sorghum 

and Sudan 

24 83 101 18 0.75 18% 

45943 

Potatoes 

and Sweet 

Potatoes 

52 123 101 (22) -0.43 -22% 

59237 Grapes 19 63 100 37 1.90 37% 

57704 Grapes 19 56 100 44 2.31 44% 

48705 Wheat 37 73 100 27 0.71 27% 

45748 Wheat 38 127 100 (27) -0.72 -27% 

52239 Grapes 19 67 100 33 1.71 33% 

60052 Wheat 38 41 99 58 1.54 59% 

60331 Idle 19 22 99 77 4.09 78% 

59381 Grapes 19 73 99 26 1.38 27% 

61737 

Corn, 

Sorghum 

and Sudan 

24 79 99 20 0.82 20% 

57033 Idle 19 17 99 82 4.27 83% 

44149 Wheat 38 66 99 33 0.87 33% 

44274 Wheat 38 79 99 19 0.52 20% 

59940 Idle 20 13 99 86 4.40 87% 

57642 Grapes 19 73 98 25 1.32 25% 

53772 Grapes 18 73 98 25 1.37 25% 

55367 Idle 19 24 98 74 3.94 76% 

45925 Wheat 37 70 98 28 0.74 28% 
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50924 Grapes 19 72 98 26 1.35 26% 

59529 Idle 19 18 98 80 4.19 81% 

58126 Wheat 37 75 98 22 0.60 23% 

60993 Tomatoes 53 114 98 (16) -0.31 -17% 

45495 Wheat 37 69 98 29 0.78 29% 

59406 Grapes 19 30 98 67 3.57 69% 

59341 Grapes 19 55 97 43 2.26 44% 

58760 Grapes 19 29 97 68 3.66 70% 

56389 Grapes 19 70 97 28 1.48 29% 

57552 Idle 19 27 97 70 3.76 72% 

53130 Grapes 19 80 97 17 0.91 17% 

45021 Tomatoes 50 130 97 (33) -0.66 -34% 

44930 

Potatoes 

and Sweet 

Potatoes 

48 81 97 16 0.33 17% 

42733 Cotton 24 63 97 34 1.44 36% 

50105 Cherries 51 193 97 (96) -1.88 -99% 

57407 Grapes 19 30 97 66 3.58 69% 

53185 Citrus 25 112 97 (16) -0.62 -16% 

58528 Idle 19 33 96 63 3.33 65% 

57776 Grapes 18 65 95 30 1.63 31% 

59292 Grapes 18 45 95 50 2.73 53% 

43859 

Corn, 

Sorghum 

and Sudan 

23 31 95 64 2.79 67% 

59750 Grapes 19 22 95 73 3.91 77% 

54450 Grapes 18 71 94 24 1.35 25% 

59153 Grapes 18 29 94 65 3.62 69% 

51101 Grapes 18 73 94 21 1.15 23% 
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45029 Tomatoes 49 121 94 (26) -0.54 -28% 

54478 Grapes 17 44 94 50 2.85 53% 

46434 

Alfalfa 

and 

Alfalfa 

Mixtures 

52 128 94 (34) -0.66 -37% 

59174 Grapes 18 60 93 33 1.84 35% 

48817 Walnuts 21 76 92 16 0.76 17% 

51295 Grapes 18 79 92 13 0.70 14% 

42535 Idle 18 15 92 77 4.30 83% 

61794 

Alfalfa 

and 

Alfalfa 

Mixtures 

48 113 92 (21) -0.43 -23% 

58965 Grapes 17 70 91 21 1.23 23% 

53374 Citrus 24 111 91 (19) -0.80 -21% 

60021 Carrots 28 67 91 24 0.87 27% 

45159 

Alfalfa 

and 

Alfalfa 

Mixtures 

46 187 90 (97) -2.08 

-

107

% 

53119 Citrus 24 103 90 (12) -0.52 -14% 

58724 Citrus 24 63 90 27 1.15 30% 

53643 Grapes 17 58 90 32 1.85 36% 

51512 Grapes 17 69 90 21 1.29 24% 

43020 

Alfalfa 

and 

Alfalfa 

Mixtures 

47 65 89 24 0.50 27% 

53343 Citrus 24 91 89 (2) -0.08 -2% 

44826 Alfalfa 

and 
47 172 89 (83) -1.75 -94% 



275 

 

Alfalfa 

Mixtures 

57312 Grapes 17 55 89 34 1.98 38% 

43806 

Alfalfa 

and 

Alfalfa 

Mixtures 

48 148 88 (59) -1.22 -67% 

46911 Almonds 21 82 88 6 0.30 7% 

48696 Citrus 23 35 88 53 2.31 60% 

59258 Grapes 17 27 88 61 3.64 70% 

46396 Wheat 33 82 88 5 0.16 6% 

45043 

Alfalfa 

and 

Alfalfa 

Mixtures 

48 195 88 (107) -2.24 

-

123

% 

45354 

Alfalfa 

and 

Alfalfa 

Mixtures 

46 86 88 2 0.04 2% 

45146 Idle 17 26 87 62 3.64 70% 

59649 Wheat 34 87 87 0 0.00 0% 

51243 Grapes 17 63 87 24 1.42 28% 

46397 

Alfalfa 

and 

Alfalfa 

Mixtures 

47 139 87 (52) -1.10 -59% 

58909 Grapes 17 61 87 26 1.57 30% 

45997 

Corn, 

Sorghum 

and Sudan 

21 79 86 8 0.37 9% 

46429 

Alfalfa 

and 

Alfalfa 

Mixtures 

48 182 86 (96) -2.01 

-

111

% 
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46798 
Pomegran

ates 
22 54 85 31 1.41 36% 

57903 Peppers 52 128 84 (44) -0.84 -52% 

59326 Almonds 19 66 84 18 0.96 22% 

56899 Grapes 16 69 83 14 0.89 17% 

49286 Walnuts 19 51 83 33 1.71 39% 

44440 

Alfalfa 

and 

Alfalfa 

Mixtures 

46 179 83 (96) -2.08 

-

116

% 

44777 Tomatoes 42 97 83 (14) -0.33 -17% 

54127 Cherries 41 110 83 (27) -0.66 -33% 

44660 

Alfalfa 

and 

Alfalfa 

Mixtures 

46 172 83 (89) -1.96 

-

108

% 

44932 Tomatoes 43 79 83 3 0.07 4% 

48250 Almonds 20 93 82 (11) -0.54 -13% 

49897 Walnuts 19 82 82 0 0.02 0% 

61648 Wheat 30 42 82 40 1.33 49% 

42982 

Potatoes 

and Sweet 

Potatoes 

42 68 82 14 0.33 17% 

48879 Walnuts 19 74 82 8 0.42 10% 

59821 

Corn, 

Sorghum 

and Sudan 

20 48 82 34 1.68 41% 

45975 Tomatoes 42 79 81 2 0.05 3% 

59533 Idle 16 13 81 68 4.33 84% 

56145 Cherries 39 171 81 (90) -2.28 

-

110

% 



277 

 

56394 Cherries 39 180 81 (99) -2.53 

-

123

% 

60747 Tomatoes 42 93 81 (12) -0.30 -15% 

42691 Cotton 19 51 80 29 1.53 37% 

46294 Tomatoes 43 105 80 (25) -0.58 -31% 

56133 Cherries 39 184 80 (104) -2.68 

-

129

% 

53734 Cherries 41 129 80 (49) -1.20 -61% 

55578 Cherries 39 177 80 (97) -2.45 

-

121

% 

44051 

Potatoes 

and Sweet 

Potatoes 

42 105 80 (25) -0.61 -32% 

48080 Tomatoes 41 101 80 (21) -0.51 -27% 

54471 Wheat 29 76 80 3 0.12 4% 

56574 Cherries 38 183 79 (104) -2.72 

-

131

% 

61291 Carrots 23 45 79 35 1.49 44% 

55407 Grapes 15 62 79 17 1.11 21% 

54822 Cherries 38 84 79 (4) -0.11 -6% 

60219 Almonds 18 55 79 24 1.32 31% 

56639 
Bush 

Berries 
20 47 79 32 1.60 40% 

42860 

Potatoes 

and Sweet 

Potatoes 

40 59 79 20 0.50 26% 

43028 

Potatoes 

and Sweet 

Potatoes 

38 117 79 (38) -1.01 -49% 
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56647 Grapes 15 61 78 18 1.16 22% 

56641 
Bush 

Berries 
20 49 78 29 1.50 37% 

49661 Almonds 19 71 78 7 0.39 9% 

55631 Cherries 39 173 78 (95) -2.46 

-

122

% 

56167 Citrus 19 82 78 (4) -0.22 -5% 

50074 Citrus 21 84 78 (6) -0.28 -8% 

58552 Cherries 39 107 78 (30) -0.75 -38% 

56393 Cherries 38 180 78 (102) -2.69 

-

131

% 

56638 
Bush 

Berries 
19 49 77 28 1.46 37% 

47776 
Pomegran

ates 
20 23 77 53 2.72 69% 

48681 

Alfalfa 

and 

Alfalfa 

Mixtures 

41 153 77 (76) -1.87 -99% 

44046 Carrots 23 21 77 56 2.48 73% 

51812 Cherries 41 185 77 (108) -2.66 

-

141

% 

43953 Cotton 19 55 77 22 1.17 29% 

44374 

Potatoes 

and Sweet 

Potatoes 

38 83 77 (7) -0.18 -9% 

43984 

Potatoes 

and Sweet 

Potatoes 

37 102 77 (25) -0.67 -33% 

55398 Cherries 40 196 76 (119) -3.02 

-

156

% 
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44201 Cotton 19 51 76 25 1.36 33% 

44325 

Potatoes 

and Sweet 

Potatoes 

37 60 76 17 0.44 22% 

56640 
Bush 

Berries 
19 46 76 30 1.58 39% 

43593 Cotton 18 49 76 27 1.47 36% 

60988 Tomatoes 41 90 76 (14) -0.35 -19% 

45451 Cotton 19 51 76 25 1.35 33% 

56603 
Bush 

Berries 
19 30 76 46 2.42 61% 

54697 Cherries 37 84 76 (8) -0.23 -11% 

17937

8 
Citrus 20 59 76 17 0.83 22% 

47071 
Pomegran

ates 
19 51 76 24 1.26 32% 

44115 Cotton 18 42 75 34 1.90 45% 

45156 

Potatoes 

and Sweet 

Potatoes 

37 49 75 26 0.71 35% 

56604 
Bush 

Berries 
19 29 75 46 2.45 61% 

46117 Tomatoes 38 83 75 (8) -0.21 -11% 

44033 

Potatoes 

and Sweet 

Potatoes 

37 104 75 (29) -0.77 -38% 

58772 Citrus 20 77 75 (1) -0.07 -2% 

43717 

Potatoes 

and Sweet 

Potatoes 

39 45 75 30 0.77 40% 

44133 Tomatoes 40 85 75 (10) -0.26 -14% 

43190 Tomatoes 40 71 75 4 0.09 5% 

46388 Cotton 18 54 74 20 1.12 27% 
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56342 Citrus 19 76 74 (2) -0.11 -3% 

44206 

Potatoes 

and Sweet 

Potatoes 

37 106 74 (32) -0.86 -43% 

58446 

Corn, 

Sorghum 

and Sudan 

18 58 74 16 0.86 21% 

45710 Tomatoes 39 92 74 (18) -0.46 -25% 

51939 Cherries 40 150 74 (76) -1.88 

-

102

% 

44106 

Potatoes 

and Sweet 

Potatoes 

38 120 74 (47) -1.22 -63% 

44034 

Potatoes 

and Sweet 

Potatoes 

37 96 74 (22) -0.60 -30% 

56192 Citrus 19 57 73 16 0.86 22% 

51454 
Pomegran

ates 
19 22 73 51 2.71 70% 

45600 Wheat 29 56 73 17 0.61 24% 

43069 

Potatoes 

and Sweet 

Potatoes 

36 60 73 13 0.37 18% 

45788 

Potatoes 

and Sweet 

Potatoes 

38 125 73 (52) -1.39 -71% 

45241 

Corn, 

Sorghum 

and Sudan 

18 61 73 12 0.67 16% 

44284 Wheat 28 65 73 8 0.28 11% 

47193 Cherries 40 140 73 (67) -1.68 -91% 

46508 

Alfalfa 

and 

Alfalfa 

Mixtures 

41 142 73 (69) -1.68 -94% 
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42904 

Corn, 

Sorghum 

and Sudan 

18 61 73 12 0.67 16% 

58876 Citrus 19 52 73 21 1.09 29% 

46749 
Pomegran

ates 
19 42 73 31 1.67 43% 

60355 

Corn, 

Sorghum 

and Sudan 

18 55 73 17 0.99 24% 

59776 

Potatoes 

and Sweet 

Potatoes 

36 100 73 (27) -0.77 -38% 

60441 

Alfalfa 

and 

Alfalfa 

Mixtures 

38 112 73 (39) -1.03 -54% 

60783 Tomatoes 37 72 73 0 0.00 0% 

59817 

Potatoes 

and Sweet 

Potatoes 

38 93 72 (21) -0.54 -28% 

60118 Tomatoes 38 93 72 (21) -0.55 -29% 

59729 

Corn, 

Sorghum 

and Sudan 

18 57 72 15 0.85 21% 

57950 

Potatoes 

and Sweet 

Potatoes 

38 96 72 (24) -0.63 -33% 

54777 Grapes 13 37 72 35 2.65 49% 

61630 

Potatoes 

and Sweet 

Potatoes 

36 106 72 (33) -0.92 -46% 

45110 

Alfalfa 

and 

Alfalfa 

Mixtures 

38 168 72 (96) -2.49 

-

133

% 

42714 Tomatoes 37 74 72 (2) -0.05 -3% 
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47438 

Potatoes 

and Sweet 

Potatoes 

37 135 72 (63) -1.71 -88% 

55208 Citrus 19 76 72 (4) -0.20 -5% 

46892 Tomatoes 39 86 72 (14) -0.36 -20% 

60443 

Corn, 

Sorghum 

and Sudan 

17 26 72 46 2.63 64% 

46563 Wheat 26 39 72 33 1.27 46% 

60704 

Potatoes 

and Sweet 

Potatoes 

37 41 72 30 0.82 42% 

46228 

Potatoes 

and Sweet 

Potatoes 

37 90 71 (18) -0.49 -25% 

55284 Citrus 19 68 71 4 0.19 5% 

60876 Tomatoes 37 79 71 (8) -0.22 -11% 

60674 Tomatoes 36 86 71 (15) -0.41 -21% 

44332 

Potatoes 

and Sweet 

Potatoes 

36 104 71 (33) -0.93 -47% 

50633 Almonds 16 69 71 2 0.13 3% 

56532 Wheat 25 63 71 8 0.31 11% 

59551 

Potatoes 

and Sweet 

Potatoes 

36 86 71 (15) -0.42 -21% 

51813 Cherries 38 167 71 (96) -2.55 

-

135

% 

50662 Grapes 14 40 71 31 2.22 44% 

46065 

Potatoes 

and Sweet 

Potatoes 

36 87 71 (17) -0.45 -23% 

59100 Grapes 13 42 71 28 2.11 40% 
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57789 
Bush 

Berries 
19 60 70 10 0.54 14% 

43384 Tomatoes 38 64 70 6 0.16 9% 

46526 

Alfalfa 

and 

Alfalfa 

Mixtures 

39 128 70 (58) -1.50 -84% 

57136 Almonds 16 37 70 33 2.08 47% 

46258 

Alfalfa 

and 

Alfalfa 

Mixtures 

38 118 70 (48) -1.27 -69% 

46751 
Pomegran

ates 
18 43 69 26 1.47 38% 

46497 

Alfalfa 

and 

Alfalfa 

Mixtures 

38 125 69 (56) -1.47 -81% 

51790 Cherries 37 158 69 (89) -2.42 

-

128

% 

60460 

Corn, 

Sorghum 

and Sudan 

17 59 69 10 0.59 15% 

46217 

Alfalfa 

and 

Alfalfa 

Mixtures 

38 140 69 (71) -1.85 

-

103

% 

44811 Tomatoes 36 84 69 (15) -0.42 -22% 

60874 Tomatoes 36 81 69 (12) -0.33 -17% 

44953 

Alfalfa 

and 

Alfalfa 

Mixtures 

36 126 68 (58) -1.61 -84% 

56053 Carrots 19 40 68 28 1.47 42% 

61350 Alfalfa 

and 
37 136 68 (68) -1.84 -99% 
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Alfalfa 

Mixtures 

61125 
Pomegran

ates 
18 10 68 57 3.27 85% 

46005 

Corn, 

Sorghum 

and Sudan 

17 51 68 17 1.03 25% 

49383 Cherries 36 134 68 (66) -1.84 -98% 

60621 Tomatoes 35 84 68 (17) -0.48 -25% 

60875 Tomatoes 35 78 68 (11) -0.30 -16% 

43728 

Alfalfa 

and 

Alfalfa 

Mixtures 

36 122 68 (55) -1.51 -81% 

43301 

Alfalfa 

and 

Alfalfa 

Mixtures 

37 137 67 (70) -1.90 

-

103

% 

44598 Tomatoes 35 90 67 (23) -0.65 -34% 

46323 

Alfalfa 

and 

Alfalfa 

Mixtures 

37 130 67 (63) -1.73 -95% 

57193 Grapes 13 44 67 22 1.73 33% 

49245 Cherries 35 145 67 (78) -2.20 

-

117

% 

46465 Carrots 19 16 66 50 2.67 75% 

54397 Citrus 17 73 66 (7) -0.40 -11% 

56524 

Potatoes 

and Sweet 

Potatoes 

32 52 66 14 0.45 22% 

44616 

Alfalfa 

and 

Alfalfa 

Mixtures 

37 132 66 (67) -1.82 

-

101

% 



285 

 

61209 Carrots 19 44 66 21 1.11 33% 

43808 

Alfalfa 

and 

Alfalfa 

Mixtures 

36 128 66 (63) -1.77 -96% 

60034 Idle 12 12 65 54 4.36 82% 

59693 Tomatoes 35 79 65 (14) -0.40 -21% 

56375 Citrus 17 31 65 34 2.03 52% 

46101 Peppers 41 98 65 (33) -0.81 -51% 

59722 Carrots 18 53 65 12 0.64 18% 

47273 
Pomegran

ates 
17 43 65 22 1.30 33% 

61540 Peppers 39 102 65 (37) -0.95 -58% 

59621 
Bush 

Berries 
18 27 64 38 2.12 58% 

58292 

Alfalfa 

and 

Alfalfa 

Mixtures 

35 153 64 (89) -2.52 

-

138

% 

44790 Wheat 24 69 64 (5) -0.21 -8% 

61407 Peppers 39 94 64 (30) -0.79 -47% 

58503 Carrots 19 47 64 17 0.89 27% 

60353 

Alfalfa 

and 

Alfalfa 

Mixtures 

34 130 64 (66) -1.93 

-

104

% 

43696 

Corn, 

Sorghum 

and Sudan 

16 40 64 23 1.51 37% 

49018 
Pomegran

ates 
16 45 64 18 1.13 29% 

53353 Citrus 17 63 63 (0) -0.01 0% 

43144 Tomatoes 34 73 63 (9) -0.28 -15% 
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59606 Idle 13 8 63 55 4.34 87% 

42842 Peppers 38 73 62 (10) -0.27 -17% 

60890 
Bush 

Berries 
17 25 62 37 2.18 60% 

46295 Tomatoes 33 78 62 (16) -0.47 -25% 

59585 
Bush 

Berries 
17 31 62 31 1.83 51% 

56950 Cherries 30 83 62 (21) -0.72 -35% 

57949 

Potatoes 

and Sweet 

Potatoes 

32 83 62 (21) -0.66 -35% 

59591 
Bush 

Berries 
17 29 61 32 1.92 53% 

56637 Cherries 29 112 61 (52) -1.76 -85% 

55458 Grapes 11 39 61 22 1.97 36% 

59830 Tomatoes 32 38 61 22 0.70 36% 

60492 Tomatoes 33 71 60 (11) -0.32 -18% 

59626 

Alfalfa 

and 

Alfalfa 

Mixtures 

34 83 60 (22) -0.66 -37% 

44140 

Alfalfa 

and 

Alfalfa 

Mixtures 

33 117 60 (57) -1.71 -95% 

44956 

Alfalfa 

and 

Alfalfa 

Mixtures 

31 114 60 (55) -1.77 -92% 

60129 Peppers 38 79 60 (20) -0.52 -33% 

60342 

Alfalfa 

and 

Alfalfa 

Mixtures 

32 115 60 (55) -1.72 -92% 
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43174 Peppers 37 80 60 (21) -0.55 -34% 

46263 

Alfalfa 

and 

Alfalfa 

Mixtures 

32 97 59 (37) -1.16 -63% 

44939 

Alfalfa 

and 

Alfalfa 

Mixtures 

31 124 59 (65) -2.11 

-

110

% 

60080 

Alfalfa 

and 

Alfalfa 

Mixtures 

32 79 59 (20) -0.62 -34% 

46421 

Alfalfa 

and 

Alfalfa 

Mixtures 

32 112 59 (53) -1.67 -90% 

51951 Cherries 32 122 59 (63) -1.95 

-

106

% 

60937 Tomatoes 32 68 59 (9) -0.28 -15% 

56287 Cherries 31 121 59 (62) -2.04 

-

106

% 

46788 
Pomegran

ates 
15 33 59 26 1.73 44% 

47152 Almonds 14 48 58 10 0.74 18% 

43487 

Corn, 

Sorghum 

and Sudan 

14 43 58 15 1.05 26% 

56601 
Bush 

Berries 
14 38 58 20 1.39 35% 

56338 

Corn, 

Sorghum 

and Sudan 

14 31 57 26 1.91 46% 

43457 Alfalfa 

and 
31 123 57 (66) -2.14 

-

115

% 
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Alfalfa 

Mixtures 

43627 Wheat 21 73 57 (16) -0.77 -28% 

61090 Carrots 16 50 57 7 0.44 13% 

48697 

Alfalfa 

and 

Alfalfa 

Mixtures 

30 110 57 (53) -1.75 -93% 

57185 Almonds 13 58 56 (2) -0.12 -3% 

58052 Tomatoes 30 74 56 (17) -0.56 -30% 

56888 Idle 11 30 56 26 2.45 46% 

60942 Tomatoes 30 64 56 (8) -0.26 -14% 

58050 Tomatoes 30 68 56 (12) -0.41 -22% 

56602 
Bush 

Berries 
14 36 56 20 1.44 36% 

61457 Wheat 19 26 55 29 1.52 53% 

58420 Idle 11 9 55 46 4.25 84% 

57685 Citrus 14 60 55 (5) -0.37 -10% 

54850 Cherries 27 121 55 (66) -2.43 

-

120

% 

45507 Wheat 20 25 54 30 1.51 55% 

45931 

Alfalfa 

and 

Alfalfa 

Mixtures 

31 99 54 (45) -1.45 -82% 

45816 

Potatoes 

and Sweet 

Potatoes 

28 94 54 (40) -1.42 -73% 

58269 Tomatoes 28 29 54 25 0.90 47% 

46591 Alfalfa 

and 
29 117 54 (64) -2.16 

-

118

% 
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Alfalfa 

Mixtures 

54489 

Potatoes 

and Sweet 

Potatoes 

27 49 54 5 0.17 8% 

47315 Almonds 13 39 53 14 1.08 26% 

44390 

Alfalfa 

and 

Alfalfa 

Mixtures 

30 94 53 (40) -1.37 -76% 

52932 Citrus 14 34 53 19 1.35 36% 

60226 Cotton 13 26 53 27 2.08 51% 

57788 
Bush 

Berries 
14 47 53 6 0.44 12% 

61287 Tomatoes 27 60 53 (7) -0.27 -14% 

60781 Tomatoes 27 58 53 (6) -0.21 -11% 

43189 Tomatoes 28 61 52 (9) -0.32 -17% 

45414 

Potatoes 

and Sweet 

Potatoes 

26 44 52 8 0.31 15% 

45578 Citrus 14 26 52 26 1.94 51% 

42836 Idle 10 20 52 32 3.16 62% 

54155 Idle 10 21 52 30 3.14 58% 

46349 

Alfalfa 

and 

Alfalfa 

Mixtures 

28 105 52 (53) -1.89 

-

103

% 

60625 Tomatoes 27 65 52 (14) -0.51 -27% 

42664 Wheat 20 40 52 11 0.57 22% 

58087 Cotton 12 31 51 21 1.66 40% 

42795 Tomatoes 27 57 51 (6) -0.20 -11% 

55296 Citrus 14 22 51 29 2.14 56% 
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60725 Idle 10 21 51 30 3.07 59% 

42639 Peppers 32 72 51 (21) -0.65 -40% 

55010 Grapes 10 24 51 27 2.86 53% 

54506 Citrus 14 54 51 (3) -0.22 -6% 

44419 

Plums, 

Prunes and 

Apricots 

16 33 51 18 1.09 35% 

61627 

Potatoes 

and Sweet 

Potatoes 

26 34 50 16 0.62 32% 

43223 Tomatoes 27 56 50 (6) -0.21 -11% 

59269 

Plums, 

Prunes and 

Apricots 

16 33 50 17 1.08 34% 

59957 Cotton 12 33 50 18 1.43 35% 

61511 Idle 9 6 50 44 4.68 88% 

61218 Tomatoes 25 66 50 (16) -0.63 -32% 

44781 Wheat 19 48 50 1 0.08 3% 

48836 Walnuts 11 45 50 5 0.43 10% 

47507 
Pomegran

ates 
12 29 49 20 1.63 41% 

42979 Apples 18 36 49 13 0.72 27% 

51938 Cherries 27 102 49 (53) -1.98 

-

108

% 

52008 
Bush 

Berries 
13 36 49 13 0.97 27% 

46792 
Pomegran

ates 
13 28 49 21 1.66 42% 

56763 Citrus 13 32 49 17 1.35 35% 

46794 
Pomegran

ates 
12 26 49 23 1.85 47% 
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51850 
Bush 

Berries 
13 19 49 29 2.26 60% 

43849 Cotton 11 32 48 16 1.41 34% 

46143 Tomatoes 25 55 48 (6) -0.26 -13% 

60737 Tomatoes 24 64 48 (16) -0.68 -34% 

58203 Walnuts 10 16 48 32 3.16 67% 

58574 Grapes 9 33 48 14 1.57 30% 

54792 Grapes 9 30 48 18 1.98 37% 

58032 Peppers 29 70 47 (23) -0.78 -48% 

56765 Cherries 25 108 47 (61) -2.45 

-

129

% 

47210 Cherries 26 55 47 (9) -0.34 -19% 

43304 Grapes 9 23 47 24 2.71 52% 

51972 
Bush 

Berries 
12 25 46 21 1.72 45% 

55260 Grapes 9 35 46 12 1.31 25% 

46150 

Corn, 

Sorghum 

and Sudan 

11 36 46 10 0.91 22% 

59974 Idle 9 3 46 43 4.65 93% 

59934 Apples 17 34 46 12 0.68 25% 

45942 Peppers 28 71 46 (26) -0.91 -56% 

58453 

Potatoes 

and Sweet 

Potatoes 

24 56 45 (10) -0.43 -22% 

17930

4 

Pomegran

ates 
12 28 45 18 1.51 39% 

59670 Carrots 13 27 45 18 1.43 40% 

61791 Carrots 13 43 45 2 0.14 4% 

61517 Idle 8 7 45 38 4.52 85% 
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45792 Tomatoes 23 63 44 (19) -0.82 -43% 

42686 Peppers 27 56 44 (12) -0.43 -26% 

61219 Tomatoes 22 56 44 (12) -0.55 -28% 

61682 
Bush 

Berries 
12 16 44 28 2.36 63% 

53074 Citrus 12 42 44 1 0.13 3% 

56545 Idle 8 13 44 31 3.84 70% 

55436 
Pomegran

ates 
11 24 44 20 1.77 45% 

61526 Peppers 26 55 44 (12) -0.44 -26% 

59870 Apples 16 33 43 10 0.62 23% 

59813 Carrots 13 33 43 10 0.79 24% 

61585 Tomatoes 22 57 43 (14) -0.63 -33% 

44209 Cotton 10 34 43 9 0.85 21% 

61681 
Bush 

Berries 
11 13 43 29 2.59 69% 

61527 Peppers 25 56 43 (13) -0.52 -31% 

61680 
Bush 

Berries 
11 16 42 26 2.32 62% 

59273 Wheat 16 51 42 (9) -0.57 -21% 

45944 

Potatoes 

and Sweet 

Potatoes 

22 75 42 (33) -1.50 -77% 

61679 
Bush 

Berries 
11 15 42 27 2.40 64% 

56948 Cherries 20 77 42 (35) -1.74 -84% 

55068 Grapes 8 24 42 18 2.22 42% 

53397 Citrus 11 29 42 13 1.18 31% 

60906 Peppers 25 54 42 (12) -0.47 -29% 
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56397 
Bush 

Berries 
10 31 42 11 1.05 26% 

60341 

Alfalfa 

and 

Alfalfa 

Mixtures 

23 80 42 (39) -1.72 -92% 

43645 Carrots 12 23 42 19 1.52 45% 

55435 
Pomegran

ates 
11 20 42 22 2.09 53% 

56943 Cherries 19 66 41 (25) -1.31 -63% 

43115 Peppers 24 55 41 (14) -0.59 -35% 

61773 Idle 8 7 41 34 4.29 84% 

61528 Peppers 24 58 41 (17) -0.72 -43% 

56002 Citrus 11 37 40 3 0.28 8% 

43114 

Potatoes 

and Sweet 

Potatoes 

20 26 40 15 0.74 36% 

59953 Idle 8 10 40 30 3.74 75% 

58558 Wheat 15 30 40 10 0.68 25% 

59449 

Plums, 

Prunes and 

Apricots 

13 28 40 12 0.95 30% 

60324 Wheat 15 53 40 (13) -0.87 -33% 

61480 

Potatoes 

and Sweet 

Potatoes 

20 32 40 8 0.41 20% 

44350 Cotton 10 29 40 11 1.12 27% 

56136 
Bush 

Berries 
10 26 40 13 1.36 34% 

58068 Idle 8 10 39 29 3.82 73% 

56464 Cherries 20 81 39 (41) -2.04 

-

106

% 
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56498 Citrus 10 32 39 7 0.67 17% 

42740 

Alfalfa 

and 

Alfalfa 

Mixtures 

21 49 39 (10) -0.47 -25% 

52662 Citrus 10 32 39 7 0.65 17% 

55465 Cherries 19 42 39 (4) -0.20 -10% 

53917 Cherries 19 42 38 (3) -0.17 -9% 

60013 Wheat 15 38 38 (0) -0.01 0% 

55998 Citrus 10 39 38 (1) -0.07 -2% 

53444 Cherries 19 83 38 (45) -2.29 

-

117

% 

47661 
Pomegran

ates 
10 24 38 14 1.39 36% 

56575 Cherries 19 75 38 (37) -2.01 -98% 

55392 Cherries 20 79 38 (41) -2.11 

-

109

% 

57364 
Bush 

Berries 
10 41 38 (3) -0.29 -8% 

57487 
Bush 

Berries 
10 40 38 (3) -0.27 -7% 

52715 Cherries 19 90 38 (52) -2.67 

-

138

% 

46140 

Alfalfa 

and 

Alfalfa 

Mixtures 

21 76 38 (38) -1.86 

-

102

% 

53109 Cherries 20 79 38 (42) -2.13 

-

111

% 
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59450 

Plums, 

Prunes and 

Apricots 

12 25 37 12 1.02 33% 

56578 Cherries 18 82 37 (45) -2.49 

-

120

% 

54267 Grapes 7 16 37 22 3.11 58% 

46801 
Pomegran

ates 
10 20 37 17 1.81 46% 

61361 Peppers 23 61 37 (24) -1.04 -65% 

56593 Cherries 18 76 37 (39) -2.17 

-

106

% 

42906 

Corn, 

Sorghum 

and Sudan 

9 32 37 4 0.50 12% 

60601 Idle 7 4 37 33 4.60 89% 

58029 Almonds 9 8 37 28 3.29 78% 

53328 Citrus 10 27 37 10 0.98 26% 

56633 Cherries 18 78 36 (42) -2.35 

-

115

% 

61089 Tomatoes 18 43 36 (7) -0.37 -19% 

56379 Citrus 9 32 36 4 0.43 11% 

50106 Cherries 19 69 36 (33) -1.74 -92% 

47587 Idle 7 12 36 24 3.29 66% 

57674 Citrus 9 39 36 (4) -0.38 -10% 

55281 Citrus 9 31 36 4 0.45 12% 

60777 Cherries 17 30 35 5 0.31 15% 

54912 Grapes 7 16 35 19 2.85 54% 

53211 Citrus 9 36 35 (1) -0.11 -3% 
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52973 
Bush 

Berries 
9 25 34 9 1.00 26% 

43199 

Plums, 

Prunes and 

Apricots 

11 14 34 20 1.77 59% 

57650 Citrus 9 36 34 (1) -0.14 -4% 

52963 
Bush 

Berries 
9 27 34 7 0.83 22% 

60482 Idle 7 7 34 28 4.15 81% 

42604 Peppers 21 67 34 (33) -1.60 -97% 

52964 
Bush 

Berries 
9 28 34 6 0.68 18% 

52962 
Bush 

Berries 
9 25 34 9 0.97 26% 

59979 Wheat 13 36 34 (2) -0.19 -7% 

52975 
Bush 

Berries 
9 25 34 8 0.96 25% 

61662 
Pomegran

ates 
8 15 34 19 2.33 56% 

61498 Cherries 16 61 33 (27) -1.70 -82% 

57695 Citrus 9 32 33 1 0.16 4% 

58121 Peppers 21 48 33 (15) -0.72 -45% 

58116 Cotton 8 21 33 12 1.55 37% 

58071 Almonds 8 17 33 16 2.02 47% 

52965 
Bush 

Berries 
9 26 33 7 0.78 20% 

52957 
Bush 

Berries 
9 26 33 7 0.81 21% 

52968 
Bush 

Berries 
9 24 33 8 0.96 25% 

52966 
Bush 

Berries 
9 29 33 4 0.43 11% 
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44827 

Alfalfa 

and 

Alfalfa 

Mixtures 

17 61 33 (29) -1.64 -88% 

52967 
Bush 

Berries 
9 25 33 7 0.83 22% 

57656 Citrus 8 29 32 3 0.38 10% 

58845 Citrus 8 31 32 1 0.17 4% 

59011 Cherries 16 40 32 (8) -0.47 -23% 

57003 Citrus 8 33 32 (1) -0.07 -2% 

61473 Peppers 19 53 32 (21) -1.11 -65% 

43024 

Potatoes 

and Sweet 

Potatoes 

15 33 32 (2) -0.11 -5% 

58378 Cotton 7 17 32 15 1.99 47% 

45719 Tomatoes 16 35 31 (4) -0.22 -11% 

56230 Wheat 11 21 31 10 0.91 32% 

61263 Carrots 9 21 31 10 1.18 34% 

61487 Citrus 8 11 31 20 2.48 64% 

61459 

Potatoes 

and Sweet 

Potatoes 

15 33 31 (2) -0.12 -6% 

55604 Wheat 11 17 31 13 1.23 44% 

55470 Cherries 15 29 30 1 0.06 3% 

43056 Peppers 18 53 30 (24) -1.35 -80% 

61678 Citrus 8 16 30 13 1.70 45% 

52969 
Bush 

Berries 
8 24 30 6 0.74 20% 

54507 Cherries 16 54 30 (24) -1.52 -81% 

45994 

Potatoes 

and Sweet 

Potatoes 

15 30 29 (1) -0.06 -3% 



298 

 

50139 Almonds 7 25 29 4 0.54 13% 

48719 Citrus 8 13 29 17 2.13 57% 

61884 Idle 6 10 29 19 3.37 66% 

42540 

Alfalfa 

and 

Alfalfa 

Mixtures 

16 58 29 (29) -1.83 

-

101

% 

60989 Tomatoes 16 28 29 0 0.02 1% 

59895 Citrus 8 12 29 17 2.17 58% 

52958 
Bush 

Berries 
7 22 28 6 0.80 21% 

45420 

Alfalfa 

and 

Alfalfa 

Mixtures 

15 39 28 (11) -0.71 -39% 

59143 Grapes 5 17 28 11 2.12 41% 

51872 
Bush 

Berries 
7 13 28 15 2.06 55% 

51434 
Pomegran

ates 
7 13 28 14 2.03 52% 

46785 
Pomegran

ates 
7 16 28 12 1.65 42% 

54750 Cherries 14 30 27 (2) -0.15 -8% 

46406 Wheat 10 28 27 (0) -0.03 -1% 

57913 Peppers 17 46 27 (19) -1.10 -68% 

53905 Grapes 5 12 27 15 2.96 54% 

59632 Carrots 8 16 27 11 1.38 41% 

61405 Peppers 16 49 27 (22) -1.40 -83% 

61020 Peppers 17 35 27 (8) -0.48 -30% 

54449 Grapes 5 11 27 16 3.26 60% 

59559 Peppers 16 40 27 (13) -0.84 -50% 
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45720 Peppers 16 40 27 (14) -0.85 -52% 

58030 Peppers 16 44 26 (17) -1.06 -65% 

61192 Peppers 16 43 26 (17) -1.01 -63% 

42637 Peppers 16 34 26 (8) -0.49 -31% 

58130 Peppers 16 38 26 (12) -0.74 -46% 

44263 

Alfalfa 

and 

Alfalfa 

Mixtures 

14 49 26 (23) -1.63 -87% 

45321 Idle 5 7 26 19 3.98 74% 

42611 Peppers 16 34 26 (8) -0.49 -30% 

52149 Apples 10 32 26 (6) -0.64 -24% 

55592 Cherries 13 28 26 (2) -0.15 -7% 

61358 Peppers 16 42 25 (16) -1.04 -65% 

52148 Apples 9 31 25 (6) -0.67 -25% 

56951 Cherries 12 33 25 (9) -0.72 -34% 

52263 Apples 9 30 25 (6) -0.62 -23% 

55657 Cherries 12 20 25 5 0.37 18% 

55699 Cherries 12 27 25 (3) -0.22 -11% 

52152 Apples 9 28 25 (4) -0.41 -15% 

58377 Cotton 6 15 25 10 1.67 39% 

51793 Citrus 6 24 24 (0) -0.05 -1% 

45490 

Potatoes 

and Sweet 

Potatoes 

12 24 24 (0) -0.02 -1% 

53244 Cherries 12 36 23 (13) -1.07 -55% 

61362 Peppers 15 34 23 (11) -0.74 -46% 

53335 Citrus 6 16 23 7 1.13 30% 
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52970 
Bush 

Berries 
6 17 23 5 0.90 24% 

55393 Cherries 12 52 23 (29) -2.44 

-

126

% 

55601 Cherries 11 23 23 (0) -0.03 -2% 

56842 Citrus 6 17 22 5 0.95 25% 

59869 Apples 8 17 22 5 0.57 21% 

59019 Cherries 11 27 22 (6) -0.51 -26% 

59018 Cherries 11 25 22 (4) -0.32 -16% 

52974 
Bush 

Berries 
6 16 21 6 1.01 26% 

60485 Idle 4 6 21 16 3.77 73% 

55602 Cherries 11 23 21 (2) -0.20 -10% 

58557 Cherries 11 26 21 (5) -0.46 -23% 

56877 Peppers 13 40 21 (19) -1.48 -89% 

59073 Citrus 5 22 21 (1) -0.20 -5% 

52980 Citrus 5 21 21 (0) -0.05 -1% 

59534 Peppers 13 33 21 (12) -0.96 -60% 

51675 Grapes 4 9 20 12 3.04 57% 

57916 Cotton 5 13 20 7 1.47 36% 

59558 Peppers 12 26 20 (5) -0.45 -27% 

61178 Tomatoes 11 24 20 (3) -0.32 -17% 

58379 Wheat 7 19 20 1 0.16 6% 

57765 
Bush 

Berries 
5 17 20 3 0.50 13% 

51568 
Bush 

Berries 
5 11 20 9 1.70 45% 
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57914 

Potatoes 

and Sweet 

Potatoes 

10 29 20 (9) -0.86 -45% 

58153 Wheat 8 23 20 (3) -0.45 -17% 

57679 
Bush 

Berries 
5 17 19 1 0.30 8% 

60551 Peppers 11 26 19 (8) -0.70 -41% 

57012 Grapes 3 11 19 8 2.20 41% 

55463 Wheat 6 13 18 5 0.75 27% 

57218 Citrus 5 15 18 3 0.73 19% 

42586 Peppers 11 33 18 (15) -1.34 -83% 

61639 Idle 3 7 18 11 3.18 61% 

56910 Walnuts 4 8 18 9 2.27 52% 

61655 Idle 3 6 17 11 3.37 65% 

57881 Peppers 11 30 17 (13) -1.23 -76% 

56606 
Bush 

Berries 
4 8 17 9 2.07 52% 

52971 
Bush 

Berries 
4 12 17 5 1.20 32% 

44698 Cherries 9 15 17 1 0.15 8% 

44683 Cherries 9 18 17 (1) -0.11 -6% 

50117 Cherries 9 32 17 (15) -1.71 -91% 

52972 
Bush 

Berries 
4 12 17 4 1.01 26% 

52170 Almonds 4 15 17 1 0.34 8% 

53075 Citrus 4 13 17 4 0.89 24% 

56944 Cherries 8 22 17 (6) -0.70 -34% 

46462 Wheat 6 11 16 5 0.81 30% 

42532 Peppers 10 26 16 (10) -0.92 -58% 
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47768 
Strawberri

es 
4 7 16 10 2.19 58% 

58166 Peppers 10 34 16 (18) -1.85 

-

113

% 

58886 Citrus 4 16 16 (0) -0.02 0% 

51852 
Pomegran

ates 
4 6 16 10 2.52 65% 

58167 Peppers 10 32 16 (16) -1.65 

-

101

% 

56914 Walnuts 4 8 16 8 2.19 50% 

58080 Peppers 10 22 16 (7) -0.73 -45% 

58448 

Alfalfa 

and 

Alfalfa 

Mixtures 

8 36 15 (20) -2.42 

-

132

% 

61484 Walnuts 3 11 15 4 1.18 26% 

61472 Peppers 9 22 15 (6) -0.71 -42% 

53798 Grapes 3 8 15 7 2.42 45% 

42935 

Potatoes 

and Sweet 

Potatoes 

7 9 15 6 0.79 39% 

54685 Grapes 3 7 15 8 3.03 55% 

58459 

Alfalfa 

and 

Alfalfa 

Mixtures 

8 28 15 (13) -1.59 -87% 

61481 Cherries 7 16 15 (1) -0.09 -4% 

58168 Peppers 9 22 15 (7) -0.77 -47% 

61500 Cherries 7 20 15 (5) -0.70 -34% 

45099 Wheat 5 12 15 3 0.53 20% 

58465 Peppers 9 22 14 (8) -0.90 -57% 
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43209 Peppers 9 21 14 (7) -0.79 -50% 

61080 

Potatoes 

and Sweet 

Potatoes 

7 14 14 (0) -0.02 -1% 

58972 Citrus 4 15 14 (1) -0.19 -5% 

56983 Idle 3 2 14 12 4.45 84% 

60776 Cherries 7 14 14 0 0.04 2% 

61637 Carrots 4 8 14 5 1.40 39% 

56891 Peppers 8 23 14 (10) -1.21 -73% 

61730 Tomatoes 7 17 13 (4) -0.57 -31% 

58081 Peppers 8 19 13 (6) -0.69 -42% 

58522 Peppers 8 18 13 (5) -0.63 -40% 

56631 
Bush 

Berries 
3 9 13 4 1.18 30% 

48558 

Alfalfa 

and 

Alfalfa 

Mixtures 

7 28 13 (14) -2.02 

-

111

% 

44820 Peppers 8 17 13 (4) -0.54 -33% 

56605 
Bush 

Berries 
3 7 13 6 1.92 48% 

61502 Cherries 6 20 13 (7) -1.20 -58% 

43224 Peppers 8 19 13 (6) -0.73 -46% 

58223 Walnuts 3 6 13 7 2.45 52% 

56875 Peppers 7 19 12 (7) -0.90 -54% 

58366 

Plums, 

Prunes and 

Apricots 

4 11 12 1 0.35 11% 

55462 Wheat 4 9 12 3 0.80 28% 

60036 Idle 2 3 12 10 4.23 79% 

59020 Cherries 6 14 12 (2) -0.38 -19% 
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58400 Cotton 3 7 12 5 1.74 42% 

59873 Apples 4 6 12 6 1.35 50% 

55705 
Bush 

Berries 
3 11 12 0 0.12 3% 

59874 Apples 4 6 12 6 1.31 49% 

59872 Apples 4 6 12 6 1.39 52% 

60975 Peppers 7 18 12 (6) -0.84 -52% 

60976 Peppers 7 16 12 (5) -0.65 -40% 

52771 Cherries 6 19 11 (7) -1.23 -65% 

53271 Cherries 6 18 11 (7) -1.11 -57% 

59871 Apples 4 6 11 5 1.28 47% 

59274 Grapes 2 6 11 6 2.56 49% 

61710 
Strawberri

es 
3 5 11 6 2.03 54% 

60773 Cherries 6 11 11 1 0.09 5% 

61474 Peppers 7 14 11 (3) -0.50 -29% 

43793 

Alfalfa 

and 

Alfalfa 

Mixtures 

6 20 11 (9) -1.57 -85% 

54129 Cherries 5 14 11 (3) -0.67 -33% 

56878 Peppers 6 19 11 (8) -1.25 -75% 

58170 Peppers 6 13 10 (2) -0.36 -22% 

58255 

Potatoes 

and Sweet 

Potatoes 

5 13 10 (3) -0.53 -28% 

57962 Cotton 2 7 10 4 1.50 36% 

59690 Peppers 6 15 10 (5) -0.80 -51% 

52009 
Bush 

Berries 
3  10 

#VALUE

! 

#VALUE

! 

#VA

LUE! 
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58169 Peppers 6 12 10 (2) -0.39 -24% 

56386 Cherries 5 11 10 (1) -0.16 -8% 

54035 Grapes 2 5 10 4 2.51 46% 

58083 Peppers 6 12 10 (2) -0.41 -25% 

60067 Idle 2 3 10 7 3.65 71% 

44586 Peppers 6 12 9 (2) -0.43 -26% 

58164 Peppers 6 13 9 (3) -0.55 -34% 

56632 
Bush 

Berries 
2 6 9 3 1.36 34% 

61757 Idle 2 2 9 7 3.77 73% 

60004 

Alfalfa 

and 

Alfalfa 

Mixtures 

5 11 9 (2) -0.32 -18% 

58538 Tomatoes 4 10 9 (1) -0.27 -14% 

44041 Cotton 2 4 9 4 2.14 51% 

59508 
Strawberri

es 
2 4 9 4 1.82 49% 

45163 
Bush 

Berries 
2 5 9 3 1.52 38% 

53909 
Pomegran

ates 
2 5 8 3 1.77 42% 

44324 

Alfalfa 

and 

Alfalfa 

Mixtures 

5 13 8 (5) -1.04 -59% 

56947 Cherries 4 11 8 (3) -0.66 -32% 

61483 Walnuts 2 5 8 3 1.81 40% 

56876 Peppers 5 12 8 (5) -1.02 -62% 

56630 
Bush 

Berries 
2 5 7 2 1.21 31% 

60017 Walnuts 2 4 7 3 1.95 45% 
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60504 Peppers 4 8 7 (1) -0.24 -15% 

54248 Cherries 3 11 6 (5) -1.52 -81% 

60899 Peppers 4 8 6 (2) -0.51 -31% 

35559 Citrus 1 4 5 1 0.52 13% 

61632 Tomatoes 2 5 5 (0) -0.12 -6% 

61633 Tomatoes 2 5 4 (1) -0.41 -21% 

35647 Idle 1 2 4 2 2.89 58% 

35680 Carrots 1 3 4 1 0.90 26% 

60552 Peppers 2 5 4 (1) -0.27 -16% 

35623 

Corn, 

Sorghum 

and Sudan 

1 2 4 2 1.90 46% 

54554 Cherries 2 8 4 (4) -2.16 

-

113

% 

35607 

Plums, 

Prunes and 

Apricots 

1 4 4 (0) -0.11 -4% 

56949 Cherries 2 5 3 (1) -0.86 -41% 

35677 

Plums, 

Prunes and 

Apricots 

1 3 3 0 0.46 15% 

17939

9 
Apples 1 3 3 (0) 0.00 0% 

35605 Almonds 1 2 3 1 1.52 34% 

56582 Cherries 2 5 3 (2) -1.00 -49% 

54280 Cherries 2 7 3 (4) -2.25 

-

118

% 

35587 
Bush 

Berries 
1 2 3 1 1.34 34% 

35717 Cherries 1 4 3 (1) -0.66 -32% 
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35541 Cherries 1 5 3 (2) -1.64 -86% 

35732 
Strawberri

es 
1 1 3 2 2.41 64% 

17940

0 
Apples 1 2 2 0 0.28 10% 

35528 
Bush 

Berries 
1 1 2 1 1.67 44% 

35478 
Strawberri

es 
0  2 

#VALUE

! 

#VALUE

! 

#VA

LUE! 

35718 Cherries 1 2 2 (1) -0.66 -32% 

35738 Grapes 0  2 
#VALUE

! 

#VALUE

! 

#VA

LUE! 

35564 Cherries 1 3 2 (2) -2.02 -97% 

SI Table 28. Summary of  WAFR derived CWR and OpenET derived ET along with value 

differences, normalized difference, and percent difference.   
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APPENDIX F. CHAPTER 4 SUPPLEMENTARY INFO 

 

  

SI Figure 48. Specific crop misclassification for corn in 2016 datasets.  



309 

 

 

 

SI Figure 49. Specific crop misclassification for fallow in 2016 datasets. 
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SI Figure 50. Specific crop misclassification for grains in 2016 datasets. 
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SI Figure 51. Specific crop misclassification for pistachios in 2016 datasets. 
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FAO 

Crop 

Category 

Reconciled Crop 

Category 

Kenr Ag 

 Crop Type 

LIQ  

 Crop Type 

CropScape 

Crop Type 

C
er

ea
ls

 

Grains 

Wheat 

Sorghum Milo 

Oat For/Fod 

Wheat For/Fod 

Sorghum For/Fod 

Barley 

Oat 

Barley For/Fod 

Ryegrass For/Fod 

Rye 

Vetch 

Triticale 

Wheat 

Miscellaneous 

Grain and Hay 

Rice 

Barley 

Durum Wheat 

Winter Wheat 

Rye 

Oats 

Other 

Hay/Non-

Alfalfa 

Triticale 

Vetch 

Dbl Crop 

WinWht/Corn 

Dbl Crop 

Oats/Corn 

Dbl Crop 

Durum 

Wht/Sorghum 

Dbl Crop 

Barley/Sorghu

m 

Dbl Crop 

WinWht/Sorgh

um 

Dbl Crop 

Barley/Corn 

Dbl Crop 

WinWht/Cotto

n 

V
eg

et
a
b

le
s 

Carrots 
Carrot 

Carrot Seed 

Carrots Carrots 

Garlic and Onion 

Garlic 

Onion Dry Etc. 

Onion Seed 

Onion Green 

 

Onions and 

Garlic 

Garlic 

Onions 

 

Lettuce and 

Greens 

Lettuce Leaf Sd 

Cabbage 

Cabbage Seed 

Lettuce Head 

Swiss Chard 

Kale 

Collard 

Arugula 

Leek 

Lettuce/Leafy 

Greens 

Greens 

Lettuce 
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Lettuce Leaf 

Peppers 
Pepper Fruitng 

Pepper Spice 
Peppers Peppers 

Tomatoes 
Tomato Process 

Tomato 
Tomatoes Tomatoes 

Other Vegetables 

Watermelon 

Beets, Red 

Beet 

Turnip 

Eggplant 

Squash, Winter 

Squash 

Broccoli 

Broccoli Seed 

Gai Lon Tght Hd 

Asparagus 

Pumpkin 

Cantaloupe 

Honeydew Melon 

Napa Cbg Tght H 

Melon 

Musk Melon 

Bok Choy Lse Lf 

Celery 

Cilantro 

Radish 

Cauliflower 

Sugarcane 

Cucumber 

Chive 

Bean Succulent 

Bean Dried 

Garbanzo Bean 

Melons, Squash, 

and Cucumbers 

Beans (Dry) 

Peas 

Watermelons 

Misc Vegs & 

Fruits 

Sugarbeets 

Asparagus 

Broccoli 

Dry Beans 

Fruit 

Apples 

 

Apple Apples Apples 

Bush Berries 

Blueberry 

Blackberry 

Fruit, Berry 

Boysenberry 

Bush Berries Blueberries 

Grapes 

Grape 

Grape, Wine 

Grape, Raisin 

Grapes Grapes 

Plum Plum 
Plums, Prunes, 

Apricots 
Plums 

Pomegranate Pomegranate Pomegranates Pomegranates 

Strawberries Strawberry Strawberries Strawberries 

Citrus 

Orange 

Tangelo 

Grapefruit 

Tangerine/Sdls 

Tangerine 

Lemon 

Citrus 
Oranges 

Citrus 
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Pomelo 

Cherries Cherry Cherries Cherries 

Other Fruit 

Nectarine 

Peach 

Persimmon 

Apricot 

Pear 

Avocado 

Kiwi 

Fig 

Prune 

Kumquat 

Peaches/Nectari

nes 

Pears 

Kiwis 

Miscellaneous 

Subtropical 

Fruits 

Avocados 

Olives 

Nectarines 

Apricots 

Olives 

Root 

Crops 
Potatoes 

Potato 

Sweet Potato 

Yam 

Potatoes and 

Sweet Potatoes 

Potatoes 

Spices Safflower 

Parsley 

Dill 

Parsnip 

Safflower 

Herbs 

Clover/Wildflo

wers 

Safflower 

O
th

er
 C

ro
p

s 

Alfalfa 
Alfalfa 

Alfalfa and 

Alfalfa Mixtures 
Alfalfa 

Cotton 
Cotton Cotton 

Cotton 

Grasses 

 

Sudangrass 

Pastureland 

Turf/Sod 

Miscellaneous 

Grasses 

Sorghum 

Sod/Grass Seed 

Corn 

Corn For/Fod 

Corn, Sweet 

Corn, Grain 

Corn, Sorghum, 

and Sudan 
Corn 

Other Crops 

N-Outdr Plants 

Op-Rose 

Op-Vine 

N-Grnhs Plants 

Op-Palm 

Op- Chrstmas Tree 

OP-Dec. Tree 

Dandelion Green 

Rutabaga 

Op-Flwring Plant 

Mustard 

Pecans 

Miscellaneous 

Truck Crops 

Flower, 

Nursery, and 

Christmas Tree 

Farms 

Young 

Perennials 

Miscellaneous 

Field Crops 

Other Crops 

Other Tree 

Crops 

Pecans 

Sunflower 

Nuts 

Pistachio 
Pistachio Pistachios Pistachios 

Walnuts Walnut Walnuts Walnuts 

Almonds Almond Almonds Almonds 

Idle Fallow 
Uncultivated Ag Idle 

Fallow/Idle 

Cropland 
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SI Table 29. Kern County Ag. Commission, Land IQ, and CropScape (USDA NASS CDL) crop 

types associated with FAO and the Reconciled crop categories for 2014 and 2016 land use 

classifications. 

 

Study 

Category 
Crop 

Production 

Per Acre 
Unit 

Unit Value 

(USD) 

Report Crop 

Name 
Source 

Alfalfa Alfalfa 8 Ton 247 Hay-Alfalfa 

Kern County 

Crop Report 

2014 

Almonds Almonds 1 Ton 7,125 Almonds 

Kern County 

Crop Report 

2014 

Apples Apples 14 Ton 575 Apples 

USDA CA 

Crop 2014, 

statewide 

Bushberri

es 
Bushberries 7 Ton 5,300 Blueberries 

Kern County 

Crop Report 

2014 

Carrots Carrots 35 Ton 289 
Carrots, 

unspecified 

USDA CA 

Crop 2014, 

statewide 

Cherries Cherries 1 Ton 6,840 Cherries 

Kern County 

Crop Report 

2014 

Citrus Citrus 10 Ton 942 

Kern County 

Crop Report 

2014 

Kern County 

Crop Report 

2014 

Corn Corn 26 Ton 61 Corn Silage 

USDA CA 

Crop 2014, 

statewide 

Cotton Cotton 1,640 

Pounds 

Per 

Acre 

2 
Cotton Lint-

Pima 

Kern County 

Crop Report 

2014 

Fallow Fallow - Ton -   

Garlic 

Onion 

Onions, 

Fresh 
22 Ton 246 

Onions, 

Fresh 

Kern County 

Crop Report 

2014 

Grains Grains 5 Ton 212 Hay-Grain 

Kern County 

Crop Report 

2014 

Grapes Grapes 13 Ton 2,070 

Table 

Variety- 

Fresh 

Market 

Kern County 

Crop Report 

2014 

Grasses 
Silage & 

Forage 
19 Ton 50 

Silage and 

Forage 

Kern County 

Crop Report 

2014 

Lettuce 

Greens 

Lettuce 

Greens 
17 Ton 694 

Lettuce, 

Head 

USDA CA 

Crop 2014, 

Kern 

Non-Ag Non-Ag - Ton -   
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Other 

Crops 
Other Crops 4 Ton 179 

Field Crops, 

Misc. 

Kern County 

Crop Report 

2014 

Other 

Fruit 
Other Fruit 6 Ton 1,322 

Fruit and 

Nuts, Misc 

Kern County 

Crop Report 

2014 

Other 

Vegetable

s 

Other 

veggies 
36 Ton 326 

Vegetable 

Crops, Misc. 

Kern County 

Crop Report 

2014 

Peppers Peppers 22 Ton 1,620 
Peppers, 

Bell 

Kern County 

Crop Report 

2014 

Pistachios Pistachios 1 Ton 5,020 Pistachios 

Kern County 

Crop Report 

2014 

Plums Plums 9 Ton 1,220 Plums 

Kern County 

Crop Report 

2014 

Pomegran

ate 

Pomegranat

e 
5 Ton 1,024 

Pomegranat

es 

USDA CA 

Crop 2014, 

statewide 

Potato Potato 28 Ton 256 

Potatoes, 

Spring, 

Fresh 

Market 

Kern County 

Crop Report 

2014 

Safflower Safflower 1 Ton 501 Safflower 

USDA CA 

Crop 2014, 

statewide 

Strawberri

es 
Strawberries 33 Ton 1,947 

Berries, 

strawberries, 

fresh market 

USDA CA 

Crop 2014, 

statewide 

Tomatoes Tomatoes 53 Ton 90 
Tomatoes 

Processed 

Kern County 

Crop Report 

2014 

Walnuts Walnuts 1 Ton 3,390 Walnuts 

Kern County 

Crop Report 

2014 

SI Table 30. Values used to derive crop revenue for 2014 datasets. Note: Main source for crop 

revenue values is the Kern County Crop Report 2014 provided by the Kern County Agricultural 

Commission. USDA California 2014 crop revenue dataset is used to supplement any categories 

that may be missing or reconciled in broader crop categories in the Kern County Crop Report 

(see Source and Notes section of the table for more details). 

 

Study 

Category 
Crop 

Production 

Per Acre 
Unit 

Unit Value 

(USD) 

Report Crop 

Name 
Source 

Alfalfa Alfalfa 7 Ton 153 Hay, Alfalfa 

Kern County 

Crop Report 

2016 

Almonds Almonds 1 Ton 4,920 Almonds 

Kern County 

Crop Report 

2016 
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Apples Apples 2 Ton 900 Apples 

Kern County 

Crop Report 

2016 

Bushberries Bushberries 5 Ton 7,380 Blueberries 

Kern County 

Crop Report 

2016 

Carrots Carrots 29 Ton 380 

Carrots, 

Unspecified, 

statewide 

USDA CA 

Crop Report 

2016 

Cherries Cherries 6 Ton 3,810 Cherries 

Kern County 

Crop Report 

2016 

Citrus Citrus 14 Ton 725 
Navel 

Oranges 

Kern County 

Crop Report 

2016 

Corn Corn 26 Ton 41 
Corn Silage, 

statewide 

USDA CA 

Crop Report 

2016 

Cotton Cotton 1,580 

Pound 

per 

Acre 

1 
Cotton Lint, 

Pima 

Kern County 

Crop Report 

2016 

Fallow Fallow - NA -   

Garlic 

Onion 
Garlic 8 Ton 1,460 

Garlic, Fresh 

and 

Processing 

Kern County 

Crop Report 

2016 

Grains Grains 4 Ton 140 Hay, Grain 

Kern County 

Crop Report 

2016 

Grapes Grapes 12 Ton 2,230 
Table Variety 

Fresh Market 

Kern County 

Crop Report 

2016 

Grasses 
Silage and 

Forage 
19 Ton 46 

Silage and 

Forage 

Kern County 

Crop Report 

2016 

Lettuce 

Greens 

Lettuce 

Greens 
20 Ton 470 Lettuce Head 

Kern County 

Crop Report 

2016 

Non-Ag Non-Ag - NA -   

Other Crops Other Crops 8 Ton 128 
Field Crops, 

Misc 

Kern County 

Crop Report 

2016 

Other Fruit Other fruit 15 Ton 880 
Fruit & Nuts, 

Misc 

Kern County 

Crop Report 

2016 

Other 

Vegetables 

Other 

vegetables 
24 Ton 467 

Vegetable 

Crop, Misc. 

Kern County 

Crop Report 

2016 

Peppers Peppers 21 Ton 970 Peppers, Bell 

Kern County 

Crop Report 

2016 

Pistachios Pistachios 2 Ton 4,320 Pistachios 

Kern County 

Crop Report 

2016 
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Plums Plums 9 Ton 1,410 
Plums, 

statewide 

USDA CA 

Crop Report 

2016 

Pomegranate Pomegranate 12 Ton 663 
Pomegranates, 

statewide 

USDA CA 

Crop Report 

2016 

Potato Potato 26 Ton 213 

Potatoes, 

Spring, 

Processing 

Kern County 

Crop Report 

2016 

Safflower Safflower 1 Ton 441 
Safflower, 

statewide 

USDA CA 

Crop Report 

2016 

Strawberries Strawberries 35 Ton 2,067 

Berries, 

strawberries, 

fresh market 

USDA CA 

Crop Report 

2016 

Tomatoes Tomatoes 46 Ton 73 
Tomatoes, 

Processed 

Kern County 

Crop Report 

2016 

SI Table 31. Values used to derive crop revenue for 2016 datasets. Note: Main source for crop 

revenue values is the Kern County Crop Report 2014 provided by the Kern County Agricultural 

Commission. USDA California 2016 crop revenue dataset is used to supplement any categories 

that may be missing or reconciled in broader crop categories in the Kern County Crop Report (see 

Source and Notes section of the table for more details). 

 

Study 

Category 

LIQ 

Category 

LIQ 

CWR 

(ML/Ha) 

Kern Ag 

Category 

Kern 

CWR 

(ML/Ha) 

CropScape 

Category 

CropScape 

CWR 

(ML/Ha) 

Alfalfa 

Alfalfa and 

Alfalfa 

Mixtures 

16.2 Alfalfa 15.9 Alfalfa 15.7 

Almonds Almonds 11.5 Almond 11.5 Almonds 11.7 

Apples Apples 12.8 Apple 12.7 Apples 12.9 

Bushberries NA 0.0 Blueberry 4.4 Blueberries 12.5 

Carrots Carrots 4.3 Carrot 5.4 Carrots 4.4 

Cherries Cherries 11.7 Cherry 11.7 Cherries 12.1 

Citrus Citrus 16.6 Orange 16.7 Citrus 16.3 

Corn 

Corn, 

Sorghum and 

Sudan 

5.7 
Corn 

For/Fod 
9.6 Corn 5.9 

Cotton Cotton 7.8 Cotton 7.8 Cotton 8.0 

Fallow Idle 11.3 
Uncultivated 

Ag 
8.1 

Fallow/Idle 

Cropland 
9.4 

Garlic 

Onion 

Onions and 

Garlic 
13.6 Garlic 7.4 Garlic 8.2 

Grains Wheat 5.1 Wheat 5.9 
Winter 

Wheat 
5.4 

Grapes Grapes 12.1 Grape 12.2 Grapes 12.2 

Grasses NA 0.0 
Sorghum 

For/Fod 
12.5 Grass/Pasture 12.4 
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Lettuce 

Greens 

Lettuce/Leafy 

Greens 
6.2 

Lettuce 

Head 
9.0 Lettuce 5.9 

Non-Ag NA 0.0 NA 0.0 NA 0.0 

Other 

Crops* 

Other Crops 

Avg. 
9.7 

Other Crops 

Avg. 
8.6 

Other Crops 

Avg. 
12.3 

Other Fruit* 
Other Fruit 

Avg. 
14.9 

Other Fruit 

Avg. 
14.2 

Other Fruit 

Avg. 
13.1 

Other 

Vegetables* 

Other 

Vegetables 

Avg. 

8.4 

Other 

Vegetables 

Avg. 

8.5 

Other 

Vegetables 

Avg. 

8.9 

Peppers Peppers 10.8 
Pepper 

Fruitng 
10.7 Peppers 10.4 

Pistachios Pistachios 13.0 Pistachio 13.0 Pistachios 12.9 

Plums 

Plums, 

Prunes and 

Apricots 

12.1 Plum 12.1 Plums 11.6 

Pomegranate Pomegranates 4.2 Pomegranate 4.2 Pomegranates 5.0 

Potato 

Potatoes and 

Sweet 

Potatoes 

8.4 Potato 7.2 Potatoes 8.3 

Safflower Safflower 6.1 Safflower 6.1 Safflower 6.5 

Strawberries Strawberries 5.9 Strawberry 5.7 Strawberries 12.6 

Tomatoes Tomatoes 8.0 
Tomato 

Process 
8.2 Tomatoes 8.3 

Walnuts Walnuts 12.4 Walnut 12.4 Walnuts 12.2 

SI Table 32. The 2014 crop water requirement (CWR) values used per crop within each dataset to 

derive CWR implications. Note: Each raster dataset was run through WAFR model to obtain 

CWR tailored to dataset (i.e., LIQ, Kern Ag, CropScape). Values in asterisk are general crop 

categories that were derived by taking the average of CWR values available for the components 

of that category. 

 

Dataset 
General 

Category 
Category Components 

CWR 

(AF) 

CWR  

(ML) 

L
IQ

 

Other Crops  

Miscellaneous Truck Crops 3.3 4.0 

Flower, Nursery, and Christmas Tree Farms   

Young Perennials 3.1 3.8 

Miscellaneous Field Crops   

Other Fruit  

Peaches/Nectarines 5.6 6.9 

Pears   

Kiwis   

Miscellaneous Subtropical Fruits   

Avocados   

Olives 4.2 5.1 

Other 

Vegetables  

Melons, Squash, and Cucumbers 3.9 4.8 

Beans (Dry) 1.6 2.0 

K
er

n
  

A
g
 Other 

Vegetables  

Watermelon 3.7 4.6 

Beets, Red   

Beet 1.7 2.1 

Turnip 2.1 2.6 
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Eggplant   

Squash, Winter   

Squash 4.0 4.9 

Broccoli 1.8 2.2 

Broccoli Seed 4.6 5.6 

Gai Lon Tght Hd   

Asparagus 3.7 4.6 

Pumpkin   

Cantaloupe   

Honeydew Melon 4.0 4.9 

Napa Cbg Tght H   

Melon 1.8 2.2 

Musk Melon   

Bok Choy Lse Lf   

Celery   

Cilantro   

Radish   

Cauliflower 1.6 2.0 

Sugarcane   

Cucumber 4.0 4.9 

Chive   

Bean Succulent 1.4 1.8 

Bean Dried 1.6 2.0 

Garbanzo Bean   

Other Fruit  

Nectarine 5.7 7.0 

Peach 4.3 5.2 

Persimmon 4.1 5.0 

Apricot   

Pear   

Avocado   

Kiwi   

Fig   

Prune   

Kumquat   

Other Crops  

N-Outdr Plants 2.8 3.4 

Op-Rose 1.7 2.1 

Op-Vine   

N-Grnhs Plants   

Op-Palm   

Op- Chrstmas Tree   

OP-Dec. Tree 3.7 4.6 

Dandelion Green 1.8 2.2 

Rutabaga 1.4 1.8 

Op-Flwring Plant 3.7 4.5 

Mustard 4.6 5.7 

Pecans   

C
ro

p
S

ca
p
e 

Other Crops  

Other Crops 3.2 4.0 

Other Tree Crops 4.8 6.0 

Pecans   

Sunflower   
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Other Fruit  

Nectarines 4.9 6.1 

Apricots 3.8 4.7 

Olives 4.1 5.1 

Other 

Vegetables  

Peas 1.3 1.7 

Watermelons 4.0 5.0 

Misc Vegs & Fruits 3.4 4.1 

Sugarbeets 3.7 4.5 

Asparagus 4.8 5.9 

Broccoli 1.7 2.1 

Dry Beans 1.6 2.0 

SI Table 33. Crop water use (CWR) of specific crops that were averaged to derive the CWR for 

the general category in 2014 datasets. 
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Study 

Category 
LIQ Category 

LIQ 

CWR 

(ML/Ha) 

Kern Ag 

Category 

Kern 

CWR 

(ML/Ha) 

CropScape 

Category 

CropScape 

CWR 

(ML/Ha) 

Alfalfa 

Alfalfa and 

Alfalfa 

Mixtures 

15.63 Alfalfa 15.43 Alfalfa 14.71 

Almonds Almonds 11.41 Almond 11.40 Almonds 11.53 

Apples Apples 12.57 Apple 12.65 Apples 12.71 

Bushberries NA 0.00 Blueberry 4.64 Blueberries 13.73 

Carrots Carrots 3.93 Carrot 5.50 Carrots 4.21 

Cherries Cherries 11.74 Cherry 11.52 Cherries 11.43 

Citrus Citrus 16.07 Orange 16.16 Citrus 15.54 

Corn 

Corn, 

Sorghum and 

Sudan 

5.69 
Corn 

For/Fod 
10.43 Corn 6.09 

Cotton Cotton 7.90 Cotton 7.92 Cotton 7.98 

Fallow NA 0.00 
Uncultivated 

Ag 
8.14 

Fallow/Idle 

Cropland 
9.19 

Garlic 

Onion 

Onions and 

Garlic 
13.41 Garlic 8.16 Garlic 7.66 

Grains Wheat 4.62 
Wheat 

For/Fod 
11.29 

Winter 

Wheat 
5.08 

Grapes Grapes 12.09 Grape 12.15 Grapes 12.17 

Grasses NA 0.00 Sudangrass 14.19 Sorghum 9.64 

Lettuce 

Greens 

Lettuce/Leafy 

Greens 
5.91 

Lettuce 

Head 
5.12 Lettuce 6.65 

Non-Ag NA 0.00 NA 0.00 NA 0.00 

Other 

Crops* 

Other 

CropsAvg 
9.61 

Other Crops 

Avg 
4.02 

Other Crops 

Avg 
11.42 

Other Fruit* 
Other 

FruitAvg 
14.38 

Other Fruit 

Avg 
12.97 

Other Fruit 

Avg 
14.29 

Other* 

Vegetables 

Other 

VegetablesAvg 
8.39 

Other 

Vegetables 

Avg 

7.86 

Other 

Vegetables 

Avg 

7.53 

Peppers Peppers 10.54 
Pepper 

Fruitng 
10.89 Peppers 10.57 

Pistachios Pistachios 12.94 Pistachio 12.88 Pistachios 12.83 

Plums 
Plums, Prunes 

and Apricots 
11.76 Plum 12.67 Plums 11.44 

Pomegranate Pomegranates 4.20 Pomegranate 4.25 Pomegranates 4.57 

Potato 
Potatoes and 

Sweet Potatoes 
8.37 Potato 6.69 Potatoes 8.26 

Safflower Safflower 5.75 Safflower 5.79 Safflower 5.76 

Strawberries Strawberries 5.68 Strawberry 5.76 NA 0.00 

Tomatoes Tomatoes 7.95 
Tomato 

Process 
7.91 Tomatoes 8.18 

Walnuts Walnuts 12.20 Walnut 12.12 Walnuts 12.13 
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SI Table 34. . The 2016 crop water use (CWR) values used per crop within each dataset to derive 

CWR implications. Note: Each raster dataset was run through WAFR model to obtain CWR 

tailored to dataset (i.e., LIQ, Kern Ag, CropScape). Values in asterisk are general crop 

categories that were derived by taking the average of CWR values available for the components 

of that category. 

 

Dataset General Category Categories Averaged 
CWR  

(AF) 

CWR 

(ML) 

L
IQ

 

Other Crops Miscellaneous Truck Crops 3.15 3.89 

Other Crops 
Flower, Nursery, and Christmas Tree 

Farms 
  

Other Crops Young Perennials   

Other Crops Miscellaneous Field Crops   

Other Fruit Peaches/Nectarines 5.41 6.67 

Other Fruit Pears   

Other Fruit Kiwis   

Other Fruit Miscellaneous Subtropical Fruits   

Other Fruit Avocados   

Other Fruit Olives 4.03 4.97 

Other Vegetables Melons, Squash, and Cucumbers 3.90 4.81 

Other Vegetables Beans (Dry) 1.60 1.97 

K
er

n
 A

g
 

  

Other Vegetables Watermelon 3.87 4.77 

Other Vegetables Beets, Red 1.32 1.63 

Other Vegetables Beet 1.59 1.96 

Other Vegetables Turnip 1.28 1.58 

Other Vegetables Eggplant 2.65 3.26 

Other Vegetables Squash, Winter   

Other Vegetables Squash 3.95 4.87 

Other Vegetables Broccoli 2.01 2.48 

Other Vegetables Broccoli Seed 2.49 3.07 

Other Vegetables Gai Lon Tght Hd   

Other Vegetables Asparagus 4.55 5.61 

Other Vegetables Pumpkin   

Other Vegetables Cantaloupe 4.83 5.96 

Other Vegetables Honeydew Melon 3.16 3.90 

Other Vegetables Napa Cbg Tght H   

Other Vegetables Melon 2.57 3.16 

Other Vegetables Musk Melon   

Other Vegetables Bok Choy Lse Lf 1.44 1.77 

Other Vegetables Celery   
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Other Vegetables Cilantro   

Other Vegetables Radish 1.51 1.86 

Other Vegetables Cauliflower 2.32 2.87 

Other Vegetables Sugarcane   

Other Vegetables Cucumber 3.95 4.87 

Other Vegetables Chive   

Other Vegetables Bean Succulent 1.30 1.61 

Other Vegetables Bean Dried 2.09 2.58 

Other Vegetables Garbanzo Bean 2.12 2.62 

Other Fruit Nectarine 5.02 6.18 

Other Fruit Peach 4.11 5.07 

Other Fruit Persimmon 4.03 4.97 

Other Fruit Apricot 4.09 5.04 

Other Fruit Pear   

Other Fruit Avocado   

Other Fruit Kiwi   

Other Fruit Fig 4.03 4.97 

Other Fruit Prune   

Other Fruit Kumquat   

Other Crops N-Outdr Plants   

Other Crops Op-Rose   

Other Crops Op-Vine   

Other Crops N-Grnhs Plants   

Other Crops Op-Palm   

Other Crops Op- Chrstmas Tree   

Other Crops OP-Dec. Tree   

Other Crops Dandelion Green 1.316 1.62 

Other Crops Rutabaga 1.323 1.63 

Other Crops Op-Flwring Plant   

Other Crops Mustard 1.319 1.63 

Other Crops Pecans   

C
ro

p
S

ca
p
e 

Other Crops Other Crops 3.08 3.79 

Other Crops Other Tree Crops 3.91 4.82 

Other Crops Pecans 4.24 5.24 

Other Crops Sunflower   

Other Fruit Nectarines 5.23 6.45 

Other Fruit Apricots   

Other Fruit Olives 4.15 5.12 

Other Vegetables Peas 1.21 1.50 
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Other Vegetables Watermelons 3.89 4.80 

Other Vegetables Misc Vegs & Fruits   

Other Vegetables Sugarbeets 3.75 4.63 

Other Vegetables Asparagus   

Other Vegetables Broccoli 1.66 2.05 

Other Vegetables Dry Beans 1.83 2.26 

SI Table 35. Crop water requirement (CWR) of specific crops that were averaged to derive the 

CWR for the general category in 2016 datasets. 

Study Category Crop 
GHG Emission Per-Area Total  

(Mg CO2e per Hectare) 

Alfalfa alfalfa 0.90 

Almonds almond 0.23 

Apples apple 0.95 

Bushberries blueberry 3.07 

Carrots carrot 1.49 

Cherries cherry 0.75 

Citrus orange 2.01 

Corn greencorn 2.87 

Cotton cotton 0.61 

Fallow NA 0.00 

Garlic Onion garlic 1.09 

Grains mixedgrain 2.00 

Grapes grape 0.38 

Grasses mixedgrass 1.47 

Lettuce Greens lettuce 1.18 

Non-Ag NA 0.00 

Other Crops NA - 

Other Fruit fruitnes 0.68 

Other Vegetables vegetablenes 0.94 

Peppers pepper 3.32 

Pistachios pistachio 0.68 

Plums plum 0.38 

Pomegranate NA - 

Potato potato 1.33 

Safflower safflower 0.40 

Strawberries strawberry 1.55 

Tomatoes tomato 1.45 

Walnuts walnut 0.37 

SI Table 36. Greenhouse gas (GHG) emission values used (Carlson et al., 2017) to derive 

misclassification implications on GHG emissions for the 2014 and 2016 datasets. 
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 1 

C
ro

p
S

ca
p

e 
2
0

1
4

 
Kern Ag 2014 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa - (18.28) (0.07) (0.49) (11.53) (0.76) (8.39) 0.59 (0.71) 2.77 

Almonds 2.53 - (0.06) (0.22) (2.32) 2.72 (12.77) 0.99 1.22 10.26 

Apples 0.00 0.10 - (0.01) - 0.00 (0.98) - 0.00 0.43 

Berries 0.04 0.31 - - - 0.01 0.76 0.01 - 0.10 

Carrots 0.18 0.49 - (0.02) - 0.19 0.04 0.02 0.28 1.52 

Cherries 0.02 (0.56) (0.01) (4.17) (0.73) - (14.72) 0.01 0.02 0.71 

Citrus 0.05 1.67 0.00 (3.39) (0.01) 2.41 - 0.01 0.00 1.67 

Corn (0.15) (0.90) - (0.21) (4.72) (0.03) (0.18) - (0.78) 1.70 

Cotton 0.35 (1.02) - - (1.65) (0.01) (0.38) 0.22 - 7.32 

Fallow (1.66) (46.44) (3.44) (6.41) (42.34) (1.13) (36.97) (1.69) (8.12) - 

Garlic 

Onion 
0.36 (0.10) (0.00) - (2.38) (0.00) (0.03) 0.02 0.08 3.30 

Grains (3.11) (5.56) (0.00) (0.02) (16.91) (0.13) (2.76) (2.52) (0.99) 4.60 

Grapes 3.17 24.02 0.18 (0.72) 6.51 8.37 69.04 0.49 3.60 15.56 

Grasses (0.06) (0.00) - - (0.32) (0.00) - (0.00) (0.00) 0.02 

Lettuce 

Greens 
0.01 0.00 - - 0.00 - - 0.14 0.00 0.01 

Non-Ag (2.92) (71.10) (0.37) (5.46) (19.32) (3.69) (132.94) (0.55) (1.89) - 

Other Crops (0.00) (0.25) (0.00) (0.01) (0.23) (0.03) (1.41) (0.00) (0.03) 0.00 

Other fruit 0.05 0.09 - - (0.27) - (0.03) 0.13 0.18 0.94 

Other Veg 0.52 0.10 0.00 - 0.10 0.02 0.33 0.52 1.22 3.30 

Peppers 0.17 1.47 - - 0.51 0.01 - 0.25 0.09 3.82 

Pist. 0.26 (18.91) (0.03) (0.39) (0.59) (0.38) (10.70) 0.10 0.33 2.19 

Plums - 0.02 0.00 - - - 0.00 - - - 

Pome. 0.01 (0.01) - - - - (0.00) - - - 

Potato 0.08 0.02 (0.00) (0.06) (6.73) 0.00 (0.36) 0.07 0.06 0.78 

Saff. (0.01) (0.01) - - (0.01) - - (0.00) - 0.00 

Strwb - - - - - - - - 0.01 - 

Tomato 0.19 (0.60) - (0.02) (4.15) (0.00) (0.05) 0.53 0.10 6.72 

Waln 0.03 (0.09) (0.00) - (0.02) (0.01) (0.44) 0.00 0.07 0.09 

Total 0.12 (135.53) (3.80) (21.58) (107.09) 7.55 (152.92) (0.66) (5.22) 67.80 

SI Table 37. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The revenue is normalized by 1 

million USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 1 of 3.   
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 2 

C
ro

p
S

ca
p

e 
2
0

1
4

 

Kern Ag 2014 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

fruit 

Other 

Veg 
Peppers 

Alfalfa (1.14) 4.21 (159.20) 1.17 (0.31) 0.02 0.54 (0.84) (2.97) (3.44) 

Almonds 0.30 4.63 (147.06) 0.53 (0.13) 0.00 2.99 (0.11) (1.22) (0.40) 

Apples - - (13.75) 0.01 - - 0.04 0.00 (0.00) (0.09) 

Berries - 0.38 12.60 0.01 - - 0.02 - - - 

Carrots 1.70 1.40 (3.27) 0.03 (0.02) - 0.76 0.18 (0.17) (1.50) 

Cherries 0.00 0.11 (46.99) 0.06 (0.06) - 0.81 (0.36) (0.20) (0.37) 

Citrus 0.02 0.43 (112.26) 0.10 - - 1.26 0.29 (0.02) (0.14) 

Corn (0.51) 0.45 (3.54) 0.16 (0.34) 0.00 0.03 (0.36) (2.69) (3.35) 

Cotton (0.04) 0.71 (39.23) 1.11 (0.06) 0.06 0.54 (1.14) (4.91) (5.14) 

Fallow (2.86) (5.69) (167.97) (0.59) (3.12) - (0.45) (7.90) (20.22) (0.78) 

Garlic 

Onion 
- 1.41 (0.07) 0.25 (0.14) - 0.26 (0.01) (0.71) (0.10) 

Grains (3.34) - (14.93) 0.62 (0.14) 0.07 0.12 (0.56) (4.21) (1.51) 

Grapes 0.56 3.52 - 5.04 0.05 - 11.40 5.00 1.17 (2.70) 

Grasses - (0.02) (0.22) - - 0.00 0.00 (0.00) (0.12) (0.36) 

Lettuce 

Greens 
- 0.01 (0.00) - - - - - - (0.01) 

Non-Ag (2.04) (2.97) (200.07) (0.40) (0.15) - (0.32) (4.50) (2.54) (5.55) 

Other Crops (0.29) (0.00) (5.08) (0.00) - - - (0.36) (0.09) - 

Other fruit 0.08 0.12 (2.44) 0.29 (0.00) 0.00 0.06 - (0.06) (9.11) 

Other Veg 0.01 0.37 (2.77) 0.41 - - 0.10 0.21 - (0.17) 

Peppers 0.02 0.64 0.27 3.04 - - 0.15 0.79 0.24 - 

Pist. (0.03) 0.75 (21.77) 0.03 (0.09) 0.06 0.29 (0.44) (0.16) (0.05) 

Plums - - (0.18) - - - 0.00 - - - 

Pome. - 0.01 (0.40) 0.00 - 0.00 - - - - 

Potato 0.98 2.69 (1.67) 0.51 (0.01) - 0.62 (0.00) (0.53) (0.32) 

Saff. - (0.00) (0.28) (0.00) - 0.01 - - (0.01) (0.02) 

Strwb - 0.01 - - - - - - - - 

Tomato (0.45) 0.50 (3.93) 0.31 (0.17) 0.01 0.33 (1.29) (1.88) (5.24) 

Waln - 0.02 (5.30) 0.00 - 0.02 0.06 (0.00) (0.00) - 

Total (7.04) 13.68 (939.49) 12.69 (4.69) 0.26 19.60 (11.41) (41.31) (40.35) 

SI Table 38. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The revenue is normalized by 1 

million USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 2 of 3.   
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 3 

C
ro

p
S

ca
p

e 
2
0

1
4

 

Kern Ag 2014 

 Pist. Plum Pome. Potato Saff Strwb Tomato Waln. Total 

Alfalfa (0.78) - (0.11) (3.98) 0.19 - (1.23) (0.02) (204.79) 

Almonds 50.62 - 3.08 (0.01) 0.05 - 0.14 1.28 (82.94) 

Apples 0.49 - - - - - - - (13.74) 

Berries 0.66 - - - 0.01 - - 0.01 14.90 

Carrots 0.04 - 0.00 2.93 0.07 - 0.66 - 5.52 

Cherries 0.42 (0.00) 0.01 (0.11) 0.02 (0.04) 0.01 0.00 (66.12) 

Citrus 7.66 (0.00) 0.96 0.06 0.02 - 0.02 0.06 (99.14) 

Corn (0.16) - (0.00) (0.79) 0.00 - (0.44) (0.00) (16.78) 

Cotton (0.10) - (0.18) (0.78) - - (0.10) - (44.41) 

Fallow (51.06) - (7.03) (6.02) (0.01) (0.22) (2.12) (0.02) (424.24) 

Garlic 

Onion 
0.02 - - (0.45) 0.00 - 0.02 - 1.74 

Grains (1.48) - (0.04) (5.56) 0.26 - (0.11) - (58.20) 

Grapes 9.17 0.00 27.01 4.78 0.43 (0.02) 1.39 0.15 197.16 

Grassess (0.00) - - - - - (0.00) - (1.08) 

Lettuce 

Greens 
- - - 0.00 - - 0.00 - 0.17 

Non-Ag (72.69) (0.02) (16.96) (17.70) (0.03) (0.45) (1.15) (0.22) (565.99) 

Other Crops (0.00) - (0.00) (0.01) - - (0.00) - (7.81) 

Other fruit 1.66 - 1.52 0.03 0.06 - 0.09 - (6.61) 

Other Veg 0.01 - - 0.10 - - 0.30 - 4.68 

Peppers - - - - - - 0.05 - 11.52 

Pist. - (0.00) (2.31) (0.19) 0.07 - (0.01) (0.04) (52.00) 

Plums 0.01 - 0.02 - - - - - (0.13) 

Pome. 0.02 - - - - - - - (0.37) 

Potato 0.01 - 0.00 - 0.01 (0.04) 0.08 - (3.81) 

Saff. (0.02) - - - - - - - (0.35) 

Strwb - - - - - - - - 0.03 

Tomato 0.01 - 0.00 (0.86) 0.01 (0.01) - - (9.96) 

Waln 0.39 - 0.29 (0.00) - - - - (4.89) 

Total (55.13) (0.02) 6.25 (28.55) 1.17 (0.77) (2.42) 1.19 (1,427.66) 

SI Table 39. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The revenue is normalized by 1 

million USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 3 of 3.  
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy CWR Discrepancy (in Acre-feet) 

Part 1 

C
ro

p
S

ca
p

e 
2
0

1
4

 
Kern Ag 2014 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton 

Alfalfa  4,919 11 48 4,792 278 (357) 2,371 2,826 

Almonds (684)  (18) 16 1,593 (17) (8,493) 121 350 

Apples (0) 43  1  1 (886)  1 

Berries (1) 3    0 (35) 0  

Carrots (83) (380)  0  (101) (314) (4) (42) 

Cherries (8) 68 (1) 313 352  (5,588) 2 11 

Citrus 1 1,073 2 449 57 914  2 1 

Corn (963) (292)  3 87 (13) (77)  (416) 

Cotton (1,404) (266)   183 (5) (157) (103)  

Fallow (4,145) (24,324) (1,737) (238) (7,446) (767) (20,930) (3,331) (7,573) 

Garlic 

Onion 
(275) (58) (0)  451 (2) (20) (2) 4 

Grains (10,789) (1,814) (1) 0 (11) (58) (1,187) (6,954) (468) 

Grapes (155) 302 (2) 148 882 69 (5,919) 17 220 

Grassess (59) 0   78 0  6 4 

Lettuce 

Greens 
(4) (1)   0   (17) (0) 

Non-Ag (7,289) (37,242) (185) (202) (3,397) (2,499) (75,254) (1,080) (1,767) 

Other Crops (1) 11 (0) 1 56 1 (223) 1 20 

Other fruit (8) 83   276  (19) 25 64 

Other Veg (122) (18) (0)  66 (2) (391) (11) 50 

Peppers (9) (19)   33 (0)  2 2 

Pist. (139) 2,600 0 31 228 82 (2,320) 45 466 

Plums  0 (0)    (1)   

Pome. (12) (7)     (1)   

Potato (39) (195) (1) 3 2,170 (2) (416) (5) 2 

Saff. (16) (3)   1   (1)  

Strwb        0 

Tomato (181) (258)  1 707 (2) (28) (73) 8 

Waln (13) 10 (0)  8 2 (137) 1 47 

Total (26,400) (55,764) (1,933) 573 1,166 (2,121) (122,754) (8,990) (6,188) 

SI Table 40. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The CWR is in units of acre-feet. 

Values in parenthesis are negative. Note: this table was broken up into three parts to facilitate 

inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy CWR Discrepancy (in Acre-feet) 

Part 2 

 Kern Ag 2014 

C
ro

p
S

ca
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e 
2
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1
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 Fallow 
Garlic 

Onion 
Grains Grapes Grassess 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

fruit 

Alfalfa 6,829 934 13,595 7,409 1,091 72 41 891 71 

Almonds 5,463 238 1,429 (1,307) (22) 27 3 466 (163) 

Apples 221   170 0   8 (1) 

Berries 10  21 91 0   1  

Carrots 217 (344) (76) (506) (8) (16)  (110) (244) 

Cherries 494 8 47 (107) (2) 11  185 (124) 

Citrus 923 10 169 8,902 14   355 105 

Corn 2,073 (63) (2) (291) (545) (34) 2 (28) (159) 

Cotton 6,985 3 289 (2,287) (915) (2) 56 (55) (466) 

Fallow  (1,277) (10,080) (25,277) (2,507) (793) - (1,830) (4,755) 

Garlic Onion 1,638  242 (4) (78) (6)  (7) (4) 

Grains 7,452 (491)  (1,301) (9,863) (15) 120 (297) (244) 

Grapes 2,347 42 285  (14) 3  526 (173) 

Grassess 80  229 0   19 2 (0) 

Lettuce Greens 1  (0) (0)      

Non-Ag - (908) (5,259) (30,108) (1,726) (39)  (1,296) (2,711) 

Other Crops 25 101 1 8 (0)    (32) 

Other fruit 519 63 41 38 9 1 1 13  

Other Veg 817 0 34 (201) (44)   1 (88) 

Peppers 372 1 28 (18) (59)   3 (36) 

Pist. 2,360 37 608 209 1 15 68 124 (51) 

Plums    (2)    0  

Pome.   (1) (43) (2)  1   

Potato 291 155 333 (112) (110) (1)  (10) (4) 

Saff. 4  0 (20) (1)  29   

Strwb   0       

Tomato 3,852 194 105 (232) (114) (6) 4 (9) (834) 

Waln 72  8 (1) (0)  12 15 (0) 

Total 43,045 (1,295) 2,047 (44,992) (14,892) (782) 354 (1,052) (9,913) 

SI Table 41. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The CWR is in units of acre-feet. 

Values in parenthesis are negative. Note: this table was broken up into three parts to facilitate 

inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy CWR Discrepancy (in Acre-feet) 

Part 3 

 Kern Ag 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 
 Other 

Veg 

Peppe

r 
Pist. 

Plum

s 
Pome Potato Saff. 

Strw

b 

Tomat

o 

Waln

. 
Total 

Alfalfa 724 171 375  167 2,124 409  1,141 9 50,942 

Almond

s 
278 5 (6,792)  2,985 157 15  63 (142) (4,430) 

Apples 2 2 (5)        (444) 

Berries   (3)    0   0 87 

Carrots (136) (123) (18)  0 (932) (4)  (151)  (3,374) 

Cherries 39 6 (75) (0) 26 109 7 1 10 (0) (4,216) 

Citrus 23 10 1,435 1 761 72 7  13 16 15,316 

Corn (217) (155) (159)  1 (58) (0)  (104) (1) (1,412) 

Cotton (87) (141) (135)  115 42   (4)  1,645 

Fallow 
(4,740

) 
(78) (55,686)  (2,069

) 

(1,955

) 
(23) (6) (1,208) (16) 

(182,791

) 

Garlic 

Onion 
(9) (3) (17)   77 0  (0)  1,927 

Grains (389) (76) (1,305)  4 (527) 
(115

) 
 (29)  (28,359) 

Grapes 98 163 (104) 0 3,252 407 34 1 84 (0) 2,512 

Grassess 15 6 (0)      0  379 

Lettuce 

Greens 
 (1)    (0)   (0)  (23) 

Non-Ag (594) (553) (79,280) (5) 
(4,991

) 

(5,752

) 
(80) (13) (655) (182) 

(263,067

) 

Other 

Crops 
11  (0)  2 4   1  (14) 

Other 

fruit 
22 265 11  1,434 113 19  49  3,017 

Other 

Veg 
 (4) (1)   13   10  109 

Peppers 7        1  307 

Pist. 29 1  0 8,840 102 48  27 5 13,417 

Plums   (1)  7      4 

Pome.   (64)        (128) 

Potato (7) (9) (3)  1  1 1 1  2,044 

Saff. (1) (1) (15)        (23) 

Strwb           1 

Tomato (16) (136) (20)  1 116 2 0   3,081 

Waln 0  (100)  2,398 1     2,324 

Total 
(4,949

) 
(650) 

(141,962

) 
(5) 12,934 

(5,890

) 
321 (16) (752) (313) 

(391,170

) 

SI Table 42. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The CWR is in units of acre-feet. 

Values in parenthesis are negative. Note: this table was broken up into three parts to facilitate 

inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 1 

 Kern Ag 2014 

C
ro

p
S

ca
p

e 
2
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1
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 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  980 (0) (11) (337) 13 (496) (944) 132 486 

Almonds (135)  (15) (8) (398) (379) (3,745) (189) (42) 131 

Apples 0 27  (0)  0 (307)  0 20 

Berries 1 11    0 11 0  3 

Carrots 5 84  (0)  13 (17) (1) 14 90 

Cherries (0) 77 (0) (117) (49)  (1,887) (2) 0 38 

Citrus 3 491 1 (49) 3 309  (0) 0 140 

Corn 234 171  (0) 308 6 8  625 1,237 

Cotton (65) 35   (79) (0) (31) (177)  656 

Fallow (291) (595) (159) (204) (2,508) (61) (3,114) (1,230) (727)  

Garlic 

Onion 
8 19 0  (80) 0 (3) (3) 6 270 

Grains 1,401 656 0 (0) 390 14 (1) (1,785) 342 3,394 

Grapes (28) 75 (2) (63) (178) (60) (2,693) (20) (14) 89 

Grassess 12 0   (0) 0  (4) 1 12 

Lettuce 

Greens 
0 0   (0)   (10) 0 0 

Non-Ag (511) (910) (17) (174) (1,144) (197) (11,198) (399) (170) - 

Other 

Crops 
          

Other fruit (1) 29   (36)  (9) (19) 1 33 

Other 

vegetables 
1 6 (0)  (13) 0 (67) (40) 18 106 

Peppers 5 66   15 0  1 3 146 

Pist. (13) 1,062 (1) (11) (31) (6) (1,001) (37) 9 155 

Plums  0 (0)    (0)    

Pome.           

Potato 3 82 0 (1) (150) 0 (42) (7) 4 58 

Saff. (1) 0   (1)   (1)  0 

Strwb         0  

Tomatoes 16 120  (0) (12) 1 (2) (98) 17 832 

Waln (2) 2 (0)  (2) (2) (62) (1) (3) 3 

Total 641 2,490 (194) (640) (4,300) (348) (24,655) (4,965) 216 7,899 

SI Table 43. Table of the resulting GHG Emission discrepancy reflecting user’s accuracy of 

CropScape 2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The GHG emissions 

is in units of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three 

parts to facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 2 

C
ro

p
S

ca
p

e 
2
0

1
4

 

Kern Ag 2014 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

fruit 

Other 

Veg 
Peppers 

Alfalfa (26) (1,896) 1,387 (235) (4) 3  13 (5) (102) 

Almonds (59) (546) (456) (42) (12) 0  (36) (76) (18) 

Apples   174 (0)    0 0 (3) 

Berries  4 1,102 0       

Carrots 57 (32) 89 0 1   25 23 (45) 

Cherries (1) (12) 339 (4) (2)   5 (3) (13) 

Citrus 1 0 4,379 2    82 4 (3) 

Corn 96 318 143 145 23 1  52 205 (18) 

Cotton (3) (247) 153 (216) (1) 5  (7) (73) (175) 

Fallow (234) (4,197) (962) (364) (128) -  (282) (651) (30) 

Garlic 

Onion 
 (120) 1 (8) (1)   0 7 (3) 

Grains 285  386 933 4 54  45 169 (24) 

Grapes (8) (91)  (87) (1)   (33) (18) (378) 

Grassess  (24) 4   3  0 2 (8) 

Lettuce 

Greens 
 (0) 0       (0) 

Non-Ag (166) (2,190) (1,146) (251) (6)   (161) (82) (213) 

Other 

Crops 
          

Other 

fruit 
(6) (9) 16 (14) (0) 0   (1) (356) 

Other 

vegetables 
(0) (15) 43 (8)    5  (7) 

Peppers 1 10 38 67    31 10  

Pist. (3) (143) 119 (4) (2) 4  (0) (2) (2) 

Plums   0        

Pome.           

Potato 50 (119) 33 (4) 0   1 18 (9) 

Saff.  (1) 0 (0)  2   (0) (1) 

Strwb  (0)         

Tomatoes 94 (31) 78 (1) 3 1  132 54 (131) 

Waln  (3) (1) (0)  0  (0) (0)  

Total 77 (9,343) 5,918 (90) (125) 75  (128) (417) (1,537) 

SI Table 44. Table of the resulting GHG Emission discrepancy reflecting user’s accuracy of 

CropScape 2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The GHG emissions 

is in units of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three 

parts to facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of CropScape 2014 with Kern Ag 2014 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 3 

 Kern Ag 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Pist. Plums Pome. Potato Saff. Strwb Tomatoes Waln. Total 

Alfalfa 38   (132) 26  (103) 2 (1,212) 

Almonds (2,842)   (48) (1)  (27) (33) (8,977) 

Apples 12        (77) 

Berries 18    0   0 1,151 

Carrots 2   65 3  2  378 

Cherries 6 0  (16) 0 (0) (2) 0 (1,641) 

Citrus 716 0  7 1  1 8 6,098 

Corn 61   86 2  80 1 3,783 

Cotton (3)   (50)   (16)  (294) 

Fallow (3,603)   (444) (2) (2) (263) (1) (20,051) 

Garlic Onion 2   (23) 0  (4)  68 

Grains 281   245 366  7  7,165 

Grapes (50) (0)  (96) (0) (0) (27) 0 (3,683) 

Grassess 0      0  (2) 

Lettuce Greens    (0)   (0)  (10) 

Non-Ag (5,130) (0)  (1,307) (7) (4) (142) (7) (25,531) 

Other Crops          

Other fruit 0   (15) 1  (9)  (394) 

Other 

vegetables 
0   (4)   (9)  18 

Peppers       1  394 

Pist.  0  (14) 2  (6) 5 82 

Plums (0)        (0) 

Pome.          

Potato 1    0 (0) (1)  (83) 

Saff. (1)        (2) 

Strwb         0 

Tomatoes 4   16 1 (0)   1,094 

Waln (47)   (0)     (118) 

Total (10,535) 0  (1,730) 396 (7) (519) (24) (41,843) 

SI Table 45. Table of the resulting GHG Emission discrepancy reflecting user’s accuracy of 

CropScape 2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The GHG emissions 

is in units of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three 

parts to facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 1 

 Kern Ag 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 
 Alfalf

a 

Almond

s 

Apple

s 

Berrie

s 
Carrots 

Cherrie

s 
Citrus Corn 

Cotto

n 
Fallow 

Alfalfa - (12.58) (0.00) (0.52) (4.82) (2.76) (6.09) 0.03 (0.47) 0.25 

Almonds 4.54 - 0.96 (3.09) (2.28) (39.11) (50.00) 1.01 0.95 16.60 

Apples - (0.00) - - - - (0.01) - - - 

Berries - 0.01 - - - 0.01 0.01 - - - 

Carrots 1.07 0.12 - (0.35) - (0.15) 0.04 0.05 0.01 0.72 

Cherries 0.04 0.55 - (0.05) 0.00 - 3.05 - - 0.03 

Citrus 0.11 6.47 0.02 (2.86) (0.04) (12.12) - 0.01 0.01 2.91 

Corn (0.01) (0.13) - (0.05) (1.88) (0.16) (0.02) - (0.35) 0.02 

Cotton 0.67 (0.55) 0.01 (0.01) (0.97) (0.61) (0.22) 0.60 - 1.53 

Fallow (1.84) (43.98) (0.13) (2.77) (27.95) (2.74) (29.58) 
(2.10

) 
(5.08) - 

Garlic 

Onion 
1.01 0.09 - (0.06) 0.13 (0.04) 0.00 0.12 0.17 2.38 

Grains (1.68) (5.74) - (0.95) (29.09) (1.37) (1.88) 
(1.79

) 
(0.47) 0.97 

Grapes 2.19 31.30 0.10 (1.01) 2.96 3.51 69.34 1.02 2.00 18.64 

Grassess (0.01) (0.31) - (0.21) (8.48) - (0.18) 
(0.00

) 
(0.03) 0.22 

Lettuce 

Greens 
0.01 0.03 - - (0.21) - (0.01) 0.11 0.09 0.67 

Non-Ag (1.46) (41.87) (0.01) (7.08) (7.76) (6.53) (98.87) 
(0.40

) 
(1.02) - 

Other 

Crops 
(0.00) (0.18) - (0.12) (4.49) (0.06) (0.36) 

(0.00
) 

(0.00) 0.02 

Other Fruit 0.78 0.44 - (0.05) 0.10 (0.43) 2.25 0.90 2.80 0.89 

Other Veg 0.81 0.04 0.00 (0.09) 0.03 - 0.00 1.84 2.86 0.02 

Peppers 0.33 0.18 - (0.01) 0.30 (0.01) 0.32 0.39 0.04 0.04 

Pist. 2.34 7.64 0.23 (0.77) (1.09) (2.18) (7.96) 0.16 2.51 32.63 

Plums 0.01 0.09 - - 0.00 (0.02) 0.01 - - - 

Pome. 0.07 0.87 - - (0.00) (0.45) (0.00) 0.01 0.11 0.12 

Potato 0.19 (0.00) 0.00 (0.16) (22.25) (0.02) (0.04) 0.03 0.03 0.40 

Saff. (0.02) (0.04) - - (0.15) (0.00) (0.00) 
(0.00

) 
(0.01) 1.40 

Strwb - - - - - - - - - - 

Tomatoes 0.44 (0.97) 0.04 (0.01) (9.19) (0.56) (0.70) 0.68 0.67 10.65 

Waln 0.05 (1.30) 0.01 - (0.15) (0.31) (0.60) 0.03 0.02 0.26 

Total 9.63 (59.84) 1.24 
(20.20

) 
(117.28

) 
(66.11) 

(121.49
) 

2.68 4.87 91.36 

SI Table 46. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The revenue is normalized by 

1 million USD. Values in parenthesis are negative. Note: this table was broken up into three 

parts to facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 2 

 Kern Ag 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

fruit 

Other 

Veg 

Alfalfa (2.69) 2.05 (97.92) 0.09 (0.18) - 0.01 (1.51) (2.36) 

Almonds (1.61) 6.66 (263.78) 0.15 (0.22) - 1.77 (2.51) (0.48) 

Apples - - (0.03) - - - 0.00 - - 

Berries - - 0.01 - - - - - - 

Carrots (0.10) 0.91 (2.20) 0.25 0.27 - 0.56 (0.00) (0.02) 

Cherries 0.00 0.41 (0.41) 0.00 - - 0.03 - - 

Citrus (0.01) 0.16 (49.92) 0.23 0.00 - 0.51 (0.07) (0.01) 

Corn (0.57) 0.60 (0.20) 0.00 (0.04) - 0.00 (0.72) (0.73) 

Cotton (0.12) 1.72 (33.09) 0.56 (0.70) - 0.26 (0.89) (5.03) 

Fallow (6.63) (4.66) (103.65) (0.39) (3.01) - (1.11) (4.01) (14.84) 

Garlic 

Onion 
- 1.50 (0.23) 0.10 0.03 - 0.06 (0.01) 0.03 

Grains (7.07) - (12.30) (0.62) (1.91) 0.00 (0.22) (0.47) (5.22) 

Grapes 1.10 3.65 - 1.06 0.23 - 10.63 4.87 0.84 

Grasses (0.18) 0.10 (11.07) - (0.30) - (0.02) (0.03) (1.74) 

Lettuce 

Greens 
(0.02) 0.07 (0.03) 0.01 - - 0.06 - (0.07) 

Non-Ag (2.91) (1.32) (106.54) (0.09) (0.39) - (0.22) (1.53) (1.93) 

Other Crops (0.19) 0.03 (5.03) 0.01 (0.56) - - (0.48) (4.39) 

Other Fruit 0.09 0.73 (4.03) 0.22 0.00 - 0.58 - 0.04 

Other Veg (0.00) 0.41 (0.78) 0.07 0.01 - 0.85 (0.01) - 

Peppers 0.84 0.29 (4.19) 0.20 0.18 - 0.19 1.09 0.13 

Pist. (0.20) 2.73 (22.36) 0.07 (0.01) - 1.00 (1.29) (0.73) 

Plums - - (1.18) - - - - 0.00 - 

Pome. (0.00) 0.05 (12.04) - (0.00) - 0.05 (0.28) (0.01) 

Potato (3.61) 1.76 (0.23) 0.41 (0.72) - 0.15 (0.01) (1.46) 

Saff. (0.26) (0.00) (0.15) (0.00) (0.02) - (0.00) - (0.05) 

Strwb - - - - - - - - - 

Tomatoes (5.20) 1.18 (10.79) 0.06 (0.33) - 0.46 (5.91) (2.22) 

Waln (0.03) 0.06 (7.94) 0.00 (0.01) - 0.04 (0.03) (0.08) 

Total (29.37) 19.08 (750.09) 2.39 (7.67) 0.00 15.61 (13.81) (40.32) 

SI Table 47. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The revenue is normalized by 1 

million USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 3 

 Kern Ag 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Peppers Pist. Plums Pome. Potato Saff Strwb Tomatoes Waln Total 

Alfalfa (0.51) (1.11) - (0.06) (2.29) 0.02 - (0.54) (0.02) (133.99) 

Almonds (0.18) (18.07) - (0.88) 0.02 0.28 (0.03) 0.31 1.17 (347.82) 

Apples - - - (0.09) - - - - - (0.14) 

Berries - - - - - - - - - 0.04 

Carrots (0.11) 0.01 - - 3.95 0.03 - 0.50 - 5.57 

Cherries - 9.57 - 0.14 - - - - 0.00 13.37 

Citrus (0.40) 2.31 (0.00) 0.03 0.28 0.03 - 0.00 0.02 (52.31) 

Corn (0.70) (0.01) - - (0.40) 0.00 - (0.06) - (5.40) 

Cotton (0.44) (0.12) - (0.21) (0.92) 0.03 - (0.03) - (38.52) 

Fallow (1.76) (112.35) - (16.52) (7.00) (0.18) (0.08) (2.42) (0.35) (395.12) 

Garlic 

Onion 
(0.03) 0.02 - 0.00 0.64 0.15 - 0.15 - 6.22 

Grains (0.61) (4.84) - (0.15) (5.71) 0.00 (0.02) (0.15) (0.00) (81.28) 

Grapes 0.35 13.77 0.01 0.94 4.84 0.05 - 0.54 0.48 173.40 

Grassess (0.21) (0.01) - - (0.52) 0.01 - (0.02) - (23.00) 

Lettuce 

Greens 
- 0.01 - 0.00 0.04 0.01 - 0.00 - 0.75 

Non-Ag (1.50) (44.36) (0.02) (5.38) (4.16) (0.01) (0.05) (1.23) (0.13) (336.76) 

Other 

Crops 
(0.19) (0.18) - (0.00) (1.49) 0.00 - (0.00) (0.00) (17.69) 

Other Fruit (1.61) 0.22 - - 0.25 0.36 - 0.14 0.01 4.68 

Other Veg (0.00) 0.00 - - 0.75 0.00 - 0.01 - 6.81 

Peppers - - - - 0.10 0.02 - 0.42 - 0.87 

Pist. (0.17) - - (0.36) 0.13 0.09 - 0.08 1.20 13.70 

Plums - 0.01 - - - - - - - (1.07) 

Pome. - 0.52 - - - - - 0.02 0.04 (10.94) 

Potato (0.04) (0.00) - (0.00) - 0.64 - 0.08 - (24.85) 

Saff. (0.00) (0.01) - - (0.28) - - (0.01) - 0.37 

Strwb - - - - - - - - - - 

Tomatoes (10.43) (0.09) - (0.07) (0.46) 0.11 - - - (32.65) 

Waln (0.02) (3.90) - (0.04) (0.01) - - (0.00) - (13.94) 

Total (18.54) (158.61) (0.00) (22.66) (12.23) 1.63 (0.17) (2.19) 2.42 (1,289.68) 

SI Table 48. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The revenue is normalized by 

1 million USD. Values in parenthesis are negative. Note: this table was broken up into three 

parts to facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 1 
 Kern Ag 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

Row 

Labels 
Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  2,871 2 46 1,458 135 (324) 1,761 955 1,089 

Almonds (1,218)  (84) 218 860 6 (18,409) 76 307 10,723 

Apples  0     (2)    

Berries  0    0 (0)    

Carrots (395) (55)  (2)  (32) (156) (10) (2) 90 

Cherries (3) 0  7 0  (375)   5 

Citrus 0 2,130 3 367 114 1,265  2 4 1,489 

Corn (1,491) (48)  1 35 (13) (7)  (187) 32 

Cotton (1,494) (169) (28) 0 88 (35) (76) (435)  1,832 

Fallow (8,537) (28,096) (322) (111) (4,569) (458) (15,715) (6,713) (6,057)  

Garlic 

Onion 
(246) (19)  2 204 (5) (7) (11) (2) 519 

Grains (10,537) (2,244)  4 (394) (131) (725) (6,097) (268) 2,914 

Grapes (93) 389 (1) 216 425 204 (5,558) 23 116 2,833 

Grasses (100) (37)  9 1,127  (43) (3) 14 782 

Lettuce 

Greens 
(3) (12)   41  (22) (16) (5) 158 

Non-Ag (6,768) (26,744) (30) (284) (1,268) (1,093) (52,526) (1,293) (1,211) - 

Other 

Crops 
(18) 0  7 866 (0) (63) 4 2 57 

Other 

fruit 
(25) 59  6 161 40 (480) 97 549 324 

Other 

Veg 
(203) (10) (0) 3 66  (1) (169) (40) 4 

Peppers (28) (3)  1 55 (1) (59) 1 2 8 

Pist. (337) 3,143 3 67 644 60 (2,914) 21 840 19,632 

Plums (1) 0   0 (0) (5)    

Pome (35) (924)   (0) (70) (8) (2) (21) 23 

Potato (100) (14) (1) 6 3,652 (1) (22) (4) 1 195 

Saff (117) (15)   1 (0) (1) (12) (2) 5,076 

Strwb           

Tomatoes (459) (410) (37) 0 1,041 (32) (275) (217) 47 8,490 

Waln (25) 110 (1)  40 3 (115) 8 34 342 

Total (32,230) (50,095) (495) 565 4,648 (158) (97,887) (12,990) (4,925) 56,616 

SI Table 49. Table of the resulting crop water requirement discrepancy reflecting user’s accuracy 

of CropScape 2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The crop water 

requirement is in units of acre-feet. Values in parenthesis are negative. Note: this table was broken 

up into three parts to facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 2 

C
ro

p
S

ca
p

e 
2
0

1
6

 

Kern Ag 2016 

Row 

Labels 

Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

fruit 

Other 

Veg 

Alfalfa 553 4,286 3,255 78 69  452 73 515 

Almonds 313 104 (2,680) (27) 138  903 (172) 105 

Apples   0    1   

Berries   1       

Carrots (284) (200) (378) (81) (42)  3 (3) (64) 

Cherries 0 1 (27) (0)   4   

Citrus 13 24 3,394 11 1  217 21 10 

Corn (37) (1,967) (16) (57) 1  19 (139) (41) 

Cotton (1) (1,148) (1,886) (900) 94  292 (137) 20 

Fallow (1,540) (31,205) (15,743) (2,001) (549)  (1,404) (1,331) (3,360) 

Garlic 

Onion 
 (163) (23) (20) 11  6 (9) (14) 

Grains (652)  (1,110) (5,374) (3) 0 156 (99) (440) 

Grapes 98 42  (28) 31  1,126 (97) 80 

Grasses 8 (156) (361)  53  284 (3) 97 

Lettuce 

Greens 
(5) (12) (4) (2)   6  (12) 

Non-Ag (677) (8,836) (16,183) (469) (71)  (278) (508) (437) 

Other 

Crops 
20 3 (49) (36) 142   (21) 495 

Other 

fruit 
142 59 210 1 3  165  53 

Other 

Veg 
(1) (46) (79) (14) 3  94 (7)  

Peppers 78 (3) (352) (13) 30  21 (120) 13 

Pist. 67 216 256 (5) 12  484 (11) 271 

Plums   (21)     (0)  

Pome (0) (15) (1,637)  (0)  1 (161) (2) 

Potato 18 (346) (14) (170) 206  46 (3) 32 

Saff (19) (71) (12) (12) 1  1  (3) 

Strwb          

Tomatoes 2 (427) (616) (50) 57  268 (984) 28 

Waln 4 7 (4) (1) 2  50 (1) 13 

Total (1,900) (39,855) (34,080) (9,171) 189 0 2,916 (3,711) (2,640) 

SI Table 50. Table of the resulting crop water requirement discrepancy reflecting user’s accuracy 

of CropScape 2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The crop water 

requirement is in units of acre-feet. Values in parenthesis are negative. Note: this table was broken 

up into three parts to facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 3 
 Kern Ag 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

Row Labels Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa 34 112  31 1,338 124  530 11 19,454 

Almonds 3 (7,069)  1,005 137 97 1 147 (82) (14,598) 

Apples    40      39 

Berries          1 

Carrots (26) (6)   (591) (1)  (79)  (2,312) 

Cherries  (295)  22     (0) (659) 

Citrus 60 674 0 46 187 11  1 3 10,047 

Corn (58) (4)   (18) 0  (16)  (4,010) 

Cotton (24) (39)  44 112 15  0  (3,873) 

Fallow (313) (67,907)  (2,886) (2,752) (674) (2) (1,868) (458) (204,573) 

Garlic 

Onion 
(4) (8)  0 34 8  (2)  255 

Grains (59) (1,925)  6 (603) (9) (0) (49) (2) (27,642) 

Grapes 24 (169) (0) 134 420 4  33 0 255 

Grasses (4) (3)   106 29  5  1,804 

Lettuce 

Greens 
 (8)  0 (0) 0  (0)  104 

Non-Ag (267) (26,810) (6) (939) (1,634) (48) (1) (952) (165) (149,498) 

Other Crops 2 (14)  2 506 8  2 (0) 1,912 

Other fruit 249 17   87 81  31 1 1,829 

Other Veg (0) (1)   35 0  (0)  (366) 

Peppers     9 1  22  (337) 

Pist. 8   1,049 181 31  37 70 23,827 

Plums  (1)        (27) 

Pome  (1,480)      (4) (19) (4,354) 

Potato (2) (3)  1  102  4  3,583 

Saff (0) (5)   (17)   (1)  4,791 

Strwb          - 

Tomatoes (554) (37)  20 100 31    5,985 

Waln 0 (248)  22 8   2  252 

Total (930) (105,228) (5) (1,403) (2,355) (188) (3) (2,156) (641) (338,111) 

SI Table 51. Table of the resulting crop water requirement discrepancy reflecting user’s accuracy 

of CropScape 2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The crop water 

requirement is in units of acre-feet. Values in parenthesis are negative. Note: this table was broken 

up into three parts to facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy GHG Emissions Discrepancy (in MgCO2e) 

Part 1 

 Kern Ag 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  723 (0) (12) (114) 8 (307) (996) 52 82 

Almonds (261)  (67) (111) (222) (493) (8,749) (225) (40) 261 

Apples  0     (1)    

Berries  1    1 0    

Carrots 25 12  (8)  4 (8) (3) 1 39 

Cherries (0) 7  (3) (0)  (123)   0 

Citrus 5 1,131 1 (44) 7 490  (0) 1 237 

Corn 387 30  (0) 105 6 1  284 18 

Cotton (74) 23 (2) (0) (39) (2) (16) (496)  172 

Fallow (617) (692) (30) (91) (1,520) (37) (2,412) (2,280) (572)  

Garlic 

Onion 
7 5  (2) (46) 1 (1) (8) 4 91 

Grains 1,384 779  (11) 579 32 (0) (1,218) 163 1,418 

Grapes (19) 92 (1) (95) (88) (144) (2,813) (41) (8) 108 

Grasses 12 32  (4) (7)  (4) (7) 9 147 

Lettuce 

Greens 
0 3   (14)  (2) (9) 3 34 

Non-Ag (489) (659) (3) (232) (422) (88) (8,060) (439) (114) - 

Other Crops           

Other fruit (6) 11  (2) (18) (1) (422) (68) 8 19 

Other Veg 1 2 (0) (3) (22)  (0) (139) 42 1 

Peppers 17 16  0 24 3 17 4 2 3 

Pist (35) 1,231 (5) (24) (87) (4) (1,436) (24) 16 1,289 

Plums (0) 1   (0) (0) (2)    

Pome           

Potato 7 6 0 (3) (260) 0 (2) (4) 2 39 

Saff (7) 1   (6) (0) (0) (8) (0) 438 

Strwb           

Tomatoes 42 192 5 (0) (19) 8 (24) (170) 192 1,854 

Waln (5) 26 (2)  (8) (2) (58) (14) (2) 13 
 Total 376 2,972 (103) (646) (2,179) (219) (24,422) (6,145) 42 6,265 

SI Table 52. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The GHG emission 

is in units of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three 

parts to facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy GHG Emissions Discrepancy (in MgCO2e) 

Part 2 
 Kern Ag 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

fruit 

Other 

Veg 
Peppers 

Alfalfa (20) (1,695) 830 (107) (2)   11 (3) (27) 

Almonds (99) (903) (778) (15) (25)   (66) (25) (16) 

Apples   0        

Berries   1        

Carrots 35 (18) 65 0 18   0 12 (9) 

Cherries (0) (9) 17 (0)       

Citrus 2 0 2,025 6 0   13 2 (21) 

Corn 39 405 8 12 3   54 55 (7) 

Cotton (3) (600) 128 (153) (23)   (3) (74) (27) 

Fallow (254) (6,843) (601) (255) (156)   (86) (496) (118) 

Garlic 

Onion 
 (50) 5 (1) (0)   1 13 (3) 

Grains 237  315 392 74 0  20 208 (17) 

Grapes (22) (94)  (18) (4)   (45) (13) (68) 

Grasses 3 (63) 192  4   1 35 (8) 

Lettuce 

Greens 
0 (3) 1 (0)     3  

Non-Ag (112) (1,938) (618) (60) (20)   (33) (65) (100) 

Other 

Crops 
          

Other fruit (12) (32) 37 (6) (0)    (3) (238) 

Other Veg (0) (16) 12 (1) (0)   0  (0) 

Peppers 89 8 804 8 15   162 14  

Pist (7) (227) 144 (4) (1)   (0) (17) (14) 

Plums   0     (0)   

Pome           

Potato 58 (96) 4 (5) 13   1 40 (2) 

Saff (7) (26) 0 (2) (1)    (1) (0) 

Strwb           

Tomatoes 91 (95) 204 (0) 6   193 57 (474) 

Waln (1) (16) (1) (0) (0)   (0) (2) (1) 

Total 18 (12,309) 2,795 (210) (101) 0  223 (261) (1,149) 

SI Table 53. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The GHG emission 

is in units of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three 

parts to facilitate inclusion of this table and readability. This table is Part 2 of 3. 

  



343 

 

Crosstab of CropScape 2016 with Kern Ag 2016 Reflecting User’s Accuracy GHG Emissions 

Discrepancy (in MgCO2e) 

Part 3 
 Kern Ag 2016 

C
ro

p
S

ca
p

e 
2
0

1
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 Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa 17   (88) 9  (52) 3 (1,688) 

Almonds (2,910)   (39) (4) (0) (61) (24) (14,872) 

Apples         (0) 

Berries         2 

Carrots 1   46 1  1  214 

Cherries 17       0 (95) 

Citrus 417 0  18 2  0 2 4,295 

Corn 2   55 0  15  1,473 

Cotton (1)   (79) 2  (8)  (1,275) 

Fallow (4,436)   (673) (58) (1) (421) (17) (22,665) 

Garlic 

Onion 
1   (10) 4  (3)  5 

Grains 402   309 26 0 12 1 5,103 

Grapes (89) (0)  (90) (0)  (10) 0 (3,461) 

Grasses 1   6 10  0  357 

Lettuce 

Greens 
1   (1) 0  (0)  16 

Non-Ag (1,751) (0)  (400) (4) (0) (214) (6) (15,828) 

Other Crops          

Other fruit 0   (9) 3  (5) 0 (740) 

Other Veg 0   (20) 0  (0)  (144) 

Peppers    6 1  19  1,212 

Pist    (24) 2  (7) 39 805 

Plums (0)        (2) 

Pome          

Potato 1    47  (2)  (156) 

Saff (0)   (21)   (1)  360 

Strwb          

Tomatoes 7   10 17    2,098 

Waln (126)   (2)   (1)  (204) 

Total (8,449) 0  (1,005) 58 (1) (738) (2) (45,190) 

SI Table 54. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2016 compared with Kern Ag 2016 (actual; ground truth) dataset. The GHG emission 

is in units of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into 

three parts to facilitate inclusion of this table and readability. This table is Part 3 of 3 
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Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 1 
 Kern Ag 2014 

L
IQ

 2
0

1
4

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa - (0.04) - - (0.42) (0.00) - 0.00 (0.01) 0.08 

Almonds 0.30 - - - (0.00) 0.06 (0.10) 0.18 0.03 0.12 

Apples - - - - - - - - - - 

Berries - - - - 0.21 0.45 - - - - 

Carrots 0.06 0.01 - (0.10) - - 0.00 0.13 0.05 0.19 

Cherries 0.01 (0.03) - (1.14) - - - - - 0.03 

Citrus - 0.00 - - - - - - - 0.09 

Corn (0.00) (0.25) - - (0.00) - - - (0.00) 0.04 

Cotton 0.00 (0.01) - - (0.00) - - - - 0.02 

Fallow (0.01) (0.70) - - (0.23) - (0.17) - (0.44) - 

Garlic Onion - (0.01) - - (0.20) - - 0.07 - 0.01 

Grains (0.15) (0.00) - - (0.05) (0.00) (0.01) (0.02) (0.01) 0.09 

Grapes 0.25 0.25 - (0.02) 0.06 0.11 0.21 - - 0.58 

Grasses - - - - - - - - - - 

Lettuce 

Greens 
- - - (0.35) 0.03 - 0.00 - 0.06 - 

Non-Ag - - - - - - - - - - 

Other Crops - (1.99) - - (0.11) (0.66) (0.09) (0.02) - 0.12 

Other fruit 0.00 - - - (0.05) - (0.01) - - 0.68 

Other Veg - 0.00 - - - - - - - - 

Peppers - - - - 0.07 - - - - - 

Pist 0.05 (0.16) - - - (0.01) (0.01) - 0.00 0.01 

Plums - - 0.00 (0.06) - 0.16 - - - - 

Pome - (0.00) - - - - - - 0.00 0.03 

Potato - - - - (0.02) - (0.04) - 0.02 0.05 

Saff - - - - - - - - - 0.00 

Strwb - - - - - - - - - - 

Tomatoes - (0.00) - - (0.00) - - - - - 

Waln - (0.00) - - - - - - - - 

Total 0.51 (2.93) 0.00 (1.68) (0.70) 0.10 (0.19) 0.33 (0.30) 2.13 

SI Table 55. Table of the resulting revenue discrepancy reflecting user’s accuracy of LIQ 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The revenue is normalized by 1million 

USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 1 of 3.  
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Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 2 

 Kern Ag 2014 

L
IQ

 2
0

1
4

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

fruit 

Other 

Veg 

Alfalfa - 0.21 (0.11) 0.01 - - 0.00 (0.04) (0.01) 

Almonds 0.01 0.03 (0.50) - - - 0.02 - (0.02) 

Apples - - - - - - - 0.00 - 

Berries - - 0.02 - - - - - - 

Carrots 0.10 0.29 (0.10) 0.04 (0.00) - - - (0.02) 

Cherries - 0.05 (0.04) - - - 0.00 (0.00) - 

Citrus - 0.02 (0.76) - - - - 0.00 (0.00) 

Corn (0.04) 0.07 - 4.99 - - - - (0.00) 

Cotton - 0.01 (0.28) 0.00 - - 0.07 - (0.03) 

Fallow - (1.04) (1.52) (0.00) - - (0.00) (0.05) (0.01) 

Garlic 

Onion 
- 0.03 (0.00) - - - 1.01 - (0.05) 

Grains (0.15) - (0.09) 0.02 - - 0.00 (0.02) - 

Grapes 0.00 0.15 - - - - 0.04 0.00 - 

Grasses - - - - - - - - - 

Lettuce 

Greens 
- 0.02 - - - - 2.02 - (0.68) 

Non-Ag - - - - - - - - - 

Other 

Crops 
(0.04) - (17.19) - - - - (0.10) (9.27) 

Other fruit - 0.02 (0.07) - - - 0.05 - (0.49) 

Other Veg - - (0.05) - - - 0.06 - - 

Peppers - 0.14 0.08 - - - - - 0.16 

Pist - 0.00 (0.12) - - - 0.01 - - 

Plums - - - - - - - 0.30 - 

Pome - - - - - - - (0.01) - 

Potato 0.08 - (0.16) - - - 0.33 (0.00) - 

Saff - (0.00) - - - - - - - 

Strwb - - - - - - - - - 

Tomatoes (0.01) - - - - - - (0.12) - 

Waln - - - - - - - - - 

Total (0.04) 0.01 (20.89) 5.05 (0.00) - 3.60 (0.04) (10.44) 

SI Table 56. Table of the resulting revenue discrepancy reflecting user’s accuracy of LIQ 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The revenue is normalized by 1million 

USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 2 of 3 
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Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 3 

  Kern Ag 2014 

L
IQ

 2
0

1
4

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa - (0.03) - - - - - - (0.37) -0.37 

Almonds - 0.09 0.00 - - - 0.00 - 0.21 0.21 

Apples - - - - - - - - 0.00 0.00 

Berries - - - - - (0.01) - - 0.67 0.67 

Carrots (1.97) - - 0.05 - - 0.04 - (1.22) -1.22 

Cherries - 0.01 - - - - - - (1.12) -1.12 

Citrus (0.01) 0.00 - 0.01 - - - - (0.65) -0.65 

Corn - - - - - - - - 4.81 4.81 

Cotton - (0.00) - (0.02) - - (0.00) - (0.24) -0.24 

Fallow - (0.11) (0.16) (0.14) - - - - (4.57) -4.57 

Garlic Onion (0.76) - - (0.02) - - 0.00 - 0.09 0.09 

Grains - (0.03) (0.00) (0.03) - - - - (0.45) -0.45 

Grapes (0.02) 0.24 0.07 - - - - 0.03 1.95 1.95 

Grasses - - - - - - - - - 0.00 

Lettuce 

Greens 
- - - - - - - - 1.10 1.10 

Non-Ag - - - - - - - - - 0.00 

Other Crops - (0.48) - (0.77) - - (0.01) - (30.63) 
-

30.63 

Other fruit - 0.00 - - - - 0.09 - 0.23 0.23 

Other Veg - - - - - - - - 0.02 0.02 

Peppers - - - 0.28 - - - - 0.74 0.74 

Pist - - - - - - (0.00) - (0.23) -0.23 

Plums - - 0.06 - - - - - 0.46 0.46 

Pome - 0.00 - - - - - - 0.02 0.02 

Potato (0.16) - - - - - 0.00 - 0.08 0.08 

Saff - - - - - - - - (0.00) 0.00 

Strwb - - - 0.01 - - - - 0.01 0.01 

Tomatoes (0.27) - - (0.00) - - - - (0.41) -0.41 

Waln - - - - - - - - (0.00) 0.00 

Total 
      

(3.19) 
 

(0.31) 
  

(0.04) 
   

(0.62)     -    
   

(0.01) 
          

0.13     0.03   (29.49) 
-

29.49 

SI Table 57. Table of the resulting revenue discrepancy reflecting user’s accuracy of LIQ 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The revenue is normalized by 1million 

USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 3 of 3.  
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  Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 1 
 Kern Ag 2014 

L
IQ

 2
0

1
4

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  12   182 0  9 60 208 

Almonds (84)    1 (3) (67) 20 7 64 

Apples           

Berreis           

Carrots (30) (11)  (0)   (40) (26) (8) 26 

Cherries (3) 2  82      18 

Citrus  1        49 

Corn (15) (85)   0    (1) 50 

Cotton (15) (3)   0     20 

Fallow (23) (366)   (40)  (94)  (408)  

Garlic Onion  2   111   23  9 

Grains (523) (0)   (1) (2) (3) (61) (3) 138 

Grapes (12) 3  5 8 1 (18)   87 

Grasses           

Lettuce 

Greens 
   7 4  (5)  (4)  

Non-Ag           

Other Crops  (180)   15 (87) (24) 1  563 

Other fruit (0)    59  (2)   427 

Other Veg  (1)         

Peppers     5      

Pist (24) 24    2 (2)  1 10 

Plums   (0) 5  3     

Pome  (4)       (0) 9 

Potato     8  (43)  1 18 

Saff          2 

Strwb           

Tomatoes  (1)   0      

Waln  1         

Total (729) (607) (0) 99 353 (86) (296) (33) (356) 1,696 

SI Table 58. Table of the resulting CWR discrepancy reflecting user’s accuracy of LIQ 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The CWR is in units of acre-feet. 

Values in parenthesis are negative. Note: this table was broken up into three parts to facilitate 

inclusion of this table and readability. This table is Part 1 of 3.  
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  Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 2 

 Kern Ag 2014 

L
IQ

 2
0

1
4

 

Row Labels 
Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

fruit 

Other 

Veg 

Alfalfa  731 6 6   3 5 3 

Almonds 9 8 (6)    2  5 

Apples        (0)  

Berreis          

Carrots (22) (17) (16) (11) (0)    (18) 

Cherries  21 (0)    0 (1)  

Citrus  10 65     0 1 

Corn (5) (12)  (17,395)     (0) 

Cotton  2 (17) (2)   (8)  (1) 

Fallow  (1,834) (229) (12)  - (15) (29) (3) 

Garlic Onion  17 0    355  12 

Grains (25)  (8) (267)   (8) (10)  

Grapes 0 12     2 (0)  

Grasses          

Lettuce 

Greens 
 0     (149)  (1,934) 

Non-Ag          

Other Crops 7  (545)     (21) 340 

Other fruit  10 3    14  257 

Other Veg   (4)    (0)   

Peppers  7 (4)      5 

Pist  2 1    4   

Plums        (59)  

Pome        (7)  

Potato 14  (11)    (3) (7)  

Saff  0        

Strwb          

Tomatoes 4       (82)  

Waln          

Total (19) (1,044) (764) (17,681) (0) - 197 (211) (1,331) 

SI Table 59. Table of the resulting CWR discrepancy reflecting user’s accuracy of LIQ 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The CWR is in units of acre-feet. 

Values in parenthesis are negative. Note: this table was broken up into three parts to facilitate 

inclusion of this table and readability. This table is Part 2 of 3 
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  Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 3 

 Kern Ag 2014 

L
IQ

 2
0

1
4

 

Row Labels Peppers Pist Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa  18       1,244 

Almonds  (13) 1    1  (55) 

Apples         (0) 

Berreis          

Carrots (166)   (18)   (9)  (366) 

Cherries  (3)       116 

Citrus 1 1  12     140 

Corn         (17,464) 

Cotton  (7)  1   (0)  (29) 

Fallow  (121) (46) (44)     (3,265) 

Garlic Onion 25   23   12  590 

Grains  (24) 0 (4)     (800) 

Grapes 1 (3) 8     (0) 92 

Grasses          

Lettuce 

Greens 
        (2,079) 

Other Crops  (164)  95   1  0 

Other fruit  0     67  835 

Other Veg         (5) 

Peppers    12     25 

Pist       1  19 

Plums   21      (29) 

Pome  (6)       (8) 

Potato (4)      0  (28) 

Saff         2 

Strwb    (0)     (0) 

Tomatoes (8)   0     (86) 

Waln         1 

Total (151) (320) (16) 77   72 (0) (21,150) 

SI Table 60. Table of the resulting CWR discrepancy reflecting user’s accuracy of LIQ 2014 

compared with Kern Ag 2014 (actual; ground truth) dataset. The CWR is in units of acre-feet. 

Values in parenthesis are negative. Note: this table was broken up into three parts to facilitate 

inclusion of this table and readability. This table is Part 3 of 3 
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Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 1 
 Kern Ag 2014 
  Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

L
IQ

 2
0

1
4

 

Alfalfa  2   (12) 0  (3) 3 14 

Almonds (16)    (0) (8) (28) (34) (1) 2 

Apples           

Berries     5 13     

Carrots 2 2  (2)   (2) (8) 3 11 

Cherries (0) 5  (32)      1 

Citrus  0        7 

Corn 4 48   0    2 31 

Cotton (1) 0   (0)     2 

Fallow (2) (9)   (14)  (14)  (39)  

Garlic 

Onion 
 1   (7)   (13)  1 

Grains 66 0   1 0 (0) (15) 2 66 

Grapes (2) 1  (2) (2) (1) (8)   3 

Grasses           

Lettuce 

Greens 
   (10) (2)  (0)  2  

Other Crops           

Other Fruit (0)    (6)  (1)   24 

Other Veg  0         

Peppers     2      

Pist (2) 9    (0) (1)  0 1 

Plums   (0) (2)  (4)     

Pome           

Potato     (1)  (4)  1 3 

Saff          0 

Strwb           

Tomatoes  0   (0)      

Waln  0         

Total 49 60 (0) (48) (35) (0) (60) (73) (28) 167 

SI Table 61. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of LIQ 

2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The GHG emission is in units 

of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 2 

 Kern Ag 2014 

L
IQ

 2
0

1
4

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Other 

Veg 

Alfalfa  (97) 1 (1)    1 (0) 

Almonds (2) (3) (2)      (1) 

Apples        0  

Berries   2       

Carrots 3 (7) 3 0 0    3 

Cherries  (6) 0     0  

Citrus  0 30     0 0 

Corn 7 49  4,442     0 

Cotton  (2) 1 (0)     (0) 

Fallow  (764) (9) (2)  -  (2) (0) 

Garlic Onion  (2) 0      0 

Grains 13  2 24    2  

Grapes (0) (4)      (0)  

Grasses          

Lettuce 

Greens 
 (1)       243 

Other Crops          

Other Fruit  (2) 0      (13) 

Other Veg   1       

Peppers  2 12      6 

Pist  (0) 1       

Plums        (10)  

Pome          

Potato 4  3     1  

Saff  (2)        

Strwb          

Tomatoes 2       12  

Waln          

Total 27 (838) 46 4,463 0 -  4 239 

SI Table 62. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of LIQ 

2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The GHG emission is in units 

of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of LIQ 2014 with Kern Ag 2014Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 3 

 Kern Ag 2014 

L
IQ

 2
0

1
4

 

 Peppers Pist. Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa  2       (91) 

Almonds  (5)     (0)  (99) 

Apples         0 

Berries      0   19 

Carrots (59)   1   0  (50) 

Cherries  0       (31) 

Citrus (0) 0  1     39 

Corn         4,582 

Cotton  (0)  (1)   (0)  (1) 

Fallow  (8)  (10)     (871) 

Garlic Onion (23)   (1)   (1)  (44) 

Grains  5  1     169 

Grapes (2) (1)      0 (18) 

Grasses          

Lettuce 

Greens 
        232 

Other Crops          

Other Fruit  0     (9)  (7) 

Other Veg         1 

Peppers    8     31 

Pist       (0)  6 

Plums         (17) 

Pome          

Potato (5)      (0)  3 

Saff         (2) 

Strwb    0     0 

Tomatoes (7)   0     9 

Waln         0 

Total (95) (7)  (0)  0 (11) 0 3,859 

SI Table 63. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of LIQ 

2014 compared with Kern Ag 2014 (actual; ground truth) dataset. The GHG emission is in units 

of MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 1 
 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa - (0.48) - - (0.03) (0.00) - 0.00 (0.19) 0.06 

Almonds 0.09 - - - (0.06) (0.38) (0.18) 0.05 0.02 1.60 

Apples - - - - - - - - - 0.02 

Berries - - - - 0.20 - - - - - 

Carrots 4.26 0.02 - - - - - 0.73 - 1.71 

Cherries 0.05 0.05 - (0.52) - - 0.00 - - 0.01 

Citrus - 0.03 - - (0.00) - - - - 0.19 

Corn (0.06) (0.02) - - (2.72) - - - (1.72) 0.17 

Cotton 0.37 - - - - - - 0.33 - 1.32 

Fallow (1.13) (77.85) - (2.88) (14.01) (12.36) (4.54) (1.67) (5.35) - 

Garlic 

Onion 
0.01 0.02 - - 0.11 - - 0.42 - 2.38 

Grains (0.27) (0.96) - - (14.27) - (0.03) (0.27) (0.30) 0.35 

Grapes 0.13 3.01 - (0.02) 0.07 0.08 0.22 - - 4.28 

Grasses - - - - - - - - - - 

Lettuce 

Greens 
- 0.04 - - (1.10) - - - 0.47 0.38 

Non-Ag - - - - - - - - - - 

Other Crops (0.00) (0.01) - (0.13) (2.51) (0.09) (5.83) (0.00) (0.04) 0.10 

Other Fruit - 0.02 - - 0.00 - 0.00 - - 2.24 

Other Veg 1.24 0.00 - - - - - 1.56 2.51 - 

Peppers - 0.15 - - 0.87 - - - - - 

Pist 0.00 0.06 - - - (0.06) (0.01) 0.05 0.14 18.82 

Plums - - 0.00 (0.05) - - - - - - 

Pome - 0.00 - - - - (0.00) - - 0.00 

Potato - (0.00) - (0.42) (12.06) - (0.01) - - 0.31 

Strwb - - - - - - - - - - 

Saff - - - - (0.78) - - (0.04) (0.00) 1.51 

Tomatoes - (0.00) - - (3.76) - - - - 10.66 

Waln - (0.00) - - - - - - - - 

Total 4.69 (75.91) 0.00 (4.02) (50.06) (12.80) (10.38) 1.15 (4.47) 46.11 

SI Table 64. Table of the resulting revenue discrepancy reflecting user’s accuracy of LIQ 2016 

compared with Kern Ag 2016 (actual; ground truth) dataset. The revenue is normalized by 1 million 

USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 2 

 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Other 

Veg 

Alfalfa (0.82) 0.29 (0.09) 0.00 - - 0.01 - - 

Almonds (0.01) 0.28 (2.79) - (0.01) - - - - 

Apples - - - - - - - (0.01) - 

Berries - - 0.02 - - - - - - 

Carrots (0.12) 4.24 (0.08) - 0.29 - 0.59 - (0.04) 

Cherries - - (0.00) - - - 0.20 0.01 - 

Citrus - 0.02 (0.76) - - - - (0.02) - 

Corn (1.42) 11.39 - 0.60 - - 0.00 - (2.73) 

Cotton (0.10) 0.04 - - (0.02) - - - (0.94) 

Fallow (2.97) (2.20) (62.28) (0.02) (0.35) - (0.82) (1.27) (3.11) 

Garlic 

Onion 
- 0.54 - - 0.01 - 1.03 (0.01) 0.01 

Grains (0.82) - (3.13) (0.04) - - (0.05) - (1.13) 

Grapes - 0.01 - - - - 0.81 0.16 - 

Grasses - - - - - - - - - 

Lettuce 

Greens 
(0.03) 0.01 (0.13) - - - 4.23 - (5.40) 

Non-Ag - - - - - - - - - 

Other Crops (1.55) 0.03 (4.01) - (1.31) - - (0.95) (6.85) 

Other Fruit 0.27 0.29 (0.05) - 0.05 - 0.87 - 0.18 

Other Veg - - - - - - - - - 

Peppers 1.16 - (0.01) - - - 1.43 - - 

Pist - 0.01 (0.90) - - - 0.02 - (0.00) 

Plums - - - - - - - 0.00 - 

Pome - - - - - - - (0.01) - 

Potato (2.20) 1.79 - - (0.36) - - (0.02) (1.16) 

Strwb - - - - - - - - - 

Saff (0.48) (0.00) - - - - (0.01) - - 

Tomatoes (3.16) - - 0.00 (0.16) - 0.03 (0.75) (0.04) 

Waln - - - - - - - - - 

Total (12.24) 16.74 (74.24) 0.54 (1.85) - 8.35 (2.86) (21.22) 

SI Table 65. Table of the resulting revenue discrepancy reflecting user’s accuracy of LIQ 2016 

compared with Kern Ag 2016 (actual; ground truth) dataset. The revenue is normalized by 1 million 

USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy Revenue Discrepancy (in 1 Million USD) 

Part 3 

 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa - (0.50) - - (0.55) - - - - (2.31) 

Almonds - (0.08) - - - - - - - (1.48) 

Apples - - - - - - - - - 0.01 

Berries - - - - - - (0.01) - - 0.21 

Carrots (0.01) - - - 6.62 - - 0.05 - 18.24 

Cherries - 0.10 - - - - - - - (0.09) 

Citrus - 0.01 - - 0.02 - - - - (0.52) 

Corn - (0.02) - - (1.66) 0.02 - - - 1.82 

Cotton - (0.00) - - (0.23) - - - - 0.77 

Fallow (1.44) (2.51) - (15.39) (13.66) (0.08) - (1.73) (0.16) (227.76) 

Garlic 

Onion 
(0.03) - - - 1.59 - - 0.02 - 6.10 

Grains - (0.02) - (0.01) (2.43) 0.00 - - - (23.37) 

Grapes 0.01 0.09 - 0.05 - - - 0.09 0.03 9.02 

Grasses - - - - - - - - - - 

Lettuce 

Greens 
- - - - - - - - - (1.55) 

Non-Ag - - - - - - - - - - 

Other Crops (2.62) (0.96) (0.02) (0.03) (0.24) - - - - (27.02) 

Other Fruit (0.10) - - - - - - 0.04 - 3.81 

Other Veg - - - - - - - - - 5.31 

Peppers - - - - 0.11 - - - - 3.73 

Pist - - - - - - - 0.01 0.04 18.17 

Plums - - - - - - - - - (0.05) 

Pome - 0.00 - - - - - - - 0.00 

Potato - - - - - - - 0.11 - (14.01) 

Strwb - - - - - - - - - - 

Saff - (0.01) - - - - - - - 0.18 

Tomatoes (0.88) - - - - - - - - 1.95 

Waln - - - - - - - - - (0.00) 

Total (5.07) (3.92) (0.02) (15.37) (10.43) (0.06) (0.01) (1.41) (0.09) (228.83) 

SI Table 66. Table of the resulting revenue discrepancy reflecting user’s accuracy of LIQ 2016 

compared with Kern Ag 2016 (actual; ground truth) dataset. The revenue is normalized by 1 million 

USD. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 1 
 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  140   11 0  10 432 272 

Almonds (25)    21 (1) (67) 3 6 1,020 

Apples          44 

Berries     (13)      

Carrots (1,608) (9)      (154)  199 

Cherries (3) 0  80   (0)   2 

Citrus  11   2     98 

Corn (8,459) (7)   16    (1,130) 304 

Cotton (831)       (246)  1,572 

Fallow (5,214) (49,729)  (116) (2,290) (2,068) (2,414) (5,337) (6,380)  

Garlic 

Onion 
(0) 3   592   39  908 

Grains (1,748) (401)   (393)  (10) (996) (197) 974 

Grapes (6) 34  4 10 4 (18)   646 

Grasses           

Lettuce 

Greens 
 (20)   76    (44) 80 

Non-Ag           

Other Crops (87) (1)  6 335 (3) (1,402) (0) 19 305 

Other Fruit  2   7  (1)   823 

Other Veg (278) (0)      (101) 41  

Peppers  (3)   160      

Pist (1) 28    2 (4) 7 48 11,429 

Plums   (0) 5       

Pome  (4)     (4)   1 

Potato  (11)  16 2,048  (9)   151 

Safflower     6   (124) (2) 5,479 

Strwb           

Tomatoes  (1)   390     8,274 

Waln  0         

Total (18,259) (49,968) (0) (5) 978 (2,065) (3,929) (6,900) (7,206) 32,579 

SI Table 67. Table of the resulting CWR discrepancy reflecting user’s accuracy of LIQ 2016 

compared with Kern Ag 2016 (actual; ground truth) dataset. CWR is in units of acre-feet. Values 

in parenthesis are negative. Note: this table was broken up into three parts to facilitate inclusion 

of this table and readability. This table is Part 1 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 2 

 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Other 

Veg 

Alfalfa 193 763 4 2   482   

Almonds 3 2 (34)  5     

Apples        (0)  

Berries   (6)       

Carrots (366) (972) (15)  (59)  (2)  (174) 

Cherries   (0)    24 (1)  

Citrus  3 60     8  

Corn (110) (40,437)  (9,844)   15  (188) 

Cotton (1) (29)   3    1 

Fallow (690) (14,699) (9,459) (96) (63) - (1,039) (420) (705) 

Garlic Onion  34   15  302 2 144 

Grains (86)  (301) (349)   22  (110) 

Grapes  0     85 (3)  

Grasses          

Lettuce 

Greens 
(9) (1) (16)    322  (1,571) 

Non-Ag          

Other Crops 70 (34) (134)  236   (89) 377 

Other Fruit 420 24 3  42  252  268 

Other Veg          

Peppers 106  (1)    161   

Pist  1 12    8  0 

Plums        (51)  

Pome        (3)  

Potato 22 (342)   105   (3) 32 

Safflower (34) (2)     6   

Strwb          

Tomatoes (27)   (2) 26  18 (130) 0 

Waln          

Total (509) (55,688) (9,887) (10,290) 308 - 656 (692) (1,925) 

SI Table 68. Table of the resulting CWR discrepancy reflecting user’s accuracy of LIQ 2016 

compared with Kern Ag 2016 (actual; ground truth) dataset. CWR is in units of acre-feet. Values 

in parenthesis are negative. Note: this table was broken up into three parts to facilitate inclusion 

of this table and readability. This table is Part 2 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 3 

 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa  76   356     2,742 

Almonds  (36)        897 

Apples          44 

Berries       (0)   (20) 

Carrots (3)    (1,100)   (8)  (4,272) 

Cherries  (3)        99 

Citrus  3   12     197 

Corn  (9)   (121) (1)    (59,971) 

Cotton  (1)   27     494 

Fallow (256) (1,517)  (2,689) (5,370) (306)  (1,335) (210) (112,401) 

Garlic 

Onion 
3    591   5  2,636 

Grains  (9)  0 (328) (3)    (3,936) 

Grapes 1 (1)  7    5 (0) 769 

Grasses           

Lettuce 

Greens 
         (1,184) 

Non-Ag           

Other 

Crops 
(58) (174) (1) 7 51     (578) 

Other Fruit 16       9  1,867 

Other Veg          (339) 

Peppers     10     434 

Pist        3 3 11,536 

Plums          (47) 

Pome  (6)        (17) 

Potato        7  2,017 

Safflower  (5)        5,324 

Strwb           

Tomatoes (51)         8,498 

Waln          0 

Total (348) (1,683) (1) (2,674) (5,873) (310) (0) (1,313) (207) (145,212) 

SI Table 69. Table of the resulting CWR discrepancy reflecting user’s accuracy of LIQ 2016 

compared with Kern Ag 2016 (actual; ground truth) dataset. CWR is in units of acre-feet. Values 

in parenthesis are negative. Note: this table was broken up into three parts to facilitate inclusion 

of this table and readability. This table is Part 3 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy GHG Emission Discrepancy (in MGCO2e) 

Part 1 
 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  28   (1) 0  (5) 21 19 

Almonds (5)    (6) (5) (31) (10) (1) 25 

Apples          4 

Berries     5      

Carrots 101 2      (41)  93 

Cherries (0) 1  (32)   (0)   0 

Citrus  5   0     15 

Corn 2,110 4   152    1,418 189 

Cotton (41)       (272)  149 

Fallow (377) (1,225)  (94) (762) (166) (370) (1,813) (602)  

Garlic 

Onion 
0 1   (36)   (29)  91 

Grains 220 130   284  (0) (184) 103 520 

Grapes (1) 9  (2) (2) (3) (9)   25 

Grasses           

Lettuce 

Greens 
 4   (74)    15 20 

Non-Ag           

Other 

Crops 
          

Other 

Fruit 
 0   (1)  (0)   48 

Other 

Veg 
2 0      (118) 37  

Peppers  14   72      

Pist (0) 10    (0) (2) (7) 1 743 

Plums   (0) (2)       

Pome           

Potato  5  (9) (141)  (1)   30 

Saff     (33)   (81) (0) 473 

Strwb           

Tomatoes  0   (8)     1,858 

Waln  0         

Total 2,008 (1,012) (0) (140) (550) (174) (414) (2,558) 992 4,302 

SI Table 70. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of LIQ 

2016 compared with Kern Ag 2016 (actual; ground truth) dataset. GHG emission is in units of 

MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy GHG Emission Discrepancy (in MGCO2e) 

Part 2 

 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Other 

Veg 

Alfalfa (6) (238) 1 (1)      

Almonds (1) (38) (8)  (1)     

Apples        0  

Berries   2       

Carrots 42 (84) 3  19    30 

Cherries   0     0  

Citrus  0 31     4  

Corn 97 7,736  2,005     206 

Cotton (2) (15)   (1)    (14) 

Fallow (114) (3,223) (361) (12) (18) -  (27) (104) 

Garlic Onion  (18)   (0)   2 5 

Grains 27  80 24     45 

Grapes  (0)      (1)  

Grasses          

Lettuce 

Greens 
0 (0) 3      233 

Non-Ag          

Other Crops          

Other Fruit (34) (13) 0  (3)    (13) 

Other Veg          

Peppers 123  1       

Pist  (1) 6      (0) 

Plums        (16)  

Pome          

Potato 35 (97)   6   1 31 

Saff (12) (1)        

Strwb          

Tomatoes 55   (0) 3   24 1 

Waln          

Total 211 4,007 (243) 2,016 6 -  (13) 421 

SI Table 71. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of LIQ 

2016 compared with Kern Ag 2016 (actual; ground truth) dataset. GHG emission is in units of 

MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of LIQ 2016 with Kern Ag 2016 Reflecting User’s Accuracy GHG Emission Discrepancy (in MGCO2e) 

Part 3 

 Kern Ag 2016 

L
IQ

 2
0

1
6

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa  8   (21)     (195) 

Almonds  (13)        (95) 

Apples          4 

Berries       0   7 

Carrots (1)    77   0  240 

Cherries  0        (31) 

Citrus  1   1     58 

Corn  4   229 40    14,189 

Cotton  (0)   (20)     (215) 

Fallow (96) (99)   (1,314) (26)  (301) (8) (11,113) 

Garlic 

Onion 
(3)    (26)   (0)  (13) 

Grains  2   132 5    1,388 

Grapes (2) (1)      (2) 0 10 

Grasses           

Lettuce 

Greens 
         201 

Non-Ag           

Other Crops           

Other Fruit (15)       (1)  (31) 

Other Veg          (79) 

Peppers     6     216 

Pist        (1) 1 751 

Plums          (18) 

Pome           

Potato        (2)  (143) 

Saff  (0)        347 

Strwb           

Tomatoes (40)         1,894 

Waln          0 

Total (157) (99)   (935) 19 0 (307) (6) 7,373 

SI Table 72. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of LIQ 

2016 compared with Kern Ag 2016 (actual; ground truth) dataset. GHG emission is in units of 

MgCO2e. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy Revenue Discrepancy (in Million USD) 

Part 1 
 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa - (18.33) (0.07) (0.38) (11.45) (0.76) (8.38) 1.09 (0.69) 2.73 

Almonds 2.38 - (0.06) (0.18) (2.31) 2.68 (12.77) 1.69 1.21 10.61 

Apples 0.00 0.10 - (0.01) - 0.00 (0.98) 0.03 0.00 0.41 

Berries 0.04 0.31 - - - 0.01 0.76 0.02 - 0.10 

Carrots 0.19 0.49 - (0.01) - 0.19 0.03 0.05 0.28 1.56 

Cherries 0.02 (0.56) (0.01) (3.71) (0.73) - (14.70) 0.06 0.02 0.79 

Citrus 0.05 1.75 0.00 (3.33) (0.01) 2.41 - 0.10 0.00 1.77 

Corn (0.15) (1.07) - (0.06) (4.86) (0.03) (0.18) - (0.78) 1.69 

Cotton 0.34 (1.02) - - (1.67) (0.01) (0.38) 0.93 - 7.58 

Fallow (1.68) (46.34) (3.44) (6.21) (42.09) (1.15) (36.97) (2.51) (7.96) - 

Garlic 

Onion 
0.36 (0.09) (0.00) - (2.38) (0.00) (0.03) 0.24 0.08 3.30 

Grains (3.17) (5.55) (0.00) (0.01) (17.06) (0.12) (2.75) (4.68) (0.98) 5.05 

Grapes 3.52 23.98 0.18 (0.67) 6.52 8.23 69.53 5.76 3.63 15.17 

Grasses (0.06) (0.00) - - (0.32) (0.00) - (0.01) (0.00) 0.02 

Lettuce 

Greens 
0.01 0.00 - - 0.00 - - 0.14 0.00 0.01 

Non-Ag (2.92) (71.06) (0.37) (5.46) (19.24) (3.67) (132.81) (1.22) (1.89) - 

Other 

Crops 
(0.00) (0.25) (0.00) (0.01) (0.23) (0.03) (1.41) (0.00) (0.03) 0.00 

Other 

Fruit 
0.07 0.09 - - (0.38) - (0.03) 0.40 0.19 0.94 

Other 

Veg 
0.52 0.10 0.00 - 0.10 - 0.33 0.91 1.24 3.30 

Peppers 0.21 1.47 - - 0.82 0.01 - 3.24 0.09 3.84 

Pist 0.25 (18.88) (0.03) (0.39) (0.60) (0.41) (10.69) 0.12 0.32 2.27 

Plums - 0.02 0.00 - - - 0.00 - - - 

Pome 0.01 (0.01) - - - - (0.00) 0.00 - 0.00 

Potato 0.11 0.02 (0.00) (0.06) (6.78) 0.00 (0.36) 0.49 0.06 0.78 

Saff (0.01) (0.01) - - (0.01) - - (0.00) - 0.01 

Strwb - - - - - - - - 0.01 - 

Tomatoes 0.20 (0.60) - (0.02) (4.03) (0.00) (0.04) 0.78 0.09 6.71 

Waln 0.03 (0.09) (0.00) - (0.01) (0.01) (0.44) 0.01 0.07 0.11 

Total 0.34 (135.53) (3.81) (20.50) (106.72) 7.35 (152.26) 7.65 (5.00) 68.74 

SI Table 73. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2014 compared with LIQ 2014 (assumed ground truth for the statewide dataset). The revenue is 

normalized by 1 million USD. Values in parenthesis are negative. Note: this table was broken up 

into three parts to facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy Revenue Discrepancy (in Million USD) 

Part 2 

 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Other 

Veg 

Alfalfa (1.22) 4.22 (156.33) - (1.59) - 0.80 (0.89) (0.78) 

Almonds 0.32 4.63 (145.51) - (0.86) - 5.39 (0.12) (0.26) 

Apples - - (13.75) - - - 0.05 0.00 - 

Berries - 0.38 12.54 - - - 0.15 - - 

Carrots 1.72 1.38 (3.13) - (0.08) - 0.71 0.18 (0.08) 

Cherries 0.00 0.10 (46.53) - (0.26) - 1.28 (0.26) (0.00) 

Citrus 0.02 0.38 (110.79) - (0.02) - 2.13 0.27 - 

Corn (0.61) 0.45 (3.44) - (1.27) - 0.13 (0.38) (0.58) 

Cotton (0.03) 0.71 (37.09) - (0.92) - 0.77 (1.15) (3.55) 

Fallow (3.19) (5.28) (166.85) - (18.89) - (0.58) (8.17) (3.16) 

Garlic Onion - 1.40 (0.07) - (0.67) - 0.51 (0.01) (0.01) 

Grains (3.40) - (14.66) - (3.51) - 0.14 (0.57) (0.35) 

Grapes 0.83 2.98 - - 1.69 - 14.69 4.90 0.11 

Grasses - (0.02) (0.22) - - - 0.00 (0.00) (0.12) 

Lettuce 

Greens 
- 0.01 - - - - - 0.00 - 

Non-Ag (2.23) (2.90) (198.73) - (1.60) - (0.46) (5.10) (0.78) 

Other Crops (0.30) (0.00) (5.08) - (0.08) - - (0.36) (0.00) 

Other Fruit 0.08 0.10 (2.41) - (0.03) - 0.08 - (0.00) 

Other Veg 0.00 0.37 (2.73) - - - 1.39 0.21 - 

Peppers 0.11 0.61 0.27 - 0.25 - - 0.79 - 

Pist (0.06) 0.75 (21.31) - (0.16) - 0.29 (0.44) (0.08) 

Plums - - (0.18) - - - 0.00 - - 

Pome - 0.01 (0.40) - - - - - - 

Potato 0.93 2.68 (1.65) - (0.39) - 0.80 (0.00) (0.03) 

Saff (0.00) (0.00) (0.28) - (0.01) - - - - 

Strwb - 0.01 - - - - - - - 

Tomatoes (0.46) 0.49 (3.91) - (0.70) - 1.07 (1.35) (0.01) 

Waln - 0.02 (5.31) - (0.00) - 0.06 (0.00) - 

Total (7.47) 13.48 (927.54) - (29.10) - 29.41 (12.43) (9.70) 

SI Table 74. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2014 compared with LIQ 2014 (assumed ground truth for the statewide dataset). The revenue is 

normalized by 1 million USD. Values in parenthesis are negative. Note: this table was broken up 

into three parts to facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy Revenue Discrepancy (in Million USD) 

Part 3 

 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa (3.06) (0.76) (0.01) (0.11) (3.99) 0.19 - (1.23) (0.02) (201.02) 

Almonds (0.39) 50.71 (0.00) 3.08 (0.01) 0.05 - 0.13 1.28 (78.26) 

Apples (0.09) 0.49 - - - - - - - (13.73) 

Berries - 0.66 - - - 0.01 - - 0.01 14.98 

Carrots (1.63) 0.04 (0.00) 0.00 2.97 0.07 - 0.66 - 5.60 

Cherries (0.36) 0.42 (0.42) 0.01 (0.14) 0.02 (0.04) 0.01 0.00 (64.97) 

Citrus (0.14) 7.66 (0.01) 0.95 0.06 0.02 - 0.02 0.06 (96.63) 

Corn (3.04) (0.16) - (0.00) (0.78) 0.00 - (0.43) (0.00) (15.55) 

Cotton (5.04) (0.11) - (0.18) (0.80) - - (0.10) - (41.73) 

Fallow (0.67) (50.89) (0.31) (6.87) (6.04) (0.01) (0.22) (2.10) (0.02) (421.58) 

Garlic Onion (0.03) 0.02 - - (0.40) 0.00 - 0.02 - 2.25 

Grains (1.51) (1.46) - (0.03) (5.28) 0.26 - (0.10) - (59.73) 

Grapes (2.77) 9.17 0.17 27.02 5.03 0.43 (0.02) 1.42 0.14 201.62 

Grasses (0.36) (0.00) - - (0.00) - - (0.00) - (1.09) 

Lettuce 

Greens 
(0.01) - - - 0.00 - - 0.00 - 0.17 

Non-Ag (5.66) (72.14) (0.06) (16.97) (17.57) (0.03) (0.43) (1.15) (0.22) (564.67) 

Other Crops - (0.00) - (0.00) (0.01) - - (0.00) - (7.80) 

Other Fruit (7.99) 1.66 - 1.52 0.03 0.06 - 0.08 - (5.56) 

Other Veg (0.17) 0.01 - - 0.11 - - 0.30 - 5.98 

Peppers - - - - 0.02 - - 0.05 - 11.75 

Pist (0.05) - (0.01) (2.31) (0.18) 0.07 - (0.01) (0.04) (51.59) 

Plums - 0.01 - 0.02 - - - - - (0.13) 

Pome - 0.02 - - - - - - - (0.37) 

Potato (0.33) 0.01 (0.00) 0.00 - 0.01 (0.05) 0.08 - (3.70) 

Saff (0.01) (0.02) - - - - - - - (0.35) 

Strwb - - - - - - - - - 0.03 

Tomatoes (4.61) 0.01 - 0.00 (0.83) 0.01 (0.01) - - (7.18) 

Waln - 0.39 - 0.29 (0.00) - - - - (4.89) 

Total (37.90) (54.29) (0.64) 6.40 (27.83) 1.17 (0.77) (2.37) 1.18 (1,398.17) 

SI Table 75. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2014 compared with LIQ 2014 (assumed ground truth for the statewide dataset). The revenue is 

normalized by 1 million USD. Values in parenthesis are negative. Note: this table was broken up 

into three parts to facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 1 
 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton 

Alfalfa  4,935 11  5,306 274 (343) 7,245 2,759 

Almonds (692)  (19)  1,886 (23) (8,420) 595 344 

Apples (0) 43    1 (876) 10 1 

Berries (1) 3    0 (35) 1  

Carrots (93) (380)    (102) (253) (2) (42) 

Cherries (8) 68 (1)  416  (5,534) 31 11 

Citrus 0 1,126 2  60 912  42 1 

Corn (995) (348)   308 (13) (77)  (420) 

Cotton (1,415) (264)   272 (5) (157) 610  

Fallow (4,272) (24,271) (1,742)  (5,807) (776) (20,876) (2,926) (7,449) 

Garlic Onion (287) (56) (0)  644 (1) (20) 52 4 

Grains (11,305) (1,810) (1)  714 (54) (1,181) (756) (467) 

Grapes (187) 302 (2)  1,035 67 (5,907) 495 221 

Grasses (64) 0   91 0  30 4 

Lettuce 

Greens 
(4) (1)   0   1 (0) 

Non-Ag (7,436) (37,219) (189)  (2,654) (2,487) (74,999) (1,419) (1,768) 

Other Crops (1) 11 (0)  64 1 (221) 6 20 

Other Fruit (12) 83   454  (19) 156 65 

Other Veg (127) (18) (0)  89  (389) 95 50 

Peppers (12) (18)   66 (0)  150 2 

Pist (149) 2,599 0  271 87 (2,296) 124 457 

Plums  0 (0)    (1)   

Pome (12) (7)     (1) (0)  

Potato (55) (193) (1)  3,094 (2) (422) 73 2 

Saff (16) (3)   1   0  

Strwb         0 

Tomatoes (200) (256)   973 (2) (24) 213 7 

Waln (15) 10 (0)  7 2 (136) 5 47 

Total (27,359) (55,665) (1,944) - 7,287 (2,121) (122,186) 4,834 (6,153) 

SI Table 76. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2014 

compared with LIQ 2014 (assumed ground truth for the statewide dataset). The CWR is in units of 

acre-feet. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 2 

 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Fallow 
Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Alfalfa 6,718 246 14,756 7,398  525  1,129 39 

Almonds 5,649 (117) 1,629 (1,149)  356  539 (229) 

Apples 211   184    7 (1) 

Berries 10  24 110    3  

Carrots 224 (1,094) (35) (481)  (34)  (129) (261) 

Cherries 552 (3) 49 (64)  85  199 (119) 

Citrus 982 3 162 8,911  33  515 65 

Corn 2,062 (403) 235 (280)  (9)  (179) (181) 

Cotton 7,226 (19) 401 (2,132)  62  (214) (525) 

Fallow  (2,635) (8,088) (24,988)  (3,298)  (2,681) (5,157) 

Garlic 

Onion 
1,638  326 (4)  73  (53) (12) 

Grains 8,172 (2,120)  (1,266)  (80)  (481) (265) 

Grapes 2,288 (18) 272   224  472 (229) 

Grasses 100  257 1    1 (0) 

Lettuce 

Greens 
1  0      (1) 

Non-Ag - (1,845) (4,448) (29,763)  (279)  (2,109) (3,220) 

Other 

Crops 
25 (27) 2 12  16   (43) 

Other 

Fruit 
519 (6) 39 40  17  13  

Other Veg 817 (1) 42 (195)    (32) (103) 

Peppers 373 (4) 31 (18)  15   (42) 

Pist 2,444 (10) 672 222  47  93 (77) 

Plums    (2)    0  

Pome 1  (0) (43)      

Potato 291 (875) 445 (108)  64  (56) (10) 

Saff 33 (1) 1 (20)  0    

Strwb   1       

Tomatoes 3,850 (1,175) 138 (227)  71  (124) (973) 

Waln 84  9 3  1  11 (1) 

Total 44,270 (10,102) 6,919 (43,860) - (2,114) - (3,076) (11,346) 

SI Table 77. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2014 

compared with LIQ 2014 (assumed ground truth for the statewide dataset). The CWR is in units of 

acre-feet. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 3 

 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 
 Other 

Veg 

Peppe

r 
Pist Plum Pome Potato Saff 

Strw

b 
Tomato 

Wal

n 
Total 

Alfalfa 191 147 360 1 167 1,834 412  1,168 8 55,286 

Almonds 59 4 (6,833) (0) 2,986 117 15  63 
(143

) 
(3,383) 

Apples  2 (5)        (424) 

Berries   (3)    0   0 113 

Carrots (62) (136) (18) (1) 0 
(1,337

) 
(4)  (144)  (4,384) 

Cherries 0 5 (75) (0) 25 103 7 1 11 (0) (4,239) 

Citrus  10 1,434 7 752 63 7  13 16 15,116 

Corn (46) (145) (159)  1 (111) (0)  (96) (1) (860) 

Cotton (57) (146) (156)  115 (25)   (1)  3,571 

Fallow (737) (68) (55,534) (107) 
(2,023

) 

(2,278

) 
(23) (6) (1,173) (16) 

(176,932

) 

Garlic 

Onion 
(0) (1) (17)   (14) 0  2  2,273 

Grains (32) (78) (1,295)  4 (828) 
(116

) 
 (24)  (13,267) 

Grapes 9 151 (105) 1 3,253 329 34 1 89 (0) 2,793 

Grasses 15 5 (0)   0   0  440 

Lettuce 

Greens 
 (1)    (0)   (0)  (5) 

Non-Ag (183) (571) (78,714) (21) 
(4,995

) 

(6,634

) 
(82) (13) (642) 

(183

) 

(261,873

) 

Other 

Crops 
0  (0)  2 3   1  (129) 

Other 

Fruit 
1 218 10  1,434 86 19  44  3,160 

Other 

Veg 
 (5) (1)   4   12  238 

Peppers      0   1  545 

Pist 15 1  0 8,840 80 48  28 5 13,504 

Plums   (1)  7      4 

Pome   (64)        (126) 

Potato (0) (10) (3) (0) 1  1 1 2  2,236 

Saff  (0) (15)        (20) 

Strwb           1 

Tomatoe

s 
(0) (127) (20)  1 (13) 2 0   2,113 

Waln   (100)  2,398 1     2,326 

Total (825) (745) 
(141,315

) 
(120) 12,969 

(8,619

) 
322 (16) (647) 

(315

) 

(361,926

) 

SI Table 78. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2014 

compared with LIQ 2014 (assumed ground truth for the statewide dataset). The CWR is in units of 

acre-feet. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 1 
 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  983 (0) (9) (335) 13 (496) (1,756) 129 478 

Almonds (128)  (15) (6) (396) (373) (3,743) (323) (42) 136 

Apples 0 27  (0)  0 (307) (3) 0 19 

Berries 1 11    0 11 0  3 

Carrots 6 84  (0)  13 (13) (3) 14 92 

Cherries (0) 77 (0) (104) (49)  (1,884) (13) 0 42 

Citrus 3 514 1 (49) 3 310  (4) 0 149 

Corn 235 204  (0) 317 6 8  623 1,231 

Cotton (63) 35   (80) (0) (31) (745)  679 

Fallow (294) (593) (159) (197) (2,493) (61) (3,114) (1,825) (713)  

Garlic 

Onion 
8 18 0  (80) 0 (3) (45) 6 270 

Grains 1,426 655 0 (0) 394 13 (1) (3,311) 338 3,721 

Grapes (31) 74 (2) (59) (178) (59) (2,712) (232) (14) 87 

Grasses 12 0   (0) 0  (8) 1 15 

Lettuce 

Greens 
0 0   (0)   (10) 0 0 

Non-Ag (512) (910) (17) (173) (1,139) (196) (11,186) (885) (169) - 

Other 

Crops 
          

Other 

Fruit 
(1) 29   (51)  (9) (57) 1 33 

Other 

Veg 
1 6 (0)  (13)  (67) (69) 18 106 

Peppers 6 66   24 0  18 3 147 

Pist (12) 1,060 (1) (11) (31) (6) (1,000) (47) 9 160 

Plums  0 (0)    (0)    

Pome           

Potato 4 82 0 (1) (151) 0 (42) (53) 4 58 

Saff (1) 0   (1)   (1)  3 

Strwb         0  

Tomatoes 17 120  (0) (12) 1 (2) (144) 16 832 

Waln (2) 2 (0)  (1) (2) (62) (2) (3) 3 

Total 674 2,546 (194) (611) (4,273) (342) (24,655) (9,521) 222 8,264 

SI Table 79. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2014 compared with LIQ 2014 (assumed ground truth for the statewide dataset). The 

GHG emission is in units of MgCO2e. Values in parenthesis are negative. Note: this table was 

broken up into three parts to facilitate inclusion of this table and readability. This table is Part 1 

of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 2 

 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Other 

Veg 

Alfalfa (28) (1,902) 1,362  (18)   14 (1) 

Almonds (64) (547) (452)  (75)   (40) (16) 

Apples   174     0  

Berries  4 1,097       

Carrots 58 (32) 86  8   25 10 

Cherries (1) (11) 336  (8)   3 (0) 

Citrus 1 0 4,322  3   77  

Corn 115 317 139  87   54 44 

Cotton (2) (246) 145  (24)   (7) (53) 

Fallow (261) (3,890) (956)  (777)   (292) (102) 

Garlic 

Onion 
 (120) 1  (4)   1 0 

Grains 290  379  113   46 14 

Grapes (11) (77)   (36)   (32) (2) 

Grasses  (24) 4     0 2 

Lettuce 

Greens 
 (0)      0  

Non-Ag (183) (2,140) (1,138)  (66)   (182) (25) 

Other 

Crops 
         

Other 

Fruit 
(6) (8) 16  (1)    (0) 

Other 

Veg 
(0) (15) 42     5  

Peppers 3 9 38  9   31  

Pist (6) (142) 117  (4)   (0) (1) 

Plums   0       

Pome          

Potato 47 (118) 33  6   1 1 

Saff (0) (1) 0  (0)     

Strwb  (0)        

Tomatoes 96 (30) 77  11   138 0 

Waln  (3) (1)  (0)   (0)  

Total 48 (8,974) 5,819  (777)   (158) (127) 

SI Table 80. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2014 compared with LIQ 2014 (assumed ground truth for the statewide dataset). The 

GHG emission is in units of MgCO2e. Values in parenthesis are negative. Note: this table was 

broken up into three parts to facilitate inclusion of this table and readability. This table is Part 2 

of 3. 
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Crosstab of CropScape 2014 with LIQ 2014 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 3 

 LIQ 2014 

C
ro

p
S

ca
p

e 
2
0

1
4

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa (91) 37 0  (132) 26  (103) 2 (1,829) 

Almonds (17) (2,847) (0)  (49) (1)  (26) (33) (9,056) 

Apples (3) 12        (81) 

Berries  18    0   0 1,146 

Carrots (48) 2 0  66 3  2  371 

Cherries (13) 6 11  (20) 0 (0) (2) 0 (1,628) 

Citrus (3) 717 4  7 1  1 8 6,066 

Corn (17) 61   86 2  80 1 3,593 

Cotton (171) (3)   (51)   (17)  (635) 

Fallow (26) (3,592) (4)  (445) (2) (2) (260) (1) (20,060) 

Garlic Onion (1) 2   (21) 0  (5)  29 

Grains (24) 278   233 368  6  4,938 

Grapes (388) (50) (0)  (101) (0) (0) (28) 0 (3,853) 

Grasses (8) 0   0   0  (6) 

Lettuce 

Greens 
(0)    (0)   (0)  (10) 

Non-Ag (217) (5,091) (1)  (1,297) (7) (4) (143) (7) (25,689) 

Other Crops           

Other Fruit (312) 0   (15) 1  (8)  (387) 

Other Veg (7) 0   (4)   (9)  (4) 

Peppers     1   1  356 

Pist (2)  0  (14) 2  (6) 5 69 

Plums  (0)        (0) 

Pome           

Potato (10) 1 0   0 (0) (1)  (141) 

Saff (0) (1)        (3) 

Strwb          0 

Tomatoes (115) 4   16 1 (0)   1,025 

Waln  (47)   (0)     (118) 

Total (1,471) (10,493) 10  (1,742) 398 (7) (517) (24) (45,905) 

SI Table 81. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2014 compared with LIQ 2014 (assumed ground truth for the statewide dataset). The 

GHG emission is in units of MgCO2e. Values in parenthesis are negative. Note: this table was 

broken up into three parts to facilitate inclusion of this table and readability. This table is Part 3 

of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy Revenue Discrepancy (in Million USD) 

Part 1 
 LIQ 2016  

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa - (11.65) (0.00) (0.54) (8.90) (2.62) (6.09) 0.12 (0.36) 0.46 

Almonds 3.83 - 0.99 (2.03) (1.73) (30.55) (49.60) 1.95 0.66 92.02 

Apples - (0.00) - - - - (0.01) - - - 

Berries - 0.01 - - - 0.01 0.01 - - - 

Carrots 1.04 0.07 - (0.07) - (0.15) 0.02 0.37 0.01 5.20 

Cherries 0.04 0.44 - (0.05) 0.00 - 2.81 0.00 - 2.48 

Citrus 0.11 6.49 0.02 (2.45) (0.03) (12.22) - 0.29 0.01 4.68 

Corn (0.00) (0.13) - (0.05) (1.58) (0.02) (0.02) - (0.05) 0.01 

Cotton 0.32 (0.52) 0.01 - (0.86) (0.60) (0.22) 3.03 - 0.74 

Fallow (1.28) (39.61) (0.13) (2.13) (22.30) (2.79) (27.79) (2.60) (1.26) - 

Garlic 

Onion 
1.01 0.08 - - 0.08 (0.04) 0.00 0.54 0.01 1.57 

Grains (1.06) (5.37) - (0.85) (21.07) (1.35) (1.67) (10.69) (0.28) 1.69 

Grapes 2.12 27.48 0.15 (0.99) 4.24 3.49 69.25 3.44 1.71 38.02 

Grasses (0.00) (0.32) - (0.02) (7.04) (0.03) (0.17) (0.04) (0.01) 0.45 

Lettuce 

Greens 
0.01 0.03 - - (0.01) (0.01) (0.01) 0.02 0.08 1.51 

Non-Ag (1.35) (39.58) (0.01) (6.05) (6.05) (6.04) (92.58) (1.26) (0.89) - 

Other 

Crops 
(0.00) (0.18) - (0.03) (2.03) (0.06) (0.36) (0.00) (0.00) 0.20 

Other 

Fruit 
0.51 0.36 - (0.05) 0.07 (0.41) 2.25 4.99 0.36 0.30 

Other 

Veg 
0.35 0.04 0.00 (0.05) 0.02 - 0.00 0.81 1.28 0.16 

Peppers 0.03 0.17 - (0.01) 0.06 (0.01) 0.32 0.70 0.30 1.54 

Pist 0.71 7.39 0.23 (0.77) (1.11) (2.20) (7.96) 0.54 0.36 23.37 

Plums 0.01 0.09 - - - (0.02) 0.01 - - - 

Pome 0.06 0.86 - - (0.00) (0.44) (0.00) 0.03 0.11 0.10 

Potato 0.10 (0.00) 0.00 (0.03) (14.07) (0.02) (0.04) 0.88 0.02 10.80 

Saff (0.02) (0.04) - - (0.38) (0.00) (0.00) (0.01) (0.00) 0.05 

Strwb           

Tomatoes 0.43 (0.97) 0.04 (0.02) (3.35) (0.56) (0.70) 2.33 0.29 0.50 

Waln 0.04 (1.29) 0.01 - (0.12) (0.29) (0.60) 0.06 0.02 0.31 

Total 6.99 (56.12) 1.31 (16.19) (86.16) (56.93) (113.14) 5.51 2.38 186.15 

SI Table 82. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2016 compared with LIQ 2016 (assumed ground truth for the statewide dataset). Revenue is 

nortmalized by 1 million USD. Values in parenthesis are negative. Note: this table was broken up 

into three parts to facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy Revenue Discrepancy (in Million USD) 

Part 2 

 LIQ 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Other 

Veg 

Alfalfa (2.95) 0.61 (98.16)  (0.80)  0.01 (2.16) (0.77) 

Almonds (1.37) 5.68 (252.41)  (0.47)  2.22 (2.13) (0.19) 

Apples - - (0.03)  (0.00)  - - - 

Berries - - 0.01  -  - - - 

Carrots (0.00) 0.76 (2.04)  0.07  0.28 (0.01) - 

Cherries - 0.41 (0.41)  -  0.02 0.01 - 

Citrus (0.01) 0.44 (48.94)  0.00  0.51 (0.07) - 

Corn (0.52) 0.02 (0.20)  (0.77)  0.00 (0.87) (0.00) 

Cotton (0.00) 0.08 (31.67)  (1.06)  0.43 (0.85) (1.11) 

Fallow (7.26) (3.04) (77.51)  (13.50)  (0.85) (3.29) (0.48) 

Garlic 

Onion 
- 2.03 (0.22)  0.16  0.94 (0.00) 0.00 

Grains (6.75) - (9.27)  (6.06)  (0.15) (0.51) (0.34) 

Grapes 0.90 3.43 -  0.82  10.42 4.68 0.23 

Grasses (0.52) 0.06 (9.73)  (1.60)  (0.01) (0.07) (0.02) 

Lettuce 

Greens 
(0.01) 0.13 (0.03)  -  0.04 - - 

Non-Ag (2.16) (0.97) (103.46)  (1.58)  (0.80) (1.23) (0.51) 

Other Crops (0.48) 0.03 (5.03)  (3.28)  - (0.04) (0.02) 

Other Fruit 0.01 0.06 (4.02)  0.06  0.74 - 0.01 

Other Veg - 0.07 (0.77)  0.13  1.12 (0.01) - 

Peppers 0.03 0.24 (4.21)  0.05  0.42 1.17 - 

Pist (0.27) 2.37 (21.12)  (0.26)  0.69 (1.25) (0.01) 

Plums - 0.00 (1.18)  -  - 0.00 - 

Pome (0.00) 0.02 (12.02)  (0.00)  0.09 (0.29) (0.00) 

Potato (1.02) 1.22 (0.07)  (1.63)  0.46 (0.01) - 

Saff (0.13) (0.00) (0.15)  (0.05)  - - (0.01) 

Strwb          

Tomatoes (1.17) 0.20 (10.79)  (1.36)  0.47 (7.87) (0.30) 

Waln (0.03) 0.03 (7.89)  (0.10)  0.02 (0.03) (0.02) 

Total (23.72) 13.87 (701.33)  (31.22)  17.07 (14.83) (3.52) 

SI Table 83. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2016 compared with LIQ 2016 (assumed ground truth for the statewide dataset). Revenue is 

nortmalized by 1 million USD. Values in parenthesis are negative. Note: this table was broken up 

into three parts to facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy Revenue Discrepancy (in Million USD) 

Part 3 

 LIQ 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa (0.52) (0.69) (0.02) (0.06) (0.76) 0.07 - (0.56) (0.02) (136.35) 

Almonds (0.21) (18.08) (0.47) (0.85) 0.01 0.26 (0.03) 0.34 1.03 (251.12) 

Apples - - - (0.09) - - - - - (0.14) 

Berries - - - - - - - - - 0.04 

Carrots (0.13) 0.01 - - 3.99 0.04 - 0.47 - 9.93 

Cherries - 8.30 - 0.14 - - - - 0.00 14.19 

Citrus (0.40) 2.33 (0.02) 0.02 0.10 - - 0.01 0.02 (49.10) 

Corn (0.72) (0.01) - - (0.04) 0.00 - (0.10) - (5.05) 

Cotton (0.39) (0.53) (0.00) (0.20) (0.57) 0.01 - (0.07) - (34.04) 

Fallow (1.70) (111.68) (0.12) (1.44) (4.97) (0.24) (0.08) (1.47) (0.34) (327.86) 

Garlic 

Onion 
(0.02) 0.02 - 0.00 0.53 0.19 - 0.20 - 7.08 

Grains (0.62) (4.84) (0.04) (0.14) (3.42) 0.00 (0.02) (0.16) (0.00) (72.98) 

Grapes 0.34 13.87 0.40 0.90 0.69 0.03 - 0.89 0.46 186.98 

Grasses (0.21) (0.01) - - (0.48) 0.00 - (0.02) - (19.83) 

Lettuce 

Greens 
- 0.01 - 0.00 0.02 0.01 - 0.02 - 1.82 

Non-Ag (1.80) (43.43) (0.16) (5.20) (2.69) (0.04) (0.03) (1.38) (0.12) (319.37) 

Other 

Crops 
(0.24) (0.18) - (0.00) (1.36) 0.00 - (0.01) (0.00) (13.07) 

Other 

Fruit 
(1.37) 0.22 (0.00) - 0.24 0.38 - 0.27 0.01 4.99 

Other 

Veg 
(0.00) 0.00 - - 0.72 0.00 - 0.01 - 3.90 

Peppers - 0.00 - - 0.11 - - 0.55 - 1.45 

Pist (0.17) - (0.01) (0.35) 0.10 0.17 - 0.13 1.18 1.78 

Plums - 0.01 - - - - - - - (1.07) 

Pome - 0.52 - - - - - 0.01 0.04 (10.93) 

Potato (0.04) (0.00) - (0.00) - 0.68 - 0.03 - (2.74) 

Saff (0.00) (0.01) - - (0.12) - - (0.01) - (0.88) 

Strwb           

Tomatoes (10.84) (0.09) - (0.07) (1.07) 0.24 - - - (34.65) 

Waln (0.02) (3.89) (0.00) (0.04) - - - (0.00) - (13.84) 

Total (19.05) (158.16) (0.44) (7.41) (8.96) 1.83 (0.16) (0.85) 2.27 (1,060.84) 

SI Table 84. Table of the resulting revenue discrepancy reflecting user’s accuracy of CropScape 

2016 compared with LIQ 2016 (assumed ground truth for the statewide dataset). Revenue is 

nortmalized by 1 million USD. Values in parenthesis are negative. Note: this table was broken up 

into three parts to facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 1 
 LIQ 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  2,660 2 71 3,154 119 (304) 14,789 733 2,038 

Almonds (1,084)  (79) 240 827 (123) (17,901) 780 215 59,450 

Apples  0     (2)    

Berries  0    0 (0)    

Carrots (389) (31)  3  (33) (85) (18) (2) 649 

Cherries (3) 0  13 1  (338) 0  412 

Citrus (0) 2,140 3 448 110 1,208  103 4 2,390 

Corn (128) (46)  3 111 (2) (7)  (25) 18 

Cotton (737) (158) (28)  129 (36) (75) 2,035  890 

Fallow (5,990) (25,301) (328) - (2,597) (476) (14,682) (4,547) (1,499)  

Garlic 

Onion 
(253) (17)   216 (5) (7) 33 (0) 342 

Grains (6,797) (2,099)  38 756 (133) (639) (4,201) (160) 5,087 

Grapes (96) 342 (1) 341 754 137 (5,423) 290 100 5,780 

Grasses (45) (37)  2 1,296 (1) (39) 334 6 1,570 

Lettuce 

Greens 
(3) (12)   5 (1) (22) 1 (5) 359 

Non-Ag (6,355) (25,285) (32) - (704) (1,029) (48,908) (2,213) (1,056) - 

Other 

Crops 
(19) 0  3 498 (0) (61) 98 1 711 

Other 

Fruit 
(19) 49  9 129 35 (457) 1,194 71 109 

Other 

Veg 
(89) (10) (0) 4 84  (1) 47 (17) 35 

Peppers (2) (3)  2 14 (1) (57) 59 15 266 

Pist (110) 3,039 4 105 794 51 (2,831) 214 121 14,058 

Plums (1) 0    (0) (5)    

Pome (32) (921)   0 (71) (8) (2) (20) 20 

Potato (54) (12) (1) 2 3,645 (2) (21) 163 1 5,230 

Saff (126) (13)   22 (0) (1) 0 (1) 190 

Strwb           

Tomatoes (465) (411) (36) 1 606 (34) (273) 824 23 396 

Waln (21) 109 (1)  42 2 (111) 61 31 403 

Total (22,818) (46,015) (497) 1,286 9,889 (395) (92,257) 10,047 (1,464) 100,402 

SI Table 85. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2016 

compared with LIQ 2016 (assumed ground truth for the statewide dataset). The CWR is in units of 

acre-feet. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 1 of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 2 

 LIQ 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Garlic 

Onion 
Grains Grapes Grasses 

Lettuce 

Greens 

Non-

Ag 

Other 

Crops 

Other 

Fruit 

Other 

Veg 

 Alfalfa  121 3,765 3,341  285  436 20 154 

 Almonds  (149) 2,422 (2,317)  259  291 (285) 35 

 Apples  
  0  0     

 Berries  
  1       

 Carrots  (30) (10) (348)  (21)  (50) (16)  

 Cherries  
 41 (24)    1 (1)  

 Citrus  4 166 3,387  8  111 9  

 Corn  (119) 21 (16)  6  (8) (202) (0) 

 Cotton  (1) 54 (1,779)  102  (199) (168) (16) 

 Fallow  (2,768) (8,367) (11,714)  (2,848)  (2,583) (1,210) (115) 

 Garlic 

Onion  
 184 (22)  40  (57) (6) (0) 

 Grains  (1,678)  (830)  (191)  (463) (128) (34) 

 Grapes  (25) 330   99  349 (253) 19 

 Grasses  (60) 276 (310)  235  1 (10) 1 

 Lettuce 

Greens  
(10) 10 (4)    (5)   

 Non-Ag  (823) (2,672) (15,636)  (333)  (2,412) (450) (122) 

 Other 

Crops  
(30) 155 (45)  727   (3) 2 

 Other 

Fruit  
2 16 216  42  96  12 

 Other 

Veg  
 6 (77)  31  (74) (9)  

 Peppers  (3) 24 (340)  7  7 (204)  

 Pist  (11) 988 263  265  122 (109) 4 

 Plums  
 0 (19)     (1)  

 Pome  (1) (0) (1,621)  (0)  (21) (193) (1) 

 Potato  (291) 287 (4)  348  (44) (2)  

 Saff  (30) 12 (12)  (0)    (1) 

 Strwb           

 

Tomatoes  
(245) 83 (606)  173  (94) (1,692) (2) 

 Waln  (1) 29 3  32  10 (2) 3 

 Total  (6,149) (2,178) (28,514)  (734)  (4,585) (4,915) (61) 

SI Table 86. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2016 

compared with LIQ 2016 (assumed ground truth for the statewide dataset). The CWR is in units of 

acre-feet. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 2 of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy CWR Discrepancy (in acre-feet) 

Part 3 

 LIQ 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa 37 67 2 31 351 378  550 10 32,809 

Almonds 5 (7,390) (5) 971 52 93 1 160 (79) 36,387 

Apples    40      39 

Berries          1 

Carrots (30) (6)   (989) (2)  (75)  (1,482) 

Cherries  (266)  22     (0) (142) 

Citrus 64 663 10 45 54   4 3 10,934 

Corn (56) (4)   (7) 0  (28)  (487) 

Cotton (18) (179) (0) 44 (21) 6  0  (155) 

Fallow (293) (67,824) (35) (250) (2,432) (879) (2) (1,143) (444) (158,327) 

Garlic Onion (2) (7)  0 (20) 11  (2)  427 

Grains (57) (1,941) (6) 5 (728) (12) (0) (52) (1) (14,265) 

Grapes 29 (184) 4 128 42 3  54 (0) 2,817 

Grasses (3) (3)   43 3  5  3,265 

Lettuce 

Greens 
 (8)  0 (4) 0  (1)  302 

Non-Ag (310) (26,375) (49) (903) (1,315) (136) (1) (1,071) (157) (138,348) 

Other Crops 4 (15)  2 300 9  6 (0) 2,343 

Other Fruit 233 16 0  65 87  60 1 1,968 

Other Veg (0) (1)   (34) 0  (0)  (103) 

Peppers  (0)   5   28  (182) 

Pist 10  0 1,051 106 60  59 63 18,316 

Plums  (1)        (26) 

Pome  (1,493)      (2) (19) (4,386) 

Potato (2) (3)  1  110  1  9,353 

Saff (0) (4)   (19)   (2)  15 

Strwb           

Tomatoes (505) (37)  21 (28) 68    (2,233) 

Waln 0 (267) 0 23    5  349 

Total (894) (105,261) (80) 1,232 (4,577) (199) (2) (1,446) (625) (200,812) 

SI Table 87. Table of the resulting CWR discrepancy reflecting user’s accuracy of CropScape 2016 

compared with LIQ 2016 (assumed ground truth for the statewide dataset). The CWR is in units of 

acre-feet. Values in parenthesis are negative. Note: this table was broken up into three parts to 

facilitate inclusion of this table and readability. This table is Part 3 of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 1 
 LIQ 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Alfalfa Almonds Apples Berries Carrots Cherries Citrus Corn Cotton Fallow 

Alfalfa  670 (0) (13) (211) 8 (307) (3,979) 39 154 

Almonds (220)  (68) (73) (169) (385) (8,679) (436) (28) 1,448 

Apples  0     (1)    

Berries  1    1 0    

Carrots 25 7  (2)  4 (5) (21) 1 283 

Cherries (0) 6  (3) (0)  (113) (0)  33 

Citrus 5 1,136 1 (38) 6 494  (11) 1 381 

Corn 33 28  (0) 88 1 1  39 11 

Cotton (35) 22 (3)  (35) (2) (16) (2,496)  84 

Fallow (427) (623) (31) (70) (1,212) (38) (2,266) (2,824) (142)  

Garlic 

Onion 
7 5   (28) 1 (1) (37) 0 60 

Grains 875 729  (10) 419 31 (0) (7,263) 98 2,475 

Grapes (18) 81 (1) (93) (125) (143) (2,809) (138) (7) 220 

Grasses 5 32  (0) (6) 0 (4) (147) 3 294 

Lettuce 

Greens 
0 3   (1) 0 (2) (2) 3 78 

Non-Ag (453) (623) (3) (199) (329) (81) (7,548) (1,374) (100) - 

Other 

Crops 
          

Other 

Fruit 
(4) 10  (2) (12) (1) (422) (375) 1 6 

Other 

Veg 
1 2 (0) (2) (16)  (0) (61) 19 5 

Peppers 1 15  0 5 2 17 7 19 103 

Pist (11) 1,190 (5) (24) (89) (4) (1,435) (81) 2 923 

Plums (0) 1    (0) (2)    

Pome           

Potato 4 5 0 (1) (164) 0 (2) (121) 2 1,039 

Saff (8) 0   (16) (0) (0) (16) (0) 16 

Strwb           

Tomatoes 42 192 5 (0) (7) 8 (24) (584) 83 87 

Waln (4) 26 (2)  (7) (2) (57) (29) (2) 15 

Total (183) 2,914 (106) (528) (1,909) (107) (23,676) (19,988) 31 7,717 

SI Table 88. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2016 compared with LIQ 2016 (assumed ground truth for the statewide dataset). The 

GHG emission is in units of MgCO2e. Values in parenthesis are negative. Note: this table was 

broken up into three parts to facilitate inclusion of this table and readability. This table is Part 1 

of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 2 

 LIQ 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Grains Grapes Grasses 
Lettuce 

Greens 

Non-

Ag 

Other 

Crops 
Other Fruit 

Other 

Veg 

Alfalfa (507) 832  (11)   16 (1) 

Almonds (770) (744)  (54)   (56) (10) 

Apples  0  (0)     

Berries  1       

Carrots (15) 61  5   2  

Cherries (9) 17     0  

Citrus 0 1,985  1   12  

Corn 16 8  65   66 0 

Cotton (28) 122  (35)   (3) (16) 

Fallow (4,466) (450)  (698)   (71) (16) 

Garlic Onion (68) 4  (2)   0 0 

Grains  238  236   22 14 

Grapes (88)   (16)   (43) (4) 

Grasses (37) 169  23   2 0 

Lettuce 

Greens 
(5) 1       

Non-Ag (1,426) (600)  (82)   (26) (17) 

Other Crops         

Other Fruit (3) 37  (3)    (1) 

Other Veg (3) 12  (6)   0  

Peppers 7 809  4   174  

Pist (196) 136  (23)   (0) (0) 

Plums (0) 0     (0)  

Pome         

Potato (66) 1  28   0  

Saff (21) 0  (2)    (0) 

Strwb         

Tomatoes (16) 204  26   257 8 

Waln (8) (1)  (5)   (0) (1) 

Total (7,710) 2,843  (549)   352 (43) 

SI Table 89. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2016 compared with LIQ 2016 (assumed ground truth for the statewide dataset). The 

GHG emission is in units of MgCO2e. Values in parenthesis are negative. Note: this table was 

broken up into three parts to facilitate inclusion of this table and readability. This table is Part 2 

of 3. 
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Crosstab of CropScape 2016 with LIQ 2016 Reflecting User’s Accuracy GHG Emission Discrepancy (in MgCO2e) 

Part 3 

 LIQ 2016 

C
ro

p
S

ca
p

e 
2
0

1
6

 

 Peppers Pist Plums Pome Potato Saff Strwb Tomatoes Waln Total 

Alfalfa (27) 10 0  (29) 26  (55) 3 (3,402) 

Almonds (18) (2,912) (4)  (22) (4) (0) (67) (21) (13,378) 

Apples          (0) 

Berries          2 

Carrots (11) 1   47 1  1  384 

Cherries  14       0 (56) 

Citrus (21) 420 5  6   0 2 4,390 

Corn (7) 1   6 2  26  419 

Cotton (24) (3) 0  (49) 1  (20)  (2,536) 

Fallow (114) (4,410) (1)  (478) (76) (1) (257) (16) (18,965) 

Garlic Onion (2) 1   (8) 5  (4)  (67) 

Grains (17) 402 2  185 35 0 12 0 (1,291) 

Grapes (65) (89) (0)  (13) (0)  (17) 0 (3,386) 

Grasses (8) 1   6 1  0  342 

Lettuce 

Greens 
 1   (0) 0  (0)  75 

Non-Ag (121) (1,715) (2)  (258) (12) (0) (240) (6) (15,298) 

Other Crops           

Other Fruit (203) 0 0  (9) 4  (9) 0 (986) 

Other Veg (0) 0   (20) 0  (0)  (68) 

Peppers  0   6   25  1,196 

Pist (14)  0  (19) 3  (11) 38 371 

Plums  (0)        (2) 

Pome           

Potato (2) 1    50  (1)  791 

Saff (0) (0)   (9)   (1)  (59) 

Strwb           

Tomatoes (493) 7   23 36    (127) 

Waln (1) (126) (0)     (2)  (208) 

Total (1,148) (8,397) (0)  (635) 73 (1) (619) 0 (51,858) 

SI Table 90. Table of the resulting GHG emission discrepancy reflecting user’s accuracy of 

CropScape 2016 compared with LIQ 2016 (assumed ground truth for the statewide dataset). The 

GHG emission is in units of MgCO2e. Values in parenthesis are negative. Note: this table was 

broken up into three parts to facilitate inclusion of this table and readability. This table is Part 3 

of 3. 
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APPENDIX G. INFEWS- WHAT’S ALL THE FUSS? 

1. Introduction 

Food, energy, and water 

are critical resources for 

human survival 

worldwide. These 

resources underpin 

economic vitality, social 

well-being, and 

ecosystem health and 

are increasingly stressed 

by climate change 

(Vörösmarty et al., 

2018). Therefore, it is 

imperative to find long-

term, resilient, and 

sustainable solutions to 

feed 9 billion people by 

2050 (Alexandratos & 

Bruinsma, 2012), which 

will require about a 60% 

increase in agricultural 

production and increase 

water demands 

(Alexandratos & 

Bruinsma, 2012; 

Rosenberg, 1992). Climate change impacts on water availability will have repercussions 

on food, energy, and water security globally. Agriculture is the largest user of freshwater 

resources, withdrawing about 70% of water (FAO, 2017a), making it highly vulnerable to 

climate change while also being a large contributor to greenhouse gas (GHG) emissions 

globally (IPCC, 2001).  

California is uniquely positioned to play a central role in addressing global food, 

energy, and water security issues as an epicenter of climate change risk and leader in food 

production and innovation. The state can play a prominent role in developing climate-smart 

agricultural practices. To do this, California needs to develop and implement climate 

change adaptation strategies that simultaneously advance social equity, protect the 

environment, and promote human well-being while managing limited natural resources and 

building resilience to climate change. This is no small feat. A foundational step to 

developing climate change adaptation strategies that lead to equitable and effective 

solutions is to address energy and water needs in California’s food systems.   

Strategies narrowly focused on maximizing food production that fail to address energy 

and water use needs can increase system risk to policy changes that aim to address a 

changing climate. A comprehensive understanding of food-energy-water systems (FEWS) 

for California (SI Figure 52, Box1) can help develop solutions targeted to specific food 

SI Figure 52. Relationships between food, energy, and water components 

and system impacts to California-specific food systems due to policy 

changes aiming to address a changing climate. 
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system inefficiencies and prevent unforeseen outcomes. It is evident that of the three 

sectors, water in California drives, constrains, and creates competition between energy and 

food sectors due to the natural variability of precipitation, the financially and energetically 

costly conveyance of water, and the policy and management decisions that restrict its use. 

Given that California uses groundwater for roughly 40% of its irrigation applications 

(Chappelle et al., 2017), it is not surprising that water from overexploited aquifers is 

embedded in California’s agricultural exports. Virtually exporting scarce freshwater 

resources makes it more critical to quantify embedded water and energy of food systems 

in water-scarce, drought-prone regions, like California. Monitoring water resources has 

become more urgent now that the state is addressing groundwater overdraft under the 2014 

Sustainable Groundwater Management Act (SGMA), which also has implications for 

agricultural land use (Hanak et al., 2019). Policies and management strategies add a layer 

of complexity if not in their impact on sustainability, then in the price paid at the 

marketplace because of not accounting for the water and energy needs throughout food 

systems.  

To ensure that 

solutions are durable 

and effective, an 

integrated approach is 

needed that accounts for 

FEWS relationships.  

This paper illustrates the 

importance of a FEWS 

approach to developing 

agricultural policies that 

support food production 

while enhancing system 

resilience to climate 

change. This paper will 

(i) quantify embedded 

energy and water for 

three key food 

production systems in 

California and (ii) 

illustrate how a FEWS 

approach can lead to 

better policy and 

management decisions. 

This paper also (iii) 

highlights key barriers 

to translating a FEWS-

nexus understanding of 

agricultural systems into 

practical, on-the-ground 

solutions. 

SI Figure 53. California’s Central Valley (gray outline) has a north to 

south gradient of depth to groundwater. The case studies (stars) reviewed 

in this paper fall within shallow to deep depth to groundwater levels. 
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2. Methods  

2.1 Data and Assumptions 

Embedded water (acre-feet; AF) and energy (kilowatt-hour; kWh) are estimated per ton of 

product produced for each of the California-specific food system examples by 

consolidating and applying findings and methods from published case studies (SI Table 

17). Summarized in SI Table 18, reported normalized yield values allow California 

agricultural professionals to apply reported estimates to different yield outputs and allow 

for the cross-comparison across different yield scenarios and food system scales (e.g., 

acreage). The GHG emissions associated with energy use for each example are calculated 

and reported as carbon dioxide equivalent (CO2e), which allows other GHG emissions to 

be expressed in terms of carbon dioxide based on their global warming potentials.  

 

Table 1. Food System Example Parameters, Equations, and Data Sources 

Example 1- Almond Production 

Case 

Study 

Area 

Yield 

 
Water Use Energy Use 

Cost of 

Energy 
CO2e 

100-acres 
1 ton per 

acre 

4 acre-feet per 

acre (AF/ac); 

based on range 

of 3 AF/ac to 

4.33 AF/ac 

Energy to pump 

groundwater from 

x feet depth= 

(Weight of water 

(lbs.)*Lift (ft) 

*(kWh/(2,655,220 

ft-lbs.))); 

simplified 

equation from 

(Peacock, 1996) 

Cost of 

electricity at 

$0.15 per 

kWh 

7.07 × 10-4 

metric tons 

CO2/kWh 

50 PSI sprinkler 

pressure; 

(Minton et al., 

2011) 

Energy to 

pressurize 

sprinklers to x PSI 

using pump with 

70% 

efficiency=3.3795

4 * X PSI; 

simplified 

equation from 

(Peacock, 1996) 
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(Almond 

Board of 

California, 

2019) 

(Almond 

Board of 

Californi

a, 2019) 

(Almond 

Hullers and 

Processors 

Association, 

2015; Haviland 

et al., 2019) 

0.586 kWh of total 

energy are 

required per 

kilogram (kg) of 

almond kernels; 

Equation: 0.586 

kWh * 94,800 kg 

of almond kernels; 

(Kendall et al., 

2015) 

(U.S. Energy 

Information 

Administratio

n, 2019); 

(U.S. 

Environmenta

l Protection 

Agency, 

2019) 

Example 2- Wine Grape Production: Frost Protection 

Case 

Study 

Area 

Yield Water Use Energy Use Cost of 

Energy 
CO2e 

141- acres 
6.5 tons 

per acre 

21 acre-feet 

total; Water 

supply required 

to prevent 

radiation frost 

using 

sprinklers of 

about 55 

gallons per 

minute per acre 

50 PSI sprinkler 

pressure; 

(Minton et al., 

2011) 

Cost of 

electricity at 

$0.15 per 

kWh; 

(U.S. Energy 

Information 

Administratio

n, 2019) 

7.07 × 10-4 

metric tons 

CO2/kWh 

Energy to 

pressurize 

sprinklers to x PSI 

using a pump with 

70% 

efficiency=3.3795

4 * X PSI; 

(Peacock, 1996) 

one machine per 

10 acres; 13 

gallons per hour 

(Snyder and Melo-

Abreu, 2005); 

(Alston et 

al., 2018) 

(Goodhu

e et al., 

2008) 

(Verdegaal, 

2009) 

Propane wind 

machine uses on 

average 13 gallons 

per hour; 

(Venner and 

Blank, 1995) 

Cost of 

propane at $3 

per gallon 

(U.S. Energy 

Information 

Administratio

n, 2021) 

(U.S. 

Environmenta

l Protection 

Agency, 

2019) 

Example 3- Food Processing: Tomatoes 

Case 

Study 

Area 

Yield Water Use Energy Use Cost of 

Energy 
CO2e 
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2.2 Example Selection  

The most prominent food systems in California—(i) almond production, (ii) wine grape 

production, and (iii) food processing—were selected to quantify embedded energy and 

water and illustrate how a FEWS approach could lead to better policy and management 

decisions. Almond production in California is the 2nd leading commodity generating $6.1 

billion in cash receipts (CDFA, 2019). This study focuses on almond production in Kern 

County as it dedicates the highest acreage (~21,000 acres) to almond production in the 

Central Valley (CDFA, 2020). This study makes use of Kendall et al. (2015) to deduce 

energy-water use and CO2e emissions at the hulling and shelling stage of almond 

production. The next California-heavy production system analyzed in this study is frost 

protection in wine grape production, which garnered a total retail value of $43.6 billion in 

2019 California wine shipments (Wine Institute, 2020). In addition to accounting for on-

farm water and energy use, this study considers a tomato processing facility to represent 

the post-farm food stage. Few studies have detailed quantification of the embedded water 

and energy use at food processing facilities. This study makes use of Amon et al. (2017) to 

address the implications of energy and water use at food processing facilities.  

The food system examples are chosen across regions that encompass varying depth to 

groundwater levels (SI Figure 53), since groundwater in the state plays a critical role in 

meeting irrigation demands, especially during drought, it is important to demonstrate how 

varying groundwater levels impact water and energy use. The specific locations are also 

regions where these food systems are most prominent in the Central Valley. Food system 

size and regional characteristics reflect regional climate conditions and average food 

system sizes. The next section provides specifics on the region and the assumptions made 

to derive energy and water use for each example.    

2.3 Location & Assumptions 

Almond Production 

Consider a mature six-year-old almond orchard of 100 acres located in Kern County that 

yields about 100 tons of almonds in a season. The selected acreage for this example is 

based on the average size of almond orchards reported by the Almond Board of California 

(2019) and the yield range used for this analysis of ~1 ton of almonds per acre is the average 

of the expected yield range of 0.7-1.5 tons of almonds per acre (Doll et al., 2010; Haviland 

et al., 2019). The required water for irrigation of an almond orchard ranges from three acre-

N/A 
170,860 

tons 

340,781,948 

gallons 

Electrical energy 

4,442,360 kWh 

Cost of 

electricity at 

$0.15 per 

kWh 

7.07 × 10-4 

metric tons 

CO2/kWh 

 

Amon et 

al., 

2017) 

Amon et al., 

2017) 

Amon et al., 

2017) 

(U.S. Energy 

Information 

Administratio

n, 2019); 

(U.S. 

Environmenta

l Protection 

Agency, 

2019) 

SI Table 91. Data sources of parameters and equations used to obtain water-energy use and 

CO2e emissions for each California-specific food system example. 
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feet per acre (AF/ac) (Almond Hullers and Processors Association, 2015) to 4.33 AF/ac 

(Haviland et al., 2019).  Water use for almond production in this example is assumed to be 

four AF/ac, which results in a total of ~400 AF of seasonal water requirement for this 100-

acre orchard. On-site energy requirements are calculated for groundwater pumping from 

700 feet of depth and pressurizing the micro-sprinkler system at 25 pounds per square inch 

(PSI) with a pump efficiency of 70% (Peacock, 1996).  

Wine Grape Production 

Many of California’s wine grape regions are prone to frost damage during cold winter 

nights. Frost protection methods, like sprinklers and wind machines, have different water 

and energy implications. Consider approximately 15-hours of overnight frost protection in 

January at an average-sized vineyard of 141-acres in Lodi (Alston et al., 2018). This 

vineyard yields a total of 916.5 tons of grapes (Goodhue et al., 2008). For this case study, 

the total amount of water required to provide frost protection for 15-hours via overhead 

sprinklers pressurized at 50 PSI is 21 acre-feet. The amount of water required is based on 

55 gallons per minute (gpm) per acre for overhead sprinkler water application (based on 

the maximum of the range of 50-55 gpm per acre; Minton et al., 2011). It is assumed that 

electricity supplies the energy for the sprinklers at $0.15/kWh, and propane supplies the 

wind machines’ energy at $3/gallon. There are two stages of the frost protection process 

that require energy—1) the electricity to pump water from 600 feet of groundwater depth 

and 2) to pressurize the sprinkler system at 50 pounds-per-square-inch (PSI) (Minton et al., 

2011). For this scenario, assume one machine requiring 13 gallons per hour is needed per 

10 acres to protect 141-acres of grapes from frost damage (Snyder & Melo-abreu, 2005) 

requiring a total of ~2,730 gallons of propane for 15-hours (Venner & Blank, 1995). This 

analysis does not consider the cost of installing and maintaining sprinkler systems or wind 

machines.  

Food Processing: Tomatoes 

An assessment of energy-water use at a tomato processing facility conducted by Amon et 

al. (2017) was used to inform this example and calculate overall system CO2e emissions.  

The study by Amon et al. (2017) provides data on energy-water use for all stages at a 

tomato processing facility in Dixon over an around-the-clock processing season (July-

September). This tomato processing plant yields about 170,860 tons of tomato product per 

season. In this example, energy and water use and CO2e emissions per ton of product 

include significant functions at a tomato processing facility—groundwater pumping, 

unloading, and sorting, steam generation and utilization, cooling, cleaning, and wastewater 

treatment. Reported results reflect the total water-energy use and CO2e emissions 

encompassing all components of the tomato processing facility.  

3. Results & Discussion  

This section reviews the results of the embedded energy-water and CO2e emissions 

analysis for each California-specific food systems reported in SI Table 18. This section 

uses the examples to discusses how a taking a FEWS approach could lead to resilient 

climate change adaption strategies and prevent unwarranted outcomes.  
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Table 2. Results of Embedded Water, Energy, and CO2e for California Food System 

Examples 

Example 1- Almond Production  

Total 

Acreage 
100 

Total 

Water Use 

(AF/ton) 

Total Energy 

(kWh/ton) 

Total Cost 

of Energy 

($USD/ton) 

CO2e 

(Metric 

Ton/ton) Total Yield 

(tons) 
100 

At the Orchard 4 4,339 650 3.1 

Hulling & Shelling – 532 80 0.38 

Example 2- Wine Grape Production: Frost Protection 

Total 

Acreage 
141 

Total 

Water Use 

(AF/ton) 

Total Energy 

(kWh/ton) 

Total Cost 

of Energy 

($USD/ton) 

CO2e
 

(Metric 

Ton/ton) 
Total Yield 

(tons) 
916.5  

Sprinkler Systems 0.02  24 4 0.02 

Wind Machines 0 80 9 0.06 

Total – 3,719 558 2.64 

Example 3- Food Processing: Tomatoes 

Total 

Acreage 
N/A 

Total 

Water Use 

(AF/ton)  

Total Energy 

(kWh/ton) 

Total Cost 

of Energy 

($USD/ton) 

CO2e 

(Metric 

Ton/ton) Total Yield 

(tons) 
170,860 

Tomato Processing 0.006 26 4 0.02 

SI Table 92. The total water, energy, and CO2e emissions of three California-specific examples 

normalized by ton of product. 
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3.1 Almond Production: Field to Processor 

3.1.1 Water and Energy Use 

On-Farm– The amount of energy required to pump groundwater to meet seasonal water 

requirements for almond production results in ~4,096 kWh/ton of almonds at ~$614/ton of 

almonds. In comparison, the amount of energy required to pressurize the micro-sprinklers 

is ~243 kWh/ton at ~$36/ton. The total energy required, and costs associated with on-farm 

almond production are ~4,339 kWh/ton with a cost of ~$650/ton of almonds, respectively. 

The CO2e emissions resulting from energy to pump groundwater and pressurize sprinkler 

systems are  ~3.1 metric tons CO2e/ton of almonds. (US EPA, 2019). Thinking of these 

CO2e emissions in the carbon market context, if a metric ton of CO2 is worth $8 (Woo et 

al., 2017), then the CO2e associated price with this food system example would be ~$2,480 

per season per 100 acres.  

Hulling and Shelling– Calculations for the energy requirements of hulling and shelling for 

this example aided by Kendall et al. (2015) resulted in ~532 kWh/ton of energy at the cost 

of ~$80/ton of almonds and result in ~0.38 metric tons of CO2e emissions/ton of almonds 

(US EPA, 2019). Overall, the hulling and shelling process requires less energy than 

pumping groundwater and pressurizing the micro-sprinklers for irrigation combined. 

Something to consider is that the energy and water footprints per ton of almonds differ 

based on the source of water (i.e., surface water or groundwater), local climate conditions, 

and water availability. Energy requirements for pumping groundwater vary based on the 

pump’s energy efficiency and the region’s depth-to-groundwater characteristics. More 

energy is required to run less efficient pumps and pump water from deeper aquifers (SI 

Figure 54), which was the case for this food system in Kern County.  

3.1.2 Policy and Management Decisions Affecting Almond Production 

California agricultural production is affected by policy and management, especially those 

related to water and land use. Water scarcity is a major driver in water policy and 

management in California. The 2014-2016 drought led to more than five million acre-feet 

(MAF) of groundwater overdraft (Howitt et al., 2015) and in part led to the passing of the 

2014 Sustainable Groundwater Management Act, commonly referred to as SGMA. This 

new groundwater law aims to address groundwater overdraft by 2040 (see Box 2). 

Although the implications of SGMA remain primarily unknown, governing water agencies 

under SGMA, known as GSAs, are proposing potential changes in water prices, restrictions 

in drilling new groundwater wells, and agricultural land-use changes. A recent study 

projects that a more than 500,000 acre reduction in irrigated land may be needed to address 

groundwater overdraft by 2040 (Hanak et al., 2019). This potential reduction in agricultural 

land comes with socio-economic and environmental implications. For example, consider 

the socio-economic impacts during the 2015 drought on the state: fallowing of about 

540,000 irrigated acres in the Central Valley, about 1.84 billion dollars of direct costs of 

the drought on agriculture, and a loss of about 10,100 direct seasonal jobs (Howitt et al., 

2015). During the drought, surface water shortages of about 8.7 MAF were offset by about 

6 MAF of groundwater, which allowed some crops (e.g., almonds, pistachios, other 

orchards) to continue production business-as-usual. Under SGMA, groundwater offsets 

may not be possible, making the detrimental socio-economic impacts observed during the 

2015 drought permanent further impacting already vulnerable disadvantaged communities 

(DACs; for definition, see Box 2). The complete implications of SGMA remain unknown 
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since it is in its preliminary implementation stages. However, one can begin to put together 

the magnitude of collateral outcomes resulting from a single law aiming to fix one sector 

of FEWS if management strategies are developed without considering where water is 

dedicated throughout the food system. 

3.1.3 Almond Production Climate Change Adaptation Strategies with FEWS Lens 

The FEWS approach to identifying which stage of almond production was the most energy-

intensive highlights that on-farm energy required to pump groundwater is the most 

intensive and costly. This FEWS perspective can help target technological investments or 

funding incentives that may help improve this energy-intensive stage of almond 

production. For example, at the farm level, a farmer may consider implementing renewable 

energy, like solar, to offset high costs associated with groundwater pumping. A FEWS 

approach allows one to pinpoint production stages that take up more energy than others, 

like pumping having higher energy requirements than pressurizing of sprinkler systems. 

Trends in reduced energy use in sprinkler systems could be attributed to the transition to 

energy and water-efficient irrigation systems and irrigation methods, like regulated deficit 

irrigation. Pumping of groundwater is more energy-intensive than pressurizing of sprinkler 

systems because it takes more energy and costs more to lift large amounts of heavy water 

hundreds even thousands of feet in some part of the state (SI Figure 53). Solutions to the 

high depth to groundwater levels lead back to SGMA’s objective to replenish groundwater 

levels, which may require land use to be repurposed other, multi-benefit land use (for 

examples see Box 3). Land use transitions are complicated. Agriculture in California is an 

essential part of the local, national, and global economy and is the livelihood for many 

people across the state. A FEWS approach with a detailed breakdown of water, energy, and 

SI Figure 54. Graph of energy requirements (kWh) to lift one-acre foot of water from various depths 

(50-650 feet) for pumping efficiencies of 30, 50, and 70%. 
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GHG emissions tradeoffs is necessary to facilitate decisions that result in practical 

solutions at the local and watershed levels and account for decision tradeoffs.  

3.2 Wine Grape Production: Frost Protection 

3.2.1 Energy and Water Use 

Water and Energy for Sprinklers– Water use for frost protection results in about 0.02 acre-

feet/ton (AF/ton) of wine grapes (based on the required 21 AF for 15-hours of wine grape 

frost protection). For this wine grape frost protection scenario, lifting the total required 21 

AF of water 600 feet with a pump that runs at 70% efficiency requires about 20 kWh/ton 

of grapes and costs about $3/ton of grapes. Additionally, energy requirements to pressurize 

the sprinkler system to 50 PSI requires ~4 kWh/ton of grapes and costs ~$0.60/ton of 

grapes. In total, using sprinklers for 15-hours of frost protection for wine grapes requires 

~24 kWh/ton of energy and costs ~$4/ton of grapes, which is not high compared to the 

price per ton of wine (Penn, 2021; ~$2.5 to $4K per ton of wine grapes). 

Energy for Wind Machines– Most wind machines are driven by propane or diesel, for this 

example we assume the 14 wind machines are fueled by propane to provide frost 

protection. The total energy use for wine grape frost protection ~80 kWh/ton of grapes 

based on the conversion of gallon of propane to 27 kWh of energy (Propane 101, 2019), 

and would cost ~$9/ton of grapes for 15-hours of frost protection. Wind machines do not 

utilize water, but wind machines require higher energy use and costs than sprinkler 

methods.  

GHG emissions– For this example, the sprinkler system results in less CO2e emissions/ton 

of grapes (~0.02 metric tons) compared to wind machines (~0.06 metric tons CO2e /ton of 

grapes) (US EPA 2019). Within a carbon market context, sprinkler systems result in $150 

worth of CO2e emissions (total of ~18 metric tons of CO2e) and about $440 of CO2e 

emissions for wind machines (total of ~60 metric tons of CO2e) for 15 hours of frost 

protection. 

3.2.2 Policy and Management Decisions Affecting Wine Grape Production 

California has an objective to achieve carbon neutrality by 2045 (Mahone et al., 2020), 

which requires an estimated 125 million tons of carbon emissions to be removed from the 

atmosphere annually—equivalent to removing 26 million cars from the road annually 

(Baker et al., 2020). This intense carbon removal is possible with policies that address 

pollution sources from transportation, industrial sectors, and agriculture. Having a FEWS 

perspective to meeting carbon neutrality in the next 20 years can effectively account for 

GHG emission inventory across the life cycle of food production and target solutions 

within food systems that are hot spots for emissions. For example, in a life cycle assessment 

of wine grape production conducted by Steenwerth et al. (2015), authors identified pest 

and weed management, pesticide manufacturing, on-farm truck use and associated fuel, 

and field nitrous oxide emissions from N-fixing legumes in cover crop mixes to be the 

highest sources of energy use and GHG emissions. Agriculturally universal practices 

applicable to grape production and other crop-type systems result in high GHG emissions 

and energy, indicating the opportunity to develop technology or viticulture practices that 

address energy use emission hotspots. Proposed management solutions like implementing 

cover crops applicable across various crop types and regions and therefore, should be done 

with an account of potential tradeoffs whether in yield, crop quality, GHG emissions, and 

water-energy use. An example of a GHG emission strategy best approached through a 
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FEWS lens that is tailored to a specific crop and region is applying N-fixing legumes as 

cover crops in grape production. While applying N-fixing legume to other crops or grapes 

in regions outside of California may be an ideal approach, a study found that the 

implementation of annual cover crops with N-fixing legumes in wine grapes in Napa and 

Lodi resulted in ~19% higher global warming potential from higher nitrous oxide 

emissions (Steenwerth et al., 2015). Furthermore, N-fixing legumes may not be ideal for 

low-yielding California coastal wine grapes but may be a more beneficial approach for 

high-yielding table grapes or wine grapes in the Central Valley.  

3.2.3. Wine Grape Production Climate Change Adaptation with FEWS Lens 

The quality and yield of wine grape production are strongly dependent on climatic 

conditions and dynamic interactions between temperature, water, viticulture techniques, 

and varietals (Van Leeuwen et al., 2019). Warming temperatures, drier conditions, and 

water scarcity will drive changes in techniques and regionally suitable varietals (Mozell & 

Thachn, 2014). Some climate change adaptation strategies for vineyards include changing 

varietals and rootstock, modifying viticulture techniques (e.g., physical, biological, and 

chemical), modifying training systems, moving to higher altitudes or regions where soils 

have greater water holding capacity (Nicholas & Durham, 2012; Van Leeuwen et al., 

2019). Some adaptation strategies to address limited water supply include switching to 

varietals with drought-resistant germplasm (McElrone et al., 2013) and variation in grape 

phenology increase climate change resilience (Morales-Castilla et al., 2020). 

3.3. Food Processing: Tomatoes 

3.3.1 Water and Energy Use 

The tomato processing facility’s overall energy requirement is ~26 kWh/ton of tomato, 

which has CO2e emissions of ~0.02 metric tons CO2e/ton of tomatoes (US EPA, 2019) and 

costs about $4/ton of tomato for three months of 24-hour processing. The most prominent 

water use is present in unloading tomatoes from trucks, removing grit, and conveying 

tomatoes to the facility, and electrical energy is highest for pumping and thermal energy 

for generating steam—all forms of managing water (Amon et al., 2017).  

3.3.2 Policy and Management Decisions Affecting Food Processing Facilities 

Wildfires, heatwaves, and wind intensity have been increasing with changing climate 

conditions (Jones et al., 2020) with indirect effects on California’s food producers and 

processors. In 2019, for example, California public utilities (CPUs) implemented a public 

safety management strategy known as the Public Safety Power Shutoff (PSPS) to reduce 

wildfire risk during extreme weather events with high winds and elevated temperatures. 

Taking a processing facility offline not only results in loss of product for every hour 

without power, but also increases in water and energy to clean and restart the facility for 

continued production. Customers affected by PSPS events criticized CPUs for poor 

execution of rules, regulations, and communication, which led to an investigation to 

examine recent PSPS events to ensure utilities are held accountable for outcomes during 

these events (Balaraman, 2019). Implementing the PSPS management highlights how 

crucial it is to develop climate change adaptation strategies and management with a FEWS 

understanding and approach to prevent unwarranted outcomes and ensure effective 

communication between resource managers and impacted entities.   

Increases in heatwaves have also driven changes in food standards. For example, the 

Food and Drug Administration’s Food Safety Modernization Act (US FDA, 2011) makes 
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food production standards and processing more stringent to prevent foodborne illnesses, 

which case ~48 million people to get sick, ~128,000 to become hospitalized, and ~3,000 

to die each year in the United States (CDC, 2020). These regulations have many 

implications in terms of water and energy embedded in food processing and handling 

facilities—increases in refrigeration capacity at the facility and transportation of products 

and water increases to ensure proper cleaning and sanitation of products and facilities. As 

changes in climate lead to changes in food standards, FEWS quantification is important to 

targeting where there is a need to focus technological and financial investments withing 

California food systems.  

3.3.3. Food Processing Climate Adaptation with FEWS Lens 

Comprehensive and detailed analysis of water and energy use for California-specific food 

systems help identify components or stages of food processing that could become water or 

energy saving. For example, the water-energy analysis by Amon et al. (2017) highlighted 

high energy use for pumping and steam generation, which could lead to technological 

developments that increase energy efficiency for these critical steps of food processing. 

Furthermore, understanding that the preliminary fruit preparation—the washing and the 

conveyance of fruit from the truck to the processing facility—is water-intensive could lead 

to increased automation coupled with water recapture and reuse methods that reduce the 

energy-water footprint at this processing stage.   

4. Conclusions  

The foundation of developing solutions that take a FEWS approach is understanding the 

intricate interconnections and relationships between FEWS, which have been assessed in 

the literature through research, modeling, and technological developments. A gap persists 

in effectively translating a conceptual understanding of FEWS and current food system 

water and energy consumption to develop practical solutions to water and energy efficiency 

and GHG emission reduction. Not only is a guided action plan needed to bridge theory and 

practical implementation, but “detailed research-based evidence” at various scales, 

different environments, and contexts are needed (Leck et al., 2015). United States federal 

funding has steered the evolution of FEWS research with a global reach worldwide, but 

most of this research has tended to be conceptual and lacking the ability to lead to 

actionable solutions.  

For example, the National Science Foundation’s funding of Innovation at the Nexus of 

Food, Energy, and Water Systems (NSF-INFEWS) projects to date are primarily 

theoretical approaches, and the most common research method is modeling with emphases 

on irrigation, biogas and biochar, and renewable energy. FEWS research focusing on 

California-specific food systems could take climate change adaptation strategies to the next 

level by focusing on artificial intelligence and blockchain for food traceability, 

transparency, and reliability (Creydt & Fischer, 2019; Galvez et al., 2018; Kamath, 2018). 

Solutions to FEWS developed for commodity crops like corn or wheat have less relevance 

to the complex agricultural landscape found in California, where specialty crops have 

specific growing conditions and unique production logistics. The NSF-INFEWS projects 

with the most practical solution developments for California, to date, focus on technology 

development for recycling agricultural byproducts for use as renewable power or soil 

remediation (Fang et al., 2020; Qaramaleki et al., 2020). Other aspects of FEWS research, 
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such as automation technology, artificial intelligence, and blockchain, could help catalyze 

conceptual understanding to applied solutions for California’s food systems.   

Overall, there is a need for research in California that not only evolves the 

understanding of the relationships between FEWS but also facilitates the transformation of 

theoretical findings into practical solutions. In addition to research that bridges theory and 

practice, detailed studies of California’s food production systems’ water-energy footprints 

are needed. Such assessments could inform effective policies, management 

implementation, and technological investments that promote socio-economic and 

environmental well-being. Detailed FEWS studies—especially localized life-cycle 

assessments (Amon et al., 2017; Kendall et al., 2015; Steenwerth et al., 2015)—can help 

identify inefficiencies and potential cost savings.  

Generally, FEWS research has involved diverse professional communities (e.g., 

academia, industry, and agencies) and increasingly with stakeholder input (Endo et al., 

2017), yet further inclusion of can help bridge theory and practice. This approach could 

also decrease negative and unwarranted tradeoffs in action plans (Leck et al., 2015; Opejin 

et al., 2020). By working with multiple key stakeholders (see Box 4), California can 

develop policy and management approaches that are community informed and essential for 

developing timely, relevant, and long-term solutions to California agriculture FEWS 

issues. 

 

Box 1. Food-Energy-Water Nexus—What’s all the fuss? 

The nexus of food, energy, and water systems (FEWS) is the concept of considering 

food, energy, and water sectors as reliant and influential on one another since the 

changes or actions of one sector impacts one or both other sectors. FEWS is not a new 

concept, having been formalized in 2011 (Waughray, 2011) as an outcome of needing 

to address food, energy, and water security under rapid global change (Simpson & 

Jewitt, 2019).  Although many FEWS studies focus on single or coupled systems 

(Helmstedt et al., 2018), the scientific community has recognized the 

interconnectedness of these sectors in response to weather extremes (e.g., flooding, 

drought, wildfires) and human population pressures (Wada et al., 2016).  

Understanding FEWS can be complicated due to locally, regionally, and globally 

variable factors like climate, water availability, energy sources, land use, policy, and 

management strategies.  

California food systems are complicated due to the varying size and scale of 

agricultural production, diversity of commodities, water resources availability, and 

regional climatic differences. Food systems include all the natural resources, human 

capital, and labor involved at every stage of the food production system: from growing 

crops to food processing to the distribution chain. Energy plays a vital role at every 

stage of the food system: energy from the Sun to grow the crops to energy from 

renewable (e.g., solar, wind, water) or nonrenewable (e.g., coal, diesel) sources to 

generate electricity for pumping groundwater, conveying surface water, or pressurizing 

irrigation systems; to energy for powering food processing facilities and fueling 

distribution trucks. Both food and energy systems rely on freshwater resources—

groundwater and surface water—for growing crops, irrigation, sanitation, cooling and 

heating, and electricity generation, to list a few.   
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Box 2. Addressing Groundwater Overdraft Under SGMA  

What is SGMA? 

The Sustainable Groundwater Management Act aims to bring critically overdrafted 

basins into sustainable use and prevent undesirable outcomes that result from 

groundwater overdraft by 2040 (DWR, 2014). The undesirable outcomes or six “sins” 

of groundwater overdraft are lowering groundwater levels, land subsidence, reducing 

aquifer storage, degraded water quality, surface water depletion, and seawater 

intrusion. SGMA requires local agencies (e.g., irrigation districts, water agencies, 

water storage districts, and city and county agencies) to coordinate and collaborate to 

form Groundwater Sustainability Agencies (GSAs). GSAs are responsible for 

developing and implementing Groundwater Sustainability Plans (GSPs), which are the 

roadmaps for how GSAs will address groundwater overdraft and associated issues by 

2040. Strategies for addressing groundwater overdraft vary by region since SGMA 

recognized the need for local management of this resource and places management 

control to local GSAs.  

Potential Implications of SGMA? 

Although the implications of SGMA remain unknown, studies have projected that 

more than 500,000 acres of agricultural land may go out of production to address 

groundwater overdraft by 2040 as per SGMA (Hanak et al., 2019). Potential land-use 

changes (see Box 3) could offer the opportunity to implement land uses that address 

groundwater overdraft and its associated six “sins” while also offering other socio-

economic and environmental benefits. Water scarcity and SGMA offer a new way to 

think about how surface water and groundwater are being used and managed, 

especially in the most critically overdrafted basins in the state. So far, GSAs have 

considered ways to augment supplies (e.g., recharge, reclaimed water, and surface 

storage), shift surface water use (e.g., surface water trading, conveyance, surface water 

treatment, and recycled water), and manage demand (e.g., land fallowing, pumping 

restrictions, urban conservation, and irrigation efficiency) (Hanak et al., 2020).  

Disadvantaged Communities (DACs): Disadvantaged communities are areas in the 

state that are burdened with economic (e.g., poverty, high unemployment), health (e.g., 

cardiovascular disease, asthma), and environmental issues (e.g., poor air and water 

quality). The California Department of Water Resources defines DACs as communities 

in the state with an annual median household income (MHI) of less than 80% of the 

statewide annual MHI. Communities with an annual MHI of less than 60% of the 

statewide annual MHI are referred to as Severe Disadvantaged Communities (SDACs) 

(Balazs et al., 2019). 
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Box 3. Land Repurposing Options for Groundwater Sustainability 

 

Groundwater Sustainability Agencies (GSAs) have considered land fallowing as one of 

the major approaches to managing water demand. Leaving land fallow long-term can 

have socio-economic impacts (e.g., loss of jobs, impact the local economy, risks to 

food security). Leaving land fallowed can also lead to worsening air quality which can 

have negative health repercussions (e.g., asthma and spread of valley fever) that 

already burden many rural communities, especially in the Central Valley. Land 

repurposing options can give fallowed land another use that offers multiple benefits, 

could work with agriculture, and benefit communities, the environment, and the 

economy. The following are some land repurposing options: 

Habitat Restoration—provides species with habitat, can offer increased soil carbon 

storage. One thing to consider is the distance to the existing habitat since large, 

connected areas are most successful. Although funding is available, it may not be easy 

to access. It is recommended that first-time applicants consider partnering with local 

conservation non-profits, resource conservation districts, or Natural Resources 

Conservation Service (NRCS) offices for application support. Suggested reading: 

Butterfield et al., 2017; Lortie et al., 2018 

Dryland Agriculture—provides some revenue, is flexible year to year, and offers soil 

health and pollinator potential. Before implementation, some things to consider are that 

yields are unpredictable, and this land use is not viable in some regions with limited 

rainfall. Another consideration is that it generally involves shallow soil tillage to 

control weeds and to help preserve stored soil moisture, which may worsen air quality 

conditions. Suggested reading: Pottinger, 2021 

Pollinator-Friendly Cover Crops—can offer soil quality improvements and support 

pollinators. Some considerations are that seed mixes need to be based on local rainfall 

patterns, soil conditions, and crop types. Suggested reading: Mitchell et al., 2017 

Renewable Energy—like low impact solar, can provide substantial revenue and offers 

a clean energy source. Some considerations are that it is not possible to implement 

everywhere, and location depends on areas with the proper physical conditions. The 

solar implementation also needs to be near transmission infrastructure. Suggested 

reading: Butterfield et al., 2013; Pearce et al., 2016 

Recharge—groundwater recharge can store water for future use, improve well 

reliability, and provide habitat and support groundwater-dependent ecosystems. Some 

considerations are that it requires conveyance and permitting and may have potential 

water quality impacts that depend on soil and present aquifer contamination 

characteristics. Another consideration is that successful recharge projects depend on 

suitable soil characteristics. Suggested reading: Bourque et al., 2019; Mayzelle et al., 

2015 

Parks and Green Space—provide recreational opportunities for communities that 

currently lack these areas, like DACs. Green spaces also play as a buffer against 

environmental health threats, especially in rural agricultural communities. It is essential 

to consider places this land uses in communities that are currently lacking these spaces. 

Suggested reading: Lee, 2020 
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Less Water-Intensive Crops—could promote water savings, keeps specialty crops in 

production, and promotes crop diversity. Less water-intensive crops could be more 

flexible in that they can be annually fallowed during drought. Some considerations are 

that some crops require more labor, result in changes in revenue, markets differ among 

crops, and different needs in fertilizer amounts and those associated costs.  

 

 

 
 

 

Box 4. Recommendations for Diversity and Inclusion in Codeveloping California 

Agriculture FEWS Solutions 

 

For California, key stakeholders to involve in the co-development of solutions include 

researchers, government agencies, industry, local communities, and agricultural 

professionals— including farmers and small-scale farmers. There is a persistent 

knowledge and decision-making equity gap in California, especially in the San Joaquin 

Valley. More than 500 DACs and small-scale farmers have been excluded from 

decisions that impact their livelihood due to language barriers, limited broadband 

access, or lack of access to information in their native language or communication 

through appropriate means. A solution to this is disseminating and translating policy, 

management plans, and critical research that impacts community members that are non- 

English speakers. Another is to diversify how information is disseminated among 

different implementing and impacted entities (e.g., mail-in, in-person, multilingual 

digital communications). Acknowledging an increase in mobile communications in the 

future, there is a need to strategize how to bridge communities without broadband and 

lower literacy. The future for making knowledge and information accessible is in 

artificial intelligence and developing on the spot translation. Acknowledging and 

accommodating the diversity in languages spoken in the state can lead to equitable, 

collaborative, and inclusive decision-making and lead to innovative solutions stemming 

from diverse perspectives and lived experiences. An example is CaliWaterAg YouTube 

channel, a trilingual—English, Spanish, and Hmong—channel that aims to make the 

science and policy behind California water and land use management accessible to 

community members and farmers in the state (www.tinyurl.com/caliwaterag). Overall, 

collaboration and co-development of solutions are critical for California’s success in 

addressing California agriculture FEWS security moving forward. 

http://www.tinyurl.com/caliwaterag



